WorldWideScience

Sample records for macrophage cytokine production

  1. Influence of phthalates on cytokine production in monocytes and macrophages

    DEFF Research Database (Denmark)

    Hansen, Juliana Frohnert; Bendtzen, Klaus; Boas, Malene

    2015-01-01

    BACKGROUND: Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which......://www.crd.york.ac.uk/NIHR_PROSPERO, registration number CRD42013004236). In vivo, ex vivo and in vitro studies investigating the influence of phthalates on cytokine mRNA expression and cytokine secretion in animals and humans were included. A total of 11 reports, containing 12 studies, were found eligible for inclusion. In these, a total of four...... different phthalate diesters, six primary metabolites (phthalate monoesters) and seven different cytokines were investigated. Though all studies varied greatly in study design and species sources, four out of five studies that investigated di-2-ethylhexyl phthalate found an increased tumour necrosis factor...

  2. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages.

    Science.gov (United States)

    Park, Se-Ra; Kim, Dong-Jae; Han, Seung-Hyun; Kang, Min-Jung; Lee, Jun-Young; Jeong, Yu-Jin; Lee, Sang-Jin; Kim, Tae-Hyoun; Ahn, Sang-Gun; Yoon, Jung-Hoon; Park, Jong-Hwan

    2014-05-01

    Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.

  3. Exposure to Porphyromonas gingivalis LPS during macrophage polarisation leads to diminished inflammatory cytokine production.

    Science.gov (United States)

    Belfield, Louise A; Bennett, Jon H; Abate, Wondwossen; Jackson, Simon K

    2017-09-01

    The objective of the present study was to determine the effects of concurrent LPS and cytokine priming, reflective of the in vivo milieu, on macrophage production of key periodontitis associated cytokines TNF, IL-1β and IL-6. THP-1 cells were pre-treated with combinations of Porphyromonas gingivalis and Escherichia coli lipopolysaccharide (LPS), concurrently with polarising cytokines IFNγ and IL-4, or PMA as a non-polarised control. Production of key periodontitis associated cytokines in response to subsequent LPS challenge were measured by enzyme - linked immunosorbent assay. Compared with cells incubated with IFNγ or IL-4 alone in the "polarisation" phase, macrophages that were incubated with LPS during the first 24h displayed a down-regulation of TNF and IL-1β production upon secondary LPS treatment in the "activation" phase. In all three macrophage populations (M0, M1 and M2), pre-treatment with P. gingivalis LPS during the polarisation process led to a significant decrease in TNF production in response to subsequent activation by LPS (p=0.007, p=0.002 and p=0.004, respectively). Pre-treatment with E. coli LPS also led to a significant down-regulation in TNF production in all three macrophage populations (pLPS during polarisation also led to the down-regulation of IL-1β in the M1 population (pLPS challenge, whereby production of key periodontitis associated cytokines TNF and IL-1β is reduced after exposure to LPS during the polarisation phase, even in the presence of inflammatory polarising cytokines. This diminished cytokine response may lead to the reduced ability to clear infection and transition to chronic inflammation seen in periodontitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    Science.gov (United States)

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  5. Effect of Tityus serrulatus venom on cytokine production and the activity of murine macrophages

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2002-01-01

    Full Text Available The purpose of this study was to investigate the effects of Tityus serrulatus venom (TSV on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2 and nitric oxide (NO in supernatants of peritoneal macrophages. Several functional bioassays were employed including an in vitro model for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6 and interferon-γ (IFN-γ were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2 release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functions in vitro.

  6. Impaired cytokine production by peripheral blood mononuclear cells and monocytes/macrophages in Parkinson's disease.

    Science.gov (United States)

    Hasegawa, Y; Inagaki, T; Sawada, M; Suzumura, A

    2000-03-01

    Although the pathogenesis of Parkinson's disease (PD) is still unknown, several reports suggest the presence of immunological abnormalities in the patients with PD such as impaired T cell responses or cytokine production by the peripheral immune system. In this study, we examined cytokine production by peripheral blood mononuclear cells (PBMC) and monocyte/macrophages (PBM) in the patients with idiopathic PD, using age-related healthy donors as a normal control and cerebrovascular diseases (CVD) as a disease control. Production of TNF-alpha, IL-1alpha, IL-1beta and IL-6 by PBMC and TNF-alpha by PBM were significantly lower in the patients with PD as compared to the control groups. IFN-gamma production by LPS-stimulated PBMC in the patients with PD was also significantly lower than that in control groups. Cytokine production by PBMC from the patients with CVD who had a similar disability as the patient group was not significantly different from those in normal controls. Thus, impaired production of inflammatory cytokines may not be due to the mental and physical stress caused by their disability. In the patients with PD, a significant negative correlation was noted in 1alpha-1beta, IL-1beta and IL-6 levels produced by LPS-stimulated PBMC and Hoehn Yahr disability score of the patients, suggesting that the impaired cytokine production may progress with disease progression. These abnormalities in cytokine production may not be primary but may affect the prognosis of PD.

  7. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine.

    Science.gov (United States)

    Maheshwari, Akhil; Kelly, David R; Nicola, Teodora; Ambalavanan, Namasivayam; Jain, Sunil K; Murphy-Ullrich, Joanne; Athar, Mohammad; Shimamura, Masako; Bhandari, Vineet; Aprahamian, Charles; Dimmitt, Reed A; Serra, Rosa; Ohls, Robin K

    2011-01-01

    Premature neonates are predisposed to necrotizing enterocolitis (NEC), an idiopathic, inflammatory bowel necrosis. We investigated whether NEC occurs in the preterm intestine due to incomplete noninflammatory differentiation of intestinal macrophages, which increases the risk of a severe mucosal inflammatory response to bacterial products. We compared inflammatory properties of human/murine fetal, neonatal, and adult intestinal macrophages. To investigate gut-specific macrophage differentiation, we next treated monocyte-derived macrophages with conditioned media from explanted human fetal and adult intestinal tissues. Transforming growth factor-β (TGF-β) expression and bioactivity were measured in fetal/adult intestine and in NEC. Finally, we used wild-type and transgenic mice to investigate the effects of deficient TGF-β signaling on NEC-like inflammatory mucosal injury. Intestinal macrophages in the human preterm intestine (fetus/premature neonate), but not in full-term neonates and adults, expressed inflammatory cytokines. Macrophage cytokine production was suppressed in the developing intestine by TGF-β, particularly the TGF-β(2) isoform. NEC was associated with decreased tissue expression of TGF-β(2) and decreased TGF-β bioactivity. In mice, disruption of TGF-β signaling worsened NEC-like inflammatory mucosal injury, whereas enteral supplementation with recombinant TGF-β(2) was protective. Intestinal macrophages progressively acquire a noninflammatory profile during gestational development. TGF-β, particularly the TGF-β(2) isoform, suppresses macrophage inflammatory responses in the developing intestine and protects against inflammatory mucosal injury. Enterally administered TGF-β(2) protected mice from experimental NEC-like injury. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Toll-like receptor-4 mediates cigarette smoke-induced cytokine production by human macrophages

    Directory of Open Access Journals (Sweden)

    De Kimpe Sjef J

    2006-04-01

    Full Text Available Abstract Background The major risk factor for the development of COPD is cigarette smoking. Smoking causes activation of resident cells and the recruitment of inflammatory cells into the lungs, which leads to release of pro-inflammatory cytokines, chemotactic factors, oxygen radicals and proteases. In the present study evidence is found for a new cellular mechanism that refers to a link between smoking and inflammation in lungs. Methods Employing human monocyte-derived macrophages, different techniques including FACS analysis, Cytometric Bead Array Assay and ELISA were achieved to evaluate the effects of CS on pro-inflammatory cytokine secretion including IL-8. Then, Toll-like receptor neutralization was performed to study the involvement of Toll-like receptor-4 in IL-8 production. Finally, signaling pathways in macrophages after exposure to CS medium were investigated performing ELISA and Western analysis. Results We demonstrate that especially human monocytes are sensitive to produce IL-8 upon cigarette smoke stimulation compared to lymphocytes or neutrophils. Moreover, monocyte-derived macrophages produce high amounts of the cytokine. The IL-8 production is dependent on Toll-like receptor 4 stimulation and LPS is not involved. Further research resolved the cellular mechanism by which cigarette smoke induces cytokine production in monocyte-derived macrophages. Cigarette smoke causes subsequently a concentration-dependent phosphorylation of IRAK and degradation of TRAF6. Moreover, IκBα was phosphorylated which suggests involvement of NF-κB. In addition, NFκB -inhibitor blocked cigarette smoke-induced IL-8 production. Conclusion These findings link cigarette smoke to inflammation and lead to new insights/therapeutic strategies in the pathogenesis of lung emphysema.

  9. The effects of propolis on cytokine production in lipopolysaccharide-stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Hatice Özbilge

    2011-12-01

    Full Text Available Objectives: Propolis, a bee-product, has attracted researchers’ interest in recent years because of several biological and pharmacological properties. Lipopolysaccharide (LPS is a component of the outer membrane of Gram-negative bacteria and has an important role in the pathogenesis of septic shock and several inflammatory diseases by causing excessive release of inflammatory cytokines. The aim of this study was to investigate the effects of ethanol extract of propolis collected in Kayseri and its surroundings on production of pro-inflammatory cytokines in LPS-stimulated macrophages.Materials and methods: In vitro, U937 human macrophage cells were grown in RPMI-1640 medium supplemented with fetal bovine serum (10% and penicillin-streptomycin (2% and divided into: control, LPS treated, and propolis+LPS treated cell groups. After incubation in an atmosphere of 5% CO2 and at 37°C of cells, interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α levels were measured in cell-free supernatants by ELISA.Results: IL-1β, IL-6 and TNF-α levels increased in LPS treated cell group according to control, statistically significant. Each cytokine levels significantly decreased in LPS and propolis treated cell group according to only LPS treated cell group (p<0.05.Conclusion: Propolis is a natural product to be examined for usage when needed the suppression of pro-inflammatory cytokines. J Clin Exp Invest 2011; 2 (4: 366-370

  10. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Claudia A. [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium); Fievez, Laurence [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Neyrinck, Audrey M.; Delzenne, Nathalie M. [Universite catholique de Louvain, LDRI, Metabolism and Nutrition Research Group, Brussels B-1200 (Belgium); Bureau, Fabrice [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Vanbever, Rita, E-mail: rita.vanbever@uclouvain.be [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  11. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  12. O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages.

    Directory of Open Access Journals (Sweden)

    Mariana I D S Xisto

    Full Text Available In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines.

  13. Nocardia brasiliensis Modulates IFN-gamma, IL-10, and IL-12 cytokine production by macrophages from BALB/c Mice.

    Science.gov (United States)

    Salinas-Carmona, Mario C; Zúñiga, Juan M; Pérez-Rivera, Luz I; Segoviano-Ramírez, Juan C; Vázquez-Marmolejo, Anna V

    2009-05-01

    Interferon-gamma (IFN-gamma) is a critical cytokine involved in control of different infections. Actinomycetoma is a chronic infectious disease mainly caused by the bacterium Nocardia brasiliensis, which destroys subcutaneous tissue, including bone. Currently, the mechanism of pathogenesis in N. brasiliensis infection is not known. Here, we demonstrate that N. brasiliensis induced an IFN-gamma response in serum after 24 h of infection, while, in infected tissue, positive cells to IFN-gamma appeared in 2 early peaks: the first was present only 3 h after infection, then transiently decreased; and the second peak appeared 12 h after infection and was independent of interleukin-10. Resident macrophages produced an immediate IFN-gamma response 1 h after in vitro infection, and spleen-positive cells began later. The phase of growth of N. brasiliensis affected cytokine production, and exposure of macrophages to Nocardia opsonized with either polyclonal anti-Nocardia antibodies or anti-P61 monoclonal antibody led to a suppression of cytokine production. Our report provides evidence that N. brasiliensis as an intracellular bacterium modulates macrophage cytokine production, which helps survival of the pathogen. Modulation of these cytokines may contribute to pathogenesis once this bacterium is inside the macrophage.

