WorldWideScience

Sample records for macrophage cytokine production

  1. Interleukin-6 Contributes to Age-Related Alteration of Cytokine Production by Macrophages

    Science.gov (United States)

    Gomez, Christian R.; Karavitis, John; Palmer, Jessica L.; Faunce, Douglas E.; Ramirez, Luis; Nomellini, Vanessa; Kovacs, Elizabeth J.

    2010-01-01

    Here, we studied in vitro cytokine production by splenic macrophages obtained from young and aged BALB/c wild type (WT) and IL-6 knockout (IL-6 KO) mice. Relative to macrophages obtained from young WT mice given lipopolysaccharide (LPS), those from aged WT mice had decreased production of proinflammatory cytokines. In contrast, when compared to macrophages from young IL-6 KO mice, LPS stimulation yielded higher levels of these cytokines by cells from aged IL-6 KO mice. Aging or IL-6 deficiency did not affected the percentage of F4/80+ macrophages, or the surface expression of Toll-like receptor 4 (TLR4) and components of the IL-6 receptor. Overall, our results indicate that IL-6 plays a role in regulating the age-related defects in macrophages through alteration of proinflammatory cytokines, adding to the complexity of IL-6-mediated impairment of immune cell function with increasing age. PMID:20671912

  2. Lemongrass and citral effect on cytokines production by murine macrophages.

    Science.gov (United States)

    Bachiega, Tatiana Fernanda; Sforcin, José Maurício

    2011-09-01

    Cymbopogon citratus (DC) Stapf (Poaceae-Gramineae), an herb commonly known as lemongrass (LG), is an important source of ethnomedicines as well as citral, the major constituent of Cymbopogon citratus, used in perfumery, cosmetic and pharmaceutical industries for controlling pathogens. Thus, the goal of this work was to analyze the effect of LG and citral on cytokines production (IL-1β, IL-6 and IL-10) in vitro, as well as before or after LPS incubation. Peritoneal macrophages from BALB/c mice were treated with LG or citral in different concentrations for 24h. The concentrations that inhibited cytokines production were tested before or after macrophages challenge with LPS, in order to evaluate a possible anti-inflammatory action. Supernatants of cell cultures were used for cytokines determination by ELISA. As to IL-1β, only citral inhibited its release, exerting an efficient action before LPS challenge. LG and citral inhibited IL-6 release. Cymbopogon citratus showed inhibitory effects only after LPS challenge, whereas citral prevented efficiently LPS effects before and after LPS addition. Citral inhibited IL-10 production and although LG did not inhibit its production, the concentration of 100 μg/well was tested in the LPS-challenge protocol, because it inhibited IL-6 production. LG inhibited LPS action after macrophages incubation with LPS, while citral counteracted LPS action when added before or after LPS incubation. LG exerted an anti-inflammatory action and citral may be involved in its inhibitory effects on cytokines production. We suggest that a possible mechanism involved in such results could be the inhibition of the transcription factor NF-κB. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  4. The effects of propolis on cytokine production in lipopolysaccharide-stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Hatice Özbilge

    2011-12-01

    Full Text Available Objectives: Propolis, a bee-product, has attracted researchers’ interest in recent years because of several biological and pharmacological properties. Lipopolysaccharide (LPS is a component of the outer membrane of Gram-negative bacteria and has an important role in the pathogenesis of septic shock and several inflammatory diseases by causing excessive release of inflammatory cytokines. The aim of this study was to investigate the effects of ethanol extract of propolis collected in Kayseri and its surroundings on production of pro-inflammatory cytokines in LPS-stimulated macrophages.Materials and methods: In vitro, U937 human macrophage cells were grown in RPMI-1640 medium supplemented with fetal bovine serum (10% and penicillin-streptomycin (2% and divided into: control, LPS treated, and propolis+LPS treated cell groups. After incubation in an atmosphere of 5% CO2 and at 37°C of cells, interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α levels were measured in cell-free supernatants by ELISA.Results: IL-1β, IL-6 and TNF-α levels increased in LPS treated cell group according to control, statistically significant. Each cytokine levels significantly decreased in LPS and propolis treated cell group according to only LPS treated cell group (p<0.05.Conclusion: Propolis is a natural product to be examined for usage when needed the suppression of pro-inflammatory cytokines. J Clin Exp Invest 2011; 2 (4: 366-370

  5. Extracellular vesicles from Leishmania-infected macrophages confer an anti-infection cytokine-production profile to naïve macrophages.

    Directory of Open Access Journals (Sweden)

    André Cronemberger-Andrade

    2014-09-01

    Full Text Available Extracellular vesicles (EVs are structures with phospholipid bilayer membranes and 100-1000 nm diameters. These vesicles are released from cells upon activation of surface receptors and/or apoptosis. The production of EVs by dendritic cells, mast cells, macrophages, and B and T lymphocytes has been extensively reported in the literature. EVs may express MHC class II and other membrane surface molecules and carry antigens. The aim of this study was to investigate the role of EVs from Leishmania-infected macrophages as immune modulatory particles.In this work it was shown that BALB/c mouse bone marrow-derived macrophages, either infected in vitro with Leishmania amazonensis or left uninfected, release comparable amounts of 50-300 nm-diameter extracellular vesicles (EVs. The EVs were characterized by flow cytometry and electron microscopy. The incubation of naïve macrophages with these EVs for 48 hours led to a statistically significant increase in the production of the cytokines IL-12, IL-1β, and TNF-α.EVs derived from macrophages infected with L. amazonensis induce other macrophages, which in vivo could be bystander cells, to produce the proinflammatory cytokines IL-12, IL-1β and TNF-α. This could contribute both to modulate the immune system in favor of a Th1 immune response and to the elimination of the Leishmania, leading, therefore, to the control the infection.

  6. Nocardia brasiliensis Modulates IFN-gamma, IL-10, and IL-12 cytokine production by macrophages from BALB/c Mice.

    Science.gov (United States)

    Salinas-Carmona, Mario C; Zúñiga, Juan M; Pérez-Rivera, Luz I; Segoviano-Ramírez, Juan C; Vázquez-Marmolejo, Anna V

    2009-05-01

    Interferon-gamma (IFN-gamma) is a critical cytokine involved in control of different infections. Actinomycetoma is a chronic infectious disease mainly caused by the bacterium Nocardia brasiliensis, which destroys subcutaneous tissue, including bone. Currently, the mechanism of pathogenesis in N. brasiliensis infection is not known. Here, we demonstrate that N. brasiliensis induced an IFN-gamma response in serum after 24 h of infection, while, in infected tissue, positive cells to IFN-gamma appeared in 2 early peaks: the first was present only 3 h after infection, then transiently decreased; and the second peak appeared 12 h after infection and was independent of interleukin-10. Resident macrophages produced an immediate IFN-gamma response 1 h after in vitro infection, and spleen-positive cells began later. The phase of growth of N. brasiliensis affected cytokine production, and exposure of macrophages to Nocardia opsonized with either polyclonal anti-Nocardia antibodies or anti-P61 monoclonal antibody led to a suppression of cytokine production. Our report provides evidence that N. brasiliensis as an intracellular bacterium modulates macrophage cytokine production, which helps survival of the pathogen. Modulation of these cytokines may contribute to pathogenesis once this bacterium is inside the macrophage.

  7. Influence of phthalates on cytokine production in monocytes and macrophages

    DEFF Research Database (Denmark)

    Hansen, Juliana Frohnert; Bendtzen, Klaus; Boas, Malene

    2015-01-01

    BACKGROUND: Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which......://www.crd.york.ac.uk/NIHR_PROSPERO, registration number CRD42013004236). In vivo, ex vivo and in vitro studies investigating the influence of phthalates on cytokine mRNA expression and cytokine secretion in animals and humans were included. A total of 11 reports, containing 12 studies, were found eligible for inclusion. In these, a total of four...... different phthalate diesters, six primary metabolites (phthalate monoesters) and seven different cytokines were investigated. Though all studies varied greatly in study design and species sources, four out of five studies that investigated di-2-ethylhexyl phthalate found an increased tumour necrosis factor...

  8. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    International Nuclear Information System (INIS)

    Fernandes, Cláudia A.; Fievez, Laurence; Neyrinck, Audrey M.; Delzenne, Nathalie M.; Bureau, Fabrice; Vanbever, Rita

    2012-01-01

    Highlights: ► Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. ► Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. ► Cambinol decreased NF-κB activity but had no impact on p38 MAPK activation. ► Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-α) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-κB) activity and inhibitor kappa B alpha (IκBα) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  9. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    Science.gov (United States)

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  10. Effect of Tityus serrulatus venom on cytokine production and the activity of murine macrophages

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2002-01-01

    Full Text Available The purpose of this study was to investigate the effects of Tityus serrulatus venom (TSV on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2 and nitric oxide (NO in supernatants of peritoneal macrophages. Several functional bioassays were employed including an in vitro model for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6 and interferon-γ (IFN-γ were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2 release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functions in vitro.

  11. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanzhen; Mei, Chenfang [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Liu, Hao [Affiliated Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou 510095 (China); Wang, Hongsheng [Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Zeng, Guoqu; Lin, Jianhui [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Xu, Meiying, E-mail: xumy@gdim.cn [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China)

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  12. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    International Nuclear Information System (INIS)

    Liu, Yanzhen; Mei, Chenfang; Liu, Hao; Wang, Hongsheng; Zeng, Guoqu; Lin, Jianhui; Xu, Meiying

    2014-01-01

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health

  13. Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages.

    Science.gov (United States)

    Garbati, Michael R; Hays, Laura E; Rathbun, R Keaney; Jillette, Nathaniel; Chin, Kathy; Al-Dhalimy, Muhsen; Agarwal, Anupriya; Newell, Amy E Hanlon; Olson, Susan B; Bagby, Grover C

    2016-03-01

    The Fanconi anemia proteins participate in a canonical pathway that repairs cross-linking agent-induced DNA damage. Cells with inactivated Fanconi anemia genes are universally hypersensitive to such agents. Fanconi anemia-deficient hematopoietic stem cells are also hypersensitive to inflammatory cytokines, and, as importantly, Fanconi anemia macrophages overproduce such cytokines in response to TLR4 and TLR7/8 agonists. We questioned whether TLR-induced DNA damage is the primary cause of aberrantly regulated cytokine production in Fanconi anemia macrophages by quantifying TLR agonist-induced TNF-α production, DNA strand breaks, crosslinker-induced chromosomal breakage, and Fanconi anemia core complex function in Fanconi anemia complementation group C-deficient human and murine macrophages. Although both M1 and M2 polarized Fanconi anemia cells were predictably hypersensitive to mitomycin C, only M1 macrophages overproduced TNF-α in response to TLR-activating signals. DNA damaging agents alone did not induce TNF-α production in the absence of TLR agonists in wild-type or Fanconi anemia macrophages, and mitomycin C did not enhance TLR responses in either normal or Fanconi anemia cells. TLR4 and TLR7/8 activation induced cytokine overproduction in Fanconi anemia macrophages. Also, although TLR4 activation was associated with induced double strand breaks, TLR7/8 activation was not. That DNA strand breaks and chromosome breaks are neither necessary nor sufficient to account for the overproduction of inflammatory cytokines by Fanconi anemia cells suggests that noncanonical anti-inflammatory functions of Fanconi anemia complementation group C contribute to the aberrant macrophage phenotype and suggests that suppression of macrophage/TLR hyperreactivity might prevent cytokine-induced stem cell attrition in Fanconi anemia. © Society for Leukocyte Biology.

  14. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Claudia A. [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium); Fievez, Laurence [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Neyrinck, Audrey M.; Delzenne, Nathalie M. [Universite catholique de Louvain, LDRI, Metabolism and Nutrition Research Group, Brussels B-1200 (Belgium); Bureau, Fabrice [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Vanbever, Rita, E-mail: rita.vanbever@uclouvain.be [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  15. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    Science.gov (United States)

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  16. Degalactosylated/Desialylated Bovine Colostrum Induces Macrophage Phagocytic Activity Independently of Inflammatory Cytokine Production.

    Science.gov (United States)

    Uto, Yoshihiro; Kawai, Tomohito; Sasaki, Toshihide; Hamada, Ken; Yamada, Hisatsugu; Kuchiike, Daisuke; Kubo, Kentaro; Inui, Toshio; Mette, Martin; Tokunaga, Ken; Hayakawa, Akio; Go, Akiteru; Oosaki, Tomohiro

    2015-08-01

    Colostrum contains antibodies, such as immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM), and, therefore, has potent immunomodulating activity. In particular, IgA has an O-linked sugar chain similar to that in the group-specific component (Gc) protein, a precursor of the Gc protein-derived macrophage-activating factor (GcMAF). In the present study, we investigated the macrophage-activating effects of degalactosylated/desialylated bovine colostrum. We detected the positive band in degalactosylated/ desialylated bovine colostrum by western blotting using Helix pomatia agglutinin lectin. We also found that degalactosylated/ desialylated bovine colostrum could significantly enhance the phagocytic activity of mouse peritoneal macrophages in vitro and of intestinal macrophages in vivo. Besides, degalactosylated/desialylated bovine colostrum did not mediate the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Similar to the use of GcMAF, degalactosylated/desialylated bovine colostrum can be used as a potential macrophage activator for various immunotherapies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages.

    Science.gov (United States)

    Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N

    2004-12-01

    The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.

  18. Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines.

    Directory of Open Access Journals (Sweden)

    Shuyi Zhang

    2010-03-01

    Full Text Available The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis. Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated.To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS, and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines.This study provides global gene expression data for a diverse set of biologically significant pathogens and cytokines and identifies the relationships between

  19. Effect of Oxidized Dextran on Cytokine Production and Activation of IRF3 Transcription Factor in Macrophages from Mice of Opposite Strains with Different Sensitivity to Tuberculosis Infection.

    Science.gov (United States)

    Chechushkov, A V; Kozhin, P M; Zaitseva, N S; Gainutdinov, P I; Men'shchikova, E B; Troitskii, A V; Shkurupy, V A

    2018-04-16

    We studied differences in the production of pro- and anti-inflammatory cytokines and IRF3 transcription factor by peritoneal macrophages from mice of opposite strains CBA/J and C57Bl/6 and the effect of 60-kDa oxidized dextran on these parameters. Macrophages from C57Bl/6 mice were mainly characterized by the production of proinflammatory cytokines TNFα, IL-12, and MCP-1 (markers of M1 polarization). By contrast, CBA/J mice exhibited a relatively high level of anti-inflammatory cytokine IL-10 and lower expression of proinflammatory cytokines (M2 phenotype). IRF3 content in peritoneal macrophages of CBA/J mice was higher than in C57Bl/6 mice. Oxidized dextran decreased the expression of IRF3 upon stimulation of cells from CBA/J mice with LPS, but increased this process in C57Bl/6 mice. Despite a diversity of oxidized dextran-induced changes in cytokine production, the data confirm our hypothesis that this agent can stimulate the alternative activation of macrophages.

  20. Tacaribe virus but not junin virus infection induces cytokine release from primary human monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Allison Groseth

    Full Text Available The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV and the hemorrhagic fever-causing Junin virus (JUNV, in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.

  1. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    Science.gov (United States)

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. Copyright © 2015, American Association for the Advancement of Science.

  2. Effects of trans-stilbene and terphenyl compounds on different strains of Leishmania and on cytokines production from infected macrophages.

    Science.gov (United States)

    Bruno, Federica; Castelli, Germano; Vitale, Fabrizio; Giacomini, Elisa; Roberti, Marinella; Colomba, Claudia; Cascio, Antonio; Tolomeo, Manlio

    2018-01-01

    Most of the antileishmanial modern therapies are not satisfactory due to high toxicity or emergence of resistance and high cost of treatment. Previously, we observed that two compounds of a small library of trans-stilbene and terphenyl derivatives, ST18 and TR4, presented the best activity and safety profiles against Leishmania infantum promastigotes and amastigotes. In the present study we evaluated the effects of ST18 and the TR4 in 6 different species of Leishmania and the modifications induced by these two compounds in the production of 8 different cytokines from infected macrophages. We observed that TR4 was potently active in all Leishmania species tested in the study showing a leishmanicidal activity higher than that of ST18 and meglumine antimoniate in the most of the species. Moreover, TR4 was able to decrease the levels of IL-10, a cytokine able to render the host macrophage inactive allowing the persistence of parasites inside its phagolysosome, and increase the levels of IL-1β, a cytokine important for host resistance to Leishmania infection by inducible iNOS-mediated production of NO, and IL-18, a cytokine implicated in the development of Th1-type immune response. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Administration of PDE4 Inhibitors Suppressed the Pannus-Like Inflammation by Inhibition of Cytokine Production by Macrophages and Synovial Fibroblast Proliferation

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    2007-01-01

    Full Text Available A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA. Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4 inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  4. Administration of PDE4 inhibitors suppressed the pannus-like inflammation by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

    Science.gov (United States)

    Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro

    2007-01-01

    A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1beta, TNF-alpha, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-alpha and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  5. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

    Science.gov (United States)

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia

    2017-10-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.

    Science.gov (United States)

    Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E

    1997-01-01

    Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of

  8. Lemongrass effects on IL-1beta and IL-6 production by macrophages.

    Science.gov (United States)

    Sforcin, J M; Amaral, J T; Fernandes, A; Sousa, J P B; Bastos, J K

    2009-01-01

    Cymbopogon citratus has been widely recognised for its ethnobotanical and medicinal usefulness. Its insecticidal, antimicrobial and therapeutic properties have been reported, but little is known about its effect on the immune system. This work aimed to investigate the in vivo effect of a water extract of lemongrass on pro-inflammatory cytokine (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of lemongrass essential oil on cytokine production by macrophages was also analysed in vitro. The chemical composition of the extract and the oil was also investigated. Treatment of mice with water extract of lemongrass inhibited macrophages to produce IL-1beta but induced IL-6 production by these cells. Lemongrass essential oil inhibited the cytokine production in vitro. Linalool oxide and epoxy-linalool oxide were found to be the major components of lemongrass water extract, and neral and geranial were the major compounds of its essential oil. Taken together, these data suggest an anti-inflammatory action of this natural product.

  9. Organic UV filters exposure induces the production of inflammatory cytokines in human macrophages.

    Science.gov (United States)

    Ao, Junjie; Yuan, Tao; Gao, Li; Yu, Xiaodan; Zhao, Xiaodong; Tian, Ying; Ding, Wenjin; Ma, Yuning; Shen, Zhemin

    2018-09-01

    Organic ultraviolet (UV) filters, found in many personal care products, are considered emerging contaminants due to growing concerns about potential long-term deleterious effects. We investigated the immunomodulatory effects of four commonly used organic UV filters (2-hydroxy-4-methoxybenzophenone, BP-3; 4-methylbenzylidene camphor, 4-MBC; 2-ethylhexyl 4-methoxycinnamate, EHMC; and butyl-methoxydibenzoylmethane, BDM) on human macrophages. Our results indicated that exposure to these four UV filters significantly increased the production of various inflammatory cytokines in macrophages, particular tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). After exposure to the UV filters, a significant 1.1-1.5 fold increase were found in TNF-α and IL-6 mRNA expression. In addition, both the p38 MAPK and the NF-κB signaling pathways were enhanced 2 to 10 times in terms of phosphorylation after exposure to the UV filters, suggesting that these pathways are involved in the release of TNF-α and IL-6. Molecular docking analysis predicted that all four UV filter molecules would efficiently bind transforming growth factor beta-activated kinase 1 (TAK1), which is responsible for the activation of the p38 MAPK and NF-κB pathways. Our results therefore demonstrate that exposure to the four organic UV filters investigated may alter human immune system function. It provides new clue for the development of asthma or allergic diseases in terms of the environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Science.gov (United States)

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  12. Progress on macrophage's proinflammatory products as markers of acute endometriosis

    Directory of Open Access Journals (Sweden)

    Alicja Ziętek

    2015-08-01

    Full Text Available To provide the review of the macrophage activity products as pathophysiological markers of endometriosis by literature survey (PubMed, Cochrane. Immunoreactive cells and several of their synthesis products concentrations are elevated in the serum and peritoneal fluid in patients with endometriosis. The enhanced reactive proteins contributed to local inflammation and aggregation of endometriotic lesions. Immune response and immune surveillance of tissue play an important role in pathogenesis of endometriosis. Activated macrophages in peritoneal environment secrete immunoreactive cytokines which are responsible for inflammatory cascade of reactions. The immunoreactive cytokines should be a target not only as a disease marker but also as a part of therapeutic protocol.

  13. Sodium methyldithiocarbamate inhibits MAP kinase activation through toll-like receptor 4, alters cytokine production by mouse peritoneal macrophages, and suppresses innate immunity.

    Science.gov (United States)

    Pruett, Stephen B; Zheng, Qiang; Schwab, Carlton; Fan, Ruping

    2005-09-01

    Sodium methyldithiocarbamate (SMD; trade name, Metam Sodium) is an abundantly used soil fumigant that can cause adverse health effects in humans, including some immunological manifestations. The mechanisms by which SMD acts, and its targets within the immune system are not fully understood. Initial experiments demonstrated that SMD administered by oral gavage substantially decreased IL-12 production and increased IL-10 production induced by lipopolysaccharide in mice. The present study was conducted to further characterize these effects and to evaluate our working hypothesis that the mechanism for these effects involves alteration in signaling through toll-like receptor 4 and that this would suppress innate immunity to infection. SMD decreased the activation of MAP kinases and AP-1 but not NF-kappaB in peritoneal macrophages. The expression of mRNA for IL-1alpha, IL-1beta, IL-18, IFN-gamma, IL-12 p35, IL-12 p40, and macrophage migration inhibitory factor (MIF) was inhibited by SMD, whereas mRNA for IL-10 was increased. SMD increased the IL-10 concentration in the peritoneal cavity and serum and decreased the concentration of IL-12 p40 in the serum, peritoneal cavity, and intracellularly in peritoneal cells (which are >80% macrophages). Similar effects on LPS-induced cytokine production were observed following dermal administration of SMD. The major breakdown product of SMD, methylisothiocyanate (MITC), caused similar effects on cytokine production at dosages as low as 17 mg/kg, a dosage relevant to human exposure levels associated with agricultural use of SMD. Treatment of mice with SMD decreased survival following challenge with non-pathogenic Escherichia coli within 24-48 h, demonstrating suppression of innate immunity.

  14. Trichomonas vaginalis Induces Production of Proinflammatory Cytokines in Mouse Macrophages Through Activation of MAPK and NF-κB Pathways Partially Mediated by TLR2

    Science.gov (United States)

    Li, Ling; Li, Xin; Gong, Pengtao; Zhang, Xichen; Yang, Zhengtao; Yang, Ju; Li, Jianhua

    2018-01-01

    Trichomoniasis, caused by Trichomonas vaginalis infection, is the most prevalent sexually transmitted disease in female and male globally. However, the mechanisms by innate immunity against T. vaginalis infection have not been fully elucidated. Toll-like receptor2 (TLR2) has been shown to be involved in pathogen recognition, innate immunity activation, and inflammatory response to the pathogens. Nonetheless, the function of TLR2 against T. vaginalis remains unclear. In the present study, we investigated the role of TLR2 in mouse macrophages against T. vaginalis. RT-qPCR analysis revealed that T. vaginalis stimulation increased the gene expression of TLR2 in wild-type (WT) mouse macrophages. T. vaginalis also induced the secretion of IL-6, TNF-α, and IFN-γ in WT mouse macrophages, and the expression of these cytokines significantly decreased in TLR2-/- mouse macrophages and in WT mouse macrophages pretreated with MAPK inhibitors SB203580 (p38) and PD98059 (ERK). Western blot analysis demonstrated that T. vaginalis stimulation induced the activation of p38, ERK, and p65 NF-κB signal pathways in WT mouse macrophages, and the phosphorylation of p38, ERK, and p65 NF-κB significantly decreased in TLR2-/- mouse macrophages. Taken together, our data suggested that T. vaginalis may regulates proinflammatory cytokines production by activation of p38, ERK, and NF-κB p65 signal pathways via TLR2 in mouse macrophages. TLR2 might be involved in the defense and elimination of T. vaginalis infection. PMID:29692771

  15. Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages.

    Science.gov (United States)

    Dai, Jiezhi; Zhang, Xiaotian; Li, Li; Chen, Hua; Chai, Yimin

    2017-01-01

    Type 2 diabetes is a persistent inflammatory response that impairs the healing process. We hypothesized that stimulation with high glucose following a pro-inflammatory signal would lead to autophagy inhibition, reactive oxygen species (ROS) production and eventually to the activation of the Nod-like receptor protein (NLRP) -3. Macrophages were isolated from human diabetic wound. We measured the expression of NLRP3, caspase1 and interleukin-1 beta (IL-1β) by western blot and real-time PCR, and the surface markers on cells by flow cytometry. THP-1-derived macrophages exposed to high glucose were applied to study the link between autophagy, ROS and NLRP3 activation. LC3-II, P62, NLRP3 inflammation and IL-1β expression were measured by western blot and real-time PCR. ROS production was measured with a Cellular Reactive Oxygen Species Detection Assay Kit. Macrophages isolated from diabetic wounds exhibited a pro-inflammatory phenotype, including sustained NLRP3 inflammasome activity associated with IL-1β secretion. Our data showed that high glucose inhibited autophagy, induced ROS production, and activated NLRP3 inflammasome and cytokine secretion in THP-1-derived macrophages. To study high glucose-induced NLRP3 inflammasome signalling, we performed studies using an autophagy inducer, a ROS inhibitor and a NLRP3 inhibitor and found that all reduced the NLRP3 inflammasome activation and cytokine secretion. Sustained NLRP3 inflammasome activity in wound-derived macrophages contributes to the hyper-inflammation in human diabetic wounds. Autophagy inhibition and ROS generation play an essential role in high glucose-induced NLRP3 inflammasome activation and cytokine secretion in macrophages. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    Science.gov (United States)

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-04-01

    Full Text Available Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL, carnosic acid (CA, carnosic acid-12-methylether (CAME, 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT in murine macrophages (RAW264.7 cells and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO and prostaglandin E2 (PGE2 production in LPS-stimulated macrophages (i.e., acute inflammation. They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6 and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.

  18. Inhibitory effects of devil's claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages.

    Science.gov (United States)

    Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki

    2010-04-01

    Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.

  19. Probiotic Bacteria Alter Pattern-Recognition Receptor Expression and Cytokine Profile in a Human Macrophage Model Challenged with Candida albicans and Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Victor H. Matsubara

    2017-11-01

    Full Text Available Probiotics are live microorganisms that confer benefits to the host health. The infection rate of potentially pathogenic organisms such as Candida albicans, the most common agent associated with mucosal candidiasis, can be reduced by probiotics. However, the mechanisms by which the probiotics interfere with the immune system are largely unknown. We evaluated the effect of probiotic bacteria on C. albicans challenged human macrophages. Macrophages were pretreated with lactobacilli alone (Lactobacillus rhamnosus LR32, Lactobacillus casei L324m, or Lactobacillus acidophilus NCFM or associated with Escherichia coli lipopolysaccharide (LPS, followed by the challenge with C. albicans or LPS in a co-culture assay. The expression of pattern-recognition receptors genes (CLE7A, TLR2, and TLR4 was determined by RT-qPCR, and dectin-1 reduced levels were confirmed by flow cytometry. The cytokine profile was determined by ELISA using the macrophage cell supernatant. Overall probiotic lactobacilli down-regulated the transcription of CLEC7A (p < 0.05, resulting in the decreased expression of dectin-1 on probiotic pretreated macrophages. The tested Lactobacillus species down-regulated TLR4, and increased TLR2 mRNA levels in macrophages challenged with C. albicans. The cytokines profile of macrophages challenged with C. albicans or LPS were altered by the probiotics, which generally led to increased levels of IL-10 and IL-1β, and reduction of IL-12 production by macrophages (p < 0.05. Our data suggest that probiotic lactobacilli impair the recognition of PAMPs by macrophages, and alter the production of pro/anti-inflammatory cytokines, thus modulating inflammation.

  20. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Ana Carolina P; Mizutani, Erica; Peterlevitz, Alfredo C; Ceragioli, Helder J; Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Universidade de Campinas, Campinas, SP (Brazil); Paula, Rosemeire F O; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Farias, Alessandro S; Santos, Leonilda M B, E-mail: leonilda@unicamp.br [Laboratorio de Neuroimunologia, Departamento Genetica, Evolucao e Bioagentes, Instituto de Biologia, Universidade de Campinas, Campinas, SP (Brazil)

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFN{gamma}), tumor necrosis factor-alpha (TNF{alpha}) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGF{beta}) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGF{beta} and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  1. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    Science.gov (United States)

    Grecco, Ana Carolina P.; Paula, Rosemeire F. O.; Mizutani, Erica; Sartorelli, Juliana C.; Milani, Ana M.; Longhini, Ana Leda F.; Oliveira, Elaine C.; Pradella, Fernando; Silva, Vania D. R.; Moraes, Adriel S.; Peterlevitz, Alfredo C.; Farias, Alessandro S.; Ceragioli, Helder J.; Santos, Leonilda M. B.; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  2. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Eiichiro, E-mail: uemura-e@phs.osaka-u.ac.jp; Yoshioka, Yasuo, E-mail: y-yoshioka@biken.osaka-u.ac.jp; Hirai, Toshiro, E-mail: toshiro.hirai@pitt.edu; Handa, Takayuki, E-mail: handa-t@phs.osaka-u.ac.jp; Nagano, Kazuya, E-mail: knagano@phs.osaka-u.ac.jp; Higashisaka, Kazuma, E-mail: higashisaka@phs.osaka-u.ac.jp; Tsutsumi, Yasuo, E-mail: ytsutsumi@phs.osaka-u.ac.jp [Osaka University, Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences (Japan)

    2016-06-15

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10–1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  4. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    International Nuclear Information System (INIS)

    Uemura, Eiichiro; Yoshioka, Yasuo; Hirai, Toshiro; Handa, Takayuki; Nagano, Kazuya; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2016-01-01

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10–1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  5. Modulation of chicken macrophage effector function by Th1/Th2 cytokines

    Science.gov (United States)

    Regulation of macrophage activity by TH1/2 cytokines is important to maintain the balance of immunity to provide adequate protective immunity while avoiding excessive inflammation. IFN-gamma and IL-4 are the hallmark TH1 and TH2 cytokines, respectively. In avian species, information concerning reg...

  6. The role of substrate morphology for the cytokine release profile of immature human primary macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Bartneck, Matthias [Department of Medicine III, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen (Germany); Heffels, Karl-Heinz [Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Bovi, Manfred [Electron Microscopic Facility, Medical Faculty, RWTH Aachen (Germany); Groll, Jürgen [Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Zwadlo-Klarwasser, Gabriele [Interdisciplinary Center for Clinical Research and Dept. of Dermatology, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52056 Aachen (Germany)

    2013-12-01

    There is increasing evidence that the physicochemical nature of any given material is a dominant factor for the release of cytokines by innate immune cells, specifically of macrophages, and thus majorly influences their interaction with other cell types. Recently, we could show that the 3D structure of star shaped polytheylene oxide–polypropylene oxide co-polymers (sP(EO-stat-PO))-hydrogel coated substrates has a stronger influence on the release pattern of cytokines after 7 days of culture than surface chemistry. Here, we focused on the analysis of cytokine release over time and a more detailed analysis of cell morphology by scanning electron microscopy (SEM). Therefore, we compared different strategies for SEM sample preparation and found that using osmium tetroxide combined with aqua bidest led to best preparation results. For cytokine release we show significant changes from day 3 to day 7 of cell culture. After 3 days, the sP(EO-stat-PO)-coated substrates led to an induction of pro-angiogenic CCL3 and CCL4, and of low amounts of the anti-inflammatory IL10, which declined at day 7. In contrast, pleiotropic IL6 and the pro-inflammatory TNFα and IL1β were expressed stronger at day 7 than at day 3. - Highlights: • Strategies for the preparation of macrophages on hydrogel materials (Fig. 1) • Cytokine release of immature macrophages on the substrates (Fig. 2 and Table 1) • Changes in cytokine release during macrophage maturation (Table 2)

  7. The role of substrate morphology for the cytokine release profile of immature human primary macrophages

    International Nuclear Information System (INIS)

    Bartneck, Matthias; Heffels, Karl-Heinz; Bovi, Manfred; Groll, Jürgen; Zwadlo-Klarwasser, Gabriele

    2013-01-01

    There is increasing evidence that the physicochemical nature of any given material is a dominant factor for the release of cytokines by innate immune cells, specifically of macrophages, and thus majorly influences their interaction with other cell types. Recently, we could show that the 3D structure of star shaped polytheylene oxide–polypropylene oxide co-polymers (sP(EO-stat-PO))-hydrogel coated substrates has a stronger influence on the release pattern of cytokines after 7 days of culture than surface chemistry. Here, we focused on the analysis of cytokine release over time and a more detailed analysis of cell morphology by scanning electron microscopy (SEM). Therefore, we compared different strategies for SEM sample preparation and found that using osmium tetroxide combined with aqua bidest led to best preparation results. For cytokine release we show significant changes from day 3 to day 7 of cell culture. After 3 days, the sP(EO-stat-PO)-coated substrates led to an induction of pro-angiogenic CCL3 and CCL4, and of low amounts of the anti-inflammatory IL10, which declined at day 7. In contrast, pleiotropic IL6 and the pro-inflammatory TNFα and IL1β were expressed stronger at day 7 than at day 3. - Highlights: • Strategies for the preparation of macrophages on hydrogel materials (Fig. 1) • Cytokine release of immature macrophages on the substrates (Fig. 2 and Table 1) • Changes in cytokine release during macrophage maturation (Table 2)

  8. Synthesis of pro-inflammatory cytokines and adhesion molecules expression by the irradiated human monocyte/macrophage

    International Nuclear Information System (INIS)

    Pons, I.

    1997-09-01

    As lesions induced by ionizing radiations are essentially noticed in organs the functional and structural organisation of which depend on the highly proliferative stem cell pool, the author reports an in-vivo investigation of the effect of a gamma irradiation on the expression and secretion of pro-inflammatory cytokines par human monocytes/macrophages. In order to study the role of the cell environment in the radiation-induced inflammation, the author studied whether a co-stimulation of monocytes/macrophages by gamma irradiation, or the exposure of co-cultures of monocytes/macrophages and lymphocytes, could modulate the regulation of inflammatory cytokines. The author also studied the modulation of the expression of adhesion molecules mainly expressed by the monocyte/macrophage, and the membrane density of the CD14 receptor after irradiation of monocytes/macrophages during 24 hours, and of totally differentiated macrophages after seven days of culture

  9. Insulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism

    Directory of Open Access Journals (Sweden)

    Celia Maria Vieira Vendrame

    2014-01-01

    Full Text Available Leishmania (Leishmania amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF-I on interactions between L. (L. amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-β antibodies. Our results suggest that in L. (L. amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms.

  10. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    International Nuclear Information System (INIS)

    Chen, Huimin; Ma, Feng; Hu, Xiaona; Jin, Ting; Xiong, Chuhui; Teng, Xiaochun

    2013-01-01

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases

  11. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7

    OpenAIRE

    Jorj?o, Adeline Lacerda; de Oliveira, Felipe Eduardo; Le?o, Mariella Vieira Pereira; Carvalho, Cl?udio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2015-01-01

    This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-?, IL-1?, IL-4, IL-6, IL-10, and IL-12) by mouse macrophages (RAW 264.7). Three microorganism preparations were used: live L. rhamnosus (LLR) suspension, heat-killed L. rhamnosus (HKLR) suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR) suspension, which were cultured with macrophages (37?C, 5% CO2) for 2?h and 30?min. After that, cells were cul...

  12. REGULATION OF TLR/RLR GENE ACTIVITY AND SYNTHESIS OF CYTOKINES DURING PHORBOL MYRISTATE ACETATE (PMA-INDUCED DIFFERENTIATION OF THP-1 MONOCYTES INTO MACROPHAGE-LIKE CELLS

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2017-01-01

    Full Text Available The levels of TLR/RLR gene expression and production of some cytokines were studied in monocytic THP-1 cell line during its differentiation to mature macrophage-like forms induced by phorbol 12-myristate 13-acetate (PMA treatment for 1 and 5 days in vitro. For the first time, we have shown high induction levels for the genes that encode signaling immune receptors and transcription factors in response to PMA, as well as inhibitory effects of TLR3, TLR7/TLR8, TLR9-agonists in mature macrophages. The PMAactivated THP-1 macrophage-like cells secreted large quantitities of inflammatory IL-1β and TNFα cytokines into culture medium.

  13. Macrophages and cytokines in the early defence against herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Ellermann-Eriksen Svend

    2005-08-01

    Full Text Available Abstract Herpes simplex virus (HSV type 1 and 2 are old viruses, with a history of evolution shared with humans. Thus, it is generally well-adapted viruses, infecting many of us without doing much harm, and with the capacity to hide in our neurons for life. In rare situations, however, the primary infection becomes generalized or involves the brain. Normally, the primary HSV infection is asymptomatic, and a crucial element in the early restriction of virus replication and thus avoidance of symptoms from the infection is the concerted action of different arms of the innate immune response. An early and light struggle inhibiting some HSV replication will spare the host from the real war against huge amounts of virus later in infection. As far as such a war will jeopardize the life of the host, it will be in both interests, including the virus, to settle the conflict amicably. Some important weapons of the unspecific defence and the early strikes and beginning battle during the first days of a HSV infection are discussed in this review. Generally, macrophages are orchestrating a multitude of anti-herpetic actions during the first hours of the attack. In a first wave of responses, cytokines, primarily type I interferons (IFN and tumour necrosis factor are produced and exert a direct antiviral effect and activate the macrophages themselves. In the next wave, interleukin (IL-12 together with the above and other cytokines induce production of IFN-γ in mainly NK cells. Many positive feed-back mechanisms and synergistic interactions intensify these systems and give rise to heavy antiviral weapons such as reactive oxygen species and nitric oxide. This results in the generation of an alliance against the viral enemy. However, these heavy weapons have to be controlled to avoid too much harm to the host. By IL-4 and others, these reactions are hampered, but they are still allowed in foci of HSV replication, thus focusing the activity to only relevant sites

  14. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to proinflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages.

    Science.gov (United States)

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2015-02-15

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl, and Mer (TAM) receptors in regulating chronic pattern recognition receptor stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and proinflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGF-β-dependent TAM upregulation in human macrophages, which, in turn, upregulated suppressor of cytokine signaling 3 expression. Restoring suppressor of cytokine signaling 3 expression under TAM knockdown conditions restored chronic NOD2-mediated proinflammatory cytokine downregulation. In contrast to the upregulated proinflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, musculoaponeurotic fibrosarcoma oncogene homolog K, and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for

  15. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    Science.gov (United States)

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. Copyright © 2016 by The American Association of

  16. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction.

    Directory of Open Access Journals (Sweden)

    Yea Eun Kang

    Full Text Available The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25. The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037 but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035 but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and

  17. Phytosterols Differentially Influence ABC transporter Expression, Cholesterol Efflux and Inflammatory Cytokine Secretion in Macrophage Foam Cells

    Science.gov (United States)

    Sabeva, Nadezhda S; McPhaul, Christopher M; Li, Xiangan; Cory, Theodore J.; Feola, David J.; Graf, Gregory A

    2010-01-01

    Phytosterol supplements lower low density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E deficient mice, suggesting that the cholesterol lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may either be beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux, and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect of cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest, but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL-induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion. PMID:21111593

  18. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies

    International Nuclear Information System (INIS)

    Becker, Susanne; Mundandhara, Sailaja; Devlin, Robert B.; Madden, Michael

    2005-01-01

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endpoints of inflammation, and oxidant stress. Separation of Chapel Hill PM 10 into fine and coarse size particles revealed that the main proinflammatory response (TNF, IL-6, COX-2) in AM was driven by material present in the coarse PM, containing 90-95% of the stimulatory material in PM10. The particles did not affect expression of hemoxygenase-1 (HO-1), a sensitive marker of oxidant stress. Primary cultures of normal human bronchial epithelial cells (NHBE) also responded to the coarse fraction with higher levels of IL-8 and COX-2, than induced by fine or ultrafine PM. All size PM induced oxidant stress in NHBE, while fine PM induced the highest levels of HO-1 expression. The production of cytokines in AM by both coarse and fine particles was blocked by the toll like receptor 4 (TLR4) antagonist E5531 involved in the recognition of LPS and Gram negative bacteria. The NHBE were found to recognize coarse and fine PM through TLR2, a receptor with preference for recognition of Gram positive bacteria. Compared to ambient PM, diesel PM induced only a minimal cytokine response in both AM and NHBE. Instead, diesel suppressed LPS-induced TNF and IL-8 release in AM. Both coarse and fine ambient air PM were also found to inhibit LPS-induced TNF release while silica, volcanic ash or carbon black had no inhibitory effect. Diesel particles did not affect cytokine mRNA induction nor protein accumulation but interfered with the release of cytokine from the cells. Ambient coarse and fine PM, on the other hand, inhibited both mRNA induction and protein production. Exposure to coarse and fine PM decreased the expression of TLR4 in the macrophages. Particle-induced decrease in TLR4 and hyporesponsiveness to LPS

  19. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  20. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7.

    Science.gov (United States)

    Jorjão, Adeline Lacerda; de Oliveira, Felipe Eduardo; Leão, Mariella Vieira Pereira; Carvalho, Cláudio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2015-01-01

    This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12) by mouse macrophages (RAW 264.7). Three microorganism preparations were used: live L. rhamnosus (LLR) suspension, heat-killed L. rhamnosus (HKLR) suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR) suspension, which were cultured with macrophages (37°C, 5% CO2) for 2 h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS) and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (P 0.05). All the L. rhamnosus suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (P > 0.05). In conclusion, live and heat-killed L. rhamnosus suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6) or regulatory (IL-10) functions, suggesting the role of strain L. rhamnosus ATCC 7469 in the modulation or in the stimulation of immune responses.

  1. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7

    Directory of Open Access Journals (Sweden)

    Adeline Lacerda Jorjão

    2015-01-01

    Full Text Available This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12 by mouse macrophages (RAW 264.7. Three microorganism preparations were used: live L. rhamnosus (LLR suspension, heat-killed L. rhamnosus (HKLR suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR suspension, which were cultured with macrophages (37°C, 5% CO2 for 2 h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (P0.05. All the L. rhamnosus suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (P>0.05. In conclusion, live and heat-killed L. rhamnosus suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6 or regulatory (IL-10 functions, suggesting the role of strain L. rhamnosus ATCC 7469 in the modulation or in the stimulation of immune responses.

  2. Cytokine production by oral and peripheral blood neutrophils in adult periodontitis.

    Science.gov (United States)

    Galbraith, G M; Hagan, C; Steed, R B; Sanders, J J; Javed, T

    1997-09-01

    Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) also possess bone-resorptive properties, and are generally considered to play a role in the pathogenesis of periodontal disease. In the present study, TNF-alpha and IL-1 beta production by oral and peripheral blood polymorphonuclear leukocytes (PMN) was examined in 40 patients with adult periodontitis and 40 orally healthy matched controls. Oral PMN released considerable amounts of both cytokines in unstimulated culture, and there was no difference between patients and controls when the cytokine levels were corrected for cell number. However, when the effect of disease activity was examined, cytokine release by oral PMN was found to be greatest in patients with advanced periodontitis. Within the healthy control group, IL-1 beta production by oral PMN was significantly higher in males (Mann-Whitney test, P = 0.0008). Examination of IL-1 beta production by peripheral blood PMN exposed to recombinant human granulocyte-macrophage colony stimulating factor revealed no difference between the patient and control groups. In contrast, IL-1 beta production by peripheral blood PMN was significantly reduced in patients with advanced disease (Mann-Whitney test, P = 0.02), and peripheral PMN IL-1 beta synthesis was greater in female controls (Mann-Whitney test, P = 0.054). No effect of race on cytokine production could be discerned in patients or controls. These results indicate that several factors influence cytokine production in oral health and disease, and that a dichotomy in cytokine gene expression exists between oral and peripheral blood PMN in adult periodontitis.

  3. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients.

    Science.gov (United States)

    Lam, Larry; Chin, Lydia; Halder, Ramesh C; Sagong, Bien; Famenini, Sam; Sayre, James; Montoya, Dennis; Rubbi, Liudmilla; Pellegrini, Matteo; Fiala, Milan

    2016-10-01

    We have investigated transcriptional and epigenetic differences in peripheral blood mononuclear cells (PBMCs) of monozygotic female twins discordant in the diagnosis of amyotrophic lateral sclerosis (ALS). Exploring DNA methylation differences by reduced representation bisulfite sequencing (RRBS), we determined that, over time, the ALS twin developed higher abundances of the CD14 macrophages and lower abundances of T cells compared to the non-ALS twin. Higher macrophage signature in the ALS twin was also shown by RNA sequencing (RNA-seq). Moreover, the twins differed in the methylome at loci near several genes, including EGFR and TNFRSF11A, and in the pathways related to the tretinoin and H3K27me3 markers. We also tested cytokine production by PBMCs. The ALS twin's PBMCs spontaneously produced IL-6 and TNF-α, whereas PBMCs of the healthy twin produced these cytokines only when stimulated by superoxide dismutase (SOD)-1. These results and flow cytometric detection of CD45 and CD127 suggest the presence of memory T cells in both twins, but effector T cells only in the ALS twin. The ALS twin's PBMC supernatants, but not the healthy twin's, were toxic to rat cortical neurons, and this toxicity was strongly inhibited by an IL-6 receptor antibody (tocilizumab) and less well by TNF-α and IL-1β antibodies. The putative neurotoxicity of IL-6 and TNF-α is in agreement with a high expression of these cytokines on infiltrating macrophages in the ALS spinal cord. We hypothesize that higher macrophage abundance and increased neurotoxic cytokines have a fundamental role in the phenotype and treatment of certain individuals with ALS.-Lam, L., Chin, L., Halder, R. C., Sagong, B., Famenini, S., Sayre, J., Montoya, D., Rubbi L., Pellegrini, M., Fiala, M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients. © FASEB.

  4. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Directory of Open Access Journals (Sweden)

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  5. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro.

    Science.gov (United States)

    Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong

    2014-09-01

    Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.

  6. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  7. Cytokine production and visualized effects in the feto-maternal unit. Quantitative and topographic data on cytokines during intrauterine disease.

    Science.gov (United States)

    Stallmach, T; Hebisch, G; Joller-Jemelka, H I; Orban, P; Schwaller, J; Engelmann, M

    1995-09-01

    A large array of cytokines show high activity in amniotic fluid. Attempts have been made to quantify the concentrations or to track rising levels for diagnostic purposes when examining disturbances of the feto-maternal unit. However, the kinetics of cytokine production in the amniotic fluid are not well understood, and there is lack of knowledge about concomitant levels in fetal and maternal blood. The presence of cytokines in fetal and placental cells was demonstrated by immunohistochemistry using mAb. Cytokines were quantified by enzymimmunoassay in amniotic fluid and fetal and maternal blood. This was done with regard to two disease states that quite frequently complicate the course of pregnancy, namely chorioamnionitis and intrauterine growth retardation. The cytokines examined were G-CSF, GM-CSF, TNF-alpha, IL-1, IL-6, and IL-8. In chorioamnionitis, all cytokines, except GM-CSF, were elevated about 100 times in the amniotic fluid. An accompanying increase in maternal and fetal blood was only found for IL-6 and G-CSF; IL-8 was elevated in fetal blood only. Intrauterine growth retardation was characterized by elevated levels of TNF-alpha in the amniotic fluid, whereas G-CSF, GM-CSF, and IL-1 beta were significantly reduced. Immunohistochemistry showed that under normal conditions the cytokines are to be found in a characteristic distribution in certain cell types in the fetus, the placenta, and the placental bed. With rising concentrations, more cells seemed to be recruited for cytokine production, especially macrophages and decidual cells. In chorioamnionitis, fetal extramedullary granulopoiesis was augmented, and in intrauterine growth retardation, erythropoiesis as well as granulopoiesis were depressed. Not only inflammatory disease but also intrauterine growth retardation is characterized by a changing cytokine pattern. Alterations in fetal hematopoiesis observed at postmortem examination of perinatal deaths can be correlated to changes in cytokine

  8. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Suppression of inflammatory reactions by terpinen-4-ol, a main constituent of tea tree oil, in a murine model of oral candidiasis and its suppressive activity to cytokine production of macrophages in vitro.

    Science.gov (United States)

    Ninomiya, Kentaro; Hayama, Kazumi; Ishijima, Sanae A; Maruyama, Naho; Irie, Hiroshi; Kurihara, Junichi; Abe, Shigeru

    2013-01-01

    The onset of oral candidiasis is accompanied by inflammatory symptoms such as pain in the tongue, edema or tissue damage and lowers the quality of life (QOL) of the patient. In a murine oral candidiasis model, the effects were studied of terpinen-4-ol (T-4-ol), one of the main constituents of tea tree oil, Melaleuca alternifolia, on inflammatory reactions. When immunosuppressed mice were orally infected with Candida albicans, their tongues showed inflammatory symptoms within 24 h after the infection, which was monitored by an increase of myeloperoxidase activity and macrophage inflammatory protein-2 in their tongue homogenates. Oral treatment with 50 µL of 40 mg/mL terpinen-4-ol 3h after the Candida infection clearly suppressed the increase of these inflammatory parameters. In vitro analysis of the effects of terpinen-4-ol on cytokine secretion of macrophages indicated that 800 µg/mL of this substance significantly inhibited the cytokine production of the macrophages cultured in the presence of heat-killed C. albicans cells. Based on these findings, the role of the anti-inflammatory action of T-4-ol in its therapeutic activity against oral candidiasis was discussed.

  10. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  11. Purinergic signaling to terminate TLR responses in macrophages

    Directory of Open Access Journals (Sweden)

    Kajal eHamidzadeh

    2016-03-01

    Full Text Available Macrophages undergo profound physiological alterations when they encounter pathogen associated molecular patterns (PAMPs. These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active down-regulation of innate responses induced by the very PAMPs that initiated them. Here we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the down-regulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages, and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response.

  12. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages.

    Science.gov (United States)

    Wang, Huamin; Actor, Jeffrey K; Indrigo, Jessica; Olsen, Margaret; Dasgupta, Amitava

    2003-01-01

    Ginseng is a widely used herbal product in China, other Asian countries, and in the Unites States. There is a traditional belief that ginseng stimulates immune functions. In this study, the innate effects of Asian and Siberian ginsengs on cytokines and chemokines produced by cultured macrophages were examined. The effects of Asian and Siberian ginseng on cytokines and chemokines produced by cultured macrophages were examined. Mouse macrophages (J774A.1) were incubated with Asian or Siberian ginseng at varying concentrations (1, 10, 100, and 1000 microg/ml) for 24 h and then harvested for RNA isolation. The expression levels of IL-1beta, IL-12, TNF-alpha, MIP-1 alpha, and MIP-2 mRNA were measured by quantitative PCR. Our data showed that Asian ginseng induced a statistically significant increase in IL-12 expression at both mRNA and protein levels. However, the minor twofold increase is probably biologically insignificant. No significant increase of IL-12 by Siberian ginseng was observed at any dose level studied. No significant change in IL-1beta, IL-15, TNF-alpha, or MIP-1alpha mRNA was observed by either Asian or Siberian ginseng treatment. Our data showed statistically significant differential regulation of IL-12 by Asian ginseng. Siberian ginseng did not show a statistically significant increase. We conclude that both Asian ginseng and Siberian ginseng cannot significantly stimulate innate macrophage immune functions that influence cellular immune responses. Therefore, contrary to the popular belief, Asian and Siberian ginseng may not stimulate immune function.

