WorldWideScience

Sample records for macrophage foam cell

  1. Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation.

    Science.gov (United States)

    Yan, Dan; He, Yujuan; Dai, Jun; Yang, Lili; Wang, Xiaoyan; Ruan, Qiurong

    2017-06-30

    Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF 165 ) displayed a high capability to alter their phenotype and function into ELCs in vitro Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation. © 2017 The Author(s).

  2. Macrophage Liver Kinase B1 Inhibits Foam Cell Formation and Atherosclerosis.

    Science.gov (United States)

    Liu, Zhaoyu; Zhu, Huaiping; Dai, Xiaoyan; Wang, Cheng; Ding, Ye; Song, Ping; Zou, Ming-Hui

    2017-10-13

    LKB1 (liver kinase B1) is a serine/threonine kinase and tumor suppressor, which regulates the homeostasis of hematopoietic cells and immune responses. Macrophages transform into foam cells upon taking-in lipids. No role for LKB1 in foam cell formation has previously been reported. We sought to establish the role of LKB1 in atherosclerotic foam cell formation. LKB1 expression was examined in human carotid atherosclerotic plaques and in western diet-fed atherosclerosis-prone Ldlr -/- and ApoE -/- mice. LKB1 expression was markedly reduced in human plaques when compared with nonatherosclerotic vessels. Consistently, time-dependent reduction of LKB1 levels occurred in atherosclerotic lesions in western diet-fed Ldlr -/- and ApoE -/- mice. Exposure of macrophages to oxidized low-density lipoprotein downregulated LKB1 in vitro. Furthermore, LKB1 deficiency in macrophages significantly increased the expression of SRA (scavenger receptor A), modified low-density lipoprotein uptake and foam cell formation, all of which were abolished by blocking SRA. Further, we found LKB1 phosphorylates SRA resulting in its lysosome degradation. To further investigate the role of macrophage LKB1 in vivo, ApoE -/- LKB1 fl/fl LysM cre and ApoE -/- LKB1 fl/fl mice were fed with western diet for 16 weeks. Compared with ApoE -/- LKB1 fl/fl wild-type control, ApoE -/- LKB1 fl/fl LysM cre mice developed more atherosclerotic lesions in whole aorta and aortic root area, with markedly increased SRA expression in aortic root lesions. We conclude that macrophage LKB1 reduction caused by oxidized low-density lipoprotein promotes foam cell formation and the progression of atherosclerosis. © 2017 American Heart Association, Inc.

  3. Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.

    Science.gov (United States)

    Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman

    2018-06-05

    The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  5. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    Science.gov (United States)

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  6. Role of Rab5 in the formation of macrophage-derived foam cell.

    Science.gov (United States)

    Chan, Lokwern; Hong, Jin; Pan, Junjie; Li, Jian; Wen, Zhichao; Shi, Haiming; Ding, Jianping; Luo, Xinping

    2017-09-12

    Foam cells play a key role in the occurrence and pathogenesis of atherosclerosis. Its formation starts with the ingestion of oxidized low-density lipoprotein (oxLDL). The process is associated with Ras related protein in brain 5 (Rab5) which plays a critical role in regulating endocytosis and early endosomal trafficking. Base on this, we presumed that Rab5 might participate in the maturation of foam cell. The aim of this study is to investigate the effect of Rab5 on macrophage cholesterol during the evolvement of macrophage when induced by oxLDL to the formation of foam cell. Immunohistochemistry was performed to analyze the distribution of macrophages and Rab5 in atherosclerotic plaque. RNA inteference study and transfection of inactive mutant (GFP-Rab5-S34N) and active mutant (GFP-Rab5-Q79L) in U937-derived macrophage were utilized to investigate the impact of Rab5 on the process of macrophage cholesterol, which could be detected by oil red O staining, determination of intracellular lipid content, filipin staining, nile red staining and the costaining of early endosome antigen-1 (EEA-1) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylin dicarbocyanine (Dil)-labelled oxLDL (Dil-oxLDL). Rab5 was found abundantly localized in macrophage rich areas of human atherosclerotic lesions. On the foam cell study, the expression of Rab5 was increased after the incubation of oxLDL. The inteference study indicated the depletion of Rab5 led to the decreases of oil red O staining areas, total cholesterol and cholesterol esters in U937-derived marophages. Moreover, the fluorescence intensity of filipin and nile red staining were lower in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. The confocal study demonstrated less Dil-oxLDL was internalized in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L; the result showed also the decrease in colocalization of internalized Dil-oxLDL and EEA-1 for GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. Rab5 plays an important role in modulating the

  7. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  8. Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages.

    Science.gov (United States)

    Fujiwara, Yuko; Hama, Kotaro; Tsukahara, Makoto; Izumi-Tsuzuki, Ryosuke; Nagai, Toru; Ohe-Yamada, Mihoko; Inoue, Keizo; Yokoyama, Kazuaki

    2018-01-01

    Macrophage foam cells play critical roles in the initiation and development of atherosclerosis by synthesizing and accumulating cholesteryl ester (CE) in lipid droplets. However, in analyzing lipid metabolism in foam cell formation, studies have focused on the sterol group, and little research has been done on the acyl chains. Therefore, we adapted a model system using liposomes containing particular acyl chains and examined the effect of various acyl chains on foam cell formation. Of the phosphatidylserine (PS) liposomes tested containing PS, phosphatidylcholine, and cholesterol, we found that unsaturated (C18:1), but not saturated (C16:0 and C18:0), PS liposomes induced lipid droplet formation, indicating that foam cell formation depends on the nature of the acyl chain of the PS liposomes. Experiments on the uptake and accumulation of cholesterol from liposomes by adding [ 14 C]cholesterol suggested that foam cell formation could be induced only when cholesterol was converted to CE in the case of C18:1 PS liposomes. Both microscopic observations and metabolic analysis suggest that cholesterol incorporated into either C16:0 or C18:0 PS liposomes may stay intact after being taken in by endosomes. The [ 14 C]C18:1 fatty acyl chain in the C18:1 PS liposome was used to synthesize CE and triacylglycerol (TG). Interestingly, the [ 14 C]C16:0 in the C18:1 PS liposome was metabolized to sphingomyelin rather than being incorporated into either CE or TG, which could be because of enzymatic acyl chain selectivity. In conclusion, our results indicate that the acyl chain preference of macrophages could have some impact on their progression to foam cells.

  9. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    Science.gov (United States)

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  10. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    Science.gov (United States)

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  11. Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes

    DEFF Research Database (Denmark)

    Barascuk, Natasha; Skjøt-Arkil, Helene; Register, Thomas C

    2010-01-01

    BACKGROUND: Proteolytic degradation of Type I Collagen by proteases may play an important role in remodeling of atherosclerotic plaques, contributing to increased risk of plaque rupture.The aim of the current study was to investigate whether human macrophage foam cells degrade the extracellular...... matrix (ECM) of atherosclerotic plaques by cathepsin K mediated processes. METHODS: We 1) cultured human macrophages on ECM and measured cathepsin K generated fragments of type I collagen (C-terminal fragments of Type I collagen (CTX-I) 2) investigated the presence of CTX-I in human coronary arteries......-I in areas of intimal hyperplasia and in shoulder regions of advanced plaques. Treatment of human monocytes with M-CSF or M-CSF+LDL generated macrophages and foam cells producing CTX-I when cultured on type I collagen enriched matrix. Circulating levels of CTX-I were not significantly different in women...

  12. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  13. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species.

    Science.gov (United States)

    Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji

    2011-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    Science.gov (United States)

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  15. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton.

    Science.gov (United States)

    Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei

    2016-10-01

    Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Sang Doo; Baek, Suk-Hwan; Choi, Joon Hyuk; Cho, Kyung-Hyun; Zabel, Brian A.; Bae, Yoe-Sik

    2013-01-01

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis

  17. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ha Young, E-mail: hayoung@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Sang Doo [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baek, Suk-Hwan [Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Joon Hyuk [Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Cho, Kyung-Hyun [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Zabel, Brian A. [Palo Alto Institute for Research and Education, Veterans Affairs Hospital, Palo Alto, CA 94304 (United States); Bae, Yoe-Sik, E-mail: yoesik@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  18. Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: implications for atherogenesis.

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    Full Text Available Clinical and experimental evidence suggests a protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx-1 in the atherogenic process. GPx-1 deficiency accelerates atherosclerosis and increases lesion cellularity in ApoE(-/- mice. However, the distribution of GPx-1 within the atherosclerotic lesion as well as the mechanisms leading to increased macrophage numbers in lesions is still unknown. Accordingly, the aims of the present study were (1 to analyze which cells express GPx-1 within atherosclerotic lesions and (2 to determine whether a lack of GPx-1 affects macrophage foam cell formation and cellular proliferation. Both in situ-hybridization and immunohistochemistry of lesions of the aortic sinus of ApoE(-/- mice after 12 weeks on a Western type diet revealed that both macrophages and - even though to a less extent - smooth muscle cells contribute to GPx-1 expression within atherosclerotic lesions. In isolated mouse peritoneal macrophages differentiated for 3 days with macrophage-colony-stimulating factor (MCSF, GPx-1 deficiency increased oxidized low density-lipoprotein (oxLDL induced foam cell formation and led to increased proliferative activity of peritoneal macrophages. The MCSF- and oxLDL-induced proliferation of peritoneal macrophages from GPx-1(-/-ApoE(-/- mice was mediated by the p44/42 MAPK (p44/42 mitogen-activated protein kinase, namely ERK1/2 (extracellular-signal regulated kinase 1/2, signaling pathway as demonstrated by ERK1/2 signaling pathways inhibitors, Western blots on cell lysates with primary antibodies against total and phosphorylated ERK1/2, MEK1/2 (mitogen-activated protein kinase kinase 1/2, p90RSK (p90 ribosomal s6 kinase, p38 MAPK and SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase, and immunohistochemistry of mice atherosclerotic lesions with antibodies against phosphorylated ERK1/2, MEK1/2 and p90RSK. Representative effects of GPx-1 deficiency on both macrophage proliferation and

  19. Corticotropin-Releasing Hormone (CRH Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1.

    Directory of Open Access Journals (Sweden)

    Wonkyoung Cho

    Full Text Available Atherosclerosis, the major pathology of cardiovascular disease, is caused by multiple factors involving psychological stress. Corticotropin-releasing hormone (CRH, which is released by neurosecretory cells in the hypothalamus, peripheral nerve terminals and epithelial cells, regulates various stress-related responses. Our current study aimed to verify the role of CRH in macrophage foam cell formation, the initial critical stage of atherosclerosis. Our quantitative real-time reverse transcriptase PCR (qRT-PCR, semi-quantitative reverse transcriptase PCR, and Western blot results indicate that CRH down-regulates ATP-binding cassette transporter-1 (ABCA1 and liver X receptor (LXR-α, a transcription factor for ABCA1, in murine peritoneal macrophages and human monocyte-derived macrophages. Oil-red O (ORO staining and intracellular cholesterol measurement of macrophages treated with or without oxidized LDL (oxLDL and with or without CRH (10 nM in the presence of apolipoprotein A1 (apoA1 revealed that CRH treatment promotes macrophage foam cell formation. The boron-dipyrromethene (BODIPY-conjugated cholesterol efflux assay showed that CRH treatment reduces macrophage cholesterol efflux. Western blot analysis showed that CRH-induced down-regulation of ABCA1 is dependent on phosphorylation of Akt (Ser473 induced by interaction between CRH and CRH receptor 1(CRHR1. We conclude that activation of this pathway by CRH accelerates macrophage foam cell formation and may promote stress-related atherosclerosis.

  20. Macrophage specific overexpression of the human macrophage scavenger receptor in transgenic mice, using a 180-kb yeast artificial chromosome, leads to enhanced foam cell formation of isolated peritoneal macrophages

    NARCIS (Netherlands)

    de Winther, M. P.; van Dijk, K. W.; van Vlijmen, B. J.; Gijbels, M. J.; Heus, J. J.; Wijers, E. R.; van den Bos, A. C.; Breuer, M.; Frants, R. R.; Havekes, L. M.; Hofker, M. H.

    1999-01-01

    Macrophage scavenger receptors class A (MSR) are thought to play an important role in atherogenesis by mediating the unrestricted uptake of modified lipoproteins by macrophages in the vessel wall leading to foam cell formation. To investigate the in vivo role of the MSR in this process, a transgenic

  1. Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in macrophage-derived foam cells.

    Science.gov (United States)

    Zhu, Wa-Wa; Wang, Shu-Rong; Liu, Zhi-Hua; Cao, Yong-Jun; Wang, Fen; Wang, Jing; Liu, Chun-Feng; Xie, Ying; Xie, Ying; Zhang, Yan-Lin

    2017-01-01

    Foam cell formation, which is caused by imbalanced cholesterol influx and efflux by macrophages, plays a vital role in the occurrence and development of atherosclerosis. Humanin (HN), a mitochondria-derived peptide, can prevent the production of reactive oxygen species and death of human aortic endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL) and has a protective effect on patients with in early atherosclerosis. However, the effects of HN on the regulation of cholesterol metabolism in RAW 264.7 macrophages are still unknown. This study was designed to investigate the role of [Gly14]-humanin (HNG) in lipid uptake and cholesterol efflux in RAW 264.7 macrophages. Flow cytometry and live cell imaging results showed that HNG reduced Dil-ox-LDL accumulation in the RAW 264.7 macrophages. A similar result was obtained for lipid accumulation by measuring cellular cholesterol content. Western blot analysis showed that ox-LDL treatment upregulated not only the protein expression of CD36 and LOX-1, which mediate ox-LDL endocytosis, but also ATP-binding cassette (ABC) transporter A1 and ABCG1, which mediate ox-LDL exflux. HNG pretreatment inhibited the upregulation of CD36 and LOX-1 levels, prompting the upregulation of ABCA1 and ABCG1 levels induced by ox-LDL. Therefore we concluded that HNG could inhibit ox-LDL-induced macrophage-derived foam cell formation, which occurs because of a decrease in lipid uptake and an increase in cholesterol efflux from macrophage cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.

    Science.gov (United States)

    Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng

    2018-01-01

    The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes

    DEFF Research Database (Denmark)

    Skjøt-Arkil, Helene; Barascuk, Natasha; Larsen, Lise

    2012-01-01

    By secreting proteases such as cathepsins and matrix metalloproteinases (MMPs), macrophage foam cells may be a major cause of ruptured atherosclerotic plaques. The aims of the present study were to investigate in vitro role of human macrophage foam cells in degrading type I collagen, a major...

  4. Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-survival Foam Cell.

    Science.gov (United States)

    Ahluwalia, Pankaj Kumar; Pandey, Rajan Kumar; Sehajpal, Prabodh Kumar; Prajapati, Vijay Kumar

    2017-01-01

    Tuberculosis (TB) is one of the prevalent causes of death worldwide, with 95% of these deaths occurring in developing countries, like India. The causative agent, Mycobacterium tuberculosis (MTb) has the tenacious ability to circumvent the host's immune system for its own advantage. Macrophages are one of the phagocytic cells that are central to immunity against MTb. These are highly plastic cells dependent on the milieu and can showcase M1/M2 polarization. M1 macrophages are bactericidal in action, but M2 macrophages are anti-inflammatory in their immune response. This computational study is an effort to elucidate the role of miRNAs that influences the survival of MTb in the macrophage. To identify the miRNAs against critical transcription factors, we selected only conserved hits from TargetScan database. Further, validation of these miRNAs was achieved using four databases viz . DIANA-microT, miRDB, miRanda-mirSVR, and miRNAMap. All miRNAs were identified through a conserved seed sequence against the 3'-UTR of transcription factors. This bioinformatics study found that miR-27a and miR-27b has a putative binding site at 3'-UTR of IRF4, and miR-302c against IRF5. miR-155, miR-132, and miR-455-5p are predicted microRNAs against suppressor of cytokine signaling transcription factors. Several other microRNAs, which have an affinity for critical transcription factors, are also predicted in this study. This MTb-associated modulation of microRNAs to modify the expression of the target gene(s) plays a critical role in TB pathogenesis. Other than M1/M2 plasticity, MTb has the ability to convert macrophage into foam cells that are rich in lipids and cholesterol. We have highlighted few microRNAs which overlap between M2/foam cell continuums. miR-155, miR-33, miR-27a, and miR-27b plays a dual role in deciding macrophage polarity and its conversion to foam cells. This study shows a glimpse of microRNAs which can be modulated by MTb not only to prevent its elimination but also

  5. Phytosterols Differentially Influence ABC transporter Expression, Cholesterol Efflux and Inflammatory Cytokine Secretion in Macrophage Foam Cells

    Science.gov (United States)

    Sabeva, Nadezhda S; McPhaul, Christopher M; Li, Xiangan; Cory, Theodore J.; Feola, David J.; Graf, Gregory A

    2010-01-01

    Phytosterol supplements lower low density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E deficient mice, suggesting that the cholesterol lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may either be beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux, and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect of cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest, but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL-induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion. PMID:21111593

  6. Effects of everolimus on macrophage-derived foam cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Steven, E-mail: steven.hsu@av.abbott.com [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Kolodgie, Frank; Virmani, Renu [CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878 (United States); Feder, Debra [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States)

    2014-07-15

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10{sup -5}–10{sup -11} M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA{sup PLUS} assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10{sup -5} M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10{sup -5} M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10{sup -5} M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein

  7. Effects of everolimus on macrophage-derived foam cell behavior

    International Nuclear Information System (INIS)

    Hsu, Steven; Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander; Kolodgie, Frank; Virmani, Renu; Feder, Debra

    2014-01-01

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10 -5 –10 -11 M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA PLUS assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10 -5 M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10 -5 M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10 -5 M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein expression was significantly decreased

  8. Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation

    Science.gov (United States)

    Xu, Qing; Bohnacker, Thomas; Wymann, Matthias P.; Kruth, Howard S.

    2013-01-01

    During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as

  9. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition.

    Science.gov (United States)

    He, Jiangping; Zhang, Guangya; Pang, Qi; Yu, Cong; Xiong, Jie; Zhu, Jing; Chen, Fengling

    2017-05-01

    SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway. © 2017 Federation of European Biochemical Societies.

  10. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.

    Science.gov (United States)

    Yan, Jin-quan; Tan, Chun-zhi; Wu, Jin-hua; Zhang, Dong-cui; Chen, Ji-ling; Zeng, Bin-yuan; Jiang, Yu-ping; Nie, Jin; Liu, Wei; Liu, Qin; Dai, Hao

    2013-07-01

    To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.

  11. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration.

    Science.gov (United States)

    Xu, Suining; Li, Lihua; Yan, Jinchuan; Ye, Fei; Shao, Chen; Sun, Zhen; Bao, Zhengyang; Dai, Zhiyin; Zhu, Jie; Jing, Lele; Wang, Zhongqun

    2018-01-01

    Among the various complications of type 2 diabetes mellitus, atherosclerosis causes the highest disability and morbidity. A multitude of macrophage-derived foam cells are retained in atherosclerotic plaques resulting not only from recruitment of monocytes into lesions but also from a reduced rate of macrophage migration from lesions. Nε-carboxymethyl-Lysine (CML), an advanced glycation end product, is responsible for most complications of diabetes. This study was designed to investigate the mechanism of CML/CD36 accelerating atherosclerotic progression via inhibiting foam cell migration. In vivo study and in vitro study were performed. For the in vivo investigation, CML/CD36 accelerated atherosclerotic progression via promoting the accumulation of macrophage-derived foam cells in aorta and inhibited macrophage-derived foam cells in aorta migrating to the para-aorta lymph node of diabetic apoE -/- mice. For the in vitro investigation, CML/CD36 inhibited RAW264.7-derived foam cell migration through NOX-derived ROS, FAK phosphorylation, Arp2/3 complex activation and F-actin polymerization. Thus, we concluded that CML/CD36 inhibited foam cells of plaque migrating to para-aorta lymph nodes, accelerating atherosclerotic progression. The corresponding mechanism may be via free cholesterol, ROS generation, p-FAK, Arp2/3, F-actin polymerization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Mechanisms of foam cell formation in atherosclerosis.

    Science.gov (United States)

    Chistiakov, Dimitry A; Melnichenko, Alexandra A; Myasoedova, Veronika A; Grechko, Andrey V; Orekhov, Alexander N

    2017-11-01

    Low-density lipoprotein (LDL) and cholesterol homeostasis in the peripheral blood is maintained by specialized cells, such as macrophages. Macrophages express a variety of scavenger receptors (SR) that interact with lipoproteins, including SR-A1, CD36, and lectin-like oxLDL receptor-1 (LOX-1). These cells also have several cholesterol transporters, including ATP-binding cassette transporter ABCA1, ABCG1, and SR-BI, that are involved in reverse cholesterol transport. Lipids internalized by phagocytosis are transported to late endosomes/lysosomes, where lysosomal acid lipase (LAL) digests cholesteryl esters releasing free cholesterol. Free cholesterol in turn is processed by acetyl-CoA acetyltransferase (ACAT1), an enzyme that transforms cholesterol to cholesteryl esters. The endoplasmic reticulum serves as a depot for maintaining newly synthesized cholesteryl esters that can be processed by neutral cholesterol ester hydrolase (NCEH), which generates free cholesterol that can exit via cholesterol transporters. In atherosclerosis, pro-inflammatory stimuli upregulate expression of scavenger receptors, especially LOX-1, and downregulate expression of cholesterol transporters. ACAT1 is also increased, while NCEH expression is reduced. This results in deposition of free and esterified cholesterol in macrophages and generation of foam cells. Moreover, other cell types, such as endothelial (ECs) and vascular smooth muscle cells (VSMCs), can also become foam cells. In this review, we discuss known pathways of foam cell formation in atherosclerosis.

  13. Insulin-like growth factor I reduces lipid oxidation and foam cell formation via downregulation of 12/15-lipoxygenase.

    Science.gov (United States)

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2015-02-01

    We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe(-/-) mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe(-/-) mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. Published by Elsevier Ireland Ltd.

  14. Insulin-like Growth Factor I Reduces Lipid Oxidation and Foam Cell Formation via Downregulation of 12/15-lipoxygenase

    Science.gov (United States)

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2014-01-01

    Objective We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe−/− mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. Approach and Results We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe−/− mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Conclusions Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. PMID:25549319

  15. Classical and alternative activation and metalloproteinase expression occurs in foam cell macrophages in male and female ApoE null mice in the absence of T- and B-lymphocytes

    Directory of Open Access Journals (Sweden)

    Elaine Mo Hayes

    2014-10-01

    Full Text Available Background: Rupture of advanced atherosclerotic plaques accounts for most life-threatening myocardial infarctions. Classical (M1 and alternative (M2 macrophage activation could promote atherosclerotic plaque progression and rupture by increasing production of proteases, including matrix metalloproteinases (MMPs. Lymphocyte-derived cytokines may be essential for generating M1 and M2 phenotypes in plaques, although this has not been rigorously tested until now.Methods and Results: We validated the expression of M1 markers (iNOS and COX-2 and M2 markers (arginase-1, Ym-1 and CD206 and then measured MMP mRNA levels in mouse macrophages during classical and alternative activation in vitro. We then compared mRNA expression of these genes ex vivo in foam cells from subcutaneous granulomas in fat-fed immune-competent ApoE knockout and immune-compromised ApoE/Rag-1 double knockout mice, which lack all T and B cells. Furthermore, we performed immunohistochemistry in subcutaneous granulomas and in aortic root and brachiocephalic artery atherosclerotic plaques to measure the extent of M1/M2 marker and MMP protein expression in vivo. Classical activation of mouse macrophages with bacterial lipopolysaccharide in vitro increased MMPs-13, -14 and -25 but decreased MMP-19 and TIMP-2 mRNA expressions. Alternative activation with IL-4 increased MMP-19 expression. Foam cells in subcutaneous granulomas expressed all M1/M2 markers and MMPs at ex vivo mRNA and in vivo protein levels, irrespective of Rag-1 genotype. There were also similar percentages of foam cell macrophages carrying M1/M2 markers and MMPs in atherosclerotic plaques from ApoE knockout and ApoE/Rag-1 double knockout mice. Conclusions: Classical and alternative activation leads to distinct MMP expression patterns in mouse macrophages in vitro. M1 and M2 polarization in vivo occurs in the absence of T and B lymphocytes in either granuloma or plaque foam cell macrophages.

  16. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-01-01

    Highlights: → Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. → Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. → P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. → Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam

  17. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  18. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways.

    Science.gov (United States)

    Ni, Jing; Li, Yuanmin; Li, Weiming; Guo, Rong

    2017-10-10

    Foam cell formation and apoptosis are closely associated with atherosclerosis pathogenesis. We determined the effect of salidroside on oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation and apoptosis in THP1 human acute monocytic leukemia cells and investigated the associated molecular mechanisms. THP1-derived macrophages were incubated with salidroside for 5 h and then exposed to ox-LDL for 24 h to induce foam cell formation. Cytotoxicity, lipid deposition, apoptosis, and the expression of various proteins were tested using the CCK8 kit, Oil Red O staining, flow cytometry, and western blotting, respectively. Ox-LDL treatment alone promoted macrophage-derived foam cell formation, while salidroside treatment alone inhibited it (p foam cell formation and apoptosis, partly by regulating the MAPK and Akt signaling pathways.

  19. Spiromastixones Inhibit Foam Cell Formation via Regulation of Cholesterol Efflux and Uptake in RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Chongming Wu

    2015-10-01

    Full Text Available Bioassay-guided evaluation shows that a deep sea-derived fungus, Spiromastix sp. MCCC 3A00308, possesses lipid-lowering activity. Chromatographic separation of a culture broth resulted in the isolation of 15 known depsidone-based analogues, labeled spiromastixones A–O (1–15. Each of these compounds was tested for its ability to inhibit oxidized low-density lipoprotein (oxLDL-induced foam cell formation in RAW264.7 macrophages. Spiromastixones 6–8 and 12–14 significantly decreased oxLDL-induced lipid over-accumulation, reduced cell surface area, and reduced intracellular cholesterol concentration. Of these compounds, spiromastixones 6 and 14 exerted the strongest inhibitory effects. Spiromastixones 6 and 14 dramatically inhibited cholesterol uptake and stimulated cholesterol efflux to apolipoprotein A1 (ApoA1 and high-density lipoprotein (HDL in RAW264.7 macrophages. Mechanistic investigation indicated that spiromastixones 6, 7, 12 and 14 significantly up-regulated the mRNA levels of ATP-binding cassette sub-family A1 (ABCA1 and down-regulated those of scavenger receptor CD36, while the transcription of ATP-binding cassette sub-family A1 (ABCG1 and proliferator-activated receptor gamma (PPARγ were selectively up-regulated by 6 and 14. A transactivation reporter assay revealed that spiromastixones 6 and 14 remarkably enhanced the transcriptional activity of PPARγ. These results suggest that spiromastixones inhibit foam cell formation through upregulation of PPARγ and ABCA1/G1 and downregulation of CD36, indicating that spiromastixones 6 and 14 are promising lead compounds for further development as anti-atherogenic agents.

  20. Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-κB pathway in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Wu, Jian-Feng [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Yan-Yan; Zhang, Min; Li, Yuan [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Chen, Kong; Zeng, Meng-Ya [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Yao, Feng; Xie, Wei [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Zheng, Xi-Long [Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1 (Canada); Zeng, Gao-Feng, E-mail: qichingnudou@tom.com [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Chao-Ke, E-mail: tangchaoke@qq.com [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China)

    2014-10-03

    Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated with U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.

  1. Amalgamation of Chlamydia pneumoniae inclusions with lipid droplets in foam cells in human atherosclerotic plaque.

    Science.gov (United States)

    Bobryshev, Yuri V; Killingsworth, Murray C; Tran, Dihn; Lord, Reginald

    2008-07-01

    Chlamydia pneumoniae (Chlamydophila pneumoniae) infect macrophages and accelerates foam cell formation in in vitro experiments, but whether this might occur in human atherosclerosis is unknown. In the present study, we examined 17 carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. Electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae in the cytoplasm of macrophage foam cells. The volume of the cytoplasm that was free from vacuoles and lipid droplets in C. pneumoniae-infected foam cells was dramatically reduced, and a phenomenon of the amalgamation of C. pneumoniae inclusions with lipid droplets was detected. Double immunohistochemistry showed that C. pneumoniae-infected foam cells contained a large number of oxidized low-density lipoproteins. The observations provide support to the hypothesis that C. pneumoniae could affect foam cell formation in human atherosclerosis.

  2. NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation.

    Science.gov (United States)

    Plotkin, Jesse D; Elias, Michael G; Dellinger, Anthony L; Kepley, Christopher L

    2017-08-01

    The transformation of monocyte-derived macrophages into lipid-laden foam cells is one inflammatory process underlying atherosclerotic disease. Previous studies have demonstrated that fullerene derivatives (FDs) have inflammation-blunting properties. Thus, it was hypothesized that FD could inhibit the transformation process underlying foam cell formation. Fullerene derivatives inhibited the phorbol myristic acid/oxidized low-density lipoprotein-induced differentiation of macrophages into foam cells as determined by lipid staining and morphology.Lipoprotein-induced generation of TNF-α, C5a-induced MC activation, ICAM-1 driven adhesion, and CD36 expression were significantly inhibited in FD treated cells compared to non-treated cells. Inhibition appeared to be mediated through the NF-κB pathway as FD reduced expression of NF-κB and atherosclerosis-associated genes. Compared to controls, FD dramatically inhibited plaque formation in arteries of apolipoprotein E null mice. Thus, FD may be an unrecognized therapy to prevent atherosclerotic lesions via inhibition of foam cell formation and MC stabilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  4. GABA and Topiramate Inhibit the Formation of Human Macrophage-Derived Foam Cells by Modulating Cholesterol-Metabolism-Associated Molecules

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2014-04-01

    Full Text Available Aims: γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter, acts on GABA receptors to play an important role in the modulation of macrophage functions. The present study examined the effects of GABA and a GABA receptor agonist on modulating cholesterol-metabolism-associated molecules in human monocyte-derived macrophages (HMDMs. Methods: ORO stain, HPLC, qRT-PCR, Western blot and EMSA were carried out using HMDMs exposed to ox-LDL with or without GABAergic agents as the experimental model. Results: GABA and topiramate reduced the percentage of cholesterol ester in lipid-laden HMDMs by down-regulating SR-A, CD36 and LOX-1 expression and up-regulating ABCA1, ABCG1 and SR-BI expression in lipid-laden HMDMs. The production of TNF-a was decreased in GABA-and topiramate-treated lipid-laden HMDMs, and levels of interleukin (IL-6 did not change. The activation of two signaling pathways, p38MAPK and NF-γB, was repressed by GABA and topiramate in lipid-laden HMDMs. Conclusion: GABA and topiramate inhibit the formation of human macrophage-derived foam cells and may be a possibility for macrophage targeted therapy of atherosclerotic lesions.

  5. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  6. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation.

    Science.gov (United States)

    An, Dong; Hao, Feng; Zhang, Fuqiang; Kong, Wei; Chun, Jerold; Xu, Xuemin; Cui, Mei-Zhen

    2017-09-01

    Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. mTOR signaling promotes foam cell formation and inhibits foam cell egress through suppressing the SIRT1 signaling pathway.

    Science.gov (United States)

    Zheng, Haixiang; Fu, Yucai; Huang, Yusheng; Zheng, Xinde; Yu, Wei; Wang, Wei

    2017-09-01

    Atherosclerosis (AS) is a chronic immuno‑inflammatory disease accompanied by dyslipidemia. The authors previously demonstrated that sirtuin 1 (SIRT1) may prevent atherogenesis through influencing the liver X receptor/C‑C chemokine receptor type 7/nuclear factor‑κB (LXR‑CCR7/NF‑κB) signaling pathway. Previous studies have suggested a role for mammalian target of rapamycin (mTOR) signaling in the pathogenesis of cardiovascular diseases. The present study investigated the potential association between mTOR signaling and SIRT1‑LXR‑CCR7/NF‑κB signaling (SIRT1 signaling) in AS pathogenesis. To induce foam cell formation, U937 cells were differentiated into macrophages by exposure to phorbol 12‑myristate 13‑acetate (PMA) for 24 h, followed by treatment with palmitate and oxidized low density lipoprotein for a further 24 h. Oil red O staining revealed a large accumulation of lipid droplets present in foam cells. Western blot analysis demonstrated increased protein levels of phosphorylated (p)‑mTOR and its downstream factor p‑ribosomal protein S6 kinase (p70S6K). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses additionally revealed decreased expression of SIRT1, LXRα and CCR7 and increased expression of NF‑κB and its downstream factor tumor necrosis factor‑α (TNF‑α) in an atherogenetic condition induced by lysophosphatidic acid (LPA). In addition, abundant lipid droplets accumulated in U937‑LPA‑treated foam cells. Rapamycin, an mTOR inhibitor, suppressed the expression and activity of mTOR and p70S6K, however enhanced expression of SIRT1, LXRα, and CCR7. Conversely, rapamycin deceased TNF‑α and NF‑κB activity, the latter of which was further confirmed by immunofluorescence analysis demonstrating increased levels of NF‑κB present in the cytoplasm compared with the nucleus. The findings of the present study suggest that mTOR signaling promotes foam cell formation and inhibits foam

  8. Tofacitinib ameliorates atherosclerosis and reduces foam cell formation in apoE deficient mice.

    Science.gov (United States)

    Wang, Zaicun; Wang, Shumei; Wang, Zunzhe; Yun, Tiantian; Wang, Chenchen; Wang, Huating

    2017-08-19

    Atherosclerosis is a chronic inflammatory cardiovascular disease with high mortality worldwide. Tofacitinib (CP-690,550), an oral small-molecule Janus kinase inhibitor, has been shown to be effective in the treatment of rheumatoid arthritis, autoimmune encephalomyelitis and ulcerative colitis. However, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of Tofacitinib on atherogenic diet (ATD)-induced atherosclerosis using apolipoprotein E deficient (apoE-/-) mice. Atherosclerosis-prone apoE-/- mice were fed with ATD and treated with or without Tofacitinib through intragastrical administration (10 mg kg -1 day -1 ) for 8 weeks. Our results showed that Tofacitinib did not change plasma lipids, while significantly reduced the levels of plasma pro-inflammatory cytokines IL-6 and TNF-α. It also significantly attenuated atherosclerotic plaque lesion in the aortic root and macrophages contained in plaque as shown with Mac2 immuno-staining. Peritoneal macrophages (PMC) were separated from apoE-/- mice fed with 8-week ATD, and then subjected to inflammation tests. Flow cytometry analysis of F4/80 and CD206 and mRNA levels of M1 and M2 macrophages markers showed that M1 macrophages decreased while M2 macrophages increased in Tofacitinib treated group. Expressions of other inflammatory genes also indicated an anti-inflammatory status in mice treated with Tofacitinib. Ox-LDL was used to induce foam cell formation from PMC in wild type mice, and the results displayed a reduced formation of foam cells and decreased inflammation in mice with Tofacitinib administration (1 μM). The mRNA and protein levels of ATP binding cassette subfamily A member 1 (ABCA1), a key gene involved in cholesterol efflux, remarkably increased, while it was absence of alterations in scavenger receptors expression. Therefore, we demonstrated that Tofacitinib could attenuate atherosclerosis and foam cells formation by

  9. Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits

    Directory of Open Access Journals (Sweden)

    Shoucui Gao

    2017-01-01

    Full Text Available High levels of plasma high-density lipoprotein-cholesterol (HDL-C are inversely associated with the risk of atherosclerosis and other cardiovascular diseases; thus, pharmacological inhibition of cholesteryl ester transfer protein (CETP is considered to be a therapeutic method of raising HDL-C levels. However, many CETP inhibitors have failed to achieve a clinical benefit despite raising HDL-C. In the study, we generated transgenic (Tg rabbits that overexpressed the human CETP gene to examine the influence of CETP on the development of atherosclerosis. Both Tg rabbits and their non-Tg littermates were fed a high cholesterol diet for 16 weeks. Plasma lipids and body weight were measured every 4 weeks. Gross lesion areas of the aortic atherosclerosis along with lesional cellular components were quantitatively analyzed. Overexpression of human CETP did not significantly alter the gross atherosclerotic lesion area, but the number of macrophages in lesions was significantly increased. Overexpression of human CETP did not change the plasma levels of total cholesterol or low-density lipoprotein cholesterol but lowered plasma HDL-C and increased triglycerides. These data revealed that human CETP may play an important role in the development of atherosclerosis mainly by decreasing HDL-C levels and increasing the accumulation of macrophage-derived foam cells.

  10. Daintain/AIF-1 Plays Roles in Coronary Heart Disease via Affecting the Blood Composition and Promoting Macrophage Uptake and Foam Cell Formation

    Directory of Open Access Journals (Sweden)

    Junhan Wang

    2013-07-01

    Full Text Available Background: Daintain/AIF-1 is an inflammatory polypeptide factor/allograft inflammatory factor 1 derived from macrophages. It is characterized in APOE-/- mice as a novel inflammatory factor associated with atherosclerosis. The purpose of this study was to characterize its function in human atherosclerosis. Methods: Immunohistochemistry was used to identify the expression of daintain/AIF-1 in vessel segments within and far from atherosclerotic plaques; High-performance liquid chromatography (HPLC was used to display the effects of daintain/AIF-1 on C-reactive protein (CRP, oxidative capacity and superoxide dismutase (SOD in vivo; Oil Red O Staining was used to show the effects of daintain/AIF-1 on uptake of oxidized low density lipoprotein (ox-LDL into U937 cells, a macrophage line; Western Blot was used to test scavenger receptor A (SRA expression. Results: A high density of daintain/AIF-1 was observed in the tunica intima and media of coronary artery with atherosclerotic plaque, and fewer daintain/AIF-1 in the vessels without atherosclerotic plaque; Daintain/AIF-1 injected intravenously into BALB/c mice boosted oxidative capacity, significantly impaired SOD activities and augmented the CRP level in blood. According to the oil red O test, daintain/AIF-1 profoundly facilitated the uptake of ox-LDL in U937 macrophages and formation of foam cells in the endothelium. We also found that the molecular mechanisms are effective by promoting overexpression of SRA on macrophages. Conclusion: These findings implicate that the inflammatory factor daintain/AIF-1 is closely associated with atherogenesis, and could be further characterized as a novel risk factor for atherosclerosis

  11. Sida rhomboidea.Roxb aqueous extract down-regulates in vivo expression of vascular cell adhesion molecules in atherogenic rats and inhibits in vitro macrophage differentiation and foam cell formation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Salunke, Sunita P; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-10-01

    The present study evaluates efficacy of Sida rhomboidea.Roxb (SR) leaves extract in ameliorating experimental atherosclerosis using in vitro and in vivo experimental models. Atherogenic (ATH) diet fed rats recorded significant increment in the serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), very LDL (VLDL), autoantibody against oxidized LDL (Ox-LDL), markers of LDL oxidation and decrement in high-density lipoprotein (HDL) along with increment in aortic TC and TG. The ex vivo LDL oxidation assay revealed an increased susceptibility of LDL isolated from ATH rats to undergo copper mediated oxidation. These set of changes were minimized by simultaneous co-supplementation of SR extract to ATH diet fed rats. Histopathology of aorta and immunolocalization studies recorded pronounced atheromatous plaque formation, vascular calcification, significant elastin derangements and higher expression of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and p-selectin in ATH rats. Whereas, ATH+SR rats depicted minimal evidence of atheromatous plaque formation, calcium deposition, distortion/defragmentation of elastin and accumulation of macrophages along with lowered expression of VCAM-1 and P-selectin compared to ATH rats. Further, monocyte to macrophage differentiation and in vitro foam cell formation were significantly attenuated in presence of SR extract. In conclusion, SR extract has the potency of controlling experimental atherosclerosis and can be used as promising herbal supplement in combating atherosclerosis.