  14. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-04-01

    Full Text Available Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL, carnosic acid (CA, carnosic acid-12-methylether (CAME, 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT in murine macrophages (RAW264.7 cells and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO and prostaglandin E2 (PGE2 production in LPS-stimulated macrophages (i.e., acute inflammation. They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6 and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.

  15. The effect of hyperglycaemia on in vitro cytokine production and macrophage infection with Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Lachmandas, E.; Vrieling, F.; Wilson, L.G.; Joosten, S.A.; Netea, M.G.; Ottenhoff, T.H.; Crevel, R. van

    2015-01-01

    Type 2 diabetes mellitus is an established risk factor for tuberculosis but the underlying mechanisms are largely unknown. We examined the effects of hyperglycaemia, a hallmark of diabetes, on the cytokine response to and macrophage infection with Mycobacterium tuberculosis. Increasing in vitro

  16. An Ethyl Acetate Fraction of Moringa oleifera Lam. Inhibits Human Macrophage Cytokine Production Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nateelak Kooltheat

    2014-02-01

    Full Text Available Moringa oleifera Lam. (MO has been reported to harbor anti-oxidation and anti-inflammatory activity and useful in the treatment of inflammatory diseases. However, despite these findings there has been little work done on the effects of MO on immune cellular function. Since macrophages, TNF and related cytokines play an important pathophysiologic role in lung damage induced by cigarette smoke, we examined the effects of MO on cigarette smoke extract (CSE—induced cytokine production by human macrophages. An ethyl acetate fraction of MO (MOEF was prepared from fresh leaves extract of Moringa and shown to consist of high levels of phenolic and antioxidant activities. Human monocyte derived macrophages (MDM pre-treated with varying concentrations of MOEF showed decreased production of TNF, IL-6 and IL-8 in response to both LPS and CSE. The decrease was evident at both cytokine protein and mRNA levels. Furthermore, the extract inhibited the expression of RelA, a gene implicated in the NF-κB p65 signaling in inflammation. The findings highlight the ability of MOEF to inhibit cytokines (IL-8 which promote the infiltration of neutrophils into the lungs and others (TNF, IL-6 which mediate tissue disease and damage.

  17. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    Science.gov (United States)

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. Copyright © 2016 the American Physiological Society.

  18. Fibronectin inhibits cytokine production induced by CpG DNA in macrophages without direct binding to DNA.

    Science.gov (United States)

    Yoshida, Hiroyuki; Nishikawa, Makiya; Yasuda, Sachiyo; Toyota, Hiroyasu; Kiyota, Tsuyoshi; Takahashi, Yuki; Takakura, Yoshinobu

    2012-10-01

    Fibronectin (FN) is known to have four DNA-binding domains although their physiological significance is unknown. Primary murine peritoneal macrophages have been shown to exhibit markedly lower responsiveness to CpG motif-replete plasmid DNA (pDNA), Toll-like receptor-9 (TLR9) ligand, compared with murine macrophage-like cell lines. The present study was conducted to examine whether FN having DNA-binding domains is involved in this phenomenon. The expression of FN was significantly higher in primary macrophages than in a macrophage-like cell line, RAW264.7, suggesting that abundant FN might suppress the responsiveness in the primary macrophages. However, electrophoretic analysis revealed that FN did not bind to pDNA in the presence of a physiological concentration of divalent cations. Surprisingly, marked tumor necrosis factor - (TNF-)α production from murine macrophages upon CpG DNA stimulation was significantly reduced by exogenously added FN in a concentration-dependent manner but not by BSA, laminin or collagen. FN did not affect apparent pDNA uptake by the cells. Moreover, FN reduced TNF-α production induced by polyI:C (TLR3 ligand), and imiquimod (TLR7 ligand), but not by LPS (TLR4 ligand), or a non-CpG pDNA/cationic liposome complex. The confocal microscopic study showed that pDNA was co-localized with FN in the same intracellular compartment in RAW264.7, suggesting that FN inhibits cytokine signal transduction in the endosomal/lysosomal compartment. Taken together, the results of the present study has revealed, for the first time, a novel effect of FN whereby the glycoprotein modulates cytokine signal transduction via CpG-DNA/TLR9 interaction in macrophages without direct binding to DNA through its putative DNA-binding domains. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Cholesteryl hemiesters alter lysosome structure and function and induce proinflammatory cytokine production in macrophages.

    Science.gov (United States)

    Domingues, Neuza; Estronca, Luís M B B; Silva, João; Encarnação, Marisa R; Mateus, Rita; Silva, Diogo; Santarino, Inês B; Saraiva, Margarida; Soares, Maria I L; Pinho E Melo, Teresa M V D; Jacinto, António; Vaz, Winchil L C; Vieira, Otília V

    2017-02-01

    Cholesteryl hemiesters are oxidation products of polyunsaturated fatty acid esters of cholesterol. Their oxo-ester precursors have been identified as important components of the "core aldehydes" of human atheromata and in oxidized lipoproteins (Ox-LDL). We had previously shown, for the first time, that a single compound of this family, cholesteryl hemisuccinate (ChS), is sufficient to cause irreversible lysosomal lipid accumulation (lipidosis), and is toxic to macrophages. These features, coupled to others such as inflammation, are typically seen in atherosclerosis. To obtain insights into the mechanism of cholesteryl hemiester-induced pathological changes in lysosome function and induction of inflammation in vitro and assess their impact in vivo. We have examined the effects of ChS on macrophages (murine cell lines and primary cultures) in detail. Specifically, lysosomal morphology, pH, and proteolytic capacity were examined. Exposure of macrophages to sub-toxic ChS concentrations caused enlargement of the lysosomes, changes in their luminal pH, and accumulation of cargo in them. In primary mouse bone marrow-derived macrophages (BMDM), ChS-exposure increased the secretion of IL-1β, TNF-α and IL-6. In zebrafish larvae (wild-type AB and PU.1:EGFP), fed with a ChS-enriched diet, we observed lipid accumulation, myeloid cell-infiltration in their vasculature and decrease in larval survival. Under the same conditions the effects of ChS were more profound than the effects of free cholesterol (FC). Our data strongly suggest that cholesteryl hemiesters are pro-atherogenic lipids able to mimic features of Ox-LDL both in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of Oxidized Dextran on Cytokine Production and Activation of IRF3 Transcription Factor in Macrophages from Mice of Opposite Strains with Different Sensitivity to Tuberculosis Infection.

    Science.gov (United States)

    Chechushkov, A V; Kozhin, P M; Zaitseva, N S; Gainutdinov, P I; Men'shchikova, E B; Troitskii, A V; Shkurupy, V A

    2018-04-16

    We studied differences in the production of pro- and anti-inflammatory cytokines and IRF3 transcription factor by peritoneal macrophages from mice of opposite strains CBA/J and C57Bl/6 and the effect of 60-kDa oxidized dextran on these parameters. Macrophages from C57Bl/6 mice were mainly characterized by the production of proinflammatory cytokines TNFα, IL-12, and MCP-1 (markers of M1 polarization). By contrast, CBA/J mice exhibited a relatively high level of anti-inflammatory cytokine IL-10 and lower expression of proinflammatory cytokines (M2 phenotype). IRF3 content in peritoneal macrophages of CBA/J mice was higher than in C57Bl/6 mice. Oxidized dextran decreased the expression of IRF3 upon stimulation of cells from CBA/J mice with LPS, but increased this process in C57Bl/6 mice. Despite a diversity of oxidized dextran-induced changes in cytokine production, the data confirm our hypothesis that this agent can stimulate the alternative activation of macrophages.

  2. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor- stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Walk RM

    2012-11-01

    Full Text Available Ryan M Walk,1,2 Steven T Elliott,2 Felix C Blanco,2 Jason A Snyder,2 Ashley M Jacobi,3 Scott D Rose,3 Mark A Behlke,3 Aliasger K Salem,4 Stanislav Vukmanovic,2 Anthony D Sandler21Department of Surgery, Walter Reed Army Medical Center, Washington, DC, USA; 2Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, USA; 3Integrated DNA Technologies, Coralville, IA, USA; 4Division of Pharmaceutics, University of Iowa, Iowa City, IA, USAAbstract: Toll-like receptor (TLR agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α, a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10, a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10.Keywords: toll-like receptors, innate immunity, IL-10

  3. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    Science.gov (United States)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  4. Murine macrophage inflammatory cytokine production and immune activation in response to Vibrio parahaemolyticus infection

    Science.gov (United States)

    Vibrio parahaemolyticus is the most common cause of bacterial seafood-related illness in the United States. Currently, there is a dearth of literature regarding immunity to infection with this pathogen. Here we studied V. parahaemolyticus-infected RAW 264.7 murine macrophage detecting both pro- and...

  5. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    International Nuclear Information System (INIS)

    Uemura, Eiichiro; Yoshioka, Yasuo; Hirai, Toshiro; Handa, Takayuki; Nagano, Kazuya; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2016-01-01

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10–1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  6. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Eiichiro, E-mail: uemura-e@phs.osaka-u.ac.jp; Yoshioka, Yasuo, E-mail: y-yoshioka@biken.osaka-u.ac.jp; Hirai, Toshiro, E-mail: toshiro.hirai@pitt.edu; Handa, Takayuki, E-mail: handa-t@phs.osaka-u.ac.jp; Nagano, Kazuya, E-mail: knagano@phs.osaka-u.ac.jp; Higashisaka, Kazuma, E-mail: higashisaka@phs.osaka-u.ac.jp; Tsutsumi, Yasuo, E-mail: ytsutsumi@phs.osaka-u.ac.jp [Osaka University, Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences (Japan)

    2016-06-15

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10–1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  7. Long-term effects of neonatal malnutrition on microbicide response, production of cytokines, and survival of macrophages infected by Staphylococcus aureus sensitive/resistant to methicillin

    Directory of Open Access Journals (Sweden)

    Natália Gomes de Morais

    2014-10-01

    Full Text Available OBJECTIVE: To assess microbicide function and macrophage viability after in vitro cellular infection by methicillin-sensitive/resistant Staphylococcus aureus in nourished rats and rats subjected to neonatal malnutrition. METHODS: Male Wistar rats (n=40 were divided in two groups: Nourished (rats suckled by dams consuming a 17% casein diet and Malnourished (rats suckled by dams consuming an 8% casein diet. Macrophages were recovered after tracheotomy, by bronchoalveolar lavage. After mononuclear cell isolation, four systems were established: negative control composed exclusively of phagocytes; positive control composed of macrophages plus lipopolysaccharide; and two testing systems, macrophages plus methicillin-sensitive Staphylococcus aureus and macrophages plus methicillin-resistant Staphylococcus aureus. The plates were incubated in a humid atmosphere at 37 degrees Celsius containing 5% CO2 for 24 hours. After this period tests the microbicidal response, cytokine production, and cell viability were analyzed. The statistical analysis consisted of analysis of variance (p<0.05. RESULTS: Malnutrition reduced weight gain, rate of phagocytosis, production of superoxide anion and nitric oxide, and macrophage viability. Production of nitrite and interleukin 18, and viability of macrophages infected with methicillin-resistant Staphylococcus aureus were lower. CONCLUSION: The neonatal malnutrition model compromised phagocyte function and reduced microbicidal response and cell viability. Interaction between malnutrition and the methicillin-resistant strain decreased the production of inflammatory mediators by effector cells of the immune response, which may compromise the immune system's defense ability.