  13. Evaluation of amniotic mesenchymal cell derivatives on cytokine production in equine alveolar macrophages: an in vitro approach to lung inflammation.

    Science.gov (United States)

    Zucca, Enrica; Corsini, Emanuela; Galbiati, Valentina; Lange-Consiglio, Anna; Ferrucci, Francesco

    2016-09-20

    Data obtained in both animal models and clinical trials suggest that cell-based therapies represent a potential therapeutic strategy for lung repair and remodeling. Recently, new therapeutic approaches based on the use of stem cell derivatives (e.g., conditioned medium (CM) and microvesicles (MVs)) to regenerate tissues and improve their functions were proposed. The aim of this study was to investigate the immunomodulatory effects of equine amniotic mesenchymal cell derivatives on lipopolysaccharide (LPS)-induced cytokine production in equine alveolar macrophages, which may be beneficial in lung inflammatory disorders such as recurrent airway obstruction (RAO) in horses. RAO shares many features with human asthma, including an increased number of cells expressing mRNA for interleukin (IL)-4 and IL-5 and a decreased expression of IFN-γ in bronchoalveolar lavage fluid (BALF) of affected horses. The release of TNF-α, IL-6, and TGF-β1 at different time points (1, 24, 48, and 72 h) was measured in equine alveolar macrophages stimulated or not with LPS (10 and 100 ng/mL) in the presence or absence of 10 % CM or 50 × 10(6) MVs/mL. Cytokines were measured using commercially available ELISA kits. For multiple comparisons, analysis of variance was used with Tukey post-hoc test. Differences were considered significant at p ≤ 0.05. Significant modulatory effects of CM on LPS-induced TNF-α release at 24 h, and of both CM and MVs on TNF-α release at 48 h were observed. A trend toward a modulatory effect of both CM and MVs on the release of TGF-β and possibly IL-6 was visible over time. Results support the potential use of CM and MVs in lung regenerative medicine, especially in situations in which TGF-β may be detrimental, such as respiratory allergy. Further studies should evaluate the potential clinical applications of CM and MVs in equine lung diseases, such as RAO and other inflammatory disorders.

  14. Targeting Dexamethasone to Macrophages in a Porcine Endotoxemic Model

    DEFF Research Database (Denmark)

    Granfeldt, Asger; Hvas, Christine Lodberg; Graversen, Jonas Heilskov

    2013-01-01

    -8 minutes. CONCLUSION: Targeted delivery of dexamethasone to macrophages using a humanized CD163 antibody as carrier exhibits anti-inflammatory effects comparable with 50 times higher concentrations of free dexamethasone and does not inhibit endogenous cortisol production. This antibody-drug complex showing......OBJECTIVES: Macrophages are important cells in immunity and the main producers of pro-inflammatory cytokines. The main objective was to evaluate if specific delivery of glucocorticoid to the macrophage receptor CD163 is superior to systemic glucocorticoid therapy in dampening the cytokine response...

  15. The influence of protein malnutrition on the production of GM-CSF and M-CSF by macrophages

    Directory of Open Access Journals (Sweden)

    Dalila Cunha de Oliveira

    Full Text Available ABSTRACT It is well established that protein malnutrition (PM impairs immune defenses and increases susceptibility to infection. Macrophages are cells that play a central role in innate immunity, constituting one of the first barriers against infections. Macrophages produce several soluble factors, including cytokines and growth factors, important to the immune response. Among those growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF and macrophage colony-stimulating factor (M-CSF. GM-CSF and M-CSF are important to monocyte and macrophage development and stimulation of the immune response process. Knowing the importance of GM-CSF and M-CSF, we sought to investigate the influence of PM on macrophage production of these growth factors. Two-month-old male BALB/c mice were subjected to PM with a low-protein diet (2% and compared to a control diet (12% mouse group. Nutritional status, hemogram and the number of peritoneal cells were evaluated. Additionally, peritoneal macrophages were cultured and the production of GM-CSF and M-CSF and mRNA expression were evaluated. To determine if PM altered macrophage production of GM-CSF and M-CSF, they were stimulated with TNF-α. The PM animals had anemia, leukopenia and a reduced number of peritoneal cells. The production of M-CSF was not different between groups; however, cells from PM animals, stimulated with or without TNF-α, presented reduced capability to produce GM-CSF. These data imply that PM interferes with the production of GM-CSF, and consequently would affect the production and maturation of hematopoietic cells and the immune response.

  16. Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling.

    Directory of Open Access Journals (Sweden)

    Wu Li

    Full Text Available Intracellular survival plays a central role in the pathogenesis of Mycobacterium tuberculosis, a process which depends on an array of virulence factors to colonize and replicate within the host. The M. tuberculosis iron regulated open reading frame (ORF rv3402c, encoding a conserved hypothetical protein, was shown to be up-regulated upon infection in both human and mice macrophages. To explore the function of this ORF, we heterologously expressed the rv3402c gene in the non-pathogenic fast-growing Mycobacterium smegmatis strain, and demonstrated that Rv3402c, a cell envelope-associated protein, was able to enhance the intracellular survival of recombinant M. smegmatis. Enhanced growth was not found to be the result of an increased resistance to intracellular stresses, as growth of the Rv3402c expressing strain was unaffected by iron depletion, H2O2 exposure, or acidic conditions. Colonization of macrophages by M. smegmatis expressing Rv3402c was associated with substantial cell death and significantly greater amount of TNF-α and IL-1β compared with controls. Rv3402c-induced TNF-α and IL-1β production was found to be mediated by NF-κB, ERK and p38 pathway in macrophages. In summary, our study suggests that Rv3402c delivered in a live M. smegmatis vehicle can modify the cytokines profile of macrophage, promote host cell death and enhance the persistence of mycobacterium within host cells.

  17. Expression of bacterial virulence factors and cytokines during in vitro macrophage infection by enteroinvasive Escherichia coli and Shigella flexneri: a comparative study

    Directory of Open Access Journals (Sweden)

    Silvia Y Bando

    2010-09-01

    Full Text Available Enteroinvasive Escherichia coli (EIEC and Shigellaspp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigellashare many genetic and biochemical similarities, the illness caused by Shigellais more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneriwith cultured J774 macrophage-like cells. We evaluated several phenotypes: (i bacterial escape from macrophages after phagocytosis, (ii macrophage death induced by EIEC and S. flexneri, (iii macrophage cytokine expression in response to infection and (iv expression of plasmidial (pINV virulence genes. The results showed thatS. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.

  18. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    Science.gov (United States)

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  19. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages.

    Science.gov (United States)

    Fu, Shu-Ling; Hsu, Ya-Hui; Lee, Pei-Yeh; Hou, Wen-Chi; Hung, Ling-Chien; Lin, Chao-Hsiung; Chen, Chiu-Ming; Huang, Yu-Jing

    2006-01-06

    The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.

  20. Differential response to dexamethasone on the TXB2 release in guinea-pig alveolar macrophages induced by zymosan and cytokines

    Directory of Open Access Journals (Sweden)

    M. E. Salgueiro

    1997-01-01

    Full Text Available Glucocorticosteroids reduce the production of inflammatory mediators but this effect may depend on the stimulus. We have compared the time course of the effect of dexamethasone on the thromboxane B2 (TXB2 release induced by cytokine stimulation and zymosan in guinea-pig alveolar macrophages. Interleukin-1β (IL-1β, tumour necrosis factor-α (TNF-α and opsonized zymosan (OZ, all stimulate TXB2 release. High concentrations of dexamethasone (1–10 μM inhibit the TXB2 production induced by both cytokines and OZ, but the time course of this response is different. Four hours of incubation with dexamethasone reduce the basal TXB2 release and that induced by IL-1β and TNF-α, but do not modify the TXB2 release induced by OZ. However, this stimulus was reduced after 24 h incubation. Our results suggest that the antiinflammatory activity of glucocorticosteroids shows some dependence on stimulus and, therefore, may have more than one mechanism involved.

  1. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP.

    Directory of Open Access Journals (Sweden)

    Kishore V L Parsa

    2006-07-01

    Full Text Available Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.

  2. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    Science.gov (United States)

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania

    Directory of Open Access Journals (Sweden)

    Kelly Ben L

    2010-02-01

    Full Text Available Abstract Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite

  4. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet.

    Science.gov (United States)

    Sargi, Sheisa Cyléia; Dalalio, Márcia Machado de Oliveira; Visentainer, Jesuí Vergílio; Bezerra, Rafael Campos; Perini, João Ângelo de Lima; Stevanato, Flávia Braidotti; Visentainer, Jeane Eliete Laguila

    2012-05-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF)-α. These cytokines stimulate the synthesis of nitric oxide (NO) and hydrogen peroxide (H₂O₂), leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN) oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H₂O₂. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H₂O₂, predominantly in the chronic phase of infection.

  5. Necroptotic cells release find-me signal and are engulfed without proinflammatory cytokine production.

    Science.gov (United States)

    Wang, Qiang; Ju, Xiaoli; Zhou, Yang; Chen, Keping

    2015-11-01

    Necroptosis is a form of caspase-independent programmed cell death which is mediated by the RIP1-RIP3 complex. Although phagocytosis of apoptotic cells has been extensively investigated, how necroptotic cells are engulfed has remained elusive. Here, we investigated how necroptotic cells attracted and were engulfed by macrophages. We found that necroptotic cells induced the migration of THP-1 cells in a transwell migration assay. Further analysis showed that ATP released from necroptotic cells acted as a find-me signal that induced the migration of THP-1 cells. We also found that Annexin V blocked phagocytosis of necroptotic cells by macrophages. Furthermore, necroptotic cells were shown to be silently cleared by macrophages without any proinflammatory cytokine production. These data uncover an evolutionarily conserved mechanism of the find-me signal in different types of cell death and immunological consequences between apoptotic and necroptotic cells during phagocytosis.

  6. Nicotinamide: a vitamin able to shift macrophage differentiation toward macrophages with restricted inflammatory features.

    Science.gov (United States)

    Weiss, Ronald; Schilling, Erik; Grahnert, Anja; Kölling, Valeen; Dorow, Juliane; Ceglarek, Uta; Sack, Ulrich; Hauschildt, Sunna

    2015-11-01

    The differentiation of human monocytes into macrophages is influenced by environmental signals. Here we asked in how far nicotinamide (NAM), a vitamin B3 derivative known to play a major role in nicotinamide adenine dinucleotide (NAD)-mediated signaling events, is able to modulate monocyte differentiation into macrophages developed in the presence of granulocyte macrophage colony-stimulating factor (GM-MØ) or macrophage colony-stimulating factor (M-MØ). We found that GM-MØ undergo biochemical, morphological and functional modifications in response to NAM, whereas M-MØ were hardly affected. GM-MØ exposed to NAM acquired an M-MØ-like structure while the LPS-induced production of pro-inflammatory cytokines and COX-derived eicosanoids were down-regulated. In contrast, NAM had no effect on the production of IL-10 or the cytochrome P450-derived eicosanoids. Administration of NAM enhanced intracellular NAD concentrations; however, it did not prevent the LPS-mediated drain on NAD pools. In search of intracellular molecular targets of NAM known to be involved in LPS-induced cytokine and eicosanoid synthesis, we found NF-κB activity to be diminished. In conclusion, our data show that vitamin B3, when present during the differentiation of monocytes into GM-MØ, interferes with biochemical pathways resulting in strongly reduced pro-inflammatory features. © The Author(s) 2015.

  7. The impact of arginine-modified chitosan-DNA nanoparticles on the function of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lanxia; Bai Yuanyuan; Song Chunni; Zhu Dunwan; Song Liping; Zhang Hailing; Dong Xia; Leng Xigang, E-mail: lengxg@bme.org.c [Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Laboratory of Bioengineering (China)

    2010-06-15

    It has been demonstrated that incorporation of arginine moieties into chitosan significantly elevates the transgenic efficacy of the chitosan. However, little is known about the impact of arginine-modified chitosan on the function of macrophages, which play a vitally important role in the inflammatory response of the body to foreign substances, especially particulate substances. This study was designed to investigate the impact of arginine-modified chitosan/DNA nanoparticles on the function of the murine macrophage through observation of phagocytic activity and production of pro-inflammatory cytokines (IL-1{beta}, IL-6, IL-10, IL-12, and TNF-{alpha}). Results showed that both chitosan/DNA nanoparticles and arginine-modified chitosan/DNA nanoparticles, containing 20 {mu}g/mL DNA, were internalized by almost all the macrophages in contact. This led to no significant changes, compared to the non-exposure group, in production of cytokines and phagocytic activity of the macrophages 24 h post co-incubation, whereas exposure to LPS induced obviously elevated cytokine production and phagocytic activity, suggesting that incorporation of arginine moieties into chitosan does not have a negative impact on the function of the macrophages.

  8. Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264.7 macrophages.

    Science.gov (United States)

    Yoon, Weon-Jong; Ham, Young Min; Yoo, Byoung-Sam; Moon, Ji-Young; Koh, Jaesook; Hyun, Chang-Gu

    2009-04-01

    We elucidated the pharmacological and biological effects of Oenothera laciniata extracts on the production of inflammatory mediators in macrophages. The CH(2)Cl(2) fraction of O. laciniata extract effectively inhibited LPS-induced NO, PGE(2), and proinflammatory cytokine production in RAW264.7 cells. These inhibitory effects of the CH(2)Cl(2) fraction of O. laciniata were accompanied by decreases in the expression of iNOS and COX-2 proteins and iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 mRNA. Asiatic acid and quercetin were present in the HPLC fingerprint of the O. laciniata extract. We tested the potential application of O. laciniata extract as a cosmetic material by performing primary skin irritation tests. In New Zealand white rabbits, primary irritation tests revealed that application of O. laciniata extracts (1%) did not induce erythema or edema formation. Human skin primary irritation tests were performed on the normal skin (upper back) of 30 volunteers to determine if any material in O. laciniata extracts had irritation or sensitization potential. In these assays, O. laciniata extracts did not induce any adverse reactions. Based on these results, we suggest that O. laciniata extracts be considered possible anti-inflammatory candidates for topical application.

  9. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    2010-11-01

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  10. Identification of BCAP-{sub L} as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Takayuki [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Oyama, Masaaki; Kozuka-Hata, Hiroko [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Ishikawa, Kosuke; Inoue, Takafumi [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Muta, Tatsushi [Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578 (Japan); Semba, Kentaro, E-mail: ksemba@waseda.jp [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan)

    2010-09-17

    Research highlights: {yields} Twenty five tyrosine-phosphorylated proteins in LPS-stimulated macrophages were determined. {yields} BCAP is a novel tyrosine-phosphorylated protein in LPS-stimulated macrophages. {yields} BCAP-{sub L} inhibits IL-6 and IL-10 production in LPS-stimulated macrophages. -- Abstract: Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-{sub L}) and an alternatively initiated or spliced (Bcap-{sub S}) mRNA, and little is known about the differential functions of the BCAP-{sub L} and BCAP-{sub S} proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-{sub L} enhanced IL-6 and IL-10 production but not TNF-{alpha} production in TLR ligand-stimulated macrophages. We propose that BCAP-{sub L} (but not BCAP-{sub S}) is a negative regulator of the TLR-mediated host defense system in macrophages.

  11. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet

    Directory of Open Access Journals (Sweden)

    Sheisa Cyléia Sargi

    2012-05-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb. Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF-α. These cytokines stimulate the synthesis of nitric oxide (NO and hydrogen peroxide (H2O2, leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.

  12. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6......Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation...... to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...

  13. Consequences of gamma-irradiation on inflammatory cytokine regulation in human monocytes/macrophages; Consequences de l`irradiation gamma sur la regulation des cytokines de l`inflammation dans les monocytes/macrophages humains

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D.

    1995-12-31

    Inflammation is a frequent radiation-induced damage, especially after therapeutic irradiation. In this study, we have investigated, the inflammatory cytokine regulation after ionizing irradiation of monocytes/macrophages from four donors. Semi-quantitative RT-PCR revealed, after in vitro 24 h-differentiated monocytes irradiation between 5 to 40 Gy, no induction of interleukin-I{beta} (IL I{beta}), interleukin-6 (IL-6) and tumor necrosis factor-{alpha} (TNF-{alpha} mRNA) expression. Moreover, protein quantitation shows no significant increase of post-irradiation secretion. (author). 6 refs.

  14. CD4+ T Cell-derived IL-10 Promotes Brucella abortus Persistence via Modulation of Macrophage Function

    Science.gov (United States)

    Xavier, Mariana N.; Winter, Maria G.; Spees, Alanna M.; Nguyen, Kim; Atluri, Vidya L.; Silva, Teane M. A.; Bäumler, Andreas J.; Müller, Werner; Santos, Renato L.; Tsolis, Renée M.

    2013-01-01

    Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4+CD25+ T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25+CD4+ T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection. PMID:23818855

  15. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization.

    Science.gov (United States)

    Cucak, Helena; Grunnet, Lars Groth; Rosendahl, Alexander

    2014-01-01

    Human T2D is characterized by a low-grade systemic inflammation, loss of β-cells, and diminished insulin production. Local islet immunity is still poorly understood, and hence, we evaluated macrophage subpopulations in pancreatic islets in the well-established murine model of T2D, the db/db mouse. Already at 8 weeks of disease, on average, 12 macrophages were observed in the diabetic islets, whereas only two were recorded in the nondiabetic littermates. On a detailed level, the islet resident macrophages increased fourfold compared with nondiabetic littermates, whereas a pronounced recruitment (eightfold) of a novel subset of macrophages (CD68+F4/80-) was observed. The majority of the CD68+F4/80+ but only 40% of the CD68+F4/80- islet macrophages expressed CD11b. Both islet-derived macrophage subsets expressed moderate MHC-II, high galectin-3, and low CD80/CD86 levels, suggesting the cells to be macrophages rather than DCs. On a functional level, the vast majority of the macrophages in the diabetic islets was of the proinflammatory, M1-like phenotype. The systemic immunity in diabetic animals was characterized by a low-grade inflammation with elevated cytokine levels and increase of splenic cytokine, producing CD68+F4/80- macrophages. In late-stage diabetes, the cytokine signature changed toward a TGF-β-dominated profile, coinciding with a significant increase of galectin-3-positive macrophages in the spleen. In summary, our results show that proinflammatory M1-like galectin-3+ CD80/CD86(low) macrophages invade diabetic islets. Moreover, the innate immunity matures in a diabetes-dependent manner from an initial proinflammatory toward a profibrotic phenotype, supporting the concept that T2D is an inflammatory disease.

  16. Subgingival Microbiome Colonization and Cytokine Production during Early Dental Implant Healing.

    Science.gov (United States)

    Payne, Jeffrey B; Johnson, Paul G; Kok, Car Reen; Gomes-Neto, João C; Ramer-Tait, Amanda E; Schmid, Marian J; Hutkins, Robert W

    2017-01-01

    Little is known about longitudinal development of the peri-implant subgingival microbiome and cytokine production as a new sulcus forms after dental implant placement. Therefore, the purpose of this observational study was to evaluate simultaneous longitudinal changes in the oral microbiome and cytokine production in the developing peri-implant sulcus compared to control natural teeth. Four and 12 weeks after implant placement and abutment connection, a dental implant and a natural tooth were sampled in 25 patients for subgingival plaque and gingival crevicular fluid (GCF [around teeth] and peri-implant crevicular fluid [PICF] around implants). DNA from plaque samples was extracted and sequenced using Illumina-based 16S rRNA sequencing. GCF and PICF samples were analyzed using a customized Milliplex human cytokine and chemokine magnetic bead panel. Beta diversity analysis revealed that natural teeth and implants had similar subgingival microbiomes, while teeth had greater alpha diversity than implants. At the genus level, however, few differences were noted between teeth and dental implants over 12 weeks. Specifically, Actinomyces and Selenomonas were significantly elevated around teeth versus dental implants at both 4 weeks and 12 weeks, while Corynebacterium and Campylobacter were significantly elevated only at 4 weeks around teeth. The only difference between PICF and GCF biomarkers was significantly elevated granulocyte-macrophage colony-stimulating factor levels around teeth versus dental implants at the 4-week visit. The subgingival microbiome and cytokine production were similar between teeth and implants during early healing, suggesting that these profiles are driven by the patient following dental implant placement and are not determined by anatomical niche. IMPORTANCE Dental implants are a common treatment option offered to patients for tooth replacement. However, little is known regarding initial colonization of the subgingival microbiome and

  17. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.

  18. GM-CSF and IL-4 produced by NKT cells inversely regulate IL-1β production by macrophages.

    Science.gov (United States)

    Ahn, Sehee; Jeong, Dongjin; Oh, Sae Jin; Ahn, Jiye; Lee, Seung Hyo; Chung, Doo Hyun

    2017-02-01

    Natural Killer T (NKT) cells are distinct T cell subset that link innate and adaptive immune responses. IL-1β, produced by various immune cells, plays a key role in the regulation of innate immunity in vivo. However, it is unclear whether NKT cells regulate IL-1β production by macrophages. To address this, we co-cultured NKT cells and peritoneal macrophages in the presence of TCR stimulation and inflammasome activators. Among cytokines secreted from NKT cells, GM-CSF enhanced IL-1β production by macrophages via regulating LPS-mediated pro-IL-1β expression and NLRP3-dependent inflammasome activation, whereas IL-4 enhanced M2-differentiation of macrophages and decreased IL-1β production. Together, our findings suggest the NKT cells have double-sided effects on IL-1β-mediated innate immune responses by producing IL-4 and GM-CSF. These findings may be helpful for a comprehensive understanding of NKT cell-mediated regulatory mechanisms of the pro-inflammatory effects of IL-1β in inflammatory diseases in vivo. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  19. Unopposed Estrogen Supplementation/Progesterone Deficiency in Post-Reproductive Age Affects the Secretory Profile of Resident Macrophages in a Tissue-Specific Manner in the Rat.

    Science.gov (United States)

    Stanojević, Stanislava; Kovačević-Jovanović, Vesna; Dimitrijević, Mirjana; Vujić, Vesna; Ćuruvija, Ivana; Blagojević, Veljko; Leposavić, Gordana

    2015-11-01

    The influence of unopposed estrogen replacement/isolated progesterone deficiency on macrophage production of pro-inflammatory/anti-inflammatory mediators in the post-reproductive age was studied. Considering that in the rats post-ovariectomy the circulating estradiol, but not progesterone level rises to the values in sham-operated controls, 20-month-old rats ovariectomized at the age of 10 months served as an experimental model. Estrogen and progesterone receptor expression, secretion of pro- and anti-inflammatory cytokines, and arginine metabolism end-products were examined in splenic and peritoneal macrophages under basal conditions and following lipopolysaccharide (LPS) stimulation in vitro. Almost all peritoneal and a subset of splenic macrophages expressed the intracellular progesterone receptor. Ovariectomy diminished cytokine production by splenic (IL-1β) and peritoneal (TNF-α, IL-1β, IL-10) macrophages and increased the production of IL-10 by splenic and TGF-β by peritoneal cells under basal conditions. Following LPS stimulation, splenic macrophages from ovariectomized rats produced less TNF-α and more IL-10, whereas peritoneal macrophages produced less IL-1β and TGF-β than the corresponding cells from sham-operated rats. Ovariectomy diminished urea production in both subpopulations of LPS-stimulated macrophages. Although long-lasting isolated progesterone deficiency in the post-reproductive age differentially affects cytokine production in the macrophages from distinct tissue compartments, in both subpopulations, it impairs the pro-inflammatory/anti-inflammatory cytokine secretory balance. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A Novel Strategy for TNF-Alpha Production by 2-APB Induced Downregulated SOCE and Upregulated HSP70 in O. tsutsugamushi-Infected Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wu

    Full Text Available Orientia (O. tsutsugamushi-induced scrub typhus is endemic across many regions of Asia and the Western Pacific, where an estimated 1 million cases occur each year; the majority of patients infected with O. tsutsugamushi end up with a cytokine storm from a severe inflammatory response. Previous reports have indicated that blocking tumor necrosis factor (TNF-α reduced cell injury from a cytokine storm. Since TNF-α production is known to be associated with intracellular Ca2+ elevation, we examined the effect of store-operated Ca2+ entry (SOCE inhibitors on TNF-α production in O. tsutsugamushi-infected macrophages. We found that 2-aminoethoxydiphenyl borate (2-APB, but not SKF96365, facilitates the suppression of Ca2+ mobilization via the interruption of Orai1 expression in O. tsutsugamushi-infected macrophages. Due to the decrease of Ca2+ elevation, the expression of TNF-α and its release from macrophages was repressed by 2-APB. In addition, a novel role of 2-APB was found in macrophages that causes the upregulation of heat shock protein 70 (HSP70 expression associated with ERK activation; upregulated TNF-α production in the case of knockdown HSP70 was inhibited with 2-APB treatment. Furthermore, elevated HSP70 formation unexpectedly did not help the cell survival of O. tsutsugamushi-infected macrophages. In conclusion, the parallelism between downregulated Ca2+ mobilization via SOCE and upregulated HSP70 after treatment with 2-APB against TNF-α production was found to efficiently attenuate an O. tsutsugamushi-induced severe inflammatory response.

  1. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  2. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species.

    Science.gov (United States)

    Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji

    2011-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages

    Directory of Open Access Journals (Sweden)

    A. Ocaña

    2012-01-01

    Full Text Available Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis were examined. Two oil fractions from each species were obtained by CO2 supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects.

  4. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  5. MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Cheng; Liu, Xue-Jiao; QunZhou; Xie, Juan; Ma, Tao-Tao; Meng, Xiao-Ming; Li, Jun

    2016-03-01

    Macrophages are heterogeneous and plastic cells which are able to undergo dynamic transition between M1 and M2 polarized phenotypes in response to the microenvironment signals. However, the underlying molecular mechanisms of macrophage polarization are still obscure. In the current study, it was revealed that miR-146a might play a pivotal role in macrophage polarization. As our results indicated, miR-146a was highly expressed in M2 macrophages rather than M1 macrophages. Over-expression of miR-146a resulted in significantly decreased production of pro-inflammatory cytokines including iNOS and TNF-α in M1 macrophages, while increased production of M2 marker genes such as Arg1 and CD206 in M2 macrophages. In contrast, knockdown of miR-146a promoted M1 macrophage polarization but diminished M2 macrophage polarization. Mechanistically, it was revealed that miR-146a modulated macrophage polarization by targeting Notch1. Of note, PPARγ was responsible as another target for miR-146a-mediated macrophage polarization. Taken together, it was suggested that miR-146a might serve as a molecular regulator in macrophage polarization and is a potential therapeutic target for inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Virulent and avirulent strains of equine arteritis virus induce different quantities of TNF-α and other proinflammatory cytokines in alveolar and blood-derived equine macrophages

    International Nuclear Information System (INIS)

    Moore, Brian D.; Balasuriya, Udeni B.R.; Watson, Johanna L.; Bosio, Catharine M.; MacKay, Robert J.; MacLachlan, N. James

    2003-01-01

    Equine arteritis virus (EAV) infects endothelial cells (ECs) and macrophages in horses, and many of the clinical manifestations of equine viral arteritis (EVA) reflect vascular injury. To further evaluate the potential role of EAV-induced, macrophage-derived cytokines in the pathogenesis of EVA, we infected cultured equine alveolar macrophages (AMphi), blood monocyte-derived macrophages (BMphi), and pulmonary artery ECs with either a virulent (KY84) or an avirulent (CA95) strain of EAV. EAV infection of equine AMphi, BMphi, and ECs resulted in their activation with increased transcription of genes encoding proinflammatory mediators, including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. Furthermore, the virulent KY84 strain of EAV induced significantly higher levels of mRNA encoding proinflammatory cytokines in infected AMphi and BMphi than did the avirulent CA95 strain. Treatment of equine ECs with the culture supernatants of EAV-infected AMphi and BMphi also resulted in EC activation with cell surface expression of E-selectin, whereas infection of ECs with purified EAV alone caused only minimal expression of E-selectin. The presence of TNF-α in the culture supernatants of EAV-infected equine AMphi, BMphi, and ECs was confirmed by bioassay, and the virulent KY84 strain of EAV induced significantly more TNF-α in all cell types than did the avirulent CA95 strain. Thus, the data indicate that EAV-induced, macrophage-derived cytokines may contribute to the pathogenesis of EVA in horses, and that the magnitude of the cytokine response of equine AMphi, BMphi, and ECs to EAV infection reflects the virulence of the infecting virus strain

  7. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    Science.gov (United States)

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons, Ltd.

  8. Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity.

    Science.gov (United States)

    Taguchi, Kazuaki; Nagao, Saori; Maeda, Hitoshi; Yanagisawa, Hiroki; Sakai, Hiromi; Yamasaki, Keishi; Wakayama, Tomohiko; Watanabe, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2018-11-01

    Macrophages play a central role in various inflammatory disorders and are broadly divided into two subpopulations, M1 and M2 macrophage. In the healing process in acute inflammatory disorders, shifting the production of M1 macrophages to M2 macrophages is desirable, because M1 macrophages secrete pro-inflammatory cytokines, whilst the M2 variety secrete anti-inflammatory cytokines. Previous findings indicate that when macrophages are treated with carbon monoxide (CO), the secretion of anti-inflammatory cytokine is increased and the expression of pro-inflammatory cytokines is inhibited, indicating that CO may have a potential to modulate the production of macrophages toward the M2-like phenotype. In this study, we examined the issue of whether CO targeting macrophages using a nanotechnology-based CO donor, namely CO-bound hemoglobin vesicles (CO-HbV), modulates their polarization and show therapeutic effects against inflammatory disorders. The results showed that the CO-HbV treatment polarized a macrophage cell line toward an M2-like phenotype. Furthermore, in an in vivo study using acute pancreatitis model mice as a model of an inflammatory disease, a CO-HbV treatment also tended to polarize macrophages toward an M2-like phenotype and inhibited neutrophil infiltration in the pancreas, resulting in a significant inflammation. In addition to the suppression of acute pancreatitis, CO-HbV diminished a subsequent pancreatitis-associated acute lung injury. This could be due to the inhibition of the systemic inflammation, neutrophil infiltration in the lungs and the production of HMGB-1. These findings suggest that CO-HbV exerts superior anti-inflammatory effects against inflammatory disorders via the regulation of macrophage and neutrophil activity.

  9. Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Møller, Holger J; Vloet, Rianka P M

    2007-01-01

    The scavenger receptor CD163 is selectively expressed on tissue macrophages and human monocytes. CD163 has been implicated to play a role in the clearance of hemoglobin and in the regulation of cytokine production by macrophages. Membrane CD163 can be cleaved by matrix metalloproteinases (MMP...

  10. Macrophages in synovial inflammation

    Directory of Open Access Journals (Sweden)

    Aisling eKennedy

    2011-10-01

    Full Text Available AbstractSynovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage-pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA. There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished.Here we will briefly review our current understanding of macrophages and macrophage polarisation in RA as well as the elements implicated in controlling polarisation, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype and may represent a novel therapeutic paradigm.

  11. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells

    International Nuclear Information System (INIS)

    Naha, Pratap C.; Davoren, Maria; Lyng, Fiona M.; Byrne, Hugh J.

    2010-01-01

    The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H 2 DCFDA to DCF both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-α (TNF-α) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at ∼ 4 h), TNF-α and IL-6 secretion (maximum at ∼ 24 h), MIP-2 levels and cell death (∼ 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.

  12. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.

    Science.gov (United States)

    Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu

    2009-08-01

    Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.

  13. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures.

    Science.gov (United States)

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesús; Fuenmayor, Edgard; Alvarez-Mon, Melchor

    2017-12-15

    The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Interleukin-34 Regulates Th1 and Th17 Cytokine Production by Activating Multiple Signaling Pathways through CSF-1R in Chicken Cell Lines

    Directory of Open Access Journals (Sweden)

    Anh Duc Truong

    2018-06-01

    Full Text Available Interleukin-34 (IL-34 is a newly recognized cytokine with functions similar to macrophage colony-stimulating factor 1. It is expressed in macrophages and fibroblasts, where it induces cytokine production; however, the mechanism of chicken IL-34 (chIL-34 signaling has not been identified to date. The aim of this study was to analyze the signal transduction pathways and specific biological functions associated with chIL-34 in chicken macrophage (HD11 and fibroblast (OU2 cell lines. We found that IL-34 is a functional ligand for the colony-stimulating factor receptor (CSF-1R in chicken cell lines. Treatment with chIL-34 increased the expression of Th1 and Th17 cytokines through phosphorylation of tyrosine and serine residues in Janus kinase (JAK 2, tyrosine kinase 2 (TYK2, signal transducer and activator of transcription (STAT 1, STAT3, and Src homology 2-containing tyrosine phosphatase 2 (SHP-2, which also led to phosphorylation of NF-κB1, p-mitogen-activated protein kinase kinase kinase 7 (TAK1, MyD88, suppressor of cytokine signaling 1 (SOCS1, and extracellular signal-regulated kinase 1 and 2 (ERK1/2. Taken together, these results suggest that chIL-34 functions by binding to CSF-1R and activating the JAK/STAT, nuclear factor κ B (NF-κB, and mitogen-activated protein kinase signaling pathways; these signaling events regulate cytokine expression and suggest roles for chIL-34 in innate and adaptive immunity.

  15. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A

    2012-07-01

    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  16. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    International Nuclear Information System (INIS)

    Meyer-Siegler, Katherine L; Leifheit, Erica C; Vera, Pedro L

    2004-01-01

    The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) has previously been associated with various types of adenocarcinoma. MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA), anti-MIF antibody or MIF anti-sense) on cell growth and cytokine expression were analyzed. Human bladder cancer cells (HT-1376) secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma

  17. Pneumococcal DNA-binding proteins released through autolysis induce the production of proinflammatory cytokines via toll-like receptor 4.

    Science.gov (United States)

    Nagai, Kosuke; Domon, Hisanori; Maekawa, Tomoki; Oda, Masataka; Hiyoshi, Takumi; Tamura, Hikaru; Yonezawa, Daisuke; Arai, Yoshiaki; Yokoji, Mai; Tabeta, Koichi; Habuka, Rie; Saitoh, Akihiko; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-03-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia. Our previous study suggested that S. pneumoniae autolysis-dependently releases intracellular pneumolysin, which subsequently leads to lung injury. In this study, we hypothesized that pneumococcal autolysis induces the leakage of additional intracellular molecules that could increase the pathogenicity of S. pneumoniae. Liquid chromatography tandem-mass spectrometry analysis identified that chaperone protein DnaK, elongation factor Tu (EF-Tu), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were released with pneumococcal DNA by autolysis. We demonstrated that recombinant (r) DnaK, rEF-Tu, and rGAPDH induced significantly higher levels of interleukin-6 and tumor necrosis factor production in peritoneal macrophages and THP-1-derived macrophage-like cells via toll-like receptor 4. Furthermore, the DNA-binding activity of these proteins was confirmed by surface plasmon resonance assay. We demonstrated that pneumococcal DnaK, EF-Tu, and GAPDH induced the production of proinflammatory cytokines in macrophages, and might cause host tissue damage and affect the development of pneumococcal diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Macrophage migration inhibitory factor is associated with aneurysmal expansion

    DEFF Research Database (Denmark)

    Pan, Jie-Hong; Lindholt, Jes Sanddal; Sukhova, Galina K

    2003-01-01

    Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution o...... of MIF to these human diseases remain unknown, although a recent rabbit study showed expression of this cytokine in atherosclerotic lesions.......Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution...

  19. Xylitol, an anticaries agent, exhibits potent inhibition of inflammatory responses in human THP-1-derived macrophages infected with Porphyromonas gingivalis.

    Science.gov (United States)

    Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin

    2014-06-01

    Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis-induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection- and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ-induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis-induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted antiphagocytic activity against both Escherichia coli and P. gingivalis. These findings suggest that xylitol acts as an anti-inflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis.

  20. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype.

    Science.gov (United States)

    Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B

    2015-10-01

    What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized

  1. Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages.

    Science.gov (United States)

    Haddad, George; Belosevic, Miodrag

    2009-02-01

    We examined the induction of macrophage pro-inflammatory responses by transferrin-derived synthetic peptide originally identified following digestion of transferrin from different species (murine, bovine, human N-lobe and goldfish) using elastase. The mass spectrometry analysis of elastase-digested murine transferrin identified a 31 amino acid peptide located in the N2 sub-domain of the transferrin N-lobe, that we named TMAP. TMAP was synthetically produced and shown to induce a number of pro-inflammatory genes by quantitative PCR. TMAP induced chemotaxis, a potent nitric oxide response, and TNF-alpha secretion in different macrophage populations; P338D1 macrophage-like cells, mouse peritoneal macrophages, mouse bone marrow-derived macrophages (BMDM) and goldfish macrophages. The treatment of BMDM cultures with TMAP stimulated the production of nine cytokines and chemokines (IL-6, MCP-5, MIP-1 alpha, MIP-1 gamma, MIP-2, GCSF, KC, VEGF, and RANTES) that was measured using cytokine antibody array and confirmed by Western blot. Our results indicate that transferrin-derived peptide, TMAP, is an immunomodulating molecule capable of inducing pro-inflammatory responses in lower and higher vertebrates.

  2. Differential Macrophage Response to Slow- and Fast-Growing Pathogenic Mycobacteria

    Directory of Open Access Journals (Sweden)

    A. Cecilia Helguera-Repetto

    2014-01-01

    Full Text Available Nontuberculous mycobacteria (NTM have recently been recognized as important species that cause disease even in immunocompetent individuals. The mechanisms that these species use to infect and persist inside macrophages are not well characterised. To gain insight concerning this process we used THP-1 macrophages infected with M. abscessus, M. fortuitum, M. celatum, and M. tuberculosis. Our results showed that slow-growing mycobacteria gained entrance into these cells with more efficiency than fast-growing mycobacteria. We have also demonstrated that viable slow-growing M. celatum persisted inside macrophages without causing cell damage and without inducing reactive oxygen species (ROS, as M. tuberculosis caused. In contrast, fast-growing mycobacteria destroyed the cells and induced high levels of ROS. Additionally, the macrophage cytokine pattern induced by M. celatum was different from the one induced by either M. tuberculosis or fast-growing mycobacteria. Our results also suggest that, in some cases, the intracellular survival of mycobacteria and the immune response that they induce in macrophages could be related to their growth rate. In addition, the modulation of macrophage cytokine production, caused by M. celatum, might be a novel immune-evasion strategy used to survive inside macrophages that is different from the one reported for M. tuberculosis.

  3. The response of macrophages to titanium particles is determined by macrophage polarization.

    Science.gov (United States)

    Pajarinen, Jukka; Kouri, Vesa-Petteri; Jämsen, Eemeli; Li, Tian-Fang; Mandelin, Jami; Konttinen, Yrjö T

    2013-11-01

    Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.

    Directory of Open Access Journals (Sweden)

    Juin-Hua Huang

    2015-07-01

    Full Text Available Collaboration between heterogeneous pattern recognition receptors (PRRs leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3 and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA, genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

  5. Real time macrophage migration analysis and associated pro-inflammatory cytokine release on transparent carbon nanotube/polymer composite nano-film

    International Nuclear Information System (INIS)

    Khang, Dongwoo

    2015-01-01

    Surface chemistry and nanoscale surface morphology are both influential factors for cell adhesion, growth, and differentiation. In particular, cell migration is one of the major markers of initial immune response activation to implanted biomaterials. Despite their indication, it has been difficult to directly examine macrophages on nanoscale materials, because most nanomaterials possess greater thicknesses than nanoscale. This study developed transparent films comprising a carbon nanotube and polymer composite with controlled surface stiffness and nanoscale roughness. As nanoscale surface topography can incite immune cell activation, analysis of the real-time cell migration (including velocity) of macrophages due to changes in nanoscale surface topography of a biopolymer can support the direct relationship between initial macrophage dynamics and corresponding pro-inflammatory responses. Through real-time analysis, we have identified that surface chemistry and surface nanoscale topography are both independent factors mediating macrophage interactions, and, thus, immune cell behavior can be further controlled by the systematic variation of nanoscale surface topography for a given surface chemistry. Considering that the initial immune response can determine the fate and lifetime of implanted biomaterials, this study presents the direct relationship between initial macrophage dynamics and subsequent inflammatory cytokine release on transparent carbon nanotube polymer composites. (paper)

  6. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Leifheit Erica C

    2004-07-01

    Full Text Available Abstract Background The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF has previously been associated with various types of adenocarcinoma. Methods MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA, anti-MIF antibody or MIF anti-sense on cell growth and cytokine expression were analyzed. Results Human bladder cancer cells (HT-1376 secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. Conclusions This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma.

  7. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  8. DNAs from Brucella strains activate efficiently murine immune system with production of cytokines, reactive oxygen and nitrogen species.

    Science.gov (United States)

    Tavakoli, Zahra; Ardestani, Sussan K; Lashkarbolouki, Taghi; Kariminia, Amina; Zahraei Salehi, Taghi; Tavassoli, Nasser

    2009-09-01

    Brucellosis is an infectious disease with high impact on innate immune responses which is induced partly by its DNA. In the present study the potential differences of wild type and patients isolates versus attenuated vaccine strains in terms of cytokines, ROS and NO induction on murine splenocytes and peritoneal macrophages were investigated. This panel varied in base composition and included DNA from B. abortus, B. melitensis, B.abortus strain S19 and melitensis strain Rev1, as attenuated live vaccine. Also we included Escherichia coli DNA, calf thymus DNA (a mammalian DNA), as controls. These DNA were evaluated for their ability to stimulate IL-12, TNF-alpha, IL-10, IFN-gamma and ROS production from spleenocytes as well as NO production from peritoneal macrophages. Spleen cells were cultured in 24 well at a concentration of 106 cells/ ml with subsequent addition of 10 microg/ml of Brucella or Ecoli DNAs. These cultures were incubated at 37 degrees C with 5% CO2 for 5 days. Supernatants were harvested and cytokines, ROS and NOx were evaluated. It was observed that TNF-alpha was induced in days 1,3,5 by all Brucella strains DNAs and E. coli DNA, IL-10 only was induced in day 1, IFN- gamma was induced only in day 5 and IL-12 not induced. ROS and NOx were produced by all strains; however, we observed higher production of NOx which were stimulated by DNA of B. melitensis.

  9. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP

    NARCIS (Netherlands)

    Jønsson, K L; Laustsen, A; Krapp, C; Skipper, K A; Thavachelvam, K; Hotter, D; Egedal, J H; Kjolby, M; Mohammadi, P; Prabakaran, T; Sørensen, L K; Sun, C; Jensen, S B; Holm, C K; Lebbink, R J; Johannsen, M; Nyegaard, M; Mikkelsen, J G; Kirchhoff, F; Paludan, S R; Jakobsen, M R

    2017-01-01

    Innate immune activation by macrophages is an essential part of host defence against infection. Cytosolic recognition of microbial DNA in macrophages leads to induction of interferons and cytokines through activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Other

  10. Adjuvant effect of Asparagus racemosus Willd. derived saponins in antibody production, allergic response and pro-inflammatory cytokine modulation.

    Science.gov (United States)

    Tiwari, Nimisha; Gupta, Vivek Kumar; Pandey, Pallavi; Patel, Dinesh Kumar; Banerjee, Suchitra; Darokar, Mahendra Pandurang; Pal, Anirban

    2017-02-01

    The study manifests the immunoadjuvant potential of saponin rich fraction from Asparagus racemosus in terms of cellular and humoral immune response that can be exploited against microbial infections. Asparagus racemosus (AR) has been attributed as an adaptogen and rasayana in traditional medication systems for enhancing the host defence mechanism. Spectrophotometric and HPTLC analysis ensured the presence of saponins. The saponin rich fractions were tested for immunoadjuvant property in ovalbumin immunised mice for the humoral response, quantified in terms of prolonged antibody production upto a duration of 56days. Proinflammatory cytokines (IL-6 and TNF) were estimated for the cellular immune response in LPS stimulated primary murine macrophages. The safety evaluation in terms of cytotoxicity and allergic response has also been evaluated through in-vitro (MTT) and in-vivo (IgE) respectively. ARS significantly inhibited the pro-inflammatory cytokines, in LPS stimulated murine macrophages with no intrinsic cytotoxicity. The significant increase in IgG production infers the utility of ARS for prolonged humoral response. Further, the antigen specific response of IL-12 at early stage and IgE titres also suggests the generation of cellular immune response and low allergic reaction respectively, as compared to conventional adjuvants. IL-6 and TNF fluctuations in LPS stimulated and non-stimulated macrophages along with IgG and IL-12 also confirmed the Th1/Th2 modulating effect of ARS. The study indicates potential effect of ARS as an adjuvant for the stimulation of cellular immune response in addition to generating a sustained adaptive response without any adverse effects paving way for further validation with pathogenic organisms. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    production of TNF-alpha and the CXC chemokine, macrophage inflammatory protein-2 (MIP-2). Alveolar macrophages exhibited cytokine responses to both sICAM-1 and immobilized sICAM-1, while rat PBMCs failed to demonstrate similar responses. Exposure of alveolar macrophages to sICAM-1 resulted in NFkappa......B activation (which was blocked by the presence of the aldehyde peptide inhibitor of 28S proteosome and by genistein, a tyrosine kinase inhibitor). As expected, cross-linking of CD18 on macrophages with Ab resulted in generation of TNF-alpha and MIP-2. This response was also inhibited in the presence...... of TNF-alpha and MIP-2 and increased neutrophil recruitment. Therefore, through engagement of beta2 integrins, sICAM-1 enhances alveolar macrophage production of MIP-2 and TNF-alpha, the result of which is intensified lung injury after intrapulmonary disposition of immune complexes....

  12. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages.

    Science.gov (United States)

    Ocaña-Fuentes, A; Arranz-Gutiérrez, E; Señorans, F J; Reglero, G

    2010-06-01

    Two fractions (S1 and S2) of an oregano (Origanum vulgare) extract obtained by supercritical fluid extraction have been used to test anti-inflammatory effects on activated human THP-1 cells. The main compounds present in the supercritical extract fractions of oregano were trans-sabinene hydrate, thymol and carvacrol. Fractions toxicity was assessed using the mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction method for several concentrations during 24 and 48 h of incubation. Concentrations higher than 30 microg/mL of both supercritical S1 and S2 oregano fractions caused a reduction in cell viability in a dose-dependent manner. Oxidized-LDLs (oxLDLs) activated THP-1 macrophages were used as cellular model of atherogenesis and the release/secretion of cytokines (TNT-alpha, IL-1beta, IL-6 and IL-10) and their respective mRNA expressions were quantified both in presence or absence of supercritical oregano extracts. The results showed a decrease in pro-inflammatory TNF-alpha, IL-1beta and IL-6 cytokines synthesis, as well as an increase in the production of anti-inflammatory cytokine IL-10. These results may suggest an anti-inflammatory effect of oregano extracts and their compounds in a cellular model of atherosclerosis. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    Science.gov (United States)

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  14. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  15. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    Science.gov (United States)

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses.

    Science.gov (United States)

    Belkina, Anna C; Nikolajczyk, Barbara S; Denis, Gerald V

    2013-04-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated proinflammatory cytokine response remain poorly characterized. Bromodomain and extraterminal (BET) proteins are "readers" of histone acetylation marks, with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for proinflammatory cytokine production in macrophages. Studies that use small interfering RNA knockdown and a small-molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the "cytokine storm" in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small-molecule inhibitors will benefit hyperinflammatory conditions associated with high levels of cytokine production.

  17. Metformin affects macrophages' phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages.

    Science.gov (United States)

    Bułdak, Łukasz; Łabuzek, Krzysztof; Bułdak, Rafał Jakub; Kozłowski, Michał; Machnik, Grzegorz; Liber, Sebastian; Suchy, Dariusz; Duława-Bułdak, Anna; Okopień, Bogusław

    2014-06-01

    Diabetic patients experience accelerated atherosclerosis. Metformin is a cornerstone of the current therapy of type 2 diabetes. Macrophages are the key cells associated with the development of atherosclerotic plaques. Therefore, our aim was to assess the in vitro effects of metformin on macrophages and its influence on the mechanisms involved in the development of atherosclerosis. Peripheral blood mononuclear cells were obtained from the group including 16 age-matched healthy non-smoking volunteers aged 18-40 years. Monocytes were further incubated with metformin, LPS and compound C--a pharmacological inhibitor of AMPK. The impact of metformin on oxidative stress markers, antioxidative properties, inflammatory cytokines and phenotypical markers of macrophages was studied. We showed that macrophages treated with metformin expressed less reactive oxygen species (ROS), which resulted from increased antioxidative potential. Furthermore, a reduction in inflammatory cytokines was observed. We also observed a phenotypic shift toward the alternative activation of macrophages that was induced by metformin. All the aforementioned results resulted from AMPK activation, but a residual activity of metformin after AMPK blockade was still noticeable even after inhibition of AMPK by compound C. Authors believe that metformin-based therapy, a cornerstone in diabetes therapy, not only improves the prognosis of diabetics by reducing blood glucose but also by reducing oxidative stress, inflammatory cytokine production and the shift toward alternative activation of macrophages. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses1

    Science.gov (United States)

    Belkina, Anna C.; Nikolajczyk, Barbara S.; Denis, Gerald V.

    2013-01-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated pro-inflammatory cytokine response remain poorly characterized. Bromodomain extra terminal (BET) proteins are “readers” of histone acetylation marks with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for pro-inflammatory cytokine production in macrophages. Studies that utilize siRNA knockdown and a small molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the “cytokine storm” in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small molecule inhibitors will benefit hyper-inflammatory conditions associated with high levels of cytokine production. PMID:23420887

  19. GCN2-Dependent Metabolic Stress Is Essential for Endotoxemic Cytokine Induction and Pathology

    Science.gov (United States)

    Liu, Haiyun; Huang, Lei; Bradley, Jillian; Liu, Kebin; Bardhan, Kankana; Ron, David; Mellor, Andrew L.; Munn, David H.

    2014-01-01

    Activated inflammatory macrophages can express indoleamine 2,3-dioxygenase (IDO) and thus actively deplete their own tryptophan supply; however, it is not clear how amino acid depletion influences macrophage behavior in inflammatory environments. In this report, we demonstrate that the stress response kinase GCN2 promotes macrophage inflammation and mortality in a mouse model of septicemia. In vitro, enzymatic amino acid consumption enhanced sensitivity of macrophages to the Toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) with significantly increased interleukin 6 (IL-6) production. Tryptophan withdrawal induced the stress response proteins ATF4 and CHOP/GADD153; however, LPS stimulation rapidly enhanced expression of both proteins. Moreover, LPS-driven cytokine production under amino acid-deficient conditions was dependent on GCN2, as GCN2 knockout (GCN2KO) macrophages had a significant reduction of cytokine gene expression after LPS stimulation. To test the in vivo relevance of these findings, monocytic-lineage-specific GCN2KO mice were challenged with a lethal dose of LPS intraperitoneally (i.p.). The GCN2KO mice showed reduced inflammatory responses, with decreased IL-6 and IL-12 expression correlating with significant reduction in animal mortality. Thus, the data show that amino acid depletion stress signals (via GCN2) synergize with proinflammatory signals to potently increase innate immune responsiveness. PMID:24248597

  20. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.

    Science.gov (United States)

    Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel

    2016-06-01

    We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

  1. Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages

    Directory of Open Access Journals (Sweden)

    Norikazu Kiguchi

    2017-11-01

    Full Text Available Neuropathic pain can have a major effect on quality of life but current therapies are often inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury. Among these, the most abundant cell type is macrophages, which produce several key molecules involved in pain enhancement, including cytokines and chemokines. Given their central role in the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1 macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1 macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.