  12. Curcuma oil attenuates accelerated atherosclerosis and macrophage foam-cell formation by modulating genes involved in plaque stability, lipid homeostasis and inflammation.

    Science.gov (United States)

    Singh, Vishal; Rana, Minakshi; Jain, Manish; Singh, Niharika; Naqvi, Arshi; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-14

    In the present study, the anti-atherosclerotic effect and the underlying mechanism of curcuma oil (C. oil), a lipophilic fraction from turmeric (Curcuma longa L.), was evaluated in a hamster model of accelerated atherosclerosis and in THP-1 macrophages. Male golden Syrian hamsters were subjected to partial carotid ligation (PCL) or FeCl3-induced arterial oxidative injury (Ox-injury) after 1 week of treatment with a high-cholesterol (HC) diet or HC diet plus C. oil (100 and 300 mg/kg, orally). Hamsters fed with the HC diet were analysed at 1, 3 and 5 weeks following carotid injury. The HC diet plus C. oil-fed group was analysed at 5 weeks. In hyperlipidaemic hamsters with PCL or Ox-injury, C. oil (300 mg/kg) reduced elevated plasma and aortic lipid levels, arterial macrophage accumulation, and stenosis when compared with those subjected to arterial injury alone. Similarly, elevated mRNA transcripts of matrix metalloproteinase-2 (MMP-2), MMP-9, cluster of differentiation 45 (CD45), TNF-α, interferon-γ (IFN-γ), IL-1β and IL-6 were reduced in atherosclerotic arteries, while those of transforming growth factor-β (TGF-β) and IL-10 were increased after the C. oil treatment (300 mg/kg). The treatment with C. oil prevented HC diet- and oxidised LDL (OxLDL)-induced lipid accumulation, decreased the mRNA expression of CD68 and CD36, and increased the mRNA expression of PPARα, LXRα, ABCA1 and ABCG1 in both hyperlipidaemic hamster-derived peritoneal and THP-1 macrophages. The administration of C. oil suppressed the mRNA expression of TNF-α, IL-1β, IL-6 and IFN-γ and increased the expression of TGF-β in peritoneal macrophages. In THP-1 macrophages, C. oil supplementation prevented OxLDL-induced production of TNF-α and IL-1β and increased the levels of TGF-β. The present study shows that C. oil attenuates arterial injury-induced accelerated atherosclerosis, inflammation and macrophage foam-cell formation.

  13. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    International Nuclear Information System (INIS)

    Rodriguez, Annabelle; Ashen, M. Dominique; Chen, Edward S.

    2005-01-01

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 μg protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p 14 C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1

  14. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  15. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase.

    Science.gov (United States)

    Sung, Ho Joong; Son, Sin Jee; Yang, Seung-ju; Rhee, Ki-Jong; Kim, Yoon Suk

    2012-07-01

    Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.

  16. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro

    DEFF Research Database (Denmark)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao

    2015-01-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A...

  17. Decreased expression of liver X receptor-α in macrophages infected with Chlamydia pneumoniae in human atherosclerotic arteries in situ.

    Science.gov (United States)

    Bobryshev, Yuri V; Orekhov, Alexander N; Killingsworth, Murray C; Lu, Jinhua

    2011-01-01

    In in vitro experiments, Chlamydia pneumoniae has been shown to infect macrophages and to accelerate foam cell formation. It has been hypothesized that the C. pneumoniae infection affects foam cell formation by suppressing the expression of liver X receptors (LXR), but whether such an event occurs in human atherosclerosis is not known. In this study we examined carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. The expression of LXR-α in macrophages infected with C. pneumoniae and macrophages that were not infected was compared using a quantitative immunohistochemical analysis. The analysis revealed a 2.2-fold reduction in the expression of LXR-α in C. pneumoniae-infected cells around the lipid cores in atherosclerotic plaques. In the cytoplasm of laser-capture microdissected cells that were immunopositive for C. pneumoniae, electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae. We conclude that LXR-α expression is reduced in C. pneumoniae-infected macrophages in human atherosclerotic lesions which supports the hypothesis that C. pneumoniae infection might suppress LXR expression in macrophages transforming into foam cells. Copyright © 2011 S. Karger AG, Basel.

  18. Inhibiting epigenetic enzymes to improve atherogenic macrophage functions

    NARCIS (Netherlands)

    van den Bossche, Jan; Neele, Annette E.; Hoeksema, Marten A.; de Heij, Femke; Boshuizen, Marieke C. S.; van der Velden, Saskia; de Boer, Vincent C.; Reedquist, Kris A.; de Winther, Menno P. J.

    2014-01-01

    Macrophages determine the outcome of atherosclerosis by propagating inflammatory responses, foam cell formation and eventually necrotic core development. Yet, the pathways that regulate their atherogenic functions remain ill-defined. It is now apparent that chromatin remodeling chromatin modifying

  19. Quantification of sterol-specific response in human macrophages using automated imaged-based analysis.

    Science.gov (United States)

    Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E

    2017-12-13

    The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.

  20. The Role of Macrophage Lipophagy in Reverse Cholesterol Transport

    Directory of Open Access Journals (Sweden)

    Se-Jin Jeong

    2017-03-01

    Full Text Available Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates cholesterol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we briefly discuss recent advances regarding the mechanisms of the cholesterol efflux pathway in macrophage foam cells, and present lipophagy as a therapeutic target in the treatment of atherosclerosis.

  1. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.

    Science.gov (United States)

    Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2015-08-01

    Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    International Nuclear Information System (INIS)

    Chen, Jing-Hsien; Tsai, Chia-Wen; Wang, Chi-Ping; Lin, Hui-Hsuan

    2013-01-01

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu 2+ -induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foam cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression

  3. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Hsien [School of Nutrition, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Wang, Chi-Ping [Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Hui-Hsuan, E-mail: linhh@csmu.edu.tw [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China)

    2013-10-15

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foam cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.

  4. A Novel Method for Preparing Auxetic Foam from Closed-cell Polymer Foam Based on Steam Penetration and Condensation (SPC) Process.

    Science.gov (United States)

    Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao

    2018-05-31

    Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.

  5. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  6. High Uric Acid Activates the ROS-AMPK Pathway, Impairs CD68 Expression and Inhibits OxLDL-Induced Foam-Cell Formation in a Human Monocytic Cell Line, THP-1

    Directory of Open Access Journals (Sweden)

    Chaohuan Luo

    2016-11-01

    Full Text Available Background/Aims: Hyperuricemia is part of the metabolic-syndrome cluster of abdominal obesity, impaired glucose tolerance, insulin resistance, dyslipidemia, and hypertension. Monocytes/macrophages are critical in the development of metabolic syndrome, including gout, obesity and atherosclerosis. However, how high uric acid (HUA exposure affects monocyte/macrophage function remains unclear. In this study, we investigated the molecular mechanism of HUA exposure in monocytes/macrophages and its impact on oxidized low-density lipoprotein (oxLDL-induced foam-cell formation in a human monocytic cell line, THP-1. Methods: We primed THP-1 cells with phorbol-12-myristate-13-acetate (PMA for differentiation, then exposed cells to HUA and detected the production of reactive oxygen species (ROS and analyzed the level of phospho-AMPKα. THP-1 cells were pre-incubated with Compound C, an AMPK inhibitor, or N-acetyl-L-cysteine (NAC, a ROS scavenger, or HUA before PMA, to assess CD68 expression and phospho-AMPKα level. PMA-primed THP-1 cells were pre-treated with oxLDL before Compound C and HUA treatment. Western blot analysis was used to examine the levels of phospho-AMPKα, CD68, ABCG1, ABCA1, cyclooxygenase-2 (COX-2 and NF-κB (p65. Flow cytometry was used to assess ROS production and CD68 expression in live cells. Oil-red O staining was used to observe oxLDL uptake in cells. Results: HUA treatment increased ROS production in PMA-primed THP-1 cells; NAC blocked HUA-induced oxidative stress. HUA treatment time-dependently increased phospho-AMPKα level in PMA-primed THP-1 cells. The HUA-induced oxidative stress increased phospho-AMPKα levels, which was blocked by NAC. HUA treatment impaired CD68 expression during cell differentiation by activating the AMPK pathway, which was reversed by Compound C treatment. Finally, HUA treatment inhibited oxLDL uptake in the formation of foam cells in THP-1 cells, which was blocked by Compound C treatment. HUA treatment

  7. Radiation effects on polyethylene foam of open cell type

    International Nuclear Information System (INIS)

    Tang Beilin; Kanako Kaji; Iwao Yoshizawa; Choji Kohara; Motoyoshi Hatada

    1991-01-01

    The effects of electron beam irradiation on polyethylene foam of open cell type have been studied. Experiments for determining of gel fraction and physical-mechanical properties of irradiated polyethylene foam of open cell type as a function of dose, respectively, were carried out. The dimensional stability of irradiated specimens at elevated temperatures was measured. It was found that tensile strength did not change and gel fraction increased when the specimen was irradiated in nitrogen atmosphere with increasing dose up to 300 kGy. The result shows that dimensional stability of polyethylene foam of open cell type after being kept in an oven at 70 deg C and 110 deg C for 22 h is improved by irradiation in nitrogen atmosphere. The similar results of irradiated EVA foam of open cell type irradiated foam of open cell type were obtained

  8. Wip1-dependent modulation of macrophage migration and phagocytosis

    DEFF Research Database (Denmark)

    Tang, Yiting; Pan, Bing; Zhou, Xin

    2017-01-01

    Macrophage accumulation within the vascular wall is a hallmark of atherosclerosis. Controlling macrophage conversion into foam cells remains a major challenge for treatment of atherosclerotic diseases. Here, we show that Wip1, a member of the PP2C family of Ser/Thr protein phosphatases, modulates...... macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated...... phagocytic ability of Wip1-/- macrophages is linked to CD36 plasma membrane recruitment that is regulated by AMPK activity. Our study identifies Wip1 as an intrinsic negative regulator of macrophage chemotaxis. We propose that Wip1-dependent control of macrophage function may provide avenues for preventing...

  9. Acoustic absorption behaviour of an open-celled aluminium foam

    CERN Document Server

    Han Fu Sheng; Zhao Yu Yuan; Gibbs, B

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, r...

  10. Acoustic absorption behaviour of an open-celled aluminium foam

    International Nuclear Information System (INIS)

    Han Fusheng; Seiffert, Gary; Zhao Yuyuan; Gibbs, Barry

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, respectively. The sound dissipation mechanisms in the open-celled foams are principally viscous and thermal losses when there is no air-gap backing and predominantly Helmholtz resonant absorption when there is an air-gap backing

  11. Mesenchymal stem cell-educated macrophages

    OpenAIRE

    Eggenhofer Elke; Hoogduijn Martin J

    2012-01-01

    Abstract Mesenchymal stem cells (MSC) mediate their immunosuppressive effects via a variety of mechanisms. One of these mechanisms involves the induction of macrophages with immunomodulatory capacities. This effect of MSC may be exploited when MSC are used as a cell therapeutic product. Furthermore, MSC are resident in tissues where they may locally target infiltrating macrophages to adapt more regulatory properties. The present review discusses the interaction between MSC and macrophages, th...

  12. Oxidative Stress in Cardiovascular Diseases: Involvement of Nrf2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation

    Directory of Open Access Journals (Sweden)

    Bee Kee Ooi

    2017-11-01

    Full Text Available Oxidative stress is an important risk factor contributing to the pathogenesis of cardiovascular diseases. Oxidative stress that results from excessive reactive oxygen species (ROS production accounts for impaired endothelial function, a process which promotes atherosclerotic lesion or fatty streaks formation (foam cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a transcription factor involved in cellular redox homeostasis. Upon exposure to oxidative stress, Nrf2 is dissociated from its inhibitor Keap-1 and translocated into the nucleus, where it results in the transcriptional activation of cell defense genes. Nrf2 has been demonstrated to be involved in the protection against foam cells formation by regulating the expression of antioxidant proteins (HO-1, Prxs, and GPx1, ATP-binding cassette (ABC efflux transporters (ABCA1 and ABCG1 and scavenger receptors (scavenger receptor class B (CD36, scavenger receptor class A (SR-A and lectin-type oxidized LDL receptor (LOX-1. However, Nrf2 has also been reported to exhibit pro-atherogenic effects. A better understanding on the mechanism of Nrf2 in oxidative stress-induced cardiac injury, as well as the regulation of cholesterol uptake and efflux, are required before it can serve as a novel therapeutic target for cardiovascular diseases prevention and treatment.

  13. The Predominant Pathway of Apoptosis in THP-1 Macrophage-Derived Foam Cells Induced by 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy is the Mitochondria-Caspase Pathway Despite the Participation of Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Huan Wang

    2014-05-01

    Full Text Available Background: In advanced atherosclerosis, chronic endoplasmic reticulum (ER stress induces foam cells apoptosis and generates inflammatory reactions. Methods: THP-1 macrophage-derived foam cells (FC were incubated with 1 mM 5-aminolevulinic acid (ALA. After ALA mediated sonodynamic therapy (ALA-SDT, apoptosis of FC was assayed by Annexin V-PI staining. Intracellular reactive oxygen species (ROS and mitochondrial membrane potential were detected by staining with CellROX® Green Reagent and jc-1. Pretreatment of FC with N-acetylcysteine (NAC, Z-VAD-FMK or 4-phenylbutyrate (4-PBA, mitochondria apoptotic pathway associated proteins and C/EBP-homologous (CHOP expressions were assayed by wertern blotting. Results: Burst of apoptosis of FC was observed at 5-hour after ALA-SDT with 6-hour incubation of ALA and 0.4 W/cm2 ultrasound. After ALA-SDT, intracellular ROS level increased and mitochondrial membrane potential collapsed. Translocations of cytochrome c from mitochondria into cytosol and Bax from cytosol into mitochondria, cleaved caspase 9, cleaved caspase 3, upregulation of CHOP, as well as downregulation of Bcl-2 after ALA-SDT were detected, which could be suppressed by NAC. Activation of mitochondria-caspase pathway could not be inhibited by 4-PBA. Cleaved caspase 9 and caspase 3 as well as apoptosis induced by ALA-SDT could be inhibited by Z-VAD-FMK. Conclusion: The mitochondria-caspase pathway is predominant in the apoptosis of FC induced by ALA-SDT though ER stress participates in.

  14. Mixing foams and grains in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A P B; Tufaile, A; Haddad, T A S, E-mail: tufaile@usp.b [Escola de Artes, Ciencias e Humanidades da Universidade de Sao Paulo, R. Arlindo Bettio, 1000, 03828-000, Sao Paulo (Brazil)

    2010-09-01

    We have observed some features of the coexistence of foams and granular materials in Hele-Shaw cells. The most part of the liquid and granular material stays at the bottom of the cell, with only a small quantity of the mixture resting on the froth. The fractal dimensions of the final states of the foams are close to the values obtained from the Random Apollonian Packing model. The disperse structure of the granular material affects the probability distribution of number of sides of the foam bubbles. The nearest neighbor distances between the peaks of the sand piles at the bottom of the cell are close to a lognormal distribution.

  15. Numerical modelling of closed-cell aluminium foam under dynamic loading

    Science.gov (United States)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  16. Cell Elasticity Determines Macrophage Function

    Science.gov (United States)

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  17. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  18. DMPD: CSF-1 and cell cycle control in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8981359 CSF-1 and cell cycle control in macrophages. Hamilton JA. Mol Reprod Dev. 1...997 Jan;46(1):19-23. (.png) (.svg) (.html) (.csml) Show CSF-1 and cell cycle control in macrophages. PubmedI...D 8981359 Title CSF-1 and cell cycle control in macrophages. Authors Hamilton JA. Publication Mol Reprod Dev

  19. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages

    Directory of Open Access Journals (Sweden)

    Julian Buchrieser

    2017-02-01

    Full Text Available Tissue-resident macrophages, such as microglia, Kupffer cells, and Langerhans cells, derive from Myb-independent yolk sac (YS progenitors generated before the emergence of hematopoietic stem cells (HSCs. Myb-independent YS-derived resident macrophages self-renew locally, independently of circulating monocytes and HSCs. In contrast, adult blood monocytes, as well as infiltrating, gut, and dermal macrophages, derive from Myb-dependent HSCs. These findings are derived from the mouse, using gene knockouts and lineage tracing, but their applicability to human development has not been formally demonstrated. Here, we use human induced pluripotent stem cells (iPSCs as a tool to model human hematopoietic development. By using a CRISPR-Cas9 knockout strategy, we show that human iPSC-derived monocytes/macrophages develop in an MYB-independent, RUNX1-, and SPI1 (PU.1-dependent fashion. This result makes human iPSC-derived macrophages developmentally related to and a good model for MYB-independent tissue-resident macrophages, such as alveolar and kidney macrophages, microglia, Kupffer cells, and Langerhans cells.

  20. Porosity and cell size control in alumina foam preparation by thermo-foaming of powder dispersions in molten sucrose

    Directory of Open Access Journals (Sweden)

    Sujith Vijayan

    2016-09-01

    Full Text Available The foaming characteristics of alumina powder dispersions in molten sucrose have been studied as a function of alumina powder to sucrose weight ratio (WA/S and foaming temperature. The increase in foaming temperature significantly decreases the foaming and foam setting time and increases the foam volume due to an increase in the rate of OH condensation as well as a decrease in the viscosity of the dispersion. Nevertheless, the foam collapses beyond a critical foaming temperature, which depends on the WA/S. The sintering shrinkage depends mainly on the WA/S and marginally on the foaming temperature. The porosity (83.4–94.6 vol.% and cell size (0.55–1.6 mm increase with an increase in foaming temperature (120–170 °C and a decrease in WA/S (0.8–1.6. The drastic decrease in compressive strength and modulus beyond a WA/S of 1.2 is due to the pores generated on the cell walls and struts as a result of particle agglomeration. Gibson and Ashby plots show large deviation with respect to the model constants ‘C’ and ‘n’, especially at higher alumina powder to sucrose weight ratios.

  1. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  2. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  3. Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology.

    Science.gov (United States)

    Zhang, Hanrui; Reilly, Muredach P

    2017-11-01

    Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)-derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host-pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases. © 2017 American Heart Association, Inc.

  4. Hyperbolic prisms and foams in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil); Tufaile, A.P.B. [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil)

    2011-10-03

    The propagation of light in foams creates patterns which are generated due to the reflection and refraction of light. One of these patterns is observed by the formation of multiple mirror images inside liquid bridges in a layer of bubbles in a Hele-Shaw cell. We are presenting the existence of these patterns in foams and their relation with hyperbolic geometry and Sierpinski gaskets using the Poincare disk model. The images obtained from the experiment in foams are compared to the case of hyperbolic optical elements. -- Highlights: → The chaotic scattering of light in foams generating deltoid patterns is based on hyperbolic geometry. → The deltoid patterns are obtained through the Plateau borders in a Hele-Shaw cell. → The Plateau borders act like hyperbolic prism. → Some effects of the refraction and reflection of the light rays were studied using a hyperbolic prism.

  5. Deficiency of ABCA1 and ABCG1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    Science.gov (United States)

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498

  6. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice.

    Science.gov (United States)

    Westerterp, Marit; Murphy, Andrew J; Wang, Mi; Pagler, Tamara A; Vengrenyuk, Yuliya; Kappus, Mojdeh S; Gorman, Darren J; Nagareddy, Prabhakara R; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S; Welch, Carrie; Fisher, Edward A; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R

    2013-05-24

    Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.

  7. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  8. Cell adhesive ability of a biological foam ceramic with surface modification

    International Nuclear Information System (INIS)

    Zhang Yong; Li Xiaoyu; Feng Fan; Lin Yunfeng; Liao Yunmao; Tian, Weidong; Liu Lei

    2008-01-01

    Biological foam ceramic is a promising material for tissue engineering scaffold because of its biocompatibility, biodegradation and adequate pores measured from micrometer to nanometers. The aim of this study was to evaluate the adhesion and proliferation of adipose-derived stromal cells (ADSCs) on the biological foam ceramic coated with fibronectin. ADSCs were harvested from SD rats and passaged three times prior to seeding onto biological foam surface modified with fibronectin (50 μg/ml). Scaffold without surface modification served as control. To characterize cellular attachment, cells were incubated on the scaffold for 1 h and 3 h and then the cells attached onto the scaffold were counted. The difference of proliferation was appraised using MTT assay at day 1, 3, 5 and 7 before the cells reached confluence. After 7 days of culture, scanning electron microscope (SEM) was chosen to assess cell morphology and attachment of ADSCs on the biological foam ceramic. Attachment of ADSCs on the biological foam ceramic surface modified with fibronectin at 1 h or 3 h was substantially greater than that in control. MTT assay revealed that ADSCs proliferation tendency of the experimental group was nearly parallel to that of control. SEM view showed that ADSCs in the experimental groups connected more tightly and excreted more collagen than that in control. The coating of fibronectin could improve the cell adhesive ability of biological foam ceramics without evident effect on proliferation

  9. Triglyceride-induced macrophage cell death is triggered by caspase-1.

    Science.gov (United States)

    Son, Sin Jee; Rhee, Ki-Jong; Lim, Jaewon; Kim, Tae Ue; Kim, Tack-Joong; Kim, Yoon Suk

    2013-01-01

    Triglyceride (TG) induces macrophage cell death which contributes to the development of atherosclerosis. We confirmed that exogenous TG accumulates in human THP-1 macrophages and causes cell death. TG treated THP-1 macrophages exhibited no change in tumor necrosis factor (TNF)-α, interleukin (IL)-18, macrophage inflammatory protein (MIP)-1α, and IL-1R1 receptor mRNA expression. However, there was a marked decrease in IL-1β mRNA expression but an increase in IL-1β protein secretion. Decreased expression of IL-1β mRNA and increased secretion of IL-1β protein was not the direct cause of cell death. Until now, TG was assumed to induce necrotic cell death in macrophages. Since caspase-1 is known to be involved in activation and secretion of IL-1β protein and pyroptotic cell death, next we determined whether caspase-1 is associated with TG-induced macrophage cell death. We found an increase in caspase-1 activity in TG-treated THP-1 macrophages and inhibition of caspase-1 activity using a specific inhibitor partially rescued cell death. These results suggest activation of the pyroptotic pathway by TG. This is the first report implicating the activation of caspase-1 and the triggering of the pyroptosis pathway in TG-induced macrophage cell death.

  10. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  11. Macrophage polarization in nerve injury: do Schwann cells play a role?

    Directory of Open Access Journals (Sweden)

    Jo Anne Stratton

    2016-01-01

    Full Text Available In response to peripheral nerve injury, the inflammatory response is almost entirely comprised of infiltrating macrophages. Macrophages are a highly plastic, heterogenic immune cell, playing an indispensable role in peripheral nerve injury, clearing debris and regulating the microenvironment to allow for efficient regeneration. There are several cells within the microenvironment that likely interact with macrophages to support their function - most notably the Schwann cell, the glial cell of the peripheral nervous system. Schwann cells express several ligands that are known to interact with receptors expressed by macrophages, yet the effects of Schwann cells in regulating macrophage phenotype remains largely unexplored. This review discusses macrophages in peripheral nerve injury and how Schwann cells may regulate their behavior.

  12. Production of Polystyrene Open-celled Microcellular Foam in Batch Process by Super Critical CO2

    Directory of Open Access Journals (Sweden)

    M.S. Enayati

    2010-12-01

    Full Text Available Open-celled foams are capable to allow the passage of fluids through their structure, because of interconnections between the open cells or bubbles and therefore these structures can be used as a membrane and filter. In thiswork, we have studied the production of polystyrene open-celled microcellular foam by using CO2 as blowing agent. To achieve such structures, it is necessary to control the stages of growth in such a way that the cells would connect to each other through the pores without any coalescence. The required processing condition to achieve open-celled structures is predictable by a model theory of opened-cell. This model suggests that at least a 130 bar saturation pressure and foaming time between 9 and 58 s are required for this system. The temperature range has been selected for to be both higher than polymer glass transition temperature and facilitating the foaming process. Experimental results in the batch foaming process has verified the model quite well. The SEM and mercury porousimetry tests show the presence of pores between the cells with open-celled structure. Experimental results show that by increasing the saturation pressure and the foaming temperature, there is a drop in the time required for open-celled structure formation. A 130 bar saturation pressure, 150o C foaming temperature and 60 s foaming time, suggest the attainment of open-celled microcellular foam based on polystyrene/CO2 system in the batch process.

  13. An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams

    OpenAIRE

    Hasan, MD. Anwarul

    2010-01-01

    Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...

  14. Effects of copper sulfate-oxidized or myeloperoxidase- modified LDL on lipid loading and programmed cell death in macrophages under hypoxia

    Directory of Open Access Journals (Sweden)

    Vlaminck B

    2014-09-01

    Full Text Available Benoit Vlaminck,1 Damien Calay,1 Marie Genin,1 Aude Sauvage,1 Noelle Ninane,1 Karim Zouaoui Boudjeltia,2 Martine Raes,1 Carine Michiels1 1Laboratory of Biochemistry and Cellular Biology (URBC, Namur Research Institute for Life Sciences (NARILIS, University of Namur, Namur, Belgium; 2Laboratory of Experimental Medicine (ULB 222 Unit, Universite Libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium Abstract: Atheromatous plaques contain heavily lipid-loaded macrophages that die, hence generating the necrotic core of these plaques. Since plaque instability and rupture is often correlated with a large necrotic core, it is important to understand the mechanisms underlying foam cell death. Furthermore, macrophages within the plaque are associated with hypoxic areas but little is known about the effect of low oxygen partial pressure on macrophage death. The aim of this work was to unravel macrophage death mechanisms induced by oxidized low-density lipoproteins (LDL both under normoxia and hypoxia. Differentiated macrophages were incubated in the presence of native, copper sulfate-oxidized, or myeloperoxidase-modified LDL. The unfolded protein response, apoptosis, and autophagy were then investigated. The unfolded protein response and autophagy were triggered by myeloperoxidase-modified LDL and, to a larger extent, by copper sulfate-oxidized LDL. Electron microscopy observations showed that oxidized LDL induced excessive autophagy and apoptosis under normoxia, which were less marked under hypoxia. Myeloperoxidase-modified LDL were more toxic and induced a higher level of apoptosis. Hypoxia markedly decreased apoptosis and cell death, as marked by caspase activation. In conclusion, the cell death pathways induced by copper sulfate-oxidized and myeloperoxidase-modified LDL are different and are differentially modulated by hypoxia. Keywords: Ox-LDL, myeloperoxidase, hypoxia, UPR, apoptosis, autophagy, macrophages

  15. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  16. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    International Nuclear Information System (INIS)

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-01-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  17. T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node.

    Science.gov (United States)

    Baratin, Myriam; Simon, Léa; Jorquera, Audrey; Ghigo, Clément; Dembele, Doulaye; Nowak, Jonathan; Gentek, Rebecca; Wienert, Stephan; Klauschen, Frederick; Malissen, Bernard; Dalod, Marc; Bajénoff, Marc

    2017-08-15

    In lymph nodes (LNs), dendritic cells (DCs) are thought to dispose of apoptotic cells, a function pertaining to macrophages in other tissues. We found that a population of CX3CR1 + MERTK + cells located in the T cell zone of LNs, previously identified as DCs, are efferocytic macrophages. Lineage-tracing experiments and shield chimeras indicated that these T zone macrophages (TZM) are long-lived macrophages seeded in utero and slowly replaced by blood monocytes after birth. Imaging the LNs of mice in which TZM and DCs express different fluorescent proteins revealed that TZM-and not DCs-act as the only professional scavengers, clearing apoptotic cells in the LN T cell zone in a CX3CR1-dependent manner. Furthermore, similar to other macrophages, TZM appear inefficient in priming CD4 T cells. Thus, efferocytosis and T cell activation in the LN are uncoupled processes designated to macrophages and DCs, respectively, with implications to the maintenance of immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-05-01

    Full Text Available The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  19. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    NARCIS (Netherlands)

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale: Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this

  20. Purple perilla extracts with α-asarone enhance cholesterol efflux from oxidized LDL-exposed macrophages.

    Science.gov (United States)

    Park, Sin-Hye; Paek, Ji Hun; Shin, Daekeun; Lee, Jae-Yong; Lim, Soon Sung; Kang, Young-Hee

    2015-04-01

    The cellular accumulation of cholesterol is critical in the development and progression of atherosclerosis. ATP-binding cassette (ABC) transporters play an essential role in mediating the efflux of excess cholesterol. In the current study, we investigated whether purple Perilla frutescens extracts (PPE) at a non-toxic concentration of 1-10 µg/ml stimulate the induction of the ABC transporters, ABCA1 and ABCG1, and cholesterol efflux from lipid-laden J774A.1 murine macrophages exposed to 50 ng/ml oxidized low-density lipoprotein (LDL). Purple perilla, an annual herb in the mint family and its constituents, have been reported to exhibit antioxidant and cytostatic activity, as well as to exert anti-allergic effects. Our results revealed that treatment with oxidized LDL for 24 h led to the accumulation of lipid droplets in the macrophages. PPE suppressed the oxidized LDL-induced foam cell formation by blocking the induction of scavenger receptor B1. However, PPE promoted the induction of the ABC transporters, ABCA1 and ABCG1, and subsequently accelerated cholesterol efflux from the lipid-loaded macrophages. The liver X receptor (LXR) agonist, TO-091317, and the peroxisome proliferator-activated receptor (PPAR) agonist, pioglitazone, increased ABCA1 expression and treatment with 10 µg/ml PPE further enhanced this effect. PPE did not induce LXRα and PPARγ expression per se, but enhanced their expression in the macrophages exposed to oxidized LDL. α-asarone was isolated from PPE and characterized as a major component enhancing the induction of ABCA1 and ABCG1 in macrophages exposed to oxidized LDL. α-asarone, but not β-asarone was effective in attenuating foam cell formation and enhancing cholesterol efflux, revealing an isomeric difference in their activity. The results from the present study demonstrate that PPE promotes cholesterol efflux from macrophages by activating the interaction of PPARγ-LXRα-ABC transporters.

  1. Of macrophages and red blood cells; a complex love story.

    Directory of Open Access Journals (Sweden)

    Djuna Zoe de Back

    2014-01-01

    Full Text Available Macrophages tightly control the production and clearance of red blood cells (RBC. During steady state haematopoiesis, approximately 1010 red blood cells are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  2. A study of tensile test on open-cell aluminum foam sandwich

    Science.gov (United States)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  3. Reprogramming of B cells into macrophages: mechanistic insights

    OpenAIRE

    Di Tullio, Alessandro, 1982-

    2012-01-01

    Our earlier work has shown that pre-B cells can be converted into macrophages by the transcription factor C/EBPα at very high frequencies and also that a clonal pre-B cell line with an inducible form of C/EBPα can be converted into macrophage-like cells. Using these systems we have performed a systematic analysis of the questions whether during transdifferentiation the cells retrodifferentiate to a precursor cell state and whether cell cycle is required for reprogramming. As for the first ...

  4. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  5. Development of pure Mg open-cell foams as structured CO{sub 2} captor

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, I.A., E-mail: iafiguera@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Suarez, M.A.; Velasco-Castro, M.; Pfeiffer, H.; Alcántar-Vázquez, B.; González, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Alfonso, I. [Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia UNAM, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, C.P. 58190 Morelia, Michoacán (Mexico); Lara-Rodríguez, G.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico)

    2015-12-10

    Highlights: • The CO{sub 2} capture capacity of the open-cell Mg foams was studied at low temperatures. • Open-cell Mg foams with pore size of 350 μm were used for the CO{sub 2} capture study. • The highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity. • A CO{sub 2} capture capacity of 0.87 mmol/g was obtained for the open-cell Mg foams. • The oxidized open-cell Mg foams can be used as CO{sub 2} captors. - Abstract: The CO{sub 2} capture capacity of the superficial oxide layer formed in pure open-cell Mg foams was studied at low temperatures (40–60 °C) varying the relative humidity from 40 to 80%. Mg foam samples with pore size of 350 μm and surface area of 5.4 m{sup 2}/g were used for these analyses. Optical microscopy and X-ray diffraction techniques were used to characterize the cell structure and the superficial oxide formed in the cell-foams, respectively. The final products formed after the CO{sub 2}–H{sub 2}O capture experiments were identified by scanning electron microscopy and attenuated total reflexion-Fourier transform infrared spectroscopy (ATR-FTIR). The MgCO{sub 3} and other products, formed after CO{sub 2} + H{sub 2}O capture process, were thermally decomposed, to quantify the amount of CO{sub 2} captured by the superficial MgO layer using standard thermogravimetric analysis. The results showed that the highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity, with a CO{sub 2} capture capacity of 0.87 mmol/g, which is comparable with others CO{sub 2} MgO-based captors. The considerable CO{sub 2} capture capacity at low temperatures supports the potential of the pure open-cell Mg foams to be used as structured CO{sub 2} captors.

  6. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

    International Nuclear Information System (INIS)

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M.; Wells, Alan

    2016-01-01

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  7. Of macrophages and red blood cells; a complex love story.

    Science.gov (United States)

    de Back, Djuna Z; Kostova, Elena B; van Kraaij, Marian; van den Berg, Timo K; van Bruggen, Robin

    2014-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  8. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells.

    Science.gov (United States)

    Hamilton, Gerhard; Rath, Barbara; Klameth, Lukas; Hochmair, Maximilan J

    2016-03-01

    Tumor-associated macrophages (TAMs) play an important role in tumor progression, suppression of antitumor immunity and dissemination. Blood monocytes infiltrate the tumor region and are primed by local microenvironmental conditions to promote tumor growth and invasion. Although many of the interacting cytokines and factors are known for the tumor-macrophage interactions, the putative contribution of circulating tumor cells (CTCs) is not known so far. These specialized cells are characterized by increased mobility, ability to degrade the extracellular matrix (ECM) and to enter the blood stream and generate secondary lesions which is a leading cause of death for the majority of tumor patients. The first establishment of two permanent CTC lines, namely BHGc7 and 10, from blood samples of advanced stage small cell lung cancer (SCLC) patients allowed us to investigate the CTC-immune cell interaction. Cocultures of peripheral blood mononuclear cells (PBMNCs) with CTCs or addition of CTC-conditioned medium (CTC-CM) in vitro resulted in monocyte-macrophage differentiation and appearance of CD14 + , CD163 weak and CD68 + macrophages expressing markers of TAMs. Furthermore, we screened the supernatants of CTC-primed macrophages for presence of approximately 100 cytokines and compared the expression with those induced by the local metastatic SCLC26A cell line. Macrophages recruited by SCLC26A-CM showed expression of osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), IL-8, chitinase3-like 1 (CHI3L1), platelet factor (Pf4), IL-1ra and matrix metalloproteinase-9 (MMP-9) among other minor cytokines/chemokines. In contrast, BHGc7-CM induced marked overexpression of complement factor D (CFD)/adipsin and vitamin D-BP (VDBP), as well as increased secretion of OPN, lipocalin-2 (LCN2), CHI3L1, uPAR, MIP-1 and GDF-15/MIC-1. BHGc10, derived independently from relapsed SCLC, revealed an almost identical pattern with added expression of ENA-78/CXCL5. CMs of the non-tumor HEK293

  9. [Macrophage colony stimulating factor enhances non-small cell lung cancer invasion and metastasis by promoting macrophage M2 polarization].

    Science.gov (United States)

    Li, Y J; Yang, L; Wang, L P; Zhang, Y

    2017-06-23

    Objective: To investigate the key cytokine which polarizes M2 macrophages and promotes invasion and metastasis in non-small cell lung cancer (NSCLC). Methods: After co-culture with A549 cells in vitro, the proportion of CD14(+) CD163(+) M2 macrophages in monocytes and macrophage colony stimulating factor (M-CSF) levels in culture supernatant were detected by flow cytometry, ELISA assay and real-time qPCR, respectively. The effects of CD14(+) CD163(+) M2 macrophages on invasion of A549 cells and angiogenesis of HUVEC cells were measured by transwell assay and tubule formation assay, respectively. The clinical and prognostic significance of M-CSF expression in NSCLC was further analyzed. Results: The percentage of CD14(+) CD163(+) M2 macrophages in monocytes and the concentration of M-CSF in the supernatant followed by co-culture was (12.03±0.46)% and (299.80±73.76)pg/ml, respectively, which were significantly higher than those in control group [(2.80±1.04)% and (43.07±11.22)pg/ml, respectively, P macrophages in vitro . M2 macrophages enhanced the invasion of A549 cells (66 cells/field vs. 26 cells/field) and the angiogenesis of HUVEC cells (22 tubes/field vs. 8 tubes/field). The mRNA expression of M-CSF in stage Ⅰ-Ⅱ patients (16.23±4.83) was significantly lower than that in stage Ⅲ-Ⅳ (53.84±16.08; P macrophages, which can further promote the metastasis and angiogenesis of NSCLC. M-CSF could be used as a potential therapeutic target of NSCLC.

  10. Induction of ER stress in macrophages of tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    2010-09-01

    Full Text Available The endoplasmic reticulum (ER stress pathway known as the Unfolded Protein Response (UPR is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection.Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153, phosphorylated inositol-requiring enzyme 1 alpha (Ire1α and eukaryotic initiation factor 2 alpha (eIF2α, and activating transcription factor 3 (ATF3 are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb. These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation.In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb infection, death of infected macrophages in

  11. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  12. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    Science.gov (United States)

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  13. Inhibition of LDL oxidation and oxidized LDL-induced foam cell formation in RAW 264.7 cells show anti-atherogenic properties of a foliar methanol extract of Scoparia dulcis.