  8. DMPD: Induction of proliferation and cytokine production in human T lymphocytes bylipopolysaccharide (LPS). [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11090938 Induction of proliferation and cytokine production in human T lymphocytes ... (.png) (.svg) (.html) (.csml) Show Induction of proliferation and cytokine production in human T lymphocyte...s bylipopolysaccharide (LPS). PubmedID 11090938 Title Induction of proliferation

  9. Low pH Environmental Stress Inhibits LPS and LTA-Stimulated Proinflammatory Cytokine Production in Rat Alveolar Macrophages

    Directory of Open Access Journals (Sweden)

    Stanley F. Fernandez

    2013-01-01

    Full Text Available Gastric aspiration increases the risks for developing secondary bacterial pneumonia. Cytokine elaboration through pathogen recognition receptors (PRRs is an important mechanism in initiating innate immune host response. Effects of low pH stress, a critical component of aspiration pathogenesis, on the PRR pathways were examined, specifically toll-like receptor-2 (TLR2 and TLR4, using isolated rat alveolar macrophages (aMØs. We assessed the ability of aMØs after brief exposure to acidified saline to elaborate proinflammatory cytokines in response to lipopolysaccharide (LPS and lipoteichoic acid (LTA stimulation, known ligands of TLR4 and TLR2, respectively. Low pH stress reduced LPS- and LTA-mediated cytokine release (CINC-1, MIP-2, TNF-, MCP-1, and IFN-. LPS and LTA increased intracellular Ca2+ concentrations while Ca2+ chelation by BAPTA decreased LPS- and LTA-mediated cytokine responses. BAPTA blocked the effects of low pH stress on most of LPS-stimulated cytokines but not of LTA-stimulated responses. In vivo mouse model demonstrates suppressed E. coli and S. pneumoniae clearance following acid aspiration. In conclusion, low pH stress inhibits antibacterial cytokine response of aMØs due to impaired TLR2 (MyD88 pathway and TLR4 signaling (MyD88 and TRIF pathways. The role of Ca2+ in low pH stress-induced signaling is complex but appears to be distinct between LPS- and LTA-mediated responses.

  10. Intervertebral disc and macrophage interaction induces mechanical hyperalgesia and cytokine production in a herniated disc model in rats.

    Science.gov (United States)

    Takada, Toru; Nishida, Kotaro; Maeno, Koichiro; Kakutani, Kenichiro; Yurube, Takashi; Doita, Minoru; Kurosaka, Masahiro

    2012-08-01

    The expression of proinflammatory factors such as tumor necrosis factor α (TNFα), interleukin-6 (IL-6), IL-8, and prostaglandin E(2) (PGE(2) ) is significantly correlated with the symptoms of herniated disc disease. Among the different types of immune cells, macrophages are frequently noted in the herniated disc tissue. We undertook this study to clarify the interaction of the intervertebral disc (IVD) and macrophages with regard to the production of TNFα, IL-6, IL-8, and PGE(2) . We developed 2 animal models to assess the interactions of IVDs with macrophages in terms of TNFα, IL-6, IL-8, and PGE(2) production and pain-related behavior. We also cocultured IVDs and macrophages to assess the role of TNFα in IL-6, IL-8, and PGE(2) production. IVD autografts induced TNFα, IL-6, IL-8, and cyclooxygenase 2 (COX-2) messenger RNA (mRNA) up-regulation; macrophage infiltration was seen shortly after the autograft was implanted. A significant decrease was noted in the mechanical threshold of the ipsilateral paw following the up-regulation of TNFα, IL-6, IL-8, and COX-2 mRNA. Only IVD and macrophage cocultures resulted in IL-8 and PGE(2) up-regulation. TNFα up-regulation was maximized before that of IL-6 and IL-8. TNFα neutralization attenuated production of IL-6 and PGE(2) , but not that of IL-8. Neutralization of TNFα and IL-8 significantly increased the paw withdrawal mechanical threshold in the IVD autograft and spinal nerve ligation model. IVD-macrophage interaction plays a major role in sciatica and in the production of TNFα, IL-6, IL-8, and PGE(2) . TNFα is required for IL-6 and PGE(2) production, but not for IL-8 production, during IVD-macrophage interaction. Neutralization of TNFα and IL-8 can be a valuable therapy for herniated disc disease. Copyright © 2012 by the American College of Rheumatology.

  11. Effects of tigerinin peptides on cytokine production by mouse peritoneal macrophages and spleen cells and by human peripheral blood mononuclear cells.

    Science.gov (United States)

    Pantic, Jelena M; Mechkarska, Milena; Lukic, Miodrag L; Conlon, J Michael

    2014-06-01

    The tigerinins are a family of cationic, cyclic peptides of unknown biological function produced in the skins of diverse frog species. Tigerinin-1R (RVCSAIPLPICH.NH2) from Hoplobatrachus rugulosus (Dicroglossidae), tigerinin-1V (RICYAMWIPYPC) from Lithobates vaillanti (Ranidae), and tigerinin-1M (WCPPMIPLCSRF.NH2) from Xenopus muelleri (Pipidae) did not inhibit growth of Escherichia coli and Staphylococcus aureus at concentrations up to 500 μg/ml and were not hemolytic. Incubation of peritoneal macrophages from both BALB/c and C57BL/6 mice with tigerinin-1M, -1R and -1V (20 μg/ml) significantly (P < 0.05) increased production of the anti-inflammatory cytokine IL-10 and potentiated the stimulation produced by lipopolysaccharide (LPS). Incubation with the tigerinins (20 μg/ml) significantly increased production of IL-6 in LPS-stimulated macrophages from C57BL/6 mice but only tigerinin-1V potentiated IL-6 production in LPS-stimulated macrophages from BALB/c mice. The tigerinins did not have significant effects on the production of proinflammatory cytokines IL-12 and IL-23 by macrophages from BALB/c mice. In a population of mononuclear cells derived from mouse spleen, tigerinin-1M and -1V suppressed production of IFN-γ with no effect on IL-17 production and the three tigerinins enhanced IL-10 production. The three tigerinins (≤ 5 μg/ml) also significantly increased production of IL-10 in unstimulated and LPS-stimulated human peripheral blood mononuclear cells. The data indicate that the tigerinins may function as immunomodulatory host-defense peptides in frog skin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages

    Directory of Open Access Journals (Sweden)

    Kiyanagi Takashi

    2008-11-01

    Full Text Available Abstract Background Deterioration of peroxisomal β-oxidation activity causes an accumulation of very long chain saturated fatty acids (VLCSFA in various organs. We have recently reported that the levels of VLCSFA in the plasma and/or membranes of blood cells were significantly higher in patients with metabolic syndrome and in patients with coronary artery disease than the controls. The aim of the present study is to investigate the effect of VLCSFA accumulation on inflammatory and oxidative responses in VLCSFA-accumulated macrophages derived from X-linked adrenoleukodystrophy (X-ALD protein (ALDP-deficient mice. Results Elevated levels of VLCSFA were confirmed in macrophages from ALDP-deficient mice. The levels of nitric oxide (NO production stimulated by lipopolysaccharide (LPS and interferon-γ (IFN-γ, intracellular reactive oxygen species (ROS, and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α, interluekin-6 (IL-6, and interleukin-12p70 (IL-12p70, were significantly higher in macrophages from ALDP-deficient mice than in those from wild-type mice. The inducible NO synthase (iNOS mRNA expression also showed an increase in macrophages from ALDP-deficient mice. Conclusion These results suggested that VLCSFA accumulation in macrophages may contribute to the pathogenesis of inflammatory diseases through the enhancement of inflammatory and oxidative responses.

  13. Sodium methyldithiocarbamate inhibits MAP kinase activation through toll-like receptor 4, alters cytokine production by mouse peritoneal macrophages, and suppresses innate immunity.

    Science.gov (United States)

    Pruett, Stephen B; Zheng, Qiang; Schwab, Carlton; Fan, Ruping

    2005-09-01

    Sodium methyldithiocarbamate (SMD; trade name, Metam Sodium) is an abundantly used soil fumigant that can cause adverse health effects in humans, including some immunological manifestations. The mechanisms by which SMD acts, and its targets within the immune system are not fully understood. Initial experiments demonstrated that SMD administered by oral gavage substantially decreased IL-12 production and increased IL-10 production induced by lipopolysaccharide in mice. The present study was conducted to further characterize these effects and to evaluate our working hypothesis that the mechanism for these effects involves alteration in signaling through toll-like receptor 4 and that this would suppress innate immunity to infection. SMD decreased the activation of MAP kinases and AP-1 but not NF-kappaB in peritoneal macrophages. The expression of mRNA for IL-1alpha, IL-1beta, IL-18, IFN-gamma, IL-12 p35, IL-12 p40, and macrophage migration inhibitory factor (MIF) was inhibited by SMD, whereas mRNA for IL-10 was increased. SMD increased the IL-10 concentration in the peritoneal cavity and serum and decreased the concentration of IL-12 p40 in the serum, peritoneal cavity, and intracellularly in peritoneal cells (which are >80% macrophages). Similar effects on LPS-induced cytokine production were observed following dermal administration of SMD. The major breakdown product of SMD, methylisothiocyanate (MITC), caused similar effects on cytokine production at dosages as low as 17 mg/kg, a dosage relevant to human exposure levels associated with agricultural use of SMD. Treatment of mice with SMD decreased survival following challenge with non-pathogenic Escherichia coli within 24-48 h, demonstrating suppression of innate immunity.

  14. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanzhen; Mei, Chenfang [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Liu, Hao [Affiliated Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou 510095 (China); Wang, Hongsheng [Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Zeng, Guoqu; Lin, Jianhui [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Xu, Meiying, E-mail: xumy@gdim.cn [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China)

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  15. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    International Nuclear Information System (INIS)

    Liu, Yanzhen; Mei, Chenfang; Liu, Hao; Wang, Hongsheng; Zeng, Guoqu; Lin, Jianhui; Xu, Meiying

    2014-01-01

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health

  16. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Ana Carolina P; Mizutani, Erica; Peterlevitz, Alfredo C; Ceragioli, Helder J; Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Universidade de Campinas, Campinas, SP (Brazil); Paula, Rosemeire F O; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Farias, Alessandro S; Santos, Leonilda M B, E-mail: leonilda@unicamp.br [Laboratorio de Neuroimunologia, Departamento Genetica, Evolucao e Bioagentes, Instituto de Biologia, Universidade de Campinas, Campinas, SP (Brazil)

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFN{gamma}), tumor necrosis factor-alpha (TNF{alpha}) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGF{beta}) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGF{beta} and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  17. Macrophage cytokines: Involvement in immunity and infectious diseases

    Directory of Open Access Journals (Sweden)

    Guillermo eArango Duque

    2014-10-01

    Full Text Available The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting ‘classically activated’, to anti-inflammatory or ‘alternatively activated’ macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

  18. Macrophage cytokines: involvement in immunity and infectious diseases.

    Science.gov (United States)

    Arango Duque, Guillermo; Descoteaux, Albert

    2014-01-01

    The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

  19. Ethanol inhibits LPS-induced signaling and modulates cytokine production in peritoneal macrophages in vivo in a model for binge drinking

    Directory of Open Access Journals (Sweden)

    Pruett Stephen B

    2009-09-01

    Full Text Available Abstract Background Previous reports indicate that ethanol, in a binge drinking model in mice, inhibits the production of pro-inflammatory cytokines in vivo. However, the inhibition of signaling through TLR4 has not been investigated in this experimental model in vivo. Considering evidence that signaling can be very different in vitro and in vivo, the present study was conducted to determine if effects of ethanol on TLR4 signaling reported for cells in culture or cells removed from ethanol treated mice and stimulated in culture also occur when ethanol treatment and TLR4 activation occur in vivo. Results Phosphorylated p38, ERK, and c-Jun (nuclear were quantified with kits or by western blot using samples taken 15, 30, and 60 min after stimulation of peritoneal macrophages with lipopolysaccharide in vivo. Effects of ethanol were assessed by administering ethanol by gavage at 6 g/kg 30 min before administration of lipopolysaccharide (LPS. Cytokine concentrations in the samples of peritoneal lavage fluid and in serum were determined at 1, 2, and 6 hr after lipopolysaccharide administration. All of these data were used to measure the area under the concentration vs time curve, which provided an indication of the overall effects of ethanol in this system. Ethanol suppressed production of most pro-inflammatory cytokines to a similar degree as it inhibited key TLR4 signaling events. However, NF-κB (p65 translocation to the nucleus was not inhibited by ethanol. To determine if NF-κB composed of other subunits was inhibited, transgenic mice with a luciferase reporter were used. This revealed a reproducible inhibition of NF-κB activity, which is consistent with the observed inhibition of cytokines whose expression is known to be NF-κB dependent. Conclusion Overall, the effects of ethanol on signalling in vivo were similar to those reported for in vitro exposure to ethanol and/or lipopolysaccharide. However, inhibition of the activation of NF-κB was

  20. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages

    Directory of Open Access Journals (Sweden)

    A. Ocaña

    2012-01-01

    Full Text Available Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis were examined. Two oil fractions from each species were obtained by CO2 supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects.