  2. The role of HFE genotype in macrophage phenotype.

    Science.gov (United States)

    Nixon, Anne M; Neely, Elizabeth; Simpson, Ian A; Connor, James R

    2018-02-01

    Iron regulation is essential for cellular energy production. Loss of cellular iron homeostasis has critical implications for both normal function and disease progression. The H63D variant of the HFE gene is the most common gene variant in Caucasians. The resulting mutant protein alters cellular iron homeostasis and is associated with a number of neurological diseases and cancer. In the brain, microglial and infiltrating macrophages are critical to maintaining iron homeostasis and modulating inflammation associated with the pathogenic process in multiple diseases. This study addresses whether HFE genotype affects macrophage function and the implications of these findings for disease processes. Bone marrow macrophages were isolated from wildtype and H67D HFE knock-in mice. The H67D gene variant in mice is the human equivalent of the H63D variant. Upon differentiation, the macrophages were used to analyze iron regulatory proteins, cellular iron release, migration, phagocytosis, and cytokine expression. The results of this study demonstrate that the H67D HFE genotype significantly impacts a number of critical macrophage functions. Specifically, fundamental activities such as proliferation in response to iron exposure, L-ferritin expression in response to iron loading, secretion of BMP6 and cytokines, and migration and phagocytic activity were all found to be impacted by genotype. Furthermore, we demonstrated that exposure to apo-Tf (iron-poor transferrin) can increase the release of iron from macrophages. In normal conditions, 70% of circulating transferrin is unsaturated. Therefore, the ability of apo-Tf to induce iron release could be a major regulatory mechanism for iron release from macrophages. These studies demonstrate that the HFE genotype impacts fundamental components of macrophage phenotype that could alter their role in degenerative and reparative processes in neurodegenerative disorders.

  3. Inflammatory Macrophage Phenotype in BTBR T+tf/J Mice

    Directory of Open Access Journals (Sweden)

    Paul eAshwood

    2013-09-01

    Full Text Available Although autism is a behaviorally defined disorder, many studies report an association with increased pro-inflammatory cytokine production. Recent characterization of the BTBR T+tf/J (BTBR inbred mouse strain has revealed several behavioral characteristics including social deficits, repetitive behavior, and atypical vocalizations which may be relevant to autism. We therefore hypothesized that asocial BTBR mice, which exhibit autism-like behaviors, may have an inflammatory immune profile similar to that observed in children with autism. The objectives of this study were to characterize the myeloid immune profile of BTBR mice and to explore their associations with autism-relevant behaviors. C57BL/6J (C57 mice and BTBR mice were tested for social interest and repetitive self-grooming behavior. Cytokine production was measured in bone-marrow derived macrophages incubated for 24 hours in either growth media alone, LPS, IL-4/ LPS, or IFNγ/ LPS to ascertain any M1/M2 skewing. After LPS stimulation, BTBR macrophages produced higher levels of IL-6, MCP-1, and MIP-1α and lower IL-10 (p<0.01 that C57 mice, suggesting an exaggerated inflammatory profile. After exposure to IL-4/LPS BTBR macrophages produced less IL-10 than C57 macrophages and more IL-12p40 (p<0.01 suggesting poor M2 polarization. Levels of IL-12(p70 (p<0.05 were higher in BTBR macrophages after IFNγ/LPS stimulation, suggesting enhanced M1 polarization. We further observed a positive correlation between grooming frequency, and production of IL-12(p40, IL-12p70, IL-6, and TNFα (p<0.05 after treatment with IFNγ/LPS across both strains. Collectively, these data suggest that the asocial BTBR mouse strain exhibits a more inflammatory, or M1, macrophage profile in comparison to social C57 strain. We have further demonstrated a relationship between this relative increase in inflammation and repetitive grooming behavior, which may have relevance to repetitive and stereotyped behavior of autism.

  4. Effects of habitual exercise on the eHsp72-induced release of inflammatory cytokines by macrophages from obese Zucker rats.

    Science.gov (United States)

    Garcia, J J; Martin-Cordero, L; Hinchado, M D; Bote, M E; Ortega, E

    2013-06-01

    Regular exercise is a good non-pharmacological treatment of metabolic syndrome in that it improves obesity, diabetes, and inflammation. The 72 kDa extracellular heat shock protein (eHsp72) is released during exercise, thus stimulating the inflammatory responses. The aim of the present work was to evaluate the effect of regular exercise on the eHsp72-induced release of IL-1β, IL-6, and TNFα by macrophages from genetically obese Zucker rats (fa/fa) (ObZ), using lean Zucker (LZ) rats (Fa/fa) to provide reference values. ObZ presented a higher plasma concentration of eHsp72 than LZ, and exercise increased that concentration. In response to eHsp72, the macrophages from ObZ released less IL-1β and TNFα, but more IL-6, than macrophages from LZ. While eHsp72 stimulated the release of IL-1β, TNFα, and IL-6 in the macrophages from healthy LZ (with respect to the constitutive release), it inhibited the release of IL-1β and IL-6 in macrophages from ObZ. The habitual exercise improved the release of inflammatory cytokines by macrophages from ObZ in response to eHsp72 (it increased IL-1β and TNFα, and decreased IL-6), tending to values closer to those determined in healthy LZ. A deregulated macrophage inflammatory and stress response induced by eHsp72 underlies MS, and this is improved by habitual exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Suppressive effects of ketamine on macrophage functions

    International Nuclear Information System (INIS)

    Chang Yi; Chen, T.-L.; Sheu, J.-R.; Chen, R.-M.

    2005-01-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 μM ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 μM, ketamine caused a release of lactate dehydrogenase and cell death. Ketamine, at 10 and 100 μM, did not affect the chemotactic activity of macrophages. Administration of 1000 μM ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-α, IL-1β, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-α, IL-1β, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-α, IL-1β, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 μM) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity

  6. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-α and NO production in macrophages.

    Science.gov (United States)

    Liu, Qiang; Zheng, Jin; Yin, Dan-Dan; Xiang, Jie; He, Fei; Wang, Yao-Chun; Liang, Liang; Qin, Hong-Yan; Liu, Li; Liang, Ying-Min; Han, Hua

    2012-05-01

    Macrophage activation is modulated by both environmental cues and endogenous programs. In the present study, we investigated the role of a PAQR family protein, monocyte to macrophage differentiation-associated (MMD), in macrophage activation and unveiled its underlying molecular mechanism. Our results showed that while MMD expression could be detected in all tissues examined, its expression level is significantly up-regulated upon monocyte differentiation. Within cells, EGFP-MMD fusion protein could be co-localized to endoplasmic reticulum, mitochondria, Golgi apparatus, but not lysosomes and cytoplasm. MMD expression is up-regulated in macrophages after LPS stimulation, and this might be modulated by RBP-J, the critical transcription factor of Notch signaling. Overexpression of MMD in macrophages increased the production of TNF-α and NO upon LPS stimulation. We found that MMD overexpression enhanced ERK1/2 and Akt phosphorylation in macrophages after LPS stimulation. Blocking Erk or Akt by pharmacological agent reduced TNF-α or NO production in MMD-overexpressing macrophages, respectively. These results suggested that MMD modulates TNF-α and NO production in macrophages, and this process might involves Erk or Akt.

  7. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response

    Science.gov (United States)

    Wang, Wei; Wang, Jing; Dong, Sheng-fu; Liu, Chun-hong; Italiani, Paola; Sun, Shu-hui; Xu, Jing; Boraschi, Diana; Ma, Shi-ping; Qu, Di

    2010-01-01

    Aim: To investigate the immunomodulatory effects of andrographolide on both innate and adaptive immune responses. Methods: Andrographolide (10 μg/mL in vitro or 1 mg/kg in vivo) was used to modulate LPS-induced classical activated (M1) or IL-4-induced alternative activated (M2) macrophages in vitro and humor immune response to HBsAg in vivo. Cytokine gene expression profile (M1 vs M2) was measured by real-time PCR, IL-12/IL-10 level was detected by ELISA, and surface antigen expression was evaluated by flow cytometry, whereas phosphorylation level of ERK 1/2 and AKT was determined by Western blot. The level of anti-HBs antibodies in HBsAg immunized mice was detected by ELISA, and the number of HBsAg specific IL-4-producing splenocyte was enumerated by ELISPOT. Results: Andrographolide treatment in vitro attenuated either LPS or IL-4 induced macrophage activation, inhibited both M1 and M2 cytokines expression and decreased IL-12/IL-10 ratio (the ratio of M1/M2 polarization). Andrographolide down-regulated the expression of mannose receptor (CD206) in IL-4 induced macrophages and major histocompability complex/costimulatory molecules (MHC I, CD40, CD80, CD86) in LPS-induced macrophages. Correspondingly, anti-HBs antibody production and the number of IL-4-producing splenocytes were reduced by in vivo administration of andrographolide. Reduced phosphorylation levels of ERK1/2 and AKT were observed in macrophages treated with andrographolide. Conclusion: Andrographolide can modulate the innate and adaptive immune responses by regulating macrophage phenotypic polarization and Ag-specific antibody production. MAPK and PI3K signaling pathways may participate in the mechanisms of andrographolide regulating macrophage activation and polarization. PMID:20139902

  8. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling.

    Directory of Open Access Journals (Sweden)

    Miguel Pinilla-Vera

    Full Text Available Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq. LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages.

  9. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes.

    Directory of Open Access Journals (Sweden)

    Ariadnna Cruz-Córdova

    Full Text Available Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10 in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng induced the release of IL-8 (3314-6025 pg/ml, TNF-α (39-359 pg/ml, and IL-10 (2-96 pg/ml, in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200 suppressed the secretion of IL-8, TNF-α, and IL-10 between 95-100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria.

  10. MAPK/p38 regulation of cytoskeleton rearrangement accelerates induction of macrophage activation by TLR4, but not TLR3.

    Science.gov (United States)

    Bian, Hongjun; Li, Feifei; Wang, Wenwen; Zhao, Qi; Gao, Shanshan; Ma, Jincai; Li, Xiao; Ren, Wanhua; Qin, Chengyong; Qi, Jianni

    2017-11-01

    Toll-like receptor 3 (TLR3) and TLR4 utilize adaptor proteins to activate mitogen‑activated protein kinase (MAPK), resulting in the acute but transient inflammatory response aimed at the clearance of pathogens. In the present study, it was demonstrated that macrophage activation by lipopolysaccharide (LPS) or poly(I:C), leading to changes in cell morphology, differed significantly between the mouse macrophage cell line RAW264.7 and mouse primary peritoneal macrophages. Moreover, the expression of α- and β-tubulin was markedly decreased following LPS stimulation. By contrast, α- and β-tubulin expression were only mildly increased following poly(I:C) treatment. However, the expression of β-actin and GAPDH was not significantly affected. Furthermore, it was verified that vincristine pretreatment abrogated the cytoskeleton rearrangement and decreased the synthesis and secretion of proinflammatory cytokines and migration of macrophages caused by LPS. Finally, it was observed that the MAPK/p38 signaling pathway regulating cytoskeleton rearrangement may participate in LPS‑induced macrophage cytokine production and migration. Overall, the findings of the present study indicated that MAPK/p38 regulation of the cytoskeleton, particularly tubulin proteins, plays an important role in LPS-induced inflammatory responses via alleviating the synthesis and secretion of proinflammatory cytokines and inhibiting the migration of macrophages.

  11. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions.

    Directory of Open Access Journals (Sweden)

    Bonnie van Wilgenburg

    Full Text Available Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC and multiple human induced Pluripotent Stem Cell (hiPSC lines over time periods of up to one year. Cumulatively, up to ∼3×10(7 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+, CD16(low, CD163(+. Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology.

  12. Differentiated THP-1 Cells Exposed to Pathogenic and Nonpathogenic Borrelia Species Demonstrate Minimal Differences in Production of Four Inflammatory Cytokines.

    Science.gov (United States)

    Stokes, John V; Moraru, Gail M; McIntosh, Chelsea; Kummari, Evangel; Rausch, Keiko; Varela-Stokes, Andrea S

    2016-11-01

    Tick-borne borreliae include Lyme disease and relapsing fever agents, and they are transmitted primarily by ixodid (hard) and argasid (soft) tick vectors, respectively. Tick-host interactions during feeding are complex, with host immune responses influenced by biological differences in tick feeding and individual differences within and between host species. One of the first encounters for spirochetes entering vertebrate host skin is with local antigen-presenting cells, regardless of whether the tick-associated Borrelia sp. is pathogenic. In this study, we performed a basic comparison of cytokine responses in THP-1-derived macrophages after exposure to selected borreliae, including a nonpathogen. By using THP-1 cells, differentiated to macrophages, we eliminated variations in host response and reduced the system to an in vitro model to evaluate the extent to which the Borrelia spp. influence cytokine production. Differentiated THP-1 cells were exposed to four Borrelia spp., Borrelia hermsii (DAH), Borrelia burgdorferi (B31), B. burgdorferi (NC-2), or Borrelia lonestari (LS-1), or lipopolysaccharides (LPS) (activated) or media (no treatment) controls. Intracellular and secreted interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured using flow cytometric and Luminex-based assays, respectively, at 6, 24, and 48 h postexposure time points. Using a general linear model ANOVA for each cytokine, treatment (all Borrelia spp. and LPS compared to no treatment) had a significant effect on secreted TNF-α only. Time point had a significant effect on intracellular IFN-γ, TNF-α and IL-6. However, we did not see significant differences in selected cytokines among Borrelia spp. Thus, in this model, we were unable to distinguish pathogenic from nonpathogenic borreliae using the limited array of selected cytokines. While unique immune profiles may be detectable in an in vitro model and may reveal predictors for pathogenicity in borreliae

  13. CCR8 signaling influences Toll-like receptor 4 responses in human macrophages in inflammatory diseases.

    Science.gov (United States)

    Reimer, Martina Kvist; Brange, Charlotte; Rosendahl, Alexander

    2011-12-01

    CCR8 immunity is generally associated with Th2 responses in allergic diseases. In this study, we demonstrate for the first time a pronounced attenuated influx of macrophages in ovalbumin (OVA)-challenged CCR8 knockout mice. To explore whether macrophages in human inflamed lung tissue also were CCR8 positive, human lung tissue from patients with chronic obstructive pulmonary disease (COPD) was evaluated. Indeed, CCR8 expression was pronounced in invading monocytes/macrophages from lungs of patients with Global Initiative for Obstructive Lung Disease (GOLD) stage IV COPD. Given this expression pattern, the functional role of CCR8 on human macrophages was evaluated in vitro. Human peripheral blood monocytes expressed low levels of CCR8, while macrophage colony-stimulating factor (M-CSF)-derived human macrophages expressed significantly elevated surface levels of CCR8. Importantly, CCL1 directly regulated the expression of CD18 and CD49b and hence influenced the adhesion capacity of human macrophages. CCL1 drives chemotaxis in M-CSF-derived macrophages, and this could be completely inhibited by lipopolysaccharide (LPS). Whereas both CCL1 and LPS monotreatment inhibited spontaneous superoxide release in macrophages, CCL1 significantly induced superoxide release in the presence of LPS in a dose-dependent manner. Finally, CCL1 induced production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and could inhibit LPS-induced cytokine production in a dose-dependent manner. Our data demonstrate, for the first time, the presence of CCR8 on inflammatory macrophages in human COPD lung tissue. Importantly, the functional data from human macrophages suggest a potential cross talk between the CCR8 and the Toll-like receptor 4 (TLR4) pathways, both of which are present in COPD patients.

  14. Virulent and Vaccine Strains of Streptococcus equi ssp. zooepidemicus Have Different Influences on Phagocytosis and Cytokine Secretion of Macrophages.

    Science.gov (United States)

    Jie, Peng; Zhe, Ma; Chengwei, Hua; Huixing, Lin; Hui, Zhang; Chengping, Lu; Hongjie, Fan

    2017-01-06

    Swine streptococcosis is a significant threat to the Chinese pig industry, and Streptococcus equi ssp. zooepidemicus (SEZ) is one of the major pathogens. SEZ ATCC35246 is a classical virulent strain, while SEZ ST171 is a Chinese attenuated vaccine strain. In this study, we employed stable isotope labeling by amino acids in cell culture and liquid chromatography-mass spectrometry (LC-MS) to determine the differential response of macrophages to infection by these two strains. Eighty-seven upregulated proteins and 135 downregulated proteins were identified. The proteomic results were verified by real-time polymerase chain reaction for 10 chosen genes and Western blotting for three proteins. All differentially abundant proteins were analyzed for their Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations. Certain downregulated proteins were associated with immunity functions, and the upregulated proteins were related to cytomembrane and cytoskeleton regulation. The phagocytosis rate and cytokine genes transcription in Raw264.7 cells during SEZ ATCC35246 and ST171 infection were detected to confirm the bioinformatics results. These results showed that different effects on macrophage phagocytosis and cytokine expression might explain the different phenotypes of SEZ ATCC35246 and ST171 infection. This research provided clues to the mechanisms of host immunity responses to SEZ ST171and SEZ ATCC35246, which could identify potential therapy and vaccine development targets.

  15. Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages

    Directory of Open Access Journals (Sweden)

    Rahman Irfan

    2009-05-01

    Full Text Available Abstract Background Toll-like receptors (TLRs are present on monocytes and alveolar macrophages that form the first line of defense against inhaled particles. The importance of those cells in the pathophysiology of chronic obstructive pulmonary disease (COPD has well been documented. Cigarette smoke contains high concentration of oxidants which can stimulate immune cells to produce reactive oxygen species, cytokines and chemokines. Methods In this study, we evaluated the effects of cigarette smoke medium (CSM on TLR4 expression and interleukin (IL-8 production by human macrophages investigating the involvement of ROS. Results and Discussion TLR4 surface expression was downregulated on short term exposure (1 h of CSM. The downregulation could be explained by internalization of the TLR4 and the upregulation by an increase in TLR4 mRNA. IL-8 mRNA and protein were also increased by CSM. CSM stimulation increased intracellular ROS-production and decreased glutathione (GSH levels. The modulation of TLR4 mRNA and surface receptors expression, IRAK activation, IκB-α degradation, IL-8 mRNA and protein, GSH depletion and ROS production were all prevented by antioxidants such as N-acetyl-L-cysteine (NAC. Conclusion TLR4 may be involved in the pathogenesis of lung emphysema and oxidative stress and seems to be a crucial contributor in lung inflammation.

  16. TLR2−/− Mice Display Decreased Severity of Giardiasis via Enhanced Proinflammatory Cytokines Production Dependent on AKT Signal Pathway

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-09-01

    Full Text Available Giardia infection is one of the most common causes of waterborne diarrheal disease in a wide array of mammalian hosts, including humans globally. Although numerous studies have indicated that adaptive immune responses are important for Giardia defense, however, whether the host innate immune system such as TLRs recognizes Giardia remains poorly understood. TLR2 plays a crucial role in pathogen recognition, innate immunity activation, and the eventual pathogen elimination. In this study, we investigated the role of TLR2 as a non-protective inflammatory response on controlling the severity of giardiasis. RT-PCR analysis suggested that TLR2 expression was increased in vitro. We demonstrated that Giardia lamblia-induced cytokines expression by the activation of p38 and ERK pathways via TLR2. Interestingly, the expression of IL-12 p40, TNF-α, and IL-6, but not IFN-γ, was enhanced in TLR2-blocked and TLR2−/− mouse macrophages exposed to G. lamblia trophozoites compared with wild-type (WT mouse macrophages. Further analysis demonstrated that G. lamblia trophozoites reduced cytokines secretion by activating AKT pathway in WT mouse macrophages. Immunohistochemical staining in G. lamblia cysts infected TLR2−/− and WT mice showed that TLR2 was highly expressed in duodenum in infected WT mice. Also, infected TLR2−/− and AKT-blocked mice showed an increased production of IL-12 p40 and IFN-γ compared with infected WT mice at the early stage during infection. Interestingly, infected TLR2−/− and AKT-blocked mice displayed a decreased parasite burden, an increased weight gain rate, and short parasite persistence. Histological morphometry showed shortened villus length, hyperplastic crypt and decreased ratio of villus height/crypt depth in infected WT mice compared with in infected TLR2−/− and AKT-blocked mice. Together, our results suggested that TLR2 deficiency leads to alleviation of giardiasis and reduction of parasite burden through

  17. Ameloginins promote an alternatively activated macrophage phenotype in vitro

    DEFF Research Database (Denmark)

    Almqvist, S; Werthen, M; Lyngstadas, SP

    2011-01-01

    aggregates were visualised by transmission electron microscopy. The amelogenin treatment of macrophages increased several pro- and anti-inflammatory cytokines, including alternative macrophage activation marker AMAC-1 (p

  18. FEATURES OF CYTOKINE PRODUCTION IN PATIENTS WITH RECURRENT HERPETIC INFECTION

    Directory of Open Access Journals (Sweden)

    I. A. Novikovа

    2013-01-01

    Full Text Available Abstract. Cytokines play an important role in resistance to herpesvirus infections. Therefore, studies of cytokine profile are necessary in recurrent herpetic infection. However, functional studies of cytokine network upon remission of the disease yielded controversial results. In this paper, we provide some results concerning comprehensive evaluation of ex vivo cytokine production by whole blood leukocytes drawn from 15 patients observed during clinical remission of recurrent Herpes Simplex virus infection. We have found a decrease of IL-1β, IL-8 and IL-10 production, as well as imbalance of cytokine profile, with predominance of IFNγ and IL-8 synthesis over IL-10 production, along with increased IL-4 and IL-13 levels to IL-1β contents. Differently directed correlations between the content of activated lymphocytes (CD3+HLA-DR+ and CD3+CD4+CD25+, natural killers (СD3-СD16/56+, NKT-cells and cytokine production levels were found in the groups of patients and healthy individuals. These differences may be due to shifts in major cytokineproducing populations in herpesvirus infections.

  19. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages

    Directory of Open Access Journals (Sweden)

    Marie Duhamel

    2016-06-01

    Full Text Available We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation “at distance” with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the “drone macrophages”. They constitute an innovative cell therapy to treat efficiently tumors.

  20. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  1. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    Science.gov (United States)

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  2. CCR8 Signaling Influences Toll-Like Receptor 4 Responses in Human Macrophages in Inflammatory Diseases ▿

    Science.gov (United States)

    Kvist Reimer, Martina; Brange, Charlotte; Rosendahl, Alexander

    2011-01-01

    CCR8 immunity is generally associated with Th2 responses in allergic diseases. In this study, we demonstrate for the first time a pronounced attenuated influx of macrophages in ovalbumin (OVA)-challenged CCR8 knockout mice. To explore whether macrophages in human inflamed lung tissue also were CCR8 positive, human lung tissue from patients with chronic obstructive pulmonary disease (COPD) was evaluated. Indeed, CCR8 expression was pronounced in invading monocytes/macrophages from lungs of patients with Global Initiative for Obstructive Lung Disease (GOLD) stage IV COPD. Given this expression pattern, the functional role of CCR8 on human macrophages was evaluated in vitro. Human peripheral blood monocytes expressed low levels of CCR8, while macrophage colony-stimulating factor (M-CSF)-derived human macrophages expressed significantly elevated surface levels of CCR8. Importantly, CCL1 directly regulated the expression of CD18 and CD49b and hence influenced the adhesion capacity of human macrophages. CCL1 drives chemotaxis in M-CSF-derived macrophages, and this could be completely inhibited by lipopolysaccharide (LPS). Whereas both CCL1 and LPS monotreatment inhibited spontaneous superoxide release in macrophages, CCL1 significantly induced superoxide release in the presence of LPS in a dose-dependent manner. Finally, CCL1 induced production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and could inhibit LPS-induced cytokine production in a dose-dependent manner. Our data demonstrate, for the first time, the presence of CCR8 on inflammatory macrophages in human COPD lung tissue. Importantly, the functional data from human macrophages suggest a potential cross talk between the CCR8 and the Toll-like receptor 4 (TLR4) pathways, both of which are present in COPD patients. PMID:21976223

  3. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis.

    Science.gov (United States)

    Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry

    2013-01-15

    The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.

  4. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Eun-Min Kim

    2017-05-01

    Full Text Available Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages. Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype, which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  5. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Science.gov (United States)

    Kim, Eun-Min; Kwak, You Shine; Yi, Myung-Hee; Kim, Ju Yeong; Sohn, Woon-Mok; Yong, Tai-Soon

    2017-05-01

    Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  6. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  7. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation.

    Directory of Open Access Journals (Sweden)

    Kelly E Roney

    Full Text Available Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/- macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/- macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.

  8. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...... transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove...... the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6...

  9. Circulating cytokines and cytokine receptors in infliximab treatment failure due to TNF-α independent Crohn disease

    DEFF Research Database (Denmark)

    Steenholdt, Casper; Coskun, Mehmet; Buhl, Sine

    2016-01-01

    -IFX antibodies. Circulating cytokines and cytokine receptors were assessed by enzyme-linked immunosorbent assay: granulocyte-macrophage colony-stimulating factor, interferon-γ, interleukin (IL)-1α, IL-1β, IL-1Ra, IL-6, IL-10, IL-12p70, soluble TNF receptor (sTNF-R) 1, sTNF-R2, IL-17A, and monocyte chemotactic...

  10. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    Science.gov (United States)

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Serum triiodothyronine levels and inflammatory cytokine production capacity

    NARCIS (Netherlands)

    Rozing, Maarten P.; Westendorp, Rudi G J; Maier, Andrea B.; Wijsman, Carolien A.; Frölich, Marijke; De Craen, Anton J M; Van Heemst, Diana

    Increasing evidence suggests that pro-inflammatory cytokines are at play in lowering peripheral thyroid hormone levels during critical illness. Conversely, thyroid hormones have been suggested to enhance production of inflammatory cytokines. In view of these considerations, we hypothesized a mutual

  12. MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in Mycobacterium tuberculosis-infected THP-1 human macrophages.

    Science.gov (United States)

    Fu, Xiangdong; Zeng, Lihong; Liu, Zhi; Ke, Xue; Lei, Lin; Li, Guobao

    2016-08-19

    Tuberculosis (TB) is a serious disease that is characterized by Mycobacterium tuberculosis (M.tb)-triggered immune system impairment and lung tissue damage shows limited treatment options. MicroRNAs (miRNAs) are regulators of gene expression that play critical roles in many human diseases, and can be up- or downregulated by M.tb infection in macrophage. Recently, tissue inhibitor of matrix metalloproteinase (TIMP) 3 has been found to play roles in regulating macrophage inflammation. Here, we found that TIMP3 expression was regulated by miR-206 in M.tb-infected THP-1 human macrophages. In THP-1 cells infected with M.tb, the miR-206 level was significantly upregulated and the expression of TIMP3 was markedly decreased when the secretion of inflammatory cytokines was increased. Inhibition of miR-206 markedly suppressed inflammatory cytokine secretion and upregulated the expression of TIMP3. In contrast, the upregulation of miR-206 promoted the matrix metalloproteinase (MMP) 9 levels and inhibited TIMP3 levels. Using a dual-luciferase reporter assay, a direct interaction between miR-206 and the 3'-untranslated region (UTR) of TIMP3 was confirmed. SiTIMP3, the small interfering RNA (siRNA) specific for TIMP3, significantly attenuated the suppressive effects of miR-206-inhibitor on inflammatory cytokine secretion and MMP9 expression. Our data suggest that miR-206 may function as an inflammatory regulator and drive the expression of MMP9 in M.tb-infected THP-1 cells by targeting TIMP3, indicating that miR-206 is a potential therapeutic target for patients with TB. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease.

    Science.gov (United States)

    Thomas, Karen E; Sapone, Anna; Fasano, Alessio; Vogel, Stefanie N

    2006-02-15

    Recent studies have demonstrated the importance of TLR signaling in intestinal homeostasis. Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. In this study, we sought to test the hypothesis that gliadin initiates this response by stimulating the innate immune response to increase intestinal permeability and by up-regulating macrophage proinflammatory gene expression and cytokine production. To this end, intestinal permeability and the release of zonulin (an endogenous mediator of gut permeability) in vitro, as well as proinflammatory gene expression and cytokine release by primary murine macrophage cultures, were measured. Gliadin and its peptide derivatives, 33-mer and p31-43, were found to be potent inducers of both a zonulin-dependent increase in intestinal permeability and macrophage proinflammatory gene expression and cytokine secretion. Gliadin-induced zonulin release, increased intestinal permeability, and cytokine production were dependent on myeloid differentiation factor 88 (MyD88), a key adapter molecule in the TLR/IL-1R signaling pathways, but were neither TLR2- nor TLR4-dependent. Our data support the following model for the innate immune response to gliadin in the initiation of CD. Gliadin interaction with the intestinal epithelium increases intestinal permeability through the MyD88-dependent release of zonulin that, in turn, enables paracellular translocation of gliadin and its subsequent interaction with macrophages within the intestinal submucosa. There, the interaction of gliadin with macrophages elicits a MyD88-dependent proinflammatory cytokine milieu that facilitates the interaction of T cells with APCs, leading ultimately to the Ag-specific adaptive immune response seen in patients with CD.

  14. Mechanisms underlying the anti-inflammatory effects of Clinacanthus nutans Lindau extracts: inhibition of cytokine production and Toll-like receptor-4 activation

    Directory of Open Access Journals (Sweden)

    Chun Wai eMai

    2016-02-01

    Full Text Available Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP, non-polar leaf extract (LN, polar stem extract (SP and non-polar stem extracts (SN. The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4 activation in TLR-4 transfected human embryonic kidney cells (HEK-BlueTM-hTLR4 cells. The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40 and IL-17 in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3 in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-BlueTM-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts.

  15. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells.

    Science.gov (United States)

    Regan, Andrew D; Cohen, Rebecca D; Whittaker, Gary R

    2009-02-05

    Feline infectious peritonitis (FIP) is an invariably fatal disease of cats caused by systemic infection with a feline coronavirus (FCoV) termed feline infectious peritonitis virus (FIPV). The lethal pathology associated with FIP (granulomatous inflammation and T-cell lymphopenia) is thought to be mediated by aberrant modulation of the immune system due to infection of cells such as monocytes and macrophages. Overproduction of pro-inflammatory cytokines occurs in cats with FIP, and has been suggested to play a significant role in the disease process. However, the mechanism underlying this process remains unknown. Here we show that infection of primary blood-derived feline mononuclear cells by FIPV WSU 79-1146 and FIPV-DF2 leads to rapid activation of the p38 MAPK pathway and that this activation regulates production of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). FIPV-induced p38 MAPK activation and pro-inflammatory cytokine production was inhibited by the pyridinyl imidazole inhibitors SB 203580 and SC 409 in a dose-dependent manner. FIPV-induced p38 MAPK activation was observed in primary feline blood-derived mononuclear cells individually purified from multiple SPF cats, as was the inhibition of TNF-alpha production by pyridinyl imidazole inhibitors.

  16. miR-223 is upregulated in monocytes from patients with tuberculosis and regulates function of monocyte-derived macrophages.

    Science.gov (United States)

    Liu, Yanhua; Wang, Ruo; Jiang, Jing; Yang, Bingfen; Cao, Zhihong; Cheng, Xiaoxing

    2015-10-01

    Tuberculosis (TB) is a serious infectious disease that most commonly affects the lungs. Macrophages are among the first line defenders against establishment of Mycobacterium tuberculosis infection in the lungs. In this study, we found that activation and cytokine production in monocyte-derived macrophages (MDM) from patients with active TB was impaired. miR-223 expression was significantly elevated in monocytes and MDM from patients with TB compared with healthy controls. To determine the functional role of miR-223 in macrophages, stable miR-223-expressing and miR-223 antisense-expressing U937 cells were established. Compared with empty vector controls, expression of IL-1β, IL-6, TNF-α and IL-12p40 genes was significantly higher in miR-223 antisense-expressing U937 cells, but lower in miR-223-expressing U937 cells. miR-223 can negatively regulate activation of NF-κB by inhibition of p65 phosphorylation and nuclear translocation. It is concluded that miR-223 can regulate macrophage function by inhibition of cytokine production and NF-κB activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway.

    Science.gov (United States)

    Xu, Yiming; Liu, Ling

    2017-09-01

    Influenza A viruses (IAV) result in severe public health problems with worldwide each year. Overresponse of immune system to IAV infection leads to complications, and ultimately causing morbidity and mortality. Curcumin has been reported to have anti-inflammatory ability. However, its molecular mechanism in immune responses remains unclear. We detected the pro-inflammatory cytokine secretion and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-related protein expression in human macrophages or mice infected by IAV with or without curcumin treatment. We found that the IAV infection caused a dramatic enhancement of pro-inflammatory cytokine productions of human macrophages and mice immune cells. However, curcumin treatment after IAV infection downregulated these cytokines production in a dose-dependent manner. Moreover, the NF-κB has been activated in human macrophages after IAV infection, while administration of curcumin inhibited NF-κB signaling pathway via promoting the expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and inhibiting the translocation of p65 from cytoplasm to nucleus. In summary, IAV infection could result in the inflammatory responses of immune cells, especially macrophages. Curcumin has the therapeutic potentials to relieve these inflammatory responses through inhibiting the NF-κB signaling pathway. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  18. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB.

    Science.gov (United States)

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.

  19. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice.

    Science.gov (United States)

    Du, Xianhong; Wu, Zhuanchang; Xu, Yong; Liu, Yuan; Liu, Wen; Wang, Tixiao; Li, Chunyang; Zhang, Cuijuan; Yi, Fan; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2018-05-07

    As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80 + CD11b + , F4/80 + CD68 + , and F4/80 + CD169 + macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.

  20. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages.

    Science.gov (United States)

    Abrial, C; Grassin-Delyle, S; Salvator, H; Brollo, M; Naline, E; Devillier, P

    2015-09-01

    15-Lipoxygenase (15-LOX) activity is associated with inflammation and immune regulation. The objectives of the present study were to investigate the expression of 15-LOX-1 and 15-LOX-2 and evaluate the enzymes' roles in the polarization of human lung macrophages (LMs) in response to LPS and Th2 cytokines (IL-4/-13). LMs were isolated from patients undergoing surgery for carcinoma. The cells were cultured with a 15-LOX inhibitor (PD146176 or ML351), a COX inhibitor (indomethacin), a 5-LOX inhibitor (MK886) or vehicle and then stimulated with LPS (10 ng · mL(-1)), IL-4 (10 ng · mL(-1)) or IL-13 (50 ng · mL(-1)) for 24 h. Levels of ALOX15 (15-LOX-1) and ALOX15B (15-LOX-2) transcripts were determined by real-time quantitative PCR. Immunoassays were used to measure levels of LPS-induced cytokines (TNF-α, CCL2, CCL3, CCL4, CXCL1, CXCL8 and CXCL10) and Th2 cytokine-induced chemokines (CCL13, CCL18 and CCL22) in the culture supernatant. Stimulation of LMs with LPS was associated with increased expression of ALOX15B, whereas stimulation with IL-4/IL-13 induced the expression of ALOX15. PD146176 and ML351 (10 μM) reduced the release of the chemokines induced by LPS and Th2 cytokines. The effects of these 15-LOX inhibitors were maintained in the presence of indomethacin and MK886. Furthermore, indomethacin revealed the inhibitory effect of PD146176 on TNF-α release. Inhibition of the 15-LOX pathways is involved in the down-regulation of the in vitro production of chemokines in LMs. Our results suggest that the 15-LOX pathways have a role in the pathogenesis of inflammatory lung disorders and may thus constitute a potential drug target. © 2015 The British Pharmacological Society.

  1. Induction of different activated phenotypes of mouse peritoneal macrophages grown in different tissue culture media.

    Science.gov (United States)

    Kawakami, Tomoya; Koike, Atsushi; Amano, Fumio

    2017-08-01

    The role of activated macrophages in the host defense against pathogens or tumor cells has been investigated extensively. Many researchers have been using various culture media in in vitro experiments using macrophages. We previously reported that J774.1/JA-4 macrophage-like cells showed great differences in their activated macrophage phenotypes, such as production of reactive oxygen, nitric oxide (NO) or cytokines depending on the culture medium used, either F-12 (Ham's F-12 nutrient mixture) or Dulbecco modified Eagle's medium (DMEM). To examine whether a difference in the culture medium would influence the functions of primary macrophages, we used BALB/c mouse peritoneal macrophages in this study. Among the activated macrophage phenotypes, the expression of inducible NO synthase in LPS- and/or IFN-γ-treated peritoneal macrophages showed the most remarkable differences between F-12 and DMEM; i.e., NO production by LPS- and/or IFN-γ-treated cells was far lower in DMEM than in F-12. Similar results were obtained with C57BL mouse peritoneal macrophages. Besides, dilution of F-12 medium with saline resulted in a slight decrease in NO production, whereas that of DMEM with saline resulted in a significant increase, suggesting the possibility that DMEM contained some inhibitory factor(s) for NO production. However, such a difference in NO production was not observed when macrophage-like cell lines were examined. These results suggest that phenotypes of primary macrophages could be changed significantly with respect to host inflammatory responses by the surrounding environment including nutritional factors and that these altered macrophage phenotypes might influence the biological host defense.

  2. Inactivation of p27kip1 Promoted Nonspecific Inflammation by Enhancing Macrophage Proliferation in Islet Transplantation.

    Science.gov (United States)

    Li, Yang; Ding, Xiaoming; Fan, Ping; Guo, Jian; Tian, Xiaohui; Feng, Xinshun; Zheng, Jin; Tian, Puxun; Ding, Chenguang; Xue, Wujun

    2016-11-01

    Islet transplantation suffers from low efficiency caused by nonspecific inflammation-induced graft loss after transplantation. This study reports increased islet loss and enhanced inflammatory response in p27-deficient mice (p27-/-) and proposes a possible mechanism. Compared with wild type, p27-/- mice showed more severe functional injury of islet, with increased serum levels of inflammatory cytokines IL-1 and TNF-α, inducing macrophage proliferation. Furthermore, the increased number, proapoptotic proteins, and nuclear factor-kappa b (NF-κB) phosphorylation status of the infiltrating macrophages were accompanied by increased TNF-α mRNA level of islet graft site in p27-/- mice. Moreover, in vitro, we found that macrophages were still activated and cocultured with islet and promoted islet loss even blocking the direct effect of TNF-α on islets. Malondialdehyde (MDA, an end product of lipid peroxidation) in islet and media were increased after cocultured with macrophages. p27 deficiency also increased macrophage proliferation and islet injury. Therefore, p27 inactivation promotes injury islet graft loss via the elevation of proliferation and inflammatory cytokines secretion in infiltrating macrophages which induced nonspecific inflammation independent of TNF-α/nuclear factor-kappa b pathway. This potentially represents a promising therapeutic target in improving islet graft survival.

  3. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Ivec, Martin; Botic, Tanja; Koren, Srecko

    2007-01-01

    and by producing chemokines and immunoregulatory cytokines that enable the adaptive immune response to recognize infected cells and perform antiviral effector functions. Probiotics, as a part of the normal gut intestinal flora, are important in supporting a functional yet balanced immune system. Improving our...... understanding of their role in the activation of macrophages and their stimulation of proinflammatory cytokine production in early viral infection was the main goal of this study. Our in vitro model study showed that probiotic bacteria, either from the species Lactobacillus or Bifidobacteria have the ability...... dehydrogenases activity could be implied as the first indicator of potential inhibitory effects of the probiotics on virus replication. The interactions between probiotic bacteria, macrophages and vesicular stomatitis virus (VSV), markedly depended on the bacterial strain studied....

  4. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    International Nuclear Information System (INIS)

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi; Okajima, Fumikazu

    2011-01-01

    Highlights: ► Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. ► GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-α production. ► The enhancement of the GC-induced actions was lost by TDAG8 deficiency. ► GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-α, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-α production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  5. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway

    Science.gov (United States)

    Lu, Zheng; Chang, Lingling; Du, Qian; Huang, Yong; Zhang, Xiujuan; Wu, Xingchen; Zhang, Jie; Li, Ruizhen; Zhang, Zelin; Zhang, Wenlong; Zhao, Xiaomin; Tong, Dewen

    2018-01-01

    Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  6. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2018-05-01

    Full Text Available Arctigenin (ARG, one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21 and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α and transforming growth factor beta1 (TGF-β1 in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126. Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  7. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway.

    Science.gov (United States)

    Lu, Zheng; Chang, Lingling; Du, Qian; Huang, Yong; Zhang, Xiujuan; Wu, Xingchen; Zhang, Jie; Li, Ruizhen; Zhang, Zelin; Zhang, Wenlong; Zhao, Xiaomin; Tong, Dewen

    2018-01-01

    Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L. , has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  8. Integrin-directed modulation of macrophage responses to biomaterials.

    Science.gov (United States)

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Comparison of Anti-Inflammatory Effects of Flavonoid-Rich Common and Tartary Buckwheat Sprout Extracts in Lipopolysaccharide-Stimulated RAW 264.7 and Peritoneal Macrophages

    Directory of Open Access Journals (Sweden)

    Tae Gyu Nam

    2017-01-01

    Full Text Available Buckwheat sprouts have been widely consumed all around world due to their great abundance of bioactive compounds. In this study, the anti-inflammatory effects of flavonoid-rich common buckwheat sprout (CBS and tartary buckwheat sprout (TBS extracts were evaluated in lipopolysaccharide- (LPS- stimulated RAW 264.7 murine macrophages and primary peritoneal macrophages from male BALB/c mice. Based on the reversed-phase HPLC analysis, the major flavonoids in CBS were determined to be C-glycosylflavones (orientin, isoorientin, vitexin, and isovitexin, quercetin-3-O-robinobioside, and rutin, whereas TBS contained only high amounts of rutin. The TBS extract exhibited higher inhibitory activity as assessed by the production of proinflammatory mediators such as nitric oxide and cytokines including tumor necrosis factor-α, interleukin- (IL- 6, and IL-12 in LPS-stimulated RAW 264.7 macrophages than CBS extract. In addition, TBS extract suppressed nuclear factor-kappa B activation by preventing inhibitor kappa B-alpha degradation and mitogen-activated protein kinase phosphorylation in LPS-stimulated RAW 264.7 macrophages. Moreover, the TBS extract markedly reduced LPS-induced cytokine production in peritoneal macrophages. Taken together, these findings suggest that TBS extract can be a potential source of anti-inflammatory agents that may influence macrophage-mediated inflammatory disorders.

  10. Effect of Cocoa Polyphenolic Extract on Macrophage Polarization from Proinflammatory M1 to Anti-Inflammatory M2 State

    Directory of Open Access Journals (Sweden)

    Laura Dugo

    2017-01-01

    Full Text Available Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γ for M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2 consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages.

  11. Microscale to manufacturing scale-up of cell-free cytokine production--a new approach for shortening protein production development timelines.

    Science.gov (United States)

    Zawada, James F; Yin, Gang; Steiner, Alexander R; Yang, Junhao; Naresh, Alpana; Roy, Sushmita M; Gold, Daniel S; Heinsohn, Henry G; Murray, Christopher J

    2011-07-01

    Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins. Copyright © 2011 Wiley Periodicals, Inc.

  12. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes.

    Science.gov (United States)

    Alnek, Kristi; Kisand, Kalle; Heilman, Kaire; Peet, Aleksandr; Varik, Karin; Uibo, Raivo

    2015-01-01

    The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In particular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.

  13. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  14. Phagocytosis and immune response studies of Macrophage-Nanodiamond Interactions in vitro and in vivo.

    Science.gov (United States)

    Huang, K-J; Lee, C-Y; Lin, Y-C; Lin, C-Y; Perevedentseva, E; Hung, S-F; Cheng, C-L

    2017-10-01

    The applications of nanodiamond as drug delivery and bio-imaging can require the relinquishing ND-drug conjugate via blood flow, where interaction with immune cells may occur. In this work, we investigated the ND penetration in macrophage and the immune response using the tissue-resident murine macrophages (RAW 264.7). Confocal fluorescence imaging, immunofluorescence analysis of nuclear translocation of interferon regulatory factor IRF-3 and transcriptional factor NF-κΒ, analysis of pro-inflammatory cytokines production IL-1β, IL-6 IL-10 with a reverse transcription-polymerase chain reaction technique were applied. The TNF-α factor production has been studied both in vitro at ND interaction with the macrophage and in vivo after ND injection in the mice blood system using immunoassay. The macrophage antibacterial function was estimated through E. coli bacterial colony formation. ND didn't stimulate the immune response and functionality of the macrophage was not altered. Using MTT test, ND was found negligibly cytotoxic to macrophages. Thus, ND can serve as a biocompatible platform for bio-medical applications. Left: Graphic representation of Nanodiamond internalization in macrophage. Right: (a) Fluorescence images of lysosomes, (b) nanodiamond and (c) merged image of nanodiamond internalization in macrophage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Growth Modeling of the Maternal Cytokine Milieu throughout Normal Pregnancy: Macrophage-Derived Chemokine Decreases as Inflammation/Counterregulation Increases

    Directory of Open Access Journals (Sweden)

    Shernan G. Holtan

    2015-01-01

    Full Text Available Several recent studies have shown differences in the maternal immune milieu at different phases of pregnancy, but most studies have been cross-sectional or of relatively few time points. Levels of 42 cytokines were determined using a multiplex bead-based assay on archived serum from a cohort of pregnant women N=16 at median of 18 time points tested, from the first trimester through to parturition, per woman. Unconditional growth modeling was then used to determine time-dependent changes in levels of these cytokines. Macrophage-derived chemokine (MDC, aka CCL22 decreases as pregnancy progresses. IL-1β, IL-6, IL-8, IL-12p70, IL-13, IL-15, IP-10, and FLT3-ligand increase as a function of gestational weeks, and IFNα2, IL-1ra, IL-3, IL-9, IL-12p40, and soluble CD40 ligand increase as a function of trimester. As pregnancy normally progresses, a maternal shift away from a type 2-biased immune response and toward an inflammatory/counterregulatory response is observed.

  16. Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition

    Directory of Open Access Journals (Sweden)

    Mariusz P. Madej

    2017-06-01

    Full Text Available Production and activity of interleukin (IL-1β are kept under strict control in our body, because of its powerful inflammation-promoting capacity. Control of IL-1β production and activity allows IL-1 to exert its defensive activities without causing extensive tissue damage. Monocytes are the major producers of IL-1β during inflammation, but they are also able to produce significant amounts of IL-1 inhibitors such as IL-1Ra and the soluble form of the decoy receptor IL-1R2, in an auto-regulatory feedback loop. Here, we investigated how innate immune memory could modulate production and activity of IL-1β by human primary monocytes and monocyte-derived tissue-like/deactivated macrophages in vitro. Cells were exposed to Gram-negative (Escherichia coli and Gram-positive (Lactobacillus acidophilus bacteria for 24 h, then allowed to rest, and then re-challenged with the same stimuli. The presence of biologically active IL-1β in cell supernatants was calculated as the ratio between free IL-1β (i.e., the cytokine that is not bound/inhibited by sIL-1R2 and its receptor antagonist IL-1Ra. As expected, we observed that the responsiveness of tissue-like/deactivated macrophages to bacterial stimuli was lower than that of monocytes. After resting and re-stimulation, a memory effect was evident for the production of inflammatory cytokines, whereas production of alarm signals (chemokines was minimally affected. We observed a high variability in the innate memory response among individual donors. This is expected since innate memory largely depends on the previous history of exposure or infections, which is different in different subjects. Overall, innate memory appeared to limit the amount of active IL-1β produced by macrophages in response to a bacterial challenge, while enhancing the responsiveness of monocytes. The functional re-programming of mononuclear phagocytes through modulation of innate memory may provide innovative approaches in the management

  17. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Silymarin attenuated paraquat-induced cytotoxicity in macrophage by regulating Trx/TXNIP complex, inhibiting NLRP3 inflammasome activation and apoptosis.

    Science.gov (United States)

    Liu, Zhenning; Sun, Mingli; Wang, Yu; Zhang, Lichun; Zhao, Hang; Zhao, Min

    2018-02-01

    Oxidative stress and inflammation are involved in paraquat-induced cytotoxicity. Silymarin can exert a potent antioxidative and anti-inflammatory effect in various pathophysiological processes. The aim of this current study is to explore the protective effect and potential mechanism of silymarin in paraquat-induced macrophage injury. Cells were pretreated with different doses of silymarin for 3h before exposure to paraquat. At 24h after exposure to paraquat, the paraquat-induced cytotoxicity to macrophage was measured via the MTT assay and LDH release. The levels of intracellular reactive oxygen species, GSH-Px, SOD, and lipid peroxidation product malondialdehyde were measured to evaluate the oxidative effect of paraquat. NLRP3 inflammasome and cytokines secretion in macrophage exposed to paraquat at 24h were measured via immunofluorescence microscopy, western blot or Elisa. Our results revealed that paraquat could dramatically cause cytotoxicity and reactive oxygen species generation, enhance TXNIP expression, and induce NLRP3 inflammasome activation and cytokines secretion. The pretreatment with silymarin could remarkably reduce the cytotoxicity, promote the expression of Trx and antioxidant enzymes, and suppress the TXNIP and NLRP3 inflammasome activation. In conclusion, silymarin attenuated paraquat-induced cytotoxicity in macrophage by inhibiting oxidative stress, NLRP3 inflammasome activation, cytokines secretion and apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.

    Science.gov (United States)

    Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min

    2017-08-25

    Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection.

    Science.gov (United States)

    Farias, L H S; Rodrigues, A P D; Coêlho, E C; Santos, M F; Sampaio, S C; Silva, E O

    2017-09-01

    American tegumentary leishmaniasis is caused by different species of Leishmania. This protozoan employs several mechanisms to subvert the microbicidal activity of macrophages and, given the limited efficacy of current therapies, the development of alternative treatments is essential. Animal venoms are known to exhibit a variety of pharmacological activities, including antiparasitic effects. Crotoxin (CTX) is the main component of Crotalus durissus terrificus venom, and it has several biological effects. Nevertheless, there is no report of CTX activity during macrophage - Leishmania interactions. Thus, the main objective of this study was to evaluate whether CTX has a role in macrophage M1 polarization during Leishmania infection murine macrophages, Leishmania amazonensis promastigotes and L. amazonensis-infected macrophages were challenged with CTX. MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] toxicity assays were performed on murine macrophages, and no damage was observed in these cells. Promastigotes, however, were affected by treatment with CTX (IC50 = 22·86 µg mL-1) as were intracellular amastigotes. Macrophages treated with CTX also demonstrated increased reactive oxygen species production. After they were infected with Leishmania, macrophages exhibited an increase in nitric oxide production that converged into an M1 activation profile, as suggested by their elevated production of the cytokines interleukin-6 and tumour necrosis factor-α and changes in their morphology. CTX was able to reverse the L. amazonensis-mediated inhibition of macrophage immune responses and is capable of polarizing macrophages to the M1 profile, which is associated with a better prognosis for cutaneous leishmaniasis treatment.

  1. Interaction between Ebola Virus Glycoprotein and Host Toll-Like Receptor 4 Leads to Induction of Proinflammatory Cytokines and SOCS1 ▿ †

    OpenAIRE

    Okumura, Atsushi; Pitha, Paula M.; Yoshimura, Akihiko; Harty, Ronald N.

    2009-01-01

    Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and sup...

  2. Growth hormone (GH) differentially regulates NF-kB activity in preadipocytes and macrophages: implications for GH's role in adipose tissue homeostasis in obesity.