    Science.gov (United States)

    Nambiar, Sinjitha S; Shetty, Nandini Prasad; Bhatt, Praveena; Neelwarne, Bhagyalakshmi

    2014-04-01

    Oxidation of low density lipoproteins and their further uptake by macrophages is known to result in the formation of foam cells, which are critical in the initiation of atherosclerosis through activation of inflammatory signalling cascades. Thus, powerful dietary antioxidants are receiving attention for the reversal of such pathological states. Extracts of Scoparia dulcis have been used as tea and health drinks with various health promoting effects. In the present study, we examined the reactive oxygen scavenging potential as well as anti-inflammatory and anti-atherogenic efficacies, using leaf extracts obtained after successive extraction with various solvents. A methanol extract showed potent antioxidant activity with an IC50 value of 570 μg/ml, caused hydrogen peroxide scavenging (28.9 µg/ml) and anti-inflammatory effects by improving human erythrocyte membrane stabilisation (about 86%). The methanol extract also efficiently inhibited lipid peroxidation and oxidation of low density lipoproteins, thus preventing foam cell formation in cultured RAW 264.7 cells. Furthermore, phytochemical screening of the extracts showed high accumulation of flavonoids. The foliar methanol extract of Scoparia dulcis has a strong anti-atherogenic potential and this property could be attributed maybe due to presence of flavonoids since HPLC analysis showed high concentrations of myricetin and rutin in the methanol extract.

  14. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature.

    Science.gov (United States)

    Psaltis, Peter J; Puranik, Amrutesh S; Spoon, Daniel B; Chue, Colin D; Hoffman, Scott J; Witt, Tyra A; Delacroix, Sinny; Kleppe, Laurel S; Mueske, Cheryl S; Pan, Shuchong; Gulati, Rajiv; Simari, Robert D

    2014-07-18

    Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage

  15. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Uriel Trahtemberg

    2017-10-01

    Full Text Available Inefficient and abnormal clearance of apoptotic cells (efferocytosis contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs, and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer. Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1 or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid

  16. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    LaShardai N. Brown

    2017-12-01

    Full Text Available Hearing relies on the transmission of auditory information from sensory hair cells (HCs to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation.

  17. Biology and function of adipose tissue macrophages, dendritic cells and B cells.

    Science.gov (United States)

    Ivanov, Stoyan; Merlin, Johanna; Lee, Man Kit Sam; Murphy, Andrew J; Guinamard, Rodolphe R

    2018-04-01

    The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Adropin Contributes to Anti-Atherosclerosis by Suppressing Monocyte-Endothelial Cell Adhesion and Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Kengo Sato

    2018-04-01

    Full Text Available Adropin, a peptide hormone expressed in liver and brain, is known to improve insulin resistance and endothelial dysfunction. Serum levels of adropin are negatively associated with the severity of coronary artery disease. However, it remains unknown whether adropin could modulate atherogenesis. We assessed the effects of adropin on inflammatory molecule expression and human THP1 monocyte adhesion in human umbilical vein endothelial cells (HUVECs, foam cell formation in THP1 monocyte-derived macrophages, and the migration and proliferation of human aortic smooth muscle cells (HASMCs in vitro and atherogenesis in Apoe−/− mice in vivo. Adropin was expressed in THP1 monocytes, their derived macrophages, HASMCs, and HUVECs. Adropin suppressed tumor necrosis factor α-induced THP1 monocyte adhesion to HUVECs, which was associated with vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 downregulation in HUVECs. Adropin shifted the phenotype to anti-inflammatory M2 rather than pro-inflammatory M1 via peroxisome proliferator-activated receptor γ upregulation during monocyte differentiation into macrophages. Adropin had no significant effects on oxidized low-density lipoprotein-induced foam cell formation in macrophages. In HASMCs, adropin suppressed the migration and proliferation without inducing apoptosis via ERK1/2 and Bax downregulation and phosphoinositide 3-kinase/Akt/Bcl2 upregulation. Chronic administration of adropin to Apoe−/− mice attenuated the development of atherosclerotic lesions in the aorta, with reduced the intra-plaque monocyte/macrophage infiltration and smooth muscle cell content. Thus, adropin could serve as a novel therapeutic target in atherosclerosis and related diseases.

  19. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  20. Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation

    International Nuclear Information System (INIS)

    Hirakata, Masao; Tozawa, Ryuichi; Imura, Yoshimi; Sugiyama, Yasuo

    2004-01-01

    In order to elucidate the antiatherogenic effects of pioglitazone (a peroxisome proliferator-activated receptor [PPAR]γ agonist with PPARα agonistic activity) and rosiglitazone (a more selective PPARγ agonist), we examined gene expression and cholesteryl ester accumulation in THP-1-derived macrophages. Pioglitazone enhanced the mRNA expression of the proatherogenic factors CD36 and adipophilin, but was approximately 10 times less potent than rosiglitazone. The potencies of the two agents appeared to correspond to their PPARγ agonistic activities in this respect. However, both agents were similarly potent in enhancing the mRNA expression of the antiatherogenic factors liver X receptor α and ATP-binding cassette-transporter A1. Furthermore, both agents enhanced cholesteryl ester hydrolase mRNA expression and inhibited acyl-CoA cholesterol acyltransferase-1 mRNA expression and cholesteryl ester accumulation in macrophages. In this respect, their potencies appeared to correspond to their PPARα agonistic activities. These results suggest that pioglitazone has an equally beneficial effect on antiatherogenic events to rosiglitazone, despite being almost 10 times less potent than a PPARγ agonist

  1. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  2. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Rotllan, Noemi; Zhang, Xinbo; Fernández-Fuertes, Marta; Ramírez-Hidalgo, Cristina; Araldi, Elisa; Daimiel, Lidia; Busto, Rebeca; Fernández-Hernando, Carlos; Suárez, Yajaira

    2017-09-01

    Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory disease characterized by the accumulation of lipids and inflammatory cells in the artery wall. Aberrant expression of microRNAs has been implicated in the pathophysiological processes underlying the progression of atherosclerosis. Here, we define the contribution of miR-21 in hematopoietic cells during atherogenesis. Interestingly, we found that miR-21 is the most abundant miRNA in macrophages and its absence results in accelerated atherosclerosis, plaque necrosis, and vascular inflammation. miR-21 expression influences foam cell formation, sensitivity to ER-stress-induced apoptosis, and phagocytic clearance capacity. Mechanistically, we discovered that the absence of miR-21 in macrophages increases the expression of the miR-21 target gene, MKK3, promoting the induction of p38-CHOP and JNK signaling. Both pathways enhance macrophage apoptosis and promote the post-translational degradation of ABCG1, a transporter that regulates cholesterol efflux in macrophages. Altogether, these findings reveal a major role for hematopoietic miR-21 in atherogenesis. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Thermo-responsive cell culture carrier: Effects on macrophage functionality and detachment efficiency.

    Science.gov (United States)

    Rennert, Knut; Nitschke, Mirko; Wallert, Maria; Keune, Natalie; Raasch, Martin; Lorkowski, Stefan; Mosig, Alexander S

    2017-01-01

    Harvesting cultivated macrophages for tissue engineering purposes by enzymatic digestion of cell adhesion molecules can potentially result in unintended activation, altered function, or behavior of these cells. Thermo-responsive polymer is a promising tool that allows for gentle macrophage detachment without artificial activation prior to subculture within engineered tissue constructs. We therefore characterized different species of thermo-responsive polymers for their suitability as cell substrate and to mediate gentle macrophage detachment by temperature shift. Primary human monocyte- and THP-1-derived macrophages were cultured on thermo-responsive polymers and characterized for phagocytosis and cytokine secretion in response to lipopolysaccharide stimulation. We found that both cell types differentially respond in dependence of culture and stimulation on thermo-responsive polymers. In contrast to THP-1 macrophages, primary monocyte-derived macrophages showed no signs of impaired viability, artificial activation, or altered functionality due to culture on thermo-responsive polymers compared to conventional cell culture. Our study demonstrates that along with commercially available UpCell carriers, two other thermo-responsive polymers based on poly(vinyl methyl ether) blends are attractive candidates for differentiation and gentle detachment of primary monocyte-derived macrophages. In summary, we observed similar functionality and viability of primary monocyte-derived macrophages cultured on thermo-responsive polymers compared to standard cell culture surfaces. While this first generation of custom-made thermo-responsive polymers does not yet outperform standard culture approaches, our results are very promising and provide the basis for exploiting the unique advantages offered by custom-made thermo-responsive polymers to further improve macrophage culture and recovery in the future, including the covalent binding of signaling molecules and the reduction of

  4. Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.

    Science.gov (United States)

    Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M

    2009-02-01

    Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.

  5. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  6. Murine macrophage heparanase: inhibition and comparison with metastatic tumor cells

    International Nuclear Information System (INIS)

    Savion, N.; Disatnik, M.H.; Nevo, Z.

    1987-01-01

    Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells attach, invade, and penetrate confluent vascular endothelial cell monolayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the [ 35 S]O 4 - -labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The degradation of [ 35 S]O 4 - -labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10μg/ml), arteparon (10μg/ml), and heparin at a concentration of 3 μg/ml. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage haparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis

  7. Macrophage-mediated proteolytic remodeling of the extracellular matrix in atherosclerosis results in neoepitopes

    DEFF Research Database (Denmark)

    Skjøt-Arkil, Helene; Barascuk, Natasha; Register, Thomas

    2010-01-01

    in almost all stages of atherosclerosis, by both initiating atherosclerotic plaques and degrading them through the secretion of proteolytic enzymes leading to rupture. This review summarizes the literature on the role of macrophages and their proteolytic activity on proteins in the extracellular matrix (ECM......) of the atherosclerotic plaque with a view to suggest a novel approach for identification of vulnerable plaques and turnover by the use of a new type of biomarker. The PubMed database was searched using the terms macrophages, foam cells, atherosclerosis, CVD, ECM remodeling, biomarker, neoepitope, matrix...... of the constituents of the ECM of the atherosclerotic plaque. At present it is not clear which proteases play pivotal roles at distinct stages of pathogenesis, rather that the combined proteolytic potential with some proteases at early stages and other at later stages may result in plaque rupture. This macrophage...

  8. Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a...

  9. HIV-1 Resistant CDK2-Knockdown Macrophage-Like Cells Generated from 293T Cell-Derived Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kuan-Teh Jeang

    2012-07-01

    Full Text Available A major challenge in studies of human diseases involving macrophages is low yield and heterogeneity of the primary cells and limited ability of these cells for transfections and genetic manipulations. To address this issue, we developed a simple and efficient three steps method for somatic 293T cells reprogramming into monocytes and macrophage-like cells. First, 293T cells were reprogrammed into induced pluripotent stem cells (iPSCs through a transfection-mediated expression of two factors, Oct-4 and Sox2, resulting in a high yield of iPSC. Second, the obtained iPSC were differentiated into monocytes using IL-3 and M-CSF treatment. And third, monocytes were differentiated into macrophage-like cells in the presence of M-CSF. As an example, we developed HIV-1-resistant macrophage-like cells from 293T cells with knockdown of CDK2, a factor critical for HIV-1 transcription. Our study provides a proof-of-principle approach that can be used to study the role of host cell factors in HIV-1 infection of human macrophages.

  10. Compressive characteristics of closed-cell aluminum foams with different percentages of Er element

    Directory of Open Access Journals (Sweden)

    Wei-min Zhao

    2016-01-01

    Full Text Available In the present study, closed-cell aluminum foams with different percentages of erbium (Er element were successfully prepared. The distribution and existence form of erbium (Er element and its effect on the compressive properties of the foams were investigated. Results show that Er uniformly distributes in the cell walls in the forms of Al3Er intermetallic compound and Al-Er solid solutions. Compared with commercially pure aluminum foam, Er-containing foams possess higher micro-hardness, compressive strength and energy absorption capacity due to solid solution strengthening and second phase strengthening effects. Additionally, the amount of Er element should be controlled in the range of 0.10wt.%-0.50wt.% in order to obtain a good combination of compressive strength and energy absorption properties.

  11. Listeria monocytogenes infection of HD11, chicken macrophage-like cells.

    Science.gov (United States)

    Jarvis, N A; Donaldson, J R; O'Bryan, C A; Ricke, S C; Crandall, P G

    2017-04-01

    Listeria monocytogenes can be carried by and infect poultry, although the clinical disease in birds is rare. Escape from macrophage phagocytosis is a key step in pathogenesis for L. monocytogenes. Therefore, we investigated the infection of the chicken macrophage-like cell line HD11 with 2 strains of L. monocytogenes EGD-e and Scott A. After infection, L. monocytogenes was quantified by spread plating and HD11 was quantified with trypan blue exclusion stain before enumeration. The standard macrophage killing protocols require washing the cell monolayers 3 times with PBS, which was found to negatively influence HD11 monolayers. Maximum bacterial densities within macrophages were not different between the 2 Listeria strains. HD11 required more than 11 h to effectively reduce intracellular L. monocytogenes Scott A, and Scott A was more susceptible to HD11 killing than EGD-e. It appears that Listeria infection initially causes attenuation of HD11 growth, and infected HD11 cells do not begin to lyse until at least 11 h post infection. These results suggest that there are subtle strain to strain differences in response to HD11 macrophage phagocytosis. The long lead-time required for HD11 to kill L. monocytogenes cells means that there is sufficient time available for chicken macrophages to circulate in the blood and transfer the intracellular Listeria to multiple tissues. © 2016 Poultry Science Association Inc.

  12. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Science.gov (United States)

    Schäfer, Katja; Bain, Judith M; Di Pietro, Antonio; Gow, Neil A R; Erwig, Lars P

    2014-01-01

    Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  13. 5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.

    Science.gov (United States)

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.

  14. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells.

    Science.gov (United States)

    Karimpoor, Mahroo; Yebra-Fernandez, Eva; Parhizkar, Maryam; Orlu, Mine; Craig, Duncan; Khorashad, Jamshid S; Edirisinghe, Mohan

    2018-04-01

    The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells. © 2018 The Author(s).

  15. Dendritic cells that phagocytose apoptotic macrophages loaded with mycobacterial antigens activate CD8 T cells via cross-presentation

    OpenAIRE

    Espinosa-Cueto, Patricia; Magallanes-Puebla, Alejandro; Castellanos, Carlos; Mancilla, Raul

    2017-01-01

    While homeostatic apoptosis is immunologically silent, macrophage apoptosis during Mycobacterium tuberculosis infection can potentially induce an immune response against the mycobacteria. To examine the role of dendritic cells in this response, macrophage apoptosis was induced by incubating the macrophage with cell wall extracts of mycobacteria expressing LpqH. The apoptogenic proteins of the cell wall extracts were engulfed by the macrophage and then were translocated from the cytosol to the...

  16. Macrophage-induced cytostasis: kinetic analysis of bromodeoxyuridine-pulsed cells

    International Nuclear Information System (INIS)

    Stevenson, A.P.; Crissman, H.A.; Stewart, C.C.

    1985-01-01

    The effect of tumoricidal macrophages on the cell cycle progression of six different cell lines was studied using an anti-bromodeoxyuridine (BrdUrd) monoclonal antibody to follow the traverse of BrdUrd-labeled cells. Exponentially growing cultured mammalian cells, from six different cell lines, were prepulsed with BrdUrd before exposure to tumoricidal macrophages. The cultured cells were then analyzed as a function of time for DNA content (by propidium iodide staining) and for BrdUrd incorporation (using a fluoresceini-sothiocyanate [FITC]-conjugated anti-BrdUrd monoclonal antibody). The position of the cells in cycle and the progression of the BrdUrd-labeled cohort was followed using flow cytometry. The cell lines examined were: Colon 26; BALB/c-3T3, ST3T3 (a spontaneously transformed, tumorigenic clone of 3T3), WCHE5 (a clone of whole Chinese hamster embryo cells), RIF (a radiation-induced fibrosarcoma), and A101D (a human melanoma). The bivariate distributions showed that for all six cell lines the BrdUrd-labeled cohort in the control cultures progressed around the cell cycle during the first 12 h of culture, as the cells exponentially increased. In contrast, when each cell line was incubated with tumoricidal macrophages, the BrdUrd-labeled cohort did not progress through cell cycle but remained in S phase throughout the 12-h culture period. There was also no evidence for progression of cells out of G 1 . The data show that cells were arrested in every phase of cell cycle. This study suggests that cytostasis, as manifested by the termination of progression in all phases of the cell cycle, is a universal phenomenon induced by tumoricidal macrophages. 20 references, 4 figures

  17. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    International Nuclear Information System (INIS)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  18. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  19. Supercritical CO2 foaming of radiation crosslinked polypropylene/high-density polyethylene blend: Cell structure and tensile property

    Science.gov (United States)

    Yang, Chenguang; Xing, Zhe; Zhang, Mingxing; Zhao, Quan; Wang, Mouhua; Wu, Guozhong

    2017-12-01

    A blend of isotactic polypropylene (PP) with high-density polyethylene (HDPE) in different PP/HDPE ratios was irradiated by γ-ray to induce cross-linking and then foamed using supercritical carbon dioxide (scCO2) as a blowing agent. Radiation effect on the melting point and crystallinity were analyzed in detail. The average cell diameter and cell density were compared for PP/HDPE foams prepared under different conditions. The optimum absorbed dose for the scCO2 foaming of PP/HDPE in terms of foaming ability and cell structure was 20 kGy. Tensile measurements showed that the elongation at break and tensile strength at break of the crosslinked PP/HDPE foams were higher than the non-crosslinked ones. Of particular interest was the increase in the foaming temperature window from 4 ℃ for pristine PP to 8-12 ℃ for the radiation crosslinked PP/HDPE blends. This implies much easier handling of scCO2 foaming of crosslinked PP with the addition of HDPE.

  20. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function.

    Science.gov (United States)

    Takata, Kazuyuki; Kozaki, Tatsuya; Lee, Christopher Zhe Wei; Thion, Morgane Sonia; Otsuka, Masayuki; Lim, Shawn; Utami, Kagistia Hana; Fidan, Kerem; Park, Dong Shin; Malleret, Benoit; Chakarov, Svetoslav; See, Peter; Low, Donovan; Low, Gillian; Garcia-Miralles, Marta; Zeng, Ruizhu; Zhang, Jinqiu; Goh, Chi Ching; Gul, Ahmet; Hubert, Sandra; Lee, Bernett; Chen, Jinmiao; Low, Ivy; Shadan, Nurhidaya Binte; Lum, Josephine; Wei, Tay Seok; Mok, Esther; Kawanishi, Shohei; Kitamura, Yoshihisa; Larbi, Anis; Poidinger, Michael; Renia, Laurent; Ng, Lai Guan; Wolf, Yochai; Jung, Steffen; Önder, Tamer; Newell, Evan; Huber, Tara; Ashihara, Eishi; Garel, Sonia; Pouladi, Mahmoud A; Ginhoux, Florent

    2017-07-18

    Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Polyethylene ionomer-based nano-composite foams prepared by a batch process and MuCell injection molding

    International Nuclear Information System (INIS)

    Hayashi, Hidetomo; Mori, Tomoki; Okamoto, Masami; Yamasaki, Satoshi; Hayami, Hiroshi

    2010-01-01

    To understand the correlation between foamability and melt rheology of polyethylene-based ionomers having different degrees of the neutralization and corresponding nano-composites, we have conducted the foam processing via a batch process in an autoclave and microcellular foam injection molding (FIM) process using the MuCell technology. We have discussed the obtainable morphological properties in both foaming processes. All cellular structures were investigated by using field emission scanning electron microscopy. The competitive phenomenon between the cell nucleation and the cell growth including the coalescence of cell was discussed in light of the interfacial energy and the relaxation rate as revealed by the modified classical nucleation theory and rheological measurement, respectively. The FIM process led to the opposite behavior in the cell growth and coalescence of cell as compared with that of the batch process, where the ionic cross-linked structure has significant contribution to retard the cell growth and coalescence of cell. The mechanical properties of the structural foams obtained by FIM process were discussed.

  2. B-1 cells modulate the murine macrophage response to Leishmania major infection.

    Science.gov (United States)

    Arcanjo, Angelica F; Nunes, Marise P; Silva-Junior, Elias B; Leandro, Monique; da Rocha, Juliana Dutra Barbosa; Morrot, Alexandre; Decote-Ricardo, Debora; Freire-de-Lima, Celio Geraldo

    2017-05-26

    To investigate the modulatory effect of B-1 cells on murine peritoneal macrophages infected with Leishmania major ( L. major ) in vitro . Peritoneal macrophages obtained from BALB/c and BALB/c XID mice were infected with L. major and cultured in the presence or absence of B-1 cells obtained from wild-type BALB/c mice. Intracellular amastigotes were counted, and interleukin-10 (IL-10) production was quantified in the cellular supernatants using an enzyme-linked immunosorbent assay. The levels of the lipid mediator prostaglandin E2 (PGE 2 ) were determined using a PGE 2 enzyme immunoassay kit (Cayman Chemical, Ann Arbor, MI), and the number of lipid bodies was quantified in the cytoplasm of infected macrophages in the presence and absence of B-1 cells. Culturing the cells with selective PGE 2 -neutralizing drugs inhibited PGE 2 production and confirmed the role of this lipid mediator in IL-10 production. In contrast, we demonstrated that B-1 cells derived from IL-10 KO mice did not favor the intracellular growth of L. major . We report that B-1 cells promote the growth of L. major amastigotes inside peritoneal murine macrophages. We demonstrated that the modulatory effect was independent of physical contact between the cells, suggesting that soluble factor(s) were released into the cultures. We demonstrated in our co-culture system that B-1 cells trigger IL-10 production by L. major -infected macrophages. Furthermore, the increased secretion of IL-10 was attributed to the presence of the lipid mediator PGE 2 in supernatants of L. major -infected macrophages. The presence of B-1 cells also favors the production of lipid bodies by infected macrophages. In contrast, we failed to obtain the same effect on parasite replication inside L. major -infected macrophages when the B-1 cells were isolated from IL-10 knockout mice. Our results show that elevated levels of PGE 2 and IL-10 produced by B-1 cells increase L. major growth, as indicated by the number of parasites in cell

  3. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Directory of Open Access Journals (Sweden)

    Katja Schäfer

    Full Text Available Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  4. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    Science.gov (United States)

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling.

    Science.gov (United States)

    Matthäus, Christian; Krafft, Christoph; Dietzek, Benjamin; Brehm, Bernhard R; Lorkowski, Stefan; Popp, Jürgen

    2012-10-16

    Monocyte-derived macrophages play a key role in atherogenesis because their transformation into foam cells is responsible for deposition of lipids in plaques within arterial walls. The appearance of cytosolic lipid droplets is a hallmark of macrophage foam cell formation, and the molecular basics involved in this process are not well understood. Of particular interest is the intracellular fate of different individual lipid species, such as fatty acids or cholesterol. Here, we utilize Raman microscopy to image the metabolism of such lipids and to trace their subsequent storage patterns. The combination of microscopic information with Raman spectroscopy provides a powerful molecular imaging method, which allows visualization at the diffraction limit of the employed laser light and biochemical characterization through associated spectral information. In order to distinguish the molecules of interest from other naturally occurring lipids spectroscopically, deuterium labels were introduced. Intracellular distribution and metabolic changes were observed for serum albumin-complexed palmitic and oleic acid and cholesterol and quantitatively evaluated by monitoring the increase in CD scattering intensities at 0.5, 1, 3, 6, 24, 30, and 36 h. This approach may also allow for investigating the cellular trafficking of other molecules, such as nutrients, metabolites, and drugs.

  6. Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch

    OpenAIRE

    Rao, Sujata; Lobov, Ivan B.; Vallance, Jefferson E.; Tsujikawa, Kaoru; Shiojima, Ichiro; Akunuru, Shailaja; Walsh, Kenneth; Benjamin, Laura E.; Lang, Richard A.

    2007-01-01

    Macrophages have a critical function in the recognition and engulfment of dead cells. In some settings, macrophages also actively signal programmed cell death. Here we show that during developmentally scheduled vascular regression, resident macrophages are an obligatory participant in a signaling switch that favors death over survival. This switch occurs when the signaling ligand angiopoietin 2 has the dual effect of suppressing survival signaling in vascular endothelial cells (VECs) and stim...

  7. Effects of an anti-oxidative ACAT inhibitor on apoptosis/necrosis and cholesterol accumulation under oxidative stress in THP-1 cell-derived foam cells.

    Science.gov (United States)

    Miike, Tomohiro; Shirahase, Hiroaki; Jino, Hiroshi; Kunishiro, Kazuyoshi; Kanda, Mamoru; Kurahashi, Kazuyoshi

    2008-01-02

    THP-1 cell-derived foam cells were exposed to oxidative stress through combined treatment with acetylated LDL (acLDL) and copper ions (Cu2+). The foam cells showed caspase-dependent apoptotic changes on exposure to oxidative stress for 6 h, and necrotic changes with the leakage of LDH after 24 h. KY-455, an anti-oxidative ACAT inhibitor, and ascorbic acid (VC) but not YM-750, an ACAT inhibitor, prevented apoptotic and necrotic changes. These preventive effects of KY-455 and VC were accompanied by the inhibition of lipid peroxidation in culture medium containing acLDL and Cu2+, suggesting the involvement of oxidized acLDL in apoptosis and necrosis. Foam cells accumulated esterified cholesterol (EC) for 24 h in the presence of acLDL without Cu2+, which was suppressed by KY-455 and YM-750. Foam cells showed necrotic changes and died in the presence of acLDL and Cu2+. KY-455 but not YM-750 prevented cell death and reduced the amount of EC accumulated. The foam cells treated with VC further accumulated EC without necrotic changes for 24 h even in the presence of acLDL and Cu2+. YM-750 as well as KY-455 inhibited lipid accumulation when co-incubated with VC in foam cells exposed to oxidative stress. It is concluded that an anti-oxidative ACAT inhibitor or the combination of an antioxidant and an ACAT inhibitor protects foam cells from oxidative stress and effectively reduces cholesterol levels, which would be a promising approach in anti-atherosclerotic therapy.

  8. Calcineurin Orchestrates Lateral Transfer of Aspergillus fumigatus during Macrophage Cell Death.

    Science.gov (United States)

    Shah, Anand; Kannambath, Shichina; Herbst, Susanne; Rogers, Andrew; Soresi, Simona; Carby, Martin; Reed, Anna; Mostowy, Serge; Fisher, Matthew C; Shaunak, Sunil; Armstrong-James, Darius P

    2016-11-01

    Pulmonary aspergillosis is a lethal mold infection in the immunocompromised host. Understanding initial control of infection and how this is altered in the immunocompromised host are key goals for comprehension of the pathogenesis of pulmonary aspergillosis. To characterize the outcome of human macrophage infection with Aspergillus fumigatus and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. We defined the outcome of human macrophage infection with A. fumigatus, as well as the impact of calcineurin inhibitors, through a combination of single-cell fluorescence imaging, transcriptomics, proteomics, and in vivo studies. Macrophage phagocytosis of A. fumigatus enabled control of 90% of fungal germination. However, fungal germination in the late phagosome led to macrophage necrosis. During programmed necroptosis, we observed frequent cell-cell transfer of A. fumigatus between macrophages, which assists subsequent control of germination in recipient macrophages. Lateral transfer occurred through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated phosphoprotein envelope. Its relevance to the control of fungal germination was also shown by direct visualization in our zebrafish aspergillosis model in vivo. The calcineurin inhibitor FK506 (tacrolimus) reduced cell death and lateral transfer in vitro by 50%. This resulted in uncontrolled fungal germination in macrophages and also resulted in hyphal escape. These observations identify programmed, necrosis-dependent lateral transfer of A. fumigatus between macrophages as an important host strategy for controlling fungal germination. This process is critically dependent on calcineurin. Our studies provide fundamental insights into the pathogenesis of pulmonary aspergillosis in the immunocompromised host.

  9. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

    Science.gov (United States)

    Movahedi, Nima; Linul, Emanoil; Marsavina, Liviu

    2018-01-01

    In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress-strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure's strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

  10. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.

    Science.gov (United States)

    Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad

    2014-11-01

    Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages.

    Science.gov (United States)

    Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria

    2008-12-01

    Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.

  12. Open cell conducting foams for high synchrotron radiation accelerators

    Directory of Open Access Journals (Sweden)

    S. Petracca

    2014-08-01

    Full Text Available The possible use of open cell conductive foams in high synchrotron radiation particle accelerators is considered. Available materials and modeling tools are reviewed, potential pros and cons are discussed, and preliminary conclusions are drawn.

  13. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  14. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide

    International Nuclear Information System (INIS)

    Genin, Marie; Clement, Francois; Fattaccioli, Antoine; Raes, Martine; Michiels, Carine

    2015-01-01

    Tumor associated macrophages (TAMs) are present in high density in solid tumors. TAMs share many characteristics with alternatively activated macrophages, also called M2. They have been shown to favor tumor development and a role in chemoresistance has also been suggested. Here, we investigated the effects of M2 in comparison to M1 macrophages on cancer cell sensitivity to etoposide. We set up a model of macrophage polarization, starting from THP-1 monocytes differentiated into macrophages using PMA (Phorbol 12-myristate 13-acetate). Once differentiated (M0 macrophages), they were incubated with IL-4 and IL-13 in order to obtain M2 polarized macrophages or with IFN-gamma and LPS for classical macrophage activation (M1). To mimic the communication between cancer cells and TAMs, M0, M1 or M2 macrophages and HepG2 or A549 cancer cells were co-cultured during respectively 16 (HepG2) or 24 (A549) hours, before etoposide exposure for 24 (HepG2) or 16 (A549) hours. After the incubation, the impact of etoposide on macrophage polarization was studied and cancer cell apoptosis was assessed by western-blot for cleaved caspase-3 and cleaved PARP-1 protein, caspase activity assay and FACS analysis of Annexin V and PI staining. mRNA and protein expression of M1 and M2 markers confirmed the polarization of THP-1-derived macrophages, which provide a new, easy and well-characterized model of polarized human macrophages. Etoposide-induced cancer cell apoptosis was markedly reduced in the presence of THP-1 M2 macrophages, while apoptosis was increased in cells co-cultured with M1 macrophages. On the other hand, etoposide did not influence M1 or M2 polarization. These results evidence for the first time a clear protective effect of M2 on the contrary to M1 macrophages on etoposide-induced cancer cell apoptosis

  15. Heterogeneity of the radiosensitivity and origins of tissue macrophage colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Oghiso, Yoichi; Yamada, Yutaka (National Inst. of Radiological Sciences, Chiba (Japan))

    1992-12-01

    Previous studies suggest that the radiosensitivity and origin of tissue macrophage precursors differ from those of hemopoietic macrophage colony-forming units (CFU-Ms) committed to macrophage-lineage cells. We assessed the origins of tissue macrophage colony-forming cells (M-CFCs) in mice by comparing their kinetics and radiosensitivities in the normal steady state and under the conditions of bone marrow depletion by [sup 89]Sr-administration and/or splenectomy. The results indicate that the radiosensitive peritoneal M-CFCs elicited by thioglycollate are derived from bone marrow macrophage precursors; where as alveolar M-CFCs, which are radioresistant, are self-sustained locally and independent of hemopoietic macrophage precursors. In contrast, highly radiosensitive liver M-CFCs are probably derived from CFU-Ms that appear to be propagated in the spleen in association with hemopoietic responses. (author).

  16. Macrophages and mast cells in dystrophic masseter muscle: a light and electron microscopic study

    DEFF Research Database (Denmark)

    Kirkeby, S; Mikkelsen, H

    1988-01-01

    Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle, the num......Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle...

  17. Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation

    DEFF Research Database (Denmark)

    Fux, Michaela; van Rooijen, Nico; Owens, Trevor

    2008-01-01

    We have addressed the role of macrophages in glial response and T cell entry to the CNS after axonal injury, by using intravenous injection of clodronate-loaded mannosylated liposomes, in C57BL6 mice. As expected, clodronate-liposome treatment resulted in depletion of peripheral macrophages which...... delay in the expansion of CD45(dim) CD11b(+) microglia in clodronate-liposome treated mice, but macrophage depletion had no effect on the percentage of infiltrating T cells in the lesion-reactive hippocampus. Lesion-induced TNFalpha mRNA expression was not affected by macrophage depletion, suggesting...... that activated glial cells are the primary source of this cytokine in the axonal injury-reactive brain. This identifies a potentially important distinction from inflammatory autoimmune infiltration in EAE, where macrophages are a prominent source of TNFalpha and their depletion prevents parenchymal T cell...

  18. Preparation and characterization of PMMA graded microporous foams via one-step supercritical carbon dioxide foaming

    International Nuclear Information System (INIS)

    Yuan Huan; Li Junguo; Xiong Yuanlu; Luo Guoqiang; Shen Qiang; Zhang Lianmeng

    2013-01-01

    Supercritical carbon dioxide (ScCO 2 ) foaming which is inexpensive and environmental friendly has been widely used to prepare polymer-based microporous materials. In this paper, PMMA graded microporous materials were foamed by PMMA matrix after an unstable saturation process which was done under supercritical condition of 28MPa and 50 °C. The scanning electron microscopy (SEM) was utilized to observe the morphology of the graded foam. A gas adsorption model was proposed to predict the graded gas concentration in the different region of the polymer matrix. The SEM results showed that the solid and foam region of the graded foam can be connected without laminated layers. With the increasing thickness position of the graded microporous foam, the cell size increased from 3.4 to 27.5 μm, while the cell density decreased from 1.04 × 10 9 to 1.96 × 10 7 cells/cm 3 . It also found that the gradient microporous structure of the foam came from graded gas concentration which was obtained in the initial saturation process.

  19. On the plastic collapse stress of open-cell aluminum foam

    NARCIS (Netherlands)

    Amsterdam, E.; De Hosson, J. Th. M.; Onck, P. R.

    Duocel open-cell aluminum foam (20 PPI) was tested with the long axis of the cells oriented longitudinal or transverse to the loading direction, and for both orientations the samples were both annealed and heat treated. Using the extrapolated stiffness at zero per cent strain, the strain-hardening

  20. Foam generator and viscometer apparatus and process

    Science.gov (United States)

    Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.

    2004-10-26

    An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.

  1. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    Science.gov (United States)

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  2. Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications

    Science.gov (United States)

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein

  3. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    Science.gov (United States)

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de Los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  4. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    Directory of Open Access Journals (Sweden)

    Grissel Trujillo-de Santiago

    Full Text Available Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds.We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively. Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3 and two different prostate cancer cell lines (22RV1, DU145 attached to and proliferated on zein foams.We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves. Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  5. Of macrophages and red blood cells; a complex love story

    NARCIS (Netherlands)

    de Back, Djuna Z.; Kostova, Elena B.; van Kraaij, Marian; van den Berg, Timo K.; van Bruggen, Robin

    2014-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with

  6. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-01-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO 2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  7. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  8. Fatigue of a Laterally-Constrained Closed Cell Aluminum Foam

    NARCIS (Netherlands)

    Murthy Kolluri, N.V.V.R.; Mukherjee, M.; Garcia-Moreno, F.; Banhart, J.; Ramamurty, U.

    2008-01-01

    An experimental investigation into the constant stress amplitude compression–compression fatigue behavior of closed-cell aluminum foam, both with and without lateral constraint, was conducted. Results show that while the early stages of strain accumulation due to fatigue loading are independent of

  9. Cholesterol esters are detected by Raman microspectroscopy in HeLa cells

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2009-01-01

    The detection of trans-unsaturated lipids in single HeLa cells by Raman microspectroscopy was recently reported in this journal by Onogi et al. Based on our previously published Raman microspectroscopy data of individual macrophage foam cells, a detailed comparison between our spectra and spectrum

  10. Thermosetting Fluoropolymer Foams

    Science.gov (United States)

    Lee, Sheng Yen

    1987-01-01

    New process makes fluoropolymer foams with controllable amounts of inert-gas fillings in foam cells. Thermosetting fluoropolymers do not require foaming additives leaving undesirable residues and do not have to be molded and sintered at temperatures of about 240 to 400 degree C. Consequently, better for use with electronic or other parts sensitive to high temperatures or residues. Uses include coatings, electrical insulation, and structural parts.

  11. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    Science.gov (United States)

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  13. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature

    OpenAIRE

    Lobov, Ivan B.; Rao, Sujata; Carroll, Thomas J.; Vallance, Jefferson E.; Ito, Masataka; Ondr, Jennifer K.; Kurup, Savita; Glass, Donald A.; Patel, Millan S.; Shu, Weiguo; Morrisey, Edward E.; McMahon, Andrew P.; Karsenty, Gerard; Lang, Richard A.

    2005-01-01

    Macrophages have a critical role in inflammatory and immune responses through their ability to recognize and engulf apoptotic cells1. Here we show that macrophages initiate a cell-death programme in target cells by activating the canonical WNT pathway. We show in mice that macrophage WNT7b is a short-range paracrine signal required for WNT-pathway responses and programmed cell death in the vascular endothelial cells of the temporary hyaloid vessels of the developing eye. These findings indica...

  14. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    Science.gov (United States)

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  15. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL

  16. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, Gyula J.; Duvigneau, Joost; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  17. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis.

    Science.gov (United States)

    Cochain, Clément; Vafadarnejad, Ehsan; Arampatzi, Panagiota; Jaroslav, Pelisek; Winkels, Holger; Ley, Klaus; Wolf, Dennis; Saliba, Antoine-Emmanuel; Zernecke, Alma

    2018-03-15

    Rationale: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they ha ve been defined by the expression of a restricted number of markers. Objective: We have applied single-cell RNA-seq as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. Methods and Results: We performed single-cell RNA sequencing of total aortic CD45 + cells extracted from the non-diseased (chow fed) and atherosclerotic (11 weeks of high fat diet) aorta of Ldlr -/- mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, Resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortae, whereas monocytes, monocyte-derived dendritic cells (MoDC), and two populations of macrophages were almost exclusively detectable in atherosclerotic aortae, comprising Inflammatory macrophages showing enrichment in I l1b , and previously undescribed TREM2 hi macrophages. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these three macrophage subsets and MoDC, and uncovered putative functions of each cell type. Notably, TREM2 hi macrophages appeared to be endowed with specialized functions in lipid metabolism and catabolism, and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe -/- aortae, indicating relevance of our findings in different stages of atherosclerosis and mouse models. Conclusions: These data unprecedentedly uncovered the transcriptional landscape and phenotypic

  18. Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates.

    Science.gov (United States)

    Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian

    2015-08-11

    A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.

  19. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    Full Text Available All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a

  20. stg fimbrial operon from S. Typhi STH2370 contributes to association and cell disruption of epithelial and macrophage-like cells.