  1. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages

    Science.gov (United States)

    Ocaña, A.; Reglero, G.

    2012-01-01

    Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis) were examined. Two oil fractions from each species were obtained by CO2 supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects. PMID:22577523

  2. Effects of pelargonidin-3-O-glucoside and its metabolites on lipopolysaccharide-stimulated cytokine production by THP-1 monocytes and macrophages.

    Science.gov (United States)

    Amini, Anna M; Spencer, Jeremy P E; Yaqoob, Parveen

    2018-03-01

    Epidemiological evidence suggests cardioprotective effects of anthocyanin consumption. This study examined the predominant strawberry anthocyanin, pelargonidin-3-O-glucoside (Pg-3-glc), and three of its plasma metabolites (protocatechuic acid [PCA], 4-hydroxybenzoic acid, and phloroglucinaldehyde [PGA]) for effects on the production of selected cytokines by lipopolysaccharide-stimulated THP-1 monocytes and macrophages. Concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8 and IL-10 were determined using a cytometric bead array kit. PCA at 0.31, 1.25 and 20 μM and PGA at 5 and 20 μM decreased the concentration of IL-6 in the monocyte cultures, but there were no effects on TNF-α, IL-1β, IL-8 and IL-10 and there were no effects of the other compounds. In the macrophage cultures, PGA at 20 μM decreased the concentrations of IL-6 and IL-10, but there was no effect on TNF-α, IL-1β and IL-8 and there were no effects of the other compounds. In conclusion, while the effects of PGA were only observed at the higher, supraphysiological concentration and are thus considered of limited physiological relevance overall, the anti-inflammatory properties of PCA were observed at both the lower, physiologically relevant, and the higher concentrations; however, effects were modest and limited to IL-6 and monocytes. These preliminary data suggest potential for physiologically attainable PCA concentrations to modulate IL-6 production by monocytes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages.

    Science.gov (United States)

    Mattana, Antonella; Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W; Henriquez, Fiona L; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-10-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. Copyright © 2016 Mattana et al.

  4. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages

    Science.gov (United States)

    Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W.; Henriquez, Fiona L.; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-01-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. PMID:27481240

  5. Effects of Plantago major Extracts and Its Chemical Compounds on Proliferation of Cancer Cells and Cytokines Production of Lipopolysaccharide-activated THP-1 Macrophages

    Science.gov (United States)

    Kartini; Piyaviriyakul, Suratsawadee; Thongpraditchote, Suchitra; Siripong, Pongpun; Vallisuta, Omboon

    2017-01-01

    Background: Plantago major has been reported to have anticancer and anti-inflammatory properties. However, its antiproliferative and anti-inflammatory mechanisms have not been fully elucidated. Moreover, which plant parts are more suitable as starting materials has not been explored. Objectives: To investigate the antiproliferative activity of P. major extracts against MCF-7, MDA-MB-231, HeLaS3, A549, and KB cancer cell lines as well as their effects on inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, IL-6, and interferon [IFN]-γ) production by lipopolysaccharide (LPS)-stimulated THP-1 macrophages. Materials and Methods: The methanol and aqueous extracts of P. major from different plant parts and its chemical compounds, i.e., ursolic acid (UA), oleanolic acid (OA), and aucubin were tested in this experiment. Results: Methanol and aqueous extracts of P. major seeds exhibited the greatest antiproliferative activity. The methanol extracts of seeds also demonstrated the highest inhibition of TNF-α, IL-1β, IL-6, and IFN-γ production. Interestingly, the roots, which were commonly discarded, exhibited comparable activities to those of leaves and petioles. Furthermore, UA exhibited stronger activities than OA and aucubin. Conclusions: The seeds are being proposed as the main source for further development of anticancer and anti-inflammatory products, whereas the roots could be included in the preparation of P. major derived products with respect to anti-inflammatory. SUMMARY Amongst the parts of Plantago major, seeds exhibited the greatest antiproliferative activity against MCF-7, MDA-MB-231, HeLaS3, A549, and KB cell lines as well as the highest inhibition on TNF-α, IL-1β, IL-6, and IFN-γ productionThe roots, which were commonly discarded, exhibited comparable antiproliferative and cytokines inhibition activities to those of leaves and petiolesUrsolic acid, a chemical compound of Plantago major, exhibited stronger activities than

  6. Heat-killed whole-cell products of the probiotic Pseudomonas aeruginosa VSG2 strain affect in vitro cytokine expression in head kidney macrophages of Labeo rohita.

    Science.gov (United States)

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Park, Se Chang; Sukumaran, V

    2016-03-01

    Present study was undertaken to investigate the efficiency of heat-killed whole-cell products (HKWCPs) of probiotic Pseudomonas aeruginosa VSG2 strain in stimulating the cytokine responses in the head kidney (HK) macrophages of Labeo rohita. The HK macrophages were incubated with HKWCPs or lipopolysaccharide (LPS), and the responses of cytokine genes, namely interleukin-10 (IL-10), IL-1β, IL-p35, IL-12p40, tumour necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), interferon-alpha (IFN-α), and interferon-gamma (IFN-γ) were assessed by quantitative real-time PCR (qRT-PCR) at 2, 8, 16, 24, 48, 72 h post-stimulation (hps). Among proinflammatory cytokines, significantly higher expression of IL-1β and TNF-α was observed at 8-24 hps, and 2-16 hps with HKWCPs, respectively, as compared to controls. However, COX-2 and NF-κB displayed strong expression (P production) and humoral (lysozyme) immune parameters of treated HK macrophages confirmed the induction of inflammatory response. Thus, our results indicated that HKWCPs of probiotic P. aeruginosa VSG2 had greater potential for stimulating the in vitro expression of cytokines in fish and that these HKWCPs may be used as vaccine adjuvants in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cytokines and macrophage function in humans - role of stress

    Science.gov (United States)

    Sonnenfeld, Gerald (Principal Investigator)

    1996-01-01

    We have begun this study to commence the determination of the role of mild chronic stress in the effects of space flight on macrophage/monocyte function, a component of the immune response. Medical students undergoing regular periods of stress and relaxation have been shown to be an excellent model for determining the effects of stress on immune responses. We have begun using this model using the macrophage/monocyte as model leukocyte. The monocyte/macrophage plays a central role in immunoregulation. The studies to be included in this three year project are the effects of stress on: (1) interactions of monocytes with microbes, (2) monocyte production of cytokines, (3) monocyte phagocytosis and activity, and (4) monocyte expression of cell surface antigens important in immune responses. Stress hormone levels will also be carried out to determine if there is a correlation between stress effects on immune responses and hormonal levels. Psychological testing to insure subjects are actually stressed or relaxed at the time of testing will also be carried out. The results obtained from the proposed studies should be comparable with space flight studies with whole animals and isolated cell cultures. When complete this study should allow the commencement of the establishment of the role of stress as one compartment of the induction of immune alterations by space flight.

  8. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Science.gov (United States)

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  9. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro.

    Science.gov (United States)

    Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong

    2014-09-01

    Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.

  10. Macrophage Migration Inhibitory Factor: A Multifunctional Cytokine in Rheumatic Diseases

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kasama

    2010-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF was originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibited the random migration of macrophages. MIF is now recognized to be a multipotent cytokine involved in the regulation of immune and inflammatory responses. Moreover, the pivotal nature of its involvement highlights the importance of MIF to the pathogenesis of various inflammatory disorders and suggests that blocking MIF may be a useful therapeutic strategy for treating these diseases. This paper discusses the function and expressional regulation of MIF in several rheumatic diseases and related conditions.

  11. Suppression of inflammatory reactions by terpinen-4-ol, a main constituent of tea tree oil, in a murine model of oral candidiasis and its suppressive activity to cytokine production of macrophages in vitro.

    Science.gov (United States)

    Ninomiya, Kentaro; Hayama, Kazumi; Ishijima, Sanae A; Maruyama, Naho; Irie, Hiroshi; Kurihara, Junichi; Abe, Shigeru

    2013-01-01

    The onset of oral candidiasis is accompanied by inflammatory symptoms such as pain in the tongue, edema or tissue damage and lowers the quality of life (QOL) of the patient. In a murine oral candidiasis model, the effects were studied of terpinen-4-ol (T-4-ol), one of the main constituents of tea tree oil, Melaleuca alternifolia, on inflammatory reactions. When immunosuppressed mice were orally infected with Candida albicans, their tongues showed inflammatory symptoms within 24 h after the infection, which was monitored by an increase of myeloperoxidase activity and macrophage inflammatory protein-2 in their tongue homogenates. Oral treatment with 50 µL of 40 mg/mL terpinen-4-ol 3h after the Candida infection clearly suppressed the increase of these inflammatory parameters. In vitro analysis of the effects of terpinen-4-ol on cytokine secretion of macrophages indicated that 800 µg/mL of this substance significantly inhibited the cytokine production of the macrophages cultured in the presence of heat-killed C. albicans cells. Based on these findings, the role of the anti-inflammatory action of T-4-ol in its therapeutic activity against oral candidiasis was discussed.

  12. [Role of non-receptor tyrosine kinase Tec in the production of pro-inflammatory cytokines from macrophages induced by endotoxin/lipopolysaccharide].

    Science.gov (United States)

    Wang, Chao; Wang, Fei; Zhou, Bo; Qiu, Le; Wang, Jian; Liu, Sheng; Chen, Xulin

    2015-02-01

    supernatant of cells in LPS+LFM-A13 group was respectively (787 ± 109) and (453 ± 64) pg/mL, which was significantly lower than that in LPS group (with P values below 0.05). The mRNA expressions of TNF-α and IL-1β in the cells of LPS+LFM-A13 group were respectively 1.21 ± 0.15 and 1.21 ± 0.22, and they were significantly lower than those of LPS group (with P values below 0.05). The activity of intracellular Tec, TAK1, and p38 MAPK of cells in LPS+LFM-A13 group was close to that in blank group (with P values above 0.05). The activity of intracellular Tec, TAK1, and p38 MAPK of cells in LPS group was respectively 2.69 ± 0.41, 3.99 ± 0.65, and 2.07 ± 0.31, which was significantly higher than that in blank group (1.00 ± 0.17, 1.00 ± 0.16, and 1.00 ± 0.18, with P values below 0.01) and LPS+LFM-A13 group (1.02 ± 0.17, 1.18 ± 0.20, and 1.58 ± 0.28, P Tec promotes the production and release of pro-inflammatory cytokines TNF-α and IL-1β from macrophages induced by LPS via TAK1-p38 MAPK signaling pathway.

  13. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    Science.gov (United States)

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling.

    Directory of Open Access Journals (Sweden)

    Wu Li

    Full Text Available Intracellular survival plays a central role in the pathogenesis of Mycobacterium tuberculosis, a process which depends on an array of virulence factors to colonize and replicate within the host. The M. tuberculosis iron regulated open reading frame (ORF rv3402c, encoding a conserved hypothetical protein, was shown to be up-regulated upon infection in both human and mice macrophages. To explore the function of this ORF, we heterologously expressed the rv3402c gene in the non-pathogenic fast-growing Mycobacterium smegmatis strain, and demonstrated that Rv3402c, a cell envelope-associated protein, was able to enhance the intracellular survival of recombinant M. smegmatis. Enhanced growth was not found to be the result of an increased resistance to intracellular stresses, as growth of the Rv3402c expressing strain was unaffected by iron depletion, H2O2 exposure, or acidic conditions. Colonization of macrophages by M. smegmatis expressing Rv3402c was associated with substantial cell death and significantly greater amount of TNF-α and IL-1β compared with controls. Rv3402c-induced TNF-α and IL-1β production was found to be mediated by NF-κB, ERK and p38 pathway in macrophages. In summary, our study suggests that Rv3402c delivered in a live M. smegmatis vehicle can modify the cytokines profile of macrophage, promote host cell death and enhance the persistence of mycobacterium within host cells.