    Science.gov (United States)

    Kumar, P Anil; Chitra, P Swathi; Lu, Chunxia; Sobhanaditya, J; Menon, Ram

    2014-06-01

    Adipose tissue remodeling in obesity involves macrophage infiltration and chronic inflammation. NF-kB-mediated chronic inflammation of the adipose tissue is directly implicated in obesity-associated insulin resistance. We have investigated the effect of growth hormone (GH) on NF-kB activity in preadipocytes (3T3-F442A) and macrophages (J774A.1). Our studies indicate that whereas GH increases NF-kB activity in preadipocytes, it decreases NF-kB activity in macrophages. This differential response of NF-kB activity to GH correlates with the GH-dependent expression of a cadre of NF-kB-activated cytokines in these two cell types. Activation of NF-kB by GH in preadipocytes heightens inflammatory response by stimulating production of multiple cytokines including TNF-α, IL-6, and MCP-1, the mediators of both local and systemic insulin resistance and chemokines that recruit macrophages. Our studies also suggest differential regulation of miR132 and SIRT1 expression as a mechanism underlying the observed variance in GH-dependent NF-kB activity and altered cytokine profile in preadipocytes and macrophages. These findings further our understanding of the complex actions of GH on adipocytes and insulin sensitivity.

  3. Monosodium Urate Crystals Induce Upregulation of NK1.1-Dependent Killing by Macrophages and Support Tumor-Resident NK1.1+ Monocyte/Macrophage Populations in Antitumor Therapy.

    Science.gov (United States)

    Steiger, Stefanie; Kuhn, Sabine; Ronchese, Franca; Harper, Jacquie L

    2015-12-01

    Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1β production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    Science.gov (United States)

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  5. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Baqui, A A; Meiller, T F; Falkler, W A

    1999-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.

  6. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.

    Science.gov (United States)

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-10-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. ISG15 governs mitochondrial function in macrophages following vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Sara Baldanta

    2017-10-01

    Full Text Available The interferon (IFN-stimulated gene 15 (ISG15 encodes one of the most abundant proteins induced by interferon, and its expression is associated with antiviral immunity. To identify protein components implicated in IFN and ISG15 signaling, we compared the proteomes of ISG15-/- and ISG15+/+ bone marrow derived macrophages (BMDM after vaccinia virus (VACV infection. The results of this analysis revealed that mitochondrial dysfunction and oxidative phosphorylation (OXPHOS were pathways altered in ISG15-/- BMDM treated with IFN. Mitochondrial respiration, Adenosine triphosphate (ATP and reactive oxygen species (ROS production was higher in ISG15+/+ BMDM than in ISG15-/- BMDM following IFN treatment, indicating the involvement of ISG15-dependent mechanisms. An additional consequence of ISG15 depletion was a significant change in macrophage polarization. Although infected ISG15-/- macrophages showed a robust proinflammatory cytokine expression pattern typical of an M1 phenotype, a clear blockade of nitric oxide (NO production and arginase-1 activation was detected. Accordingly, following IFN treatment, NO release was higher in ISG15+/+ macrophages than in ISG15-/- macrophages concomitant with a decrease in viral titer. Thus, ISG15-/- macrophages were permissive for VACV replication following IFN treatment. In conclusion, our results demonstrate that ISG15 governs the dynamic functionality of mitochondria, specifically, OXPHOS and mitophagy, broadening its physiological role as an antiviral agent.

  8. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Okajima, Fumikazu, E-mail: fokajima@showa.gunma-u.ac.jp [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  9. Porphyromonas Gingivalis and E-coli induce different cytokine production patterns in pregnant women.

    Directory of Open Access Journals (Sweden)

    Marijke M Faas

    Full Text Available OBJECTIVE: Pregnant individuals of many species, including humans, are more sensitive to various bacteria or their products as compared with non-pregnant individuals. Pregnant individuals also respond differently to different bacteria or their products. Therefore, in the present study, we evaluated whether the increased sensitivity of pregnant women to bacterial products and their heterogeneous response to different bacteria was associated with differences in whole blood cytokine production upon stimulation with bacteria or their products. METHODS: Blood samples were taken from healthy pregnant and age-matched non-pregnant women and ex vivo stimulated with bacteria or LPS from Porphyromonas Gingivalis (Pg or E-coli for 24 hrs. TNFα, IL-1ß, IL-6, IL-12 and IL-10 were measured using a multiplex Luminex system. RESULTS: We observed a generally lower cytokine production after stimulation with Pg bacteria or it's LPS as compared with E-coli bacteria. However, there was also an effect of pregnancy upon cytokine production: in pregnant women the production of IL-6 upon Pg stimulation was decreased as compared with non-pregnant women. After stimulation with E-coli, the production of IL-12 and TNFα was decreased in pregnant women as compared with non-pregnant women. CONCLUSION: Our results showed that cytokine production upon bacterial stimulation of whole blood differed between pregnant and non-pregnant women, showing that the increased sensitivity of pregnant women may be due to differences in cytokine production. Moreover, pregnancy also affected whole blood cytokine production upon Pg or E-coli stimulation differently. Thus, the different responses of pregnant women to different bacteria or their products may result from variations in cytokine production.

  10. Reactions of macrophages exposed to particles <10 μm

    International Nuclear Information System (INIS)

    Monn, Christian; Naef, Roland; Koller, Theo

    2003-01-01

    This study describes experiments on cytotoxic effects and the production of oxidative radicals and the proinflammatory cytokine tumor growth factor alpha (TNFα) in a cell line of rat lung macrophages exposed to aqueou extracts from ambient air particles 10 ) collected on Teflon filters. The particles were collected during the four seasons at two urban sites, one rural site, and one alpine site in Switzerland. Cytotoxic effects determined as a reduction in the metabolic activity, were found in particle extracts from all sites and seasons. Taking together the data from all site and seasons, a dose-response function was observed between the particle mass on the filter and toxicity (r 2 =0.633, linear regression). The release of the pro-inflammatory cytokine TNFα as well as of oxidative radicals was most pronounced in particles collected in spring-summer and autumn. While a Montana (alpine), the stimulation of the cells was positively correlated with the particle mass on the filters, this correlation was negative at the urban sites Zuerich and Lugano. It is interpreted that at high PM 10 levels, as in these cities, macrophages are inhibited by increasing air pollution due to toxic effects. Cytotoxic effects and the release of oxidative radicals could be inhibited when the extracts were treated with an endotoxin-neutralizing protein. This suggests that endotoxin, a cell-wall constituent of gram-negative bacteria, is one of the factors which modulates macrophag activity. All together, the experiments indicate that in the PM 10 fraction water-soluble macrophage-toxic and macrophage-stimulating compounds ar present. The data offer an explanation for at least some of the known harmful effects of PM 10 , and confirm endotoxin as a possible reactant

  11. Adipose tissue macrophages impair preadipocyte differentiation in humans.

    Directory of Open Access Journals (Sweden)

    Li Fen Liu

    Full Text Available The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation.Abdominal subcutaneous(SAT and visceral(VAT adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified.Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001. With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance.The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots.

  12. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    Kristi Alnek

    Full Text Available The production of several cytokines could be dysregulated in type 1 diabetes (T1D. In particular, the activation of T helper (Th type 1 (Th1 cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF and interleukin (IL-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α, Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8, but not human leukocyte antigen (HLA genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.

  13. Conditional Macrophage Depletion Increases Inflammation and Does Not Inhibit the Development of Osteoarthritis in Obese Macrophage Fas-Induced Apoptosis-Transgenic Mice.

    Science.gov (United States)

    Wu, Chia-Lung; McNeill, Jenna; Goon, Kelsey; Little, Dianne; Kimmerling, Kelly; Huebner, Janet; Kraus, Virginia; Guilak, Farshid

    2017-09-01

    To investigate whether short-term, systemic depletion of macrophages can mitigate osteoarthritis (OA) following injury in the setting of obesity. CSF-1R-GFP+ macrophage Fas-induced apoptosis (MaFIA)-transgenic mice that allow conditional depletion of macrophages were placed on a high-fat diet and underwent surgery to induce knee OA. A small molecule (AP20187) was administrated to deplete macrophages in MaFIA mice. The effects of macrophage depletion on acute joint inflammation, OA severity, and arthritic bone changes were evaluated using histology and micro-computed tomography. Immunohistochemical analysis was performed to identify various immune cells. The levels of serum and synovial fluid cytokines were also measured. Macrophage-depleted mice had significantly fewer M1 and M2 macrophages in the surgically operated joints relative to controls and exhibited decreased osteophyte formation immediately following depletion. Surprisingly, macrophage depletion did not attenuate the severity of OA in obese mice; instead, it induced systemic inflammation and led to a massive infiltration of CD3+ T cells and particularly neutrophils, but not B cells, into the injured joints. Macrophage-depleted mice also demonstrated a markedly increased number of proinflammatory cytokines including granulocyte colony-stimulating factor, interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor in both serum and joint synovial fluid, although the mice showed a trend toward decreased levels of insulin and leptin in serum after macrophage depletion. Our findings indicate that macrophages are vital for modulating homeostasis of immune cells in the setting of obesity and suggest that more targeted approaches of depleting specific macrophage subtypes may be necessary to mitigate inflammation and OA in the setting of obesity. © 2017, American College of Rheumatology.

  14. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway

    International Nuclear Information System (INIS)

    Silswal, Nirupama; Singh, Anil K.; Aruna, Battu; Mukhopadhyay, Sangita; Ghosh, Sudip; Ehtesham, Nasreen Z.

    2005-01-01

    Resistin, a recently discovered 92 amino acid protein involved in the development of insulin resistance, has been associated with obesity and type 2 diabetes. The elevated serum resistin in human diabetes is often associated with a pro-inflammatory milieu. However, the role of resistin in the development of inflammation is not well understood. Addition of recombinant human resistin protein (hResistin) to macrophages (both murine and human) resulted in enhanced secretion of pro-inflammatory cytokines, TNF-α and IL-12, similar to that obtained using 5 μg/ml lipopolysaccharide. Both oligomeric and dimeric forms of hResistin were able to activate these cytokines suggesting that the inflammatory action of resistin is independent of its conformation. Heat denatured hResistin abrogated cytokine induction while treatment of recombinant resistin with polymyxin B agarose beads had no effect thereby ruling out the role of endotoxin in the recombinant hResistin mediated cytokine induction. The pro-inflammatory nature of hResistin was further evident from the ability of this protein to induce the nuclear translocation of NF-κB transcription factor as seen from electrophoretic mobility shift assays. Induction of TNF-α in U937 cells by hResistin was markedly reduced in the presence of either dominant negative IκBα plasmid or PDTC, a pharmacological inhibitor of NF-κB. A protein involved in conferring insulin resistance is also a pro-inflammatory molecule that has important implications

  15. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    Science.gov (United States)

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  16. Macrophage expression in acute radiation colitis in rats

    International Nuclear Information System (INIS)

    Tadami, Tokuma; Shichijo, Kazuko; Matsuu, Mutsumi; Niino, Daisuke; Nakayama, Toshiyuki; Nakashima, Masahiro; Sekine, Ichiro

    2003-01-01

    Although radiation therapy is important in the treatment of tumors in pelvic and abdominal region, it may cause radiation injury as a side effect. But there is no effective way of preventing or curing the damages. The mechanism of acute radiation colitis has not been elucidated yet. Our previous reports have revealed that X-ray irradiation induce apoptosis of epithelial stem cells in colon. Then a hypothesis of the radiation colitis can be put forward, DNA damage by irradiation, apoptosis of mucosal epithelial stem cells and degeneration of epithelial gland structure, macrophages phagocyte the debris, being activated and secreting various inflammatory cytokines, infiltration of inflammatory cells. Several recent reports show that macrophages may play an important role in the process of inflammatory bowel diseases such ulcerative colitis or Crohn's disease. We studied radiation colitis using rat animal models. Male Wister rats were irradiated by a single fraction dose of 22.5 Gy X-ray at laparotomy, shielding except for an approximately 2.5 cm length of rectum. Histological changes and macrophage accumulation in the rectum mucosa were evaluated by immunohistochemistry and western blot method with the specimens which were taken on the 1, 2, 3, 4, 5, 6, 7, 10, and 14th day after irradiation. Severe macrophage accumulation in the lamina propria of the rectum was observed on the 5th day. At the same time, severe destruction of mucosal structure and inflammatory cells infiltration were also observed. Based on the potent pro-inflammatory cytokine producing effects of macrophage in rat and the increased expression in inflammatory bowel disease patients, speculate that intervention in the macrophage-cytokine network could form a future target for the treatment of acute radiation colitis. (author)

  17. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages.

    Science.gov (United States)

    Jakobsen, Stig S; Larsen, A; Stoltenberg, M; Bruun, J M; Soballe, K

    2007-09-11

    Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10) and proteins known to induce proliferation (M-CSF), chemotaxis (MCP-1) and osteogenesis (TGF-beta, OPG) were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR). Lactate dehydrogenase (LDH) was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.

  18. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-01-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti-inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX-2, iNOS, pro-inflammatory cytokines [tumor necrosis factor-α and interleukin (IL)-1β] and anti-inflammatory cytokines (IL-6 and IL-10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX-2 expression and ROS production, as well as

  19. CD1d-restricted IFN-γ-secreting NKT cells promote immune complex-induced acute lung injury by regulating macrophage-inflammatory protein-1α production and activation of macrophages and dendritic cells.

    Science.gov (United States)

    Kim, Ji Hyung; Chung, Doo Hyun

    2011-02-01

    Immune complex-induced acute lung injury (IC-ALI) has been implicated in various pulmonary disease states. However, the role of NKT cells in IC-ALI remains unknown. Therefore, we explored NKT cell functions in IC-ALI using chicken egg albumin and anti-chicken egg albumin IgG. The bronchoalveolar lavage fluid of CD1d(-/-) and Jα18(-/-) mice contained few Ly6G(+)CD11b(+) granulocytes, whereas levels in B6 mice were greater and were increased further by α-galactosyl ceramide. IFN-γ and MIP-1α production in the lungs was greater in B6 than CD1d(-/-) mice. Adoptive transfer of wild type (WT) but not IFN-γ-, MIP-1α-, or FcγR-deficient NKT cells into CD1d(-/-) mice caused recruitment of inflammatory cells to the lungs. Moreover, adoptive transfer of IFN-γR-deficient NKT cells enhanced MIP-1α production and cell recruitment in the lungs of CD1d(-/-) or CD1d(-/-)IFN-γ(-/-) mice, but to a lesser extent than WT NKT cells. This suggests that IFN-γ-producing NKT cells enhance MIP-1α production in both an autocrine and a paracrine manner. IFN-γ-deficient NKT cells induced less IL-1β and TNF-α production by alveolar macrophages and dendritic cells in CD1d(-/-) mice than did WT NKT cells. Taken together, these data suggest that CD1d-restricted IFN-γ-producing NKT cells promote IC-ALI by producing MIP-1α and enhancing proinflammatory cytokine production by alveolar macrophages and dendritic cells.

  20. CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection.

    Science.gov (United States)

    van den Bosch, Thierry P P; Caliskan, Kadir; Kraaij, Marina D; Constantinescu, Alina A; Manintveld, Olivier C; Leenen, Pieter J M; von der Thüsen, Jan H; Clahsen-van Groningen, Marian C; Baan, Carla C; Rowshani, Ajda T

    2017-01-01

    During acute heart transplant rejection, infiltration of lymphocytes and monocytes is followed by endothelial injury and eventually myocardial fibrosis. To date, no information is available on monocyte-macrophage-related cellular shifts and their polarization status during rejection. Here, we aimed to define and correlate monocyte-macrophage endomyocardial tissue profiles obtained at rejection and time points prior to rejection, with corresponding serial blood samples in 25 heart transplant recipients experiencing acute cellular rejection. Additionally, 33 healthy individuals served as control. Using histology, immunohistochemistry, confocal laser scan microscopy, and digital imaging expression of CD14, CD16, CD56, CD68, CD80, and CD163 were explored to define monocyte and macrophage tissue profiles during rejection. Fibrosis was investigated using Sirius Red stainings of rejection, non-rejection, and 1-year biopsies. Expression of co-stimulatory and migration-related molecules on circulating monocytes, and production potential for pro- and anti-inflammatory cytokines were studied using flow cytometry. At tissue level, striking CD16+ monocyte infiltration was observed during rejection ( p  rejection compared to barely present CD68+CD80+ M1 macrophages. Rejection was associated with severe fibrosis in 1-year biopsies ( p  rejection status, decreased frequencies of circulating CD16+ monocytes were found in patients compared to healthy individuals. Rejection was reflected by significantly increased CD54 and HLA-DR expression on CD16+ monocytes with retained cytokine production potential. CD16+ monocytes and M2 macrophages hallmark the correlates of heart transplant acute cellular rejection on tissue level and seem to be associated with fibrosis in the long term.

  1. Cytokine release from alveolar macrophages exposed to ambient particulate matter: Heterogeneity in relation to size, city and season

    Directory of Open Access Journals (Sweden)

    Dybing Erik

    2005-08-01

    Full Text Available Abstract Background Several studies have demonstrated an association between exposure to ambient particulate matter (PM and respiratory and cardiovascular diseases. Inflammation seems to play an important role in the observed health effects. However, the predominant particle component(s that drives the inflammation is still not fully clarified. In this study representative coarse (2.5–10 μm and fine (0.1–2.5 μm particulate samples from a western, an eastern, a northern and a southern European city (Amsterdam, Lodz, Oslo and Rome were collected during three seasons (spring, summer and winter. All fractions were investigated with respect to cytokine-inducing potential in primary macrophages isolated from rat lung. The results were related to the physical and chemical parameters of the samples in order to disclose possible connections between inflammatory potential and specific characteristics of the particles. Results Compared on a gram-by gram basis, both site-specific and seasonal variations in the PM-induced cytokine responses were demonstrated. The samples collected in the eastern (Lodz and southern (Rome cities appeared to be the most potent. Seasonal variation was most obvious with the samples from Lodz, with the highest responses induced by the spring and summer samples. The site-specific or seasonal variation in cytokine release could not be attributed to variations in any of the chemical parameters. Coarse fractions from all cities were more potent to induce the inflammatory cytokines interleukin-6 and tumour necrosis factor-α than the corresponding fine fractions. Higher levels of specific elements such as iron and copper, some polycyclic aromatic hydrocarbons (PAHs and endotoxin/lipopolysaccaride seemed to be prevalent in the coarse fractions. However, variations in the content of these components did not reflect the variation in cytokine release induced by the different coarse fractions. Addition of polymyxin B did not affect

  2. Exposure of alveolar macrophages to polybrominated diphenyl ethers suppresses the release of pro-inflammatory products in vitro.

    Science.gov (United States)

    Hennigar, Stephen R; Myers, Jay L; Tagliaferro, Anthony R

    2012-04-01

    Inhalation of chemical pollutants has been associated with a reduced immune response in humans. Inhalation of dust is a major route of exposure for one endocrine-disrupting chemical and suspected xenoestrogen, polybrominated diphenyl ethers (PBDEs); however, the impact of PBDEs on immune function is unclear. The objective of this study was to investigate the action of PBDEs on cytokine and eicosanoid release by alveolar macrophages and determine whether the effects are mediated via the estrogen receptor. The production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, IL-10 and prostaglandin E(2) (PGE(2)) by porcine alveolar macrophages exposed to different concentrations of the pentabrominated diphenyl ether mixture, DE-71, were measured; cells were also exposed to varying concentrations of 17β-estradiol and the selective estrogen receptor-modulating agent, tamoxifen. Cells exposed to PBDEs released significantly less pro-inflammatory cytokines (TNF-α and IL-6) and PGE(2) compared with controls; IL-1β and IL-10 were not detected in the culture medium. Cells exposed to 17β-estradiol released significantly less TNF-α compared with controls, an effect that was reversed by the addition of tamoxifen; tamoxifen had no effect on the inhibition of TNF-α release by PBDEs. Although the suppression of TNF-α with DE-71 was similar to that of estrogen, the inhibitory effects of DE-71 were not found to be dependent on the estrogen receptor. Findings of this study suggest that chronic exposure to PBDEs suppressed innate immunity in vitro. Whether the immunosuppressant effects of PBDEs occur in vivo, remains to be determined.

  3. Immunomodulatory Molecule IRAK-M Balances Macrophage Polarization and Determines Macrophage Responses during Renal Fibrosis.

    Science.gov (United States)

    Steiger, Stefanie; Kumar, Santhosh V; Honarpisheh, Mohsen; Lorenz, Georg; Günthner, Roman; Romoli, Simone; Gröbmayr, Regina; Susanti, Heni-Eka; Potempa, Jan; Koziel, Joanna; Lech, Maciej

    2017-08-15

    Activation of various innate immune receptors results in IL-1 receptor-associated kinase (IRAK)-1/IRAK-4-mediated signaling and secretion of proinflammatory cytokines such as IL-12, IL-6, or TNF-α, all of which are implicated in tissue injury and elevated during tissue remodeling processes. IRAK-M, also known as IRAK-3, is an inhibitor of proinflammatory cytokine and chemokine expression in intrarenal macrophages. Innate immune activation contributes to both acute kidney injury and tissue remodeling that is associated with chronic kidney disease (CKD). Our study assessed the contribution of macrophages in CKD and the role of IRAK-M in modulating disease progression. To evaluate the effect of IRAK-M in chronic renal injury in vivo, a mouse model of unilateral ureteral obstruction (UUO) was employed. The expression of IRAK-M increased within 2 d after UUO in obstructed compared with unobstructed kidneys. Mice deficient in IRAK-M were protected from fibrosis and displayed a diminished number of alternatively activated macrophages. Compared to wild-type mice, IRAK-M-deficient mice showed reduced tubular injury, leukocyte infiltration, and inflammation following renal injury as determined by light microscopy, immunohistochemistry, and intrarenal mRNA expression of proinflammatory and profibrotic mediators. Taken together, these results strongly support a role for IRAK-M in renal injury and identify IRAK-M as a possible modulator in driving an alternatively activated profibrotic macrophage phenotype in UUO-induced CKD. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    Science.gov (United States)

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  5. The role of TREM-2 in internalization and intracellular survival of Brucella abortus in murine macrophages.

    Science.gov (United States)

    Wei, Pan; Lu, Qiang; Cui, Guimei; Guan, Zhenhong; Yang, Li; Sun, Changjiang; Sun, Wanchun; Peng, Qisheng

    2015-02-15

    Triggering receptor expressed on myeloid cells-2 (TREM-2) is a cell surface receptor primarily expressed on macrophages and dendritic cells. TREM-2 functions as a phagocytic receptor for bacteria as well as an inhibitor of Toll like receptors (TLR) induced inflammatory cytokines. However, the role of TREM-2 in Brucella intracellular growth remains unknown. To investigate whether TREM-2 is involved in Brucella intracellular survival, we chose bone marrow derived macrophages (BMDMs), in which TREM-2 is stably expressed, as cell model. Colony formation Units (CFUs) assay suggests that TREM-2 is involved in the internalization of Brucella abortus (B. abortus) by macrophages, while silencing of TREM-2 decreases intracellular survival of B. abortus. To further study the underlying mechanisms of TREM-2-mediated bacterial intracellular survival, we examined the activation of B. abortus-infected macrophages through determining the kinetics of activation of the three MAPKs, including ERK, JNK and p38, and measuring TNFα production in response to lipopolysaccharide (LPS) of Brucella (BrLPS) or B. abortus stimulation. Our data show that TREM-2 deficiency promotes activation of Brucella-infected macrophages. Moreover, our data also demonstrate that macrophage activation promotes killing of Brucella by enhancing nitric oxygen (NO), but not reactive oxygen species (ROS) production, macrophage apoptosis or cellular death. Taken together, these findings provide a novel interpretation of Brucella intracellular growth through inhibition of NO production produced by TREM-2-mediated activated macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. DMPD: The atrial natriuretic peptide regulates the production of inflammatorymediators in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11890659 The atrial natriuretic peptide regulates the production of inflammatorymed...tml) (.csml) Show The atrial natriuretic peptide regulates the production of inflammatorymediators in macrop...hages. PubmedID 11890659 Title The atrial natriuretic peptide regulates the produ

  7. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    Directory of Open Access Journals (Sweden)

    Marion eDuriez

    2014-07-01

    Full Text Available Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis, where maternal and fetal cells are in close contact. Toll-like receptors (TLRs may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs and NK cells (dNKs, the major decidual immune cell populations.We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3 and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8 and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10 and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface.

  8. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    Science.gov (United States)

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Granulocyte-Macrophage Colony-Stimulating Factor Amplification of Interleukin-1β and Tumor Necrosis Factor Alpha Production in THP-1 Human Monocytic Cells Stimulated with Lipopolysaccharide of Oral Microorganisms

    OpenAIRE

    Baqui, A. A. M. A.; Meiller, Timothy F.; Chon, Jennifer J.; Turng, Been-Foo; Falkler, William A.

    1998-01-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1β and TNF-α production following GM-CSF suppl...

  10. Effect of azithromycin on Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-15

    Interleukin-6 (IL-6) is a key proinflammatory cytokine which plays a central role in the pathogenesis of periodontal disease. Host modulatory agents targeting at inhibiting IL-6, therefore, appear to be beneficial in slowing the progression of periodontal disease and potentially reducing destructive aspects of the host response. The present study was designed to investigate the effect of the macrolide antibiotic azithromycin on IL-6 generation in murine macrophages treated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. Azithromycin significantly suppressed IL-6 production as well as its mRNA expression in P. intermedia LPS-activated RAW264.7 cells. LPS-induced activation of JNK and p38 was not affected by azithromycin treatment. Azithromycin failed to prevent P. intermedia LPS from degrading IκB-α. Instead, azithromycin significantly diminished nuclear translocation and DNA binding activity of NF-κB p50 subunit induced with LPS. Azithromycin inhibited P. intermedia LPS-induced STAT1 and STAT3 phosphorylation. In addition, azithromycin up-regulated the mRNA level of SOCS1 in cells treated with LPS. In conclusion, azithromycin significantly attenuated P. intermedia LPS-induced production of IL-6 in murine macrophages via inhibition of NF-κB, STAT1 and STAT3 activation, which is possibly related to the activation of SOCS1 signaling. Further in vivo studies are required to better evaluate the potential of azithromycin in the treatment of periodontal disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages.

    Science.gov (United States)

    Meziani, Lydia; Mondini, Michele; Petit, Benoît; Boissonnas, Alexandre; Thomas de Montpreville, Vincent; Mercier, Olaf; Vozenin, Marie-Catherine; Deutsch, Eric

    2018-03-01

    Radiation-induced lung fibrosis (RIF) is a delayed side-effect of chest radiotherapy, frequently associated with macrophage infiltration.We aimed to characterise the role of pulmonary macrophages in RIF using human lung biopsies from patients receiving radiotherapy for thorax malignancies and a RIF model developed in C57BL/6 mice after 16-Gy thorax irradiation.High numbers of macrophages (both interstitial and alveolar) were detected in clinical and preclinical RIF. In the preclinical model, upregulation of T-helper (Th)2 cytokines was measured, whereas Th1 cytokines were downregulated in RIF tissue lysate. Bronchoalveolar lavage demonstrated upregulation of both types of cytokines. At steady state, tissue-infiltrating macrophages (IMs) expressed 10-fold more arginase (Arg)-1 than alveolar macrophages (AMs), and a 40-fold upregulation of Arg-1 was found in IMs isolated from RIF. IMs, but not AMs, were able to induce myofibroblast activation in vitro In addition, whereas depletion of AMs using Clodrosome didn't affect RIF score, depletion of IMs using a clinically available colony-stimulating factor receptor-1 (CSF1R) neutralising antibody was antifibrotic.These findings suggest differential contributions of alveolar versus interstitial macrophages in RIF, highlighting the fibrogenic role of IMs. The CSF1/CSF1R pathway was identified as a new therapeutic target to inhibit RIF. Copyright ©ERS 2018.

  12. Optimal Method to Stimulate Cytokine Production and Its Use in Immunotoxicity Assessment

    Directory of Open Access Journals (Sweden)

    Huiming Chen

    2013-08-01

    Full Text Available Activation of lymphocytes can effectively produce a large amount of cytokines. The types of cytokines produced may depend on stimulating reagents and treatments. To find an optimal method to stimulate cytokine production and evaluate its effect on immunotoxicity assessments, the authors analyzed production of IL-2, IL-4, IL-6, IL-10, IL-13, IFN-γ, TNF-α, GM-CSF, RANTES and TGF-β in undiluted rat whole blood culture (incubation for 0, 2, 4, 6, 8 or 10 h with different concentrations of PMA/ionomycin, PHA, Con A, LPS and PWM. We also evaluated the effects of cyclosporin A and azathioprine on cytokine production. The results revealed a rapid increase of IL-2, IFN-γ, TNF-α, RANTES and TGF-β secretion within 6 h after stimulation with 25 ng/mL PMA and 1 μg/mL ionomycin. The inhibition of these cytokine profiles reflected the effects of immunosuppressants on the immune system. Therefore, the results of this is study recommend the detection of cytokine profiles in undiluted whole blood stimulated 6 h with 25 ng/mL PMA and 1 μg/mL ionomycin as a powerful immunotoxicity assessment method.

  13. MURINE PULMONARY MACROPHAGE EXPRESSION AND PRODUCTION OF TNFA AND MIP-2 AFTER EXPOSURE TO DIESEL EXHAUST PARTICLES (DEP) AND EXTRACTS

    Science.gov (United States)

    DEP constitute an important fraction of particulate air pollution and have been shown to cause inflammation of the airways. The aim of this study was to investigate the inflammatory cytokine response of alveolar macrophages exposed to DEP and DEP-extracts. A murine alveolar macr...

  14. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue.

    Science.gov (United States)

    Bolus, W Reid; Gutierrez, Dario A; Kennedy, Arion J; Anderson-Baucum, Emily K; Hasty, Alyssa H

    2015-10-01

    Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation. © Society for Leukocyte Biology.

  15. Citoquinas en tuberculosis Cytokines in tuberculosis

    Directory of Open Access Journals (Sweden)

    Jaime I. Rodríguez

    1997-04-01

    specific antigens of Iymphocytes from tuberculin positive healthy subjects induces a type I cytokine pattern (1'IL.2, 1'IFN.y, -VIL.4, -VIL.5 whereas Iymphocytes from tuberculous patients do not exhibit it. Type I cytokines activate macrophages able to inhibit mycobacteria intracellular growth. In mice, nitric oxide produced by activated macrophages is responsible for such effect; however, the productJon of nitric oxide by human macrophages has not been conclusively demonstrated. Recent reports have shown that infection with M. tuberculosis induces apoptosis in infected macrophages. Apoptosis in such conditions is Tumor Necrosis Factor.a and nitric oxide dependent. Paradoxically, mannosylated liparabinomann (ManLAM, a structural component of the rñycobacterial cell wall, inhibits apoptosis of infected macrophages. These results demonstrate a new aspect of the mycobacteria.macrophage relatJonship that must be finely regulated by both the microorganism and the host.

  16. The role of cytokines in cervical ripening: correlations between the concentrations of cytokines and hyaluronic acid in cervical mucus and the induction of hyaluronic acid production by inflammatory cytokines by human cervical fibroblasts.

    Science.gov (United States)

    Ogawa, M; Hirano, H; Tsubaki, H; Kodama, H; Tanaka, T

    1998-07-01

    The purpose of our study was (1) to explain the relationship between levels of inflammatory cytokines and levels of hyaluronic acid in cervical mucus of pregnant women and (2) to investigate whether cytokines promote hyaluronic acid production by human cervical fibroblasts in vitro. The concentration of hyaluronic acid, interleukin-1beta, and interleukin-8 were measured in cervical mucus of pregnant women, and hyaluronic acid production by cytokine-treated (interleukin-1beta and interleukin-8) cultured fibroblasts was measured. Hyaluronic acid concentrations in the mucus of pregnant women with threatened premature labor were higher than in mucus of normal pregnant women (P hyaluronic acid concentrations and interleukin-1beta (P = .018) and interleukin-8 (P = .003) concentrations in cervical mucus. Cytokines (especially interleukin-8) stimulated hyaluronic acid production by cultured cervical fibroblasts. Cytokines induce hyaluronic acid production by human cervical fibroblasts, which may promote cervical ripening.

  17. Regulation of macrophage development and function in peripheral tissues

    Science.gov (United States)

    Lavin, Yonit; Mortha, Arthur; Rahman, Adeeb; Merad, Miriam

    2015-01-01

    Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. PMID:26603899

  18. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Key words: Lipopolysaccharide, lymphocytes, TLRs, cytokines. INTRODUCTION. Lipopolysaccharide (LPS), a predominant glycolipid in the outer membranes of Gam-negative bacteria, stimulates monocyte, macrophages, and neutrophils and increase expression of cell adhesion molecules (Trent et al., ...

  19. Anti-Inflammatory Effect of Myristicin on RAW 264.7 Macrophages Stimulated with Polyinosinic-Polycytidylic Acid

    Directory of Open Access Journals (Sweden)

    Wansu Park

    2011-08-01

    Full Text Available Myristicin (1-allyl-5-methoxy-3,4-methylenedioxybenzene is an active aromatic compound found in nutmeg (the seed of Myristica fragrans, carrot, basil, cinnamon, and parsley. Myristicin has been known to have anti-cholinergic, antibacterial, and hepatoprotective effects, however, the effects of myristicin on virus-stimulated macrophages are not fully reported. In this study, the anti-inflammatory effect of myristicin on double-stranded RNA (dsRNA-stimulated macrophages was examined. Myristicin did not reduce the cell viability of RAW 264.7 mouse macrophages at concentrations of up to 50 µM. Myristicin significantly inhibited the production of calcium, nitric oxide (NO, interleukin (IL-6, IL-10, interferon inducible protein-10, monocyte chemotactic protein (MCP-1, MCP-3, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein (MIP-1α, MIP-1β, and leukemia inhibitory factor in dsRNA [polyinosinic-polycytidylic acid]-induced RAW 264.7 cells (P < 0.05. In conclusion, myristicin has anti-inflammatory properties related with its inhibition of NO, cytokines, chemokines, and growth factors in dsRNA-stimulated macrophages via the calcium pathway.

  20. Regulatory T cells in induced sputum of asthmatic children: association with inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Hamzaoui Agnès

    2010-02-01

    Full Text Available Abstract Background and objective CD4+CD25+ regulatory T (Treg cells play an essential role in maintaining immune homeostasis. In this study, we investigated whether the induced sputum (IS pool and the function of CD4+CD25+ Treg cells are altered in asthma pediatric patients. Methods Treg activity was studied in the IS of 40 asthmatic children. CD3+ cells were analyzed for the expression of FoxP3 mRNA by real time reverse transcription-polymerase chain reaction (RT-PCR. IS cells from asthmatics and controls were stained for Treg markers and analyzed by flow cytometry. We also studied the ability of Treg cells to differentiate monocytes toward alternatively activated macrophages (AAM, and to suppress proinflammatory cytokines. Results (i Mild and moderate asthmatics had significantly decreased expression of FoxP3/β-actin mRNA and decreased proportions of CD4+CD25highFoxP3+ cells compared to healthy children; (ii patients with moderate asthma had even lower proportions of FoxP3 expression compared to mild asthmatic patients; (iii monocytes cultured with Treg cells displayed typical features of AAM, including up-regulated expression of CD206 (macrophage mannose receptor and CD163 (hemoglobin scavenger receptor, and an increased production of chemokine ligand 18 (CCL18. In addition, Treg cells from asthmatics have a reduced capacity to suppress LPS-proinflammatory cytokine production from monocytes/macrophages (IL-1, IL-6 and TNF-α. Conclusion Asthma pediatric patients display a decreased bronchial Treg population. The impaired bronchial Treg activity is associated with disease severity.

  1. Impact of Antidepressants on Cytokine Production of Depressed Patients in Vitro

    Directory of Open Access Journals (Sweden)

    Alexander Munzer

    2013-11-01

    Full Text Available The interplay between immune and nervous systems plays a pivotal role in the pathophysiology of depression. In depressive episodes, patients show increased production of pro-inflammatory cytokines such as interleukin (IL-1β and tumor necrosis factor (TNF-α. There is limited information on the effect of antidepressant drugs on cytokines, most studies report on a limited sample of cytokines and none have reported effects on IL-22. We systematically investigated the effect of three antidepressant drugs, citalopram, escitalopram and mirtazapine, on secretion of cytokines IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22 and TNF-α in a whole blood assay in vitro, using murine anti-human CD3 monoclonal antibody OKT3, and 5C3 monoclonal antibody against CD40, to stimulate T and B cells respectively. Citalopram increased production of IL-1β, IL-6, TNF-α and IL-22. Mirtazapine increased IL-1β, TNF-α and IL-22. Escitalopram decreased IL-17 levels. The influence of antidepressants on IL-2 and IL-4 levels was not significant for all three drugs. Compared to escitalopram, citalopram led to higher levels of IL-1β, IL-6, IL-17 and IL-22; and mirtazapine to higher levels of IL-1β, IL-17, IL-22 and TNF-α. Mirtazapine and citalopram increased IL-22 production. The differing profile of cytokine production may relate to differences in therapeutic effects, risk of relapse and side effects.

  2. IRAK-M regulates chromatin remodeling in lung macrophages during experimental sepsis.

    Directory of Open Access Journals (Sweden)

    Kenneth Lyn-Kew

    2010-06-01

    Full Text Available Sepsis results in a profound state of immunosuppression, which is temporally associated with impaired leukocyte function. The mechanism of leukocyte reprogramming in sepsis is incompletely understood. In this study, we explored mechanisms contributing to dysregulated inflammatory cytokine expression by pulmonary macrophages during experimental sepsis. Pulmonary macrophages (PM recovered from the lungs of mice undergoing cecal ligation and puncture (CLP display transiently reduced expression of some, but not all innate genes in response to LPS. Impaired expression of TNF-alpha and iNOS was associated with reduced acetylation and methylation of specific histones (AcH4 and H3K4me3 and reduced binding of RNA polymerase II to the promoters of these genes. Transient impairment in LPS-induced cytokine responses in septic PM temporally correlated with induction of IRAK-M mRNA and protein, which occurred in a MyD88-dependent fashion. PM isolated from IRAK-M(-/- mice were largely refractory to CLP-induced impairment in cytokine expression, chromatin remodeling, recruitment of RNA polymerase II, and induction of histone deacetylase-2 observed during sepsis. Our findings indicate that systemic sepsis induces epigenetic silencing of cytokine gene expression in lung macrophages, and IRAK-M appears to be a critical mediator of this response.

  3. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions.

    Directory of Open Access Journals (Sweden)

    Aruna Amarasinghe

    Full Text Available Infectious bronchitis virus (IBV causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41 and Connecticut A5968 (Conn A5968 strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens.

  4. Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain

    Science.gov (United States)

    Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke

    2014-01-01

    Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing

  5. Unlike PPARγ, PPARα or PPARβ/δ activation does not promote human monocyte differentiation toward alternative macrophages

    International Nuclear Information System (INIS)

    Bouhlel, Mohamed Amine; Brozek, John; Derudas, Bruno; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2009-01-01

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPARγ promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPARβ/δ in this process has been reported only in mice and no data are available for PPARα. Here, we show that in contrast to PPARγ, expression of PPARα and PPARβ/δ overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPARγ, PPARα or PPARβ/δ activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPARα and PPARβ/δ do not appear to modulate the alternative differentiation of human macrophages.

  6. Bovine Viral Diarrhea Virus Type 2 Impairs Macrophage Responsiveness to Toll-Like Receptor Ligation with the Exception of Toll-Like Receptor 7.

    Directory of Open Access Journals (Sweden)

    Robert G Schaut

    Full Text Available Bovine viral diarrhea virus (BVDV is a member of the Flaviviridae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp or non-cytopathic (ncp effects in epithelial cell culture. BVDV isolates are further separated into species, BVDV1 and 2, based on genetic differences. Symptoms of BVDV infection range from subclinical to severe, depending on strain virulence, and may involve multiple organ systems and induction of a generalized immunosuppression. During BVDV-induced immune suppression, macrophages, critical to innate immunity, may have altered pathogen recognition receptor (PRR signaling, including signaling through toll-like receptors (TLRs. Comparison of BVDV 2 strains with different biotypes and virulence levels is valuable to determining if there are differences in host macrophage cellular responses between viral phenotypes. The current study demonstrates that cytopathic (cp, noncytopathic (ncp, high (hv or low virulence (lv BVDV2 infection of bovine monocyte-derived macrophages (MDMΦ result in differential expression of pro-inflammatory cytokines compared to uninfected MDMΦ. A hallmark of cp BVDV2 infection is IL-6 production. In response to TLR2 or 4 ligation, as might be observed during secondary bacterial infection, cytokine secretion was markedly decreased in BVDV2-infected MDMΦ, compared to non-infected MDMΦ. Macrophages were hyporesponsive to viral TLR3 or TLR8 ligation. However, TLR7 stimulation of BVDV2-infected MDMΦ induced cytokine secretion, unlike results observed for other TLRs. Together, these data suggest that BVDV2 infection modulated mRNA responses and induced a suppression of proinflammatory cytokine protein responses to TLR ligation in MDMΦ with the exception of TLR7 ligation. It is likely that there are distinct differences in TLR pathways modulated following BVDV2 infection, which have implications for macrophage responses to secondary infections.

  7. NAMPT-Mediated Salvage Synthesis of NAD+ Controls Morphofunctional Changes of Macrophages

    Science.gov (United States)

    Venter, Gerda; Oerlemans, Frank T. J. J.; Willemse, Marieke; Wijers, Mietske; Fransen, Jack A. M.; Wieringa, Bé

    2014-01-01

    Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+’s cytosolic role in the regulation of morphofunctional characteristics of macrophages. PMID:24824795

  8. NAMPT-mediated salvage synthesis of NAD+ controls morphofunctional changes of macrophages.

    Directory of Open Access Journals (Sweden)

    Gerda Venter

    Full Text Available Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H (i.e. NAD+ and NADH and NADP(H (i.e. NADP+ and NADPH play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT, found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+'s cytosolic role in the regulation of morphofunctional characteristics of macrophages.

  9. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis.

    Science.gov (United States)

    Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi; Wang, Haoyu; Gagner, Jean-Pierre; Dolgalev, Igor; Placantonakis, Dimitris; Zagzag, David; Cimmino, Luisa; Snuderl, Matija; Lam, Raymond H W; Chen, Weiqiang

    2018-04-01

    Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-β1, and surface integrin (α v β 3 ) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (α v β 3 )-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (α v β 3 ) and cytokine receptor (TGFβ-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and

  10. Impaired IL-10 transcription and release in animal models of Gaucher disease macrophages.

    Science.gov (United States)

    Kacher, Yaacov; Futerman, Anthony H

    2009-01-01

    A number of studies have shown altered cytokine levels in serum from Gaucher disease patients, including changes in levels of the anti-inflammatory cytokine, interleukin-10 (IL-10). However, the source of IL-10, or the mechanisms leading to changes in IL-10 serum levels are not known. We now show that mouse macrophages treated with an active site-directed inhibitor of glucocerebrosidase, or macrophages from a mouse model of Gaucher disease, the L444P mouse, release significantly less IL-10 than their untreated counterparts, but that TNFalpha release is unaffected. These changes are due to reduced transcription of IL-10 mRNA in macrophages. The reduction in IL-10 secretion observed in animal models of Gaucher disease macrophages may be of relevance to explain the increase in inflammation that is often observed in Gaucher disease.

  11. Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls

    Directory of Open Access Journals (Sweden)

    Di Giannantonio Massimo

    2011-01-01

    Full Text Available Abstract Background The exact cause of schizophrenia is not known, although several aetiological theories have been proposed for the disease, including developmental or neurodegenerative processes, neurotransmitter abnormalities, viral infection and immune dysfunction or autoimmune mechanisms. Growing evidence suggests that specific cytokines and chemokines play a role in signalling the brain to produce neurochemical, neuroendocrine, neuroimmune and behavioural changes. A relationship between inflammation and schizophrenia was supported by abnormal cytokines production, abnormal concentrations of cytokines and cytokine receptors in the blood and cerebrospinal fluid in schizophrenia. Since the neuropathology of schizophrenia has recently been reported to be closely associated with microglial activation we aimed to determined whether spontaneous or LPS-induced peripheral blood mononuclear cell chemokines and cytokines production is dysregulated in schizophrenic patients compared to healthy subjects. We enrolled 51 untreated first-episode schizophrenics (SC and 40 healthy subjects (HC and the levels of MCP-1, MIP-1α, IL-8, IL-18, IFN-γ and RANTES were determined by Elisa method in cell-free supernatants of PBMC cultures. Results In the simultaneous quantification we found significantly higher levels of constitutively and LPS-induced MCP-1, MIP-1α, IL-8 and IL-18, and lower RANTES and IFNγ levels released by PBMC of SC patients compared with HC. In ten SC patients receiving therapy with risperidone, olanzapine or clozapine basal and LPS-induced production of RANTES and IL-18 was increased, while both basal and LPS-induced MCP-1 production was decreased. No statistically significant differences were detected in serum levels after therapy. Conclusion The observation that in schizophrenic patients the PBMC production of selected chemo-cytokines is dysregulated reinforces the hypothesis that the peripheral cyto-chemokine network is involved in the

  12. Macrophage Resistance to HIV-1 Infection Is Enhanced by the Neuropeptides VIP and PACAP

    Science.gov (United States)

    Temerozo, Jairo R.; Joaquim, Rafael; Regis, Eduardo G.; Savino, Wilson; Bou-Habib, Dumith Chequer

    2013-01-01

    It is well established that host factors can modulate HIV-1 replication in macrophages, critical cells in the pathogenesis of HIV-1 infection due to their ability to continuously produce virus. The neuropeptides VIP and PACAP induce well-characterized effects on macrophages through binding to the G protein-coupled receptors VPAC1, VPAC2 and PAC1, but their influence on HIV-1 production by these cells has not been established. Here, we describe that VIP and PACAP reduce macrophage production of HIV-1, acting in a synergistic or additive manner to decrease viral growth. Using receptor antagonists, we detected that the HIV-1 inhibition promoted by VIP is dependent on its ligation to VPAC1/2, whereas PACAP decreases HIV-1 growth via activation of the VPAC1/2 and PAC1 receptors. Specific agonists of VPAC2 or PAC1 decrease macrophage production of HIV-1, whereas sole activation of VPAC1 enhances viral growth. However, the combination of specific agonists mimicking the receptor preference of the natural neuropeptides reproduces the ability of VIP and PACAP to increase macrophage resistance to HIV-1 replication. VIP and PACAP up-regulated macrophage secretion of the β-chemokines CCL3 and CCL5 and the cytokine IL-10, whose neutralization reversed the neuropeptide-induced inhibition of HIV-1 replication. Our results suggest that VIP and PACAP and the receptors VPAC2 and PAC1 could be used as targets for developing alternative therapeutic strategies for HIV-1 infection. PMID:23818986

  13. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    International Nuclear Information System (INIS)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-01-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  14. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  15. Ceramic modifications of porous titanium: effects on macrophage activation.

    Science.gov (United States)

    Scislowska-Czarnecka, A; Menaszek, E; Szaraniec, B; Kolaczkowska, E

    2012-12-01

    Porous titanium is one of the most widely used implant materials because of its mechanical properties, however, it is also characterised by low bioactivity. To improve the above parameter we prepared three modifications of the porous (30 wt%) titanium (Ti) surface by covering it with bioactive hydroxyapatite (HA), bioglass (BG) and calcium silicate (CS). Subsequently we tested the impact of the modifications on macrophages directing the inflammatory response that might compromise the implant bioactivity. In the study we investigated the in vitro effects of the materials on murine cell line RAW 264.7 macrophage adherence, morphology and activation (production/release of metalloproteinase MMP-9 and pro- and anti-inflammatory cytokines). CS Ti decreased the macrophage adherence and up-regulated the release of several pro-inflammatory mediators, including TNF-α, IL-6, IL-12. Also HA Ti reduced the cell adherence but other parameters were generally not increased, except of TNF-α. In contrast, BG Ti improved macrophage adherence and either decreased production of multiple mediators (MMP-9, TNF-α, IFN-γ, MCP-1) or did not change it in comparison to the porous titanium. We can conclude that analyzing the effects on the inflammatory response initiated by macrophages in vitro, calcium silicate did not improve the biological properties of the porous titanium. The improved bioactivity of titanium was, however, achieved by the application of the hydroxyapatite and bioglass layers. The present in vitro results suggest that these materials, HA Ti and especially BG Ti, may be suitable for in vivo application and thus justify their further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages.

    Directory of Open Access Journals (Sweden)

    Taha Salim

    Full Text Available Macrophage produced inducible nitric oxide synthase (iNOS is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS, iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ and tumor necrosis factor alpha (TNF-α. To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced.

  17. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages.

    Science.gov (United States)

    Salim, Taha; Sershen, Cheryl L; May, Elebeoba E

    2016-01-01

    Macrophage produced inducible nitric oxide synthase (iNOS) is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO) by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS), iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced.

  18. Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines

    DEFF Research Database (Denmark)

    Barfod, Lea; Kemp, Kåre; Hansen, Majbritt

    2002-01-01

    Licochalcone A (LicA), an oxygenated chalcone, has been shown to inhibit the growth of both parasites and bacteria. In this study, we investigated the effect of LicA and four synthetic analogues on the activity of human peripheral blood mononuclear cell proliferation and cytokine production. Four...... out of five chalcones tested inhibited the proliferation of lymphocytes measured by thymidine incorporation and by flow cytometry. The production of pro- and anti-inflammatory cytokines from monocytes and T cells was also inhibited by four of five chalcones. Furthermore, intracellular detection...... of cytokines revealed that the chalcones inhibited the production rather than the release of the cytokines. Taken together, these results indicate that LicA and some analogues may have immunomodulatory effects, and may thus be candidates not only as anti-microbial agents, but also for the treatment of other...

  19. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  20. Porphyromonas gulae Activates Unprimed and Gamma Interferon-Primed Macrophages via the Pattern Recognition Receptors Toll-Like Receptor 2 (TLR2), TLR4, and NOD2.

    Science.gov (United States)

    Holden, James A; O'Brien-Simpson, Neil M; Lenzo, Jason C; Orth, Rebecca K H; Mansell, Ashley; Reynolds, Eric C

    2017-09-01

    Porphyromonas gulae is an anaerobic, Gram-negative coccobacillus that has been associated with periodontal disease in companion animals. The aims of this study were to analyze the ligation of pattern recognition receptors by P. gulae and the subsequent activation of macrophages. Exposure of HEK cells transfected with Toll-like receptors (TLRs) or NOD-like receptors to P. gulae resulted in the ligation of TLR2, TLR4, and NOD2. The effects of this engagement of receptors were investigated by measuring the synthesis of nitric oxide (NO), CD86 expression, and inflammatory cytokine production by wild-type, TLR2 -/- , and TLR4 -/- macrophages. The addition of P. gulae to unprimed and gamma interferon (IFN-γ)-primed (M1 phenotype) macrophages significantly increased the surface expression of CD86, but only M1 macrophages produced nitric oxide. P. gulae- induced expression of CD86 on unprimed macrophages was dependent on both TLR2 and TLR4, but CD86 expression and NO production in M1 macrophages were only TLR2 dependent. P. gulae induced an increase in secretion of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p70, IL-13, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1α (MIP-1α) by M1 macrophages compared to that by unprimed controls. Among these cytokines, secretion of IL-6 and TNF-α by M1 macrophages was dependent on either TLR2 or TLR4. Our data indicate that TLR2 and TLR4 are important for P. gulae activation of unprimed macrophages and that activation and effector functions induced in M1 macrophages by P. gulae are mainly dependent on TLR2. In conclusion, P. gulae induces a strong TLR2-dependent inflammatory M1 macrophage response which may be important in establishing the chronic inflammation associated with periodontal disease in companion animals. Copyright © 2017 American Society for Microbiology.