    Science.gov (United States)

    Berrocal, Liliana; Fuentes, Juan A; Trombert, A Nicole; Jofré, Matías R; Villagra, Nicolás A; Valenzuela, Luis M; Mora, Guido C

    2015-07-07

    Salmonella enterica serovar Typhi (S. Typhi) stg operon, encoding a chaperone/usher fimbria (CU), contributes to an increased adherence to human epithelial cells. However, one report suggests that the presence of the Stg fimbria impairs the monocyte--bacteria association, as deduced by the lower level of invasion to macrophage-like cells observed when the stg fimbrial cluster was overexpressed. Nevertheless, since other CU fimbrial structures increase the entry of S. Typhi into macrophages, and considering that transcriptomic analyses revealed that stg operon is indeed expressed in macrophages, we reassessed the role of the stg operon in the interaction between S. Typhi strain STH2370 and human cells, including macrophage-like cells and mononuclear cells directly taken from human peripheral blood. We compared S. Typhi STH2370 WT, a Chilean clinical strain, and the S. Typhi STH2370 Δstg mutant with respect to association and invasion using epithelial and macrophage-like cells. We observed that deletion of stg operon reduced the association and invasion of S. Typhi, in both cellular types. The presence of the cloned stg operon restored the WT phenotype in all the cases. Moreover, we compared Salmonella enterica sv. Typhimurium 14028s (S. Typhimurium, a serovar lacking stg operon) and S. Typhimurium heterologously expressing S. Typhi stg. We found that the latter presents an increased cell disruption of polarized epithelial cells and an increased association in both epithelial and macrophage-like cells. S. Typhi stg operon encodes a functional adhesin that participates in the interaction bacteria-eukaryotic cells, including epithelial cells and macrophages-like cells. The phenotypes associated to stg operon include increased association and consequent invasion in bacteria-eukaryotic cells, and cell disruption.

  1. Manufacturing of Cast Metal Foams with Irregular Cell Structure

    Directory of Open Access Journals (Sweden)

    Kroupová I.

    2015-06-01

    Full Text Available Metallic foams are materials of which the research is still on-going, with the broad applicability in many different areas (e.g. automotive industry, building industry, medicine, etc.. These metallic materials have specific properties, such as large rigidity at low density, high thermal conductivity, capability to absorb energy, etc. The work is focused on the preparation of these materials using conventional casting technology (infiltration method, which ensures rapid and economically feasible method for production of shaped components. In the experimental part we studied conditions of casting of metallic foams with open pores and irregular cell structure made of ferrous and nonferrous alloys by use of various types of filler material (precursors.

  2. Bio-based Polymer Foam from Soyoil

    Science.gov (United States)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  3. Thermal Expansion of Three Closed Cell Polymeric Foams at Cryogenic Temperatures

    Science.gov (United States)

    Stokes, Eric

    2006-01-01

    The Space Shuttle External Tank (ET) contains the liquid H2 fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines (SSME) in the orbiter during lift-off and ascent. The ET thermal protection system consists of sprayed-on foam insulation and pre-molded ablator materials. The closed-cell foams are the external coating on the ET and are responsible for minimizing the amount of moisture that condenses out and freezes on the tank from the humid air in Florida while it is on the pad with cryogenic propellant awaiting launch. This effort was part of the overall drive to understand the behavior of these materials under use-conditions. There are four specially-engineered closed-cell foams used on the tank. The thermal expansion (contraction) of three of the polyurethane and polyisocyanurate foams were measured from -423 F (the temperature of liquid hydrogen) to 125 F under atmospheric conditions and under vacuum. One of them, NCFI 24-124, is a mechanically-applied material and covers the main acreage of the tank, accounting for 77 percent of the total foam used. Another, BX-265, is also a mechanically-applied and hand-sprayed material used on the tank's "closeout" areas. PDL 1034 is a hand-poured foam used for filling odd-shaped cavities in the tank, Measurements were made in triplicate in the three primary material directions in the case of the first two materials and the two primary material directions in the case of the last. Task 1 was developing the techniques for getting a uniform heating rate and minimizing axial and radial thermal gradients in the specimens. Temperature measurements were made at four locations in the specimens during this initial development phase of testing. Major challenges that were overcome include developing techniques for transferring the coolant, liquid helium (-452 F), from its storage container to the test facility with a minimal transfer of heat to the coolant and control of the heating

  4. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  5. Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL.

    Science.gov (United States)

    Yang, Yong; Wang, Yan-Fu; Yang, Xiao-Fang; Wang, Zhao-Hui; Lian, Yi-Tian; Yang, Ying; Li, Xiao-Wei; Gao, Xiang; Chen, Jian; Shu, Yan-Wen; Cheng, Long-Xian; Liao, Yu-Hua; Liu, Kun

    2013-01-01

    Cholesterol-metabolism-associated molecules, including scavenger receptor class A (SR-A), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), CD36, ACAT1, ABCA1, ABCG1, and scavenger receptor class B type I, can modulate cholesterol metabolism in the transformation from macrophages to foam cells. Voltage-gated potassium channel Kv1.3 has increasingly been demonstrated to play an important role in the modulation of macrophage function. Here, we investigate the role of Kv1.3 in modulating cholesterol-metabolism-associated molecules in human acute monocytic leukemia cell-derived macrophages (THP-1 macrophages) and human monocyte-derived macrophages exposed to oxidized LDL (ox-LDL). Human Kv1.3 and Kv1.5 channels (hKv1.3 and hKv1.5) are expressed in macrophages and form a heteromultimeric channel. The hKv1.3-E314 antibody that we had generated as a specific hKv1.3 blocker inhibited outward delayed rectifier potassium currents, whereas the hKv1.5-E313 antibody that we had generated as a specific hKv1.5 blocker failed. Accordingly, the hKv1.3-E314 antibody reduced percentage of cholesterol ester and enhanced apoA-I-mediated cholesterol efflux in THP-1 macrophages and human monocyte-derived macrophages exposed to ox-LDL. The hKv1.3-E314 antibody downregulated SR-A, LOX-1, and ACAT1 expression and upregulated ABCA1 expression in THP-1 macrophages and human monocyte-derived macrophages. Our results reveal that specific Kv1.3 blockade represents a novel strategy modulating cholesterol metabolism in macrophages, which benefits the treatment of atherosclerotic lesions.

  6. Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Oh, Taek Hyun; Gang, Byeong Gyu; Kim, Hyuntak; Kwon, Sejin

    2015-01-01

    The response characteristics of electroless-deposited Co–P/Ni foam catalysts for sodium borohydride hydrolysis were investigated. The effect of nickel foam geometry on the properties of the catalysts was evaluated. As the PPI (pores per inch) of the nickel foam increased, the hydrogen generation rate per gram of the deposited catalyst increased due to an increase in surface area. The response characteristics of various catalysts were compared under real operating conditions. When a thin nickel foam with high PPI was used, the response characteristics of the catalyst improved due to an increase in the amount of the deposited catalyst and surface area. Finally, a 200 W PEMFC (proton exchange membrane fuel cell) system using electroless-deposited Co–P/Ni foam (110 PPI) catalyst was investigated. The response time to reach a hydrogen generation rate sufficient for a 200 W PEMFC was 71 s, and the energy density of a 200 W fuel cell system for producing 600 Wh was 252.1 Wh/kg. A fuel cell system using Co–P/Ni foam catalysts can be widely used as a power source for mobile applications due to fast response characteristics and high energy density. - Highlights: • Response characteristics of Co–P/Ni foam catalysts are investigated. • Catalytic activity is improved with increase in PPI (pores per inch) of Ni foam. • Co–P/Ni foam (110 PPI) catalyst has improved response characteristics. • The energy density of a 200 W PEMFC system for producing 600 Wh is 252.1 Wh/kg. • Co–P/Ni foam (110 PPI) catalyst is suitable for fuel cell system.

  7. Multifunctional foaming agent to prepare aluminum foam with enhanced mechanical properties

    Science.gov (United States)

    Li, Xun; Liu, Ying; Ye, Jinwen; An, Xuguang; Ran, Huaying

    2018-03-01

    In this paper, CuSO4 was used as foaming agent to prepare close cell Aluminum foam(Al foam) at the temperature range of 680 °C ∼ 758 °C for the first time. The results show that CuSO4 has multifunctional such as, foaming, viscosity increasing, reinforcement in Al matrix, it has a wide decomposition temperature range of 641 °C ∼ 816 °C, its sustain-release time is 5.5 min at 758 °C. The compression stress and energy absorption of CuSO4-Al foam is 6.89 Mpa and 4.82 × 106 J m‑3(compression strain 50%), which are 77.12% and 99.17% higher than that of TiH2-Al foam at the same porosity(76% in porosity) due to the reinforcement in Al matrix and uniform pore dispersion.

  8. Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression.

    Science.gov (United States)

    Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong

    2016-09-01

    Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.

  9. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  10. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors.

    Directory of Open Access Journals (Sweden)

    Kristin Mussar

    Full Text Available Macrophages populate the mesenchymal compartment of all organs during embryogenesis and have been shown to support tissue organogenesis and regeneration by regulating remodeling of the extracellular microenvironment. Whether this mesenchymal component can also dictate select developmental decisions in epithelia is unknown. Here, using the embryonic pancreatic epithelium as model system, we show that macrophages drive the epithelium to execute two developmentally important choices, i.e. the exit from cell cycle and the acquisition of a migratory phenotype. We demonstrate that these developmental decisions are effectively imparted by macrophages activated toward an M2 fetal-like functional state, and involve modulation of the adhesion receptor NCAM and an uncommon "paired-less" isoform of the transcription factor PAX6 in the epithelium. Over-expression of this PAX6 variant in pancreatic epithelia controls both cell motility and cell cycle progression in a gene-dosage dependent fashion. Importantly, induction of these phenotypes in embryonic pancreatic transplants by M2 macrophages in vivo is associated with an increased frequency of endocrine-committed cells emerging from ductal progenitor pools. These results identify M2 macrophages as key effectors capable of coordinating epithelial cell cycle withdrawal and cell migration, two events critical to pancreatic progenitors' delamination and progression toward their differentiated fates.

  11. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors.

    Science.gov (United States)

    Mussar, Kristin; Tucker, Andrew; McLennan, Linsey; Gearhart, Addie; Jimenez-Caliani, Antonio J; Cirulli, Vincenzo; Crisa, Laura

    2014-01-01

    Macrophages populate the mesenchymal compartment of all organs during embryogenesis and have been shown to support tissue organogenesis and regeneration by regulating remodeling of the extracellular microenvironment. Whether this mesenchymal component can also dictate select developmental decisions in epithelia is unknown. Here, using the embryonic pancreatic epithelium as model system, we show that macrophages drive the epithelium to execute two developmentally important choices, i.e. the exit from cell cycle and the acquisition of a migratory phenotype. We demonstrate that these developmental decisions are effectively imparted by macrophages activated toward an M2 fetal-like functional state, and involve modulation of the adhesion receptor NCAM and an uncommon "paired-less" isoform of the transcription factor PAX6 in the epithelium. Over-expression of this PAX6 variant in pancreatic epithelia controls both cell motility and cell cycle progression in a gene-dosage dependent fashion. Importantly, induction of these phenotypes in embryonic pancreatic transplants by M2 macrophages in vivo is associated with an increased frequency of endocrine-committed cells emerging from ductal progenitor pools. These results identify M2 macrophages as key effectors capable of coordinating epithelial cell cycle withdrawal and cell migration, two events critical to pancreatic progenitors' delamination and progression toward their differentiated fates.

  12. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Jesús Cosín-Roger

    Full Text Available Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in

  13. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  14. Effective Thermal Conductivity of Open Cell Polyurethane Foam Based on the Fractal Theory

    Directory of Open Access Journals (Sweden)

    Kan Ankang

    2013-01-01

    Full Text Available Based on the fractal theory, the geometric structure inside an open cell polyurethane foam, which is widely used as adiabatic material, is illustrated. A simplified cell fractal model is created. In the model, the method of calculating the equivalent thermal conductivity of the porous foam is described and the fractal dimension is calculated. The mathematical formulas for the fractal equivalent thermal conductivity combined with gas and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity, are deduced. However, the total effective heat flux is the summation of the heat conduction by the solid phase and the gas in pores, the radiation, and the convection between gas and solid phase. Fractal mathematical equation of effective thermal conductivity is derived with fractal dimension and vacancy porosity in the cell body. The calculated results have good agreement with the experimental data, and the difference is less than 5%. The main influencing factors are summarized. The research work is useful for the enhancement of adiabatic performance of foam materials and development of new materials.

  15. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yongle, E-mail: yongle.sun@manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Zhang, Xun [Henry Moseley X-ray Imaging Facility, School of Materials, The University of Manchester, Upper Brook Street, Manchester M13 9PL (United Kingdom); Shao, Zhushan [School of Civil Engineering, Xi' an University of Architecture & Technology, Xi' an 710055 (China); Li, Q.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-03-14

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  16. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    International Nuclear Information System (INIS)

    Sun, Yongle; Zhang, Xun; Shao, Zhushan; Li, Q.M.

    2017-01-01

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  17. Characterization of immortalized MARCO and SR-AI/II-deficient murine alveolar macrophage cell lines

    Directory of Open Access Journals (Sweden)

    Imrich Amy

    2008-05-01

    Full Text Available Abstract Background Alveolar macrophages (AM avidly bind and ingest unopsonized inhaled particles and bacteria through class A scavenger receptors (SRAs MARCO and SR-AI/II. Studies to characterize the function of these SRAs have used AMs from MARCO or SR-AI/II null mice, but this approach is limited by the relatively low yield of AMs. Moreover, studies using both MARCO and SR-AI/II-deficient (MS-/- mice have not been reported yet. Hence, we sought to develop continuous cell lines from primary alveolar macrophages from MS-/- mice. Results We used in vitro infection of the primary AMs with the J2 retrovirus carrying the v-raf and v-myc oncogenes. Following initial isolation in media supplemented with murine macrophage colony-stimulating factor (M-CSF, we subcloned three AM cell lines, designated ZK-1, ZK-2 and ZK-6. These cell lines grow well in RPMI-1640-10% FBS in the absence of M-CSF. These adherent but trypsin-sensitive cell lines have a doubling time of approximately 14 hours, exhibit typical macrophage morphology, and express macrophage-associated cell surface Mac-1 (CD11b and F4/80 antigens. The cell lines show robust Fc-receptor dependent phagocytosis of opsonized red blood cells. Similar to freshly isolated AMs from MS-/- mice, the cell lines exhibit decreased phagocytosis of unopsonized titanium dioxide (TiO2, fluorescent latex beads and bacteria (Staphylococcus aureus compared with the primary AMs from wild type (WT C57BL/6 mice. Conclusion Our results indicated that three contiguous murine alveolar macrophage cell lines with MS-/- (ZK1, ZK2 and ZK6 were established successfully. These cell lines demonstrated macrophage morphology and functional activity. Interestingly, similar to freshly isolated AMs from MS-/- mice, the cell lines have a reduced, but not absent, ability to bind and ingest particles, with an altered pattern of blockade by scavenger receptor inhibitors. These cell lines will facilitate in vitro studies to further define

  18. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    Yang, X H; Kuang, J J; Lu, T J; Han, F S; Kim, T

    2013-01-01

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  19. Effect of foam stirrer design on the catalytic performance of rotating foam stirrer reactions

    NARCIS (Netherlands)

    Leon Matheus, M.A.; Geers, P.; Nijhuis, T.A.; Schaaf, van der J.; Schouten, J.C.

    2012-01-01

    The liquid–solid mass transfer rate in a rotating foam stirrer reactor and in a slurry reactor is studied using the hydrogenation of styrene as a model reaction. The rotating foam stirrer reactor is a novel type of multi-phase reactor where highly open-celled materials, solid foams, are used as a

  20. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  1. Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL[S

    Science.gov (United States)

    Yang, Yong; Wang, Yan-Fu; Yang, Xiao-Fang; Wang, Zhao-Hui; Lian, Yi-Tian; Yang, Ying; Li, Xiao-Wei; Gao, Xiang; Chen, Jian; Shu, Yan-Wen; Cheng, Long-Xian; Liao, Yu-Hua; Liu, Kun

    2013-01-01

    Cholesterol-metabolism-associated molecules, including scavenger receptor class A (SR-A), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), CD36, ACAT1, ABCA1, ABCG1, and scavenger receptor class B type I, can modulate cholesterol metabolism in the transformation from macrophages to foam cells. Voltage-gated potassium channel Kv1.3 has increasingly been demonstrated to play an important role in the modulation of macrophage function. Here, we investigate the role of Kv1.3 in modulating cholesterol-metabolism-associated molecules in human acute monocytic leukemia cell-derived macrophages (THP-1 macrophages) and human monocyte-derived macrophages exposed to oxidized LDL (ox-LDL). Human Kv1.3 and Kv1.5 channels (hKv1.3 and hKv1.5) are expressed in macrophages and form a heteromultimeric channel. The hKv1.3-E314 antibody that we had generated as a specific hKv1.3 blocker inhibited outward delayed rectifier potassium currents, whereas the hKv1.5-E313 antibody that we had generated as a specific hKv1.5 blocker failed. Accordingly, the hKv1.3-E314 antibody reduced percentage of cholesterol ester and enhanced apoA-I-mediated cholesterol efflux in THP-1 macrophages and human monocyte-derived macrophages exposed to ox-LDL. The hKv1.3-E314 antibody downregulated SR-A, LOX-1, and ACAT1 expression and upregulated ABCA1 expression in THP-1 macrophages and human monocyte-derived macrophages. Our results reveal that specific Kv1.3 blockade represents a novel strategy modulating cholesterol metabolism in macrophages, which benefits the treatment of atherosclerotic lesions. PMID:23099443

  2. Acquisition of repertoires of suppressor T cells under the influence of macrophages

    International Nuclear Information System (INIS)

    Soejima, T.; Nagayama, A.; Sado, T.; Taniguchi, M.

    1988-01-01

    Acquisition of repertoires and genetic restriction specificities of suppressor T cells (Ts) and their factors were studied by using full allogeneic radiation bone marrow chimera and H-2 congenic pairs, B10.A(3R) and B10.A(5R), which received conventional or cloned macrophages by cell transfer. Suppressor T-cell factor (TsF) from C3H----C57BL/6 or C57BL/6----C3H chimera suppressed only donor but not host-type responses of either C3H or C57BL/6, in an antigen-specific fashion. However, if chimera mice were given conventional or cloned macrophages of the host type, the chimera TsF in turn suppressed both the responses of C3H and C57BL/6 mice but not those of the third party, BALB/c, indicating that macrophages are responsible for the acquisition of host restriction specificity. Similarly, B10.A(5R) mice developed I-Jb restricted Ts or TsF when the B10.A(3R) macrophage cell line was injected at the time of antigen priming. The reverse was also true. B10.A(3R) mice did generate I-Jk restricted Ts when they received the B10.A(5R) macrophage cell line. Thus, the results clearly demonstrated that B10.A(3R) or B10.A(5R) mice potentially possessed their ability to express both I-Jk and I-Jb determinants and that repertoires and genetic restriction specificity of Ts and their TsF were acquired at a macrophage level at the time of antigen-priming

  3. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    Science.gov (United States)

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  4. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Donaldson Ken

    2005-12-01

    Full Text Available Abstract Background Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2 to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. Results Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2 as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. Conclusion The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s released by the

  5. Metabolic Plasticity of Stem Cells and Macrophages in Cancer

    Directory of Open Access Journals (Sweden)

    Jelena Krstic

    2017-08-01

    Full Text Available In addition to providing essential molecules for the overall function of cells, metabolism plays an important role in cell fate and can be affected by microenvironmental stimuli as well as cellular interactions. As a specific niche, tumor microenvironment (TME, consisting of different cell types including stromal/stem cells and immune cells, is characterized by distinct metabolic properties. This review will be focused on the metabolic plasticity of mesenchymal stromal/stem cells (MSC and macrophages in TME, as well as on how the metabolic state of cancer stem cells (CSC, as key drivers of oncogenesis, affects their generation and persistence. Namely, heterogenic metabolic phenotypes of these cell populations, which include various levels of dependence on glycolysis or oxidative phosphorylation are closely linked to their complex roles in cancer progression. Besides well-known extrinsic factors, such as cytokines and growth factors, the differentiation and activation states of CSC, MSC, and macrophages are coordinated by metabolic reprogramming in TME. The significance of mutual metabolic interaction between tumor stroma and cancer cells in the immune evasion and persistence of CSC is currently under investigation.

  6. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Directory of Open Access Journals (Sweden)

    Degang Yang

    2016-01-01

    Full Text Available The persistence of Mycobacterium leprae (M. leprae infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions.Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta, IL-6, tumor necrosis factor alpha (TNF-alpha and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings.Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  7. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Science.gov (United States)

    Yang, Degang; Shui, Tiejun; Miranda, Jake W; Gilson, Danny J; Song, Zhengyu; Chen, Jia; Shi, Chao; Zhu, Jianyu; Yang, Jun; Jing, Zhichun

    2016-01-01

    The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  8. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner.

    Directory of Open Access Journals (Sweden)

    Tania J Fernandes

    Full Text Available In bone, depletion of osteoclasts reduces bone formation in vivo, as does osteal macrophage depletion. How osteoclasts and macrophages promote the action of bone forming osteoblasts is, however, unclear. Since recruitment and differentiation of multi-potential stromal cells/mesenchymal stem cells (MSC generates new active osteoblasts, we investigated whether human osteoclasts and macrophages (generated from cord blood-derived hematopoietic progenitors induce osteoblastic maturation in adipose tissue-derived MSC. When treated with an osteogenic stimulus (ascorbate, dexamethasone and β-glycerophosphate these MSC form matrix-mineralising, alkaline phosphatase-expressing osteoblastic cells. Cord blood-derived progenitors were treated with macrophage colony stimulating factor (M-CSF to form immature proliferating macrophages, or with M-CSF plus receptor activator of NFκB ligand (RANKL to form osteoclasts; culture medium was conditioned for 3 days by these cells to study their production of osteoblastic factors. Both osteoclast- and macrophage-conditioned medium (CM greatly enhanced MSC osteoblastic differentiation in both the presence and absence of osteogenic medium, evident by increased alkaline phosphatase levels within 4 days and increased mineralisation within 14 days. These CM effects were completely ablated by antibodies blocking gp130 or oncostatin M (OSM, and OSM was detectable in both CM. Recombinant OSM very potently stimulated osteoblastic maturation of these MSC and enhanced bone morphogenetic protein-2 (BMP-2 actions on MSC. To determine the influence of macrophage activation on this OSM-dependent activity, CM was collected from macrophage populations treated with M-CSF plus IL-4 (to induce alternative activation or with GM-CSF, IFNγ and LPS to cause classical activation. CM from IL-4 treated macrophages stimulated osteoblastic maturation in MSC, while CM from classically-activated macrophages did not. Thus, macrophage-lineage cells

  9. Foam generation and sample composition optimization for the FOAM-C experiment of the ISS

    Science.gov (United States)

    Carpy, R.; Picker, G.; Amann, B.; Ranebo, H.; Vincent-Bonnieu, S.; Minster, O.; Winter, J.; Dettmann, J.; Castiglione, L.; Höhler, R.; Langevin, D.

    2011-12-01

    End of 2009 and early 2010 a sealed cell, for foam generation and observation, has been designed and manufactured at Astrium Friedrichshafen facilities. With the use of this cell, different sample compositions of "wet foams" have been optimized for mixtures of chemicals such as water, dodecanol, pluronic, aethoxisclerol, glycerol, CTAB, SDS, as well as glass beads. This development is performed in the frame of the breadboarding development activities of the Experiment Container FOAM-C for operation in the ISS Fluid Science Laboratory (ISS). The sample cell supports multiple observation methods such as: Diffusing-Wave and Diffuse Transmission Spectrometry, Time Resolved Correlation Spectroscopy [1] and microscope observation, all of these methods are applied in the cell with a relatively small experiment volume 40).

  10. An approach for characterising cellular polymeric foam structures using computed tomography

    Science.gov (United States)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  11. A constitutive model for the compressive response of metallic closed-cell foams including micro-inertia effects

    Directory of Open Access Journals (Sweden)

    Barthélémy Romain

    2015-01-01

    Full Text Available Metallic foams have known a keen interest in the last decades. Their ability to undergo very large deformations while transmitting low stress levels make them capable of performing functions of protective layers against intense loadings and of energy absorbers, for instance. The behaviour of metal foams varies considerably between quasi-static and dynamic regimes. Those differences can be linked to the strain-rate sensitivity of the skeleton material and to micro-inertial effects (induced by the crushing of the foam cells. In the present work, a micromechanical model has been developed to take into account micro-inertia effects on the macroscopic behaviour of closed-cell foams under dynamic loading conditions. The proposed modelling is based on the dynamic homogenisation procedure introduced by Molinari and Mercier (J. Mech. Phys. Solids 49 (2001 1497–1516. Within this framework, the macrostress is the sum of two terms. The first one is a static stress, that can be described with any existing model of metal foam. The second contribution is a dynamic stress related to micro-inertia effects. Considering an initially spherical shell as a Representative Volume Element (RVE of the foam material, a closed-form expression of the dynamic stress was obtained. The proposed modelling was applied to shock propagation in aluminium foams (it should however be noted that the present theory is not restricted to uniaxial deformation but can be applied to arbitrary loadings. From experimental data of the literature, it is observed that incorporating micro-inertia effects allows one to achieve a better description of the foam shock response. This indicates that micro-inertia may have a significant influence on the dynamic behaviour of metallic foams.

  12. Application of Auxetic Foam in Sports Helmets

    Directory of Open Access Journals (Sweden)

    Leon Foster

    2018-03-01

    Full Text Available This investigation explored the viability of using open cell polyurethane auxetic foams to augment the conformable layer in a sports helmet and improve its linear impact acceleration attenuation. Foam types were compared by examining the impact severity on an instrumented anthropomorphic headform within a helmet consisting of three layers: a rigid shell, a stiff closed cell foam, and an open cell foam as a conformable layer. Auxetic and conventional foams were interchanged to act as the helmet’s conformable component. Attenuation of linear acceleration was examined by dropping the combined helmet and headform on the front and the side. The helmet with auxetic foam reduced peak linear accelerations (p < 0.05 relative to its conventional counterpart at the highest impact energy in both orientations. Gadd Severity Index reduced by 11% for frontal impacts (38.9 J and 44% for side impacts (24.3 J. The conformable layer within a helmet can influence the overall impact attenuating properties. The helmet fitted with auxetic foam can attenuate impact severity more than when fitted with conventional foam, and warrants further investigation for its potential to reduce the risk of traumatic brain injuries in sport specific impacts.

  13. Progastrin represses the alternative activation of human macrophages and modulates their influence on colon cancer epithelial cells.

    Directory of Open Access Journals (Sweden)

    Carlos Hernández

    Full Text Available Macrophage infiltration is a negative prognostic factor for most cancers but gastrointestinal tumors seem to be an exception. The effect of macrophages on cancer progression depends on their phenotype, which may vary between M1 (pro-inflammatory, defensive to M2 (tolerogenic, pro-tumoral. Gastrointestinal cancers often become an ectopic source of gastrins and macrophages present receptors for these peptides. The aim of the present study is to analyze whether gastrins can affect the pattern of macrophage infiltration in colorectal tumors. We have evaluated the relationship between gastrin expression and the pattern of macrophage infiltration in samples from colorectal cancer and the influence of these peptides on the phenotype of macrophages differentiated from human peripheral monocytes in vitro. The total number of macrophages (CD68+ cells was similar in tumoral and normal surrounding tissue, but the number of M2 macrophages (CD206+ cells was significantly higher in the tumor. However, the number of these tumor-associated M2 macrophages correlated negatively with the immunoreactivity for gastrin peptides in tumor epithelial cells. Macrophages differentiated from human peripheral monocytes in the presence of progastrin showed lower levels of M2-markers (CD206, IL10 with normal amounts of M1-markers (CD86, IL12. Progastrin induced similar effects in mature macrophages treated with IL4 to obtain a M2-phenotype or with LPS plus IFNγ to generate M1-macrophages. Macrophages differentiated in the presence of progastrin presented a reduced expression of Wnt ligands and decreased the number and increased cell death of co-cultured colorectal cancer epithelial cells. Our results suggest that progastrin inhibits the acquisition of a M2-phenotype in human macrophages. This effect exerted on tumor associated macrophages may modulate cancer progression and should be taken into account when analyzing the therapeutic value of gastrin immunoneutralization.

  14. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Science.gov (United States)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  15. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages...... in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions...... with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...

  16. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    Science.gov (United States)

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  17. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2016-04-01

    In this study, the wound closure of mouse skin defects was examined in terms of recruitment of mesenchymal stem cells (MSC) and macrophages. For the cells recruitment, stromal derived factor-1 (SDF-1) of a MSC recruitment agent and sphingosine-1 phosphate agonist (SEW2871) of a macrophages recruitment agent were incorporated into gelatin hydrogels, and then released in a controlled fashion. When applied to a skin wound defect of mice, gelatin hydrogels incorporating mixed 500 ng SDF-1 and 0.4, 0.8, or 1.6 mg SEW2871-micelles recruited a higher number of both MSC and macrophages than those incorporating SDF-1 or phosphate buffered saline. However, the number of M1 phenotype macrophages for the hydrogel incorporating mixed SDF-1 and SEW2871-micelles recruited was remarkably low to a significant extent compared with that for those hydrogel incorporating 0.4, 0.8, or 1.6 mg SEW2871-micelles. On the other hand, the number of M2 macrophages 3 days after the implantation of the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles significantly increased compared with that for other hydrogels. In vivo experiments revealed the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles promoted the wound closure of skin defect to a significant stronger extent than those incorporating SEW2871-micelles, SDF-1, and a mixture of SDF-1 and higher doses of SEW2871-micelles. It is concluded that the in vivo recruitment of MSC and macrophages to the defects may contribute to the tissue regeneration of skin wound. © 2016 Wiley Periodicals, Inc.

  18. The Scavenger Protein Apoptosis Inhibitor of Macrophages (AIM) Potentiates the Antimicrobial Response against Mycobacterium tuberculosis by Enhancing Autophagy

    Science.gov (United States)

    Sanjurjo, Lucía; Amézaga, Núria; Vilaplana, Cristina; Cáceres, Neus; Marzo, Elena; Valeri, Marta; Cardona, Pere-Joan; Sarrias, Maria-Rosa

    2013-01-01

    Apoptosis inhibitor of macrophages (AIM), a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR) and Retinoid X Receptor (RXR) heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis. PMID:24223991

  19. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H; Lee, Jae K; Bunge, Mary Bartlett

    2018-04-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  20. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H.; Lee, Jae K.; Bunge, Mary Bartlett

    2018-01-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  1. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2018-01-01

    Full Text Available Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP, and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with

  2. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    Directory of Open Access Journals (Sweden)

    Katrin Paulsen

    2015-01-01

    Full Text Available Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  3. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  4. Defect generation during solidification of aluminium foams

    International Nuclear Information System (INIS)

    Mukherjee, M.; Garcia-Moreno, F.; Banhart, J.

    2010-01-01

    The reason for the frequent occurrence of cell wall defects in metal foams was investigated. Aluminium foams often expand during solidification, a process which is referred as solidification expansion (SE). The effect of SE on the structure of aluminium foams was studied in situ by X-ray radioscopy and ex situ by X-ray tomography. A direct correlation between the magnitude of SE and the number of cell wall ruptures during SE and finally the number of defects in the solidified foams was found.

  5. Differential trafficking of oxidized LDL and oxidized LDL immune complexes in macrophages: impact on oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohammed M Al Gadban

    2010-09-01

    Full Text Available Oxidized low-density lipoproteins (oxLDL and oxLDL-containing immune complexes (oxLDL-IC contribute to formation of lipid-laden macrophages (foam cells. It has been shown that oxLDL-IC are considerably more efficient than oxLDL in induction of foam cell formation, inflammatory cytokines secretion, and cell survival promotion. Whereas oxLDL is taken up by several scavenger receptors, oxLDL-IC are predominantly internalized through the FCgamma receptor I (FCgamma RI. This study examined differences in intracellular trafficking of lipid and apolipoprotein moieties of oxLDL and oxLDL-IC and the impact on oxidative stress.Fluorescently labeled lipid and protein moieties of oxLDL co-localized within endosomal and lysosomal compartments in U937 human monocytic cells. In contrast, the lipid moiety of oxLDL-IC was detected in the endosomal compartment, whereas its apolipoprotein moiety advanced to the lysosomal compartment. Cells treated with oxLDL-IC prior to oxLDL demonstrated co-localization of internalized lipid moieties from both oxLDL and oxLDL-IC in the endosomal compartment. This sequential treatment likely inhibited oxLDL lipid moieties from trafficking to the lysosomal compartment. In RAW 264.7 macrophages, oxLDL-IC but not oxLDL induced GFP-tagged heat shock protein 70 (HSP70 and HSP70B', which co-localized with the lipid moiety of oxLDL-IC in the endosomal compartment. This suggests that HSP70 family members might prevent the degradation of the internalized lipid moiety of oxLDL-IC by delaying its advancement to the lysosome. The data also showed that mitochondrial membrane potential was decreased and generation of reactive oxygen and nitrogen species was increased in U937 cell treated with oxLDL compared to oxLDL-IC.Findings suggest that lipid and apolipoprotein moieties of oxLDL-IC traffic to separate cellular compartments, and that HSP70/70B' might sequester the lipid moiety of oxLDL-IC in the endosomal compartment. This mechanism could

  6. Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour

    International Nuclear Information System (INIS)

    Cardoso, Ana P.; Pinto, Marta L.; Pinto, Ana T.; Pinto, Marta T.; Monteiro, Cátia; Oliveira, Marta I.; Santos, Susana G.; Relvas, João B.; Seruca, Raquel; Mantovani, Alberto; Mareel, Marc; Barbosa, Mário A.; Oliveira, Maria J.

    2015-01-01

    The interactions established between macrophages and cancer cells are largely dependent on instructions from the tumour microenvironment. Macrophages may differentiate into populations with distinct inflammatory profiles, but knowledge on their role on cancer cell activities is still very scarce. In this work, we investigated the influence of pro-inflammatory (LPS-stimulated) and anti-inflammatory (IL-10-stimulated) macrophages on gastric and colorectal cancer cell invasion, motility/migration, angiogenesis and proteolysis, and the associated molecular mechanisms. Following exposure of gastric and colon cancer cell lines to LPS- and IL-10-stimulated human macrophages, either by indirect contact or conditioned media, we analyzed the effect of the different macrophage populations on cancer cell invasion, migration, motility and phosphorylation status of EGFR and several interacting partners. Cancer-cell induced angiogenesis upon the influence of conditioned media from both macrophage populations was assessed using the chick embryo chorioallantoic membrane assay. MMP activities were evaluated by gelatin zymograhy. Our results show that IL-10-stimulated macrophages are more efficient in promoting in vitro cancer cell invasion and migration. In addition, soluble factors produced by these macrophages enhanced in vivo cancer cell-induced angiogenesis, as opposed to their LPS-stimulated counterparts. We further demonstrate that differences in the ability of these macrophage populations to stimulate invasion or angiogenesis cannot be explained by the EGFR-mediated signalling, since both LPS- and IL-10-stimulated macrophages similarly induce the phosphorylation of cancer cell EGFR, c-Src, Akt, ERK1/2, and p38. Interestingly, both populations exert distinct proteolytic activities, being the IL-10-stimulated macrophages the most efficient in inducing matrix metalloprotease (MMP)-2 and MMP-9 activities. Using a broad-spectrum MMP inhibitor, we demonstrated that proteolysis was

  7. Thermal and mechanical improvement of aluminum open-cells foams through electrodeposition of copper and graphene

    Directory of Open Access Journals (Sweden)

    Simoncini Alessandro

    2016-01-01

    Full Text Available Thanks to its planar structure, graphene is characterized by unique properties, such as excellent chemical inactivity, high electrical and thermal conductivity, high optical transparency, extraordinary flexibility and high mechanical resistance, which make it suitable in a very wide range of applications. This paper details the state of the art in graphene coating applied to aluminum open-cells foams for the improvement of their mechanical and thermal behavior. Metallic foams are highly porous materials with extremely high convective heat transfer coefficients, thanks to their complex structure of three-dimensional open-cells. Graphene nanoplatelets have been used to improve thermal conductivity of aluminum foams, to make them better suitable during heat transfer in transient state. Also, an improvement of mechanical resistance has been observed. Before electrodeposition, all the samples have been subjected to sandblasting process, to eliminate the oxide layer on the surface, enabling a better adhesion of the coating. Different nanoparticles of graphene have been used. The experimental findings revealed a higher thermal conductivity for aluminum open cells foams electroplated with graphene. Considered the relatively low process costs and the improvements obtainable, these materials are very promising in many technological fields. The topics covered include surface modification, electrochemical plating, thermo-graphic analysis.

  8. In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-11-01

    We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect Co-Cr-Mo alloy's corrosion properties and that alloy corrosion products change macrophage cell behavior. A custom cell culture corrosion cell was used to evaluate how culture medium, cells, and RCS altered alloy corrosion in 3-day tests. Corrosion was evaluated by measuring total charge transfer at a constant potential using a potentiostat and metal ion release by atomic emission spectroscopy. Viability, proliferation, and NO (nitric oxide) and IL-1beta (interlukin-1beta) release were used to assess cellular response to alloy corrosion products. In the presence of activated cells, total charge transfers and Co ion release were the lowest (p < 0.05). This was attributed to an enhancement of the surface oxide by RCS. Cr and Mo release were not different between cells and activated cells. Low levels of metal ions did not affect cell viability, proliferation, or NO release, though IL-1beta released from the activated cells was higher on the alloy compared to the controls. These data support the hypothesis that macrophage cells and their RCS affect alloy corrosion. Changes in alloy corrosion by cells may be important to the development of host responses to the alloy and its corrosion products.

  9. Small cell foams and blends and a process for their preparation

    Science.gov (United States)

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-07

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents. These modified dense star polymers or dendrimers are particularly effective for the production of small cell foams.

  10. Foam generation and sample composition optimization for the FOAM-C experiment of the ISS

    International Nuclear Information System (INIS)

    Carpy, R; Picker, G; Amann, B; Ranebo, H; Vincent-Bonnieu, S; Minster, O; Winter, J; Dettmann, J; Castiglione, L; Höhler, R; Langevin, D

    2011-01-01

    End of 2009 and early 2010 a sealed cell, for foam generation and observation, has been designed and manufactured at Astrium Friedrichshafen facilities. With the use of this cell, different sample compositions of 'wet foams' have been optimized for mixtures of chemicals such as water, dodecanol, pluronic, aethoxisclerol, glycerol, CTAB, SDS, as well as glass beads. This development is performed in the frame of the breadboarding development activities of the Experiment Container FOAM-C for operation in the ISS Fluid Science Laboratory (ISS). The sample cell supports multiple observation methods such as: Diffusing-Wave and Diffuse Transmission Spectrometry, Time Resolved Correlation Spectroscopy and microscope observation, all of these methods are applied in the cell with a relatively small experiment volume 3 . These units, will be on orbit replaceable sets, that will allow multiple sample compositions processing (in the range of >40).