  15. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response.

    Science.gov (United States)

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Increased titanium surface hydrophilicity has been shown to accelerate dental implant osseointegration. Macrophages are important in the early inflammatory response to surgical implant placement and influence the subsequent healing response. This study investigated the modulatory effect of a hydrophilic titanium surface on the inflammatory cytokine expression profile in a human macrophage cell line (THP-1). Genes for 84 cytokines, chemokines, and their receptors were analyzed following exposure to (1) polished (SMO), (2) micro-rough sand blasted, acid etched (SLA), and (3) hydrophilic-modified SLA (modSLA) titanium surfaces for 1 and 3 days. By day 3, the SLA surface elicited a pro-inflammatory response compared to the SMO surface with statistically significant up-regulation of 16 genes [Tumor necrosis factor (TNF) Interleukin (IL)-1β, Chemokine (C-C motif) ligand (CCL)-1, 2, 3, 4, 18, 19, and 20, Chemokine (C-X-C motif) ligand (CXCL)-1, 5, 8 and 12, Chemokine (C-C motif) receptor (CCR)-7, Lymphotoxin-beta (LTB), and Leukotriene B4 receptor (LTB4R)]. This effect was countered by the modSLA surface, which down-regulated the expression of 10 genes (TNF, IL-1α and β, CCL-1, 3, 19 and 20, CXCL-1 and 8, and IL-1 receptor type 1), while two were up-regulated (osteopontin and CCR5) compared to the SLA surface. These cytokine gene expression changes were confirmed by decreased levels of corresponding protein secretion in response to modSLA compared to SLA. These results show that a hydrophilic titanium surface can modulate human macrophage pro-inflammatory cytokine gene expression and protein secretion. An attenuated pro-inflammatory response may be an important molecular mechanism for faster and/or improved wound healing. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  16. Role of cytokines and nitric oxide in the induction of tuberculostatic macrophage functions

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2000-01-01

    Full Text Available The aim of this study was to determine phenotypic differences when BCG invades macrophages. Bacilli prepared from the same BCG primary seed, but produced in different culture media, were analysed with respect to the ability to stimulate macrophages and the susceptibility to treatment with cytokines and nitric oxide (NO. Tumour necrosis factor (TNF activity was assayed by measuring its cytotoxic activity on L-929 cells, interleukin-6 (IL-6 and interferon γ (IFN-γ were assayed by enzyme-linked immunosorbent assay (ELISA, whereas NO levels were detected by Griess colorimetric reactions in the culture supernatant of macrophages incubated with IFN-γ , TNF or NO and subsequently exposed to either BCG-I or BCG-S. We found that BCG-I and BCGS bacilli showed different ability to simulate peritoneal macrophages. Similar levels of IL-6 were detected in stimulated macrophages with lysate from two BCG samples. The highest levels of TNF and IFN-γ were observed in macrophages treated with BCG-S and BCG-I, respectively. The highest levels of NO were observed in cultures stimulated for 48h with BCG-S. We also found a different susceptibility of the bacilli to ex ogenous treatm ent w ith IFN-γ and TNF which were capable of killing 60 and 70% of both bacilli, whereas NO was capable of killing about 98 and 47% of BCG-I and BCG-S, respectively. The amount of bacilli proportionally decreased with IFN-γ and TNF, suggesting a cytokine-related cytotox ic effect. Moreover, NO also decreased the viable number of bacilli. Interestingly, NO levels of peritoneal macrophages were significantly increased after cytokine treatment. This indicates that the treatment of macrophages with cytokines markedly reduced bacilli number and presented effects on NO production. The results obtained here emphasize the importance of adequate stimulation for guaranteeing efficient killing of bacilli. In this particular case, the IFN-γ and TNF were involved in the activation of macrophage

  17. Evaluation of Inflammatory Cytokine Secretion by Human Alveolar Macrophages

    Directory of Open Access Journals (Sweden)

    J. E. Losa García

    1999-01-01

    Full Text Available The alveolar macrophage (AM secretes interleukin 1β (IL-1β, tumour necrosis factor-α (TNF-α, interleukin-6 (IL-6 and interleukin-8 (IL-8, all of them inflammatory cytokines involved in the pathogenesis of many lung diseases. The aim of the present work was to evaluate the basal and stimulated secretion of these cytokines by human AMs. Human AMs were collected by bronchoalveolar lavage (BAL from four healthy controls and 13 patients with diffuse interstitial lung disease (five cases of sarcoidosis, three of hypersensitivity pneumonitis and five of idiopathic pulmonary fibrosis. AMs were cultured in the presence or absence of different concentrations of lipopolysaccharide (LPS, phorbolmyristate and gammainterferon. IL-1β, TNF-α, IL-6 and IL-8 levels were measured in BAL fluid and culture supernatant using specific enzyme-linked immunosorbent assays. The substance found to stimulate the secretion of inflammatory cytokines to the greatest extent was LPS at a concentration of 10 μg/ml. Regarding the secretion of IL-1β, four observations were of interest: basal secretion was very low; LPS exerted a potent stimulatory effect; considerable within-group variability was observed; and there were no significant differences in the comparisons among groups. With respect to TNF-α secretion, the results were similar. The only striking finding was the higher basal secretion of this cytokine with respect to that of IL-1β. Regarding the secretion of IL-6, the same pattern followed by TNF-α was found. However, it should be stressed that the increase induced by LPS was smaller than in the two previous cytokines. Regarding the secretion of IL-8, three findings were patent: the strong basal secretion of this cytokine; the moderate increase induced by LPS; and the existence of significant differences among the different groups with respect to the stimulated secretion of this cytokine, which reached maximum values in patients with idiopathic pulmonary

  18. Progress on macrophage's proinflammatory products as markers of acute endometriosis

    Directory of Open Access Journals (Sweden)

    Alicja Ziętek

    2015-08-01

    Full Text Available To provide the review of the macrophage activity products as pathophysiological markers of endometriosis by literature survey (PubMed, Cochrane. Immunoreactive cells and several of their synthesis products concentrations are elevated in the serum and peritoneal fluid in patients with endometriosis. The enhanced reactive proteins contributed to local inflammation and aggregation of endometriotic lesions. Immune response and immune surveillance of tissue play an important role in pathogenesis of endometriosis. Activated macrophages in peritoneal environment secrete immunoreactive cytokines which are responsible for inflammatory cascade of reactions. The immunoreactive cytokines should be a target not only as a disease marker but also as a part of therapeutic protocol.

  19. Secondary Metabolites from Fungal Endophytes of Echinacea purpurea Suppress Cytokine Secretion by Macrophage-Type Cells

    Science.gov (United States)

    Kaur, Amninder; Oberhofer, Martina; Juzumaite, Monika; Raja, Huzefa A.; Gulledge, Travis V.; Kao, Diana; Faeth, Stanley H.; Laster, Scott M.; Oberlies, Nicholas H.

    2017-01-01

    Botanical extracts of Echinacea purpurea have been widely used for the treatment of upper respiratory infections. We sought to chemically examine fungal endophytes inhabiting E. purpurea, and to identify compounds produced by these endophytes with in vitro cytokine-suppressive activity. Twelve isolates from surface sterilized seeds of E. purpurea were subjected to fractionation and major components were isolated. Sixteen secondary metabolites belonging to different structural classes were identified from these isolates based on NMR and mass spectrometry data. The compounds were tested for their influence on cytokine secretion by murine macrophage-type cells. Alternariol (1), O-prenylporriolide (4), porritoxin (10) β-zearalenol (13), and (S)-zearalenone (14) inhibited production of TNF-α from RAW 264.7 macrophages stimulated with LPS in the absence of any significant cytotoxicity. This is the first report of a cytokine-suppressive effect for 4. The results of this study are particularly interesting given that they show the presence of compounds with cytokine-suppressive activity in endophytes from a botanical used to treat inflammation. Future investigations into the role of fungal endophytes in the biological activity of E. purpurea dietary supplements may be warranted. PMID:28479944

  20. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jiřina; Štreitová, Denisa

    2007-01-01

    Roč. 7, č. 10 (2007), s. 1369-1374 ISSN 1567-5769 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : immunomodulator IMUNOR * macrophage * nitric oxide Subject RIV: BO - Biophysics Impact factor: 2.066, year: 2007

  1. n-Butanol extract from Folium isatidis inhibits lipopolysaccharide-induced inflammatory cytokine production in macrophages and protects mice against lipopolysaccharide-induced endotoxic shock

    Directory of Open Access Journals (Sweden)

    Jiang LL

    2015-10-01

    Full Text Available Lili Jiang,1 Yili Lu,1 Jiahui Jin,1 Lili Dong,1 Fengli Xu,1 Shuangshuang Chen,1 Zhanyue Wang,2 Guang Liang,2 Xiaoou Shan11Department of Pediatrics, The Second Affiliated Hospital, 2Chemical Biology Research Center at The School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of ChinaAbstract: Sepsis, which is caused by severe infection, is an important cause of mortality, but effective clinical treatment against sepsis is extremely limited. As the main component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS plays a major role in inflammatory responses. Studies have shown beneficial pharmacological effects for Folium isatidis. The present study further illuminated the effects of n-butanol extract from Folium isatidis in LPS-induced septic shock and identified the main active chemical components. Our study showed that pretreatment with n-butanol extract from Folium isatidis not only significantly inhibited LPS-induced tumor necrosis factor-α and interleukin-6 production but also markedly and dose dependently enhanced the recruitment of MyD88, the phosphorylation of extracellular signal-regulated kinase, and the degradation of IκB-α. Additionally, the extract exhibited dramatic protective effects against lung injury and death in mice with septic shock. Eight main active compounds were identified, including organic acids, glycoside, indolinones, and flavonoids. These findings provide a perspective on the respiratory protection offered by n-butanol extract from Folium isatidis in LPS-induced sepsis and outline a novel therapeutic strategy for the treatment of sepsis.Keywords: Folium isatidis, sepsis, inflammatory cytokine

  2. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages

    OpenAIRE

    Ocaña, A.; Reglero, G.

    2012-01-01

    Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis) were examined. Two oil fractions from each species were obtained by CO2 supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. Th...

  3. Effects of montelukast on M2-related cytokine and chemokine in M2 macrophages

    Directory of Open Access Journals (Sweden)

    Yi-Ching Lin

    2018-02-01

    Conclusion: Montelukast suppressed LPS-induced M2-related cytokines and chemokines in alternatively activated macrophages, and the effects might be mediated through the MAPK-p38 and NF-κB-p65 pathways.

  4. Collagen-chitosan 3-D nano-scaffolds effects on macrophage phagocytosis and pro-inflammatory cytokine release.

    Science.gov (United States)

    Mahmoudzadeh, Aziz; Mohsenifar, Afshin; Rahmani-Cherati, Tavoos

    2016-07-01

    Macrophages are effector cells in the innate and adaptive immune systems and in situ exist within three-dimensional (3-D) microenvironments. As there has been an increase in interest in the use of 3-D scaffolds to mimic natural microenvironments in vitro, this study examined the impact on cultured mice peritoneal macrophages using standard 2-D plates as compared to 3-D collagen-chitosan scaffolds. Here, 2-D and 3-D cultured macrophages were evaluated for responses to lipopolysaccharide (LPS), dexamethasone (Dex), BSA (bovine serum albumin), safranal (herbal component isolated from safranal [Saf]) and Alyssum homolocarpum mucilage (A. muc: mixed herbal components). After treatments, cultured macrophages were evaluated for viability, phagocytic activity and release of tumor necrosis factor (TNF)-α and interleukin (IL)-1β pro-inflammatory cytokines. Comparison of 2-D vs 3-D cultures showed that use of either system - with or without any exogenous agent - had no effect on cell viability. In the case of cell function, macrophages cultured on scaffolds had increases in phagocytic activity relative to that by cells on 2-D plates. In general, the test herbal components Saf and A. muc. had more impact than any of the other exogenous agents on nanoparticle uptake. With respect to production of TNFα and IL-1β, compared to the 2-D cells, scaffold cells tended to have significantly different levels of production of each cytokine, with the effect varying (higher or lower) depending on the test agent used. However, unlike with particle uptake, here, while Saf and A. muc. led to significantly greater levels of cytokine formation by the 3-D culture cells vs that by the 2-D plate cells, there was no net effect (stimulatory) vs control cultures. These results illustrated that collagen-chitosan scaffolds could provide a suitable 3-D microenvironment for macrophage phagocytosis and could also impact on the formation of pro-inflammatory cytokines.