  1. Porphyromonas gulae Activates Unprimed and Gamma Interferon-Primed Macrophages via the Pattern Recognition Receptors Toll-Like Receptor 2 (TLR2), TLR4, and NOD2

    Science.gov (United States)

    Holden, James A.; O'Brien-Simpson, Neil M.; Lenzo, Jason C.; Orth, Rebecca K. H.; Mansell, Ashley

    2017-01-01

    ABSTRACT Porphyromonas gulae is an anaerobic, Gram-negative coccobacillus that has been associated with periodontal disease in companion animals. The aims of this study were to analyze the ligation of pattern recognition receptors by P. gulae and the subsequent activation of macrophages. Exposure of HEK cells transfected with Toll-like receptors (TLRs) or NOD-like receptors to P. gulae resulted in the ligation of TLR2, TLR4, and NOD2. The effects of this engagement of receptors were investigated by measuring the synthesis of nitric oxide (NO), CD86 expression, and inflammatory cytokine production by wild-type, TLR2−/−, and TLR4−/− macrophages. The addition of P. gulae to unprimed and gamma interferon (IFN-γ)-primed (M1 phenotype) macrophages significantly increased the surface expression of CD86, but only M1 macrophages produced nitric oxide. P. gulae-induced expression of CD86 on unprimed macrophages was dependent on both TLR2 and TLR4, but CD86 expression and NO production in M1 macrophages were only TLR2 dependent. P. gulae induced an increase in secretion of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p70, IL-13, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1α (MIP-1α) by M1 macrophages compared to that by unprimed controls. Among these cytokines, secretion of IL-6 and TNF-α by M1 macrophages was dependent on either TLR2 or TLR4. Our data indicate that TLR2 and TLR4 are important for P. gulae activation of unprimed macrophages and that activation and effector functions induced in M1 macrophages by P. gulae are mainly dependent on TLR2. In conclusion, P. gulae induces a strong TLR2-dependent inflammatory M1 macrophage response which may be important in establishing the chronic inflammation associated with periodontal disease in companion animals. PMID:28630066

  2. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  3. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  4. Phagocytosis of mast cell granules results in decreased macrophage superoxide production

    Directory of Open Access Journals (Sweden)

    Bobby A. Shah

    1995-01-01

    Full Text Available The mechanism by which phagocytosed mast cell granules (MCGs inhibit macrophage superoxide production has not been defined. In this study, rat peritoneal macrophages were co-incubated with either isolated intact MCGs or MCG-sonicate, and their respiratory burst capacity and morphology were studied. Co-incubation of macrophages with either intact MCGs or MCG-sonicate resulted in a dose-dependent inhibition of superoxide- mediated cytochrome c reduction. This inhibitory effect was evident within 5 min of incubation and with MCG-sonicate was completely reversed when macrophages were washed prior to activation with PMA. In the case of intact MCGs, the inhibitory effect was only partially reversed by washing after a prolonged co-incubation time. Electron microscopic analyses revealed that MCGs were rapidly phagocytosed by macrophages and were subsequently disintegrated within the phagolysosomes. Assay of MCGs for superoxide dismutase (SOD revealed the presence of significant activity of this enzyme. A comparison of normal macrophages and those containing phagocytosed MCGs did not reveal a significant difference in total SOD activity. It is speculated that, although there was no significant increase in total SOD activity in macrophages containing phagocytosed MCGs, the phagocytosed MCGs might cause a transient increase in SOD activity within the phagolysosomes. This transient rise in SOD results in scavenging of the newly generated superoxide. Alternatively, MCG inhibition of NADPH oxidase would explain the reported observations.

  5. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  6. Immunomodulatory Role of Ocimum gratissimum and Ascorbic Acid against Nicotine-Induced Murine Peritoneal Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Santanu Kar Mahapatra

    2011-01-01

    Full Text Available The aim of this present study was to evaluate the immune functions and immune responses in nicotine-induced (10 mM macrophages and concurrently establish the immunomodulatory role of aqueous extract of Ocimum gratissimum (Ae-Og and ascorbic acid. In this study, nitrite generations and some phenotype functions by macrophages were studied. Beside that, release of Th1 cytokines (TNF-α, IL-12 and Th2 cytokines (IL-10, TGF-β was measured by ELISA, and the expression of these cytokines at mRNA level was analyzed by real-time PCR. Ae-Og, at a dose of 10 μg/mL, significantly reduced the nicotine-induced NO generation and iNOSII expression. Similar kinds of response were observed with supplementation of ascorbic acid (0.01 mM. The administration of Ae-Og and ascorbic acid increased the decreased adherence, chemotaxis, phagocytosis, and intracellular killing of bacteria in nicotine-treated macrophages. Ae-Og and ascorbic acid were found to protect the murine peritoneal macrophages through downregulation of Th1 cytokines in nicotine-treated macrophages with concurrent activation of Th2 responses. These findings strongly enhanced our understanding of the molecular mechanism leading to nicotine-induced suppression of immune functions and provide additional rationale for application of anti-inflammatory therapeutic approaches by O. gratissimum and ascorbic acid for different inflammatory disease prevention and treatment during nicotine toxicity.

  7. Effects of glutamine, taurine and their association on inflammatory pathway markers in macrophages.

    Science.gov (United States)

    Sartori, Talita; Galvão Dos Santos, Guilherme; Nogueira-Pedro, Amanda; Makiyama, Edson; Rogero, Marcelo Macedo; Borelli, Primavera; Fock, Ricardo Ambrósio

    2018-06-01

    The immune system is essential for the control and elimination of infections, and macrophages are cells that act as important players in orchestrating the various parts of the inflammatory/immune response. Amino acids play important role in mediating functionality of the inflammatory response, especially mediating macrophages functions and cytokines production. We investigated the influence of glutamine, taurine and their association on the modulation of inflammatory pathway markers in macrophages. The RAW 264.7 macrophage cell line was cultivated in the presence of glutamine and taurine and proliferation rates, cell viability, cell cycle phases, IL-1α, IL-6, IL-10 and TNF-α as well as H 2 O 2 production and the expression of the transcription factor, NFκB, and its inhibitor, IκBα, were evaluated. Our results showed an increase in viable cells and increased proliferation rates of cells treated with glutamine concentrations over 2 mM, as well as cells treated with both glutamine and taurine. The cell cycle showed a higher percentage of cells in the phases S, G2 and M when they were treated with 2 or 10 mM glutamine, or with glutamine and taurine in cells stimulated with lipopolysaccharide. The pNFκB/NFκB showed reduced ratio expression when cells were treated with 10 mM of glutamine or with glutamine in association with taurine. These conditions also resulted in reduced TNF-α, IL-1α and H 2 O 2 production, and higher production of IL-10. These findings demonstrate that glutamine and taurine are able to modulate macrophages inflammatory pathways, and that taurine can potentiate the effects of glutamine, illustrating their immunomodulatory properties.

  8. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Nagaya, Yoshiaki; Asai, Hayato; Hussein, Mohamed Hamed; Suzuki, Mieko; Kato, Shin; Saitoh, Shinji; Asai, Kiyofumi

    2013-01-01

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N G -monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for IAE

  9. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  10. Suppressive immunoregulatory effects of three antidepressants via inhibition of the nuclear factor-κB activation assessed using primary macrophages of carp (Cyprinus carpio)

    International Nuclear Information System (INIS)

    Qiu, Wenhui; Wu, Minghong; Liu, Shuai; Chen, Bei; Pan, Chenyuan; Yang, Ming; Wang, Ke-Jian

    2017-01-01

    Antidepressants, having been applied for the treatment of major depressive disorder and other conditions for decades, are among the most commonly detected human pharmaceuticals in the aquatic environment. This study evaluated the immunotoxicity of acute exposure to environmentally relevant concentrations of amitriptyline, fluoxetine and mianserin using an in vitro primary macrophage model isolated from red common carp (Cyprinus carpio), and also explored their potential mechanisms of action. A potential suppressive immunoregulatory effect of antidepressant exposure was suggested based on the observed suppressive effects on oxidative stress parameters, bactericidal activity, NO production, and NO synthase activity, as well as pro-inflammatory cytokine gene expression, and a significant stimulatory effect on anti-inflammatory interleukin-10 and interferon cytokine gene expression and ATPase activities in macrophages after 6 h-exposure to three individual antidepressants and a combination thereof. Notably, we also found these effects were significantly associated with a corresponding decrease in nuclear factor-κB (NF-κB) activity after antidepressants exposure, and the NF-κB antagonist significantly restrained the effects of antidepressants on gene expression of cytokines, indicating that antidepressants could alter the response of various immune-associated components via the inhibition of NF-κB. Moreover, time-dependent lethal concentrations of three antidepressants on primary macrophages were firstly determined at mg/L levels, and the synergetic effects of antidepressant mixtures were suggested and in particular, for some parameters including total antioxidant capacity and cytokine genes expression, they could be significantly affected by antidepressants exposure at concentrations as low as 10 ng/L, which together thereby revealed the potential risk of antidepressants to aquatic life. - Highlights: • Three different antidepressants all have immunoregulatory

  11. Suppressive immunoregulatory effects of three antidepressants via inhibition of the nuclear factor-κB activation assessed using primary macrophages of carp (Cyprinus carpio)

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Wenhui [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005 (China); School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China); Wu, Minghong; Liu, Shuai [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Chen, Bei [State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005 (China); Pan, Chenyuan [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Yang, Ming, E-mail: mingyang@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wang, Ke-Jian, E-mail: wkjian@xmu.edu.cn [State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005 (China)

    2017-05-01

    Antidepressants, having been applied for the treatment of major depressive disorder and other conditions for decades, are among the most commonly detected human pharmaceuticals in the aquatic environment. This study evaluated the immunotoxicity of acute exposure to environmentally relevant concentrations of amitriptyline, fluoxetine and mianserin using an in vitro primary macrophage model isolated from red common carp (Cyprinus carpio), and also explored their potential mechanisms of action. A potential suppressive immunoregulatory effect of antidepressant exposure was suggested based on the observed suppressive effects on oxidative stress parameters, bactericidal activity, NO production, and NO synthase activity, as well as pro-inflammatory cytokine gene expression, and a significant stimulatory effect on anti-inflammatory interleukin-10 and interferon cytokine gene expression and ATPase activities in macrophages after 6 h-exposure to three individual antidepressants and a combination thereof. Notably, we also found these effects were significantly associated with a corresponding decrease in nuclear factor-κB (NF-κB) activity after antidepressants exposure, and the NF-κB antagonist significantly restrained the effects of antidepressants on gene expression of cytokines, indicating that antidepressants could alter the response of various immune-associated components via the inhibition of NF-κB. Moreover, time-dependent lethal concentrations of three antidepressants on primary macrophages were firstly determined at mg/L levels, and the synergetic effects of antidepressant mixtures were suggested and in particular, for some parameters including total antioxidant capacity and cytokine genes expression, they could be significantly affected by antidepressants exposure at concentrations as low as 10 ng/L, which together thereby revealed the potential risk of antidepressants to aquatic life. - Highlights: • Three different antidepressants all have immunoregulatory

  12. Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host.

    Science.gov (United States)

    Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra

    2012-09-01

    This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.

  13. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice.

    Science.gov (United States)

    Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti

    2016-01-26

    Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.

  14. miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis and mobility in prostate cancer.

    Science.gov (United States)

    Wang, Zhigang; Xu, Lu; Hu, Yinying; Huang, Yanqin; Zhang, Yujuan; Zheng, Xiufen; Wang, Shanshan; Wang, Yifan; Yu, Yanrong; Zhang, Meng; Yuan, Keng; Min, Weiping

    2016-05-09

    Macrophage polarization is a highly plastic physiological process that responds to a variety of environmental factors by changing macrophage phenotype and function. Tumor-associated macrophages (TAMs) are generally recognized as promoting tumor progression. As universal regulators, microRNAs (miRNAs) are functionally involved in numerous critical cellular processes including macrophage polarization. Let-7b, a miRNA, has differential expression patterns in inflamed tissues compared with healthy controls. However, whether and how miRNA let-7b regulates macrophage phenotype and function is unclear. In this report, we find that up-regulation of let-7b is characteristic of prostatic TAMs, and down-regulation of let-7b in TAMs leads to changes in expression profiles of inflammatory cytokines, such as IL-12, IL-23, IL-10 and TNF-α. As a result, TAMs treated with let-7b inhibitors reduce angiogenesis and prostate carcinoma (PCa) cell mobility. Let-7b may play a vital role in regulating macrophage polarization, thus modulating the prognosis of prostate cancer.

  15. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  16. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes.

    Science.gov (United States)

    Tellechea, Mónica; Buxadé, Maria; Tejedor, Sonia; Aramburu, Jose; López-Rodríguez, Cristina

    2018-01-01

    Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Tomatidine Attenuates Airway Hyperresponsiveness and Inflammation by Suppressing Th2 Cytokines in a Mouse Model of Asthma

    Directory of Open Access Journals (Sweden)

    Chieh-Ying Kuo

    2017-01-01

    Full Text Available Tomatidine is isolated from the fruits of tomato plants and found to have anti-inflammatory effects in macrophages. In the present study, we investigated whether tomatidine suppresses airway hyperresponsiveness (AHR and eosinophil infiltration in asthmatic mice. BALB/c mice were sensitized with ovalbumin and treated with tomatidine by intraperitoneal injection. Airway resistance was measured by intubation analysis as an indication of airway responsiveness, and histological studies were performed to evaluate eosinophil infiltration in lung tissue. Tomatidine reduced AHR and decreased eosinophil infiltration in the lungs of asthmatic mice. Tomatidine suppressed Th2 cytokine production in bronchoalveolar lavage fluid. Tomatidine also blocked the expression of inflammatory and Th2 cytokine genes in lung tissue. In vitro, tomatidine inhibited proinflammatory cytokines and CCL11 production in inflammatory BEAS-2B bronchial epithelial cells. These results indicate that tomatidine contributes to the amelioration of AHR and eosinophil infiltration by blocking the inflammatory response and Th2 cell activity in asthmatic mice.

  18. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna Lena Jung

    2016-04-01

    Full Text Available The formation and release of outer membrane vesicles (OMVs is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila, a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host.

  19. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy.

    Science.gov (United States)

    Portillo, Jose-Andres C; Lopez Corcino, Yalitza; Miao, Yanling; Tang, Jie; Sheibani, Nader; Kern, Timothy S; Dubyak, George R; Subauste, Carlos S

    2017-02-01

    Müller cells and macrophages/microglia are likely important for the development of diabetic retinopathy; however, the interplay between these cells in this disease is not well understood. An inflammatory process is linked to the onset of experimental diabetic retinopathy. CD40 deficiency impairs this process and prevents diabetic retinopathy. Using mice with CD40 expression restricted to Müller cells, we identified a mechanism by which Müller cells trigger proinflammatory cytokine expression in myeloid cells. During diabetes, mice with CD40 expressed in Müller cells upregulated retinal tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), intracellular adhesion molecule 1 (ICAM-1), and nitric oxide synthase (NOS2), developed leukostasis and capillary degeneration. However, CD40 did not cause TNF-α or IL-1β secretion in Müller cells. TNF-α was not detected in Müller cells from diabetic mice with CD40 + Müller cells. Rather, TNF-α was upregulated in macrophages/microglia. CD40 ligation in Müller cells triggered phospholipase C-dependent ATP release that caused P2X 7 -dependent production of TNF-α and IL-1β by macrophages. P2X 7 -/- mice and mice treated with a P2X 7 inhibitor were protected from diabetes-induced TNF-α, IL-1β, ICAM-1, and NOS2 upregulation. Our studies indicate that CD40 in Müller cells is sufficient to upregulate retinal inflammatory markers and appears to promote experimental diabetic retinopathy and that Müller cells orchestrate inflammatory responses in myeloid cells through a CD40-ATP-P2X 7 pathway. © 2017 by the American Diabetes Association.

  20. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages

    Directory of Open Access Journals (Sweden)

    Laura McCulloch

    2018-05-01

    Full Text Available Changes to the immune system after stroke are complex and can result in both pro-inflammatory and immunosuppressive consequences. Following ischemic stroke, brain resident microglia are activated and circulating monocytes are recruited to the injury site. In contrast, there is a systemic deactivation of monocytes/macrophages that may contribute to immunosuppression and the high incidence of bacterial infection experienced by stroke patients. The manipulation of macrophage subsets may be a useful therapeutic strategy to reduce infection and improve outcome in patients after stroke. Recent research has enhanced our understanding of the heterogeneity of macrophages even within the same tissue. The spleen is the largest natural reservoir of immune cells, many of which are mobilized to the site of injury after ischemic stroke and is notable for the diversity of its functionally distinct macrophage subpopulations associated with specific micro-anatomical locations. Here, we describe the effects of experimental stroke in mice on these distinct splenic macrophage subpopulations. Red pulp (RP and marginal zone macrophages (MZM specifically showed increases in density and alterations in micro-anatomical location. These changes were not due to increased recruitment from the bone marrow but may be associated with increases in local proliferation. Genes associated with phagocytosis and proteolytic processing were upregulated in the spleen after stroke with increased expression of the lysosome-associated protein lysosomal-associated membrane proteins specifically increased in RP and MZM subsets. In contrast, MHC class II expression was reduced specifically in these populations. Furthermore, genes associated with macrophage ability to communicate with other immune cells, such as co-stimulatory molecules and inflammatory cytokine production, were also downregulated in the spleen after stroke. These findings suggest that selective splenic macrophage functions

  1. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production.

    LENUS (Irish Health Repository)

    Lynch, Lydia

    2012-09-21

    Invariant natural killer T (iNKT) cells are evolutionarily conserved innate T cells that influence inflammatory responses. We have shown that iNKT cells, previously thought to be rare in humans, were highly enriched in human and murine adipose tissue, and that as adipose tissue expanded in obesity, iNKT cells were depleted, correlating with proinflammatory macrophage infiltration. iNKT cell numbers were restored in mice and humans after weight loss. Mice lacking iNKT cells had enhanced weight gain, larger adipocytes, fatty livers, and insulin resistance on a high-fat diet. Adoptive transfer of iNKT cells into obese mice or in vivo activation of iNKT cells via their lipid ligand, alpha-galactocylceramide, decreased body fat, triglyceride levels, leptin, and fatty liver and improved insulin sensitivity through anti-inflammatory cytokine production by adipose-derived iNKT cells. This finding highlights the potential of iNKT cell-targeted therapies, previously proven to be safe in humans, in the management of obesity and its consequences.

  2. Nitric oxide production from macrophages is regulated by arachidonic acid metabolites.

    Science.gov (United States)

    Imai, Y; Kolb, H; Burkart, V

    1993-11-30

    In activated macrophages the inducible form of the enzyme nitric oxide (NO) synthase generates high amounts of the toxic mediator NO. After 20 h of treatment with LPS rat peritoneal macrophages release 12-16 nmol NO2-/10(5) cells which is detectable in the culture supernatant by the Griess reaction as a measure of NO formation. The addition of aminoguanidine (1 mM), a preferential inhibitor of the inducible NO-synthase, completely abolished NO2-accumulation. Incubation with indomethacin or acetyl-salicylic acid, preferential inhibitors of the cyclooxygenase pathway of the arachidonic acid metabolism, did not influence NO2- levels. Nordihydro-guaiaretic acid (50 microM), a preferential inhibitor of the lipoxygenase pathway, caused strong reduction of NO2- accumulation to 1.9 +/- 0.3 nmol/200 microliter. Simultaneous inhibition of cyclo- and lipoxygenase by BW755c resulted in an intermediate effect (7.3 +/- 1.1 nmol/200 microliter NO2-). These results show that the induction of NO production in activated macrophages is regulated by products of the lipoxygenase-pathway of the arachidonic acid metabolism.

  3. Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection.

    Science.gov (United States)

    Nandi, Ajeya; Bishayi, Biswadev

    2016-02-01

    C-C chemokine receptor-2 (CCR-2) is a cognate receptor for monocyte chemotactic protein-1 (MCP-1), and recent studies revealed that MCP-1-CCR-2 signaling is involved in several inflammatory diseases characterized by macrophage infiltration. Currently, there is no study on the involvement of CCR-2 in the killing of S. aureus by macrophages of Swiss albino mice, and its substantial role in host defense against S. aureus infection in murine macrophages is still unclear. Therefore, the present study was aimed to investigate the functional and interactive role of CCR-2 and MCP-1 in regulating peritoneal macrophage responses with respect to acute S. aureus infection. We found that phagocytosis of S. aureus can serve as an important stimulus for MCP-1 production by peritoneal macrophages, which is dependent directly or indirectly on cytokines, reactive oxygen species and nitric oxide. Neutralization of CCR-2 in macrophages leads to increased production of IL-10 and decreased production of IFN-γ and IL-6. In CCR-2 blocked macrophages, pretreatment with specific blocker of NF-κB or p38-MAPK causes elevation in MCP-1 level and subsequent downregulation of CCR-2 itself. We speculate that CCR-2 is involved in S. aureus-induced MCP-1 production via NF-κB or p38-MAPK signaling. We also hypothesized that unnaturally high level of MCP-1 that build up upon CCR-2 neutralization might allow promiscuous binding to one or more other chemokine receptors, a situation that would not occur in CCR-2 non-neutralized condition. This may be the plausible explanation for such observed Th-2 response in CCR-2 blocked macrophages infected with S. aureus in the present study.

  4. Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus

    Directory of Open Access Journals (Sweden)

    Brake Danett K

    2012-02-01

    Full Text Available Abstract Background Alternative strategies are required to control the southern cattle tick, Rhipicephalus microplus, due to evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically important diseases of cattle such as bovine babesiosis and anaplasmosis. An understanding of the biological intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE obtained from 2-3 day fed, pathogen-free adult R. microplus. Methods Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 μg/mL of SGE followed by 1, 6, 24 hr of 1 μg/mL of lipopolysaccharide (LPS. Real-time PCR and cytokine ELISA were used to measure changes in co-stimulatory molecule expression and cytokine response. Results Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to R. microplus SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages when treated with 1 μg/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of TNFα, IFNγ and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression. Conclusions Molecules from the salivary glands of adult R. microplus showed bimodal concentration-, and time-dependent effects on

  5. Critical Role of Airway Macrophages in Modulating Disease Severity during Influenza Virus Infection of Mice ▿

    Science.gov (United States)

    Tate, Michelle D.; Pickett, Danielle L.; van Rooijen, Nico; Brooks, Andrew G.; Reading, Patrick C.

    2010-01-01

    Airway macrophages provide a first line of host defense against a range of airborne pathogens, including influenza virus. In this study, we show that influenza viruses differ markedly in their abilities to infect murine macrophages in vitro and that infection of macrophages is nonproductive and no infectious virus is released. Virus strain BJx109 (H3N2) infected macrophages with high efficiency and was associated with mild disease following intranasal infection of mice. In contrast, virus strain PR8 (H1N1) was poor in its ability to infect macrophages and highly virulent for mice. Depletion of airway macrophages by clodronate-loaded liposomes led to the development of severe viral pneumonia in BJx109-infected mice but did not modulate disease severity in PR8-infected mice. The severe disease observed in macrophage-depleted mice infected with BJx109 was associated with exacerbated virus replication in the airways, leading to severe airway inflammation, pulmonary edema, and vascular leakage, indicative of lung injury. Thymic atrophy, lymphopenia, and dysregulated cytokine and chemokine production were additional systemic manifestations associated with severe disease. Thus, airway macrophages play a critical role in limiting lung injury and associated disease caused by BJx109. Furthermore, the inability of PR8 to infect airway macrophages may be a critical factor contributing to its virulence for mice. PMID:20504924

  6. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    International Nuclear Information System (INIS)

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-01-01

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE –/– ) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE –/– mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE –/– mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis

  7. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hiroyuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Takeya, Motohiro [Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan)

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  8. Lactoferrin Efficiently Counteracts the Inflammation-Induced Changes of the Iron Homeostasis System in Macrophages.

    Science.gov (United States)

    Cutone, Antimo; Rosa, Luigi; Lepanto, Maria Stefania; Scotti, Mellani Jinnett; Berlutti, Francesca; Bonaccorsi di Patti, Maria Carmela; Musci, Giovanni; Valenti, Piera

    2017-01-01

    Human lactoferrin (hLf), an 80-kDa multifunctional iron-binding cationic glycoprotein, is constitutively secreted by exocrine glands and by neutrophils during inflammation. hLf is recognized as a key element in the host immune defense system. The in vitro and in vivo experiments are carried out with bovine Lf (bLf), which shares high sequence homology and identical functions with hLf, including anti-inflammatory activity. Here, in "pure" M1 human macrophages, obtained by stimulation with a mixture of 10 pg/ml LPS and 20 ng/ml IFN-γ, as well as in a more heterogeneous macrophage population, challenged with high-dose of LPS (1 µg/ml), the effect of bLf on the expression of the main proteins involved in iron and inflammatory homeostasis, namely ferroportin (Fpn), membrane-bound ceruloplasmin (Cp), cytosolic ferritin (Ftn), transferrin receptor 1, and cytokines has been investigated. The increase of IL-6 and IL-1β cytokines, following the inflammatory treatments, is associated with both upregulation of cytosolic Ftn and downregulation of Fpn, membrane-bound Cp, and transferrin receptor 1. All these changes take part into intracellular iron overload, a very unsafe condition leading in vivo to higher host susceptibility to infections as well as iron deficiency in the blood and anemia of inflammation. It is, therefore, of utmost importance to counteract the persistence of the inflammatory status to rebalance iron levels between tissues/secretions and blood. Moreover, levels of the antiinflammatory cytokine IL-10 were increased in cells treated with high doses of LPS. Conversely, IL-10 decreased when the LPS/IFN-γ mix was used, suggesting that only the inflammation triggered by LPS high doses can switch on an anti-inflammatory response in our macrophagic model. Here, we demonstrate that bLf, when included in the culture medium, significantly reduced IL-6 and IL-1β production and efficiently prevented the changes of Fpn, membrane-bound Cp, cytosolic Ftn, and

  9. Lactoferrin Efficiently Counteracts the Inflammation-Induced Changes of the Iron Homeostasis System in Macrophages

    Directory of Open Access Journals (Sweden)

    Antimo Cutone

    2017-06-01

    Full Text Available Human lactoferrin (hLf, an 80-kDa multifunctional iron-binding cationic glycoprotein, is constitutively secreted by exocrine glands and by neutrophils during inflammation. hLf is recognized as a key element in the host immune defense system. The in vitro and in vivo experiments are carried out with bovine Lf (bLf, which shares high sequence homology and identical functions with hLf, including anti-inflammatory activity. Here, in “pure” M1 human macrophages, obtained by stimulation with a mixture of 10 pg/ml LPS and 20 ng/ml IFN-γ, as well as in a more heterogeneous macrophage population, challenged with high-dose of LPS (1 µg/ml, the effect of bLf on the expression of the main proteins involved in iron and inflammatory homeostasis, namely ferroportin (Fpn, membrane-bound ceruloplasmin (Cp, cytosolic ferritin (Ftn, transferrin receptor 1, and cytokines has been investigated. The increase of IL-6 and IL-1β cytokines, following the inflammatory treatments, is associated with both upregulation of cytosolic Ftn and downregulation of Fpn, membrane-bound Cp, and transferrin receptor 1. All these changes take part into intracellular iron overload, a very unsafe condition leading in vivo to higher host susceptibility to infections as well as iron deficiency in the blood and anemia of inflammation. It is, therefore, of utmost importance to counteract the persistence of the inflammatory status to rebalance iron levels between tissues/secretions and blood. Moreover, levels of the antiinflammatory cytokine IL-10 were increased in cells treated with high doses of LPS. Conversely, IL-10 decreased when the LPS/IFN-γ mix was used, suggesting that only the inflammation triggered by LPS high doses can switch on an anti-inflammatory response in our macrophagic model. Here, we demonstrate that bLf, when included in the culture medium, significantly reduced IL-6 and IL-1β production and efficiently prevented the changes of Fpn, membrane-bound Cp

  10. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    Science.gov (United States)

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  11. Serrulatane Diterpenoid from Eremophila neglecta Exhibits Bacterial Biofilm Dispersion and Inhibits Release of Pro-inflammatory Cytokines from Activated Macrophages.

    Science.gov (United States)

    Mon, Htwe H; Christo, Susan N; Ndi, Chi P; Jasieniak, Marek; Rickard, Heather; Hayball, John D; Griesser, Hans J; Semple, Susan J

    2015-12-24

    The purpose of this study was to assess the biofilm-removing efficacy and inflammatory activity of a serrulatane diterpenoid, 8-hydroxyserrulat-14-en-19-oic acid (1), isolated from the Australian medicinal plant Eremophila neglecta. Biofilm breakup activity of compound 1 on established Staphylococcus epidermidis and Staphylococcus aureus biofilms was compared to the antiseptic chlorhexidine and antibiotic levofloxacin. In a time-course study, 1 was deposited onto polypropylene mesh to mimic a wound dressing and tested for biofilm removal. The ex-vivo cytotoxicity and effect on lipopolysaccharide-induced pro-inflammatory cytokine release were studied in mouse primary bone-marrow-derived macrophage (BMDM) cells. Compound 1 was effective in dispersing 12 h pre-established biofilms with a 7 log10 reduction of viable bacterial cell counts, but was less active against 24 h biofilms (approximately 2 log10 reduction). Compound-loaded mesh showed dosage-dependent biofilm-removing capability. In addition, compound 1 displayed a significant inhibitory effect on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) secretion from BMDM cells, but interleukin-1 beta (IL-1β) secretion was not significant. The compound was not cytotoxic to BMDM cells at concentrations effective in removing biofilm and lowering cytokine release. These findings highlight the potential of this serrulatane diterpenoid to be further developed for applications in wound management.

  12. Interferon γ-Induced Nuclear Interleukin-33 Potentiates the Release of Esophageal Epithelial Derived Cytokines.

    Directory of Open Access Journals (Sweden)

    Jing Shan

    Full Text Available Esophageal epithelial cells are an initiating cell type in esophageal inflammation, playing an essential role in the pathogenesis of gastroesophageal reflux disease (GERD. A new tissue-derived cytokine, interleukin-33 (IL-33, has been shown to be upregulated in esophageal epithelial cell nuclei in GERD, taking part in mucosal inflammation. Here, inflammatory cytokines secreted by esophageal epithelial cells, and their regulation by IL-33, were investigated.In an in vitro stratified squamous epithelial model, IL-33 expression was examined using quantitative RT-PCR, western blot, ELISA, and immunofluorescence. Epithelial cell secreted inflammatory cytokines were examined using multiplex flow immunoassay. IL-33 was knocked down with small interfering RNA (siRNA in normal human esophageal epithelial cells (HEECs. Pharmacological inhibitors and signal transducers and activators of transcription 1 (STAT1 siRNA were used to explore the signaling pathways.Interferon (IFNγ treatment upregulated nuclear IL-33 in HEECs. Furthermore, HEECs can produce various inflammatory cytokines, such as IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, regulated on activation normal T-cell expressed and presumably secreted (RANTES, and granulocyte-macrophage colony-stimulating factor (GM-CSF in response to IFNγ. Nuclear, but not exogenous IL-33, amplified IFN induction of these cytokines. P38 mitogen-activated protein kinase (MAPK and janus protein tyrosine kinases (JAK/STAT1 were the common signaling pathways of IFNγ-mediated induction of IL-33 and other cytokines.Esophageal epithelial cells can actively participate in GERD pathogenesis through the production of various cytokines, and epithelial-derived IL-33 might play a central role in the production of these cytokines.

  13. Effects of CD14 macrophages and proinflammatory cytokines on chondrogenesis in osteoarthritic synovium-derived stem cells.

    Science.gov (United States)

    Han, Sun Ae; Lee, Sahnghoon; Seong, Sang Cheol; Lee, Myung Chul

    2014-10-01

    We investigated the effects of CD14 macrophages and proinflammatory cytokines on chondrogenic differentiation of osteoarthritic synovium-derived stem cells (SDSCs). Osteoarthritic synovial fluid was analyzed for interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Levels of stem cell surface markers in osteoarthritic SDSCs were evaluated using flow cytometry. CD14-negative cells were obtained using magnetically activated cell sorting. We compared chondrogenic potentials between whole cells and CD14-negative cells in CD14(low) cells and CD14(high) cells, respectively. To assess whether nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ) modulate IL-1β-induced alterations in chondrogenic potential, we performed small interfering RNA transfection. We observed a significant correlation between the CD14 ratio in osteoarthritic SDSCs and IL-1β and TNF-α in osteoarthritic synovial fluid. Phenotypic characterization of whole cells and CD14-negative cells showed no significant differences in levels of stem cell markers. mRNA expression of type II collagen was higher in CD14-negative cell pellets than in whole cell pellets. Immunohistochemical staining indicated higher levels of type II collagen in the CD14-negative cell pellets of CD14(high) cells than in whole cell pellets of CD14(high) cells. As expected, IL-1β and TNF-α significantly inhibited the expression of chondrogenic-related genes in SDSCs, an effect which was antagonized by knockdown of NF-κB and C/EBPβ. Our results suggest that depletion of CD14(+) synovial macrophages leads to improved chondrogenic potential in CD14(high) cell populations in osteoarthritic SDSCs, and that NF-κB (RelA) and C/EBPβ are critical factors mediating IL-1β-induced suppression of the chondrogenic potential of human SDSCs.

  14. Macrophage-mediated gliadin degradation and concomitant IL-27 production drive IL-10- and IFN-γ-secreting Tr1-like-cell differentiation in a murine model for gluten tolerance.

    Science.gov (United States)

    van Leeuwen, M A; Costes, L M M; van Berkel, L A; Simons-Oosterhuis, Y; du Pré, M F; Kozijn, A E; Raatgeep, H C; Lindenbergh-Kortleve, D J; van Rooijen, N; Koning, F; Samsom, J N

    2017-05-01

    Celiac disease is caused by inflammatory T-cell responses against the insoluble dietary protein gliadin. We have shown that, in humanized mice, oral tolerance to deamidated chymotrypsin-digested gliadin (CT-TG2-gliadin) is driven by tolerogenic interferon (IFN)-γ- and interleukin (IL)-10-secreting type 1 regulatory T-like cells (Tr1-like cells) generated in the spleen but not in the mesenteric lymph nodes. We aimed to uncover the mechanisms underlying gliadin-specific Tr1-like-cell differentiation and hypothesized that proteolytic gliadin degradation by splenic macrophages is a decisive step in this process. In vivo depletion of macrophages caused reduced differentiation of splenic IFN-γ- and IL-10-producing Tr1-like cells after CT-TG2-gliadin but not gliadin peptide feed. Splenic macrophages, rather than dendritic cells, constitutively expressed increased mRNA levels of the endopeptidase Cathepsin D; macrophage depletion significantly reduced splenic Cathepsin D expression in vivo and Cathepsin D efficiently degraded recombinant γ-gliadin in vitro. In response to CT-TG2-gliadin uptake, macrophages enhanced the expression of Il27p28, a cytokine that favored differentiation of gliadin-specific Tr1-like cells in vitro, and was previously reported to increase Cathepsin D activity. Conversely, IL-27 neutralization in vivo inhibited splenic IFN-γ- and IL-10-secreting Tr1-like-cell differentiation after CT-TG2-gliadin feed. Our data infer that endopeptidase mediated gliadin degradation by macrophages and concomitant IL-27 production drive differentiation of splenic gliadin-specific Tr1-like cells.

  15. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    Science.gov (United States)

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  16. Oxidative stress and sodium methyldithiocarbamate-induced modulation of the macrophage response to lipopolysaccharide in vivo.

    Science.gov (United States)

    Pruett, Stephen B; Cheng, Bing; Fan, Ruping; Tan, Wei; Sebastian, Thomas

    2009-06-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the United States, and hundreds of thousands of persons are exposed to this compound or its major breakdown product, methylisothiocyanate, at levels greater than recommended by the Environmental Protection Agency. A previous study suggests three mechanisms of action involved to some degree in the inhibition of inflammation and decreased resistance to infection caused by exposure of mice to the compound. One of these mechanisms is oxidative stress. The purpose of the present study was to confirm that this mechanism is involved in the effects of SMD on cytokine production by peritoneal macrophages and to further characterize its role in altered cytokine production. Results indicated that SMD significantly decreased the intracellular concentration of reduced glutathione (GSH), suggesting oxidative stress. This was further indicated by the upregulation of genes involved in the "response to oxidative stress" as determined by microarray analysis. These effects were associated with the inhibition of lipopolysaccharide (LPS)-induced production of several proinflammatory cytokines. Experimental depletion of GSH with buthionine sulfoximine (BSO) partially prevented the decrease in LPS-induced interleukin (IL)-6 production caused by SMD and completely prevented the decrease in IL-12. In contrast, BSO plus SMD substantially enhanced the production of IL-10. These results along with results from a previous study are consistent with the hypothesis that SMD causes oxidative stress, which contributes to modulation of cytokine production. However, oxidative stress alone cannot explain the increased IL-10 production caused by SMD.

  17. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    Directory of Open Access Journals (Sweden)

    Karl J Staples

    Full Text Available Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  18. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Hussein, Mohamed Hamed; Kato, Shin; Suzuki, Satoshi; Ito, Tetsuya; Togari, Hajime; Asai, Kiyofumi

    2009-01-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  19. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis.

    NARCIS (Netherlands)

    Gerards, A.H.; Lathouder, de S; Groot, E.R.; Dijkmans, B.A.C.; Aarden, L.A.

    2003-01-01

    OBJECTIVES: To analyse whether the beneficial effects of methotrexate in rheumatoid arthritis (RA) could be due to inhibition of inflammatory cytokine production. METHODS: Cytokine production was studied using whole blood (WB) and mononuclear cells (MNC) of healthy volunteers and RA patients.

  20. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis

    NARCIS (Netherlands)

    Gerards, A. H.; de Lathouder, S.; de Groot, E. R.; Dijkmans, B. A. C.; Aarden, L. A.

    2003-01-01

    Objectives. To analyse whether the beneficial effects of methotrexate in rheumatoid arthritis (RA) could be due to inhibition of inflammatory cytokine production. Methods. Cytokine production was studied using whole blood (WB) and mononuclear cells (MNC) of healthy volunteers and RA patients.

  1. Metoprolol Reduces Proinflammatory Cytokines and Atherosclerosis in ApoE−/− Mice

    Directory of Open Access Journals (Sweden)

    Marcus A. Ulleryd

    2014-01-01

    Full Text Available A few studies in animals and humans suggest that metoprolol (β1-selective adrenoceptor antagonist may have a direct antiatherosclerotic effect. However, the mechanism behind this protective effect has not been established. The aim of the present study was to evaluate the effect of metoprolol on development of atherosclerosis in ApoE−/− mice and investigate its effect on the release of proinflammatory cytokines. Male ApoE−/− mice were treated with metoprolol (2.5 mg/kg/h or saline for 11 weeks via osmotic minipumps. Atherosclerosis was assessed in thoracic aorta and aortic root. Total cholesterol levels and Th1/Th2 cytokines were analyzed in serum and macrophage content in lesions by immunohistochemistry. Metoprolol significantly reduced atherosclerotic plaque area in thoracic aorta (P<0.05 versus Control. Further, metoprolol reduced serum TNFα and the chemokine CXCL1 (P<0.01 versus Control for both as well as decreasing the macrophage content in the plaques (P<0.01 versus Control. Total cholesterol levels were not affected. In this study we found that a moderate dose of metoprolol significantly reduced atherosclerotic plaque area in thoracic aorta of ApoE−/− mice. Metoprolol also decreased serum levels of proinflammatory cytokines TNFα and CXCL1 and macrophage content in the plaques, showing that metoprolol has an anti-inflammatory effect.

  2. Oxidative burst and nitric oxide responses in carp macrophages induced by zymosan, MacroGard® and selective dectin-1 agonists suggest recognition by multiple pattern recognition receptors

    DEFF Research Database (Denmark)

    Pietretti, D.; Jiménez, Natalia Ivonne Vera; Hoole, D.

    2013-01-01

    phosphatase (SEAP) reporter gene. In addition, dectin-1-specific ligands in mammals i.e. zymosan treated to deplete the TLR-stimulating properties and curdlan, were monitored for their effects on carp macrophages by measuring reactive oxygen and nitrogen radicals production, as well as cytokine gene...

  3. INDUCTION OF CYTOKINE PRODUCTION IN CHEETAH (ACINONYX JUBATUS) PERIPHERAL BLOOD MONONUCLEAR CELLS AND VALIDATION OF FELINE-SPECIFIC CYTOKINE ASSAYS FOR ANALYSIS OF CHEETAH SERUM.

    Science.gov (United States)

    Franklin, Ashley D; Crosier, Adrienne E; Vansandt, Lindsey M; Mattson, Elliot; Xiao, Zhengguo

    2015-06-01

    Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of cheetahs (Acinonyx jubatus ; n=3) and stimulated with lipopolysaccharides (LPS) to induce the production of proinflammatory cytokines TNF-α, IL-1β, and IL-6 for establishment of cross-reactivity between these cheetah cytokines and feline-specific cytokine antibodies provided in commercially available Feline DuoSet® ELISA kits (R&D Systems, Inc., Minneapolis, Minnesota 55413, USA). This study found that feline-specific cytokine antibodies bind specifically to cheetah proinflammatory cytokines TNF-α, IL-1β, and IL-6 from cell culture supernatants. The assays also revealed that cheetah PBMCs produce a measurable, cell concentration-dependent increase in proinflammatory cytokine production after LPS stimulation. To enable the use of these kits, which are designed for cell culture supernatants for analyzing cytokine concentrations in cheetah serum, percent recovery and parallelism of feline cytokine standards in cheetah serum were also evaluated. Cytokine concentrations in cheetah serum were approximated based on the use of domestic cat standards in the absence of cheetah standard material. In all cases (for cytokines TNF-α, IL-1β, and IL-6), percent recovery increased as the serum sample dilution increased, though percent recovery varied between cytokines at a given dilution factor. A 1:2 dilution of serum resulted in approximately 45, 82, and 7% recovery of TNF-α, IL-1β, and IL-6 standards, respectively. Adequate parallelism was observed across a large range of cytokine concentrations for TNF-α and IL-1β; however, a significant departure from parallelism was observed between the IL-6 standard and the serum samples (P=0.004). Therefore, based on our results, the Feline DuoSet ELISA (R&D Systems, Inc.) kits are valid assays for the measurement of TNF-α and IL-1β in cheetah serum but should not be used for accurate measurement of IL-6.

  4. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  6. Inhibition by AA861 of prostaglandin E2 production by activated peritoneal macrophages of rat

    Energy Technology Data Exchange (ETDEWEB)

    Ohuchi, K; Watanabe, M; Taniguchi, J; Tsurufuji, S; Levine, L

    1983-10-01

    Prostaglandin E2 production by rat peritoneal activated macrophages was inhibited by AA861 which had been reported as a selective inhibitor of 5-lipoxygenase from guinea pig peritoneal leukocytes. At a dose of 3.06 microM, prostaglandin E2 production was decreased to 27% of control. No inhibition of the release of (3H)arachidonic acid from the prelabeled macrophages was observed at the dose.

  7. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice

    Directory of Open Access Journals (Sweden)

    Jongkil Kim

    2016-01-01

    Full Text Available Adipose tissue macrophage (ATM-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1, which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.

  8. Piliation of Lactobacillus rhamnosus GG Promotes Adhesion, Phagocytosis, and Cytokine Modulation in Macrophages

    Science.gov (United States)

    Vargas García, Cynthia E.; Petrova, Mariya; Claes, Ingmar J. J.; De Boeck, Ilke; Verhoeven, Tine L. A.; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M.; Vanderleyden, Jos

    2015-01-01

    Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili. PMID:25576613

  9. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Edwards, I.J.; Wagner, W.D.; Owens, R.T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion

  10. Macrophage migration inhibitory factor is elevated in obese adolescents

    NARCIS (Netherlands)

    Kamchybekov, Uran; Figulla, Hans R.; Gerdes, Norbert; Jung, Christian

    2012-01-01

    Objectives: The prevalence of obesity in childhood and adolescence is continuing rising. Macrophage migration inhibitory factor (MIF) participates in inflammatory and immune responses as a pro-inflammatory cytokine. The present study aimed to investigate MIF in overweight adolescents. Methods:

  11. Regulation of human cytokines by Cordyceps militaris

    Directory of Open Access Journals (Sweden)

    Yong Sun

    2014-12-01

    Full Text Available Cordyceps (Cordyceps militaris exhibits many biological activities including antioxidant, inhibition of inflammation, cancer prevention, hypoglycemic, and antiaging properties, etc. However, a majority of studies involving C. militaris have focused only on in vitro and animal models, and there is a lack of direct translation and application of study results to clinical practice (e.g., health benefits. In this study, we investigated the regulatory effects of C. militaris micron powder (3 doses on the human immune system. The study results showed that administration of C. militaris at various dosages reduced the activity of cytokines such as eotaxin, fibroblast growth factor-2, GRO, and monocyte chemoattractant protein-1. In addition, there was a significant decrease in the activity of various cytokines, including GRO, sCD40L, and tumor necrosis factor-α, and a significant downregulation of interleukin-12(p70, interferon-γ inducible protein 10, and macrophage inflammatory protein-1β activities, indicating that C. militaris at all three dosages downregulated the activity of cytokines, especially inflammatory cytokines and chemokines. Different dosages of C. militaris produced different changes in cytokines.

  12. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  13. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  14. VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Torsten A Krause

    Full Text Available Age-related macular degeneration (AMD is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF. Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source

  15. Glucose transporter expression differs between bovine monocyte and macrophage subsets and is influenced by milk production.

    Science.gov (United States)

    Eger, M; Hussen, J; Koy, M; Dänicke, S; Schuberth, H-J; Breves, G

    2016-03-01

    The peripartal period of dairy cows is characterized by negative energy balance and higher incidences of infectious diseases such as mastitis or metritis. With the onset of lactation, milk production is prioritized and large amounts of glucose are transported into the mammary gland. Decreased overall energy availability might impair the function of monocytes acting as key innate immune cells, which give rise to macrophages and dendritic cells and link innate and adaptive immunity. Information on glucose requirements of bovine immune cells is rare. Therefore, this study aims to evaluate glucose transporter expression of the 3 bovine monocyte subsets (classical, intermediate, and nonclassical monocytes) and monocyte-derived macrophages and to identify influences of the peripartal period. Blood samples were either collected from nonpregnant healthy cows or from 16 peripartal German Holstein cows at d -14, +7, and +21 relative to parturition. Quantitative real-time PCR was applied to determine mRNA expression of glucose transporters (GLUT) 1, GLUT3, and GLUT4 in monocyte subsets and monocyte-derived macrophages. The low GLUT1 and GLUT3 expression in nonclassical monocytes was unaltered during differentiation into macrophages, whereas in classical and intermediate monocytes GLUT expression was downregulated. Alternatively activated M2 macrophages consumed more glucose compared with classically activated M1 macrophages. The GLUT4 mRNA was only detectable in unstimulated macrophages. Neither monocytes nor macrophages were insulin responsive. In the peripartum period, monocyte GLUT1 and GLUT3 expression and the GLUT3/GLUT1 ratio were negatively correlated with lactose production. The high-affinity GLUT3 transporter appears to be the predominant glucose transporter on bovine monocytes and macrophages, especially in the peripartal period when blood glucose levels decline. Glucose transporter expression in monocytes is downregulated as a function of lactose production, which

  16. Differential effects of Radix Paeoniae Rubra (Chishao on cytokine and chemokine expression inducible by mycobacteria

    Directory of Open Access Journals (Sweden)

    Li James

    2011-03-01

    Full Text Available Abstract Background Upon initial infection with mycobacteria, macrophages secrete multiple cytokines and chemokines, including interleukin-6 (IL-6, IL-8 and tumor necrosis factor-α (TNF-α, to mediate host immune responses against the pathogen. Mycobacteria also induce the production of IL-10 via PKR activation in primary human monocytes and macrophages. As an anti-inflammatory cytokine, over-expression of IL-10 may contribute to mycobacterial evasion of the host immunity. Radix Paeoniae Rubra (RPR, Chishao, a Chinese medicinal herb with potentials of anti-inflammatory, hepatoprotective and neuroprotective effects, is used to treat tuberculosis. This study investigates the immunoregulatory effects of RPR on primary human blood macrophages (PBMac during mycobacterial infection. Methods The interaction of Bacillus Calmette-Guerin (BCG with PBMac was used as an experimental model. A series of procedures involving solvent extraction and fractionation were used to isolate bioactive constituents in RPR. RPR-EA-S1, a fraction with potent immunoregulatory effects was obtained with a bioactivity guided fractionation scheme. PBMac were treated with crude RPR extracts or RPR-EA-S1 before BCG stimulation. The expression levels of IL-6, IL-8, IL-10 and TNF-α were measured by qPCR and ELISA. Western blotting was used to determine the effects of RPR-EA-S1 on signaling kinases and transcriptional factors in the BCG-activated PBMac. Results In BCG-stimulated macrophages, crude RPR extracts and fraction RPR-EA-S1 specifically inhibited IL-10 production while enhanced IL-8 expression at both mRNA and protein levels without affecting the expressions of IL-6 and TNF-α. Inhibition of BCG-induced IL-10 expression by RPR-EA-S1 occurred in a dose- and time-dependent manner. RPR-EA-S1 did not affect the phosphorylation of cellular protein kinases including MAPK, Akt and GSK3β. Instead, it suppressed the degradation of IκBα in the cytoplasm and inhibited the

  17. Species differences in the effect of pregnancy on lymphocyte cytokine production between human and rat

    NARCIS (Netherlands)

    Faas, Marijke M.; Bouman, Annechien; Veenstra van Nieuwenhoven, Angelique L.; van der Schaaf, Gerda; Moes, Henk; Heineman, Maas Jan; de Vos, Paul

    2005-01-01

    In the present study, we evaluated whether lymphocyte cytokine production during human and rat pregnancy shifts toward T helper cell type 2 (Th2) cytokine production. Therefore, blood samples were taken during the follicular and luteal phase and during pregnancy in rats and humans. Whole blood was

  18. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.

    Science.gov (United States)

    Huang, Rong-Shuang; Zhou, Jiao-Jiao; Feng, Yu-Ying; Shi, Min; Guo, Fan; Gou, Shen-Ju; Salerno, Stephen; Ma, Liang; Fu, Ping

    2017-09-20

    Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.

  19. Effects of everolimus on macrophage-derived foam cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Steven, E-mail: steven.hsu@av.abbott.com [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Kolodgie, Frank; Virmani, Renu [CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878 (United States); Feder, Debra [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States)

    2014-07-15

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10{sup -5}–10{sup -11} M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA{sup PLUS} assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10{sup -5} M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10{sup -5} M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10{sup -5} M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein

  20. Effects of everolimus on macrophage-derived foam cell behavior

    International Nuclear Information System (INIS)

    Hsu, Steven; Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander; Kolodgie, Frank; Virmani, Renu; Feder, Debra

    2014-01-01

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10 -5 –10 -11 M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA PLUS assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10 -5 M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10 -5 M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10 -5 M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein expression was significantly decreased

  1. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Woan Sean Tan

    2015-01-01

    Full Text Available Aim of Study. Moringa oleifera Lam. (M. oleifera possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS- induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Nitric oxide (NO production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2, interleukin- (IL- 6, IL-1β, tumor necrosis factor-alpha (TNF-α, nuclear factor-kappa B (NF-κB, inducible NO synthase (iNOS, and cyclooxygenase-2 (COX-2. However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB in a concentration dependent manner (100 μg/mL and 200 μg/mL. Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator’s production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

  2. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway

    Science.gov (United States)

    Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida

    2015-01-01

    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway. PMID:26609199

  3. STIMULATION OF OXIDANT PRODUCTION IN ALVEOLAR MACROPHAGES BY POLLUTANT AND LATEX PARTICLES

    Science.gov (United States)

    Air pollutant dusts as well as chemically defined particles were examined for their activating effect on oxidant production (O2- and H2O2) in guinea pig alveolar macrophages (AM). Oxidant production was measured as chemiluminescence of albumin-bound luminol. All particles examine...