  11. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)

    2016-03-29

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  12. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein

    International Nuclear Information System (INIS)

    Kokkonen, J.O.; Kovanen, P.T.

    1987-01-01

    The uptake of low density lipoprotein (LDL) by cultured mouse macrophages was markedly promoted by isolated rat mast cell granules present in the culture medium. The granule-mediated uptake of 125 I-LDL enhanced the rate of cholesteryl ester synthesis in the macrophages, the result being accumulation of cholesteryl esters in these cells. Binding of LDL to the granules was essential for the granule-mediated uptake of LDL by macrophages, for the uptake process was prevented by treating the granules with avidin or protamine chloride or by treating LDL with 1,2-cyclohexanedione, all of which inhibit the binding of LDL to the granules. Inhibition of granule phagocytosis by the macrophages with cytochalasin B also abolished the granule-mediated uptake of LDL. Finally, mouse macrophage monolayers and LDL were incubated in the presence of isolated rat serosal mast cells. Stimulation of the mast cells with compound 48/80, a degranulating agent, resulted in dose-dependent release of secretory granules from the mast cells and a parallel increase in 14 C cholesteryl ester synthesis in the macrophages. The results show that, in this in vitro model, the sequence of events leading to accumulation of cholesteryl esters in macrophages involves initial stimulation of mast cells, subsequent release of their secretory granules, binding of LDL to the exocytosed granules, and, finally, phagocytosis of the LDL-containing granules by macrophages

  13. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Chuan, E-mail: zhchuansy@163.com; Ma, Cheng-bin; Yuan, Hong-mou; Cao, Bao-yuan; Zhu, Jia-jun

    2015-12-04

    Background: Macrophages have been implicated in peripheral nerve regeneration. However, whether macrophages-derived microvesicles (MVs) are involved in this process remains unknown. In the present study, the effects of macrophages-derived MVs on proliferation and migration of Schwann cells (SCs) were evaluated in both in vitro and in vivo. Methods: Human monocytic leukaemia cell line (THP-1) was successfully driven to M1 and M2 phenotypes by delivery of either IFN-γ or IL-4, respectively. SCs incubated with M1 or M2 macrophages-derived MVs, the cell migration and proliferation were assessed, and expression levels of nerve growth factor (NGF) and Laminin were measured. A rat model of sciatic nerve was established and the effects of macrophages-derived MVs on nerve regeneration were investigated. Results: M2-derived MVs elevated migration, proliferation, NFG and Laminin protein levels of SCs compared with M1-or M0-derived MVs. The relative expression levels of miR-223 were also increased in M2 macrophages and M2-derived MVs. Transfected M2 macrophages with miR-223 inhibitor then co-incubated with SCs, an inhibition of cell migration and proliferation and a down-regulated levels of NFG and Laminin protein expression were observed. In vivo, M2-derived MVs significantly increased the infiltration and axon number of SCs. Conclusion: M2-derived MVs promoted proliferation and migration of SCs in vitro and in vivo, which provided a therapeutic strategy for nerve regeneration. - Highlights: • M2 macrophages-derived MVs elevated migration and proliferation of SCs. • M2 macrophages-derived MVs up-regulated NFG and Laminin expression of SCs. • MiR-223 expression was increased in M2 macrophages-derived MVs. • MiR-223 inhibitor reduced migration and proliferation of SCs co-incubated with MVs. • MiR-223 inhibitor down-regulated NFG and Laminin levels of SCs co-incubated with MVs.

  14. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    Science.gov (United States)

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4 + CD49b + LAG-3 + T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25 + Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10 + Foxp3 - CD4 + T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  15. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells.

    Science.gov (United States)

    Soucie, Erinn L; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J-C; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H

    2016-02-12

    Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. Copyright © 2016, American Association for the Advancement of Science.

  16. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    International Nuclear Information System (INIS)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia; Thulin, Petra; Ehrenborg, Ewa; Olivecrona, Thomas; Olivecrona, Gunilla

    2012-01-01

    Highlights: ► Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. ► Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. ► Only monomers of ANGPTL4 are present within THP-1 macrophages. ► Covalent oligomers of ANGPTL4 appear on cell surface and in medium. ► Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  17. Preparation and properties of polymer foams for ICF targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Lucht, L.M.

    1986-09-01

    Low density small cell sized foams were developed to localize the liquid DT layer in a direct drive wetted foam laser fusion target. We have developed foams made from ultrahigh molecular weight polyethylene gels and polystyrene inverse emulsions. Materials in the density range of from 0.020 to 0.300 g/cc were prepared and characterized for cell size, mechanical properties, machinability, specific surface area, and wetting. Foams with a density of 0.05 g/cc were made with a cell size of less than 5 μm. A cell structure model was developed which relates the density and specific surface area to cell size and cell wall thickness. Wetting tests in organic solvents and in liquid hydrogen were used to characterize the capillary pressure, pore structure and uniformity of the foams. 13 refs., 9 figs., 2 tabs

  18. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.

    Directory of Open Access Journals (Sweden)

    Eyayu Belay

    Full Text Available Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP, intercellular adhesion molecule 4 (ICAM-4, CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.

  19. MECHANICAL STRENGTH ENHANCEMENT OF OPEN-CELL ALUMINA FOAMS USING OPTIMUM CONCENTRATION OF DEFLOCCULANT

    Directory of Open Access Journals (Sweden)

    A. Hadi

    2015-06-01

    Full Text Available Open-cell alumina foams were prepared using the appropriate alumina slurry and polyurethane sponge with linear pore density of approximately 14 pores per inch (ppi as a template by the replica method. The rheological studies showed that the optimum solid content for the slurries without deflocculants was 60 wt. %. In order to increase the slurry solid content, Tiron (1,2-dihydroxy-3,5-benzene disulfonic acid disodium salt was used as dispersant. To determine the optimum concentration of dispersant, the viscosity curves of alumina slurries containing different values of Tiron from 0 to 1.2 wt. % (based on dry material weight were studied. The optimum concentration of Tiron obtained for lowest viscosity was 0.8 wt. %. Thus, the solid content in the slurry could be increased from 60 to 66 wt. %. The effect of increase in the slurry solid content and the way it affects the foam structure and the mechanical strength were investigated. Microstructural observations of the foams show a significant reduction in macroscopic and microscopic defects in the foam struts when the slurry solid content is increased. Total porosity of the produced alumina foams prepared using slurries containing 60 and 66 wt. % solid are 83.3 and 80.4 %, respectively, while the compressive strength of the foams has increased from 1.33 to 3.24 MPa.

  20. Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells

    International Nuclear Information System (INIS)

    Witasp, Erika; Kupferschmidt, Natalia; Bengtsson, Linnea; Hultenby, Kjell; Smedman, Christian; Paulie, Staffan; Garcia-Bennett, Alfonso E.; Fadeel, Bengt

    2009-01-01

    Macrophage recognition and ingestion of apoptotic cell corpses, a process referred to as programmed cell clearance, is of considerable importance for the maintenance of tissue homeostasis and in the resolution of inflammation. Moreover, macrophages are the first line of defense against microorganisms and other foreign materials including particles. However, there is sparse information on the mode of uptake of engineered nanomaterials by primary macrophages. In this study, mesoporous silica particles with cubic pore geometries and covalently fluorescein-grafted particles were synthesized through a novel route, and their interactions with primary human monocyte-derived macrophages were assessed. Efficient and active internalization of mesoporous silica particles of different sizes was observed by transmission electron microscopic and flow cytometric analysis and studies using pharmacological inhibitors suggested that uptake occurred through a process of endocytosis. Moreover, uptake of silica particles was independent of serum factors. The silica particles with very high surface areas due to their porous structure did not impair cell viability or function of macrophages, including the ingestion of different classes of apoptotic or opsonized target cells. The current findings are relevant to the development of mesoporous materials for drug delivery and other biomedical applications.

  1. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat.

    Directory of Open Access Journals (Sweden)

    Shuai Xiang

    Full Text Available BACKGROUND/AIMS: Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH in rats. METHODOLOGY/PRINCIPAL FINDINGS: We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS: These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model.

  2. Preparation And Characterization Of Silicon Carbide Foam By Using In-Situ Generated Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Shalini Saxena

    2015-08-01

    Full Text Available Abstract The open cell silicon carbide SiC foam was prepared using highly crosslinked hybrid organic- inorganic polymer resin matrix. As inorganic polymer polycarbosilane was taken and organic resin was taken as a mixture of epoxy resin and diisocyanates. The resultant highly crosslinked hybrid resin matrix on heating and subsequently on pyrolysis yielded open cell silicon carbide foam. The hybrid resin matrix was characterized by Fourier transform Infrared Spectroscopy FT-IR and thermal properties i.e. Thermogravimetric analysis TGA amp Differential Scanning Calorimetry DSC were also studied. The morphological studies of silicon carbide ceramic foam were carried out using X-ray Spectroscopy XRD amp Scanning Electron Microscopy SEM.

  3. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  4. Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes

    Science.gov (United States)

    Naphade, Swati; Sharma, Jay; Chevronnay, Héloïse P. Gaide; Shook, Michael A.; Yeagy, Brian A.; Rocca, Celine J.; Ur, Sarah N.; Lau, Athena J.; Courtoy, Pierre J.; Cherqui, Stephanie

    2014-01-01

    Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multi-systemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon co-culture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins. PMID:25186209

  5. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  6. Development of a Hopkinson Bar Apparatus for Testing Soft Materials: Application to a Closed-Cell Aluminum Foam

    Directory of Open Access Journals (Sweden)

    Marco Peroni

    2016-01-01

    Full Text Available An increasing interest in lightweight metallic foams for automotive, aerospace, and other applications has been observed in recent years. This is mainly due to the weight reduction that can be achieved using foams and for their mechanical energy absorption and acoustic damping capabilities. An accurate knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. Unfortunately, metal foams and in general “soft” materials exhibit a series of peculiarities that make difficult the adoption of standard testing techniques for their high strain-rate characterization. This paper presents an innovative apparatus, where high strain-rate tests of metal foams or other soft materials can be performed by exploiting the operating principle of the Hopkinson bar methods. Using the pre-stress method to generate directly a long compression pulse (compared with traditional SHPB, a displacement of about 20 mm can be applied to the specimen with a single propagating wave, suitable for evaluating the whole stress-strain curve of medium-sized cell foams (pores of about 1–2 mm. The potential of this testing rig is shown in the characterization of a closed-cell aluminum foam, where all the above features are amply demonstrated.

  7. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-04-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  8. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-05-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  9. Macrophage-Mediated Lymphangiogenesis: The Emerging Role of Macrophages as Lymphatic Endothelial Progenitors

    International Nuclear Information System (INIS)

    Ran, Sophia; Montgomery, Kyle E.

    2012-01-01

    It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP)

  10. CARBONIZED STARCH MICROCELLULAR FOAM-CELLULOSE FIBER COMPOSITE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Andrew R. Rutledge

    2008-11-01

    Full Text Available The production of microporous carbon foams from renewable starch microcellular foam-fiber (SMCF-Fiber composites is described. Carbon foams are used in applications such as thermal insulation, battery electrodes, filters, fuel cells, and medical devices. SMCF-Fiber compos-ites were created from an aquagel. The water in the aquagel was exchanged with ethanol and then dried and carbonized. Higher amylose content starches and fiber contents of up to 4% improved the processability of the foam. The SMCF structure revealed agglomerates of swollen starch granules connected by a web of starch with pores in the 50-200 nanometer range. Heating the SMCF-fiber in a nitrogen atmosphere to temperatures between 350-700˚C produced carbon foams with a three-dimensional closed cell foam structure with cell diameters around 50 microns and pore walls around 1-3 microns. The stress versus strain compression data for carbonized samples displayed a linear elastic region and a plateau indicative of brittle crushing, typical of an elastic-brittle foam. The carbon foam products from these renew-able precursors are promising carbon structures with moderate strength and low density.

  11. A comparison of mechanical properties of some foams and honeycombs

    Science.gov (United States)

    Bhat, Balakrishna T.; Wang, T. G.

    1990-01-01

    A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.

  12. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality.

    Science.gov (United States)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius

    2017-11-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of

  13. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression.

    Science.gov (United States)

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2018-01-01

    Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator

  14. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Pierre-François Lesault

    Full Text Available Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i myoblast survival by limiting their massive death, ii myoblast expansion within the tissue and iii myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.

  15. The mechanical behavior of microcellular foams

    Energy Technology Data Exchange (ETDEWEB)

    Ozkul, M.H.; Mark, J.E. (Cincinnati Univ., OH (USA)); Aubert, J.H. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    The mechanical behavior of microcellular open-cell foams prepared by a thermally induced phase separation process are investigated. The foams studied were prepared from isotactic polystyrene, polyacrylonitrile, and poly(4-methyl-1-pentene) (rigid foams), and polyurethane and Lycra (elastomeric foams). Their densities were in the range 0.04--0.27 g/cm3. Conventional polystyrene foams were used for comparison. The moduli and collapse stresses of these foams were measured in compression and compared with the current constitutive laws which relate mechanical properties to densities. A reinforcement technique based on the in-situ precipitation of silica was used to improve the mechanical properties. 13 refs., 4 figs., 3 tabs.

  16. Postprandial phase time influences the uptake of TAG from postprandial TAG-rich lipoproteins by THP-1 macrophages.

    Science.gov (United States)

    Cabello-Moruno, Rosana; Sinausia, Laura; Botham, Kathleen M; Montero, Emilio; Avella, Michael; Perona, Javier S

    2014-11-14

    Postprandial TAG-rich lipoproteins (TRL) can be taken up by macrophages, leading to the formation of foam cells, probably via receptor-mediated pathways. The present study was conducted to investigate whether the postprandial time point at which TRL are collected modulates this process. A meal containing refined olive oil was given to nine healthy young men and TRL were isolated from their serum at 2, 4 and 6 h postprandially. The lipid class and apoB compositions of TRL were determined by HPLC and SDS-PAGE, respectively. The accumulation of lipids in macrophages was determined after the incubation of THP-1 macrophages with TRL. The gene expression of candidate receptors was measured by real-time PCR. The highest concentrations of TAG, apoB48 and apoB100 in TRL were observed at 2 h after the consumption of the test meal. However, excessive intracellular TAG accumulation in THP-1 macrophages was observed in response to incubation with TRL isolated at 4 h, when their particle size (estimated as the TAG:apoB ratio) was intermediate. The abundance of mRNA transcripts in macrophages in response to incubation with TRL was down-regulated for LDL receptor (LDLR), slightly up-regulated for VLDL receptor and remained unaltered for LDLR-related protein, but no effect of the postprandial time point was observed. In contrast, the mRNA expression of scavenger receptors SRB1, SRA2 and CD36 was higher when cells were incubated with TRL isolated at 4 h after the consumption of the test meal. In conclusion, TRL led to excessive intracellular TAG accumulation in THP-1 macrophages, which was greater when cells were incubated with intermediate-sized postprandial TRL isolated at 4 h and was associated with a significant increase in the mRNA expression of scavenger receptors.

  17. Mitofusin2 decreases intracellular cholesterol of oxidized LDL-induced foam cells from rat vascular smooth muscle cells.

    Science.gov (United States)

    He, Chao; Chen, Ying; Liu, Chun; Cao, Ming; Fan, Yu-jin; Guo, Xiao-mei

    2013-04-01

    Mitofusin2 (Mfn2) plays a pivotal role in the proliferation and apoptosis of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the effects of Mfn2 on the trafficking of intracellular cholesterol in the foam cells derived from rat VSMCs (rVSMCs) and also to investigate the effects of Mfn2 on the expression of adenosine triphosphate-binding cassette subfamily A member 1 (ABCA1), adenosine triphosphate-binding cassette subfamily G member 1 (ABCG1) and peroxisome proliferator-activated receptor gamma (PPARγ). The rVSMCs were co-cultured with oxidized low density lipoprotein (LDL, 80 μg/mL) to produce foam cells and cholesterol accumulation in cells. Before oxidized LDL treatment, different titers (20, 40 and 60 pfu/cell) of recombinant adenovirus containing Mfn2 gene (Adv-Mfn2) were added into the culture medium for 24 h to transfect the Mfn2 gene into the rVSMCs. Then the cells were harvested for analyses. The protein expression of Mfn2 was significantly higher in Adv-Mfn2-transfected group than in untransfected group (PLDL treatment, rVSMCs became irregular and their nuclei became larger, and their plasma abounded with red lipid droplets. However, the number of red lipid droplets was significantly decreased in Adv-Mfn2-transfected group as compared with untransfected group. At 48 h after oxidized LDL treatment, the intracellular cholesterol in rVSMCs was significantly increased (P0.05), the phosporylation levels of PPARγ were significantly decreased in Adv-Mfn2-transfected group as compared with untransfected group (Pcholesterol in oxidized LDL-induced rVSMCs possibly by decreasing PPARγ phosporylation and then increasing protein expression levels of ABCA1 and ABCG1, which may be helpful to suppress the formation of foam cells.

  18. PD-L1 Expression of Tumor Cells, Macrophages, and Immune Cells in Non-Small Cell Lung Cancer Patients with Malignant Pleural Effusion.

    Science.gov (United States)

    Tseng, Yen-Han; Ho, Hsiang-Ling; Lai, Chiung-Ru; Luo, Yung-Hung; Tseng, Yen-Chiang; Whang-Peng, Jacqueline; Lin, Yi-Hsuan; Chou, Teh-Ying; Chen, Yuh-Min

    2018-03-01

    Whether immunohistochemical staining of programmed death ligand 1 (PD-L1) on cells of pleural effusion could be used to predict response to immunotherapy treatment has not been reported. We retrospectively enrolled patients who had undergone malignant pleural effusion drainage and had effusion cell block specimens from 2014 to 2016. Immunohistochemical staining for PD-L1 was performed with tumor cells, immune cells, and macrophages of all cell block specimens. Immunoactivity was scored as 0 for absence of staining and 1+ for faint, 2+ for moderate, and 3+ for intense membranous staining. Patients' clinicopathological characteristics were also collected. PD-L1 expression of pleural effusion tumor cells was associated with the PD-L1 expression of macrophages (p = 0.003) and immune cells (p pleural effusion tumor cells and macrophages. The low intensity of PD-L1 expression in immune cells is associated with the poor survival of patients with lung cancer with malignant pleural effusion. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  19. Extracts of human atherosclerotic lesions modify LDL inducing enhanced macrophage uptake

    International Nuclear Information System (INIS)

    Hoff, H.F.; O'Neill, J.

    1986-01-01

    Both an LDL-like fraction isolated from human aortic plaques and LDL incubated with cultured aortic endothelial or smooth muscle cells have been shown to be internalized by macrophages in vitro in an unregulated fashion leading to foam cell formation. Lipid peroxidation induced by free radicals released from cells was shown to be responsible for cell-modified LDL. The authors incubated LDL with a supernatant fraction of leached, i.e. non-homogenized, extracts of aortic plaques for one hour at 37 0 C, to determine whether extracellular components present in arteries were also capable of modifying LDL. Extract-treated LDL showed the following changes relative to untreated LDL: 1) increased electrophretic mobility, 2) altered pattern of B-100 on SDS-PAGE, i.e. presence of a doublet with higher M/sub r/ than B-100, and 3) enhanced uptake by cultured mouse peritoneal macrophages as measured by increased degradation of 125 I-LDL, and increased stimulation of cholesterol esterification using 14 C-oleate. Extracts from homogenized plaques and grossly normal intima induced similar changes. The modification was tissue specific in that extracts of arteries but not of liver, muscle or skin modified LDL. Protease degradation of LDL during incubation was probably not responsible since inhibitors did not prevent modification. It is possible that products of lipid peroxidation present in extracellular lipid of arteries may propagate free radicals or be incorporated into LDL, leading to modifications similar to those found in cell-modified LDL

  20. Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

    Science.gov (United States)

    Cortesi, Filippo; Delfanti, Gloria; Grilli, Andrea; Calcinotto, Arianna; Gorini, Francesca; Pucci, Ferdinando; Lucianò, Roberta; Grioni, Matteo; Recchia, Alessandra; Benigni, Fabio; Briganti, Alberto; Salonia, Andrea; De Palma, Michele; Bicciato, Silvio; Doglioni, Claudio; Bellone, Matteo; Casorati, Giulia; Dellabona, Paolo

    2018-03-13

    Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2 + , M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irene Meester

    Full Text Available Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM or DC (BMDC were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE. Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  2. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  3. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.

    Science.gov (United States)

    König, Simone; Nitzki, Frauke; Uhmann, Anja; Dittmann, Kai; Theiss-Suennemann, Jennifer; Herrmann, Markus; Reichardt, Holger M; Schwendener, Reto; Pukrop, Tobias; Schulz-Schaeffer, Walter; Hahn, Heidi

    2014-01-01

    Basal cell carcinoma (BCC) belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch). Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC) of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.

  4. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route

    International Nuclear Information System (INIS)

    Jha, Nidhi; Mondal, D.P.; Dutta Majumdar, J.; Badkul, Anshul; Jha, A.K.; Khare, A.K.

    2013-01-01

    Highlights: ► NaCl crystals has been used as space holder. ► Variation of NaCl:Ti ratio varies porosity (65–80%). ► NaCl is cubic but the cells are spherical. ► Two types of pores: micro and macro pores are obtained. ► Foams are suitable for bones scaffolds and engineering applications. - Abstract: Open cell Titanium-foam (Ti-foam) with varying porosities (65–80%) was prepared using sodium chloride (NaCl) particles as space holder through powder metallurgy route. In order to ensure sufficient handling strength in cold compacted pallets, 2 wt.% polyvinyl alcohol (PVA) solutions (5 wt.% PVA in water) was mixed with the mixture of Ti and NaCl powders prior to cold compaction. After sintering, NaCl salt was removed by dissolving it in hot water. Detailed Energy dispersive X-ray (EDX) analysis and X-ray diffraction studies of the prepared Ti-foams were conducted to examine any physical and chemical changes in the phase constituents. The micro-architectural characteristics, density vis-a-vis porosity, and compressive deformation behavior of the synthesized foams were evaluated to examine their suitability as biomaterial and engineering applications

  5. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation.

    Science.gov (United States)

    Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-05-01

    Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation.

  6. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Edwards, I.J.; Wagner, W.D.; Owens, R.T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion

  7. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    Science.gov (United States)

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-06-01

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab') 2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can

  8. A method for multiple sequential analyses of macrophage functions using a small single cell sample

    Directory of Open Access Journals (Sweden)

    F.R.F. Nascimento

    2003-09-01

    Full Text Available Microbial pathogens such as bacillus Calmette-Guérin (BCG induce the activation of macrophages. Activated macrophages can be characterized by the increased production of reactive oxygen and nitrogen metabolites, generated via NADPH oxidase and inducible nitric oxide synthase, respectively, and by the increased expression of major histocompatibility complex class II molecules (MHC II. Multiple microassays have been developed to measure these parameters. Usually each assay requires 2-5 x 10(5 cells per well. In some experimental conditions the number of cells is the limiting factor for the phenotypic characterization of macrophages. Here we describe a method whereby this limitation can be circumvented. Using a single 96-well microassay and a very small number of peritoneal cells obtained from C3H/HePas mice, containing as little as <=2 x 10(5 macrophages per well, we determined sequentially the oxidative burst (H2O2, nitric oxide production and MHC II (IAk expression of BCG-activated macrophages. More specifically, with 100 µl of cell suspension it was possible to quantify H2O2 release and nitric oxide production after 1 and 48 h, respectively, and IAk expression after 48 h of cell culture. In addition, this microassay is easy to perform, highly reproducible and more economical.

  9. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Mário Henrique M Barros

    Full Text Available Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a

  10. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Science.gov (United States)

    Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald

    2013-01-01

    Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for

  11. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

    Science.gov (United States)

    Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P

    2000-04-01

    Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft

  12. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Science.gov (United States)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-12-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (˜1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ˜30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  13. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  14. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    Science.gov (United States)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy

  15. Simulated Tip Rub Testing of Low-Density Metal Foam

    Science.gov (United States)

    Bowman, Cheryl L.; Jones, Michael G.

    2009-01-01

    Preliminary acoustic studies have indicated that low-density, open-cell, metal foams may be suitable acoustic liner material for noise suppression in high by-pass engines. Metal foam response under simulated tip rub conditions was studied to assess whether its durability would be sufficient for the foam to serve both as a rub strip above the rotor as well as an acoustic treatment. Samples represented four metal alloys, nominal cell dimensions ranging from 60 to 120 cells per inch (cpi), and relative densities ranging from 3.4 to 10 percent. The resulting rubbed surfaces were relatively smooth and the open cell structure of the foam was not adversely affected. Sample relative density appeared to have significant influence on the forces induced by the rub event. Acoustic responses of various surface preparations were measured using a normal incidence tube. The results of this study indicate that the foam s open-cell structure was retained after rubbing and that the acoustic absorption spectra variation was minimal.

  16. The macrophage-histiocytic system

    Energy Technology Data Exchange (ETDEWEB)

    Cross, A

    1971-04-01

    The macrophage-histiocytic system is primarily concerned with the phagocytosis and degradation either of foreign material that enters the organism or of senile and damaged cells belonging to the organism itself. The system includes various kinds of cells with the common ability to process and eventually degrade and digest the ingested material. Two morphological characteristics of these cells are linked to their phagocytic functions: intra-cytoplasmic vacuoles and lysosomes. Although endothelial and fibroblastic cells can ingest particles, it seems that most cells of the macrophage-histiocytic system belong to the monocyte series. The stem cell of the system is still a matter for discussion and the mature cells have attracted a large and confusing array of names. Most of the experimental work with irradiation has involved macrophages of the peritoneal cavity and lymph nodes. It is likely that the other cells of the macrophage-histiocytic system are affected in the same way by irradiation, but this is not certain.

  17. Processing, Characterization, and Modeling of Polymer/Clay Nanocomposite Foams

    Science.gov (United States)

    Jo, Choonghee; Naguib, Hani E.

    2007-04-01

    The effects of the material parameters and processing conditions on the foam morphologies, and mechanical properties of polymer/clay nanocomposite foams were studied. Microcellular closed-cell nanocomposite foams were manufactured with poly(methylmethacrylate) (PMMA) and high density polyethylene (HDPE), where the nanoclay loadings of 0.5, 1.0, and 2.0 wt% were used. The effect of clay contents and foaming conditions on the volume expansion ratio, cell size, elastic modulus, tensile strength, and elongation at break were investigated and compared between amorphous and semicrystalline polymers. An elastic modulus model for tensile behavior of foams was proposed by using the micromechanics theory. The model was expressed in terms of microstructural properties of polymer and physical properties of the foams. The tensile experimental data of the foams were compared with those predicted by the theoretical model.

  18. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A.; Schubert, Dirk W.; Meier, Carola; Boccaccini, Aldo R.; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-01-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  19. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  20. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    Science.gov (United States)

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  1. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

    OpenAIRE

    Soucie, E.L.; Weng, Z.; Geirsdottir, L.; Molawi, K.; Maurizio, J.; Fenouil, R.; Mossadegh-Keller, N.; Gimenez, G.; VanHille, L.; Beniazza, M.; Favret, J.; Berruyer, C.; Perrin, P.; Hacohen, N.; Andrau, J.C.

    2016-01-01

    Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down...

  2. Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence

    Science.gov (United States)

    de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2014-01-01

    Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361

  3. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    International Nuclear Information System (INIS)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-01-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO 2 NPs (size range 4–33 nm), two preparations of CeO 2 NPs (9–36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15–240 μg/cm 2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm 2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm 2 , in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO 2 and CeO 2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured

  4. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Science.gov (United States)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-09-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4-33 nm), two preparations of CeO2 NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured nanomaterials.

  5. Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles

    Science.gov (United States)

    Taik Lim, Yong; Cho, Mi Young; Sil Choi, Bang; Noh, Young-Woock; Chung, Bong Hyun

    2008-09-01

    We describe the development of hollow-type gold nanoparticles (NPs) for the photonic-based imaging and therapy of macrophage cells. The strong light-absorption and light-scattering properties of gold NPs render them to be useful as molecular imaging agents as well as therapeutic moieties. By controlling the geometry of the gold NPs, the optical resonance peak was shifted to around the near-infrared (NIR) region, where light transmission through biological tissue is known to be fairly high. Hollow-type gold NPs modified with dextran were phagocytosed by macrophage cells. Using dark-field microscopy, it was possible to image macrophage cells targeted with NPs. After NIR irradiation, macrophages labeled with NPs were selectively destroyed by the photothermal effect. FACS analysis revealed that the photothermal effect caused principally late apoptosis-related cell death or secondary necrosis. The experimental results showed that hollow-type gold NPs conjugated with dextran could be used not only as optical imaging contrast agents but also as a component of a novel anti-macrophage therapeutic strategy.

  6. Stretching and folding mechanism in foams

    International Nuclear Information System (INIS)

    Tufaile, Alberto; Pedrosa Biscaia Tufaile, Adriana

    2008-01-01

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board

  7. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  8. Materials Applications for Non-Lethal: Aqueous Foams

    Energy Technology Data Exchange (ETDEWEB)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might

  9. Materials Applications for Non-Lethal: Aqueous Foams

    International Nuclear Information System (INIS)

    GOOLSBY, TOMMY D.; SCOTT, STEVEN H.

    1999-01-01

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  10. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells.

    Science.gov (United States)

    Curto, Pedro; Simões, Isaura; Riley, Sean P; Martinez, Juan J

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated

  11. Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells

    Directory of Open Access Journals (Sweden)

    Pedro Curto

    2016-07-01

    Full Text Available Spotted fever group (SFG rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (R. conorii and Rocky Mountain spotted fever (R. rickettsii. Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen and R. montanensis (a non-virulent member of SFG to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated with

  12. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    OpenAIRE

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages pro...

  13. C-reactive protein interaction with macrophages: in vitro induction of tumor cytotoxicity, and characterization of C-reactive protein binding to macrophages

    International Nuclear Information System (INIS)

    Zahedi, K.A.

    1987-01-01

    The ability of C-reactive protein (CRP) to activate macrophages to tumoricidal state was examined. CRP was able to activate macrophages to kill tumor cells. The activation was shown to be due to CRP and not to low levels of other activators present in the CRP preparations, since specific removal of CRP led to abrogation of the CRP mediated activation of macrophages. The role of lipopolysaccharide (LPS) as a contaminating activator was eliminated by showing the ability of CRP preparations to activate macrophages from LPS non-responsive strains of mice, and to activate macrophages under conditions which specifically inactivated or removed the contaminating LPS. In order to exclude the possibility of indirect activation of macrophages by other cells present in the peritoneal exudate cell population, effect of CRP on pure macrophages was examined. Bone marrow derived macrophages as well as well as macrophage cell lines exhibited a significant increase in their capacity to kill tumor cells after treatment with CRP. The nature of CRP and macrophage interaction was examined using radioiodinated CRP. Labelled CRP bound specifically to macrophages and macrophage cell lines

  14. F4/80+ Macrophages Contribute to Clearance of Senescent Cells in the Mouse Postpartum Uterus.

    Science.gov (United States)

    Egashira, Mahiro; Hirota, Yasushi; Shimizu-Hirota, Ryoko; Saito-Fujita, Tomoko; Haraguchi, Hirofumi; Matsumoto, Leona; Matsuo, Mitsunori; Hiraoka, Takehiro; Tanaka, Tomoki; Akaeda, Shun; Takehisa, Chiaki; Saito-Kanatani, Mayuko; Maeda, Kei-Ichiro; Fujii, Tomoyuki; Osuga, Yutaka

    2017-07-01

    Cellular senescence, defined as an irreversible cell cycle arrest, exacerbates the tissue microenvironment. Our previous study demonstrated that mouse uterine senescent cells were physiologically increased according to gestational days and that their abnormal accumulation was linked to the onset of preterm delivery. We hypothesized that there is a mechanism for removal of senescent cells after parturition to maintain uterine function. In the current study, we noted abundant uterine senescent cells and their gradual disappearance in wild-type postpartum mice. F4/80+ macrophages were present specifically around the area rich in senescent cells. Depletion of macrophages in the postpartum mice using anti-F4/80 antibody enlarged the area of senescent cells in the uterus. We also found excessive uterine senescent cells and decreased second pregnancy success rate in a preterm birth model using uterine p53-deleted mice. Furthermore, a decrease in F4/80+ cells and an increase in CD11b+ cells with a senescence-associated inflammatory microenvironment were observed in the p53-deleted uterus, suggesting that uterine p53 deficiency affects distribution of the macrophage subpopulation, interferes with senescence clearance, and promotes senescence-induced inflammation. These findings indicate that the macrophage is a key player in the clearance of uterine senescent cells to maintain postpartum uterine function. Copyright © 2017 Endocrine Society.

  15. Amplification of the spleen macrophage population in malaria: possible role of a factor chemotactic for blood mononuclear cells

    International Nuclear Information System (INIS)

    Wyler, D.J.; Gallin, J.I.

    1976-01-01

    The mechanism of amplification of the splenic macrophages' population was investigated using mice infected with malaria as a model of an obligate intravascular infection. It was observed that these macrophages derived from blood monocytes rather than by local proliferation in the spleen. A factor, chemotactic for blood mononuclear cells, was present in spleen cells shortly after infection and preceded detectable increases in spleen macrophage number by 48 hours. This factor, in concert with spleen derived macrophage migration inhibition factor, may be important in the amplification of splenic macrophage population in intravascular infections

  16. Tough graphene-polymer microcellular foams for electromagnetic interference shielding.

    Science.gov (United States)

    Zhang, Hao-Bin; Yan, Qing; Zheng, Wen-Ge; He, Zhixian; Yu, Zhong-Zhen

    2011-03-01

    Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.

  17. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  18. Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies

    Science.gov (United States)

    Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2017-01-01

    Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814

  19. Phagocytosis of mast cell granules results in decreased macrophage superoxide production

    Directory of Open Access Journals (Sweden)

    Bobby A. Shah

    1995-01-01

    Full Text Available The mechanism by which phagocytosed mast cell granules (MCGs inhibit macrophage superoxide production has not been defined. In this study, rat peritoneal macrophages were co-incubated with either isolated intact MCGs or MCG-sonicate, and their respiratory burst capacity and morphology were studied. Co-incubation of macrophages with either intact MCGs or MCG-sonicate resulted in a dose-dependent inhibition of superoxide- mediated cytochrome c reduction. This inhibitory effect was evident within 5 min of incubation and with MCG-sonicate was completely reversed when macrophages were washed prior to activation with PMA. In the case of intact MCGs, the inhibitory effect was only partially reversed by washing after a prolonged co-incubation time. Electron microscopic analyses revealed that MCGs were rapidly phagocytosed by macrophages and were subsequently disintegrated within the phagolysosomes. Assay of MCGs for superoxide dismutase (SOD revealed the presence of significant activity of this enzyme. A comparison of normal macrophages and those containing phagocytosed MCGs did not reveal a significant difference in total SOD activity. It is speculated that, although there was no significant increase in total SOD activity in macrophages containing phagocytosed MCGs, the phagocytosed MCGs might cause a transient increase in SOD activity within the phagolysosomes. This transient rise in SOD results in scavenging of the newly generated superoxide. Alternatively, MCG inhibition of NADPH oxidase would explain the reported observations.

  20. Distribution of mast cells and macrophages and expression of interleukin-6 in periapical cysts.

    Science.gov (United States)

    Bracks, Igor Vieira; Armada, Luciana; Gonçalves, Lúcio Souza; Pires, Fábio Ramôa

    2014-01-01

    Mast cells and macrophages are important components of the inflammatory infiltrate found in inflammatory periapical diseases. Several cytokines participate in the mechanisms of inflammation, tissue repair, and bone resorption associated with periapical cysts. The aim of the present study was to evaluate the distribution of mast cells and macrophages and the expression of interleukin-6 (IL-6) in periapical cysts. Thirty periapical cysts were selected for the study, and clinical, demographic, and gross information from the cases was obtained from the laboratory records. Five-micrometer sections stained with hematoxylin-eosin were reviewed for analysis of the microscopic features of the cysts, and 3-μm sections on silanized slides were used for immunohistochemical reactions with anti-tryptase, anti-CD68, and anti-IL-6. There was no statistically significant difference in the mean number of mast cells and macrophages when comparing superficial and deep regions of the fibrous capsule of the cysts. Mean number of mast cells on the superficial region of the fibrous capsule was higher in cysts showing intense superficial inflammation and exocytosis. Macrophages were more commonly found in areas showing IL-6 expression, and IL-6 was less expressed in deep regions of the fibrous capsule in cysts showing greater gross volume. The results reinforced the participation of mast cells and macrophages in the pathogenesis of periapical cysts and suggested that IL-6 is not the major bone resorption mediator in larger periapical cysts. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. The effect of Alcoholic garlic (Allium sativum extract on ABCA1 expression in human THP-1 macrophages

    Directory of Open Access Journals (Sweden)

    Malekpour-Dehkordi Z

    2011-06-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: ATP-binding cassette transporter A1 (ABCA1 is a key mediator of cholesterol efflux to apoA-I in lipid-laden macrophages, the first step of reverse cholesterol transport (RCT in vivo and a critical step in preventing atherosclerosis. Enhanced ABCA1 expression may inhibit foam cell formation and consequently reduce atherogenic risk. On the other hand, garlic, Allium sativum, and garlic extracts have been demonstrated to have potential cardiovascular benefits. Moreover, garlic has direct antiatherogenic and antiathersclerotic effects on artery walls. The aim of this study was to evaluate the effects of alcoholic garlic extract on the expression of ABCA1 in macrophages."n"nMethods: Cell viability assay was used in order to detect the cytotoxic dose of alcoholic garlic extract on macrophages. Real-time PCR and Western blotting were performed to study the effects of alcoholic garlic extract on the expression of ABCA1. Macrophage cells were treated by different concentrations of alcoholic garlic extract for 48 h. The total RNA of the treated macrophages were extracted and analyzed by real-time PCR. ABCA1 protein expression was also analyzed using the Western blotting technique."n"nResults: Alcoholic garlic extract

  2. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

    Science.gov (United States)

    van der Does, Anne M; Beekhuizen, Henry; Ravensbergen, Bep; Vos, Tim; Ottenhoff, Tom H M; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; Nibbering, Peter H

    2010-08-01

    The human cathelicidin LL-37 has broad-spectrum antimicrobial activity. It also participates at the interface of innate and adaptive immunity by chemoattracting immune effector cells, modulating the production of a variety of inflammatory mediators by different cell types, and regulating the differentiation of monocytes into dendritic cells. In this study, we investigated the effects of LL-37 on the differentiation of human monocytes into anti-inflammatory macrophages (MPhi-2; driven by M-CSF) versus proinflammatory macrophages (MPhi-1; driven by GM-CSF) as well as on fully differentiated MPhi-1 and MPhi-2. Results revealed that monocytes cultured with M-CSF in the presence of LL-37 resulted in macrophages displaying a proinflammatory signature, namely, low expression of CD163 and little IL-10 and profound IL-12p40 production on LPS stimulation. The effects of LL-37 on M-CSF-driven macrophage differentiation were dose- and time-dependent with maximal effects observed at 10 microg/ml when the peptide was present from the start of the cultures. The peptide enhanced the GM-CSF-driven macrophage differentiation. Exposure of fully differentiated MPhi-2 to LL-37 for 6 d resulted in macrophages that produced less IL-10 and more IL-12p40 on LPS stimulation than control MPhi-2. In contrast, LL-37 had no effect on fully differentiated MPhi-1. Peptide mapping using a set of 16 overlapping 22-mer peptides covering the complete LL-37 sequence revealed that the C-terminal portion of LL-37 is responsible for directing macrophage differentiation. Our results furthermore indicate that the effects of LL-37 on macrophage differentiation required internalization of the peptide. Together, we conclude that LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

  3. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    , simplified by the M1-M2 dichotomy of classically activated (M1), pro-inflammatory cells and alternatively activated (M2), anti-inflammatory cells. Macrophages, however, display a large degree of flexibility and are able to switch between activation states (1). The hemoglobin scavenger receptor CD163...... is expressed exclusively on monocytes and macrophages, and its expression is strongly induced by anti-inflammatory stimuli like IL10 and glucocorticoid, making CD163 an ideal M2 macrophage marker (2). Furthermore a soluble variant of CD163 (sCD163) is shed from the cell surface to plasma by protease mediated.......058-5139) (panti-inflammatory state.   CONCLUSION: We present a CD163-derived macrophage activation switch (MAcS)-index, which seems able to differentiate between (predominantly) pro-inflammatory and anti-inflammatory macrophage activation. The index needs...