  5. Modulation of macrophage cytokine profiles during solid tumor progression: susceptibility to Candida albicans infection

    Directory of Open Access Journals (Sweden)

    Venturini James

    2009-06-01

    Full Text Available Abstract Background In order to attain a better understanding of the interactions between opportunist fungi and their hosts, we investigated the cytokine profile associated with the inflammatory response to Candida albicans infection in mice with solid Ehrlich tumors of different degrees. Methods Groups of eight animals were inoculated intraperitoneally with 5 × 106 C. albicans 7, 14 or 21 days after tumor implantation. After 24 or 72 hours, the animals were euthanized and intraperitoneal lavage fluid was collected. Peritoneal macrophages were cultivated and the levels of IFN-γ, TNF-α, IL-12, IL-10 and IL-4 released into the supernatants were measured by ELISA. Kidney, liver and spleen samples were evaluated for fungal dissemination. Tumor-free animals and animals that had only been subjected to C. albicans infection were used as control groups. Results Our results demonstrated that the mice produced more IFN-γ and TNF-α and less IL-10, and also exhibited fungal clearance, at the beginning of tumor evolution. With the tumor progression, this picture changed: IL-10 production increased and IFN-γ and TNF-α release decreased; furthermore, there was extensive fungal dissemination. Conclusion Our results indicate that solid tumors can affect the production of macrophage cytokines and, in consequence, affect host resistance to opportunistic infections.

  6. Modulation of chicken macrophage effector function by Th1/Th2 cytokines

    Science.gov (United States)

    Regulation of macrophage activity by TH1/2 cytokines is important to maintain the balance of immunity to provide adequate protective immunity while avoiding excessive inflammation. IFN-gamma and IL-4 are the hallmark TH1 and TH2 cytokines, respectively. In avian species, information concerning reg...

  7. Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Roman Covarrubias

    Full Text Available Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr on antigen presenting cells (APCs has been shown to enhance invariant natural killer T (iNKT cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP, plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ. We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO. LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.

  8. Expression of Siglec-E Alters the Proteome of Lipopolysaccharide (LPS-Activated Macrophages but Does Not Affect LPS-Driven Cytokine Production or Toll-Like Receptor 4 Endocytosis

    Directory of Open Access Journals (Sweden)

    Manjula Nagala

    2018-01-01

    Full Text Available Siglec-E is a murine CD33-related siglec that functions as an inhibitory receptor and is expressed mainly on neutrophils and macrophage populations. Recent studies have suggested that siglec-E is an important negative regulator of lipopolysaccharide (LPS-toll-like receptor 4 (TLR4 signaling and one report (1 claimed that siglec-E is required for TLR4 endocytosis following uptake of Escherichia coli by macrophages and dendritic cells (DCs. Our attempts to reproduce these observations using cells from wild-type (WT and siglec-E-deficient mice were unsuccessful. We used a variety of assays to determine if siglec-E expressed by different macrophage populations can regulate TLR4 signaling in response to LPS, but found no consistent differences in cytokine secretion in vitro and in vivo, comparing three different strains of siglec-E-deficient mice with matched WT controls. No evidence was found that the siglec-E deficiency was compensated by expression of siglecs-F and -G, the other murine inhibitory CD33-related siglecs. Quantitative proteomics was used as an unbiased approach and provided additional evidence that siglec-E does not suppress inflammatory TLR4 signaling. Interestingly, proteomics revealed a siglec-E-dependent alteration in macrophage protein composition that could be relevant to functional responses in host defense. In support of this, siglec-E-deficient mice exhibited enhanced growth of Salmonella enterica serovar Typhimurium in the liver following intravenous infection, but macrophages lacking siglec-E did not show altered uptake or killing of bacteria in vitro. Using various cell types including bone marrow-derived DCs (BMDCs, splenic DCs, and macrophages from WT and siglec-E-deficient mice, we showed that siglec-E is not required for TLR4 endocytosis following E. coli uptake or LPS challenge. We failed to see expression of siglec-E by BMDC even after LPS-induced maturation, but confirmed previous studies that splenic DCs express

  9. The role of substrate morphology for the cytokine release profile of immature human primary macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Bartneck, Matthias [Department of Medicine III, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen (Germany); Heffels, Karl-Heinz [Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Bovi, Manfred [Electron Microscopic Facility, Medical Faculty, RWTH Aachen (Germany); Groll, Jürgen [Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Zwadlo-Klarwasser, Gabriele [Interdisciplinary Center for Clinical Research and Dept. of Dermatology, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52056 Aachen (Germany)

    2013-12-01

    There is increasing evidence that the physicochemical nature of any given material is a dominant factor for the release of cytokines by innate immune cells, specifically of macrophages, and thus majorly influences their interaction with other cell types. Recently, we could show that the 3D structure of star shaped polytheylene oxide–polypropylene oxide co-polymers (sP(EO-stat-PO))-hydrogel coated substrates has a stronger influence on the release pattern of cytokines after 7 days of culture than surface chemistry. Here, we focused on the analysis of cytokine release over time and a more detailed analysis of cell morphology by scanning electron microscopy (SEM). Therefore, we compared different strategies for SEM sample preparation and found that using osmium tetroxide combined with aqua bidest led to best preparation results. For cytokine release we show significant changes from day 3 to day 7 of cell culture. After 3 days, the sP(EO-stat-PO)-coated substrates led to an induction of pro-angiogenic CCL3 and CCL4, and of low amounts of the anti-inflammatory IL10, which declined at day 7. In contrast, pleiotropic IL6 and the pro-inflammatory TNFα and IL1β were expressed stronger at day 7 than at day 3. - Highlights: • Strategies for the preparation of macrophages on hydrogel materials (Fig. 1) • Cytokine release of immature macrophages on the substrates (Fig. 2 and Table 1) • Changes in cytokine release during macrophage maturation (Table 2)

  10. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Dawn M E Bowdish

    2009-06-01

    Full Text Available Virtually all of the elements of Mycobacterium tuberculosis (Mtb pathogenesis, including pro-inflammatory cytokine production, granuloma formation, cachexia, and mortality, can be induced by its predominant cell wall glycolipid, trehalose 6,6'-dimycolate (TDM/cord factor. TDM mediates these potent inflammatory responses via interactions with macrophages both in vitro and in vivo in a myeloid differentiation factor 88 (MyD88-dependent manner via phosphorylation of the mitogen activated protein kinases (MAPKs, implying involvement of toll-like receptors (TLRs. However, specific TLRs or binding receptors for TDM have yet to be identified. Herein, we demonstrate that the macrophage receptor with collagenous structure (MARCO, a class A scavenger receptor, is utilized preferentially to "tether" TDM to the macrophage and to activate the TLR2 signaling pathway. TDM-induced signaling, as measured by a nuclear factor-kappa B (NF-kappaB-luciferase reporter assay, required MARCO in addition to TLR2 and CD14. MARCO was used preferentially over the highly homologous scavenger receptor class A (SRA, which required TLR2 and TLR4, as well as their respective accessory molecules, in order for a slight increase in NF-kappaB signaling to occur. Consistent with these observations, macrophages from MARCO(-/- or MARCO(-/-SRA(-/- mice are defective in activation of extracellular signal-related kinase 1/2 (ERK1/2 and subsequent pro-inflammatory cytokine production in response to TDM. These results show that MARCO-expressing macrophages secrete pro-inflammatory cytokines in response to TDM by cooperation between MARCO and TLR2/CD14, whereas other macrophage subtypes (e.g. bone marrow-derived may rely somewhat less effectively on SRA, TLR2/CD14, and TLR4/MD2. Macrophages from MARCO(-/- mice also produce markedly lower levels of pro-inflammatory cytokines in response to infection with virulent Mtb. These observations identify the scavenger receptors as essential binding

  11. Phytosterols Differentially Influence ABC transporter Expression, Cholesterol Efflux and Inflammatory Cytokine Secretion in Macrophage Foam Cells

    Science.gov (United States)

    Sabeva, Nadezhda S; McPhaul, Christopher M; Li, Xiangan; Cory, Theodore J.; Feola, David J.; Graf, Gregory A

    2010-01-01

    Phytosterol supplements lower low density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E deficient mice, suggesting that the cholesterol lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may either be beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux, and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect of cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest, but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL-induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion. PMID:21111593

  12. Brazilian red propolis effects on peritoneal macrophage activity: Nitric oxide, cell viability, pro-inflammatory cytokines and gene expression.

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S; Casarin, Renato C V; Alencar, Severino M; Rosalen, Pedro L; Mayer, Marcia P A

    2017-07-31

    Propolis has been used in folk medicine since ancient times and it presented inhibitory effect on neutrophil recruitment previously. However, its effect on macrophage obtained from mice remains unclear. To demonstrate BRP effects on LPS activated peritoneal macrophage. Peritoneal macrophages, obtained from C57BL6 mice and activated with LPS, were treated with 50-80µg/mL of crude extract of Brazilian red propolis (BRP) during 48h. Cell viability, levels of NO, 20 cytokines and expression of 360 genes were evaluated. BRP 60µg/mL reduced NO production by 65% without affecting the cell viability and decreased production IL1α, IL1β, IL4, IL6, IL12p40, Il12p70, IL13, MCP1 and GM-CSF. Molecular mechanism beyond the anti-inflammatory activity may be due to BRP-effects on decreasing expression of Mmp7, Egfr, Adm, Gata3, Wnt2b, Txn1, Herpud1, Axin2, Car9, Id1, Vegfa, Hes1, Hes5, Icam1, Wnt3a, Pcna, Wnt5a, Tnfsf10, Ccl5, Il1b, Akt1, Mapk1, Noxa1 and Cdkn1b and increasing expression of Cav1, Wnt6, Calm1, Tnf, Rb1, Socs3 and Dab2. Therefore, BRP has anti-inflammatory effects on macrophage activity by reducing NO levels and diminished release and expression of pro-inflammatory cytokine and genes, respectively. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    Science.gov (United States)

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Modulation of cytokine production by carnitine

    Directory of Open Access Journals (Sweden)

    Nicola M. Kouttab

    1993-01-01

    Full Text Available The ability of carnitine congeners to modulate cytokine production by human peripheral blood mononuclear cells (PBMC was investigated. Modulation of cytokine production by PBMC of young (30 years of age or younger and old (70 years of age or older normal donors was first compared. The PBMC were collected over Ficoll–Hypaque and incubated in the presence of various concentrations of acetyl L-carnitine for 24 h. Subsequently the supernatants were collected and examined for cytokine production. The presence of cytokines in tissue culture supernatants was examined by ELISA. The cytokines measured included IL-1α, IL-1β, IL-2, IL-4, IL-6, TNFα, GM–CSF, and IFNγ. The results showed that at 50 μg/ml of acetyl L-carnitine the most significant response was obtained for TNFα. In this regard four of five young donors responded, but only one of five old donors responded. More recently these studies were expanded to examine the ability of L-carnitine to modulate cytokine production at higher doses, 200 and 400 μg/ml, in young donors. The results of these studies showed that in addition to TNFα, significant production of IL-1β and IL-6 was observed. These preliminary studies provide evidence that carnitine may modulate immune functions through the production of selected cytokines.

  15. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    Science.gov (United States)

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. Copyright © 2016 by The American Association of

  16. Insulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism

    Directory of Open Access Journals (Sweden)

    Celia Maria Vieira Vendrame

    2014-01-01

    Full Text Available Leishmania (Leishmania amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF-I on interactions between L. (L. amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-β antibodies. Our results suggest that in L. (L. amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms.