  4. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages.

    Science.gov (United States)

    Yu, Xueyang; Buttgereit, Anne; Lelios, Iva; Utz, Sebastian G; Cansever, Dilay; Becher, Burkhard; Greter, Melanie

    2017-11-21

    Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages.

    Directory of Open Access Journals (Sweden)

    Min Mao

    Full Text Available The present study is to investigate whether inflammatory cytokines inhibit ABCA1/ABCG1-mediated cholesterol efflux by regulating miR-33a-5P in THP-1 macrophages. We used interleukin-6 and tumor necrosis factor-alpha in the presence or absence of native low density lipoprotein (LDL to stimulate THP-1 macrophages. THP-1 macrophages were infected by either control lentivirus vectors or lentivirus encoding miR-33a-5P or antisense miR-33a-5P. The effects of inflammatory cytokines, miR-33a-5P and antisense miR-33a-5P on intracellular lipids accumulation and intracellular cholesterol contents were assessed by oil red O staining and quantitative intracellular cholesterol assay. ApoA-I-mediated cholesterol efflux was examined using the fluorescent sterol (BODIPY-cholesterol. The gene and protein expressions of the molecules involved in cholesterol trafficking were examined using quantitative real-time polymerase chain reaction and Western blotting. Inflammatory cytokines or miR-33a-5P increased intracellular lipid accumulation and decreased apoA-I-mediated cholesterol efflux via decreasing the expression of ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. However, antisense miR-33a-5P reversed the effects of inflammatory cytokines on intracellular lipid accumulation, cholesterol efflux, and the expression of miR-33a-5P, ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. This study indicated that inflammatory cytokines inhibited ABCA1/ABCG1-mediated cholesterol efflux by up-regulating miR-33a-5P in THP-1 macrophages.

  6. Influence of metals on cytokines production in connection with successful implantation therapy in dentistry.

    Science.gov (United States)

    Podzimek, Stepan; Tomka, Milan; Nemeth, Tibor; Himmlova, Lucie; Matucha, Petr; Prochazkova, Jarmila

    2010-01-01

    In most of patients in need of implantation treatment in the oral cavity, implants heal well, nevertheless, there are some individuals, in whom titanium implants fail for reasons, which remain unclear. The aim of our study was to determine if there is a difference between metal influenced IL-1β, IL-4, IL-6, TNF-α and IFN-γ cytokines production in patients with successfully healed implants compared to those, whose implant therapy was unsuccessful. The two study groups included 12 patients with failed dental titanium implants and 9 patients with successfully healed implants. In the subjects, cytokine production was established after lymphocyte cultivation with mercury, nickel and titanium antigens. IL-1β levels were significantly increased in all patients after stimulation with titanium and in patients with accepted implants compared to patients with failed implants after the stimulation with mercury and titanium. Titanium caused significantly increased IL-6 production in all patients. TNF-α and IFN-γ levels were also significantly increased after the stimulation with titanium. Significantly increased TNF-α levels were found in patients with accepted implants as compared to patients with failed implants. Increased production of IL-1β a IL-6 cytokines in reaction to titanium and increased production of TNF-α and IFN-γ cytokines in reaction to mercury, which is very often present in the form of amalgam in the oral cavity of persons in need of implant therapy, can play an important role in immune reactions during implant healing process. In patients with failed titanium implants, decreased production of these cytokines may participate in implant failure.

  7. Production of fibrogenic cytokines by interleukin-2-treated peripheral blood leukocytes

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Silber, I E

    1993-01-01

    OBJECTIVE: To assess the production of fibrogenic cytokines by interleukin-2 (IL-2)-stimulated peripheral blood leukocytes and to examine their ability to stimulate the production of connective tissue. METHODS: Culture medium from human peripheral blood leukocytes incubated with or without IL-2 w...

  8. Tie2 signaling cooperates with TNF to promote the pro-inflammatory activation of human macrophages independently of macrophage functional phenotype.

    Science.gov (United States)

    García, Samuel; Krausz, Sarah; Ambarus, Carmen A; Fernández, Beatriz Malvar; Hartkamp, Linda M; van Es, Inge E; Hamann, Jörg; Baeten, Dominique L; Tak, Paul P; Reedquist, Kris A

    2014-01-01

    Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 -differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 -differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.

  9. Development of chronic colitis is dependent on the cytokine MIF

    NARCIS (Netherlands)

    de Jong, Y. P.; Abadia-Molina, A. C.; Satoskar, A. R.; Clarke, K.; Rietdijk, S. T.; Faubion, W. A.; Mizoguchi, E.; Metz, C. N.; Alsahli, M.; ten Hove, T.; Keates, A. C.; Lubetsky, J. B.; Farrell, R. J.; Michetti, P.; van Deventer, S. J.; Lolis, E.; David, J. R.; Bhan, A. K.; Terhorst, C.; Sahli, M. A.

    2001-01-01

    The cytokine macrophage-migration inhibitory factor (MIF) is secreted by a number of cell types upon induction by lipopolysaccharide (LPS). Because colitis is dependent on interplay between the mucosal immune system and intestinal bacteria, we investigated the role of MIF in experimental colitis.

  10. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  11. Glycine tomentella Hayata inhibits IL-1β and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells

    Directory of Open Access Journals (Sweden)

    Sun Yu-Shu

    2010-11-01

    Full Text Available Abstract Background To assess the effects of Glycine tomentella Hayata (GTH, a traditional herbal medicine for treatment of rheumatic diseases on the expression of the proinflammatory cytokines and on the clearance of apoptotic cells by macrophages. Methods RAW264.7 cells were cultured with lipopolysaccharide (LPS in the presence or absence of ethanol extract of GTH. The expression of proinflammatory cytokines IL-1β, IL-6, and TNF-α, and inducible nitric oxide synthase (iNOS and transglutaminase 2 (TG2 were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA. Matrix metalloproteinase (MMP-2 and MMP-9 were assayed by gelatin zymography. For detecting uptake of apoptotic cells, RAW264.7 cells were cultured with carboxyfluorescein diacetate (CFDA-stained apoptotic cells and assayed by flow cytometry. Results The major components of GTH analyzed by high-performance liquid chromatography (HPLC chromatogram were daidzein (42.5%, epicatechin (28.8%, and naringin (9.4%. GTH treatment inhibited the expression of proinflammatory cytokines IL-1β, IL-6 and MMP-9 but did not affect the expression of TNF-α and iNOS. GTH significantly enhanced the expression of TG2 and the clearance of apoptotic cells by RAW264.7 macrophages. Conclusions GTH inhibits proinflammatory cytokine secretion and MMP-9 activity, enhances apoptotic cell uptake and up-regulates TG2 expression. Our data show that GTH might have beneficial effects on rheumatic diseases.

  12. The influence of aging and estradiol to progesterone ratio on rat macrophage phenotypic profile and NO and TNF-α production.

    Science.gov (United States)

    Dimitrijević, Mirjana; Stanojević, Stanislava; Kuštrimović, Nataša; Mitić, Katarina; Vujić, Vesna; Aleksić, Iva; Radojević, Katarina; Leposavić, Gordana

    2013-11-01

    The phenotype and function of tissue macrophages substantially depend on the cellular milieu and biological effector molecules, such as steroid hormones, to which they are exposed. Furthermore, in female rats, aging is associated with the altered macrophage functioning and the increased estrogen level is followed by a decrease in that of progesterone. Therefore, the present study aimed to investigate the influence of estradiol/progesterone balance on rat macrophage function and phenotype throughout whole adult lifespan. We ovariectomized rats at the late prepubertal age or at the very end of reproductive lifespan, and examined the expression of ED2 (CD163, a marker of mature resident macrophages related to secretion of inflammatory mediators) on peritoneal macrophages and their ability to produce TNF-α and NO upon LPS-stimulation at different age points. In addition, to delineate direct and indirect effects of estrogen, we assessed the in vitro influence of different concentrations of 17β-estradiol on LPS-induced macrophage TNF-α and NO production. Results showed that: (a) the low frequency of ED2(high) cells amongst peritoneal macrophages of aged rats was accompanied with the reduced TNF-α, but not NO production; (b) estradiol level gradually increased following ovariectomy; (c) macrophage ED2 expression and TNF-α production were dependent on estradiol/progesterone balance and they changed in the same direction; (d) changes in estradiol/progesterone balance differentially affected macrophages TNF-α and NO production; and (e) estradiol exerted pro-inflammatory and anti-inflammatory effects on macrophages in vivo and in vitro, respectively. Overall, our study discloses that estradiol/progesterone balance contributes to the fine-tuning of rat macrophage secretory capacity, and adds to a better understanding of the ovarian steroid hormone role in the regulation of macrophage function, and its significance for the age-associated changes in innate immunity.

  13. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production.

    Science.gov (United States)

    Li, Miao; Wang, Jinli; Fang, Yimin; Gong, Sitang; Li, Meiyu; Wu, Minhao; Lai, Xiaomin; Zeng, Gucheng; Wang, Yi; Yang, Kun; Huang, Xi

    2016-03-30

    Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis.

  14. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  15. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Mudan Lu

    2015-01-01

    Full Text Available Background/Purpose. HMGB1, which may act as a proinflammatory mediator, has been proposed to contribute to the pathogenesis of multiple chronic inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE; however, the precise mechanism of HMGB1 in the pathogenic process of SLE remains obscure. Method. The expression of HMGB1 was measured by ELISA and western blot. The ELISA was also applied to detect proinflammatory cytokines levels. Furthermore, nephritic pathology was evaluated by H&E staining of renal tissues. Results. In this study, we found that HMGB1 levels were significantly increased and correlated with SLE disease activity in both clinical patients and murine model. Furthermore, gain- and loss-of-function analysis showed that HMGB1 exacerbated the severity of SLE. Of note, the HMGB1 levels were found to be associated with the levels of proinflammatory cytokines such as TNF-α and IL-6 in SLE patients. Further study demonstrated that increased HMGB1 expression deteriorated the severity of SLE via enhancing macrophage inflammatory response. Moreover, we found that receptor of advanced glycation end products played a critical role in HMGB1-mediated macrophage inflammatory response. Conclusion. These findings suggested that HMGB1 might be a risk factor for SLE, and manipulation of HMGB1 signaling might provide a therapeutic strategy for SLE.

  16. Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells.

    Directory of Open Access Journals (Sweden)

    Liana Verinaud

    Full Text Available Inflammation is a necessary process to control infection. However, exacerbated inflammation, acute or chronic, promotes deleterious effects in the organism. Violacein (viola, a quorum sensing metabolite from the Gram-negative bacterium Chromobacterium violaceum, has been shown to protect mice from malaria and to have beneficial effects on tumors. However, it is not known whether this drug possesses anti-inflammatory activity. In this study, we investigated whether viola administration is able to reduce acute and chronic autoimmune inflammation. For that purpose, C57BL/6 mice were intraperitoneally injected with 1 μg of LPS and were treated with viola (3.5mg/kg via i.p. at the same time-point. Three hours later, the levels of inflammatory cytokines in the sera and phenotypical characterization of leukocytes were determined. Mice treated with viola presented a significant reduction in the production of inflammatory cytokines compared with untreated mice. Interestingly, although viola is a compound derived from bacteria, it did not induce inflammation upon administration to naïve mice. To test whether viola would protect mice from an autoimmune inflammation, Experimental Autoimmune Encephalomyelitis (EAE-inflicted mice were given viola i.p. at disease onset, at the 10th day from immunization. Viola-treated mice developed mild EAE disease in contrast with placebo-treated mice. The frequencies of dendritic cells and macrophages were unaltered in EAE mice treated with viola. However, the sole administration of viola augmented the levels of splenic regulatory T cells (CD4+Foxp3+. We also found that adoptive transfer of viola-elicited regulatory T cells significantly reduced EAE. Our study shows, for the first time, that violacein is able to modulate acute and chronic inflammation. Amelioration relied in suppression of cytokine production (in acute inflammation and stimulation of regulatory T cells (in chronic inflammation. New studies must be

  17. Impaired production of cytokines is an independent predictor of mortality in HIV-1-infected patients

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Gerstoft, Jan; Pedersen, Bente K

    2003-01-01

    With regard to the natural history of HIV-1 infection this study investigated whether whole-blood culture cytokine production was associated with mortality in HIV-1-infected patients.......With regard to the natural history of HIV-1 infection this study investigated whether whole-blood culture cytokine production was associated with mortality in HIV-1-infected patients....

  18. DMPD: Regulation of cytokine signaling by SOCS family molecules. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14644140 Regulation of cytokine signaling by SOCS family molecules. Fujimoto M, Nak...a T. Trends Immunol. 2003 Dec;24(12):659-66. (.png) (.svg) (.html) (.csml) Show Regulation of cytokine signaling by SOCS family... molecules. PubmedID 14644140 Title Regulation of cytokine signaling by SOCS family molec

  19. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    You Ah Kim

    2015-08-01

    Full Text Available The inhibitory effect of three chromones 1–3 and two coumarins 4–5 on the production of nitric oxide (NO was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1, a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2 production and expression of cytokines such as inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β and interleukin-6 (IL-6.

  20. Macrophage proinflammatory response to the titanium alloy equipment in dental implantation.

    Science.gov (United States)

    Chen, X; Li, H S; Yin, Y; Feng, Y; Tan, X W

    2015-08-07

    Titanium alloy and stainless steel (SS) had been widely used as dental implant materials because of their affinity with epithelial tissue and connective tissue, and good physical, chemical, biological, mechanical properties and processability. We compared the effects of titanium alloy and SS on macrophage cytokine expression as well as their biocompatibility. Mouse macrophage RAW264.7 cells were cultured on titanium alloy and SS surfaces. Cells were counted by scanning electron microscopy. A nitride oxide kit was used to detect released nitric oxide by macrophages on the different materials. An enzyme linked immunosorbent assay was used to detect monocyte chemoattractant protein-1 levels. Scanning electron microscopy revealed fewer macrophages on the surface of titanium alloy (48.2 ± 6.4 x 10(3) cells/cm(2)) than on SS (135 ± 7.3 x 10(3) cells/cm(2)). The nitric oxide content stimulated by titanium alloy was 22.5 mM, which was lower than that stimulated by SS (26.8 mM), but the difference was not statistically significant (P = 0.07). The level of monocyte chemoattractant protein-1 released was significantly higher in the SS group (OD value = 0.128) than in the titanium alloy group (OD value = 0.081) (P = 0.024). The transforming growth factor-b1 mRNA expression levels in macrophages after stimulation by titanium alloy for 12 and 36 h were significantly higher than that after stimulation by SS (P = 0.31 and 0.25, respectively). Macrophages participate in the inflammatory response by regulating cytokines such as nitric oxide, monocyte chemoattractant protein-1, and transforming growth factor-b1. There were fewer macrophages and lower inflammation on the titanium alloy surface than on the SS surface. Titanium alloy materials exhibited better biological compatibility than did SS.

  1. Regulation of human cytokines by Cordyceps militaris.

    Science.gov (United States)

    Sun, Yong; Shao, Yani; Zhang, Zhiguo; Wang, Lianfen; Mariga, Alfred M; Pang, Guangchang; Geng, Chaoyu; Ho, Chi-Tang; Hu, Qiuhui; Zhao, Liyan

    2014-12-01

    Cordyceps (Cordyceps militaris) exhibits many biological activities including antioxidant, inhibition of inflammation, cancer prevention, hypoglycemic, and antiaging properties, etc. However, a majority of studies involving C. militaris have focused only on in vitro and animal models, and there is a lack of direct translation and application of study results to clinical practice (e.g., health benefits). In this study, we investigated the regulatory effects of C. militaris micron powder (3 doses) on the human immune system. The study results showed that administration of C. militaris at various dosages reduced the activity of cytokines such as eotaxin, fibroblast growth factor-2, GRO, and monocyte chemoattractant protein-1. In addition, there was a significant decrease in the activity of various cytokines, including GRO, sCD40L, and tumor necrosis factor-α, and a significant downregulation of interleukin-12(p70), interferon-γ inducible protein 10, and macrophage inflammatory protein-1β activities, indicating that C. militaris at all three dosages downregulated the activity of cytokines, especially inflammatory cytokines and chemokines. Different dosages of C. militaris produced different changes in cytokines. Copyright © 2014. Published by Elsevier B.V.

  2. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Mandal

    2017-07-01

    Full Text Available The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL, depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important

  3. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis.

    OpenAIRE

    Gerards, A.H.; Lathouder, de, S; Groot, E.R.; Dijkmans, B.A.C.; Aarden, L.A.

    2003-01-01

    OBJECTIVES: To analyse whether the beneficial effects of methotrexate in rheumatoid arthritis (RA) could be due to inhibition of inflammatory cytokine production. METHODS: Cytokine production was studied using whole blood (WB) and mononuclear cells (MNC) of healthy volunteers and RA patients. Cultures were stimulated with either bacterial products such as lipo-oligosaccharide (LOS) or Staphylococcus aureus Cowan I (SAC) to activate monocytes or with monoclonal antibodies to CD3 and CD28 to in...

  4. Insights into the role of macrophage migration inhibitory factor in obesity and insulin resistance.

    LENUS (Irish Health Repository)

    Finucane, Orla M

    2012-11-01

    High-fat diet (HFD)-induced obesity has emerged as a state of chronic low-grade inflammation characterised by a progressive infiltration of immune cells, particularly macrophages, into obese adipose tissue. Adipose tissue macrophages (ATM) present immense plasticity. In early obesity, M2 anti-inflammatory macrophages acquire an M1 pro-inflammatory phenotype. Pro-inflammatory cytokines including TNF-α, IL-6 and IL-1β produced by M1 ATM exacerbate local inflammation promoting insulin resistance (IR), which consequently, can lead to type-2 diabetes mellitus (T2DM). However, the triggers responsible for ATM recruitment and activation are not fully understood. Adipose tissue-derived chemokines are significant players in driving ATM recruitment during obesity. Macrophage migration inhibitory factor (MIF), a chemokine-like inflammatory regulator, is enhanced during obesity and is directly associated with the degree of peripheral IR. This review focuses on the functional role of macrophages in obesity-induced IR and highlights the importance of the unique inflammatory cytokine MIF in propagating obesity-induced inflammation and IR. Given MIF chemotactic properties, MIF may be a primary candidate promoting ATM recruitment during obesity. Manipulating MIF inflammatory activities in obesity, using pharmacological agents or functional foods, may be therapeutically beneficial for the treatment and prevention of obesity-related metabolic diseases.

  5. Decreased proinflammatory cytokine production by peripheral blood mononuclear cells from vitiligo patients following aspirin treatment

    International Nuclear Information System (INIS)

    Zailaie, Mohammad Z.

    2005-01-01

    Limited studies have shown that treatment of cells with aspirin modulates their cytokine production. Consequently, the aim of the present study is to investigate the pattern of important proinflammatory cytokines production by stimulated peripheral blood mononuclear cells (PBMC) from patients with active vitiligo following long-term treatment with low-dose oral aspirin. The study was conducted at the Vitiligo Unit, King Abdul-Aziz University Medical Center, Jeddah, Kingdom of Saudi Arabia between March and October 2003. Thirty-two patients (18 females and 14 males) with non-segmental vitiligo were divided into 2 equal groups, one group received a daily single dose of oral aspirin (300 mg) and the other group received placebo for a period of 12 weeks. The concentrations of interleukin (IL)-1beta, IL-6, IL-8 and tumor necrosis factor-alpha (TNF-alpha) were determined in the supernatant of isolated cultured PMBC after being stimulated with bacterial lipopolysaccharide (LPS), before the start of aspirin treatment and at end of treatment period. Cytokine levels were measured using the quantitative sandwich enzyme-linked immunosorbent assay (ELISA) technique, utilizing commercially available kits. The proinflammatory cytokine production by the PBMC of patients with active vitiligo was significantly increased compared to normal controls. Thus, the relative percentage increase in the production of IL-1beta, IL-6, IL-8 and TNF-alpha was: 39.4%, 110.5% (p<0.05), 91.5% (p<0.01), and 37% (p<0.05). At the end of treatment, proinflammatory cytokine production in the aspirin-treated group of active vitiligo patients was significantly decreased compared to the placebo group. Thus, the relative percentage decrease in the production of IL-1beta IL-6, IL-8 and TNF-alpha was: 42.5%, 45.2% (p<0.05), 30.8% (p<0.01), and 50.6% (p<0.05). The vitiligo activity was arrested in all aspirin-treated patients, while 2 patients demonstrated significant repigmentation.Chronic administration of

  6. Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs induce inflammatory responses in avian macrophages.

    Directory of Open Access Journals (Sweden)

    Yock-Ping Chow

    Full Text Available At least 19 glycosylphosphatidylinositol (GPI-anchored surface antigens (SAGs are expressed specifically by second-generation merozoites of Eimeria tenella, but the ability of these proteins to stimulate immune responses in the chicken is unknown.Ten SAGs, belonging to two previously defined multigene families (A and B, were expressed as soluble recombinant (r fusion proteins in E. coli. Chicken macrophages were treated with purified rSAGs and changes in macrophage nitrite production, and in mRNA expression profiles of inducible nitric oxide synthase (iNOS and of a panel of cytokines were measured. Treatment with rSAGs 4, 5, and 12 induced high levels of macrophage nitric oxide production and IL-1β mRNA transcription that may contribute to the inflammatory response observed during E. tenella infection. Concomitantly, treatment with rSAGs 4, 5 and 12 suppressed the expression of IL-12 and IFN-γ and elevated that of IL-10, suggesting that during infection these molecules may specifically impair the development of cellular mediated immunity.In summary, some E. tenella SAGs appear to differentially modulate chicken innate and humoral immune responses and those derived from multigene family A (especially rSAG 12 may be more strongly linked with E. tenella pathogenicity associated with the endogenous second generation stages.

  7. The Staphyloccous aureus Eap protein activates expression of proinflammatory cytokines.

    Science.gov (United States)

    Scriba, Thomas J; Sierro, Sophie; Brown, Eric L; Phillips, Rodney E; Sewell, Andrew K; Massey, Ruth C

    2008-05-01

    The extracellular adhesion protein (Eap) secreted by the major human pathogen Staphylococcus aureus is known to have several effects on human immunity. We have recently added to knowledge of these roles by demonstrating that Eap enhances interactions between major histocompatibility complex molecules and human leukocytes. Several studies have indicated that Eap can induce cytokine production by human peripheral blood mononuclear cells (PBMCs). To date, there has been no rigorous attempt to identify the breadth of cytokines produced by Eap stimulation or to identify the cell subsets that respond. Here, we demonstrate that Eap induces the secretion of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) by CD14(+) leukocytes (monocytes and macrophages) within direct ex vivo PBMC populations (note that granulocytes are also CD14(+) but are largely depleted from PBMC preparations). Anti-intercellular adhesion molecule 1 (CD54) antibodies inhibited this induction and implicated a role for this known Eap binding protein in cellular activation. IL-6 and TNF-alpha secretion by murine cells exposed to Eap was also observed. The activation of CD14(+) cells by Eap suggests that it could play a significant role in both septic shock and fever, two of the major pathological features of S. aureus infections.

  8. Strain-dependent release of cytokines modulated by Lactobacillus salivarius human isolates in an in vitro model

    Science.gov (United States)

    2010-01-01

    Background Oral administration of probiotics is known to modulate cytokines profile not only locally, but also systemically. Four strains of Lactobacillus salivarius, LDR0723, BNL1059, RGS1746 and CRL1528, were evaluated for their ability to modulate release of pro- and anti-inflammatory cytokines. Findings Strains were assessed for effects on production of Interleukin-12 (IL-12), Interferon-γ (IFN-γ), Interleukin-4 (IL-4) and Interleukin-5 (IL-5) by incubating bacterial suspensions with THP-1 macrophage like cells. Cytokines were determined by means of specific quantitative enzyme-linked immunosorbent assays. LDR0723 and CRL1528 led to a sustained increment in production of IL-12 and IFN-γ and to a decrease in release of IL-4 and IL-5, while BNL1059 and RGS1746 favoured Th2 response, leading to a decrease in Th1/Th2 ratio with respect to unstimulated cells. Conclusions In conclusion, capability of L. salivarius to modulate immune response was strictly strain dependent and strains of the same species might have opposite effects. Therefore, a careful evaluation of anti-inflammatory properties of lactobacilli should be performed on single strain, before any consideration on potential probiotic use. PMID:20184725

  9. Development of chronic colitis is dependent on the cytokine MIF.

    Science.gov (United States)

    de Jong, Y P; Abadia-Molina, A C; Satoskar, A R; Clarke, K; Rietdijk, S T; Faubion, W A; Mizoguchi, E; Metz, C N; Alsahli, M; ten Hove, T; Keates, A C; Lubetsky, J B; Farrell, R J; Michetti, P; van Deventer, S J; Lolis, E; David, J R; Bhan, A K; Terhorst, C; Sahli, M A

    2001-11-01

    The cytokine macrophage-migration inhibitory factor (MIF) is secreted by a number of cell types upon induction by lipopolysaccharide (LPS). Because colitis is dependent on interplay between the mucosal immune system and intestinal bacteria, we investigated the role of MIF in experimental colitis. MIF-deficient mice failed to develop disease, but reconstitution of MIF-deficient mice with wild-type innate immune cells restored colitis. In addition, established colitis could be treated with anti-MIF immunoglobulins. Thus, murine colitis is dependent on continuous MIF production by the innate immune system. Because we found increased plasma MIF concentrations in patients with Crohn's disease, these data suggested that MIF is a new target for intervention in Crohn's disease.

  10. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice

    DEFF Research Database (Denmark)

    Tran, E H; Hoekstra, K; van Rooijen, N

    1998-01-01

    role of peripheral macrophages in experimental allergic encephalomyelitis (EAE), a Th1-mediated demyelinating disease that serves as a an animal model for multiple sclerosis (MS), by their depletion using mannosylated liposome-encapsulated dichloromethylene diphosphonate (Cl2MDP). Here we describe....../J mice was abrogated by Cl2MDP-mnL treatment. CD4+ T cell and MHC II+ B220+ B cell extravasation from blood vessels and Th1 cytokine production were not inhibited. However, invasion of the central nervous system intraparenchymal tissues by lymphocytes, F4/80+, Mac-1+, and MOMA-1+ macrophages was almost...

  11. Granulocyte macrophage colony-stimulating factor enhances the modulatory effect of cytokines on monocyte-derived multinucleated giant cell formation and fungicidal activity against Paracoccidioides brasiliensis

    Directory of Open Access Journals (Sweden)

    Magda Paula Pereira do Nascimento

    2011-09-01

    Full Text Available Multinucleated giant cells (MGC are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF in association with other cytokines such as interferon-gamma (IFN-γ, tumour necrosis factor-alpha, interleukin (IL-10 or transforming growth factor beta (TGF-β1 on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg. The generation of MGC was determined by fusion index (FI and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18. The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.

  12. The Alveolar Microenvironment of Patients Infected with Human Immunodeficiency Virus Does Not Modify Alveolar Macrophage Interactions with Streptococcus pneumoniae

    Science.gov (United States)

    Jagoe, R. Thomas; Jarman, Elizabeth R.; North, James C.; Pridmore, Alison; Musaya, Janelisa; French, Neil; Zijlstra, Eduard E.; Molyneux, Malcolm E.; Read, Robert C.

    2013-01-01

    We tested the hypothesis that HIV infection results in activation of alveolar macrophages and that this might be associated with impaired defense against pneumococcus. We compared alveolar macrophages and lymphocytes in 131 bronchoalveolar lavage samples from HIV-infected and healthy controls using inflammatory gene microarrays, flow cytometry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA) to determine the pattern of macrophage activation associated with HIV infection and the effect of this activation on defense against pneumococcus. We used gamma interferon (IFN-γ) priming to mimic the cellular milieu in HIV-infected lungs. InnateDB and BioLayout 3D were used to analyze the interactions of the upregulated genes. Alveolar macrophages from HIV-infected adults showed increased gene expression and cytokine production in a classical pattern. Bronchoalveolar lavage from HIV-infected subjects showed excess CD8+ lymphocytes with activated phenotype. Toll-like receptor 4 (TLR4) expression was increased in macrophages from HIV-infected subjects, but function was similar between the groups; lung lavage fluid did not inhibit TLR function in transfected HeLa cells. Alveolar macrophages from HIV-infected subjects showed normal binding and internalization of opsonized pneumococci, with or without IFN-γ priming. Alveolar macrophages from HIV-infected subjects showed classical activation compared to that of healthy controls, but this does not alter macrophage interactions with pneumococci. PMID:23576675

  13. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells.

    Science.gov (United States)

    Hamilton, Gerhard; Rath, Barbara; Klameth, Lukas; Hochmair, Maximilan J

    2016-03-01

    Tumor-associated macrophages (TAMs) play an important role in tumor progression, suppression of antitumor immunity and dissemination. Blood monocytes infiltrate the tumor region and are primed by local microenvironmental conditions to promote tumor growth and invasion. Although many of the interacting cytokines and factors are known for the tumor-macrophage interactions, the putative contribution of circulating tumor cells (CTCs) is not known so far. These specialized cells are characterized by increased mobility, ability to degrade the extracellular matrix (ECM) and to enter the blood stream and generate secondary lesions which is a leading cause of death for the majority of tumor patients. The first establishment of two permanent CTC lines, namely BHGc7 and 10, from blood samples of advanced stage small cell lung cancer (SCLC) patients allowed us to investigate the CTC-immune cell interaction. Cocultures of peripheral blood mononuclear cells (PBMNCs) with CTCs or addition of CTC-conditioned medium (CTC-CM) in vitro resulted in monocyte-macrophage differentiation and appearance of CD14 + , CD163 weak and CD68 + macrophages expressing markers of TAMs. Furthermore, we screened the supernatants of CTC-primed macrophages for presence of approximately 100 cytokines and compared the expression with those induced by the local metastatic SCLC26A cell line. Macrophages recruited by SCLC26A-CM showed expression of osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), IL-8, chitinase3-like 1 (CHI3L1), platelet factor (Pf4), IL-1ra and matrix metalloproteinase-9 (MMP-9) among other minor cytokines/chemokines. In contrast, BHGc7-CM induced marked overexpression of complement factor D (CFD)/adipsin and vitamin D-BP (VDBP), as well as increased secretion of OPN, lipocalin-2 (LCN2), CHI3L1, uPAR, MIP-1 and GDF-15/MIC-1. BHGc10, derived independently from relapsed SCLC, revealed an almost identical pattern with added expression of ENA-78/CXCL5. CMs of the non-tumor HEK293

  14. Assessment of Antibody-based Drugs Effects on Murine Bone Marrow and Peritoneal Macrophage Activation.

    Science.gov (United States)

    Kozicky, Lisa; Sly, Laura M

    2017-12-26

    Macrophages are phagocytic innate immune cells, which initiate immune responses to pathogens and contribute to healing and tissue restitution. Macrophages are equally important in turning off inflammatory responses. We have shown that macrophages stimulated with intravenous immunoglobulin (IVIg) can produce high amounts of the anti-inflammatory cytokine, interleukin 10 (IL-10), and low levels of pro-inflammatory cytokines in response to bacterial lipopolysaccharides (LPS). IVIg is a polyvalent antibody, primarily immunoglobulin Gs (IgGs), pooled from the plasma of more than 1,000 blood donors. It is used to supplement antibodies in patients with immune deficiencies or to suppress immune responses in patients with autoimmune or inflammatory conditions. Infliximab, a therapeutic anti-tumor necrosis factor alpha (TNFα) antibody, has also been shown to activate macrophages to produce IL-10 in response to inflammatory stimuli. IVIg and other antibody-based biologics can be tested to determine their effects on macrophage activation. This paper describes methods for derivation, stimulation, and assessment of murine bone marrow macrophages activated by antibodies in vitro and murine peritoneal macrophages activated with antibodies in vivo. Finally, we demonstrate the use of western blotting to determine the contribution of specific cell signaling pathways to anti-inflammatory macrophage activity. These protocols can be used with genetically modified mice, to determine the effect of a specific protein(s) on anti-inflammatory macrophage activation. These techniques can also be used to assess whether specific biologics may act by changing macrophages to an IL-10-producing anti-inflammatory activation state that reduces inflammatory responses in vivo. This can provide information on the role of macrophage activation in the efficacy of biologics during disease models in mice, and provide insight into a potential new mechanism of action in people. Conversely, this may caution

  15. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Strohl, William R; Jordan, Robert E; Brezski, Randall J

    2015-01-01

    Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.

  16. PAH- and PCB-induced Alterations of Protein Tyrosine Kinase and Cytokine Gene Transcription in Harbor Seal (Phoca Vitulina PBMC

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2005-01-01

    Full Text Available Mechanisms underlying in vitro immunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs Fyn and Itk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP, 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169, a model immunotoxic PCB, or DMSO (vehicle control. Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKs Fyn and Itk were both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part by disruption of T cell receptor (TCR signaling and cytokine production.

  17. Involvement of NF-κBIZ and related cytokines in age-associated renal fibrosis.

    Science.gov (United States)

    Chung, Ki Wung; Jeong, Hyeong Oh; Lee, Bonggi; Park, Daeui; Kim, Dae Hyun; Choi, Yeun Ja; Lee, Eun Kyeong; Kim, Kyung Mok; Park, June Whoun; Yu, Byung Pal; Chung, Hae Young

    2017-01-31

    Chronic inflammation is a major contributor to age-related nephropathic changes, including renal fibrosis. In this study, various experimental paradigms were designed to delineate the role played by NF-κBIZ (also known as IκBζ) in age-associated renal fibrosis. Analyses based on RNA-sequencing findings obtained by next generation sequencing (NGS) revealed the upregulations of NF-κBIZ and of IL-6 and MCP-1 (both known to be regulated by NF-κBIZ) during aging. The up-regulation of NF-κBIZ in aged rat kidneys coincided with increased macrophage infiltration. In LPS-treated macrophages, oxidative stress was found to play a pivotal role in NF-κBIZ expression, suggesting age-related oxidative stress is associated with NF-κBIZ activation. Furthermore, these in vitro findings were confirmed in LPS-treated old rats, which showed higher levels of oxidative stress and NF-κBIZ in kidneys than LPS-treated young rats. Additional in vitro experiments using macrophages and kidney fibroblasts demonstrated NF-κBIZ and related cytokines participate in fibrosis. In particular, increased levels of NF-κBIZ-associated cytokines in macrophages significantly up-regulated TGF-β induced kidney fibroblast activation. Moreover, experiments with NF-κBIZ knocked down macrophages showed reduced TGF-β-induced kidney fibroblast activation. The findings of the present study provide evidence regarding an involvement of NF-κBIZ in age-associated progressive renal fibrosis and provides potential targets for its prevention.

  18. Ebola Virus: The Role of Macrophages and Dendritic Cells in the Pathogenesis of Ebola Hemorrhagic Fever

    National Research Council Canada - National Science Library

    Bray, Mike; Geisbert, Thomas W

    2005-01-01

    .... Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilation, increased vascular permeability and disseminated...

  19. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Michelle M C Buckner

    Full Text Available 15-deoxy-Δ(12,14-prostaglandin J2 (15d-PGJ2 is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified

  20. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    Science.gov (United States)

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Vpx complementation of 'non-macrophage tropic' R5 viruses reveals robust entry of infectious HIV-1 cores into macrophages.

    Science.gov (United States)

    Mlcochova, Petra; Watters, Sarah A; Towers, Greg J; Noursadeghi, Mahdad; Gupta, Ravindra K

    2014-03-21

    It is now known that clinically derived viruses are most commonly R5 tropic with very low infectivity in macrophages. As these viruses utilize CD4 inefficiently, defective entry has been assumed to be the dominant restriction. The implication is that macrophages are not an important reservoir for the majority of circulating viruses. Macrophage infection by clinical transmitted/founder isolates was 10-100 and 30-450 fold less efficient as compared to YU-2 and BaL respectively. Vpx complementation augmented macrophage infection by non-macrophage tropic viruses to the level of infectivity observed for YU-2 in the absence of Vpx. Augmentation was evident even when Vpx was provided 24 hours post-infection. The entry defect was measured as 2.5-5 fold, with a further 3.5-10 fold block at strong stop and subsequent stages of reverse transcription as compared to YU-2. The overall block to infection was critically dependent on the mechanism of entry as demonstrated by rescue of infection after pseudotyping with VSV-G envelope. Reverse transcription in macrophages could not be enhanced using a panel of cytokines or lipopolysaccharide (LPS). Although the predominant block to clinical transmitted/founder viruses is post-entry, infectivity is determined by Env-CD4 interactions and can be rescued with VSV-G pseudotyping. This suggests a functional link between the optimal entry pathway taken by macrophage tropic viruses and downstream events required for reverse transcription. Consistent with a predominantly post-entry block, replication of R5 using viruses can be greatly enhanced by Vpx. We conclude therefore that entry is not the limiting step and that macrophages represent clinically relevant reservoirs for 'non-macrophage tropic' viruses.

  2. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yang, Mi-So [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Song, Du-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Baek, E-mail: ebbyun80@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@kongju.ac.k [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  3. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

    Science.gov (United States)

    van der Does, Anne M; Beekhuizen, Henry; Ravensbergen, Bep; Vos, Tim; Ottenhoff, Tom H M; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; Nibbering, Peter H

    2010-08-01

    The human cathelicidin LL-37 has broad-spectrum antimicrobial activity. It also participates at the interface of innate and adaptive immunity by chemoattracting immune effector cells, modulating the production of a variety of inflammatory mediators by different cell types, and regulating the differentiation of monocytes into dendritic cells. In this study, we investigated the effects of LL-37 on the differentiation of human monocytes into anti-inflammatory macrophages (MPhi-2; driven by M-CSF) versus proinflammatory macrophages (MPhi-1; driven by GM-CSF) as well as on fully differentiated MPhi-1 and MPhi-2. Results revealed that monocytes cultured with M-CSF in the presence of LL-37 resulted in macrophages displaying a proinflammatory signature, namely, low expression of CD163 and little IL-10 and profound IL-12p40 production on LPS stimulation. The effects of LL-37 on M-CSF-driven macrophage differentiation were dose- and time-dependent with maximal effects observed at 10 microg/ml when the peptide was present from the start of the cultures. The peptide enhanced the GM-CSF-driven macrophage differentiation. Exposure of fully differentiated MPhi-2 to LL-37 for 6 d resulted in macrophages that produced less IL-10 and more IL-12p40 on LPS stimulation than control MPhi-2. In contrast, LL-37 had no effect on fully differentiated MPhi-1. Peptide mapping using a set of 16 overlapping 22-mer peptides covering the complete LL-37 sequence revealed that the C-terminal portion of LL-37 is responsible for directing macrophage differentiation. Our results furthermore indicate that the effects of LL-37 on macrophage differentiation required internalization of the peptide. Together, we conclude that LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

  4. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Wan-Kyu Ko

    Full Text Available The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA in lipopolysaccharide (LPS-stimulated RAW 264.7 macrophages.We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO. Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR and enzyme-linked immunosorbent assay (ELISA. The phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 in mitogen-activated protein kinase (MAPK signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα signaling pathways were evaluated by western blot assays.UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α, interleukin 1-α (IL-1α, interleukin 1-β (IL-1β, and interleukin 6 (IL-6 in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10 in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA.UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug.

  5. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  6. 4-Hydroxy-oxyphenbutazone is a potent inhibitor of cytokine production

    NARCIS (Netherlands)

    ten Brinke, Anja; Dekkers, David W. C.; Notten, Silla M.; Karsten, Miriam L.; de Groot, Els R.; Aarden, Lucien A.

    2005-01-01

    4-Hydroxy-oxyphenbutazone (4OH-OPB), is currently in phase II trials for its immunosuppressive effect in patients with rheumatoid arthritis. 4OH-OPB and other compounds related to phenylbutazone were tested for their effect on in vitro cytokine production by monocytes and lymphocytes present in

  7. Serum Macrophage Migration Inhibitory Factor in the Prediction of Preterm Delivery

    DEFF Research Database (Denmark)

    Pearce, Brad; Garvin, Sicily; Grove, Jakob

    2008-01-01

    Objective: Macrophage migration inhibitory factor (MIF) is a soluble mediator that helps govern the interaction between cytokines and stress hormones (e.g. cortisol). We determined if maternal MIF levels predicted subsequent preterm delivery (PTD). Study Design: A nested case-control study...

  8. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  9. A methanolic extract of Trigonella foenum-graecum (fenugreek seeds regulates markers of macrophage polarization.

    Directory of Open Access Journals (Sweden)

    Nurudeen Hassan

    2015-12-01

    Full Text Available Background: Macrophages are key cellular mediators in diabetes-related inflammation. Molecular cues such as cytokines found in the tissue microenvironment regulates the polarization of macrophages into an M1 (pro-inflammatory or M2 (immunoregulatory phenotype. Recent evidence suggests that M1 macrophages in diabetic patients may contribute to the complications associated with the disease such as atherosclerosis. Trigonella foenum- graecum (Tfg: fenugreek seeds have been used in traditional medicine in Asia, Africa and the Middle-East for their alleged anti-diabetic properties. Objective: To identify the molecular mechanism(s through which Tfg seeds exert their effects, we investigated the role of a crude methanolic extract of Tfg (FME seeds on macrophage polarization in vitro. Method: THP-1 macrophages (Mϕ were treated with gBSA in the presence/absence of FME and the release and expression of M1 and M2 markers/cytokines were analysed. The role of FME on NF-κB activity was also explored using transfected HEK-293T cells. Results: This study found that the FME significantly (P<0.05 decreased gBSA-induced secretion of M1 cytokines (TNF-α, IL-1β, IL-6 and IL-8 in THP-1 Mϕ cells. In the presence of gBSA, FME also significantly increased the gene expression of the M2 marker Dectin-1, but had no effect on IL-10, IL-1Ra. FME also significantly decreased TNF-α induced NF-kB reporter activity. Conclusion: These results suggest that FME can regulate the expression of M1 and M2 markers in THP-1 Mϕ cells. This may be potentially through the modulation of NF-kB activity. Further work should be carried out to identify precise mechanism(s involved in the effects of FME and Tfg seeds.

  10. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat.

    Directory of Open Access Journals (Sweden)

    Shuai Xiang

    Full Text Available BACKGROUND/AIMS: Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH in rats. METHODOLOGY/PRINCIPAL FINDINGS: We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS: These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model.

  11. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  12. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination.

    Science.gov (United States)

    Polycarpou, Anastasia; Holland, Martin J; Karageorgiou, Ioannis; Eddaoudi, Ayad; Walker, Stephen L; Willcocks, Sam; Lockwood, Diana N J

    2016-01-01

    Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates "non-specific" protection to the human immune system.

  13. Inflammation and cancer: macrophage migration inhibitory factor (MIF)--the potential missing link.

    LENUS (Irish Health Repository)

    Conroy, H

    2010-11-01

    Macrophage migration inhibitory factor (MIF) was the original cytokine, described almost 50 years ago and has since been revealed to be an important player in pro-inflammatory diseases. Recent work using MIF mouse models has revealed new roles for MIF. In this review, we present an increasing body of evidence implicating the key pro-inflammatory cytokine MIF in specific biological activities related directly to cancer growth or contributing towards a microenvironment favouring cancer progression.

  14. Changes in some pro-and anti-inflammatory cytokines produced by bovine peripheral blood mononuclear cells following foot and mouth disease vaccination

    Directory of Open Access Journals (Sweden)

    N. Delirezh

    2016-09-01

    Full Text Available Interleukin (IL-17 is exclusively produced by CD4 helper T-cells upon activation. It most often acts as a pro-inflammatory cytokine, which stimulates the release of pro-inflammatory cytokines IL-6, IL-8, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF. In this study, we studied the in-vitro IL-17 response to specific antigens and a variety of mitogens and compared the IL-17 response to IL-2, IL-4, IL-5, IL-6, IL-10, and IFN-γ responses. We used a foot and mouth disease (FMD vaccine as specific antigens and mitogens (phytohemagglutinin [PHA], pokeweed mitogen [PWM], and concanavalin A [Con A] to stimulate peripheral blood mononuclear cells (PBMCs of vaccinated calves. Cell culture supernatant was harvested and analyzed for cytokines, using commercially available bovine ELISA kits. The mitogens induced a significant increase in IL-17 production. IL-17 was produced at high levels in response to the T cell-stimulated mitogens, PHA, and Con A, and at low levels in response to PWM mitogens. In contrast, level of the produced IL-17 cytokines in response to the FMDV antigens was lower as compared to those produced by mitogens. The FMDV antigens and mitogens significantly increased IL-17 production. There was not a correlation between IL-17 production and type-1 cytokine, IFN-γ, and IL-2, while there was a correlation between type-2 cytokine, IL-4, and IL-5 at either cytokine level produced by PBMCs stimulated by FMDV antigens. Moreover, there was an interaction between IL-17 and IL-6, that is, as IL-6 cytokine level elevated or diminished, IL-17 cytokine level increased or decreased, as well.

  15. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  16. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Hye Joo Kim

    2012-01-01

    Full Text Available Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria, and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-κB signaling pathway. In this study, we analyzed the effects of fisetin on proinflammatory cytokine secretion and epigenetic regulation, in human monocytes cultured under hyperglycemic conditions. Human monocytic (THP-1 cells were cultured under control (14.5 mmol/L mannitol, normoglycemic (NG, 5.5 mmol/L glucose, or hyperglycemic (HG, 20 mmol/L glucose conditions, in the absence or presence of fisetin. Fisetin was added (3–10 μM for 48 h. While the HG condition significantly induced histone acetylation, NF-κB activation, and proinflammatory cytokine (IL-6 and TNF-α release from THP-1 cells, fisetin suppressed NF-κB activity and cytokine release. Fisetin treatment also significantly reduced CBP/p300 gene expression, as well as the levels of acetylation and HAT activity of the CBP/p300 protein, which is a known NF-κB coactivator. These results suggest that fisetin inhibits HG-induced cytokine production in monocytes, through epigenetic changes involving NF-κB. We therefore propose that fisetin supplementation be considered for diabetes prevention.

  17. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.

    Directory of Open Access Journals (Sweden)

    Eyayu Belay

    Full Text Available Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP, intercellular adhesion molecule 4 (ICAM-4, CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.

  18. M2 macrophages coexist with a Th1-driven profile in periapical cysts.

    Science.gov (United States)

    Ribeiro, C M; de Carli, M L; Nonogaki, S; Nogueira, D A; Pereira, A A C; Sperandio, F F; Hanemann, J A C

    2018-02-01

    To evaluate the participation of both Th1 and Th2 responses in periapical cysts by assessing the presence of M2 macrophages, as well as acute IL-1 β, TNF-α and IL-6 cytokines. Twenty-four cases of periapical cysts were selected. Immuno-expressions of IL-1 β, IL-6, TNF-α and CD163 were analysed in the cystic capsules in both superficial and deeper regions. Data were analysed with paired Wilcoxon test and Spearman correlation coefficient (P ≤ 0.05). There was a higher expression of IL-1β, IL-6, TNF-α and M2 macrophages in the superficial region (P periapical cysts and correlated with the expression of certain acute Th1-related cytokines. This illustrates the coexistence of an acute and chronic Th2-driven immune response in these lesions. Although M2 macrophages favour the healing process, their presence is not sufficient for periapical cyst regression, once an acute active response has occurred due to an infectious stimuli. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Transcriptional and Cytokine Profiles Identify CXCL9 as a Biomarker of Disease Activity in Morphea.

    Science.gov (United States)

    O'Brien, Jack C; Rainwater, Yevgeniya Byekova; Malviya, Neeta; Cyrus, Nika; Auer-Hackenberg, Lorenz; Hynan, Linda S; Hosler, Gregory A; Jacobe, Heidi T

    2017-08-01

    IFN-related pathways have not been studied in morphea, and biomarkers are needed. We sought to characterize morphea serum cytokine imbalance and IFN-related gene expression in blood and skin to address this gap by performing a case-control study of 87 participants with morphea and 26 healthy control subjects. We used multiplexed immunoassays to determine serum cytokine concentrations, performed transcriptional profiling of whole blood and lesional morphea skin, and used double-staining immunohistochemistry to determine the cutaneous cellular source of CXCL9. We found that CXCL9 was present at increased concentrations in morphea serum (P morphea skin (fold change = 30.6, P = 0.006), and preliminary transcriptional profiling showed little evidence for IFN signature in whole blood. Double-staining immunohistochemistry showed CXCL9 co-localized with CD68 + dermal macrophages. In summary, inflammatory morphea is characterized by T helper type 1 cytokine imbalance in serum, particularly CXCL9, which is associated with disease activity. CXCL9 expression in lesional macrophages implicates the skin as the source of circulating cytokines. CXCL9 is a promising biomarker of disease activity in morphea. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State

    Science.gov (United States)

    Helming, Laura; Tomasello, Elena; Kyriakides, Themis R.; Martinez, Fernando O.; Takai, Toshiyuki; Gordon, Siamon; Vivier, Eric

    2009-01-01

    Multinucleated giant cells, formed by fusion of macrophages, are a hallmark of granulomatous inflammation. With a genetic approach, we show that signaling through the adaptor protein DAP12 (DNAX activating protein of 12 kD), its associated receptor triggering receptor expressed by myeloid cells 2 (TREM-2), and the downstream protein tyrosine kinase Syk is required for the cytokine-induced formation of giant cells and that overexpression of DAP12 potentiates macrophage fusion. We also present evidence that DAP12 is a general macrophage fusion regulator and is involved in modulating the expression of several macrophage-associated genes, including those encoding known mediators of macrophage fusion, such as DC-STAMP and Cadherin 1. Thus, DAP12 is involved in programming of macrophages through the regulation of gene and protein expression to induce a fusion-competent state. PMID:18957693

  1. DMPD: Cytokines, PGE2 and endotoxic fever: a re-assessment. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15967158 Cytokines, PGE2 and endotoxic fever: a re-assessment. Blatteis CM, Li S, L... (.svg) (.html) (.csml) Show Cytokines, PGE2 and endotoxic fever: a re-assessment. PubmedID 15967158 Title C...ytokines, PGE2 and endotoxic fever: a re-assessment. Authors Blatteis CM, Li S, L

  2. Increased cerebrospinal fluid levels of cytokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Martínez, H R; Escamilla-Ocañas, C E; Camara-Lemarroy, C R; González-Garza, M T; Moreno-Cuevas, J; García Sarreón, M A

    2017-10-10

    Neuroinflammation has recently been described in amyotrophic lateral sclerosis (ALS). However, the precise role of such proinflammatory cytokines as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in ALS has not yet been determined. In this study, we determined cerebrospinal fluid (CSF) MCP-1 and MIP-1β levels and assessed their association with the duration and severity of ALS. Concentrations of MCP-1 and MIP-1β were determined in the CSF of 77 patients diagnosed with ALS and 13 controls. Cytokine levels were analysed in relation to ALS duration (12months) and severity (30points on the ALS Functional Rating Scale administered at hospital admission). Higher CSF MIP-1β (10.68pg/mL vs. 4.69pg/mL, P<.0001) and MCP-1 (234.89pg/mL vs. 160.95pg/mL, P=.011) levels were found in the 77 patients with ALS compared to controls. There were no differences in levels of either cytokine in relation to disease duration or severity. However, we did observe a significant positive correlation between MIP-1β and MCP-1 in patients with ALS. The increase in MIP-1β and MCP-1 levels suggests that these cytokines may have a synergistic effect on ALS pathogenesis. However, in our cohort, no association was found with either the duration or the clinical severity of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jiřina; Štreitová, Denisa

    2007-01-01

    Roč. 7, č. 10 (2007), s. 1369-1374 ISSN 1567-5769 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : immunomodulator IMUNOR * macrophage * nitric oxide Subject RIV: BO - Biophysics Impact factor: 2.066, year: 2007

  4. Withaferin A Associated Differential Regulation of Inflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Seema Dubey

    2018-02-01

    Full Text Available A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA. Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β, CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.