  4. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    Science.gov (United States)

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the

  5. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  6. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    International Nuclear Information System (INIS)

    Hsieh, Wen-Hui; Chen, Yi-Jyun; Hung, Chi-Jr; Huang, Tsui-Hsien; Kao, Chia-Tze; Shie, Ming-You

    2014-01-01

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO 2 laser as a model biostimulation to investigate the role of macrophage cells on the CO 2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO 2 laser stimulation, indicating that macrophage may participate in the CO 2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO 2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO 2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment. (paper)

  7. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    Science.gov (United States)

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  8. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pissuwan, Dakrong [University of Technology Sydney, Institute for Nanoscale Technology (Australia); Valenzuela, Stella M. [University of Technology Sydney, Department of Medical and Molecular Biosciences (Australia)], E-mail: stella.valenzuela@uts.edu.au; Killingsworth, Murray C. [Sydney South West Pathology Service (Australia)], E-mail: murray.killingsworth@swsahs.nsw.gov.au; Xu, Xiaoda; Cortie, Michael B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)], E-mail: michael.cortie@uts.edu.au

    2007-12-15

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation ({approx}1x10{sup 5} to 1x10{sup 10} W/m{sup 2}). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10{sup 2} W/m{sup 2} being sufficient, provided that a total fluence of {approx}30 J/cm{sup 2} is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm{sup 2} resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  9. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    International Nuclear Information System (INIS)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-01-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (∼1x10 5 to 1x10 10 W/m 2 ). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10 2 W/m 2 being sufficient, provided that a total fluence of ∼30 J/cm 2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm 2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells

  10. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    Energy Technology Data Exchange (ETDEWEB)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Thulin, Petra; Ehrenborg, Ewa [Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm (Sweden); Olivecrona, Thomas [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Olivecrona, Gunilla, E-mail: Gunilla.Olivecrona@medbio.umu.se [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  11. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    International Nuclear Information System (INIS)

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2007-01-01

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-α antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL). TNF-α might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-κB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed

  12. Experimental analysis of compressive notch strengthening in closed-cell aluminum alloy foam

    NARCIS (Netherlands)

    Antoniou, A; Onck, PR; Bastawros, Ashraf F.

    2004-01-01

    The notch strengthening effect is studied experimentally in closed cell aluminum foams. The limit loads, net section strength were found for a set of double-edge-notched (DEN) and single-edge-notched (SEN) specimens loaded in compression. In addition, the evolution of the deformation is monitored

  13. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Fenglei Chen

    2015-08-01

    Full Text Available Zearalenone (ZEA is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78 and CCAAT/enhancer binding protein homologous protein (CHOP, two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs, significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  14. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    Science.gov (United States)

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  15. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  16. Isoferritins in rat Kupffer cells, hepatocytes, and extrahepatic macrophages. Biosynthesis in cell suspensions and cultures in response to iron

    International Nuclear Information System (INIS)

    Doolittle, R.L.; Richter, G.W.

    1981-01-01

    Cultures of Kupffer cells and of hepatocytes, prepared from single rat livers, synthesized ferritin protein equally efficiently. In culture but not in suspension, both sorts of cells responded significantly to stimulation with iron by increased ferritin synthesis. As determined by isoelectric focusing, the isoferritin profiles of newly synthesized 14 -labeled Kupffer cell and hepatocyte ferritin were identical, each having three bands. However, unlabeled ferritin, extracted from nonparenchymal liver cells (mainly Kupffer and endothelial cells) of iron-loaded rats, contained an acidic isoferritin that was not present in hepatocyte ferritin. Investigation of ferritin synthesis in cultured peritoneal and alveolar macrophages yielded similar results. The isofocusing profile of newly synthesized peritoneal macrophage ferritin was indistinguishable from the profile of fresh Kupffer cell or hepatocyte ferritin. Thus, the three isoferritins common to Kupffer cells, hepatocytes, and extrahepatic macrophages are neither cell- nor tissue-specific. However, modifications on intracellular storage may affect the isofocusing properties. The findings, although consistent with the LnH24-n subunit model of ferritin protein, indicate identical restrictive genomic control of the H:L ratios in these sorts of cells. Further, they make it probable that Kupffer cell ferritin iron, originating by endogenous synthesis, is the principal source of Kupffer cell hemosiderin iron

  17. Adipose tissue conditioned media support macrophage lipid-droplet biogenesis by interfering with autophagic flux.

    Science.gov (United States)

    Bechor, Sapir; Nachmias, Dikla; Elia, Natalie; Haim, Yulia; Vatarescu, Maayan; Leikin-Frenkel, Alicia; Gericke, Martin; Tarnovscki, Tanya; Las, Guy; Rudich, Assaf

    2017-09-01

    Obesity promotes the biogenesis of adipose tissue (AT) foam cells (FC), which contribute to AT insulin resistance. Autophagy, an evolutionarily-conserved house-keeping process, was implicated in cellular lipid handling by either feeding and/or degrading lipid-droplets (LDs). We hypothesized that beyond phagocytosis of dead adipocytes, AT-FC biogenesis is supported by the AT microenvironment by regulating autophagy. Non-polarized ("M0") RAW264.7 macrophages exposed to AT conditioned media (AT-CM) exhibited a markedly enhanced LDs biogenesis rate compared to control cells (8.3 Vs 0.3 LDs/cells/h, p<0.005). Autophagic flux was decreased by AT-CM, and fluorescently following autophagosomes over time revealed ~20% decline in new autophagic vesicles' formation rate, and 60-70% decrease in autophagosomal growth rate, without marked alternations in the acidic lysosomal compartment. Suppressing autophagy by either targeting autophagosome formation (pharmacologically, with 3-methyladenine or genetically, with Atg12±Atg7-siRNA), decreased the rate of LD formation induced by oleic acid. Conversely, interfering with late autophago-lysosomal function, either pharmacologically with bafilomycin-A1, chloroquine or leupeptin, enhanced LD formation in macrophages without affecting LD degradation rate. Similarly enhanced LD biogenesis rate was induced by siRNA targeting Lamp-1 or the V-ATPase. Collectively, we propose that secreted products from AT interrupt late autophagosome maturation in macrophages, supporting enhanced LDs biogenesis and AT-FC formation, thereby contributing to AT dysfunction in obesity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    Directory of Open Access Journals (Sweden)

    Bat-Chen eAmit-Cohen

    2013-07-01

    Full Text Available Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFalpha (1 ng/ml. Membranal EMMPRIN expression was increased in the co-cultures (by 3-4 folds, p<0.01, as was the secretion of MMP-9 and VEGF (by 2-5 folds for both MMP-9 and VEGF, p<0.01, relative to the single cultures with TNFalpha. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3 folds, p<0.05, only in the A498 co-culture via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.

  19. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    Directory of Open Access Journals (Sweden)

    Yicong Liu

    2013-01-01

    Full Text Available We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g. LPS. The expression of Toll-like receptor 2 (TLR2, TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.

  20. Crosslinked polyethylene foams, via eb radiation

    International Nuclear Information System (INIS)

    Cardoso, E.C.L.; Lugao, A. B.; Andrade e Silva, L. G.

    1998-01-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to these foams, imparts optimum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine; building and insulation; packaging; domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203 degree sign C as the right blowing agent decomposition temperature. At a 22.7 kGys/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time

  1. Faraday instability at foam-water interface.

    Science.gov (United States)

    Bronfort, A; Caps, H

    2012-12-01

    A nearly two-dimensional foam is generated inside a Hele-shaw cell and left at rest on its liquid bath. The system is then vertically shaken and, above a well-defined acceleration threshold, surface waves appear at the foam-liquid interface. Those waves are shown to be subharmonic. The acceleration threshold is studied and compared to the common liquid-gas case, emphasizing the energy dissipation inside the foam. An empirical model is proposed for this energy loss, accounting for the foam characteristics such as the bubble size but also the excitation parameter, namely the linear velocity.

  2. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions.

    Directory of Open Access Journals (Sweden)

    Bonnie van Wilgenburg

    Full Text Available Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC and multiple human induced Pluripotent Stem Cell (hiPSC lines over time periods of up to one year. Cumulatively, up to ∼3×10(7 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+, CD16(low, CD163(+. Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology.

  3. Macrophages contribute to the cyclic activation of adult hair follicle stem cells

    DEFF Research Database (Denmark)

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in...

  4. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells

    Science.gov (United States)

    Backer, Ronald; Schwandt, Timo; Greuter, Mascha; Oosting, Marije; Jüngerkes, Frank; Tüting, Thomas; Boon, Louis; O’Toole, Tom; Kraal, Georg; Limmer, Andreas; den Haan, Joke M. M.

    2009-01-01

    The spleen is the lymphoid organ that induces immune responses toward blood-borne pathogens. Specialized macrophages in the splenic marginal zone are strategically positioned to phagocytose pathogens and cell debris, but are not known to play a role in the activation of T-cell responses. Here we demonstrate that splenic marginal metallophilic macrophages (MMM) are essential for cross-presentation of blood-borne antigens by splenic dendritic cells (DCs). Our data demonstrate that antigens targeted to MMM as well as blood-borne adenoviruses are efficiently captured by MMM and exclusively transferred to splenic CD8+ DCs for cross-presentation and for the activation of cytotoxic T lymphocytes. Depletion of macrophages in the marginal zone prevents cytotoxic T-lymphocyte activation by CD8+ DCs after antibody targeting or adenovirus infection. Moreover, we show that tumor antigen targeting to MMM is very effective as antitumor immunotherapy. Our studies point to an important role for splenic MMM in the initial steps of CD8+ T-cell immunity by capturing and concentrating blood-borne antigens and the transfer to cross-presenting DCs which can be used to design vaccination strategies to induce antitumor cytotoxic T-cell immunity. PMID:20018690

  5. Live Imaging of HIV-1 Transfer across T Cell Virological Synapse to Epithelial Cells that Promotes Stromal Macrophage Infection.

    Science.gov (United States)

    Real, Fernando; Sennepin, Alexis; Ganor, Yonatan; Schmitt, Alain; Bomsel, Morgane

    2018-05-08

    During sexual intercourse, HIV-1 crosses epithelial barriers composing the genital mucosa, a poorly understood feature that requires an HIV-1-infected cell vectoring efficient mucosal HIV-1 entry. Therefore, urethral mucosa comprising a polarized epithelium and a stroma composed of fibroblasts and macrophages were reconstructed in vitro. Using this system, we demonstrate by live imaging that efficient HIV-1 transmission to stromal macrophages depends on cell-mediated transfer of the virus through virological synapses formed between HIV-1-infected CD4 + T cells and the epithelial cell mucosal surface. We visualized HIV-1 translocation through mucosal epithelial cells via transcytosis in regions where virological synapses occurred. In turn, interleukin-13 is secreted and HIV-1 targets macrophages, which develop a latent state of infection reversed by lipopolysaccharide (LPS) activation. The live observation of virological synapse formation reported herein is key in the design of vaccines and antiretroviral therapies aimed at blocking HIV-1 access to cellular reservoirs in genital mucosa. Copyright © 2018. Published by Elsevier Inc.

  6. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  7. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  8. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype.

    Science.gov (United States)

    Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B

    2015-10-01

    What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized

  9. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment.

    Directory of Open Access Journals (Sweden)

    Al Shaimaa Hasan

    Full Text Available Cardiosphere-derived cells (CDCs, one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1 into a regulatory anti-inflammatory phenotype (M2. Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages, but decreased the expression of CD86 (a marker for M1 macrophages 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair.

  10. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    International Nuclear Information System (INIS)

    Mori, Kazumasa; Hiroi, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2011-01-01

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163 + cells were significantly increased based on the pathological grade. CD163 + cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163 + cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4 + and CD8 + T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163 + TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC

  11. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazumasa [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Hiroi, Miki [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Shimada, Jun [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Ohmori, Yoshihiro, E-mail: ohmori@dent.meikai.ac.jp [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan)

    2011-09-28

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163{sup +} cells were significantly increased based on the pathological grade. CD163{sup +} cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163{sup +} cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4{sup +} and CD8{sup +} T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163{sup +} TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC.

  12. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.

    Science.gov (United States)

    Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu

    2009-08-01

    Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.

  13. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    Science.gov (United States)

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  14. GM-CSF and IL-4 produced by NKT cells inversely regulate IL-1β production by macrophages.

    Science.gov (United States)

    Ahn, Sehee; Jeong, Dongjin; Oh, Sae Jin; Ahn, Jiye; Lee, Seung Hyo; Chung, Doo Hyun

    2017-02-01

    Natural Killer T (NKT) cells are distinct T cell subset that link innate and adaptive immune responses. IL-1β, produced by various immune cells, plays a key role in the regulation of innate immunity in vivo. However, it is unclear whether NKT cells regulate IL-1β production by macrophages. To address this, we co-cultured NKT cells and peritoneal macrophages in the presence of TCR stimulation and inflammasome activators. Among cytokines secreted from NKT cells, GM-CSF enhanced IL-1β production by macrophages via regulating LPS-mediated pro-IL-1β expression and NLRP3-dependent inflammasome activation, whereas IL-4 enhanced M2-differentiation of macrophages and decreased IL-1β production. Together, our findings suggest the NKT cells have double-sided effects on IL-1β-mediated innate immune responses by producing IL-4 and GM-CSF. These findings may be helpful for a comprehensive understanding of NKT cell-mediated regulatory mechanisms of the pro-inflammatory effects of IL-1β in inflammatory diseases in vivo. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  15. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    Science.gov (United States)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  16. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  17. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages.

    Science.gov (United States)

    Kuang, Hai-Jun; Zhao, Guo-Jun; Chen, Wu-Jun; Zhang, Min; Zeng, Gao-Feng; Zheng, Xi-Long; Tang, Chao-Ke

    2017-09-05

    Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting.

    Science.gov (United States)

    Nune, Krishna C; Misra, R Devesh K; Gaytan, Sara M; Murr, Lawrence E

    2015-05-01

    The cellular activity, biological response, and consequent integration of scaffold-cell construct in the physiological system are governed by the ability of cells to adhere, proliferate, and biomineralize. In this regard, we combine cellular biology and materials science and engineering to fundamentally elucidate the interplay between cellular activity and interconnected three-dimensional foamed architecture obtained by a novel process of electron beam melting and computational tools. Furthermore, the organization of key proteins, notably, actin, vinclulin, and fibronectin, involved in cellular activity and biological functions and relationship with the structure was explored. The interconnected foamed structure with ligaments was favorable to cellular activity that includes cell attachment, proliferation, and differentiation. The primary rationale for favorable modulation of cellular functions is that the foamed structure provided a channel for migration and communication between cells leading to highly mineralized extracellular matrix (ECM) by the differentiating osteoblasts. The filopodial interaction amongst cells on the ligaments was a governing factor in the secretion of ECM, with consequent influence on maturation and mineralization. © 2014 Wiley Periodicals, Inc.

  19. Coated foams, preparation, uses and articles

    Science.gov (United States)

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  20. The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams

    Science.gov (United States)

    Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.

    2017-09-01

    Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.

  1. Macrophages under pressure: the role of macrophage polarization in hypertension.

    Science.gov (United States)

    Harwani, Sailesh C

    2018-01-01

    Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells

    Directory of Open Access Journals (Sweden)

    Wu Ming

    2018-04-01

    Full Text Available Kidney ischemia and hypoxia can cause renal cell apoptosis and activation of inflammatory cells, which lead to the release of inflammatory factors and ultimately result in the damage of kidney tissue and the whole body. Renal tubular cell and macrophage autophagy can reduce the production of reactive oxygen species (ROS, thereby reducing the activation of inflammatory cytoplasm and its key effector protein, caspase-1, which reduces the expression of IL-1β and IL-18 and other inflammatory factors. Ulinastatin (UTI, as a glycoprotein drug, inhibits the activity of multiple proteases and reduces myocardial damage caused by ischemia-reperfusion by upregulating autophagy. However, it can be raised by macrophage autophagy, reduce the production of ROS, and ultimately reduce the expression of inflammatory mediators, thereby reducing renal cell injury, promote renal function recovery is not clear. In this study, a series of cell experiments have shown that ulinastatin is reduced by regulating the autophagy of renal tubular epithelial cells and macrophages to reduce the production of reactive oxygen species and inflammatory factors (TNF-α, IL-1β and IL-1, and then, increase the activity of the cells under the sugar oxygen deprivation model. The simultaneous use of cellular autophagy agonists Rapamycin (RAPA and ulinastatin has a synergistic effect on the production of reactive oxygen species and the expression of inflammatory factors.

  3. Macrophage Clearance of Apoptotic Cells: A Critical Assessment

    Directory of Open Access Journals (Sweden)

    Siamon Gordon

    2018-01-01

    Full Text Available As the body continues to grow and age, it becomes essential to maintain a balance between living and dying cells. Macrophages and dendritic cells play a central role in discriminating among viable, apoptotic, and necrotic cells, as selective and efficient phagocytes, without inducing inappropriate inflammation or immune responses. A great deal has been learnt concerning clearance receptors for modified and non-self-ligands on potential targets, mediating their eventual uptake, disposal, and replacement. In this essay, we assess current understanding of the phagocytic recognition of apoptotic cells within their tissue environment; we conclude that efferocytosis constitutes a more complex process than simply removal of corpses, with regulatory interactions between the target and effector cells, which determine the outcome of this homeostatic process.

  4. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs.

    Science.gov (United States)

    Winkler, Ingrid G; Sims, Natalie A; Pettit, Allison R; Barbier, Valérie; Nowlan, Bianca; Helwani, Falak; Poulton, Ingrid J; van Rooijen, Nico; Alexander, Kylie A; Raggatt, Liza J; Lévesque, Jean-Pierre

    2010-12-02

    In the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal. Importantly, G-CSF administration also depleted a population of trophic endosteal macrophages (osteomacs) that support osteoblast function. Osteomac loss, osteoblast suppression, and HSC mobilization occurred concomitantly, suggesting that osteomac loss could disrupt endosteal niches. Indeed, in vivo depletion of macrophages, in either macrophage Fas-induced apoptosis (Mafia) transgenic mice or by administration of clodronate-loaded liposomes to wild-type mice, recapitulated the: (1) loss of endosteal osteoblasts and (2) marked reduction of HSC-trophic cytokines at the endosteum, with (3) HSC mobilization into the blood, as observed during G-CSF administration. Together, these results establish that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophages leads to the egress of HSCs into the blood.

  5. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Science.gov (United States)

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention. PMID:22162712

  6. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Marc Baay

    2011-01-01

    Full Text Available Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs, which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.

  7. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  8. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    International Nuclear Information System (INIS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Choi, Eun Ha; Miller, Vandana; Fridman, Alexander

    2016-01-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future. (paper)

  9. HIV-1 Infection of T Cells and Macrophages Are Differentially Modulated by Virion-Associated Hck: A Nef-Dependent Phenomenon

    Directory of Open Access Journals (Sweden)

    Gilda Tachedjian

    2013-09-01

    Full Text Available The proline repeat motif (PxxP of Nef is required for interaction with the SH3 domains of macrophage-specific Src kinase Hck. However, the implication of this interaction for viral replication and infectivity in macrophages and T lymphocytes remains unclear. Experiments in HIV-1 infected macrophages confirmed the presence of a Nef:Hck complex which was dependent on the Nef proline repeat motif. The proline repeat motif of Nef also enhanced both HIV-1 infection and replication in macrophages, and was required for incorporation of Hck into viral particles. Unexpectedly, wild-type Hck inhibited infection of macrophages, but Hck was shown to enhance infection of primary T lymphocytes. These results indicate that the interaction between Nef and Hck is important for Nef-dependent modulation of viral infectivity. Hck-dependent enhancement of HIV-1 infection of T cells suggests that Nef-Hck interaction may contribute to the spread of HIV-1 infection from macrophages to T cells by modulating events in the producer cell, virion and target cell.

  10. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  11. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view.

    Directory of Open Access Journals (Sweden)

    Imen Rabhi

    Full Text Available We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL, inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection.

  12. B-Plant canyon fire foam supply

    International Nuclear Information System (INIS)

    Gainey, T.

    1995-01-01

    A new raw water supply was installed for the B-Plant fire foam system. This document details tests to be performed which will demonstrate that the system can function as designed. The tests include: Verification of the operation of the automatic valves at the cells; Measurement of water flow and pressure downstream of the proportioner; Production of foam, and measurement of foam concentration. Included as an appendix is a copy of the work package resolution (J4 ampersand J4a)

  13. High intratumoral macrophage content is an adverse prognostic feature in anaplastic large cell lymphoma

    DEFF Research Database (Denmark)

    Pedersen, Martin Bjerregård; Hamilton-Dutoit, Stephen Jacques; Bendix, Knud

    2014-01-01

    AIMS: Macrophage infiltration has been associated with prognosis in several cancers, including lymphoma, but has not been assessed systematically in anaplastic large cell lymphoma (ALCL). The aim of the study was to correlate expression of the macrophage-associated antigens CD68 and CD163 with pre......-therapeutic parameters and outcome in a cohort of treatment-naive ALCL patients. METHODS AND RESULTS: Pre-therapeutic tumour specimens from 52 patients with ALCL were included in a tissue microarray. The intratumoral macrophage content was assessed by immunohistochemical staining for CD68 and CD163, and quantified using......-free survival in ALK-negative patients (P macrophages correlates with an adverse outcome in ALK-negative ALCL....

  14. mdFoam+: Advanced molecular dynamics in OpenFOAM

    Science.gov (United States)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  15. The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq.

    Science.gov (United States)

    Wills, Quin F; Mellado-Gomez, Esther; Nolan, Rory; Warner, Damien; Sharma, Eshita; Broxholme, John; Wright, Benjamin; Lockstone, Helen; James, William; Lynch, Mark; Gonzales, Michael; West, Jay; Leyrat, Anne; Padilla-Parra, Sergi; Filippi, Sarah; Holmes, Chris; Moore, Michael D; Bowden, Rory

    2017-01-07

    Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation. As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.

  16. Microcellular foams via phase separation

    International Nuclear Information System (INIS)

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm 3 and cell sizes of 30μm or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure

  17. Experimental study of 3-D structure and evolution of foam

    Science.gov (United States)

    Thoroddsen, S. T.; Tan, E.; Bauer, J. M.

    1998-11-01

    Liquid foam coarsens due to diffusion of gas between adjacent foam cells. This evolution process is slow, but leads to rapid topological changes taking place during localized rearrangements of Plateau borders or disappearance of small cells. We are developing a new imaging technique to construct the three-dimensional topology of real soap foam contained in a small glass container. The technique uses 3 video cameras equipped with lenses having narrow depth-of-field. These cameras are moved with respect to the container, in effect obtaining numerous slices through the foam. Preliminary experimental results showing typical rearrangement events will also be presented. These events involve for example disappearance of either triangular or rectangular cell faces.

  18. Partitioning of elastic energy in open-cell foams under finite deformations

    International Nuclear Information System (INIS)

    Harb, Rani; Taciroglu, Ertugrul; Ghoniem, Nasr

    2013-01-01

    The challenges associated with the computational modeling and simulation of solid foams are threefold—namely, the proper representation of an intricate geometry, the capability to accurately describe large deformations, and the extremely arduous numerical detection and enforcement of self-contact during crushing. The focus of this study is to assess and accurately quantify the effects of geometric nonlinearities (i.e. finite deformations, work produced under buckling-type motions) on the predicted mechanical response of open-cell foams of aluminum and polyurethane prior to the onset of plasticity and contact. Beam elements endowed with three-dimensional finite deformation kinematics are used to represent the foam ligaments. Ligament cross-sections are discretized through a fiber-based formulation that provides accurate information regarding the onset of plasticity, given the uniaxial yield stress–strain data for the bulk material. It is shown that the (hyper-) elastic energy partition within ligaments is significantly influenced by kinematic nonlinearities, which frequently cause strong coupling between the axial, bending, shear and torsional deformation modes. This deformation mode-coupling is uniquely obtained as a result of evaluating equilibrium in the deformed configuration, and is undetectable when small deformations are assumed. The relationship between the foam topology and energy partitioning at various stages of moderate deformation is also investigated. Coupled deformation modes are shown to play an important role, especially in perturbed Kelvin structures where over 70% of the energy is stored in coupled axial-shear and axial-bending modes. The results from this study indicate that it may not always be possible to accurately simulate the onset of plasticity (and the response beyond this regime) if finite deformation kinematics are neglected

  19. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leilei, E-mail: zhangleilei1121@aliyun.com; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  20. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    International Nuclear Information System (INIS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-01-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  1. The microstructural origin of strain hardening in two-dimensional open-cell metal foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; van Buuren, S. W.; Onck, P. R.

    2010-01-01

    This paper aims at elucidating the microstructural origin of strain hardening in open-cell metal foams. We have developed a multiscale model that allows to study the development of plasticity at two length scales: (i) the development of plastic zones inside individual struts (microscopic scale) and

  2. Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery.

    Science.gov (United States)

    Holden, Christopher A; Yuan, Quan; Yeudall, W Andrew; Lebman, Deborah A; Yang, Hu

    2010-02-02

    Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein-labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.

  3. Signal regulatory protein α associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages.

    Science.gov (United States)

    Ye, Xiaojing; Zhang, Jing; Lu, Rui; Zhou, Gang

    2016-12-06

    Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.

  4. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Extracts of Crinum latifolium inhibit the cell viability of mouse lymphoma cell line EL4 and induce activation of anti-tumour activity of macrophages in vitro.

    Science.gov (United States)

    Nguyen, Hoang-Yen T; Vo, Bach-Hue T; Nguyen, Lac-Thuy H; Bernad, Jose; Alaeddine, Mohamad; Coste, Agnes; Reybier, Karine; Pipy, Bernard; Nepveu, Françoise

    2013-08-26

    Crinum latifolium L. (CL) leaf extracts have been traditionally used in Vietnam and are now used all over the world for the treatment of prostate cancer. However, the precise cellular mechanisms of the action of CL extracts remain unclear. To examine the effects of CL samples on the anti-tumour activity of peritoneal murine macrophages. The properties of three extracts (aqueous, flavonoid, alkaloid), one fraction (alkaloid), and one pure compound (6-hydroxycrinamidine) obtained from CL, were studied (i) for redox capacities (DPPH and bleaching beta-carotene assays), (ii) on murine peritoneal macrophages (MTT assay) and on lymphoma EL4-luc2 cells (luciferine assay) for cytotoxicity, (iii) on macrophage polarization (production of ROS and gene expression by PCR), and (iv) on the tumoricidal functions of murine peritoneal macrophages (lymphoma cytotoxicity by co-culture with syngeneic macrophages). The total flavonoid extract with a high antioxidant activity (IC50=107.36 mg/L, DPPH assay) showed an inhibitory action on cancer cells. Alkaloid extracts inhibited the proliferation of lymphoma cells either by directly acting on tumour cells or by activating of the tumoricidal functions of syngeneic macrophages. The aqueous extract induced mRNA expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6) indicating differentiation of macrophages into pro-inflammatory M1 polarized macrophages. The total flavonoid, alkaloid extracts and an alkaloid fraction induced the expression of the formyl peptide receptor (FPR) on the surface of the polarized macrophages that could lead to the activation of macrophages towards the M1 phenotype. Aqueous and flavonoid extracts enhanced NADPH quinine oxido-reductase 1 (NQO1) mRNA expression in polarized macrophages which could play an important role in cancer chemoprevention. All the samples studied were non-toxic to normal living cells and the pure alkaloid tested, 6-hydroxycrinamidine, was not

  6. Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation.

    Science.gov (United States)

    Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo

    2014-03-01

    Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

  7. Metal-doped organic foam and method of making same. [Patent application

    Science.gov (United States)

    Rinde, J.A.

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  8. Preparation of Microcellular Epoxy Foams through a Limited-Foaming Process: A Contradiction with the Time-Temperature-Transformation Cure Diagram.

    Science.gov (United States)

    Wang, Lijun; Zhang, Chun; Gong, Wei; Ji, Yubi; Qin, Shuhao; He, Li

    2018-01-01

    3D cross-linking networks are generated through chemical reactions between thermosetting epoxy resin and hardener during curing. The curing degree of epoxy material can be increased by increasing curing temperature and/or time. The epoxy material must then be fully cured through a postcuring process to optimize its material characteristics. Here, a limited-foaming method is introduced for the preparation of microcellular epoxy foams (Lim-foams) with improved cell morphology, high thermal expansion coefficient, and good compressive properties. Lim-foams exhibit a lower glass transition temperature (T g ) and curing degree than epoxy foams fabricated through free-foaming process (Fre-foams). Surprisingly, however, the T g of Lim-foams is unaffected by postcuring temperature and time. This phenomenon, which is related to high gas pressure in the bubbles, contradicts that indicated by the time-temperature-transformation cure diagram. High bubble pressure promotes the movement of molecular chains under heating at low temperature and simultaneously suppresses the etherification cross-linking reaction during post-curing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis.

    Science.gov (United States)

    Hoffman, Ewelina; Patel, Aateka; Ball, Doug; Klapwijk, Jan; Millar, Val; Kumar, Abhinav; Martin, Abigail; Mahendran, Rhamiya; Dailey, Lea Ann; Forbes, Ben; Hutter, Victoria

    2017-12-01

    Progress to the clinic may be delayed or prevented when vacuolated or "foamy" alveolar macrophages are observed during non-clinical inhalation toxicology assessment. The first step in developing methods to study this response in vitro is to characterize macrophage cell lines and their response to drug exposures. Human (U937) and rat (NR8383) cell lines and primary rat alveolar macrophages obtained by bronchoalveolar lavage were characterized using high content fluorescence imaging analysis quantification of cell viability, morphometry, and phospholipid and neutral lipid accumulation. Cell health, morphology and lipid content were comparable (p content. Responses to amiodarone, a known inducer of phospholipidosis, required analysis of shifts in cell population profiles (the proportion of cells with elevated vacuolation or lipid content) rather than average population data which was insensitive to the changes observed. A high content image analysis assay was developed and used to provide detailed morphological characterization of rat and human alveolar-like macrophages and their response to a phospholipidosis-inducing agent. This provides a basis for development of assays to predict or understand macrophage vacuolation following inhaled drug exposure.

  10. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and an immobilized electrolyte allow for reversible operation as electrolysis cell or fuel...... cell. In the present work we demonstrate the application of hydrophobic, porous, and electro-catalytically active gas diffusion electrodes. PTFE particles and silver nanowires as electro-catalysts were used in the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry were performed...... to determine the cell characteristics. The thickness of the electrolyte matrix was only 200 µm, thereby achieving a serial resistance and area specific resistance of 60 mΩ cm2 and 150 mΩ cm2, respectively, at 200 °C and 20 bar. A new production method was developed to increase the cell size from lab scale (1...

  11. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    Science.gov (United States)

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were

  12. Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells

    International Nuclear Information System (INIS)

    Nakai, Yuji; Shiratsuchi, Akiko; Manaka, Junko; Nakayama, Hiroshi; Takio, Koji; Zhang Jianting; Suganuma, Tatsuo; Nakanishi, Yoshinobu

    2005-01-01

    We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages [C. Fujii, A. Shiratsuchi, J. Manaka, S. Yonehara, Y. Nakanishi. Cell Death Differ. 8 (2001) 1113-1122]. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis

  13. Improvement of the mechanical properties of reinforced aluminum foam samples

    Science.gov (United States)

    Formisano, A.; Barone, A.; Carrino, L.; De Fazio, D.; Langella, A.; Viscusi, A.; Durante, M.

    2018-05-01

    Closed-cell aluminum foam has attracted increasing attention due to its very interesting properties, thanks to which it is expected to be used as both structural and functional material. A research challenge is the improvement of the mechanical properties of foam-based structures adopting a reinforced approach that does not compromise their lightness. Consequently, the aim of this research is the fabrication of enhanced aluminum foam samples without significantly increasing their original weight. In this regard, cylindrical samples with a core of closed-cell aluminum foam and a skin of fabrics and grids of different materials were fabricated in a one step process and were mechanically characterized, in order to investigate their behaviour and to compare their mechanical properties to the ones of the traditional foam.

  14. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  16. Cytotoxicity of lambda-cyhalothrin on the macrophage cell line RAW 264.7.

    Science.gov (United States)

    Zhang, Quan; Wang, Cui; Sun, Liwei; Li, Ling; Zhao, Meirong

    2010-01-01

    The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.

  17. Calreticulin Release at an Early Stage of Death Modulates the Clearance by Macrophages of Apoptotic Cells

    Science.gov (United States)

    Osman, Rim; Tacnet-Delorme, Pascale; Kleman, Jean-Philippe; Millet, Arnaud; Frachet, Philippe

    2017-01-01

    Calreticulin (CRT) is a well-known “eat-me” signal harbored by dying cells participating in their recognition by phagocytes. CRT is also recognized to deeply impact the immune response to altered self-cells. In this study, we focus on the role of the newly exposed CRT following cell death induction. We show that if CRT increases at the outer face of the plasma membrane and is well recognized by C1q even when phosphatidylserine is not yet detected, CRT is also released in the surrounding milieu and is able to interact with phagocytes. We observed that exogenous CRT is endocytosed by THP1 macrophages through macropinocytosis and that internalization is associated with a particular phenotype characterized by an increase of cell spreading and migration, an upregulation of CD14, an increase of interleukin-8 release, and a decrease of early apoptotic cell uptake. Importantly, CRT-induced pro-inflammatory phenotype was confirmed on human monocytes-derived macrophages by the overexpression of CD40 and CD274, and we found that monocyte-derived macrophages exposed to CRT display a peculiar polarization notably associated with a downregulation of the histocompatibility complex of class II molecules hampering its description through the classical M1/M2 dichotomy. Altogether our results highlight the role of soluble CRT with strong possible consequences on the macrophage-mediated immune response to dying cell. PMID:28878781

  18. Calreticulin Release at an Early Stage of Death Modulates the Clearance by Macrophages of Apoptotic Cells

    Directory of Open Access Journals (Sweden)

    Rim Osman

    2017-08-01

    Full Text Available Calreticulin (CRT is a well-known “eat-me” signal harbored by dying cells participating in their recognition by phagocytes. CRT is also recognized to deeply impact the immune response to altered self-cells. In this study, we focus on the role of the newly exposed CRT following cell death induction. We show that if CRT increases at the outer face of the plasma membrane and is well recognized by C1q even when phosphatidylserine is not yet detected, CRT is also released in the surrounding milieu and is able to interact with phagocytes. We observed that exogenous CRT is endocytosed by THP1 macrophages through macropinocytosis and that internalization is associated with a particular phenotype characterized by an increase of cell spreading and migration, an upregulation of CD14, an increase of interleukin-8 release, and a decrease of early apoptotic cell uptake. Importantly, CRT-induced pro-inflammatory phenotype was confirmed on human monocytes-derived macrophages by the overexpression of CD40 and CD274, and we found that monocyte-derived macrophages exposed to CRT display a peculiar polarization notably associated with a downregulation of the histocompatibility complex of class II molecules hampering its description through the classical M1/M2 dichotomy. Altogether our results highlight the role of soluble CRT with strong possible consequences on the macrophage-mediated immune response to dying cell.

  19. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    Science.gov (United States)

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  20. Effect of methanolic extract of Piper sarmentosum leaves on neointimal foam cell infiltration in rabbits fed with high cholesterol diet

    Science.gov (United States)

    Amran, Adel A.; Zakaria, Zaiton; Othman, Faizah; Das, Srijit; Al-Mekhlafi, Hesham M.; Raj, Santhana; Nordin, Nor-Anita MM

    2012-01-01

    Previous research has shown the beneficial effects of aqueous extract of Piper sarmentosum (P.s) on atherosclerosis. The first stage in atherosclerosis is the formation of foam cell. The aim of this study was to investigate the effect of the methanol extract of P.s on fatty streaks by calculating neointimal foam cell infiltration in rabbits fed with high cholesterol diet. Thirty six male New Zealand white rabbits were divided equally into six groups: (i) C: control group fed normal rabbit chow; (ii) CH: cholesterol diet (1 % cholesterol); (iii) PM1: 1 % cholesterol with methanol extract of P.s (62.5 mg/kg); (iv) PM2: 1 % cholesterol with methanol extract of P.s (125 mg/kg); (v) PM3: 1 % cholesterol with methanol extract of P.s (250 mg/kg); (vi) SMV group fed 1 % cholesterol supplemented with Simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. At the end of the treatment, the rabbits were fasted and sacrificed and the aortic tissues were collected for histological studies to measure the area of the neointimal foam cell infiltration using software. The thickening of intima ratio of atherosclerosis and morphological changes by scanning electron microscope were measured. The results showed that the atherosclerotic group had significantly bigger area of fatty streak compared to the control group. The area of fatty streak in the abdominal aorta was significantly reduced in the treatment groups which were similar with the SMV group. Similarly, there was a reduction in the number of foam cell in the treatment groups compared to the atherosclerotic group as seen under scanning microscope. In conclusion, histological study demonstrated that the methanol extract of the P.s could reduce the neointimal foam cell infiltration in the lumen of the aorta and the atherosclerotic lesion. PMID:27366140

  1. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    Science.gov (United States)

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after

  2. The influence of polyol type on cell geometry and the thermal stability of polyurethane foams

    Directory of Open Access Journals (Sweden)

    Prendžov Slobodan J.