  17. [Role of bone marrow tyrosine kinase on chromosome X in the production of pro-inflammatory cytokines from mouse mononuclear-macrophages RAW264.7 induced by endotoxin/lipopolysaccharide and its mechanism].

    Science.gov (United States)

    Fang, X; Hu, Y; Wang, Y; Liu, S; Wang, F; Chen, X L

    2017-04-20

    0.94 and 2.55±0.73, respectively, with the 4 values significantly higher than those in blank control group (with P values below 0.01). The mRNA expressions of TNF-α and IL-1β of cells in BMX-IN-1+ LPS group were significantly lower than those in LPS control group (with P values below 0.05). The activity values of BMX and p38MAPK of cells in BMX-IN-1 control group were 0.95±0.19 and 0.98±0.18, respectively, which were close to 1.00±0.14 and 1.00±0.22 of blank control group (with P values above 0.05). The activity values of BMX and p38MAPK of cells in LPS control group were 1.98±0.33 and 2.05±0.34, respectively, which were significantly higher than those of blank control group (with P values below 0.01). The activity values of BMX and p38MAPK of cells in BMX-IN-1+ LPS group were 1.00±0.17 and 1.67±0.27, respectively, which were obviously lower than those of LPS control group ( P <0.05 or P <0.01). Conclusions: BMX can increase the production of pro-inflammatory cytokines TNF-α and IL-1β from mouse mononuclear-macrophages induced by LPS, which may be associated with the activation of the p38MAPK pathway by BMX.

  18. Modulation of monocyte/macrophage-derived cytokine and chemokine profile by persistent Hepatitis C virus (HCV infection leads to chronic inflammation

    Directory of Open Access Journals (Sweden)

    Penelope Mavromara

    2012-02-01

    Full Text Available HCV infection presents a major public health problem, with more than 170 million people infected worldwide. Chronicity and persistence of infection constitute the hallmark of the disease. Although HCV is a hepatotropic virus, subsets of immune cells have been found to be permissive to infection and viral replication. Peripheral blood monocytes, attracted to the site of infection and differentiated into macrophages, and resident hepatic macrophages, known as Kupffer cells, are important mediators of innate immunity, through production of several chemokines and cytokines in addition to their phagocytic activity. HCV proteins have been shown to modulate the cytokine and chemokine production profile of monocytes/macrophages, as it is suggested by both in vitro and clinical studies. This modified expression profile appears crucial for the establishment of aberrant inflammation that leads to liver cirrhosis and hepatocellular carcinoma.

  19. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes.

    Directory of Open Access Journals (Sweden)

    Ariadnna Cruz-Córdova

    Full Text Available Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10 in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng induced the release of IL-8 (3314-6025 pg/ml, TNF-α (39-359 pg/ml, and IL-10 (2-96 pg/ml, in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200 suppressed the secretion of IL-8, TNF-α, and IL-10 between 95-100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria.

  20. Cytokine production and visualized effects in the feto-maternal unit. Quantitative and topographic data on cytokines during intrauterine disease.

    Science.gov (United States)

    Stallmach, T; Hebisch, G; Joller-Jemelka, H I; Orban, P; Schwaller, J; Engelmann, M

    1995-09-01

    A large array of cytokines show high activity in amniotic fluid. Attempts have been made to quantify the concentrations or to track rising levels for diagnostic purposes when examining disturbances of the feto-maternal unit. However, the kinetics of cytokine production in the amniotic fluid are not well understood, and there is lack of knowledge about concomitant levels in fetal and maternal blood. The presence of cytokines in fetal and placental cells was demonstrated by immunohistochemistry using mAb. Cytokines were quantified by enzymimmunoassay in amniotic fluid and fetal and maternal blood. This was done with regard to two disease states that quite frequently complicate the course of pregnancy, namely chorioamnionitis and intrauterine growth retardation. The cytokines examined were G-CSF, GM-CSF, TNF-alpha, IL-1, IL-6, and IL-8. In chorioamnionitis, all cytokines, except GM-CSF, were elevated about 100 times in the amniotic fluid. An accompanying increase in maternal and fetal blood was only found for IL-6 and G-CSF; IL-8 was elevated in fetal blood only. Intrauterine growth retardation was characterized by elevated levels of TNF-alpha in the amniotic fluid, whereas G-CSF, GM-CSF, and IL-1 beta were significantly reduced. Immunohistochemistry showed that under normal conditions the cytokines are to be found in a characteristic distribution in certain cell types in the fetus, the placenta, and the placental bed. With rising concentrations, more cells seemed to be recruited for cytokine production, especially macrophages and decidual cells. In chorioamnionitis, fetal extramedullary granulopoiesis was augmented, and in intrauterine growth retardation, erythropoiesis as well as granulopoiesis were depressed. Not only inflammatory disease but also intrauterine growth retardation is characterized by a changing cytokine pattern. Alterations in fetal hematopoiesis observed at postmortem examination of perinatal deaths can be correlated to changes in cytokine

  1. Probiotic Bacteria Alter Pattern-Recognition Receptor Expression and Cytokine Profile in a Human Macrophage Model Challenged with Candida albicans and Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Victor H. Matsubara

    2017-11-01

    Full Text Available Probiotics are live microorganisms that confer benefits to the host health. The infection rate of potentially pathogenic organisms such as Candida albicans, the most common agent associated with mucosal candidiasis, can be reduced by probiotics. However, the mechanisms by which the probiotics interfere with the immune system are largely unknown. We evaluated the effect of probiotic bacteria on C. albicans challenged human macrophages. Macrophages were pretreated with lactobacilli alone (Lactobacillus rhamnosus LR32, Lactobacillus casei L324m, or Lactobacillus acidophilus NCFM or associated with Escherichia coli lipopolysaccharide (LPS, followed by the challenge with C. albicans or LPS in a co-culture assay. The expression of pattern-recognition receptors genes (CLE7A, TLR2, and TLR4 was determined by RT-qPCR, and dectin-1 reduced levels were confirmed by flow cytometry. The cytokine profile was determined by ELISA using the macrophage cell supernatant. Overall probiotic lactobacilli down-regulated the transcription of CLEC7A (p < 0.05, resulting in the decreased expression of dectin-1 on probiotic pretreated macrophages. The tested Lactobacillus species down-regulated TLR4, and increased TLR2 mRNA levels in macrophages challenged with C. albicans. The cytokines profile of macrophages challenged with C. albicans or LPS were altered by the probiotics, which generally led to increased levels of IL-10 and IL-1β, and reduction of IL-12 production by macrophages (p < 0.05. Our data suggest that probiotic lactobacilli impair the recognition of PAMPs by macrophages, and alter the production of pro/anti-inflammatory cytokines, thus modulating inflammation.

  2. Synthesis of pro-inflammatory cytokines and adhesion molecules expression by the irradiated human monocyte/macrophage

    International Nuclear Information System (INIS)

    Pons, I.

    1997-09-01

    As lesions induced by ionizing radiations are essentially noticed in organs the functional and structural organisation of which depend on the highly proliferative stem cell pool, the author reports an in-vivo investigation of the effect of a gamma irradiation on the expression and secretion of pro-inflammatory cytokines par human monocytes/macrophages. In order to study the role of the cell environment in the radiation-induced inflammation, the author studied whether a co-stimulation of monocytes/macrophages by gamma irradiation, or the exposure of co-cultures of monocytes/macrophages and lymphocytes, could modulate the regulation of inflammatory cytokines. The author also studied the modulation of the expression of adhesion molecules mainly expressed by the monocyte/macrophage, and the membrane density of the CD14 receptor after irradiation of monocytes/macrophages during 24 hours, and of totally differentiated macrophages after seven days of culture

  3. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity.

    Science.gov (United States)

    Majdalawieh, Amin F; Hmaidan, Reem; Carr, Ronald I

    2010-09-15

    Nigella sativa, also known as blackseed, has long been used in traditional medicine for treating various conditions related to the respiratory and gastrointestinal systems as well as different types of cancers. In this study, the potential immunomodulatory effects of Nigella sativa are investigated in light of splenocyte proliferation, macrophage function, and NK anti-tumor activity using BLAB/c and C57/BL6 primary cells. Splenocyte proliferation was assessed by [(3)H]-thymidine incorporation. Griess assay was performed to evaluate NO production by macrophages. ELISA was performed to measure the level of cytokines secreted by splenocytes and macrophages. NK cytotoxic activity against YAC-1 tumor cells was examined by JAM assay. We demonstrate that the aqueous extract of Nigella sativa significantly enhances splenocyte proliferation in a dose-responsive manner. In addition, the aqueous extract of Nigella sativa favors the secretion of Th2, versus Th1, cytokines by splenocytes. The secretion of IL-6, TNFalpha, and NO; key pro-inflammatory mediators, by primary macrophages is significantly suppressed by the aqueous extract of Nigella sativa, indicating that Nigella sativa exerts anti-inflammatory effects in vitro. Finally, experimental evidence indicates that the aqueous extract of Nigella sativa significantly enhances NK cytotoxic activity against YAC-1 tumor cells, suggesting that the documented anti-tumor effects of Nigella sativa may be, at least in part, attributed to its ability to serve as a stimulant of NK anti-tumor activity. Our data present Nigella sativa as a traditionally used herb with potent immunomodulatory, anti-inflammatory, and anti-tumor effects. We anticipate that Nigella sativa ingredients may be employed as effective therapeutic agents in the regulation of diverse immune reactions implicated in various conditions and diseases such as cancer. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Directory of Open Access Journals (Sweden)

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  5. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huimin, E-mail: huiminchen.jq@gmail.com [Department of Geratology, Liaoning Jinqiu Hospital, Shenyang 110015 (China); Ma, Feng [Institute of Immunology, Zhejiang University of Medicine, Hangzhou 310058 (China); Hu, Xiaona; Jin, Ting; Xiong, Chuhui [Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001 (China); Teng, Xiaochun, E-mail: tengxiaochun@126.com [Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001 (China)

    2013-10-11

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.

  6. Phenotype and influx kinetics of leukocytes and inflammatory cytokine production in kidney ischemia/reperfusion injury.

    Science.gov (United States)

    Williams, Timothy M; Wise, Andrea F; Layton, Daniel S; Ricardo, Sharon D

    2018-01-01

    Kidney ischemia/reperfusion (IR) injury is characterized by tubular epithelial cell (TEC) death and an inflammatory response involving cytokine production and immune cell infiltration. In various kidney diseases, increased macrophage numbers correlate with injury severity and poor prognosis. However, macrophage plasticity enables a diverse range of functions, including wound healing, making them a key target for novel therapies. This study aimed to comprehensively characterize the changes in myeloid and epithelial cells and the production of cytokines throughout the experimental IR model of acute kidney injury to aid in the identification of targets to promote and enhance kidney regeneration and repair. Flow cytometric analysis of murine unilateral IR injury was used to assess TEC and myeloid cell subpopulations in conjunction with histological analysis and cytokine production at 6 h, 1, 3, 5 and 7 days post IR injury, spanning the initial inflammatory phase and the following reparative phase. IR injury resulted in a rapid infiltration of Ly6C high monocytes and neutrophils with a steady rise in F4/80 high MHCII high macrophages over the injury time. The production of the inflammatory cytokines IL-6, MCP-1 and TNF coincided with an increase in IL-10 production. This characterization will provide a reference point for future studies designed to manipulate immune cell phenotype and function in order to promote endogenous repair of damaged kidneys. © 2016 Asian Pacific Society of Nephrology.

  7. Cytokines regulate complement receptor immunoglobulin expression and phagocytosis of Candida albicans in human macrophages: A control point in anti-microbial immunity.