  5. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains

    NARCIS (Netherlands)

    Kunnen, A.; Dekker, D.C.; van Pampus, M.G.; Harmsen, H.J.; Aarnoudse, J.G.; Abbas, F.; Faas, M.M.

    Objective: Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their

  6. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Rossi, Elio; Longo, Francesca; Barbagallo, Marialuisa; Peano, Clelia; Consolandi, Clarissa; Pietrelli, Alessandro; Jaillon, Sebastian; Garlanda, Cecilia; Landini, Paolo

    2016-01-01

    Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.

  7. [Macrophage colony stimulating factor enhances non-small cell lung cancer invasion and metastasis by promoting macrophage M2 polarization].

    Science.gov (United States)

    Li, Y J; Yang, L; Wang, L P; Zhang, Y

    2017-06-23

    Objective: To investigate the key cytokine which polarizes M2 macrophages and promotes invasion and metastasis in non-small cell lung cancer (NSCLC). Methods: After co-culture with A549 cells in vitro, the proportion of CD14(+) CD163(+) M2 macrophages in monocytes and macrophage colony stimulating factor (M-CSF) levels in culture supernatant were detected by flow cytometry, ELISA assay and real-time qPCR, respectively. The effects of CD14(+) CD163(+) M2 macrophages on invasion of A549 cells and angiogenesis of HUVEC cells were measured by transwell assay and tubule formation assay, respectively. The clinical and prognostic significance of M-CSF expression in NSCLC was further analyzed. Results: The percentage of CD14(+) CD163(+) M2 macrophages in monocytes and the concentration of M-CSF in the supernatant followed by co-culture was (12.03±0.46)% and (299.80±73.76)pg/ml, respectively, which were significantly higher than those in control group [(2.80±1.04)% and (43.07±11.22)pg/ml, respectively, P macrophages in vitro . M2 macrophages enhanced the invasion of A549 cells (66 cells/field vs. 26 cells/field) and the angiogenesis of HUVEC cells (22 tubes/field vs. 8 tubes/field). The mRNA expression of M-CSF in stage Ⅰ-Ⅱ patients (16.23±4.83) was significantly lower than that in stage Ⅲ-Ⅳ (53.84±16.08; P macrophages, which can further promote the metastasis and angiogenesis of NSCLC. M-CSF could be used as a potential therapeutic target of NSCLC.

  8. Viral Pseudo Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production

    Science.gov (United States)

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-01-01

    SUMMARY RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologues of phosphoribosylformyglycinamide synthase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homologue thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. PMID:25752576

  9. Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation

    DEFF Research Database (Denmark)

    Fux, Michaela; van Rooijen, Nico; Owens, Trevor

    2008-01-01

    We have addressed the role of macrophages in glial response and T cell entry to the CNS after axonal injury, by using intravenous injection of clodronate-loaded mannosylated liposomes, in C57BL6 mice. As expected, clodronate-liposome treatment resulted in depletion of peripheral macrophages which...... delay in the expansion of CD45(dim) CD11b(+) microglia in clodronate-liposome treated mice, but macrophage depletion had no effect on the percentage of infiltrating T cells in the lesion-reactive hippocampus. Lesion-induced TNFalpha mRNA expression was not affected by macrophage depletion, suggesting...... that activated glial cells are the primary source of this cytokine in the axonal injury-reactive brain. This identifies a potentially important distinction from inflammatory autoimmune infiltration in EAE, where macrophages are a prominent source of TNFalpha and their depletion prevents parenchymal T cell...

  10. The Anti-Inflammatory Effects of Lion's Mane Culinary-Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes) in a Coculture System of 3T3-L1 Adipocytes and RAW264 Macrophages.

    Science.gov (United States)

    Mori, Koichiro; Ouchi, Kenji; Hirasawa, Noriyasu

    2015-01-01

    Chronic low-grade inflammation in the adipose tissue accompanying obesity is thought to be an underlying driver of metabolic diseases. In this study, we aimed to investigate the efficacy of Hericium erinaceus on adipose tissue inflammation. The anti-inflammatory effects of the ethyl acetate soluble fraction of H. erinaceus (EAHE) were examined using cocultures of 3T3-L1 adipocytes and RAW264 macrophages. EAHE significantly suppressed tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in cultured RAW264 macrophages stimulated by lipopolysaccharide (LPS). EAHE also caused notable inhibition of c-Jun N-terminal kinase (JNK) activation, which is thought to be involved in the suppression of proinflammatory cytokines by EAHE. In a coculture system with 3T3-L1 and RAW264 cells stimulated with LPS, EAHE reduced TNF-α and IL-6 concentrations in the conditioned medium and lowered the gene expression levels of these cytokines in 3T3-L1 adipocytes. Furthermore, EAHE suppressed the LPS-induced reduction of adiponectin mRNA levels in 3T3-L1 adipocytes cocultured with RAW264 macrophages. However, in 3T3-L1 adipocytes cultured alone, the concentration of LPS used in this study did not affect the gene expression levels of these adipokines. We attributed the anti-inflammatory effects of EAHE on 3T3-L1 adipocytes cocultured with RAW264 macrophages to the suppression of Toll-like receptor 4 (TLR4) signaling and subsequent proinflammatory cytokine secretion in RAW264 cells. Our findings indicate the possibility that H. erinaceus exerts anti-inflammatory effects on macrophages through the inhibition of TLR4-JNK signaling and prevents or ameliorates adipose tissue inflammation associated with obesity.

  11. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice.

    Directory of Open Access Journals (Sweden)

    Savita Khanna

    2010-03-01

    Full Text Available Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site, efficient dead cell clearance (efferocytosis is a pre-requisite for the timely resolution of inflammation and successful healing.Macrophages isolated from wounds of diabetic mice showed significant impairment in efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients. Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from pro-inflammatory to an anti-inflammatory mode.Taken together, this study presents first evidence demonstrating that diabetic wounds suffer from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in turn, prolongs the inflammatory phase and complicates wound healing.

  12. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures

    Directory of Open Access Journals (Sweden)

    Studzinski Diane

    2009-01-01

    Full Text Available Abstract Background Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS in multiple sclerosis (MS. Methods We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M. Results In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE, related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1 seen at 6 hours with microarray. Conclusion Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter

  13. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Wang, Yong [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Weng, Zhiping; Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Harrod, Kevin S. [Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S., E-mail: treena@uab.edu [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-10-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4{sup +/+} wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4{sup +/−} heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca{sup ++} homeostasis. ATO induces Ca{sup ++}-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca{sup ++} homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4{sup +/−} mice

  14. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Wang, Yong; Weng, Zhiping; Elmets, Craig A.; Harrod, Kevin S.; Deshane, Jessy S.; Athar, Mohammad

    2016-01-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4 +/+ wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4 +/− heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca ++ homeostasis. ATO induces Ca ++ -dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca ++ homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4 +/− mice. • Changes in macrophage

  15. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Energy Technology Data Exchange (ETDEWEB)

    Aldossari, Abdullah A.; Shannahan, Jonathan H. [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States); Podila, Ramakrishna [Clemson University, Department of Physics and Astronomy (United States); Brown, Jared M., E-mail: jared.brown@ucdenver.edu [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States)

    2015-07-15

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf-α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  16. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Science.gov (United States)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  17. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity.

    Directory of Open Access Journals (Sweden)

    Zhonghan Yang

    Full Text Available Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies.

  18. Strain-dependent release of cytokines modulated by Lactobacillus salivarius human isolates in an in vitro model

    Directory of Open Access Journals (Sweden)

    Nicola Lucia

    2010-02-01

    Full Text Available Abstract Background Oral administration of probiotics is known to modulate cytokines profile not only locally, but also systemically. Four strains of Lactobacillus salivarius, LDR0723, BNL1059, RGS1746 and CRL1528, were evaluated for their ability to modulate release of pro- and anti-inflammatory cytokines. Findings Strains were assessed for effects on production of Interleukin-12 (IL-12, Interferon-γ (IFN-γ, Interleukin-4 (IL-4 and Interleukin-5 (IL-5 by incubating bacterial suspensions with THP-1 macrophage like cells. Cytokines were determined by means of specific quantitative enzyme-linked immunosorbent assays. LDR0723 and CRL1528 led to a sustained increment in production of IL-12 and IFN-γ and to a decrease in release of IL-4 and IL-5, while BNL1059 and RGS1746 favoured Th2 response, leading to a decrease in Th1/Th2 ratio with respect to unstimulated cells. Conclusions In conclusion, capability of L. salivarius to modulate immune response was strictly strain dependent and strains of the same species might have opposite effects. Therefore, a careful evaluation of anti-inflammatory properties of lactobacilli should be performed on single strain, before any consideration on potential probiotic use.

  19. Effect of Depleting Tumor-Associated Macrophages on Breast Cancer Growth and Response to Chemotherapy

    National Research Council Canada - National Science Library

    Tsan, Min-Fu; Gao, Baochong

    2005-01-01

    Tumor-associated macrophages may comprise up to 50% of the tumor mass in breast cancer and are capable of producing estrogen and angiogenic cytokines that regulate the growth and angiogenesis of breast cancer...

  20. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses.

    Directory of Open Access Journals (Sweden)

    Elyse Kozlowski

    Full Text Available Alveolar macrophages orchestrate pulmonary innate immunity and are essential for early immune surveillance and clearance of microorganisms in the airways. Inflammatory signaling must be sufficiently robust to promote host defense but limited enough to prevent excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-transcriptional mechanisms of inflammatory gene expression to delicately balance the elaboration of immune mediators. RNA terminal uridyltransferases (TUTs, including the closely homologous family members Zcchc6 (TUT7 and Zcchc11 (TUT4, have been implicated in the post-transcriptional regulation of inflammation from studies conducted in vitro. In vivo, we observed that Zcchc6 is expressed in mouse and human primary macrophages. Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observable spontaneous phenotype under basal conditions. Following an intratracheal challenge with S. pneumoniae, Zcchc6 deficiency led to a modest but significant increase in the expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were recapitulated in vitro whereby Zcchc6-deficient macrophages exhibited similar increases in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to increased neutrophil emigration to the airways during pneumonia, these responses were not sufficient to impact host defense against infection.

  1. Anti-HIV drugs, lopinavir/ritonavir and atazanavir, modulate innate immune response triggered by Leishmania in macrophages: the role of NF-κB and PPAR-γ.

    Science.gov (United States)

    Alves, Érica Alessandra Rocha; de Miranda, Marthina Gomes; Borges, Tatiana Karla; Magalhães, Kelly Grace; Muniz-Junqueira, Maria Imaculada

    2015-02-01

    This study evaluated the influence of HIV protease inhibitors lopinavir/ritonavir (LPV/RTV) and atazanavir (ATV) on macrophage functions during their first interaction with Leishmania. Macrophages from BALB/c mice treated for 10days with LPV/RTV and ATV, infected or not in vitro with L. (L.) amazonensis, were used to investigate the effects of these drugs on infection index, leishmanicidal capacity, cytokine production and PPAR-γ and RelB expression. LPV/RTV and ATV treatments significantly increased the infection index and the percentage of Leishmania-infected macrophages compared to untreated infected macrophages. There was no correlated increase in the production of NO and H2O2 leishmanicidal molecules. Promastigotes derived from Leishmania-infected macrophages from LPV/RTV and ATV-treated BALB/c mice had an in vitro growth 45.1% and 56.4% higher in groups treated with LPV/RTV and ATV than with PBS in culture. ATV treatment reduced IL-12p70 and IL-10 secretion in Leishmania-infected macrophages, but had no effect on IL-23 and TNF production. LPV reduced IL-10 and had no effect on IL-12p70, TNF and IL-23 secretion. ATV treatment decreased PPAR-γ expression in Leishmania-infected macrophages compared to untreated infected macrophages. In addition, LPV/RTV, but not ATV, reduced RelB cytoplasm-to-nucleus translocation in Leishmania-infected macrophages. Results showed that LPV/RTV and ATV HIV protease inhibitors were able to modulate innate defense mechanisms against Leishmania via different intracellular pathways. Although HIV protease inhibitors are highly efficient to control the Human Immunodeficiency Virus, these drugs might also influence the course of leishmaniasis in HIV-Leishmania-co-infected individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Lewis Lung Cancer Cells Promote SIGNR1(CD209b)-Mediated Macrophages Polarization Induced by IL-4 to Facilitate Immune Evasion.

    Science.gov (United States)

    Yan, Xiaolong; Li, Wenhai; Pan, Lei; Fu, Enqing; Xie, Yonghong; Chen, Min; Mu, Deguang

    2016-05-01

    Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion. © 2015 Wiley Periodicals, Inc.

  3. Alveolar macrophage release of tumor necrosis factor-alpha in chronic alcoholics without liver disease.

    Science.gov (United States)

    Omidvari, K; Casey, R; Nelson, S; Olariu, R; Shellito, J E

    1998-05-01

    Alcohol is an immunosuppressive drug, and chronic abuse has been associated with increased susceptibility to a variety of infections, including bacterial pneumonia and tuberculosis. Alveolar macrophages are the resident phagocytes of the lung and play a central role in lung host defenses against infection ranging from direct antibacterial activity to the release of proinflammatory cytokines such as tumor necrosis factor-alpha (TNFalpha). TNFalpha, in particular, plays a key role in the development of the early inflammatory response. In this study, we investigated the effects of chronic alcohol consumption on alveolar macrophage release of TNFalpha in vitro. We prospectively studied lipopolysaccharide (LPS)-stimulated release of TNFalpha from alveolar macrophages obtained from bronchoalveolar lavage fluid (BALF) in 22 alcoholic (18 smokers, 4 nonsmokers) and 7 nondrinking healthy volunteers (3 smokers, 4 nonsmokers). The total number of cells recovered by bronchoalveolar lavage (BAL) and their differential distribution were not significantly different in alcoholics versus controls (43 +/- 8 x 10(6) and 39 +/- 13 x 10(6), respectively). However, the total number of cells recovered from BALF was significantly higher in smokers (51 +/- 8 x 10(6)) than in nonsmokers (19 +/- 5 x 10(6)). Spontaneous (basal) release of TNFalpha by alveolar macrophages was the same in alcoholics and controls. In contrast, LPS-stimulated release of TNFalpha was significantly suppressed in alcoholics compared with that of controls (1343 +/- 271 vs. 3806 +/- 926 U TNF/ml/10(6) cells, respectively, p < 0.015). When controlled for smoking, LPS-stimulated TNFalpha production was suppressed in alcoholic nonsmokers (563 +/- 413 U TNF/ml/10(6)) compared with control nonsmokers (5113 +/- 1264 U TNF/ml/10(6)). LPS-stimulated TNFalpha production was also less in control smokers (2063 +/- 386 U TNF/ml/10(6) cells) than in control nonsmokers (5113 +/- 1264 U TNF/ml/10(6) cells). There was no difference

  4. Macrophage-mediated response to hypoxia in disease

    Directory of Open Access Journals (Sweden)

    Tazzyman S

    2014-11-01

    Full Text Available Simon Tazzyman,1 Craig Murdoch,2 James Yeomans,1 Jack Harrison,1 Munitta Muthana3 1Department of Oncology, 2School of Clinical Dentistry, 3Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment. Keywords: macrophage, hypoxia, inflammation, cytokine

  5. Alendronate augments interleukin-1{beta} release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Deng; Tamai, Riyoko [Division of Oral Bacteriology, Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611 (Japan); Endo, Yasuo [Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kiyoura, Yusuke [Division of Oral Bacteriology, Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611 (Japan)

    2009-02-15

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, a promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.

  6. Alendronate augments interleukin-1β release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    International Nuclear Information System (INIS)

    Deng Xue; Tamai, Riyoko; Endo, Yasuo; Kiyoura, Yusuke

    2009-01-01

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1β, but not TNFα, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1β production was inhibited by clodronate. Furthermore, caspase-1, a promoter of IL-1β production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1β induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1β release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs

  7. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  8. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  9. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone.

    Science.gov (United States)

    Rajagopal, S P; Hutchinson, J L; Dorward, D A; Rossi, A G; Norman, J E

    2015-08-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell-cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  10. The Probiotic Mixture VSL#3 Alters the Morphology and Secretion Profile of Both Polarized and Unpolarized Human Macrophages in a Polarization-Dependent Manner

    Science.gov (United States)

    Isidro, Raymond A.; Bonilla, Fernando J.; Pagan, Hendrick; Cruz, Myrella L.; Lopez, Pablo; Godoy, Lenin; Hernandez, Siomara; Loucil-Alicea, Raisa Y.; Rivera-Amill, Vanessa; Yamamura, Yasuhiro; Isidro, Angel A.; Appleyard, Caroline B.

    2014-01-01

    Background Patients with Inflammatory Bowel Disease (IBD), most commonly Crohn’s disease (CD) or ulcerative colitis (UC), suffer from chronic intestinal inflammation of unknown etiology. Increased proinflammatory macrophages (M1) have been documented in tissue from patients with CD. Anti-inflammatory macrophages (M2) may play a role in UC given the preponderance of Th2 cytokines in this variant of IBD. Animal and clinical studies have shown that the probiotic VSL#3 can ameliorate signs and symptoms of IBD. Although animal data suggests a modulatory effect on macrophage phenotype, the effect of VSL#3 on human macrophages remains unknown. Objective To determine the effect of the probiotic VSL#3 on the phenotype of polarized (M1/M2) and unpolarized (MΦ) human macrophages. Methods Human monocyte-derived macrophages, generated by culturing monocytes with M-CSF, were left unpolarized or were polarized towards an M1 or an M2 phenotype by culture with LPS and IFN-γ or IL-4, respectively, and were then cultured in the presence or absence of VSL#3 for 3 days. Changes in macrophage morphology were assessed. Cytokine and chemokine levels in supernatants were determined by multiplex assay. Results VSL#3 decreased the granuloma-like aggregates of M1 macrophages, increased fibroblast-like M2 macrophages, and decreased fibroblast-like MΦ macrophages. VSL#3 increased the secretion of IL-1β, IL-6, IL-10, and G-CSF by M1, M2, and MΦ macrophages. VSL#3 exposure maintained the proinflammatory phenotype of M1 macrophages, sustaining IL-12 secretion, increasing IL-23 secretion, and decreasing MDC secretion. Both VSL#3-treated M2 and MΦ macrophages secreted higher levels of anti-inflammatory and pro-healing factors such as IL-1Ra, IL-13, EGF, FGF-2, TGF-α, and VEGF, as well as proinflammatory cytokines, including IL-12 and TNF-α. Conclusion Under our experimental conditions VSL#3 induced a mixed proinflammatory and anti-inflammatory phenotype in polarized and unpolarized

  11. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides.

    Science.gov (United States)

    Pannell, Maria; Labuz, Dominika; Celik, Melih Ö; Keye, Jacqueline; Batra, Arvind; Siegmund, Britta; Machelska, Halina

    2016-10-07

    During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10 5 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the

  12. Effect of Depleting Tumor-Associated Macrophages on Breast Cancer Growth and Response to Chemotherapy

    National Research Council Canada - National Science Library

    Tsan, Min-Fu

    2004-01-01

    Tumor-associated macrophages (TAM) may comprise up to 50% of the tumor mass in breast cancer and are capable of producing estrogen and angiogenic cytokines that regulate the growth and angiogenesis of breast cancer...

  13. Cytokine-Modulating Strategies and Newer Cytokine Targets for Arthritis Therapy

    Directory of Open Access Journals (Sweden)

    Shivaprasad H. Venkatesha

    2014-12-01

    Full Text Available Cytokines are the key mediators of inflammation in the course of autoimmune arthritis and other immune-mediated diseases. Uncontrolled production of the pro-inflammatory cytokines such as interferon-γ (IFN-γ, tumor necrosis factor α (TNFα, interleukin-6 (IL-6, and IL-17 can promote autoimmune pathology, whereas anti-inflammatory cytokines including IL-4, IL-10, and IL-27 can help control inflammation and tissue damage. The pro-inflammatory cytokines are the prime targets of the strategies to control rheumatoid arthritis (RA. For example, the neutralization of TNFα, either by engineered anti-cytokine antibodies or by soluble cytokine receptors as decoys, has proven successful in the treatment of RA. The activity of pro-inflammatory cytokines can also be downregulated either by using specific siRNA to inhibit the expression of a particular cytokine or by using small molecule inhibitors of cytokine signaling. Furthermore, the use of anti-inflammatory cytokines or cytokine antagonists delivered via gene therapy has proven to be an effective approach to regulate autoimmunity. Unexpectedly, under certain conditions, TNFα, IFN-γ, and few other cytokines can display anti-inflammatory activities. Increasing awareness of this phenomenon might help develop appropriate regimens to harness or avoid this effect. Furthermore, the relatively newer cytokines such as IL-32, IL-34 and IL-35 are being investigated for their potential role in the pathogenesis and treatment of arthritis.

  14. The absence of MyD88 has no effect on the induction of alternatively activated macrophage during Fasciola hepatica infection

    Directory of Open Access Journals (Sweden)

    Luo HongLin

    2011-11-01

    Full Text Available Abstract Background Alternatively activated macrophages (AAMϕ play important roles in allergies and responses to parasitic infections. However, whether signaling through toll-like receptors (TLRs plays any role in AAMϕ induction when young Fasciola hepatica penetrates the liver capsule and migrates through the liver tissue is still unclear. Results The data show that the lack of myeloid differentiation factor 88 (MyD88 has no effect on the AAMϕ derived from the bone marrow (BMMϕ in vitro and does not impair the mRNA expression of arginase-1, resistin-like molecule (RELMα, and Ym1 in BMMϕs. The Th2 cytokine production bias in splenocytes was not significantly altered in F. hepatica-infected mice in the absence of MyD88 in vitro and in the pleural cavity lavage in vivo. In addition, MyD88-deficiency has no effect on the arginase production of the F. hepatica elicited macrophages (Fe Mϕs, production of RELMα and Ym1 proteins and mRNA expression of Ym1 and RELMα of macrophages in the peritoneal cavity 6 weeks post F. hepatica infection. Conclusions The absence of MyD88 has no effect on presence of AAMϕ 6 weeks post F. hepatica infection.

  15. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    Science.gov (United States)

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug.

  16. MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset.

    Directory of Open Access Journals (Sweden)

    Hannelie Korf

    Full Text Available Macrophages contribute in the initiation and progression of insulitis during type 1 diabetes (T1D. However, the mechanisms governing their recruitment into the islets as well as the manner of retention and activation are incompletely understood. Here, we investigated a role for macrophage migration inhibitory factor (MIF and its transmembrane receptor, CD74, in the progression of T1D. Our data indicated elevated MIF concentrations especially in long-standing T1D patients and mice. Additionally, NOD mice featured increased MIF gene expression and CD74+ leukocyte frequencies in the pancreas. We identified F4/80+ macrophages as the main immune cells in the pancreas expressing CD74 and showed that MIF antagonism of NOD macrophages prevented their activation-induced cytokine production. The physiological importance was highlighted by the fact that inhibition of MIF delayed the onset of autoimmune diabetes in two different diabetogenic T cell transfer models. Mechanistically, macrophages pre-conditioned with the MIF inhibitor featured a refractory capacity to trigger T cell activation by keeping them in a naïve state. This study underlines a possible role for MIF/CD74 signaling pathways in promoting macrophage-mediated inflammation in T1D. As therapies directed at the MIF/CD74 pathway are in clinical development, new opportunities may be proposed for arresting T1D progression.

  17. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction

    Science.gov (United States)

    Ma, Yonggang; Mouton, Alan J.; Lindsey, Merry L.

    2018-01-01

    Macrophages play critical roles in homeostatic maintenance of the myocardium under normal conditions and in tissue repair after injury. In the steady-state heart, resident cardiac macrophages remove senescent and dying cells and facilitate electrical conduction. In the aging heart, the shift in macrophage phenotype to a proinflammatory subtype leads to inflammaging. Following myocardial infarction (MI), macrophages recruited to the infarct produce both proinflammatory and anti-inflammatory mediators (cytokines, chemokines, matrix metalloproteinases, and growth factors), phagocytize dead cells, and promote angiogenesis and scar formation. These diverse properties are attributed to distinct macrophage subtypes and polarization status. Infarct macrophages exhibit a proinflammatory M1 phenotype early and become polarized toward an anti-inflammatory M2 phenotype later post- MI. Although this classification system is oversimplified and needs to be refined to accommodate the multiple different macrophage subtypes that have been recently identified, general concepts on macrophage roles are independent of subtype classification. This review summarizes current knowledge about cardiac macrophage origins, roles, and phenotypes in the steady state, with aging, and after MI, as well as highlights outstanding areas of investigation. PMID:29106912

  18. Stimulation of alveolar macrophages by BCG vaccine enhances the process of lung fibrosis induced by bleomycin.

    Science.gov (United States)

    Chyczewska, E; Chyczewski, L; Bańkowski, E; Sułkowski, S; Nikliński, J

    1993-01-01

    It was found that the BCG vaccine injected subcutaneously to the rats enhances the process of lung fibrosis induced by bleomycin. Pretreatment of rats with this vaccine results in accumulation of activated macrophages in lung interstitium and in the bronchoalveolar spaces. It may be suggested that the activated macrophages release various cytokines which may stimulate the proliferation of fibroblasts and biosynthesis of extracellular matrix components.

  19. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages.

    Science.gov (United States)

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; Loyola, Elva; Escobedo, Dante; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Torres, Martha; Sada, Eduardo

    2014-09-25

    Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan fragments that localize to the cytosol. NOD1 activation triggers inflammation, antimicrobial mechanisms and autophagy in both epithelial cells and murine macrophages. NOD1 mediates intracellular pathogen clearance in the lungs of mice; however, little is known about NOD1's role in human alveolar macrophages (AMs) or its involvement in Mycobacterium tuberculosis (Mtb) infection. AMs, monocytes (MNs), and monocyte-derived macrophages (MDMs) from healthy subjects were assayed for NOD1 expression. Cells were stimulated with the NOD1 ligand Tri-DAP and cytokine production and autophagy were assessed. Cells were infected with Mtb and treated with Tri-DAP post-infection. CFUs counting determined growth control, and autophagy protein recruitment to pathogen localization sites was analyzed by immunoelectron microscopy. NOD1 was expressed in AMs, MDMs and to a lesser extent MNs. Tri-DAP stimulation induced NOD1 up-regulation and a significant production of IL1β, IL6, IL8, and TNFα in AMs and MDMs; however, the level of NOD1-dependent response in MNs was limited. Autophagy activity determined by expression of proteins Atg9, LC3, IRGM and p62 degradation was induced in a NOD1-dependent manner in AMs and MDMs but not in MNs. Infected AMs could be activated by stimulation with Tri-DAP to control the intracellular growth of Mtb. In addition, recruitment of NOD1 and the autophagy proteins IRGM and LC3 to the Mtb localization site was observed in infected AMs after treatment with Tri-DAP. NOD1 is involved in AM and MDM innate responses, which include proinflammatory cytokines and autophagy, with potential implications in the killing of Mtb in humans.

  20. NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus.

    Science.gov (United States)

    Silveira, Tatiana N; Gomes, Marco Túlio R; Oliveira, Luciana S; Campos, Priscila C; Machado, Gabriela G; Oliveira, Sergio C

    2017-01-01

    Brucella abortus is the causative agent of brucellosis, which causes abortion in domestic animals and undulant fever in humans. This bacterium infects and proliferates mainly in macrophages and dendritic cells, where it is recognized by pattern recognition receptors (PRRs) including Nod-like receptors (NLRs). Our group recently demonstrated the role of AIM2 and NLRP3 in Brucella recognition. Here, we investigated the participation of NLRP12 in innate immune response to B. abortus. We show that NLRP12 inhibits the early production of IL-12 by bone marrow-derived macrophages upon B. abortus infection. We also observed that NLRP12 suppresses in vitro NF-κB and MAPK signaling in response to Brucella. Moreover, we show that NLRP12 modulates caspase-1 activation and IL-1β secretion in B. abortus infected-macrophages. Furthermore, we show that mice lacking NLRP12 are more resistant in the early stages of B. abortus infection: NLRP12 -/- infected-mice have reduced bacterial burdens in the spleens and increased production of IFN-γ and IL-1β compared with wild-type controls. In addition, NLRP12 deficiency leads to reduction in granuloma number and size in mouse livers. Altogether, our findings suggest that NLRP12 plays an important role in negatively regulating the early inflammatory responses against B. abortus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway

    International Nuclear Information System (INIS)

    Liu, Yanling; Xu, Sanpeng; Xiao, Fei; Xiong, Yan; Wang, Xiaojin; Gao, Sui; Yan, Weiming; Ning, Qin

    2010-01-01

    Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of 'immune coagulation' and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.

  2. Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2017-01-01

    Full Text Available Background/Aims: Nogo-B, a member of the reticulon family of proteins, is mainly located in the endoplasmic reticulum (ER. Here, we investigate the function and mechanism of Nogo-B in the regulation of TLR4-associated immune responses in the macrophage cell line of RAW264.7. Methods: Nogo-B was up- and down-regulated through the use of appropriate adenoviral vectors or siRNA, and the effects of Nogo-B on macrophages under liposaccharide (LPS stimulation were evaluated via western blotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA, flow cytometric analysis, and transwell assay. Results: Our data indicates that the protein of Nogo-B was down-regulated in a time- and dose-dependent manner following LPS administration in the macrophage. Nogo-B overexpression increased the production of inflammatory cytokines (MCP-1, TNF-α, IL-1β, and TGF-β, enhanced macrophage migration activities, activated major histocompatibility complex II (MHC II, and elevated the expression of macrophage scavenger receptor 1(MSR1, all of which suggest that Nogo-B is necessary for immune responses and plays an important role in regulating macrophage recruitment. Mechanistically, Nogo-B may enhance TLR4 expression in macrophage surfaces, activate mitogen-activated protein kinase (MAPK pathways, and initiate inflammatory responses. Conclusion: These findings illustrate the key regulatory functions of Nogo-B in facilitating LPS-mediated immune responses through promoting the phosphorylation of MAP kinase.

  3. Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach.

    Directory of Open Access Journals (Sweden)

    John S Cho

    2009-09-01

    Full Text Available The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha. How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.We report here the development a completely random short-hairpin RNA (shRNA library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production.Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses.

  4. Th9 cytokines response and its possible implications in the immunopathogenesis of leprosy.

    Science.gov (United States)

    de Sousa, Jorge Rodrigues; Pagliari, Carla; de Almeida, Dandara Simone Maia; Barros, Luiz Fernando Lima; Carneiro, Francisca Regina Oliveira; Dias, Leonidas Braga; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões

    2017-06-01

    Leprosy is an infectious-contagious disease whose clinical evolution depends on the interaction of the infectious agent with the immune response of the host, leading to a clinical spectrum that ranges from lepromatous leprosy (susceptibility, LL) to tuberculoid leprosy (resistance, TT). The immune response profile will depend on the pattern of cytokine production and on the activity of macrophages during infection. Classically, the clinical evolution of leprosy has been associated with Th1/Th2 cytokine profiles, but the role of new cytokine profiles such as T helper 9 (Th9) remains to be elucidated. To evaluate the tissue expression profile of these cytokines, a cross-sectional study was conducted using a sample of 30 leprosy skin lesion biopsies obtained from patients with leprosy, 16 TT and 14 lepromatous LL. Immunohistochemical analysis revealed a significant difference in interleukin (IL)-9, IL-4 transforming growth factor (TGF)-β and IL-10 levels between the two groups. IL-9 was more expressed in TT lesions compared with LL lesions. Higher expression of IL-4, IL-10 and TGF-β was observed in LL compared with TT. IL-4, IL-10 and TGF-β tended to be negatively correlated with the expression of IL-9, indicating a possible antagonistic activity in tissue. The results suggest that Th9 lymphocytes may be involved in the response to Mycobacterium leprae , positively or negatively regulating microbicidal activity of the local immune system in the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis.

    Directory of Open Access Journals (Sweden)

    Joseph N Jarvis

    2015-04-01

    Full Text Available Understanding the host immune response during cryptococcal meningitis (CM is of critical importance for the development of immunomodulatory therapies. We profiled the cerebrospinal fluid (CSF immune-response in ninety patients with HIV-associated CM, and examined associations between immune phenotype and clinical outcome. CSF cytokine, chemokine, and macrophage activation marker concentrations were assayed at disease presentation, and associations between these parameters and microbiological and clinical outcomes were examined using principal component analysis (PCA. PCA demonstrated a co-correlated CSF cytokine and chemokine response consisting primarily of Th1, Th2, and Th17-type cytokines. The presence of this CSF cytokine response was associated with evidence of increased macrophage activation, more rapid clearance of Cryptococci from CSF, and survival at 2 weeks. The key components of this protective immune-response were interleukin (IL-6 and interferon-γ, IL-4, IL-10 and IL-17 levels also made a modest positive contribution to the PC1 score. A second component of co-correlated chemokines was identified by PCA, consisting primarily of monocyte chemotactic protein-1 (MCP-1 and macrophage inflammatory protein-1α (MIP-1α. High CSF chemokine concentrations were associated with low peripheral CD4 cell counts and CSF lymphocyte counts and were predictive of immune reconstitution inflammatory syndrome (IRIS. In conclusion CSF cytokine and chemokine profiles predict risk of early mortality and IRIS in HIV-associated CM. We speculate that the presence of even minimal Cryptococcus-specific Th1-type CD4+ T-cell responses lead to increased recruitment of circulating lymphocytes and monocytes into the central nervous system (CNS, more effective activation of CNS macrophages and microglial cells, and faster organism clearance; while high CNS chemokine levels may predispose to over recruitment or inappropriate recruitment of immune cells to the CNS and

  6. Pentose Phosphate Shunt Modulates Reactive Oxygen Species and Nitric Oxide Production Controlling Trypanosoma cruzi in Macrophages

    Directory of Open Access Journals (Sweden)

    Sue-jie Koo

    2018-02-01

    Full Text Available Metabolism provides substrates for reactive oxygen species (ROS and nitric oxide (NO generation, which are a part of the macrophage (Mφ anti-microbial response. Mφs infected with Trypanosoma cruzi (Tc produce insufficient levels of oxidative species and lower levels of glycolysis compared to classical Mφs. How Mφs fail to elicit a potent ROS/NO response during infection and its link to glycolysis is unknown. Herein, we evaluated for ROS, NO, and cytokine production in the presence of metabolic modulators of glycolysis and the Krebs cycle. Metabolic status was analyzed by Seahorse Flux Analyzer and mass spectrometry and validated by RNAi. Tc infection of RAW264.7 or bone marrow-derived Mφs elicited a substantial increase in peroxisome proliferator-activated receptor (PPAR-α expression and pro-inflammatory cytokine release, and moderate levels of ROS/NO by 18 h. Interferon (IFN-γ addition enhanced the Tc-induced ROS/NO release and shut down mitochondrial respiration to the levels noted in classical Mφs. Inhibition of PPAR-α attenuated the ROS/NO response and was insufficient for complete metabolic shift. Deprivation of glucose and inhibition of pyruvate transport showed that Krebs cycle and glycolysis support ROS/NO generation in Tc + IFN-γ stimulated Mφs. Metabolic profiling and RNAi studies showed that glycolysis-pentose phosphate pathway (PPP at 6-phosphogluconate dehydrogenase was essential for ROS/NO response and control of parasite replication in Mφ. We conclude that IFN-γ, but not inhibition of PPAR-α, supports metabolic upregulation of glycolytic-PPP for eliciting potent ROS/NO response in Tc-infected Mφs. Chemical analogs enhancing the glucose-PPP will be beneficial in controlling Tc replication and dissemination by Mφs.

  7. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1 in Human Macrophages

    Directory of Open Access Journals (Sweden)

    G. Chinetti-Gbaguidi

    2016-01-01

    Full Text Available Tissue factor (TF is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa. Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1. Peroxisome proliferator-activated receptor gamma (PPARγ is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway.

  8. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-01-01

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  9. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  10. Serial cytokine alterations and abnormal neuroimaging in newborn infants with encephalopathy.

    Science.gov (United States)

    O'Hare, Fiona M; Watson, R William G; O'Neill, Amanda; Segurado, Ricardo; Sweetman, Deirdre; Downey, Paul; Mooney, Eoghan; Murphy, John; Donoghue, Veronica; Molloy, Eleanor J

    2017-04-01

    Inflammatory cytokines may play a role in the final common pathway in the pathogenesis of hypoxic-ischaemic injury in experimental models. We aimed to profile the systemic pro-and anti-inflammatory response over the first week of life in term infants at risk of neonatal encephalopathy. In a tertiary referral university neonatal intensive care unit, serial blood samples were analysed from 41 term infants (requiring resuscitation at birth) in this prospective observational pilot study. Serum levels of 10 pro-and anti-inflammatory cytokines were evaluated including interleukin(IL)-1α, IL-1β, IL-6, IL-8, IL-10, tumour necrosis factor(TNF)-α, interferon (IFN)-γ, vascular endothelial growth factor (VEGF), granulocyte/colony-stimulating factor (G-CSF) and granulocyte macrophage/colony-stimulating factor (GM-CSF). Infants with neonatal encephalopathy and abnormal neuroimaging (n = 15) had significantly elevated granulocyte macrophage/colony-stimulating factor at 0-24 h and interleukin-8, interleukin-6 and interleukin-10 at 24-48 hour. Tumour necrosis factor-α and vascular endothelial growth factor levels were lower at 72-96 hour (p < 0.05). Significantly elevated levels of interleukin-10 were associated with mortality. Serum cytokine changes and innate immune dysregulation in the first week of life may be indicators of outcome in neonatal encephalopathy but require validation in larger studies. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  11. Taheebo Polyphenols Attenuate Free Fatty Acid-Induced Inflammation in Murine and Human Macrophage Cell Lines As Inhibitor of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Sihui Ma

    2017-12-01

    Full Text Available Aim of studyTaheebo polyphenols (TP are water extracts of Tabebuia spp. (Bignoniaceae, taken from the inner bark of the Tabebuia avellanedae tree, used extensively as folk medicine in Central and South America. Some anti-inflammatory drugs act by inhibiting both cyclooxygenase-2 (COX-2 and COX-1 enzymes. COX-2 syntheses prostaglandin (PG E2, which is a species of endogenous pain-producing substance, whereas COX-1 acts as a house-keeping enzyme. Inhibiting both COX-1 and -2 simultaneously can have side effects such as gastrointestinal bleeding and renal dysfunction. Some polyphenols have been reported for its selective inhibiting activity toward COX-2 expression. Our study aimed to demonstrate the potential and mechanisms of TP as an anti-inflammation action without the side effects of COX-1 inhibition.Materials and methodsFree fatty acid-stimulated macrophage cell lines were employed to mimic macrophage behaviors during lifestyle-related diseases such as atherosclerosis and non-alcoholic steatohepatitis. Real-time polymerase chain reaction was used to detect expression of inflammatory cytokine mRNA. Griess assay was used to measure the production of nitric oxide (NO. ELISA was used to measure PG E2 production. Molecular docking was adopted to analyze the interactions between compounds from T. avellanedae and COX-2.ResultsTP significantly suppressed the production of NO production, blocked the mRNA expression of iNOS, and COX-2 in both cell lines, blocked the mRNA expression of TNF-α, IL-1β, IL-6, and PGE2 in the murine cell line. However, there was no inhibitory effect on COX-1. Molecular docking result indicated that the inhibitory effects of TP on COX-2 and PGE2 could be attributed to acteoside, which is the main compound of TP that could bind to the catalytic zone of COX-2. After the interaction, catalytic ability of COX-2 is possibly inhibited, followed by which PGE2 production is attenuated. COX inhibitor screening assay showed TP as a

  12. Oral Administration of p-Hydroxycinnamic Acid Attenuates Atopic Dermatitis by Downregulating Th1 and Th2 Cytokine Production and Keratinocyte Activation.

    Directory of Open Access Journals (Sweden)

    Hyun-Su Lee

    Full Text Available Atopic dermatitis (AD is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production.

  13. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Ambrozova, Gabriela; Pekarova, Michaela; Lojek, Antonin

    2011-02-01

    Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production. The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively. Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion

    OpenAIRE

    Sárvári, Anitta Kinga; Doan-Xuan, Quang-Minh; Bacsó, Zsolt; Csomós, István; Balajthy, Zoltán; Fésüs, László

    2015-01-01

    Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and h...

  15. Activation of macrophage mediated host defense against Salmonella typhimurium by Morus alba L.

    Science.gov (United States)

    Chang, BoYoon; Koo, BongSeong; Lee, HyeonCheol; Oh, Joa Sub; Kim, SungYeon

    2018-01-01

    The innate immune system plays a crucial role in the initiation and subsequent direction of adaptive immune responses, as well as in the removal of pathogens that have been targeted by an adaptive immune response. Morus alba L. was reported to have immunostimulatory properties that might protect against infectious diseases. However, this possibility has not yet been explored. The present study investigated the protective and immune-enhancing ability of M. alba L. against infectious disease and the mechanisms involved. To investigate the immune-enhancing effects of M. alba L., we used a bacterial infection model. The lifespan of mice infected with a lethal dose of Salmonella typhimurium (1 × 10 7 colony forming units - CFU) was significantly extended when they were administered M. alba L. Furthermore, M. alba L. activated macrophages, monocytes, and neutrophils and induced Th1 cytokines (IL-12, IFN-γ, TNF-α) in mice infected with a sublethal dose (1 × 10 5 CFU) of S. typhimurium . M. alba L. significantly stimulated the uptake of bacteria into peritoneal macrophages as indicated by increased phagocytosis. Peritoneal macrophages derived from C3H/HeJ mice significantly inhibited M. alba L. induced NO production and TNF-α secretion compared with peritoneal macrophages derived from C3H/HeN mice. These results suggest that the innate immune activity of M. alba L. against bacterial infection in mice occurs through activation of the TLR4 signaling pathway.

  16. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells

    Directory of Open Access Journals (Sweden)

    Murphy Fiona A

    2012-04-01

    Full Text Available Abstract Carbon nanotubes (CNT are high aspect ratio nanoparticles with diameters in the nanometre range but lengths extending up to hundreds of microns. The structural similarities between CNT and asbestos have raised concern that they may pose a similar inhalation hazard. Recently CNT have been shown to elicit a length-dependent, asbestos-like inflammatory response in the pleural cavity of mice, where long fibres caused inflammation but short fibres did not. However the cellular mechanisms governing this response have yet to be elucidated. This study examined the in vitro effects of a range of CNT for their ability to stimulate the release of the acute phase cytokines; IL-1β, TNFα, IL-6 and the chemokine, IL-8 from both Met5a mesothelial cells and THP-1 macrophages. Results showed that direct exposure to CNT resulted in significant cytokine release from the macrophages but not mesothelial cells. This pro-inflammatory response was length dependent but modest and was shown to be a result of frustrated phagocytosis. Furthermore the indirect actions of the CNT were examined by treating the mesothelial cells with conditioned media from CNT-treated macrophages. This resulted in a dramatic amplification of the cytokine release from the mesothelial cells, a response which could be attenuated by inhibition of phagocytosis during the initial macrophage CNT treatments. We therefore hypothesise that long fibres elicit an inflammatory response in the pleural cavity via frustrated phagocytosis in pleural macrophages. The activated macrophages then stimulate an amplified pro-inflammatory cytokine response from the adjacent pleural mesothelial cells. This mechanism for producing a pro-inflammatory environment in the pleural space exposed to long CNT has implications for the general understanding of fibre-related pleural disease and design of safe nanofibres.

  17. Requirement for C-X-C chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) in IgG immune complex-induced lung injury

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Warner, R L

    1997-01-01

    chemokines, macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC). Both mRNA and protein for MIP-2 and CINC appeared in a time-dependent manner after initiation of IgG immune complex deposition in lung. There exists a 69% homology between the amino acid sequences...... for these proteins, and we found cross-reactivity between polyclonal Abs raised to these chemokines. By purifying the blocking Abs using double affinity methods (with Ag-immobilized beads), this cross-reactivity was removed. Individually, anti-MIP-2 and anti-CINC Ab significantly reduced lung injury (as measured...... activity in BAL fluids collected 2 h after injury from animals undergoing immune complex deposition could be shown to be chiefly due to the combined contributions of MIP-2 (39%), CINC (28%), and C5a (21%). When either MIP-2 or CINC was blocked in vivo, up-regulation of Mac-1 expression on neutrophils...

  18. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    Science.gov (United States)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  19. TNF-α and IL-1β Dependent Induction of CCL3 Expression by Nucleus Pulposus Cells Promotes Macrophage Migration through CCR1

    Science.gov (United States)

    Wang, Jianru; Tian, Ye; Phillips, Kate L.E.; Chiverton, Neil; Haddock, Gail; Bunning, Rowena A.; Cross, Alison K.; Shapiro, Irving M.; LeMaitre, Christine L.; Risbud, Makarand V.

    2012-01-01

    Objective To investigate TNF-α and IL-1β regulation of CCL3 expression in nucleus pulposus (NP) cells and in macrophage migration. Methods qRT-PCR and immunohistochemistry were used to measure CCL3 expression in NP cells. Transfections were used to determine the role of NF-κB, C/EBP-β and MAPK on cytokine mediated CCL3 promoter activity. Effect of NP-conditioned medium on macrophage migration was measured using a transwell system. Results An increase in CCL3 expression and promoter activity was observed in NP cells after TNF-α or IL-1β treatment. Treatment of cells with NF-κB and MAPK inhibitors abolished the effect of the cytokines on CCL3 expression. The inductive effect of p65 and C/EBP-β on CCL3 promoter was confirmed through gain- and loss-of-function studies. Noteworthy, co-transfection of p50 completely blocked cytokine and p65 dependent induction. In contrast, c-Rel and RelB had little effect on promoter activity. Lentiviral transduction with Sh-p65 and Sh-Ikkβ significantly decreased TNF-α dependent increase in CCL3 expression. Analysis of degenerate human NP tissues showed that CCL3, but not CCL4 expression correlated positively with the grade of tissue degeneration. Importantly, treatment of macrophages with conditioned medium of NP cells treated with TNF-α or IL-1β promoted their migration; pretreatment of macrophages with antagonist to CCR1, primary receptor for CCL3 and CCL4, blocked cytokine mediated migration. Conclusions By controlling the activation of MAPK, NF-κB and C/EBPβ signaling, TNF-α and IL-1β modulate the expression of CCL3 in NP cells. The CCL3-CCR1 axis may play an important role in promoting macrophage infiltration in degenerate, herniated discs. PMID:23233369

  20. Immunoregulatory mechanisms of macrophage PPAR γ in mice with experimental inflammatory bowel disease

    Science.gov (United States)

    Hontecillas, Raquel; Horne, William T.; Climent, Montse; Guri, Amir J.; Evans, C.; Zhang, Y.; Sobral, Bruno W.; Bassaganya-Riera, Josep

    2010-01-01

    Peroxisome proliferator-activated receptor γ (PPAR γ) is widely expressed in macrophages and has been identified as a putative target for the development of novel therapies against inflammatory bowel disease (IBD). Computational simulations identified macrophages as key targets for therapeutic interventions against IBD. This study aimed to characterize the mechanisms underlying the beneficial effects of macrophage PPAR γ in IBD. Macrophage-specific PPAR γ deletion significantly exacerbated clinical activity and colonic pathology, impaired the splenic and mesenteric lymph node regulatory T cell compartment, increased percentages of LP CD8+ T cells, increased surface expression of CD40, Ly6C, and TLR-4 in LP macrophages, and upregulated expression of colonic IFN-γ, CXCL9, CXCL10, IL-22, IL1RL1, CCR1, suppressor of cytokine signaling 3 and MCH class II in mice with IBD. Moreover, macrophage PPAR γ was required for accelerating pioglitazone-mediated recovery from DSS colitis, providing a cellular target for the anti-inflammatory effects of PPAR γ agonists in IBD. PMID:21068720

  1. Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease.

    Science.gov (United States)

    Hontecillas, R; Horne, W T; Climent, M; Guri, A J; Evans, C; Zhang, Y; Sobral, B W; Bassaganya-Riera, J

    2011-05-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) is widely expressed in macrophages and has been identified as a putative target for the development of novel therapies against inflammatory bowel disease (IBD). Computational simulations identified macrophages as key targets for therapeutic interventions against IBD. This study aimed to characterize the mechanisms underlying the beneficial effects of macrophage PPAR-γ in IBD. Macrophage-specific PPAR-γ deletion significantly exacerbated clinical activity and colonic pathology, impaired the splenic and mesenteric lymph node regulatory T-cell compartment, increased percentages of lamina propria (LP) CD8+ T cells, increased surface expression of CD40, Ly6C, and Toll-like receptor 4 (TLR-4) in LP macrophages, and upregulated expression of colonic IFN-γ, CXCL9, CXCL10, IL-22, IL1RL1, CCR1, suppressor of cytokine signaling 3, and MHC class II in mice with IBD. Moreover, macrophage PPAR-γ was required for accelerating pioglitazone-mediated recovery from dextran sodium sulfate (DSS) colitis, providing a cellular target for the anti-inflammatory effects of PPAR-γ agonists in IBD.

  2. The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells.

    Science.gov (United States)

    Gauliard, Benoit; Grieve, Douglas; Wilson, Rhoda; Crozier, Alan; Jenkins, Carol; Mullen, William D; Lean, Michael

    2008-06-01

    Levels of inflammatory cytokines are raised in chronic obstructive pulmonary disease (COPD). A diet rich in antioxidant vitamins may protect against the development of COPD. This study examined the effects of phenolic compounds and food sources on cytokine and antioxidant production by A549 cells. The effects of the following phenolic compounds on basal and interleukin (IL)-1-stimulated release of IL-8, IL-6, and reduced glutathione (GSH) were examined: resveratrol; Bouvrage, a commercially available raspberry juice (Ella Drinks Ltd., Alloa, Clacksmannanshire, UK); and quercetin 3'-sulfate. Purification of the raspberry juice by high-performance liquid chromatography gave three fractions: Fraction 1 contained phenolic acid and vitamin C, Fraction 2 contained flavonoids and ellagic acid, and Fraction 3 contained anthocyanins and ellagitannins. IL-8 production was increased in the presence of IL-1 (165 vs. 6,011 pg/mL, P or =50 micromol/mL significantly inhibited IL-8 and IL-6 production. Similar findings were made with raspberry juice at concentrations > or =25 microL/mL, and Fractions 1 and 3 were best able to inhibit IL-8 production. Quercetin 3'-sulfate, at 25 micromol/mL, inhibited IL-8 and IL-6 production. The changes observed in IL-8 were paralleled by changes in tumor necrosis factor-alpha. Thus, phenolic compounds can significantly alter cytokine and antioxidant production.