    2006-01-01

    Full Text Available The aim of this study was to examine the influence of substituting defined amounts of polyol Voranol 3322 by polyol Voranol CP 1055 on the cell geometry and thermal stability of the synthesized flexible polyurethane foams. The influence of the amount of antipyrene on the cell geometry and their thermal stability was also investigated. The following components were used in the synthesis of the polyurethanes: a mixture of two polyols (Voranol 3322 with the hydroxyl number 47 mg KOH/g, mean molecular mass 3400 and Voranol CP 1055 with the hydroxyl number 156 mg KOH/g, mean molecular mass 1000, toluene discarnate as the isocyanate component, a combination of an organic-metallic compound and a tertiary amine as catalysts, surfactant and water as the coreactant. The thermal stability was determined by thermogravimetric analysis (in a nitrogen atmosphere. The cell geometry was analyzed by optical microscopy. Examination of the cell geometry revealed different cell shapes. The form factor as an indicator of cell deviation from spherical shape increased (more round forms were observed with increasing amount of Voranol CP 1055. The TG examination showed that specimens with 6 and 8 g of Voranol 3322 substituted by Voranol CP 1055 completely degraded at 350 °C, while foams with 10 and 12 g of Voranol 3322 substituted by Voranol CP 1055 displayed lower mass loss at higher temperatures and had residual masses of 46 % and 43 % at 600°C respectively. The addition of antipyrene in an amount of 1% (based on the amount of polyol contributed to improved thermal stability, no visible color change of the specimen tested at 210°C for 40 minutes, and to rounder cell forms. Considering the obtained results it can be concluded that an increase in the amount of Voranol CP 1055 yielded more spherically shaped cells and better thermal stability of the synthesized flexible polyurethane foams. The addition of antipyrene improves the thermal stability and the cell geometry.

  3. Crosstalk between mesenchymal stem cells and macrophages in inflammatory bowel disease and associated colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fei Mao

    2017-06-01

    Full Text Available Mesenchymal stem cells (MSCs are attractive seed cells for immunotherapy, tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities, diverse immunoregulatory functions and ease of isolation from a wide range of tissues. MSCs exert their immunoregulatory effect on immune cells via cell-to-cell contact and paracrine mechanisms. In turn, MSCs can also be modulated by immune cells. Macrophages are constantly present in the mucosa of the intestinal tract of mammals and play an important role in the development and progression of inflammatory bowel disease (IBD, a chronic and recurrent inflammatory disease of the gastrointestinal tract characterized by idiopathic mucosal inflammation. The increased morbidity and mortality of IBD have made it a disease hard to cure in the clinic. MSCs have emerged as an important tool for IBD therapy due to their abilities to differentiate into enterocyte-like cells and regulate inflammatory cells, especially macrophages. In this review, we discuss the recent advances in the interaction between MSCs and macrophages in diseases, with an emphasis on IBD. We propose that an optimized MSC-based therapy would provide a novel strategy for the treatment of IBD and the prevention of IBD-associated colorectal cancer (CRC.

  4. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Macrophages in synovial inflammation

    Directory of Open Access Journals (Sweden)

    Aisling eKennedy

    2011-10-01

    Full Text Available AbstractSynovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage-pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA. There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished.Here we will briefly review our current understanding of macrophages and macrophage polarisation in RA as well as the elements implicated in controlling polarisation, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype and may represent a novel therapeutic paradigm.

  6. Bi-liquid foams

    International Nuclear Information System (INIS)

    Sonneville, Odile

    1997-01-01

    Concentrated emulsions have structures similar to foams; for this reason they are also called 'bi-liquid foams'. For oil in water emulsions, they are made of polyhedral oil cells separated by aqueous surfactant films. The limited stability of these Systems is a major nuisance in their applications. In this work, we tried to understand and to control the mechanisms through which bi-liquid foams can loose their stability. In a first stage, we characterized the states of surfactant films in bi-liquid foams submitted to different pressures. We determined their hydration, the surfactant density at interfaces as well as their thicknesses. The bi-liquid foams were made by concentrating hexadecane-in-water emulsions through centrifugation. The initial emulsions contained submicron oil droplets that were completely covered with surfactant. We measured the resistance of the films to dehydration, and we represented it by pressure-film thickness curves or pressure-film hydration curves. We also obtained evidence that the interfacial surfactant density increases when the film thickness is decreased (SDS case). The Newton Black Film state is the most dehydrated metastable state that can be reached. In this state, the films can be described as surfactant bilayers that only contain the hydration water of the surfactant polar heads. Two different processes are involved the destabilization of bi-liquid foams: Ostwald ripening (oil transfer from small cells to large cells) and coalescence (films rupture). The first mechanism can be controlled by choosing oils that are very insoluble in water, avoiding ethoxylated nonionic surfactants of low molecular weight, and making emulsions that are not too fine. The second mechanism is responsible for the catastrophic destabilization of bi-liquid foams made of droplets above one micron or with a low coverage in surfactant. In these cases, destabilization occurs in the early stages of concentration, when the films are still thick. It is caused

  7. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    Science.gov (United States)

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  8. Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain.

    Science.gov (United States)

    Le Blon, Debbie; Hoornaert, Chloé; Daans, Jasmijn; Santermans, Eva; Hens, Niel; Goossens, Herman; Berneman, Zwi; Ponsaerts, Peter

    2014-09-01

    Although implantation of cellular material in the central nervous system (CNS) is a key direction in CNS regenerative medicine, this approach is currently limited by the occurrence of strong endogenous immune cell responses. In a model of mesenchymal stem cell (MSC) grafting in the CNS of immune-competent mice, we previously described that MSC grafts become highly surrounded and invaded by Iba1(+) myeloid cells (microglia and/or macrophages). Here, following grafting of blue fluorescent protein (BFP)-expressing MSC in the CNS of CX3CR1(+/-) and CX3CR1(-/-) mice, our results indicate: (1) that the observed inflammatory response is independent of the fractalkine signalling axis, and (2) that a significant spatial distribution of Iba1(+) inflammatory cells occurs, in which Iba1(+) CX3CR1(+) myeloid cells mainly surround the MSC graft and Iba1(+) CX3CR1(-) myeloid cells mainly invade the graft at 10 days post transplantation. Although Iba1(+) CX3CR1(+) myeloid cells are considered to be of resident microglial origin, Iba1(+) CX3CR1(-) myeloid cells are most likely of peripheral monocyte/macrophage origin. In order to confirm the latter, we performed MSC-BFP grafting experiments in the CNS of eGFP(+) bone marrow chimeric C57BL/6 mice. Analysis of MSC-BFP grafts in the CNS of these mice confirmed our observation that peripheral monocytes/macrophages invade the MSC graft and that resident microglia surround the MSC graft site. Furthermore, analysis of major histocompatibility complex class II (MHCII) expression revealed that mainly macrophages, but not microglia, express this M1 pro-inflammatory marker in the context of MSC grafting in the CNS. These results again highlight the complexity of cell implantation immunology in the CNS.

  9. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.

    Science.gov (United States)

    Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta

    2017-08-15

    Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Semen CD4+ T Cells and Macrophages Are Productively Infected at All Stages of SIV infection in Macaques

    Science.gov (United States)

    Bernard-Stoecklin, Sibylle; Gommet, Céline; Corneau, Aurélien B.; Guenounou, Sabrina; Torres, Claire; Dejucq-Rainsford, Nathalie; Cosma, Antonio; Dereuddre-Bosquet, Nathalie; Le Grand, Roger

    2013-01-01

    The mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4+ T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4+ T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure. PMID:24348253

  11. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells

    International Nuclear Information System (INIS)

    Kim, Yong Chan; Song, Seok Bean; Lee, Mi Hee; Kang, Kwang Il; Lee, Hayyoung; Paik, Sang-Gi; Kim, Kyoon Eon; Kim, Young Sang

    2006-01-01

    Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy

  12. Graphene foam as a biocompatible scaffold for culturing human neurons

    Science.gov (United States)

    Mattei, Cristiana; Nasr, Babak; Hudson, Emma J.; Alshawaf, Abdullah J.; Chana, Gursharan; Everall, Ian P.; Dottori, Mirella; Skafidas, Efstratios

    2018-01-01

    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation. PMID:29657752

  13. Blending Novatein{sup ®} thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    Energy Technology Data Exchange (ETDEWEB)

    Walallavita, Anuradha, E-mail: asw15@students.waikato.ac.nz; Verbeek, Casparus J. R., E-mail: jverbeek@waikato.ac.nz; Lay, Mark, E-mail: mclay@waikato.ac.nz [University of Waikato, Hamilton 3240 (New Zealand)

    2016-03-09

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO{sub 2} expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO{sub 2} had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO{sub 2} ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  14. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  15. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type.

    Science.gov (United States)

    Justo, Oselys Rodriguez; Simioni, Patricia Ucelli; Gabriel, Dirce Lima; Tamashiro, Wirla Maria da Silva Cunha; Rosa, Paulo de Tarso Vieira; Moraes, Ângela Maria

    2015-10-29

    Numerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line. Ginger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts. Ginger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the

  16. Foam flows through a local constriction

    Science.gov (United States)

    Chevalier, T.; Koivisto, J.; Shmakova, N.; Alava, M. J.; Puisto, A.; Raufaste, C.; Santucci, S.

    2017-11-01

    We present an experimental study of the flow of a liquid foam, composed of a monolayer of millimetric bubbles, forced to invade an inhomogeneous medium at a constant flow rate. To model the simplest heterogeneous fracture medium, we use a Hele-Shaw cell consisting of two glass plates separated by a millimetric gap, with a local constriction. This single defect localized in the middle of the cell reduces locally its gap thickness, and thus its local permeability. We investigate here the influence of the geometrical property of the defect, specifically its height, on the average steady-state flow of the foam. In the frame of the flowing foam, we can observe a clear recirculation around the obstacle, characterized by a quadrupolar velocity field with a negative wake downstream the obstacle, which intensity evolves systematically with the obstacle height.

  17. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into chemical energy in the form of hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and a liquid immobilized electrolyte allow the operation...... of the newly designed electrolysis cell as a fuel cell, but condensation of steam may lead to blocked pores, thereby inhibiting gas diffusion and decreasing the performance of the cell. In the here presented work we present the application of a hydrophobic, porous, and electro-catalytically active layer...... the electrochemical characteristics of the cell. The thickness of the electrolyte matrix was reduced to 200 µm, thereby achieving a serial resistance and area specific resistance as low as 60 mΩ cm2 and 150 mΩ cm2, respectively, at a temperature of 200 °C and 20 bar pressure. A new production method was developed...

  18. Tissue Damage Caused by Myeloablative, but Not Non-Myeloablative, Conditioning before Allogeneic Stem Cell Transplantation Results in Dermal Macrophage Recruitment without Active T-Cell Interaction

    Directory of Open Access Journals (Sweden)

    Peter van Balen

    2018-02-01

    Full Text Available IntroductionConditioning regimens preceding allogeneic stem cell transplantation (alloSCT can cause tissue damage and acceleration of the development of graft-versus-host disease (GVHD. T-cell-depleted alloSCT with postponed donor lymphocyte infusion (DLI may reduce GVHD, because tissue injury can be restored at the time of DLI. In this study, we investigated the presence of tissue injury and inflammation in skin during the period of hematologic recovery and immune reconstitution after alloSCT.MethodsSkin biopsies were immunohistochemically stained for HLA class II, CD1a, CD11c, CD40, CD54, CD68, CD86, CD206, CD3, and CD8. HLA class II-expressing cells were characterized as activated T-cells, antigen-presenting cells (APCs, or tissue repairing macrophages. In sex-mismatched patient and donor couples, origin of cells was determined by multiplex analysis combining XY-FISH and fluorescent immunohistochemistry.ResultsNo inflammatory environment due to pretransplant conditioning was detected at the time of alloSCT, irrespective of the conditioning regimen. An increase in HLA class II-positive macrophages and CD3 T-cells was observed 12–24 weeks after myeloablative alloSCT, but these macrophages did not show signs of interaction with the co-localized T-cells. In contrast, during GVHD, an increase in HLA class II-expressing cells coinciding with T-cell interaction was observed, resulting in an overt inflammatory reaction with the presence of activated APC, activated donor T-cells, and localized upregulation of HLA class II expression on epidermal cells. In the absence of GVHD, patient derived macrophages were gradually replaced by donor-derived macrophages although patient-derived macrophages were detectable even 24 weeks after alloSCT.ConclusionConditioning regimens cause tissue damage in the skin, but this does not result in a local increase of activated APC. In contrast to the inflamed situation in GVHD, when interaction takes place between

  19. Solid intraocular xanthogranuloma in three Miniature Schnauzer dogs.

    Science.gov (United States)

    Zarfoss, Mitzi K; Dubielzig, Richard R

    2007-01-01

    Macrophages that contain abundant intracytoplasmic lipid are called 'foam cells'. In four canine globes submitted to the Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW), foam cells formed a solid intraocular mass. The purpose of this study was to describe the histopathologic findings in these cases. The electronic COPLOW database (1993-2006) was searched for the diagnosis of 'foam cell tumor'. Clinical history, gross pathology and histopathology (5-micron sections, hematoxylin and eosin and Alcian blue periodic acid Schiff) were reviewed in all cases. Cases were included if the globe was grossly filled by a solid mass and if all intraocular structures were effaced by lipid-laden foam cell macrophages admixed with birefringent, Alcian blue-positive crystals oriented in stellate patterns. All three patients (four globes) satisfying the selection criteria were Miniature Schnauzers. In all cases the clinical history included diabetes mellitus, hyperlipidemia and chronic bilateral uveitis that was interpreted to be lens-induced. All globes were enucleated because of glaucoma. The term solid intraocular xanthogranuloma was used to describe these cases because the intraocular contents were effaced by a solid mass of foam cells and birefringent crystals. The cases in this report suggest that diabetic Miniature Schnauzers with hyperlipidemia are at risk for lipid and macrophage-rich uveitis, which may in some cases form a solid inflammatory intraocular mass, precipitate glaucoma, and lead to enucleation.

  20. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.

    Science.gov (United States)

    Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel

    2016-06-01

    We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

  1. Dissolution of short and long rockwool and glasswool fibers by macrophages in flowthrough cell culture.

    Science.gov (United States)

    Luoto, K; Holopainen, M; Kangas, J; Kalliokoski, P; Savolainen, K

    1998-07-01

    Dissolution of MMVF (man-made vitreous fibers) by macrophages has previously been studied utilizing cell cultures in wells. A new, more dynamic method has been developed to explore the effects of macrophages on MMVF dissolution. In this method, the culture medium flows through a membrane on which the macrophages and fibers are placed. The dissolution of short and long rockwool and glasswool fibers was investigated in the present study by macrophages by assessing the dissolution of Si (silicon), Fe (iron), and Al (aluminium) from the fibers. Dissolution of these elements usually increased as a function of time. Generally, the dissolution of elements from the fibers in the flowthrough culture exceeded that observed with the culture in wells system. The dissolution of glasswool fibers was greater in medium than in cell culture, whereas the opposite was true for rockwool fibers. Dissolution of Si was greater from glasswool than from rockwool fibers, while the opposite was true for Fe and Al. Macrophages that had phagocytized fibers in flowthrough culture contained Si, and there were also precipitations with Si in the samples. The fibers in the flowthrough culture also exhibited surface changes such as breakings, pittings, etching, and peeling. The short rockwool fibers tended to fracture more than short glasswool fibers, while long glasswool fibers were more extensively broken than short glasswool fibers. The results with this new, dynamic, flowthrough culture method with macrophages demonstrate that this method provides valuable information on the abilities of macrophages to dissolve MMVF leading to subsequent morphological changes of fibers.

  2. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    Science.gov (United States)

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  3. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration

    Science.gov (United States)

    Thomson, R. C.; Yaszemski, M. J.; Powers, J. M.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.

  4. Development of a phenomenological constitutive model for polyurethane foams

    International Nuclear Information System (INIS)

    Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.; Yoshimura, H.R.

    1989-01-01

    Rigid, closed-cell, polyurethane foam is used in impact limiters in nuclear waste transport containers. During a hypothetical nuclear waste transport accident, the foam is expected to absorb a significant amount of impact energy by undergoing large inelastic volume reductions. Consequently, the crushing of polyurethane foams must be well characterized and accurately modeled to properly analyze a transport container accident. At the request of Sandia National Laboratories, a series of uniaxial, hydrostatic and triaxial compression tests on polyurethane foams were performed by the New Mexico Engineering Research Institute (NMERI). The combination of hydrostatic and triaxial tests was chosen to provide sufficient data to characterize both the volumetric and deviatoric behaviors of the foams and the coupling between the two responses. Typical results from the NMERI tests are included in this paper. A complete description of these tests can be found in Neilsen et al., 1987. Constitutive models that have been used in the past to model foam did not capture some important foam behaviors observed in the NMERI tests. Therefore, a new constitutive model for rigid, closed-cell, polyurethane foams was developed and implemented in two finite element codes. Development of the new model is discussed in this paper. Also, results from analyses with the new model and other constitutive models are presented to demonstrate differences between the various models. 4 refs., 6 figs., 1 tab

  5. Effect of Stabilization on Morphology Polystyrene and Supercritical Carbon Dioxide Thermoplastic Foams

    Directory of Open Access Journals (Sweden)

    Mozafar Mokhtari Motameni Shirvan

    2016-01-01

    Full Text Available Microcellular thermoplastic foams can be usually produced in a one-step batch system using a physical foaming agent which is dissolved in a polymer system under specific pressure and temperature, higher than the critical condition of solvent and the glass transition temperature of polymer and solvent mixture. By application of a sudden pressure drop the foam structure is formed through stages of nucleation, growth and coalescence. After pressure drop, if the foam temperature is reduced below the glass transition of the gas-polymer mixture, the cells stop growing which results in a foam with stabilized morphology. This stabilization stage has not been thoroughly focused in previous studies. In this work, polystyrene as a polymer system and supercritical carbon dioxide as a solvent were used at 18.5 MPa pressure and different temperatures. The stabilization process took place within milliseconds and helped to a better understanding of cellular structure in thermoplastic foams. In this mechanism, the nucleation takes place in the phase transition of solvent molecules at supercritical state to the gas state and the formation of very small nuclei containing gas molecules between polymer chains. The energy originated from the nuclei growth is in competition with the elastic energy of polymer chains, and the predominance of one type of energy over another determines the final cell size. The results showed that the effect of stabilization process on the structure of the foam depended on the foaming temperature. Stabilization at 110°C resulted in a 50% cell size reduction and a 60% cell density promotion, while at lower temperatures, the stabilization led to greater cell size and reduced cell density.

  6. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas.

    Science.gov (United States)

    Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N

    2008-02-01

    Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape.

  7. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism.

    Science.gov (United States)

    Rom, Oren; Grajeda-Iglesias, Claudia; Najjar, Mahmoud; Abu-Saleh, Niroz; Volkova, Nina; Dar, Dalit Esther; Hayek, Tony; Aviram, Michael

    2017-07-01

    Atherosclerosis-related research has focused mainly on the effects of lipids on macrophage foam cell formation and atherogenesis, whereas the role of amino acids (AAs) was understudied. The current study aimed to identify anti- or pro-atherogenic AA in the macrophage model system and to elucidate the underlying metabolic and molecular mechanisms. J774A.1 cultured macrophages were treated with increasing concentrations of each 1 of the 20 AAs. Macrophage atherogenicity was assessed in terms of cellular toxicity, generation of reactive oxygen species (ROS) and cellular cholesterol or triglyceride content. At nontoxic concentrations (up to 1 mM), modest effects on ROS generation or cholesterol content were noted, but six specific AAs significantly affected macrophage triglyceride content. Glycine, cysteine, alanine and leucine significantly decreased macrophage triglyceride content (by 24%-38%), through attenuated uptake of triglyceride-rich very low-density lipoprotein (VLDL) by macrophages. In contrast, glutamate and glutamine caused a marked triglyceride accumulation in macrophages (by 107% and 129%, respectively), via a diacylglycerol acyltransferase-1 (DGAT1)-dependent increase in triglyceride biosynthesis rate with a concurrent maturation of the sterol regulatory element-binding protein-1 (SREBP1). Supplementation of apolipoprotein E-deficient (apoE -/- ) mice with glycine for 40 days significantly decreased the triglyceride levels in serum and in peritoneal macrophages (MPMs) isolated from the mice (by 19%). In contrast, glutamine supplementation significantly increased MPM ROS generation and the accumulation of cholesterol and that of triglycerides (by 48%), via enhanced uptake of LDL and VLDL. Altogether, the present findings reveal some novel roles for specific AA in macrophage atherogenicity, mainly through modulation of cellular triglyceride metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Lewis Lung Cancer Cells Promote SIGNR1(CD209b)-Mediated Macrophages Polarization Induced by IL-4 to Facilitate Immune Evasion.

    Science.gov (United States)

    Yan, Xiaolong; Li, Wenhai; Pan, Lei; Fu, Enqing; Xie, Yonghong; Chen, Min; Mu, Deguang

    2016-05-01

    Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion. © 2015 Wiley Periodicals, Inc.

  9. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Daisuke Hirayama

    2017-12-01

    Full Text Available Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  10. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    Science.gov (United States)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  11. Placental macrophage contact potentiates the complete replicative cycle of human cytomegalovirus in syncytiotrophoblast cells: role of interleukin-8 and transforming growth factor-beta1.

    Science.gov (United States)

    Bácsi, A; Aranyosi, J; Beck, Z; Ebbesen, P; Andirkó, I; Szabó, J; Lampé, L; Kiss, J; Gergely, L; Tóth, F D

    1999-10-01

    Although syncytiotrophoblast (ST) cells can be infected by human cytomegalovirus (HCMV), in vitro studies have indicated that ST cells do not support the complete viral reproductive cycle, or HCMV replication may occur in less than 3% of ST cells. The present study tested the possibility that placental macrophages might enhance activation of HCMV carried in ST cells and, further, that infected ST cells would be capable of transmitting virus to neighboring macrophages. For this purpose, we studied HCMV replication in ST cells grown alone or cocultured with uninfected placental macrophages. Our results demonstrated that HCMV gene expression in ST cells was markedly upregulated by coculture with macrophages, resulting in release of substantial amounts of infectious virus from HCMV-infected ST cells. After having become permissive for viral replication, ST cells delivered HCMV to the cocultured macrophages, as evidenced by detection of virus-specific antigens in these cells. The stimulatory effect of coculture on HCMV gene expression in ST cells was mediated by marked interleukin-8 (IL-8) and transforming growth factor-beta1 (TGF-beta1) release from macrophages, an effect caused by contact between the different placental cells. Our findings indicate an interactive role for the ST layer and placental macrophages in the dissemination of HCMV among placental tissue. Eventually, these interactions may contribute to the transmission of HCMV from mother to the fetus.

  12. Function of miR-146a-5p in Tumor Cells As a Regulatory Switch between Cell Death and Angiogenesis: Macrophage Therapy Revisited

    Directory of Open Access Journals (Sweden)

    Elina Simanovich

    2018-01-01

    Full Text Available Tumors survive and progress by evading killing mechanisms of the immune system, and by generating a tumor microenvironment (TME that reprograms macrophages in situ to produce factors that support tumor growth, angiogenesis, and metastasis. We have previously shown that by blocking the translation of the enzyme inducible nitric oxide synthase (iNOS, miR-146a-5p inhibits nitric oxide (NO production in a mouse renal carcinoma cell line (RENCA, thereby endowing RENCA cells with resistance to macrophage-induced cell death. Here, we expand these findings to the mouse colon carcinoma CT26 cell line and demonstrate that neutralizing miR-146a-5p’s activity by transfecting both RENCA and CT26 cells with its antagomir restored iNOS expression and NO production and enhanced susceptibility to macrophage-induced cell death (by 48 and 25%, respectively, p < 0.001. Moreover, miR-146a-5p suppression simultaneously inhibited the expression of the pro-angiogenic protein EMMPRIN (threefolds, p < 0.001, leading to reduced MMP-9 and vascular endothelial growth factor secretion (twofolds and threefolds, respectively, p < 0.05, and reduced angiogenesis, as estimated by in vitro tube formation and scratch assays. When we injected tumors with pro-inflammatory-stimulated RAW 264.7 macrophages together with i.v. injection of the miR-146a-5p antagomir, we found inhibited tumor growth (sixfolds, p < 0.001 and angiogenesis (twofolds, p < 0.01, and increased apoptosis (twofolds, p < 0.01. This combination therapy increased nitrites and reduced TGFβ concentrations in tumor lysates, alleviated immune suppression, and allowed enhanced infiltration of cytotoxic CD8+ T cells. Thus, miR-146a-5p functions as a control switch between angiogenesis and cell death, and its neutralization can manipulate the crosstalk between tumor cells and macrophages and profoundly change the TME. This strategy can be therapeutically utilized in combination with the macrophage

  13. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shin-Ichi, E-mail: shayashi@med.tottori-u.ac.jp [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Yasuda, Hisataka [Planning and Development, Bioindustry Division, Oriental Yeast Co., Ltd, Itabashi-Ku, Tokyo 174-8505 (Japan); Yoshino, Miya [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  14. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    International Nuclear Information System (INIS)

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-01-01

    Highlights: ► The frequency of C7 differentiation into osteoclast was low and constant. ► Only extended C7 cell cultures exponentially increased osteoclast+ cultures. ► C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’. ► The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor κB ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’ rather than requiring specific signals to drive this process.

  15. Quantitative measurements of intercellular adhesion between a macrophage and cancer cells using a cup-attached AFM chip.

    Science.gov (United States)

    Kim, Hyonchol; Yamagishi, Ayana; Imaizumi, Miku; Onomura, Yui; Nagasaki, Akira; Miyagi, Yohei; Okada, Tomoko; Nakamura, Chikashi

    2017-07-01

    Intercellular adhesion between a macrophage and cancer cells was quantitatively measured using atomic force microscopy (AFM). Cup-shaped metal hemispheres were fabricated using polystyrene particles as a template, and a cup was attached to the apex of the AFM cantilever. The cup-attached AFM chip (cup-chip) approached a murine macrophage cell (J774.2), the cell was captured on the inner concave of the cup, and picked up by withdrawing the cup-chip from the substrate. The cell-attached chip was advanced towards a murine breast cancer cell (FP10SC2), and intercellular adhesion between the two cells was quantitatively measured. To compare cell adhesion strength, the work required to separate two adhered cells (separation work) was used as a parameter. Separation work was almost 2-fold larger between a J774.2 cell and FP10SC2 cell than between J774.2 cell and three additional different cancer cells (4T1E, MAT-LyLu, and U-2OS), two FP10SC2 cells, or two J774.2 cells. FP10SC2 was established from 4T1E as a highly metastatic cell line, indicates separation work increased as the malignancy of cancer cells became higher. One possible explanation of the strong adhesion of macrophages to cancer cells observed in this study is that the measurement condition mimicked the microenvironment of tumor-associated macrophages (TAMs) in vivo, and J774.2 cells strongly expressed CD204, which is a marker of TAMs. The results of the present study, which were obtained by measuring cell adhesion strength quantitatively, indicate that the fabricated cup-chip is a useful tool for measuring intercellular adhesion easily and quantitatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.

    Science.gov (United States)

    Borkotoky, Shasanka Sekhar; Dhar, Prodyut; Katiyar, Vimal

    2018-01-01

    This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (N f ) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    Science.gov (United States)

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. ©2011 AACR.

  18. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  19. F4/80+ Host Macrophages Are a Barrier to Murine Embryonic Stem Cell-Derived Hematopoietic Progenitor Engraftment In Vivo.

    Science.gov (United States)

    Thompson, Heather L; van Rooijen, Nico; McLelland, Bryce T; Manilay, Jennifer O

    2016-01-01

    Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin - BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo . Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80 + macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80 + macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro . Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo .

  20. Distribution of macrophages and plasma cells in apical periodontitis and their relationship with clinical and image data

    Science.gov (United States)

    Azeredo, Stéphane V.; Brasil, Sabrina C.; Antunes, Henrique; Marques, Fábio V.; Pires, Fábio R.

    2017-01-01

    Background Macrophages and plasma cells play a key role in the regulation of innate and adaptive immunity. The aim of this study was to assess the presence of these cells in apical periodontitis and their distribution comparing with clinical and image data. Material and Methods Thirty-three lesions were selected and divided in two groups (17 periapical cysts and 16 periapical granulomas). Immunoreactions using anti-CD68 and anti-CD138 antibodies were carried out; image analysis was performed with an optical microscope and 5 high-power fields from each slide were evaluated leading to an average score of immunoexpression. This mean score was compared between the two groups and correlated with the clinical and image data. Results There was no statistically significant difference (p >0.05) for the mean average score of CD68+ macrophages and CD138+ plasma cells when comparing the two groups (cysts x granulomas) and the specimens included in each specific group. No statistically significant differences (p >0.05) were also observed when comparing the average scores with clinical and image data. Conclusions The presence of CD68+ macrophages and CD138+ plasma cells was similar in periapical cysts and granulomas and the presence of these cells did not correlate with clinical and image data from both groups. Key words:Macrophages, plasma cells, apical periodontitis, periapical granuloma, periapical cyst. PMID:29075406

  1. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  2. CD4+ T Cell-derived IL-10 Promotes Brucella abortus Persistence via Modulation of Macrophage Function

    Science.gov (United States)

    Xavier, Mariana N.; Winter, Maria G.; Spees, Alanna M.; Nguyen, Kim; Atluri, Vidya L.; Silva, Teane M. A.; Bäumler, Andreas J.; Müller, Werner; Santos, Renato L.; Tsolis, Renée M.

    2013-01-01

    Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4+CD25+ T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25+CD4+ T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection. PMID:23818855

  3. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability?

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available BACKGROUND: Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown. METHODS AND RESULTS: Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis. CONCLUSION: Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.

  4. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    Science.gov (United States)

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  5. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system

    International Nuclear Information System (INIS)

    Afshari, Ebrahim; Baharlou Houreh, Nasser

    2014-01-01

    Highlights: • Three metal foam configurations for the membrane humidifier are introduced. • The performances of the humidifiers containing metal foam are investigated. • A 3D CFD model is developed to compare the introduced humidifiers with one another. • Using metal foam at dry side has no positive effect on the humidifier performance. - Abstract: Using metal foam as flow distributor in membrane humidifier for proton exchange membrane (PEM) fuel cell system has some unique characteristics like more water transfer, low manufacturing complexity and low cost compared to the conventional flow channel plate. Metal foam can be applied at wet side or dry side or both sides of a humidifier. The three-dimensional CFD models are developed to investigate the performance of the above mentioned meanwhile compare them with the conventional humidifier. This model consists of a set of coupled equations including conservations of mass, momentum, species and energy for all regions of the humidifier. The results indicate that with the metal foam installed at wet side and both sides, water recovery ratio and dew point at dry side outlet are more than that of the conventional humidifier, indicating a better humidifier performance; while using metal foam at dry side has no positive effect on humidifier performance. At dry side mass flow rates higher than 10 mgr/s pressure drop in humidifier containing metal foam at wet side is lower than that of the conventional humidifier. As the mass flow rate increases from 9 to 15 mgr/s humidifier containing metal foam at wet side has better performance, while at mass flow rates lower than 9 mgr/s, the humidifier containing metal foam at both sides has better performance. At dry side inlet temperatures lower than 303 K, humidifier containing metal foam at wet side has better performance and at temperatures higher than 303 K, humidifier containing metal foam at both sides has better performance

  6. Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method

    International Nuclear Information System (INIS)

    Manonukul, Anchalee; Srikudvien, Pathompoom; Tange, Makiko; Puncreobutr, Chedtha

    2016-01-01

    Polyurethane (PU) foams have both geometry and mechanical property anisotropy. Metal foams, which are manufacturing by investment casting or melt deposition method and using PU foam as a template, also have mechanical property anisotropy. This work studied the mechanical properties in two directions of titanium foam with four different cell sizes fabricated using the replica impregnation method. The two directions are (1) the loading direction parallel to the foaming direction where the cells are elongated (EL direction) and (2) the loading direction perpendicular to the foaming direction where the cell are equiaxed (EQ direction). The results show that the compression responses for both EL and EQ directions are isotropy. Micrographs and X-ray micro-computed tomography show that the degree of geometry anisotropy is not strong enough to results in mechanical property anisotropy.

  7. Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Manonukul, Anchalee, E-mail: anchalm@mtec.or.th [National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Srikudvien, Pathompoom [National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Tange, Makiko [Taisei Kogyo Thailand Co., Ltd., Room INC2d-409, Innovation Cluster 2 Building, Tower D, 141 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Puncreobutr, Chedtha [Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2016-02-08

    Polyurethane (PU) foams have both geometry and mechanical property anisotropy. Metal foams, which are manufacturing by investment casting or melt deposition method and using PU foam as a template, also have mechanical property anisotropy. This work studied the mechanical properties in two directions of titanium foam with four different cell sizes fabricated using the replica impregnation method. The two directions are (1) the loading direction parallel to the foaming direction where the cells are elongated (EL direction) and (2) the loading direction perpendicular to the foaming direction where the cell are equiaxed (EQ direction). The results show that the compression responses for both EL and EQ directions are isotropy. Micrographs and X-ray micro-computed tomography show that the degree of geometry anisotropy is not strong enough to results in mechanical property anisotropy.

  8. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  9. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially......Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  10. Functional characterization and phenotypic monitoring of human hematopoietic stem cell expansion and differentiation of monocytes and macrophages by whole-cell mass spectrometry

    Directory of Open Access Journals (Sweden)

    Guido Vogel

    2018-01-01

    Full Text Available The different facets of macrophages allow them to play distinct roles in tissue homeostasis, tissue repair and in response to infections. Individuals displaying dysregulated macrophage functions are proposed to be prone to inflammatory disorders or infections. However, this being a cause or a consequence of the pathology remains often unclear. In this context, we isolated and expanded CD34+ HSCs from healthy blood donors and derived them into CD14+ myeloid progenitors which were further enriched and differentiated into macrophages. Aiming for a comprehensive phenotypic profiling, we generated whole-cell mass spectrometry (WCMS fingerprints of cell samples collected along the different stages of the differentiation process to build a predictive model using a linear discriminant analysis based on principal components. Through the capacity of the model to accurately predict sample's identity of a validation set, we demonstrate that WCMS profiles obtained from bona fide blood monocytes and respectively derived macrophages mirror profiles obtained from equivalent HSC derivatives. Finally, HSC-derived macrophage functionalities were assessed by quantifying cytokine and chemokine responses to a TLR agonist in a 34-plex luminex assay and by measuring their capacity to phagocytise mycobacteria. These functional read-outs could not discriminate blood monocytes-derived from HSC-derived macrophages. To conclude, we propose that this method opens new avenues to distinguish the impact of human genetics on the dysregulated biological properties of macrophages in pathological conditions.

  11. Impact of foamed matrix components on foamed concrete properties

    Science.gov (United States)

    Tarasenko, V. N.

    2018-03-01

    The improvement of the matrix foam structure by means of foam stabilizing additives is aimed at solving the technology-oriented problems as well as at the further improvement of physical and mechanical properties of cellular-concrete composites. The dry foam mineralization is the mainstream of this research. Adding the concrete densifiers, foam stabilizers and mineral powders reduces the drying shrinkage, which makes the foam concrete products technologically effective.

  12. A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages

    Directory of Open Access Journals (Sweden)

    Town Terrence

    2009-05-01

    Full Text Available Abstract Background Macrophages and dendritic cells (DCs play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1, both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s that are involved in the resistance of DCs and macrophages to productive HSV-1 infection. Results We report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/- mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs. Conclusion These results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages.

  13. A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages

    Science.gov (United States)

    Mott, Kevin R; UnderHill, David; Wechsler, Steven L; Town, Terrence; Ghiasi, Homayon

    2009-01-01

    Background Macrophages and dendritic cells (DCs) play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1), both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s) that are involved in the resistance of DCs and macrophages to productive HSV-1 infection. Results We report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/-) mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs. Conclusion These results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages. PMID:19439086

  14. Activation of peritoneal macrophages to cytoxicity against B16 melanoma cells by Serratia marcescens polyribosome fractions

    International Nuclear Information System (INIS)

    Hoover, S.K.

    1985-01-01

    Serratia marcescens polyribosomes (SMPR) have been shown to elicit an anti-tumor response in vivo. The in-vitro effects of SMPR on macrophages as the nonspecific mediators of the anti-tumor response have not previously been examined. The first objective of this research project is to corroborate and analyze the in-vivo results by the development and application of an in-vitro cytotoxicity assay. The second objective is to examine the effect of SMPR upon previously unstimulated peritoneal macrophages as representing the mechanism of cytotoxicity. The third objective is to identify the minimal effective component of SMPR responsible for an effect on macrophages. Results revealed that SMPR preparations exert a number of effects upon macrophages. Morphologic changes included increased spreading and increased perinuclear vacuolization. Macrophages were shown to be metabolically activate by two lines of evidence. SMPR-treated macrophages exhibited increased cellular metabolism by the increased uptake of 3 H-thymidine and by the increased levels of secreted leucine aminopeptidase as compared to control macrophages. Results also showed that SMPR activates macrophages to cytotoxicity against syngeneic tumor target cells. Buoyant-density fractions were isolated and assayed for macrophage activating ability. Results showed 50S ribosomal subunits to be the smallest fraction effective for macrophage activation. Both the RNA and protein were necessary for complete effectiveness

  15. Global Dynamics of HIV Infection of CD4+ T Cells and Macrophages

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2013-01-01

    Full Text Available We study the global dynamics of an HIV infection model describing the interaction of the HIV with CD4+ T cells and macrophages. The incidence rate of virus infection and the growth rate of the uninfected CD4+ T cells and macrophages are given by general functions. We have incorporated two types of distributed delays into the model to account for the time delay between the time the uninfected cells are contacted by the virus particle and the time for the emission of infectious (matures virus particles. We have established a set of conditions which are sufficient for the global stability of the steady states of the model. Using Lyapunov functionals and LaSalle's invariant principle, we have proven that if the basic reproduction number R0 is less than or equal to unity, then the uninfected steady state is globally asymptotically stable (GAS, and if the infected steady state exists, then it is GAS.

  16. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    Science.gov (United States)

    Baci, Denisa; Tremolati, Marco; Fanuli, Matteo; Farronato, Giampietro; Mortara, Lorenzo

    2018-01-01

    Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy. PMID:29507865

  18. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    Directory of Open Access Journals (Sweden)

    Luca Parisi

    2018-01-01

    Full Text Available Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1 or alternatively activated (M2. However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like and/or builders (M2-like. We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.

  19. An experimental study of natural convection in open-cell aluminum foam

    International Nuclear Information System (INIS)

    De Jaeger, P; Reynders, R; De Schampheleire, S; Joen, C T'; Huisseune, H; Amee, B; De Paepe, M

    2012-01-01

    Natural convecton n air-saturated alumnum foam has been measured. A carefully designed experimental setup is built for his ask. The calibraton is done by comparing he results of a flat plate wh literature data, revealing excellent agreement. The nvestigated foams have a pore densiy of 10 and 20 PPI. The bondng of the foam is performed via brazing, or by applying a single epoxy which is enriched wh highly conductve alumna particles. The Rayleigh number is varied between 2500 and 6000, wh he rato of he surface area o he perimeter of he substrate as characteristc length. The foam height is varied between 12 and 25.4 mm. A major difference between both he bondng methods is observed. The brazed samples showed a beter heat ransfer n all cases. Furthermore, when ncreasing he foam height, a clear augmentaton of he heat ransfer is observed. Based on hese results, a correlaton is presented.

  20. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Science.gov (United States)

    Nishiwaki, Satoshi; Nakayama, Takayuki; Murata, Makoto; Nishida, Tetsuya; Terakura, Seitaro; Saito, Shigeki; Kato, Tomonori; Mizuno, Hiroki; Imahashi, Nobuhiko; Seto, Aika; Ozawa, Yukiyasu; Miyamura, Koichi; Ito, Masafumi; Takeshita, Kyosuke; Kato, Hidefumi; Toyokuni, Shinya; Nagao, Keisuke; Ueda, Ryuzo; Naoe, Tomoki

    2014-01-01

    Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  1. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  2. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  3. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    International Nuclear Information System (INIS)

    Fíla, T.; Koudelka, P.; Zlámal, P.; Jiroušek, O.; Kumpová, I.; Vavřík, D.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi 7 Mg 0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation

  4. The Poly-γ-D-Glutamic Acid Capsule of Bacillus licheniformis, a Surrogate of Bacillus anthracis Capsule Induces Interferon-Gamma Production in NK Cells through Interactions with Macrophages.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Rhie, Gi-Eun

    2017-05-28

    The poly-γ- D -glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis , provides protection of the bacterium from phagocytosis and allows its unimpeded growth in the host. We investigated crosstalk between murine natural killer (NK) cells and macrophages stimulated with the PGA capsule of Bacillus licheniformis , a surrogate of the B. anthracis capsule. PGA induced interferon-gamma production from NK cells cultured with macrophages. This effect was dependent on macrophage-derived IL-12 and cell-cell contact interaction with macrophages through NK cell receptor NKG2D and its ligand RAE-1. The results showed that PGA could enhance NK cell activation by inducing IL-12 production in macrophages and a contact-dependent crosstalk with macrophages.

  5. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune

  6. Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D

    Directory of Open Access Journals (Sweden)

    Joachim Kohn

    2012-03-01

    Full Text Available Current methods for screening cell-material interactions typically utilize a two-dimensional (2D culture format where cells are cultured on flat surfaces. However, there is a need for combinatorial and high-throughput screening methods to systematically screen cell-biomaterial interactions in three-dimensional (3D tissue scaffolds for tissue engineering. Previously, we developed a two-syringe pump approach for making 3D scaffold gradients for use in combinatorial screening of salt-leached scaffolds. Herein, we demonstrate that the two-syringe pump approach can also be used to create scaffold gradients using a gas-foaming approach. Macroporous foams prepared by a gas-foaming technique are commonly used for fabrication of tissue engineering scaffolds due to their high interconnectivity and good mechanical properties. Gas-foamed scaffold gradient libraries were fabricated from two biodegradable tyrosine-derived polycarbonates: poly(desaminotyrosyl-tyrosine ethyl ester carbonate (pDTEc and poly(desaminotyrosyl-tyrosine octyl ester carbonate (pDTOc. The composition of the libraries was assessed with Fourier transform infrared spectroscopy (FTIR and showed that pDTEc/pDTOc gas-foamed scaffold gradients could be repeatably fabricated. Scanning electron microscopy showed that scaffold morphology was similar between the pDTEc-rich ends and the pDTOc-rich ends of the gradient. These results introduce a method for fabricating gas-foamed polymer scaffold gradients that can be used for combinatorial screening of cell-material interactions in 3D.

  7. Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host.

    Science.gov (United States)

    Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra

    2012-09-01

    This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.

  8. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Marina Kemmerer

    Full Text Available AMP-activated protein kinase (AMPK maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO. The transcription factor peroxisome proliferator-activated receptor δ (PPARδ also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.

  9. Inflammation and wound healing: The role of the macrophage

    Science.gov (United States)

    Koh, Timothy J.; DiPietro, Luisa Ann

    2013-01-01

    The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds. PMID:21740602

  10. Functional modifications of macrophage activity after sublethal irradiation

    International Nuclear Information System (INIS)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin

  11. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity.

    Directory of Open Access Journals (Sweden)

    Zhonghan Yang

    Full Text Available Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies.

  12. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions.

    Science.gov (United States)

    Mantovani, Alberto; Locati, Massimo

    2013-07-01

    Macrophages are present in all body compartments, including cancerous tissues, and their functions are profoundly affected by signals from the microenvironment under homeostatic and pathological conditions. Tumor-associated macrophages are a major cellular component of cancer-related inflammation and have served as a paradigm for the plasticity and functional polarization of mononuclear phagocytes. Tumor-associated macrophages can exert dual influence of cancer depending on the activation state, with classically activated (M1) and alternatively activated (M2) cells generally exerting antitumoral and protumoral functions, respectively. These are extremes in a continuum of polarization states in a universe of diversity. Tumor-associated macrophages affect virtually all aspects of tumor tissues, including stem cells, metabolism, angiogenesis, invasion, and metastasis. Progress has been made in defining signaling molecules, transcription factors, epigenetic changes, and repertoire of microRNAs underlying macrophage polarization. Preclinical and early clinical data suggest that macrophages may serve as tools for the development of innovative diagnostic and therapeutic strategies in cancer and chronic nonresolving inflammatory diseases.

  13. Suppressive effects of ketamine on macrophage functions

    International Nuclear Information System (INIS)

    Chang Yi; Chen, T.-L.; Sheu, J.-R.; Chen, R.-M.

    2005-01-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 μM ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 μM, ketamine caused a release of lactate dehydrogenase and cell death. Ketamine, at 10 and 100 μM, did not affect the chemotactic activity of macrophages. Administration of 1000 μM ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-α, IL-1β, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-α, IL-1β, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-α, IL-1β, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 μM) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity

  14. On-Demand Microwave-Assisted Fabrication of Gelatin Foams

    Directory of Open Access Journals (Sweden)

    Shane D. Frazier

    2018-05-01

    Full Text Available Ultraporous gelatin foams (porosity >94%, ρ ≈ 0.039–0.056 g/cm3 have been fabricated via microwave radiation. The resulting foam structures are unique with regard to pore morphology (i.e., closed-cell and exhibit 100% macroporosity (pore size 332 to 1700 μm, presence of an external skin, and densities similar to aerogels. Results indicate that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets that are present in dehydrated gelatin films but not present in the foams after microwave radiation (700 Watts.

  15. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Lipsa, Dan; Roberts, Richard; Laramee, Robert

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  16. Macrophages are related to goblet cell hyperplasia and induce MUC5B but not MUC5AC in human bronchus epithelial cells.

    Science.gov (United States)

    Silva, Manuel A; Bercik, Premysl

    2012-06-01

    Airway goblet cell hyperplasia (GCH)--detectable by mucin staining--and abnormal macrophage infiltrate are pathological features present in many chronic respiratory disorders. However, it is unknown if both factors are associated. Using in-vivo and in-vitro models, we investigated whether macrophages are related with GCH and changes in mucin immunophenotypes. Lung sections from Sprague-Dawley rats treated for 48 h with one intra-tracheal dose of PBS or LPS (n=4-6 per group) were immunophenotyped for rat-goblet cells, immune, and proliferation markers. Human monocyte-derived macrophages (MDM) were pre-treated with or without LPS, immunophenotyped, and their supernatant, as well as cytokines at levels equivalent to supernatant were used to challenge primary culture of normal human bronchus epithelial cells (HBEC) in air-liquid interface, followed by MUC5B and MUC5AC mucin immunostaining. An association between increased bronchiolar goblet cells and terminal-bronchiolar proliferative epithelial cells confirmed the presence of GCH in our LPS rat model, which was related with augmented bronchiolar CD68 macrophage infiltration. The in-vitro experiments have shown that MUC5AC phenotype was inhibited when HBEC were challenged with supernatant from MDM pre-treated with or without LPS. In contrast, TNF-α and interleukin-1β at levels equivalent to supernatant from LPS-treated MDM increased MUC5AC. MUC5B was induced by LPS, supernatant from LPS-treated MDM, a mix of cytokines including TNF-α and TNF-α alone at levels present in supernatant from LPS-treated MDM. We demonstrated that macrophages are related with bronchiolar GCH, and that they induced MUC5B and inhibited MUC5AC in HBEC, suggesting a role for them in the pathogenesis of airway MUC5B-related GCH.

  17. Two cases of breast carcinoma with osteoclastic giant cells: Are the osteoclastic giant cells pro-tumoural differentiation of macrophages?

    Directory of Open Access Journals (Sweden)

    Shishido-Hara Yukiko

    2010-08-01

    Full Text Available Abstract Breast carcinoma with osteoclastic giant cells (OGCs is characterized by multinucleated OGCs, and usually displays inflammatory hypervascular stroma. OGCs may derive from tumor-associated macrophages, but their nature remains controversial. We report two cases, in which OGCs appear in common microenvironment despite different tumoural histology. A 44-year-old woman (Case 1 had OGCs accompanying invasive ductal carcinoma, and an 83-year-old woman (Case 2 with carcinosarcoma. Immunohistochemically, in both cases, tumoural and non-tumoural cells strongly expressed VEGF and MMP12, which promote macrophage migration and angiogenesis. The Chalkley count on CD-31-stained sections revealed elevated angiogenesis in both cases. The OGCs expressed bone-osteoclast markers (MMP9, TRAP, cathepsin K and a histiocyte marker (CD68, but not an MHC class II antigen, HLA-DR. The results indicate a pathogenesis: regardless of tumoural histology, OGCs derive from macrophages, likely in response to hypervascular microenvironments with secretion of common cytokines. The OGCs have acquired bone-osteoclast-like characteristics, but lost antigen presentation abilities as an anti-cancer defense. Appearance of OGCs may not be anti-tumoural immunological reactions, but rather pro-tumoural differentiation of macrophage responding to hypervascular microenvironments induced by breast cancer.

  18. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  19. Elaboration of recycled polyethylene foams reticulated by radiation

    International Nuclear Information System (INIS)

    Galicia M, M.

    2000-01-01

    In this work some obtained results are presented to make irradiation tests on recycled polymeric material (polyethylene) as well as mixtures of this with certain additive classes (foaming and reticulating agents) which will be used for the foams elaboration, objective of this work. Two types of foaming basically exist which are elaborated with low density polyethylene base. They are: a) the extruded and, b) the reticulated through ionizing radiation and chemically. Some of the properties that the expanded or foamed polyethylene are: flexibility, resistance, thermal stability, inter medium mechanical properties between the highly flexible foams and rigid among others. All of them determined by the cell type which conform them. Also was carried out the characterization of the obtained material contributing of this manner to diminish the quantity of solid wastes generated. (Author)

  20. miR-181a Induces Macrophage Polarized to M2 Phenotype and Promotes M2 Macrophage-mediated Tumor Cell Metastasis by Targeting KLF6 and C/EBPα

    Directory of Open Access Journals (Sweden)

    Jia Bi

    2016-01-01

    Full Text Available Macrophages can acquire a variety of polarization status and functions: classically activated macrophages (M1 macrophages; alternatively activated macrophages (M2 macrophages. However, the molecular basis of the process is still unclear. Here, this study addresses that microRNA-181a (miR-181a is a key molecule controlling macrophage polarization. We found that miR-181a is overexpressed in M2 macrophages than in M1 macrophages. miR-181a expression was decreased when M2 phenotype converted to M1, whereas it increased when M1 phenotype converted to M2. Overexpression of miR-181a in M1 macrophages diminished M1 phenotype expression while promoting polarization to the M2 phenotype. In contrast, knockdown of miR-181a in M2 macrophages promoted M1 polarization and diminished M2 phenotype expression. Mechanistically, Bioinformatic analysis revealed that Kruppel-like factor 6 (KLF6 and CCAAT/enhancer binding protein-α (C/EBPα is a potential target of miR-181a and luciferase assay confirmed that KLF6 and C/EBPα translation is suppressed by miR-181a through interaction with the 3′UTR of KLF6 and C/EBPα mRNA. Further analysis showed that induction of miR-181a suppressed KLF6 and C/EBPα protein expression. Importantly, miR-181a also diminishes M2 macrophages-mediated migration and invasion capacity of tumor cells. Collectively, our results suggest that miR-181a plays a significant role in regulating macrophage polarization through directly target KLF6 and C/EBPα.

  1. Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a co-culture microenviroment.

    Science.gov (United States)

    Chen, Miaojiao; Zhang, Jingjing; Hu, Fang; Liu, Shiping; Zhou, Zhiguang

    2015-11-01

    Accumulating evidence suggests an association between diabetes and cancer. Inflammation is a key event that underlies the pathological processes of the two diseases. Metformin displays anti-cancer effects, but the mechanism is not completely clear. This study investigated whether metformin regulated the microenvironment of macrophage polarization to affect the characteristics of HepG2 cells and the possible role of the Notch-signalling pathway. RAW264.7 macrophages were cultured alone or co-cultured with HepG2 cells and treated with metformin. We analysed classical (M1) and alternative (M2) gene expression in RAW264.7 cells using quantitative real-time polymerase chain reaction. Changes in mRNA and protein expressions of Notch signalling in both cell types were also detected using quantitative real-time polymerase chain reaction and Western-blotting analyses. The proliferation, apoptosis and migration of HepG2 cells were detected using Cell Titer 96 AQueous One Solution Cell Proliferation Assay (MTS) (Promega Corporation, Fitchburg, WI, USA), Annexin V-FITC/PI (7SeaPharmTech, Shanghai, China) and the cell scratch assay, respectively. Metformin induced single-cultured RAW264.7 macrophages with an M2 phenotype but attenuated the M2 macrophage differentiation and inhibited monocyte chemoattractant protein-1 (MCP-1) secretion in a co-culture system. The co-cultured group of metformin pretreatment activated Notch signalling in macrophages but repressed it inHepG2 cells. Co-culture also promoted the proliferation and migration of HepG2 cells. However, along with the enhanced apoptosis, the proliferation and the migration of HepG2 cells were remarkably inhibited in another co-culture system with metformin pretreatment. Metformin can skew RAW264.7 macrophages toward different phenotypes according to changes in the microenvironment, which may affect the inflammatory conditions mediated by macrophages, induce apoptosis and inhibit the proliferation and migration of HepG2

  2. Immunity to Schistosoma mansoni in guinea-pigs vaccinated with radiation-attenuated cercariae. T-cell activation of macrophages for larval killing

    International Nuclear Information System (INIS)

    Gordon, J.R.; McLaren, D.J.

    1988-01-01

    This study addresses macrophage activation in guinea-pigs vaccinated with radiation-attenuated cercariae of Schistosom mansoni. Peritoneal exudate macrophages elicited in vaccinated animals by mineral oil injection were activated to kill larval schistosomes in vitro. Killing efficiency is dependent upon the cell:target ratio employed and is enhanced by, but is not strictly dependent on, the presence of specific antibodies. Macrophages co-cultured with parasites release superoxide radicals and hydrogen peroxide, but the use of inhibitors has shown that neither of these reactive oxygen intermediates are the causal agents of cellular cytotoxicity in this system. Oil-elicited macrophages from naive guinea-pigs do not show comparable activation; they can, however, be activated in vitro by incubation with culture supernatant fluids from schistosome antigen-stimulated spleen, or lymph node cells harvested from vaccinated guinea-pigs. Naive macrophages activated in this way kill schistosomula in vitro and release the activation markers IL-l and superoxide anion. The macrophage-activating factor (MAF) present in spleen cell culture supernatant fluids has a MW of 35,000-55,000, but does not have the chemical characteristics of gamma-interferon. (author)

  3. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  4. Development and characterization of a bovine monocyte-derived macrophage cell line

    Science.gov (United States)

    Monocytes circulate in the blood, and later differentiate into macrophages in the tissues. They are components of the innate arm of the immune response and are one of the first lines of defense again invading pathogens. However, they also serve as host cells for intracellular pathogens such as Mycob...

  5. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    Science.gov (United States)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  6. Role of foam drainage in producing protein aggregates in foam fractionation.

    Science.gov (United States)

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Numerical modeling of foam flows

    International Nuclear Information System (INIS)

    Cheddadi, Ibrahim

    2010-01-01

    Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)

  8. IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment

    Science.gov (United States)

    Fang, Min; Li, Yongkui; Huang, Kai; Qi, Shanshan; Zhang, Jian; Zgodzinski, Witold; Majewski, Marek; Wallner, Grzegorz; Gozdz, Stanislaw; Macek, Pawel; Kowalik, Artur; Pasiarski, Marcin; Grywalska, Ewelina; Vatan, Linda; Nagarsheth, Nisha; Li, Wei; Zhao, Lili; Kryczek, Ilona; Wang, Guobin; Wang, Zheng; Zou, Weiping; Wang, Lin

    2018-01-01

    The expression and biological role of IL33 in colon cancer is poorly understood. In this study, we show that IL33 is expressed by vascular endothelial cells and tumor cells in the human colon cancer microenvironment. Administration of human IL33 and overexpression of murine IL33 enhanced human and murine colon cancer cell growth in vivo, respectively. IL33 stimulated cell sphere formation and prevented chemotherapy-induced tumor apoptosis. Mechanistically, IL33 activated core stem cell genes NANOG, NOTCH3, and OCT3/4 via the ST2 signaling pathway, and induced phosphorylation of c-Jun N terminal kinase (JNK) activation and enhanced binding of c-Jun to the promoters of the core stem cell genes. Moreover, IL33 recruited macrophages into the cancer microenvironment and stimulated them to produce prostaglandin E2, which supported colon cancer stemness and tumor growth. Clinically, tumor IL33 expression associated with poor survival in patients with metastatic colon cancer. Thus, IL33 dually targets tumor cells and macrophages and endows stem-like qualities to colon cancer cells to promote carcinogenesis. Collectively, our work reveals an immune-associated mechanism that extrinsically confers cancer cell stemness properties. Targeting the IL33 signaling pathway may offer an opportunity to treat patients with metastatic cancer. PMID:28249897

  9. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    Science.gov (United States)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  10. Simple shearing flow of dry soap foams with tetrahedrally close-packed structure

    Energy Technology Data Exchange (ETDEWEB)

    Reinelt, Douglas A. [Department of Mathematics, Southern Methodist University, Dallas, Texas 75275-0156 (United States); Kraynik, Andrew M. [Engineering Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185-0834 (United States)

    2000-05-01

    The microrheology of dry soap foams subjected to quasistatic, simple shearing flow is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by using the Surface Evolver to calculate foam structures that minimize total surface area at each value of strain. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3}, where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometry and topology that restore equilibrium to unstable configurations that violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new structure associated with each stable solution branch results from an avalanche of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization. (c) 2000 Society of Rheology.

  11. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  12. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice.

    Science.gov (United States)

    Rom, Oren; Korach-Rechtman, Hila; Hayek, Tony; Danin-Poleg, Yael; Bar, Haim; Kashi, Yechezkel; Aviram, Michael

    2017-04-01

    The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE -/- ) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.

  13. Unraveling Macrophage Heterogeneity in Erythroblastic Islands

    Directory of Open Access Journals (Sweden)

    Katie Giger Seu

    2017-09-01

    Full Text Available Mammalian erythropoiesis occurs within erythroblastic islands (EBIs, niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC, which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We

  14. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  15. Activated Macrophages as a Novel Determinant of Tumor Cell Radioresponse: The Role of Nitric Oxide-Mediated Inhibition of Cellular Respiration and Oxygen Sparing

    International Nuclear Information System (INIS)

    Jiang Heng; De Ridder, Mark; Verovski, Valeri N.; Sonveaux, Pierre; Jordan, Benedicte F.; Law, Kalun; Monsaert, Christinne; Van den Berge, Dirk L.; Verellen, Dirk; Feron, Olivier; Gallez, Bernard; Storme, Guy A.

    2010-01-01

    Purpose: Nitric oxide (NO), synthesized by the inducible nitric oxide synthase (iNOS), is known to inhibit metabolic oxygen consumption because of interference with mitochondrial respiratory activity. This study examined whether activation of iNOS (a) directly in tumor cells or (b) in bystander macrophages may improve radioresponse through sparing of oxygen. Methods and Materials: EMT-6 tumor cells and RAW 264.7 macrophages were exposed to bacterial lipopolysaccharide plus interferon-γ, and examined for iNOS expression by reverse transcription polymerase chain reaction, Western blotting and enzymatic activity. Tumor cells alone, or combined with macrophages were subjected to metabolic hypoxia and analyzed for radiosensitivity by clonogenic assay, and for oxygen consumption by electron paramagnetic resonance and a Clark-type electrode. Results: Both tumor cells and macrophages displayed a coherent picture of iNOS induction at transcriptional/translational levels and NO/nitrite production, whereas macrophages showed also co-induction of the inducible heme oxygenase-1, which is associated with carbon monoxide (CO) and bilirubin production. Activation of iNOS in tumor cells resulted in a profound oxygen sparing and a 2.3-fold radiosensitization. Bystander NO-producing, but not CO-producing, macrophages were able to block oxygen consumption by 1.9-fold and to radiosensitize tumor cells by 2.2-fold. Both effects could be neutralized by aminoguanidine, a metabolic iNOS inhibitor. An improved radioresponse was clearly observed at macrophages to tumor cells ratios ranging between 1:16 to 1:1. Conclusions: Our study is the first, as far as we are aware, to provide evidence that iNOS may induce radiosensitization through oxygen sparing, and illuminates NO-producing macrophages as a novel determinant of tumor cell radioresponse within the hypoxic tumor microenvironment.

  16. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    Science.gov (United States)

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  17. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  18. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming

    Science.gov (United States)

    Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Renée; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle; Beauséjour, Christian; Stroncek, David; Le Deist, Françoise; Haddad, Elie

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to-DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation. PMID:27070086

  19. Genesis and kinetics of peritoneal macrophages

    International Nuclear Information System (INIS)

    Wacker, H.H.

    1982-01-01

    The author intended to develop an experimental model for investigations of the proliferation kinetics of tissue macrophages, using the example of peritoneal macrophages. To get a suitable cell population, a blood cell population was labelled with 3 H-thymidine and transferred in a parabiotic test. (orig./MG) [de

  20. Role of Gag and lipids during HIV-1 assembly in CD4 T cells and Macrophages

    Directory of Open Access Journals (Sweden)

    Charlotte eMariani

    2014-06-01

    Full Text Available HIV-1 is an RNA enveloped virus that preferentiallyinfects CD4+ T lymphocytes andalso macrophages. In CD4+ T cells, HIV-1mainly buds from the host cell plasma membrane.The viral Gag polyprotein targets theplasma membrane and is the orchestrator ofthe HIV assembly as its expression is sufficientto promote the formation of virus-likeparticles particles carrying a lipidic envelopederiving from the host cell membrane. Certainlipids are enriched in the viral membraneand are thought to play a key role in theassembly process and the envelop composition.A large body of work performed oninfected CD4+ T cells has provided importantknowledge about the assembly process andthe membrane virus lipid composition. WhileHIV assembly and budding in macrophages isthought to follow the same general Gag-drivenmechanism as in T-lymphocytes, the HIV cyclein macrophage exhibits specific features.In these cells, new virions bud from the limitingmembrane of seemingly intracellular compartments,where they accumulate while remaininginfectious. These structures are now oftenreferred to as Virus Containing Compartments(VCCs. Recent studies suggest that VCCsrepresent intracellularly sequestered regionsof the plasma membrane, but their precisenature remains elusive. The proteomic andlipidomic characterization of virions producedby T cells or macrophages has highlightedthe similarity between their composition andthat of the plasma membrane of producercells, as well as their enrichment in acidiclipids, some components of raft lipids andin tetraspanin-enriched microdomains. Greatchances are that Gag promotes the coalescenceof these components into an assemblyplatform from which viral budding takesplace. How Gag exactly interacts with membranelipids and what are the mechanisms involvedin the interaction between the differentmembrane nanodomains within the assemblyplatform remains unclear. Here we review recentliterature regarding the role of Gag andlipids

  1. In-situ Polymerization-modification Process and Foaming of Poly(ethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    仲华; 奚桢浩; 刘涛; 赵玲

    2013-01-01

    Most of traditional linear poly(ethylene terephthalate) (PET) resins of relatively low molecular mass and narrow molecular mass distribution have low melt strength at foaming temperatures, which are not enough to support and keep cells. An in-situ polymerization-modification process with esterification and polycondensation stages was performed in a 2 L batch stirred reactor using pyromellitic dianhydride (PMDA) or pentaerythritol (PENTA) as modifying monomers to obtain PETs with high melt strength. The influence of amounts of modifying monomers on the properties of modified PET was investigated. It was found that the selected modifying monomers could effectively introduce branched structures into the modified PETs and improve their melt strength. With in-creasing the amount of the modifying monomer, the melt strength of the modified PET increased. But when the amount of PENTA reached 0.35%or PMDA reached 0.9%, crosslinking phenomenon was observed in the modified PET. Supercritical carbon dioxide (ScCO2) was employed as physical foaming agent to evaluate the foaming ability of modified PETs. The modified PETs had good foaming properties at 14 MPa of CO2 pressure with foaming tem-perature ranging from 265 °C to 280 °C. SEM micrographs demonstrated that both modified PET foams had ho-mogeneous cellular structures, with cell diameter ranging from 35 μm to 49 μm for PENTA modified PETs and 38μm to 57μm for PMDA modified ones. Correspondingly, the cell density had a range of 3.5×107 cells·cm-3 to 7×106 cells·cm-3 for the former and 2.8×107 cells·cm-3 to 5.8×106 cells·cm-3 for the latter.

  2. The elusive antifibrotic macrophage

    Directory of Open Access Journals (Sweden)

    Adhyatmika eAdhyatmika

    2015-11-01

    Full Text Available Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e. antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behaviour stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behaviour in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behaviour.

  3. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    Science.gov (United States)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  4. Colonic macrophage polarization in homeostasis, inflammation, and cancer

    Science.gov (United States)

    Appleyard, Caroline B.

    2016-01-01

    Our review focuses on the colonic macrophage, a monocyte-derived, tissue-resident macrophage, and the role it plays in health and disease, specifically in inflammatory conditions such as inflammatory bowel disease and cancer of the colon and rectum. We give special emphasis to macrophage polarization, or phenotype, in these different states. We focus on macrophages because they are one of the most numerous leukocytes in the colon, and because they normally contribute to homeostasis through an anti-inflammatory phenotype. However, in conditions such as inflammatory bowel disease, proinflammatory macrophages are increased in the colon and have been linked to disease severity and progression. In colorectal cancer, tumor cells may employ anti-inflammatory macrophages to promote tumor growth and dissemination, whereas proinflammatory macrophages may antagonize tumor growth. Given the key roles that this cell type plays in homeostasis, inflammation, and cancer, the colonic macrophage is an intriguing therapeutic target. As such, potential macrophage-targeting strategies are discussed. PMID:27229123

  5. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Nicolas Espagnolle

    2017-04-01

    Full Text Available Summary: Mesenchymal stromal cells (MSCs sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1MФ and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens different perspectives for MSC-based cell therapy. : Mesenchymal stromal cells (MSCs are promising for cell-based therapy in inflammatory disorders by switching off the immune response. Varin and colleagues demonstrate that MSCs and inflammatory macrophages communicate via an unconventional but functional interaction that strongly increases the immunosuppressive capacities of MSCs. This new communication between the innate immune system and MSCs opens new perspectives for MSC-based cell therapy. Keywords: macrophages, bone marrow mesenchymal stromal cells, functional interaction, CD54, immunosuppression, indoleamine 2,3-dioxygenase, cell therapy

  6. Conditional Macrophage Depletion Increases Inflammation and Does Not Inhibit the Development of Osteoarthritis in Obese Macrophage Fas-Induced Apoptosis-Transgenic Mice.

    Science.gov (United States)

    Wu, Chia-Lung; McNeill, Jenna; Goon, Kelsey; Little, Dianne; Kimmerling, Kelly; Huebner, Janet; Kraus, Virginia; Guilak, Farshid

    2017-09-01

    To investigate whether short-term, systemic depletion of macrophages can mitigate osteoarthritis (OA) following injury in the setting of obesity. CSF-1R-GFP+ macrophage Fas-induced apoptosis (MaFIA)-transgenic mice that allow conditional depletion of macrophages were placed on a high-fat diet and underwent surgery to induce knee OA. A small molecule (AP20187) was administrated to deplete macrophages in MaFIA mice. The effects of macrophage depletion on acute joint inflammation, OA severity, and arthritic bone changes were evaluated using histology and micro-computed tomography. Immunohistochemical analysis was performed to identify various immune cells. The levels of serum and synovial fluid cytokines were also measured. Macrophage-depleted mice had significantly fewer M1 and M2 macrophages in the surgically operated joints relative to controls and exhibited decreased osteophyte formation immediately following depletion. Surprisingly, macrophage depletion did not attenuate the severity of OA in obese mice; instead, it induced systemic inflammation and led to a massive infiltration of CD3+ T cells and particularly neutrophils, but not B cells, into the injured joints. Macrophage-depleted mice also demonstrated a markedly increased number of proinflammatory cytokines including granulocyte colony-stimulating factor, interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor in both serum and joint synovial fluid, although the mice showed a trend toward decreased levels of insulin and leptin in serum after macrophage depletion. Our findings indicate that macrophages are vital for modulating homeostasis of immune cells in the setting of obesity and suggest that more targeted approaches of depleting specific macrophage subtypes may be necessary to mitigate inflammation and OA in the setting of obesity. © 2017, American College of Rheumatology.

  7. Low density lipoprotein labelling characterizes experimentally induced atherosclerotic lesions in rabbits in vivo as to presence of foam cells and endothelial coverage

    International Nuclear Information System (INIS)

    Virgolini, I.; Sinzinger, H.; Angelberger, P.; O'Grady, J.

    1991-01-01

    The entry of autologous iodine 125 low density lipoprotein ( 125 I-LDL) into the aortic wall in rabbits was measured. After abdominal endothelium abrasion with a Fogarthy catheter the animals were fed at 1% cholesterol-supplemented diet for 4 weeks. The animals were killed 1-48 h after administration of 25 μCi 125 I-LDL. Local entry of radiolabelled LDL was estimated and correlated to endothelial surface lining and foam cell content, both controlled morphologically. Endothelialized segments showed the lowest entry of 125 I-LDL, the maximum uptake was reached at around 8 h. In de-endothelialized segments the entry was higher and the peak later (12 h), while in re-endothelialized segments a continuous increase in 125 I-LDL entry up to 48 h was measured. Number and extent of foam cells correlated with the entry of LDL. The data indicate the usefulnes of LDL radiolabelling for qualitative in vivo information on surface lining and foam cell content. (orig.)

  8. Mechanical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    A. Biani

    2016-12-01

    Full Text Available A cycloolefin copolymer matrix was melt mixed with exfoliated graphite nanoplatelets (xGnP and the resulting nanocomposites were foamed by supercritical carbon dioxide. The density of the obtained foams decreased with the foaming pressure. Moreover, xGnP limited the cell growth during the expansion process thus reducing the cell diameter (from 1.08 to 0.22 mm with an XGnP amount of 10 wt% at 150 bar and increasing the cell density (from 12 to 45 cells/mm2 with a nanofiller content of 10 wt% at 150 bar. Electron microscopy observations of foams evidenced exfoliation and orientation of the nanoplatelets along the cell walls. Quasi-static compressive tests and tensile creep tests on foams clearly indicated that xGnP improved the modulus (up to a factor of 10 for a xGnP content of 10 wt% and the creep stability.

  9. MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset.

    Directory of Open Access Journals (Sweden)

    Hannelie Korf

    Full Text Available Macrophages contribute in the initiation and progression of insulitis during type 1 diabetes (T1D. However, the mechanisms governing their recruitment into the islets as well as the manner of retention and activation are incompletely understood. Here, we investigated a role for macrophage migration inhibitory factor (MIF and its transmembrane receptor, CD74, in the progression of T1D. Our data indicated elevated MIF concentrations especially in long-standing T1D patients and mice. Additionally, NOD mice featured increased MIF gene expression and CD74+ leukocyte frequencies in the pancreas. We identified F4/80+ macrophages as the main immune cells in the pancreas expressing CD74 and showed that MIF antagonism of NOD macrophages prevented their activation-induced cytokine production. The physiological importance was highlighted by the fact that inhibition of MIF delayed the onset of autoimmune diabetes in two different diabetogenic T cell transfer models. Mechanistically, macrophages pre-conditioned with the MIF inhibitor featured a refractory capacity to trigger T cell activation by keeping them in a naïve state. This study underlines a possible role for MIF/CD74 signaling pathways in promoting macrophage-mediated inflammation in T1D. As therapies directed at the MIF/CD74 pathway are in clinical development, new opportunities may be proposed for arresting T1D progression.

  10. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Germini, Diego; Rodighiero, Isabella [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Mirandola, Prisco [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); De Conto, Flora; Medici, Maria-Cristina [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Gatti, Rita [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); Chezzi, Carlo; Calderaro, Adriana [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy)

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  11. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis.

    Science.gov (United States)

    Locatelli, Luigi; Cadamuro, Massimiliano; Spirlì, Carlo; Fiorotto, Romina; Lecchi, Silvia; Morell, Carola Maria; Popov, Yury; Scirpo, Roberto; De Matteis, Maria; Amenduni, Mariangela; Pietrobattista, Andrea; Torre, Giuliano; Schuppan, Detlef; Fabris, Luca; Strazzabosco, Mario

    2016-03-01

    Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a β-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvβ6 integrin, an activator of latent local transforming growth factor-β1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time. © 2015 by the American Association for the Study of Liver Diseases.

  12. Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    Science.gov (United States)

    Tabas, Ira; Bornfeldt, Karin E.

    2016-01-01

    The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964

  13. Endometriosis, a disease of the macrophage

    Directory of Open Access Journals (Sweden)

    Annalisa eCapobianco

    2013-01-01

    Full Text Available Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularised endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where are recruited and undergo alternative activation. In rodents macrophages are required for lesions to establish and to grow; bone-marrow derived Tie-2 expressing macrophages specifically contribute to lesions neovasculature, possibly because they concur to the recruitment of circulating endothelial progenitors, and sustain their survival and the integrity of the vessel wall. Macrophages sense cues (hypoxia, cell death, iron overload in the lesions and react delivering signals to restore the local homeostasis: their action represents a necessary, non-redundant step in the natural history of the disease. Endometriosis may be due to a misperception of macrophages about ectopic endometrial tissue. They perceive it as a wound, they activate programs leading to ectopic cell survival and tissue vascularization. Clearing this misperception is a critical area for the development of novel medical treatments of endometriosis, an urgent and unmet medical need.

  14. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    Science.gov (United States)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  15. Liquid foam templating - A route to tailor-made polymer foams.

    Science.gov (United States)

    Andrieux, Sébastien; Quell, Aggeliki; Stubenrauch, Cosima; Drenckhan, Wiebke

    2018-06-01

    Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It

  16. Improved survival of mesenchymal stem cells by macrophage migration inhibitory factor

    OpenAIRE

    Xia, Wenzheng; Xie, Congying; Jiang, Miaomiao; Hou, Meng

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a critical inflammatory cytokine that was recently associated with progenitor cell survival and potently inhibits apoptosis. We examined the protective effect of MIF on hypoxia/serum deprivation (SD)-induced apoptosis of mesenchymal stem cells (MSCs), as well as the possible mechanisms. MSCs were obtained from rat bone marrow and cultured in vitro. Apoptosis was induced by culturing MSCs under hypoxia/SD conditions for up to 24?h and assessed by...

  17. 1Autoreactive pre-plasma cells break tolerance in the absence of regulation by dendritic cells and macrophages

    OpenAIRE

    Gilbert, Mileka R.; Wagner, Nikki J.; Jones, Shannon Z.; Wisz, Amanda B.; Roques, Jose R.; Krum, Kristen N.; Lee, Sang-Ryul; Nickeleit, Volker; Hulbert, Chrys; Thomas, James W.; Gauld, Stephen B.; Vilen, Barbara J.

    2012-01-01

    The ability to induce antibody responses to pathogens while maintaining the quiescence of autoreactive cells is an important aspect of immune tolerance. During activation of Toll-like receptor-4 (TLR4), dendritic cells (DCs) and macrophages (MFs) repress autoantibody production through their secretion of IL-6 and soluble CD40L (sCD40L). These soluble mediators selectively repress B cells chronically exposed to antigen, but not naïve cells, suggesting a means to maintain tolerance during TLR4 ...

  18. The influence of strain-induced damage on the mechanical response of open-cell aluminum foam

    NARCIS (Netherlands)

    Amsterdam, E.; de Vries, J. H. B.; De Hosson, J. Th. M.; Onck, P. R.

    Compression and tensile tests have been performed on annealed (AN) and heat-treated (HT) Duocel open-cell aluminum foam (20 PPI) samples for relative densities ranging between 3 and 13%. The novel approach in this work is to study the evolution of damage and to distinguish the influence of ductile

  19. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  20. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.