  3. The elusive antifibrotic macrophage

    Directory of Open Access Journals (Sweden)

    Adhyatmika eAdhyatmika

    2015-11-01

    Full Text Available Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e. antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behaviour stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behaviour in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behaviour.

  4. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    International Nuclear Information System (INIS)

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B 4 (LTB 4 ) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT 1 (cysLT 1 ) receptor antagonist, REV-5901 as well as a BLT 1 receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB 4 and cysLT (LTC 4 and LTD 4 ) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB 4 and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  5. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Directory of Open Access Journals (Sweden)

    Tapas K. Nayak

    2017-01-01

    Full Text Available Chikungunya virus (CHIKV infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6 MHC-I/II and B7.2 (CD86 were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  6. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages.

    Science.gov (United States)

    Nayak, Tapas K; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K; Sahoo, Subhransu S; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-06

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  7. Thunbergia alata inhibits inflammatory responses through the inactivation of ERK and STAT3 in macrophages.

    Science.gov (United States)

    Cho, Young-Chang; Kim, Ye Rang; Kim, Ba Reum; Bach, Tran The; Cho, Sayeon

    2016-11-01

    Thunbergia alata (Acanthaceae) has been used traditionally to treat various inflammatory diseases such as fever, cough and diarrhea in East African countries including Uganda and Kenya. However, systemic studies elucidating the anti-inflammatory effects and precise mechanisms of action of T. alata have not been conducted, to the best of our knowledge. To address these concerns, we explored the anti-inflammatory effects of a methanol extract of T. alata (MTA) in macrophages. Non-cytotoxic concentrations of MTA (≤300 µg/ml) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)‑stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase in a dose-dependent manner. The expression of cyclooxygenase-2, the enzyme responsible for the production of prostaglandin E2, was unchanged by MTA at the mRNA and protein levels. MTA treatment inhibited interleukin (IL)-6 production and decreased the mRNA expression of pro‑inflammatory cytokines, including IL-6 and IL-1β. Tumor necrosis factor-α production and mRNA expression were not regulated by MTA treatment. The decreased production of inflammatory mediators by MTA was followed by the reduced phosphorylation of extracellular signal‑regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3). MTA treatment had no effect on activity of other mitogen‑activated protein kinases (MAPKs), p38, c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These results indicate that MTA selectively inhibits the excessive production of inflammatory mediators in LPS-stimulated murine macrophages by reducing the activity of ERK and STAT3, suggesting that MTA plays an important inhibitory role in the modulation of severe inflammation.

  8. Retinoic acid suppresses growth of lesions, inhibits peritoneal cytokine secretion, and promotes macrophage differentiation in an immunocompetent mouse model of endometriosis.

    Science.gov (United States)

    Wieser, Friedrich; Wu, Juanjuan; Shen, Zhaoju; Taylor, Robert N; Sidell, Neil

    2012-06-01

    To determine the effects of all-trans-retinoic acid (RA) on establishment and growth of endometrial lesions, peritoneal interleukin-6 (IL-6) and macrophage chemotactic factor-1 (MCP-1) concentrations, and CD38, CD11b, and F4/80 expression on peritoneal macrophages in an immunocompetent mouse model of endometriosis. Experimental transplantation study using mice. Academic medical center. C57BL/6 recipient mice and syngeneic green fluorescent protein transgenic (GFP+) mice. Recipient mice were inoculated with GFP+ minced uterine tissue to induce endometriosis and treated with RA (400 nmol/day) or vehicle for 17 days (3 days before to 14 days after tissue injection). Total number of GFP+ implants in recipient mice, number of implants showing visible blood vessels, total volume of established lesions per mouse, concentrations of IL-6 and MCP-1 in peritoneal fluid, and expression of CD11b, F4/80, and CD38 on peritoneal macrophages. Retinoic acid treatment for 17 days reduced the number of implants versus controls and decreased the frequency of lesions with vessels. Peritoneal washings in RA-treated animals had lower concentrations of IL-6 and MCP-1 than controls 3 days after endometrial inoculation and lower levels of IL-6 on day 14 after inoculation. Concomitant with these effects on day 14, CD38, CD11b, and F4/80 were higher on macrophages from RA-treated mice versus controls. The development of endometriotic implants is inhibited by RA. This effect may be caused, at least in part, by reduced IL-6 and MCP-1 production and enhanced differentiation of peritoneal macrophages. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  10. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  11. Delayed growth of EL4 lymphoma in SR-A-deficient mice is due to upregulation of nitric oxide and interferon-gamma production by tumor-associated macrophages.

    Science.gov (United States)

    Komohara, Yoshihiro; Takemura, Kenichi; Lei, Xiao Feng; Sakashita, Naomi; Harada, Mamoru; Suzuki, Hiroshi; Kodama, Tatsuhiko; Takeya, Motohiro

    2009-11-01

    Class A scavenger receptors (SR-A, CD204) are highly expressed in tumor-associated macrophages (TAM). To investigate the function of SR-A in TAM, wild-type and SR-A-deficient (SR-A(-/-)) mice were injected with EL4 cells. Although these groups of mice did not differ in the numbers of infiltrating macrophages and lymphocytes and in neovascularization, SR-A(-/-) mice had delayed growth of EL4 tumors. Expression of inducible nitric oxide (NO) synthase and interferon (IFN)-gamma mRNA increased significantly in tumor tissues from SR-A(-/-) mice. Engulfment of necrotic EL4 cells induced upregulation of NO and IFN-gamma production by cultured macrophages, and production of NO and IFN-gamma increased in SR-A(-/-) macrophages in vitro. IFN-beta production by cultured macrophages was also elevated in SR-A(-/-) macrophages in vitro. These results suggested that the antitumor activity of macrophages increased in SR-A(-/-) mice because of upregulation of NO and IFN-gamma production. These data indicate an important role of SR-A in regulating TAM function by inhibiting toll-like receptor (TLR)4-IFN-beta signaling.

  12. Influence of HMB supplementation and resistance training on cytokine responses to resistance exercise.

    Science.gov (United States)

    Kraemer, William J; Hatfield, Disa L; Comstock, Brett A; Fragala, Maren S; Davitt, Patrick M; Cortis, Cristina; Wilson, Jacob M; Lee, Elaine C; Newton, Robert U; Dunn-Lewis, Courtenay; Häkkinen, Keijo; Szivak, Tunde K; Hooper, David R; Flanagan, Shawn D; Looney, David P; White, Mark T; Volek, Jeff S; Maresh, Carl M

    2014-01-01

    The purpose of this study was to determine the effects of a multinutritional supplement including amino acids, β-hydroxy-β-methylbutyrate (HMB), and carbohydrates on cytokine responses to resistance exercise and training. Seventeen healthy, college-aged men were randomly assigned to a Muscle Armor™ (MA; Abbott Nutrition, Columbus, OH) or placebo supplement group and 12 weeks of resistance training. An acute resistance exercise protocol was administered at 0, 6, and 12 weeks of training. Venous blood samples at pre-, immediately post-, and 30-minutes postexercise were analyzed via bead multiplex immunoassay for 17 cytokines. After 12 weeks of training, the MA group exhibited decreased interferon-gamma (IFN-γ) and interleukin (IL)-10. IL-1β differed by group at various times. Granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-7, IL-8, IL-12p70, IL-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β) changed over the 12-week training period but did not differ by group. Twelve weeks of resistance training alters the cytokine response to acute resistance exercise, and supplementation with HMB and amino acids appears to further augment this result.

  13. Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Hui; Zhang, Jinliang; Xi, Li; Zhang, Junbo; Chen, Chuangfu

    2017-03-01

    The pathogenic mechanisms of Brucella are still poorly understood. GntR is a transcriptional regulator and plays an important role in the intracellular survival of Brucella. To investigate whether GntR is involved in the cytotoxicity of Brucella abortus (B. abortus), we created a 2308ΔgntR mutant of B. abortus 2308 (S2308). Lactate dehydrogenase (LDH) cytotoxicity assays using a murine macrophage cell line (RAW 264.7) show that high-dose infection with the parental strain produces a high level of cytotoxicity to macrophages, but the 2308ΔgntR mutant exhibits a very low level of cytotoxicity, indicating that mutation of GntR impairs the cytotoxicity of B. abortus to macrophages. After the macrophages are infected with 2308ΔgntR, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8) increase and are slightly higher than that for the S2308 infected group, indicating that the 2308ΔgntR mutant could induce the secretion of inflammatory cytokines. The virulence factor detection experiments indicate that genes involved in the type IV secretion system (T4SS) and quorum sensing system (QSS) are down-regulated in 2308ΔgntR. The lower levels of survival of 2308ΔgntR under various stress conditions and the increased sensitivity of 2308ΔgntR to polymyxin B suggest that GntR is a virulence factor and that deletion of gntR reduces of B. abortus to stress conditions. Taken together, our results demonstrate that GntR is involved in the cytotoxicity, virulence and intracellular survival of B. abortus during its infection.

  14. Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence

    Science.gov (United States)

    de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2014-01-01

    Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361

  15. Time Dependent Production of Cytokines and Eicosanoids by Human Monocytic Leukaemia U937 Cells; Effects of Glucocorticosteroids

    Directory of Open Access Journals (Sweden)

    Ingrid M. Garrelds

    1999-01-01

    Full Text Available In the present study the human monoblast cell line U937 has been used as a model to study the function of human mononuclear phagocytes in asthma. The kinetics of the production of eicosanoids and cytokines, which are thought to play a role in the pathogenesis of asthma, were studied. In addition, the effects of glucocorticosteroids were investigated, as these drugs are of great importance for the treatment of asthmatic patients. After stimulation with phorbol-12 myristate acetate (PMA for 24h, U937 cells were cultured in the absence or presence of lipopolysaccharide (LPS: 1 and 5 μg ml-1 and glucocorticosteroids (budesonide, fluticasone propionate and prednisolone: 10-11, 10-9 and 10-7 M for 96h. The production of interleukin- 1β (IL-1β, interleukin-6 (IL-6, prostaglandin E2 (PGE2 and thromboxane B2 (TxB2 gradually increased in time after stimulation with LPS, whereas the transient production of tumor necrosis factor alpha (TNF-α reached its maximum between 6 and 12 h. Interferon-gamma (IFN-γ, interleukin-10 (IL-10 and leukotriene B4 (LTB4 were not detectable. All three glucocorticosteroids (budesonide, fluticasone propionate and prednisolone completely inhibited the production of both eicosanoids and cytokines. The production of eicosanoids was more sensitive to these glucocorticoids than the production of cytokines. The observed differences in the kinetics of the production of eicosanoids and cytokines stress the importance of time course experiments in studies on the effect of drugs on mononuclear cells.

  16. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice.

    Science.gov (United States)

    Hong, Se Hyang; Ku, Jin Mo; In Kim, Hyo; Ahn, Chang-Won; Park, Soo-Hyun; Seo, Hye Sook; Shin, Yong Cheol; Ko, Seong-Gyu

    2017-09-01

    Chemotherapeutics are often used to inhibit the proliferation of cancer cells. However, they can also harm healthy cells and cause side effects such as immunosuppression. Especially traditional oriental medicines long used in Asia, may be beneficial candidates for the alleviation of immune diseases. Cervus nippon mantchuricus extract (NGE) is currently sold in the market as coffee and health drinks. However, NGE was not widely investigated and efficacy remain unclear and essentially nothing is known about their potential immune-regulatory properties. As a result, NGE induced the differentiation of RAW264.7 macrophage cells. NGE-stimulated RAW264.7 macrophage cells elevated cytokines levels and NO production. NGE-stimulated RAW264.7 macrophage cells activated MAPKs and NF-κB signaling pathways. NGE encouraged the immuno-enhancing effects in immunosuppressed short-term treated with NGE mice model. NGE or Red ginseng encouraged the immuno-enhancing effects in immunosuppressed long-term treated with NGE mice model. Our data clearly show that NGE contains immune-enhancing activity and can be used to treat immunodeficiency. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Activation of macrophages by a laccase-polymerized polyphenol is dependent on phosphorylation of Rac1.

    Science.gov (United States)

    Tajima, Katsuya; Akanuma, Satoshi; Matsumoto-Akanuma, Akiko; Yamanaka, Daisuke; Ishibashi, Ken-Ichi; Adachi, Yoshiyuki; Ohno, Naohito

    2018-01-15

    Various physiologically active effects of polymerized polyphenols have been reported. In this study, we synthesized a polymerized polyphenol (mL2a-pCA) by polymerizing caffeic acid using mutant Agaricus brasiliensis laccase and analyzed its physiological activity and mechanism of action. We found that mL2a-pCA induced morphological changes and the production of cytokines and chemokines in C3H/HeN mouse-derived resident peritoneal macrophages in vitro. The mechanisms of action of polymerized polyphenols on in vitro mouse resident peritoneal cells have not been characterized in detail previously. Herein, we report that the mL2a-pCA-induced production of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) in C3H/HeN mouse-derived resident peritoneal cells was inhibited by treatment with the Rac1 inhibitor NSC23766 trihydrochloride. In addition, we found that mL2a-pCA activated the phosphorylation Rac1. Taken together, the results show that mL2a-pCA induced macrophage activation via Rac1 phosphorylation-dependent pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The role of granulocyte macrophage-colony stimulating factor in gastrointestinal immunity to salmonellosis.

    Science.gov (United States)

    Coon, C; Beagley, K W; Bao, S

    2009-08-01

    Human Salmonella infection, in particular, typhoid fever is a highly infectious disease that remains a major public health problem causing significant morbidity and mortality. The outcome of these infections depends on the host's immune response, particularly the actions of granulocytes and macrophages. Using a mouse model of human typhoid fever, with Salmonella typhimurium infection of wild type and granulocyte macrophage-colony stimulating factor (GM-CSF) knock out mice we show a delay in the onset of immune-mediated tissue damage in the spleens and livers of GM-CSF(-/-) mice. Furthermore, GM-CSF(-/-) mice have a prolonged sequestration of S. typhimurium in affected tissues despite an increased production of F4/80+ effector cells. Moreover in the absence of GM-CSF, a decrease in pro-inflammatory cytokine expression of tumor necrosis factor-alpha, interleukin-12 (IL-12) and IL-18 was found, which may alter the host's immune response to infection. GM-CSF appears to play an important role in the pathogenesis of Salmonellosis, and may contribute significantly to the development of protective gastrointestinal mucosal immune responses against oral pathogens.

  19. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  20. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  1. Mesenchymal stem cell-educated macrophages

    OpenAIRE

    Eggenhofer Elke; Hoogduijn Martin J

    2012-01-01

    Abstract Mesenchymal stem cells (MSC) mediate their immunosuppressive effects via a variety of mechanisms. One of these mechanisms involves the induction of macrophages with immunomodulatory capacities. This effect of MSC may be exploited when MSC are used as a cell therapeutic product. Furthermore, MSC are resident in tissues where they may locally target infiltrating macrophages to adapt more regulatory properties. The present review discusses the interaction between MSC and macrophages, th...

  2. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression

    Science.gov (United States)

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K. Craig

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB–mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. PMID:26483397

  3. Inflammation-Induced Changes in Circulating T-Cell Subsets and Cytokine Production During Human Endotoxemia

    DEFF Research Database (Denmark)

    Ronit, Andreas; Plovsing, Ronni R; Gaardbo, Julie C

    2017-01-01

    administration. The frequency of anti-inflammatory Tregs increased (P = .033), whereas the frequency of proinflammatory CD4(+)CD161(+) cells decreased (P = .034). Endotoxemia was associated with impaired whole-blood production of tumor necrosis factor-α, interleukin-10, IL-6, IL-17, IL-2, and interferon......Observational clinical studies suggest the initial phase of sepsis may involve impaired cellular immunity. In the present study, we investigated temporal changes in T-cell subsets and T-cell cytokine production during human endotoxemia. Endotoxin (Escherichia coli lipopolysaccharide 4 ng......, HLA-DR(+)CD38(+) T cells were determined. Ex vivo whole-blood cytokine production and Toll-like receptor (TLR)-4 expression on Tregs were measured. Absolute number of CD3(+)CD4(+) (P = .026), CD3(+)CD8(+) (P = .046), Tregs (P = .023), and CD4(+)CD161(+) cells (P = .042) decreased after endotoxin...

  4. Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation.

    Science.gov (United States)

    Desai, Harsh R; Sivasubramaniyam, Tharini; Revelo, Xavier S; Schroer, Stephanie A; Luk, Cynthia T; Rikkala, Prashanth R; Metherel, Adam H; Dodington, David W; Park, Yoo Jin; Kim, Min Jeong; Rapps, Joshua A; Besla, Rickvinder; Robbins, Clinton S; Wagner, Kay-Uwe; Bazinet, Richard P; Winer, Daniel A; Woo, Minna

    2017-08-09

    During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2 -/- ) mice gained less body weight compared to wildtype littermate control (M-JAK2 +/+ ) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2 -/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2 -/- mice. Peritoneal macrophages from M-JAK2 -/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.

  5. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions.

    Science.gov (United States)

    Alvarado-Vazquez, Perla Abigail; Bernal, Laura; Paige, Candler A; Grosick, Rachel L; Moracho Vilrriales, Carolina; Ferreira, David Wilson; Ulecia-Morón, Cristina; Romero-Sandoval, E Alfonso

    2017-08-01

    M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1β, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive

  6. The Synthetic Lignan Secoisolariciresinol Diglucoside Prevents Asbestos-Induced NLRP3 Inflammasome Activation in Murine Macrophages

    Directory of Open Access Journals (Sweden)

    Ralph A. Pietrofesa

    2017-01-01

    Full Text Available Background. The interaction of asbestos with macrophages drives two key processes that are linked to malignancy: (1 the generation of reactive oxygen species (ROS/reactive nitrogen species (RNS and (2 the activation of an inflammation cascade that drives acute and chronic inflammation, with the NLRP3 inflammasome playing a key role. Synthetic secoisolariciresinol diglucoside (SDG, LGM2605, is a nontoxic lignan with anti-inflammatory and antioxidant properties and was evaluated for protection from asbestos in murine peritoneal macrophages (MF. Methods. MFs were exposed to crocidolite asbestos ± LGM2605 given 4 hours prior to exposure and evaluated at various times for NLRP3 expression, secretion of inflammasome-activated cytokines (IL-1β and IL-18, proinflammatory cytokines (IL-6, TNFα, and HMGB1, NF-κB activation, and levels of total nitrates/nitrites. Results. Asbestos induces a significant (p<0.0001 increase in the NLRP3 subunit, release of proinflammatory cytokines, NLRP3-activated cytokines, NF-κB, and levels of nitrates/nitrites. LGM2605 significantly reduced NLRP3 ranging from 40 to 81%, IL-1β by 89–96%, and TNFα by 67–78%, as well as activated NF-κB by 48-49% while decreasing levels of nitrates/nitrites by 85–93%. Conclusions. LGM2605 reduced asbestos-induced NLRP3 expression, proinflammatory cytokine release, NF-κB activation, and nitrosative stress in MFs supporting its possible use in preventing the asbestos-induced inflammatory cascade leading to malignancy.

  7. Signal-transducing mechanisms of ketamine-caused inhibition of interleukin-1β gene expression in lipopolysaccharide-stimulated murine macrophage-like Raw 264.7 cells

    International Nuclear Information System (INIS)

    Chen, T.-L.; Chang, C.-C.; Lin, Y.-L.; Ueng, Y.-F.; Chen, R.-M.

    2009-01-01

    Ketamine may affect the host immunity. Interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) are pivotal cytokines produced by macrophages. This study aimed to evaluate the effects of ketamine on the regulation of inflammatory cytokine gene expression, especially IL-1β, in lipopolysaccharide (LPS)-activated murine macrophage-like Raw 264.7 cells and its possible signal-transducing mechanisms. Administration of Raw 264.7 cells with a therapeutic concentration of ketamine (100 μM), LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. Exposure to 100 μM ketamine decreased the binding affinity of LPS and LPS-binding protein but did not affect LPS-induced RNA and protein synthesis of TLR4. Treatment with LPS significantly increased IL-1β, IL-6, and TNF-α gene expressions in Raw 264.7 cells. Ketamine at a clinically relevant concentration did not affect the synthesis of these inflammatory cytokines, but significantly decreased LPS-caused increases in these cytokines. Immunoblot analyses, an electrophoretic mobility shift assay, and a reporter luciferase activity assay revealed that ketamine significantly decreased LPS-induced translocation and DNA binding activity of nuclear factor-kappa B (NFκB). Administration of LPS sequentially increased the phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK. However, a therapeutic concentration of ketamine alleviated such augmentations. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA reduced cellular TLR4 amounts and ameliorated LPS-induced RAS activation and IL-1β synthesis. Co-treatment with ketamine and TLR4 siRNA synergistically ameliorated LPS-caused enhancement of IL-1β production. Results of this study show that a therapeutic concentration of ketamine can inhibit gene expression of IL-1β possibly through suppressing TLR4-mediated signal-transducing phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK and subsequent translocation and

  8. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    International Nuclear Information System (INIS)

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-01-01

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  9. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: Dongqi.Tang@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  10. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune

  11. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  12. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    Science.gov (United States)

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  13. Peracetylated hydroxytyrosol, a new hydroxytyrosol derivate, attenuates LPS-induced inflammatory response in murine peritoneal macrophages via regulation of non-canonical inflammasome, Nrf2/HO1 and JAK/STAT signaling pathways.

    Science.gov (United States)

    Montoya, Tatiana; Aparicio-Soto, Marina; Castejón, María Luisa; Rosillo, María Ángeles; Sánchez-Hidalgo, Marina; Begines, Paloma; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina

    2018-03-18

    The present study was designed to investigate the anti-inflammatory effects of a new derivative of hydroxytyrosol (HTy), peracetylated hydroxytyrosol (Per-HTy), compared with its parent, HTy, on lipopolysaccharide (LPS)-stimulated murine macrophages as well as potential signaling pathways involved. In particular, we attempted to characterize the role of the inflammasome underlying Per-HTy possible anti-inflammatory effects. Isolated murine peritoneal macrophages were treated with HTy or its derivative in the presence or absence of LPS (5 μg/ml) for 18 h. Cell viability was determined using sulforhodamine B (SRB) assay. Nitric oxide (NO) production was analyzed by Griess method. Production of pro-inflammatory cytokines was evaluated by enzyme-linked immunosorbent assay (ELISA) and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (STAT3), haem oxigenase 1 (HO1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and mitogen-activated protein kinases (MAPKs) activation was determined by Western blot. Per-HTy significantly reduced the levels of NO and pro-inflammatory cytokines as well as both COX-2 and iNOS expressions. Furthermore, Per-HTy treatment inhibited STAT3 and increased Nrf2 and HO1 protein levels in murine macrophages exposed to LPS. In addition, Per-HTy anti-inflammatory activity was related with an inhibition of non-canonical nucleotide binding domain (NOD)-like receptor (NLRP3) inflammasome pathways by decreasing pro-inflammatory interleukin (IL)-1β and IL-18 cytokine levels as consequence of regulation of cleaved caspase-11 enzyme. These results support that this new HTy derivative may offer a new promising nutraceutical therapeutic strategy in the management of inflammatory-related pathologies. Copyright © 2018. Published by Elsevier Inc.

  14. Radiotherapy- and chemotherapy-induced normal tissue damage. The role of cytokines and adhesion molecules

    International Nuclear Information System (INIS)

    Plevova, P.

    2002-01-01

    Background. Ionising radiation and cytostatic agents used in cancer therapy exert damaging effects on normal tissues and induce a complex response at the cellular and molecular levels. Cytokines and adhesion molecules are involved in this response. Methods. Published data on the given topic have been reviewed. Results and conclusions. Various cytokines and adhesion molecules, including tumor necrosis factor α, interleukins- 1,-2,-4, and -6, interferon γ, granulocyte macrophage- and macrophage- colony stimulating factors, transforming growth factor β, platelet-derived growth factor, insulin-like growth factor I, fibroblast and epidermal growth factors, platelet-activating factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E- and P-selectins are involved in the response of normal tissues to ionizing radiation- and chemotherapy- induced normal tissues damage and are co-responsible for some side effects of these treatment modalities, including fever, anorexia and fatigue, suppression of hematopoiesis, both acute and late local tissue response. (author)

  15. A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production

    DEFF Research Database (Denmark)

    Nachbur, Ueli; Stafford, Che A; Bankovacki, Aleksandra

    2015-01-01

    Intracellular nucleotide binding and oligomerization domain (NOD) receptors recognize antigens including bacterial peptidoglycans and initiate immune responses by triggering the production of pro-inflammatory cytokines through activating NF-κB and MAP kinases. Receptor interacting protein kinase ...

  16. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tadamichi [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, 930-0194, Toyama (Japan)

    2010-08-09

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  17. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    International Nuclear Information System (INIS)

    Shimizu, Tadamichi

    2010-01-01

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer

  18. The Role of Macrophage Migration Inhibitory Factor (MIF in Ultraviolet Radiation-Induced Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tadamichi Shimizu

    2010-08-01

    Full Text Available Ultraviolet (UV radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL-1, IL-6, tumor necrosis factor (TNF-α. and macrophage migration inhibitory factor (MIF. MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  19. Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.

    Science.gov (United States)

    Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B

    2018-05-01

    Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.

  20. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins

  1. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Science.gov (United States)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  2. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  3. Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2011-03-01

    Full Text Available Abstract Background Intermittent fasting (IF improves healthy lifespan in animals by a mechanism involving reduced oxidative damage and increased resistance to stress. However, no studies have evaluated the impact of controlled meal frequency on immune responses in human subjects. Objective A study was conducted to establish the effects of controlled diets with different meal frequencies, but similar daily energy intakes, on cytokine production in healthy male and female subjects. Design In a crossover study design with an intervening washout period, healthy normal weight middle-age male and female subjects (n = 15 were maintained for 2 months on controlled on-site one meal per day (OMD or three meals per day (TMD isocaloric diets. Serum samples and peripheral blood mononuclear cells (PBMCs culture supernatants from subjects were analyzed for the presence of inflammatory markers using a multiplex assay. Results There were no significant differences in the inflammatory markers in the serum of subjects on the OMD or TMD diets. There was an increase in the capacity of PBMCs to produce cytokines in subjects during the first month on the OMD or TMD diets. Lower levels of TNF-α, IL-17, MCP-1 and MIP-1β were produced by PBMCs from subjects on the OMD versus TMD diet. Conclusions PBMCs of subjects on controlled diets exhibit hypersensitivities to cellular stimulation suggesting that stress associated with altered eating behavior might affect cytokine production by immune cells upon stimulation. Moreover, stimulated PBMCs derived from healthy individuals on a reduced meal frequency diet respond with a reduced capability to produce cytokines.

  4. Characteristic cytokine generation patterns in cancer cells and infiltrating lymphocytes in oral squamous cell carcinomas and the influence of chemoradiation combined with immunotherapy on these patterns.

    Science.gov (United States)

    Yamamoto, Tetsuya; Kimura, Tsuyoshi; Ueta, Eisaku; Tatemoto, Yukihiro; Osaki, Tokio

    2003-01-01

    Cytokines produced by tumor cells and tumor-infiltrating lymphocytes (TIL) appear to regulate tumor cell growth and the cytotoxic activity of TIL. The objectives of the present study were to investigate cytokine generation patterns in tumor cells and TIL and to examine the influence of cancer therapy on this cytokine production and the cytotoxic activity of TIL. We determined the levels of cytokines produced by tumor cells and TIL in vitro and measured the cytotoxic activity of TIL against Daudi cells in patients with oral squamous cell carcinoma (OSC) before and 1 week after the start of concomitant chemo-radio-immunotherapy. Before the therapy, OSC cells generated higher levels of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) than did oral keratinocytes isolated from the noninflamed gingivae of healthy individuals, but both kinds of cells generated similar levels of interleukin (IL)-1beta and IL-6. Compared with peripheral blood mononuclear cells (PBMC) of the patients, TIL produced higher levels of IL-1beta, IL-6, IL-10, TNF-alpha and TGF-beta, whereas their production of IL-12 and interferon-gamma (IFN-gamma) was only slightly higher than that in PBMC. After 1 week of therapy, the cytokine production by OSC cells had largely decreased, while the production of TNF-alpha, IFN-gamma, TGF-beta and IL-12 by TIL had increased greatly, although other cytokine levels were almost constant during the investigations. The cytotoxic activity of TIL was higher than that of PBMC before the therapy, and this activity was strongly increased by 1 week of therapy. These results suggest that the cytokine productivities of TIL and tumor cells differ from those of PBMC and normal keratinocytes, respectively, and that chemo-radio-immunotherapy modulates in situ cytokine generation, which is advantageous for inhibition of tumor cell growth and activation of TIL. Copyright 2003 S. Karger AG

  5. Streptococcus gordonii induces nitric oxide production through its lipoproteins stimulating Toll-like receptor 2 in murine macrophages.

    Science.gov (United States)

    Kim, Hyun Young; Baik, Jung Eun; Ahn, Ki Bum; Seo, Ho Seong; Yun, Cheol-Heui; Han, Seung Hyun

    2017-02-01

    Streptococcus gordonii, a Gram-positive commensal in the oral cavity, is an opportunistic pathogen that can cause endodontic and systemic infections resulting in infective endocarditis. Lipoteichoic acid (LTA) and lipoprotein are major virulence factors of Gram-positive bacteria that are preferentially recognized by Toll-like receptor 2 (TLR2) on immune cells. In the present study, we investigated the effect of S. gordonii LTA and lipoprotein on the production of the representative inflammatory mediator nitric oxide (NO) by the mouse macrophages. Heat-killed S. gordonii wild-type and an LTA-deficient mutant (ΔltaS) but not a lipoprotein-deficient mutant (Δlgt) induced NO production in mouse primary macrophages and the cell line, RAW 264.7. S. gordonii wild-type and ΔltaS also induced the expression of inducible NO synthase (iNOS) at the mRNA and protein levels. In contrast, the Δlgt mutant showed little effect under the same condition. Furthermore, S. gordonii wild-type and ΔltaS induced NF-κB activation, STAT1 phosphorylation, and IFN-β expression, which are important for the induction of iNOS gene expression, with little activation by Δlgt. S. gordonii wild-type and ΔltaS showed an increased adherence and internalization to RAW 264.7 cells compared to Δlgt. In addition, S. gordonii wild-type and ΔltaS, but not Δlgt, substantially increased TLR2 activation while none of these induced NO production in TLR2-deficient macrophages. Triton X-114-extracted lipoproteins from S. gordonii were sufficient to induce NO production. Collectively, we suggest that lipoprotein is an essential cell wall component of S. gordonii to induce NO production in macrophages through TLR2 triggering NF-κB and STAT1 activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Indomethacin Treatment of Mice with Premalignant Oral Lesions Sustains Cytokine Production and Slows Progression to Cancer.

    Science.gov (United States)

    Johnson, Sara D; Young, M Rita I

    2016-01-01

    Current treatment options for head and neck squamous cell carcinoma (HNSCC) patients are often ineffective due to tumor-localized and systemic immunosuppression. Using the 4-NQO mouse model of oral carcinogenesis, this study showed that premalignant oral lesion cells produce higher levels of the immune modulator, PGE 2 , compared to HNSCC cells. Inhibiting prostaglandin production of premalignant lesion cells with the pan-cyclooxygenase inhibitor indomethacin stimulated their induction of spleen cell cytokine production. In contrast, inhibiting HNSCC prostaglandin production did not stimulate their induction of spleen cell cytokine production. Treatment of mice bearing premalignant oral lesions with indomethacin slowed progression of premalignant oral lesions to HNSCC. Flow cytometric analysis of T cells in the regional lymph nodes of lesion-bearing mice receiving indomethacin treatment showed an increase in lymph node cellularity and in the absolute number of CD8 + T cells expressing IFN-γ compared to levels in lesion-bearing mice receiving diluent control treatment. The cytokine-stimulatory effect of indomethacin treatment was not localized to regional lymph nodes but was also seen in the spleen of mice with premalignant oral lesions. Together, these data suggest that inhibiting prostaglandin production at the premalignant lesion stage boosts immune capability and improves clinical outcomes.

  7. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion.

    Science.gov (United States)

    Sárvári, A K; Doan-Xuan, Q-M; Bacsó, Z; Csomós, I; Balajthy, Z; Fésüs, L

    2015-01-22

    Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and human adipocytes differentiated from either mesenchymal stem cells or a preadipocyte cell line. As observed by time-lapse microscopy, flow, and laser-scanning cytometry, macrophages phagocytosed bites of adipocytes (trogocytosis), which led to their de novo, phagocytosis and NF-κB-dependent synthesis, then release of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1. IL-6 secretion was not accompanied by secretion of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-8, except MCP-1. LPS-induced release of TNF-α, IL-8 and MCP-1 was decreased in the presence of the differentiated adipocytes but the IL-6 level did not subside suggesting that phagocytosis-dependent IL-6 secretion may have significant regulatory function in the inflamed adipose tissue.

  8. Neuropathic pain and cytokines: current perspectives

    Directory of Open Access Journals (Sweden)

    Clark AK

    2013-11-01

    Full Text Available Anna K Clark, Elizabeth A Old, Marzia Malcangio Wolfson Centre for Age Related Diseases, King's College London, London, UK Abstract: Neuropathic pain represents a major problem in clinical medicine because it causes debilitating suffering and is largely resistant to currently available analgesics. A characteristic of neuropathic pain is abnormal response to somatic sensory stimulation. Thus, patients suffering peripheral neuropathies may experience pain caused by stimuli which are normally nonpainful, such as simple touching of the skin or by changes in temperature, as well as exaggerated responses to noxious stimuli. Convincing evidence suggests that this hypersensitivity is the result of pain remaining centralized. In particular, at the first pain synapse in the dorsal horn of the spinal cord, the gain of neurons is increased and neurons begin to be activated by innocuous inputs. In recent years, it has become appreciated that a remote damage in the peripheral nervous system results in neuronal plasticity and changes in microglial and astrocyte activity, as well as infiltration of macrophages and T cells, which all contribute to central sensitization. Specifically, the release of pronociceptive factors such as cytokines and chemokines from neurons and non-neuronal cells can sensitize neurons of the first pain synapse. In this article we review the current evidence for the role of cytokines in mediating spinal neuron–non-neuronal cell communication in neuropathic pain mechanisms following peripheral nerve injury. Specific and selective control of cytokine-mediated neuronal–glia interactions results in attenuation of the hypersensitivity to both noxious and innocuous stimuli observed in neuropathic pain models, and may represent an avenue for future therapeutic intervention. Keywords: anti-inflammatory cytokines, proinflammatory cytokines, microglia, astrocytes, first pain synapse

  9. LPS-Stimulated Whole Blood Cytokine Production Is Not Related to Disease Behavior in Patients with Quiescent Crohn's Disease

    NARCIS (Netherlands)

    Broekman, M.M.T.J.; Roelofs, H.M.; Hoentjen, F.; Wiegertjes, R.; Stoel, N.; Joosten, L.A.B.; Jong, D.J. de; Wanten, G.J.A.

    2015-01-01

    INTRODUCTION: Crohn's disease (CD) is a chronic inflammatory disease in which cytokines play a pivotal role in the induction and maintenance of inflammation. Innate cytokine production is genetically determined and varies largely between individuals; this might impact the severity of inflammation.

  10. Social role conflict predicts stimulated cytokine production among men, not women.

    Science.gov (United States)

    Schreier, Hannah M C; Hoffer, Lauren C; Chen, Edith

    2016-11-01

    To assess whether perceived role conflict is associated with stimulated pro-inflammatory cytokine production and glucocorticoid sensitivity, and whether these associations are moderated by sex. 153 healthy adults (aged 45.8±5.5years, 78% female) listed their 3 main social roles and indicated the amount of role conflict they perceived between each pair of social roles. Subsequently, participants underwent blood draws and leukocyte response to microbial challenge and glucocorticoid sensitivity were assessed by incubating whole blood with lipopolysaccharide (LPS) in the presence or absence of hydrocortisone. Stimulated levels of Interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNFα) were measured. Multiple regression analyses controlling for sociodemographics revealed significant sex×role conflict interactions for LPS-stimulated production of IL-1β, IL-6, and TNFα (all interaction psrole conflict was associated with greater pro-inflammatory cytokine production in response to microbial stimulation only among men, not women. There also were significant sex×role conflict interactions with respect to glucocorticoid sensitivity for IL-1β, IL-6, and TNFα production (all interaction psrole conflict was unrelated to glucocorticoid sensitivity among women, but associated with less sensitivity to glucocorticoid signaling among men. Perceived social role conflict, indicating greater perceived demand across multiple social roles, may take a greater toll on the regulation of inflammatory processes among men compared to women. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: immunohistochemical profile of a number of inflammatory cytokines.

    Science.gov (United States)

    Taurone, Samanta; Ripandelli, Guido; Pacella, Elena; Bianchi, Enrica; Plateroti, Andrea Maria; De Vito, Stefania; Plateroti, Pasquale; Grippaudo, Francesca Romana; Cavallotti, Carlo; Artico, Marco

    2015-02-01

    Glaucoma occurs when there are imbalances between the production and the drainage of the eye liquid. The vast majority of the aqueous humor leaves the eye through the trabecular meshwork (TM). The cause of hypertonicity may be due to an alteration in the thickness of the TM. In the majority of cases the molecular changes that determine primary open‑angle glaucoma (POAG) are unclear. However, it has been hypothesized that the significant increase in the extracellular matrix (ECM) of the fibrillary bands in the TM is associated with possible inflammatory conditions. In this study the tissue distribution of interleukin (IL)‑6, IL‑1β, transforming growth factor-β1 (TGF‑β1), vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF‑α) was analyzed in TM samples from patients with POAG by immunohistochemistry. Seven specimens from patients with POAG and three control tissues were analyzed by immunohistochemistry using specific antibodies against these cytokines. Morphological changes in the TM, such as increased cell content, macrophages, fibrosis and accumulation of neutrophils, were observed by transmission electron microscopy. In human TM tissues, an evident immunoreactivity for IL‑6, IL‑1β and TNF‑α was observed in patients with POAG when compared with the control subjects, indicating that these cytokines may be correlated with disease activity. TM endothelial cells secrete a number of factors and cytokines that modulate the functions of the cells and the ECM of the conventional outflow pathway. In the TM in glaucoma, macrophages produce cytokines, including IL‑6, IL‑1β and TNF‑α, leading to an acute inflammatory response and recruitment of other immune cells, including T lymphocytes. In addition, TGF‑β1 regulates and induces the expression of IL‑6 in TM that indirectly induces angiogenesis by stimulating VEGF expression. The present results support previous evidence that suggests that growth factors and cytokines

  12. Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis.

    Science.gov (United States)

    Ren, Jiafa; Li, Jianzhong; Feng, Ye; Shu, Bingyan; Gui, Yuan; Wei, Wei; He, Weichun; Yang, Junwei; Dai, Chunsun

    2017-08-01

    Mammalian target of rapamycin (mTOR) signalling controls many essential cellular functions. However, the role of Rictor/mTOR complex 2 (mTORC2) in regulating macrophage activation and kidney fibrosis remains largely unknown. We report here that Rictor/mTORC2 was activated in macrophages from the fibrotic kidneys of mice. Ablation of Rictor in macrophages reduced kidney fibrosis, inflammatory cell accumulation, macrophage proliferation and polarization after unilateral ureter obstruction or ischaemia/reperfusion injury. In bone marrow-derived macrophages (BMMs), deletion of Rictor or blockade of protein kinase Cα inhibited cell migration. Additionally, deletion of Rictor or blockade of Akt abolished interleukin-4-stimulated or transforming growth factor (TGF)-β1-stimulated macrophage M2 polarization. Furthermore, deletion of Rictor downregulated TGF-β1-stimulated upregulation of multiple profibrotic cytokines, including platelet-derived growth factor, vascular endothelial growth factor and connective tissue growth factor, in BMMs. Conditioned medium from TGF-β1-pretreated Rictor -/- macrophages stimulated fibroblast activation less efficiently than that from TGF-β1-pretreated Rictor +/+ macrophages. These results demonstrate that Rictor/mTORC2 signalling can promote macrophage activation and kidney fibrosis. Targeting this signalling pathway in macrophages may shine light on ways to protect against kidney fibrosis in patients with chronic kidney diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. MicroRNA 26a (miR-26a/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection.

    Directory of Open Access Journals (Sweden)

    Sanjaya Kumar Sahu

    2017-05-01

    Full Text Available For efficient clearance of Mycobacterium tuberculosis (Mtb, macrophages tilt towards M1 polarization leading to the activation of transcription factors associated with the production of antibacterial effector molecules such as nitric oxide (NO and proinflammatory cytokines such as interleukin 1 β (IL-1β and tumor necrosis factor α (TNF-α. At the same time, resolution of inflammation is associated with M2 polarization with increased production of arginase and cytokines such as IL-10. The transcriptional and post-transcriptional mechanisms that govern the balance between M1 and M2 polarization, and bacteria-containing processes such as autophagy and trafficking of Mtb to lysosomes, are incompletely understood. Here we report for the first time, that the transcription factor KLF4 is targeted by microRNA-26a (miR-26a. During Mtb infection, downregulation of miR-26a (observed both ex vivo and in vivo facilitates upregulation of KLF4 which in turn favors increased arginase and decreased iNOS activity. We further demonstrate that KLF4 prevents trafficking of Mtb to lysosomes. The CREB-C/EBPβ signaling axis also favors M2 polarization. Downregulation of miR-26a and upregulation of C/ebpbeta were observed both in infected macrophages as well as in infected mice. Knockdown of C/ebpbeta repressed the expression of selected M2 markers such as Il10 and Irf4 in infected macrophages. The importance of these pathways is substantiated by observations that expression of miR-26a mimic or knockdown of Klf4 or Creb or C/ebpbeta, attenuated the survival of Mtb in macrophages. Taken together, our results attribute crucial roles for the miR-26a/KLF4 and CREB-C/EBPβsignaling pathways in regulating the survival of Mtb in macrophages. These studies expand our understanding of how Mtb hijacks host signaling pathways to survive in macrophages, and open up new exploratory avenues for host-targeted interventions.

  14. MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection.

    Science.gov (United States)

    Sahu, Sanjaya Kumar; Kumar, Manish; Chakraborty, Sohini; Banerjee, Srijon Kaushik; Kumar, Ranjeet; Gupta, Pushpa; Jana, Kuladip; Gupta, Umesh D; Ghosh, Zhumur; Kundu, Manikuntala; Basu, Joyoti

    2017-05-01

    For efficient clearance of Mycobacterium tuberculosis (Mtb), macrophages tilt towards M1 polarization leading to the activation of transcription factors associated with the production of antibacterial effector molecules such as nitric oxide (NO) and proinflammatory cytokines such as interleukin 1 β (IL-1β) and tumor necrosis factor α (TNF-α). At the same time, resolution of inflammation is associated with M2 polarization with increased production of arginase and cytokines such as IL-10. The transcriptional and post-transcriptional mechanisms that govern the balance between M1 and M2 polarization, and bacteria-containing processes such as autophagy and trafficking of Mtb to lysosomes, are incompletely understood. Here we report for the first time, that the transcription factor KLF4 is targeted by microRNA-26a (miR-26a). During Mtb infection, downregulation of miR-26a (observed both ex vivo and in vivo) facilitates upregulation of KLF4 which in turn favors increased arginase and decreased iNOS activity. We further demonstrate that KLF4 prevents trafficking of Mtb to lysosomes. The CREB-C/EBPβ signaling axis also favors M2 polarization. Downregulation of miR-26a and upregulation of C/ebpbeta were observed both in infected macrophages as well as in infected mice. Knockdown of C/ebpbeta repressed the expression of selected M2 markers such as Il10 and Irf4 in infected macrophages. The importance of these pathways is substantiated by observations that expression of miR-26a mimic or knockdown of Klf4 or Creb or C/ebpbeta, attenuated the survival of Mtb in macrophages. Taken together, our results attribute crucial roles for the miR-26a/KLF4 and CREB-C/EBPβsignaling pathways in regulating the survival of Mtb in macrophages. These studies expand our understanding of how Mtb hijacks host signaling pathways to survive in macrophages, and open up new exploratory avenues for host-targeted interventions.

  15. Bojesodok-eum, a Herbal Prescription, Ameliorates Acute Inflammation in Association with the Inhibition of NF-κB-Mediated Nitric Oxide and ProInflammatory Cytokine Production

    Directory of Open Access Journals (Sweden)

    Kook Ho Sohn

    2012-01-01

    Full Text Available Bojesodok-eum (BSE is a herbal prescription consisting of Coptidis Rhizoma and Scutellariae Radix as main components. This paper investigated the effects of BSE on the induction of nitric oxide (NO, prostaglandin E2 (PGE2, and proinflammatory cytokines that are caused by lipopolysaccharide (LPS in murine macrophage cell line and on the paw edema formation in animals. Administration of BSE (0.3 g/kg and 1 g/kg in rats significantly inhibited carrageenan-induced paw edema formation, as did dexamethasone, an anti-inflammatory positive control drug. In cell model, treatment of BSE decreased the production of NO and PGE2 in RAW264.7 cells stimulated by LPS. BSE also inhibited the expression of iNOS and COX-2 protein as well as COX activity in a concentration-dependent manner. Consistently, BSE suppressed the ability of LPS to produce TNF-α, interleukin-1β, and interleukin-6. LPS treatment induced nuclear NF-κB level and I-κBα phosphorylation, which were inhibited subsequent treatment of BSE, suggesting its repression of LPS-inducible NF-κB activation. BSE abrogated the induction of NO, PGE2, and proinflammatory cytokines, as well as iNOS and COX-2 protein expression in RAW264.7 cells stimulated by LPS as mediated with NF-κB inhibition.

  16. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    Science.gov (United States)

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  17. Blood Cytokine Profiles Associated with Distinct Patterns of Bronchopulmonary Dysplasia among Extremely Low Birth Weight Infants.

    Science.gov (United States)

    D'Angio, Carl T; Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Skogstrand, Kristin; Hougaard, David M; Shankaran, Seetha; Goldberg, Ronald N; Ehrenkranz, Richard A; Tyson, Jon E; Stoll, Barbara J; Das, Abhik; Higgins, Rosemary D

    2016-07-01

    To explore differences in blood cytokine profiles among distinct bronchopulmonary dysplasia (BPD) patterns. We evaluated blood spots collected from 943 infants born at ≤1000 g and surviving to 28 days on postnatal days 1, 3, 7, 14, and 21 for 25 cytokines. Infants were assigned to the following lung disease patterns: (1) no lung disease (NLD); (2) respiratory distress syndrome without BPD; (3) classic BPD (persistent exposure to supplemental oxygen until 28 days of age); or (4) atypical BPD (period without supplemental oxygen before 28 days). Median cytokine levels for infants with BPD were compared with the IQR of results among infants with NLD. The distribution of enrolled infants by group was as follows: 69 (NLD), 73 (respiratory distress syndrome), 381 (classic BPD), and 160 (atypical BPD). The remaining 260 infants could not be classified because of missing data (104) or not fitting a predefined pattern (156). Median levels of 3 cytokines (elevated interleukin [IL]-8, matrix metalloproteinase-9; decreased granulocyte macrophage colony-stimulating factor) fell outside the IQR for at least 2 time points in both infants with atypical and classic BPD. Profiles of 7 cytokines (IL-6, IL-10, IL-18, macrophage inflammatory protein-1α, C-reactive protein, brain-derived neurotrophic factor, regulated on activation, normal T cell expressed and secreted) differed between infants with classic and atypical BPD. Blood cytokine profiles may differ between infants developing classic and atypical BPD. These dissimilarities suggest the possibility that differing mechanisms could explain the varied patterns of pathophysiology of lung disease in extremely premature infants. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Local Inflammatory Responses to Infection of the Peritoneal Cavity in Humans: Their Regulation by Cytokines, Macrophages, and Other Leukocytes

    Directory of Open Access Journals (Sweden)

    Marien Willem Johan Adriaan Fieren

    2012-01-01

    Full Text Available Studies on infection-induced inflammatory reactions in humans rely largely on findings in the blood compartment. Peritoneal leukocytes from patients treated with peritoneal dialysis offer a unique opportunity to study in humans the inflammatory responses taking place at the site of infection. Compared with peritoneal macrophages (pM from uninfected patients, pM from infected patients display ex vivo an upregulation and downregulation of proinflammatory and anti-inflammatory mediators, respectively. Pro-IL-1 processing and secretion rather than synthesis proves to be increased in pM from infectious peritonitis suggesting up-regulation of caspase-1 in vivo. A crosstalk between pM, γ T cells, and neutrophils has been found to be involved in augmented TNF expression and production during infection. The recent finding in experimental studies that alternatively activated macrophages (M2 increase by proliferation rather than recruitment may have significant implications for the understanding and treatment of chronic inflammatory conditions such as encapsulating peritoneal sclerosis (EPS.

  19. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204)

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Koji; Komohara, Yoshihiro; Fujiwara, Yukio; Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Lei, XiaoFeng [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Nakagawa, Takenobu [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Human Pathology, Institute of Health Biosciences, The University of Tokushima, Tokushima (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2011-08-05

    Highlights: {yields} We focused on the interaction between SR-A and TLR4 signaling in this study. {yields} SR-A deletion promoted NF{kappa}B activation in macrophages in septic model mouse. {yields} SR-A suppresses both MyD88-dependent and -independent TLR4 signaling in vitro. {yields} SR-A clears LPS binding to TLR4 which resulting in the suppression of TLR4 signals. -- Abstract: The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A{sup -/-}) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-6 and interferon (IFN)-{beta} were significantly increased in SR-A{sup -/-} mice compared to wild-type mice, and elevated nuclear factor kappa B (NF{kappa}B) activation was detected in SR-A{sup -/-} macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NF{kappa}B in vitro. SR-A deletion also promoted the nuclear translocation of NF{kappa}B and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A{sup -/-} macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.

  20. Beta 2-adrenergic receptor agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular complications.

    Science.gov (United States)

    Noh, Hyunjin; Yu, Mi Ra; Kim, Hyun Joo; Lee, Ji Hye; Park, Byoung-Won; Wu, I-Hsien; Matsumoto, Motonobu; King, George L

    2017-07-01

    Macrophage activation is increased in diabetes and correlated with the onset and progression of vascular complications. To identify drugs that could inhibit macrophage activation, we developed a cell-based assay and screened a 1,040 compound library for anti-inflammatory effects. Beta2-adrenergic receptor (β2AR) agonists were identified as the most potent inhibitors of phorbol myristate acetate-induced tumor necrosis factor-α production in rat bone marrow macrophages. In peripheral blood mononuclear cells isolated from streptozotocin-induced diabetic rats, β2AR agonists inhibited diabetes-induced tumor necrosis factor-α production, which was prevented by co-treatment with a selective β2AR blocker. To clarify the underlying mechanisms, THP-1 cells and bone marrow macrophages were exposed to high glucose. High glucose reduced β-arrestin2, a negative regulator of NF-κB activation, and its interaction with IκBα. This subsequently enhanced phosphorylation of IκBα and activation of NF-κB. The β2AR agonists enhanced β-arrestin2 and its interaction with IκBα, leading to downregulation of NF-κB. A siRNA specific for β-arrestin2 reversed β2AR agonist-mediated inhibition of NF-κB activation and inflammatory cytokine production. Treatment of Zucker diabetic fatty rats with a β2AR agonist for 12 weeks attenuated monocyte activation as well as pro-inflammatory and pro-fibrotic responses in the kidneys and heart. Thus, β2AR agonists might have protective effects against diabetic renal and cardiovascular complications. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.