    Science.gov (United States)

    Munawara, Usma; Small, Annabelle G; Quach, Alex; Gorgani, Nick N; Abbott, Catherine A; Ferrante, Antonio

    2017-06-22

    Complement Receptor Immunoglobulin (CRIg), selectively expressed by macrophages, plays an important role in innate immunity by promoting phagocytosis of bacteria. Thus modulation of CRIg on macrophages by cytokines can be an important mechanism by which cytokines regulate anti-microbial immunity. The effects of the cytokines, tumor necrosis factor, transforming growth factor-β1, interferon-γ, interleukin (IL)-4, IL-13, IL-10, IL-1β, IL-6, lymphotoxin-α, macrophage-colony stimulating factor (M-CSF) and GM-CSF on CRIg expression were examined in human macrophages. We demonstrated that cytokines regulated the CRIg expression on macrophages during their development from monocytes in culture at the transcriptional level using qPCR and protein by Western blotting. Both CRIg spliced forms (Long and Short), were similarly regulated by cytokines. Direct addition of cytokines to matured CRIg+ macrophages also changed CRIg mRNA expression, suggesting that cytokines control macrophage function via CRIg, at two checkpoints. Interestingly the classical complement receptors, CR3 and CR4 were differentially regulated by cytokines. The changes in CRIg but not CR3/CR4 mRNA expression correlated with ability to phagocytose Candida albicans by macrophages. These findings suggest that CRIg is likely to be a control point in infection and immunity through which cytokines can mediate their effects, and is differentially regulated from CR3 and CR4 by cytokines.

  8. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction.

    Directory of Open Access Journals (Sweden)

    Yea Eun Kang

    Full Text Available The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25. The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037 but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035 but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and

  9. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Expression of bacterial virulence factors and cytokines during in vitro macrophage infection by enteroinvasive Escherichia coli and Shigella flexneri: a comparative study

    Directory of Open Access Journals (Sweden)

    Silvia Y Bando

    2010-09-01

    Full Text Available Enteroinvasive Escherichia coli (EIEC and Shigellaspp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigellashare many genetic and biochemical similarities, the illness caused by Shigellais more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneriwith cultured J774 macrophage-like cells. We evaluated several phenotypes: (i bacterial escape from macrophages after phagocytosis, (ii macrophage death induced by EIEC and S. flexneri, (iii macrophage cytokine expression in response to infection and (iv expression of plasmidial (pINV virulence genes. The results showed thatS. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.

  11. Differential response to dexamethasone on the TXB2 release in guinea-pig alveolar macrophages induced by zymosan and cytokines

    Directory of Open Access Journals (Sweden)

    M. E. Salgueiro

    1997-01-01

    Full Text Available Glucocorticosteroids reduce the production of inflammatory mediators but this effect may depend on the stimulus. We have compared the time course of the effect of dexamethasone on the thromboxane B2 (TXB2 release induced by cytokine stimulation and zymosan in guinea-pig alveolar macrophages. Interleukin-1β (IL-1β, tumour necrosis factor-α (TNF-α and opsonized zymosan (OZ, all stimulate TXB2 release. High concentrations of dexamethasone (1–10 μM inhibit the TXB2 production induced by both cytokines and OZ, but the time course of this response is different. Four hours of incubation with dexamethasone reduce the basal TXB2 release and that induced by IL-1β and TNF-α, but do not modify the TXB2 release induced by OZ. However, this stimulus was reduced after 24 h incubation. Our results suggest that the antiinflammatory activity of glucocorticosteroids shows some dependence on stimulus and, therefore, may have more than one mechanism involved.

  12. Diminazene aceturate (Berenil) modulates LPS induced pro-inflammatory cytokine production by inhibiting phosphorylation of MAPKs and STAT proteins.

    Science.gov (United States)

    Kuriakose, Shiby; Muleme, Helen; Onyilagha, Chukwunonso; Okeke, Emeka; Uzonna, Jude E

    2014-10-01

    Although diminazene aceturate (Berenil) is widely used as a trypanolytic agent in livestock, its mechanisms of action remain poorly understood. We previously showed that Berenil treatment suppresses pro-inflammatory cytokine production by splenic and liver macrophages leading to a concomitant reduction in serum cytokine levels in mice infected with Trypanosoma congolense or challenged with LPS. Here, we investigated the molecular mechanisms through which Berenil alters pro-inflammatory cytokine production by macrophages. We show that pre-treatment of macrophages with Berenil dramatically suppressed IL-6, IL-12 and TNF-α production following LPS, CpG and Poly I:C stimulation without altering the expression of TLRs. Instead, it significantly down-regulated phosphorylation of mitogen-activated protein kinases (p38, extracellular signal-regulated kinase and c-Jun N-terminal kinases), signal transducer and activator of transcription (STAT) proteins (STAT1 and STAT3) and NF-кB p65 activity both in vitro and in vivo. Interestingly, Berenil treatment up-regulated the phosphorylation of STAT5 and the expression of suppressor of cytokine signaling 1 (SOCS1) and SOCS3, which are negative regulators of innate immune responses, including MAPKs and STATs. Collectively, these results show that Berenil down-regulates macrophage pro-inflammatory cytokine production by inhibiting key signaling pathways associated with cytokine production and suggest that this drug may be used to treat conditions caused by excessive production of inflammatory cytokines. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. CD14(+) macrophages that accumulate in the colon of African AIDS patients express pro-inflammatory cytokines and are responsive to lipopolysaccharide.

    Science.gov (United States)

    Cassol, Edana; Rossouw, Theresa; Malfeld, Susan; Mahasha, Phetole; Slavik, Tomas; Seebregts, Chris; Bond, Robert; du Plessis, Johannie; Janssen, Carl; Roskams, Tania; Nevens, Frederik; Alfano, Massimo; Poli, Guido; van der Merwe, Schalk W

    2015-10-17

    Intestinal macrophages are key regulators of inflammatory responses to the gut microbiome and play a central role in maintaining tissue homeostasis and epithelial integrity. However, little is known about the role of these cells in HIV infection, a disease fuelled by intestinal inflammation, a loss of epithelial barrier function and increased microbial translocation (MT). Phenotypic and functional characterization of intestinal macrophages was performed for 23 African AIDS patients with chronic diarrhea and/or weight loss and 11 HIV-negative Africans with and without inflammatory bowel disease (IBD). AIDS patients were treated with cotrimoxazole for the prevention of opportunistic infections (OIs). Macrophage phenotype was assessed by flow cytometry and immuno-histochemistry (IHC); production of proinflammatory mediators by IHC and Qiagen PCR Arrays; in vitro secretion of cytokines by the Bio-Plex Suspension Array System. Statistical analyses were performed using Spearman's correlation and Wilcoxon matched-pair tests. Results between groups were analyzed using the Kruskal-Wallis with Dunn's post-test and the Mann-Whitney U tests. None of the study participants had evidence of enteric co-infections as assessed by stool analysis and histology. Compared to healthy HIV-negative controls, the colon of AIDS patients was highly inflamed with increased infiltration of inflammatory cells and increased mRNA expression of proinflammatory cytokine (tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IFN-γ, and IL-18), chemokines (chemokine (C-C motif) ligand (CCL)2 and chemokine (C-X-C) motif ligand (CXCL)10) and transcription factors (TNF receptor-associated factor (TRAF)6 and T-box (TXB)21). IHC revealed significant co-localization of TNF-α and IL-1β with CD68(+) cells. As in IBD, HIV was associated with a marked increase in macrophages expressing innate response receptors including CD14, the co-receptor for lipopolysaccharide (LPS). The frequency of CD14

  14. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A

    2012-07-01

    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  15. IL-34 Suppresses Candida albicans Induced TNFα Production in M1 Macrophages by Downregulating Expression of Dectin-1 and TLR2

    Directory of Open Access Journals (Sweden)

    Rong Xu

    2015-01-01

    Full Text Available Candida albicans is a fungus that is an opportunistic pathogen of humans. Normally, C. albicans exists as a harmless commensal and does not trigger inflammatory responses by resident macrophages in skin mucosa, which may be caused by a tolerance of skin macrophage to C. albicans. IL-34 is a recently discovered cytokine, constitutively expressed by keratinocytes in the skin. IL-34 binds to the receptor of M-CSF, thereby stimulating tissue macrophage maturation and differentiation. Resident macrophages exhibit phenotypic plasticity and may transform into inflammatory M1 macrophages for immunity or anti-inflammatory M2 macrophages for tissue repair. M1 macrophages produce higher levels of inflammatory cytokines such as TNFα in response to C. albicans stimulation. In this study, it was demonstrated that IL-34 attenuated TNFα production by M1 macrophages challenged with heat killed Candida (HKC. The molecular mechanism of IL-34 mediated suppression of HKC induced TNFα production by M1 macrophages was by the inhibition of M1 macrophage expression of key C. albicans pattern recognition receptors (PPRs, namely, Toll-like receptor (TLR 2 and Dectin-1. The results of this study indicated that constitutive IL-34 expressed by skin keratinocytes might suppress resident macrophage responses to C. albicans colonisation by maintaining low levels TLR2 and Dectin-1 expression by macrophages.

  16. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages

    NARCIS (Netherlands)

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klueter, Harald; Gratchev, Alexei; Harmsen, Martin C.; Kzhyshkowska, Julia

    2017-01-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in

  17. Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production.

    Directory of Open Access Journals (Sweden)

    Jing Jing Li

    Full Text Available BACKGROUND: Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs, however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ and lipopolysaccharide (LPS drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activation of macrophages by these molecules results in the selective expression of a number of ORs. In this study, we validated the expression of these ORs in mouse airway and pulmonary macrophages in response to IFN-γ and LPS (γ/LPS stimulation, and further explored the effect of odorant stimulation on macrophage function. METHODOLOGY/PRINCIPAL FINDINGS: OR expression in airway and pulmonary macrophages in response to IFN-γ, LPS or γ/LPS treatments was assessed by microarray and validated by q-PCR. OR expression (e.g. OR622 on macrophages was confirmed by visualization in immunofluoresence assays. Functional responses to odorants were assessed by quantifying inflammatory cytokine and chemokine expression using q-PCR and cell migration was assessed by a modified Boyden chamber migration assay. Our results demonstrate that eight ORs are expressed at basal levels in both airway and pulmonary macrophages, and that γ/LPS stimulation cooperatively increased this expression. Pulmonary macrophages exposed to the combined treatment of γ/LPS+octanal (an odorant exhibited a 3-fold increase in MCP-1 protein production, compared to cells treated with γ/LPS alone. Supernatants from γ/LPS+octanal exposed macrophages also increased macrophage migration in vitro. CONCLUSIONS/SIGNIFICANCE: Eight different ORs are expressed at basal levels in pulmonary macrophages and expression is upregulated by the synergistic action of γ/LPS. Octanal stimulation further increased MCP-1

  18. An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter.

    Science.gov (United States)

    Sijan, Zana; Antkiewicz, Dagmara S; Heo, Jongbae; Kado, Norman Y; Schauer, James J; Sioutas, Constantinos; Shafer, Martin M

    2015-07-01

    Exposures to air pollution in the form of particulate matter (PM) can result in excess production of reactive oxygen species (ROS) in the respiratory system, potentially causing both localized cellular injury and triggering a systemic inflammatory response. PM-induced inflammation in the lung is modulated in large part by alveolar macrophages and their biochemical signaling, including production of inflammatory cytokines, the primary mechanism via which inflammation is initiated and sustained. We developed a robust, relevant, and flexible method employing a rat alveolar macrophage cell line (NR8383) which can be applied to routine samples of PM from air quality monitoring sites to gain insight into the drivers of PM toxicity that lead to oxidative stress and inflammation. Method performance was characterized using extracts of ambient and vehicular engine exhaust PM samples. Our results indicate that the reproducibility and the sensitivity of the method are satisfactory and comparisons between PM samples can be made with good precision. The average relative percent difference for all genes detected during 10 different exposures was 17.1%. Our analysis demonstrated that 71% of genes had an average signal to noise ratio (SNR) ≥ 3. Our time course study suggests that 4 h may be an optimal in vitro exposure time for observing short-term effects of PM and capturing the initial steps of inflammatory signaling. The 4 h exposure resulted in the detection of 57 genes (out of 84 total), of which 86% had altered expression. Similarities and conserved gene signaling regulation among the PM samples were demonstrated through hierarchical clustering and other analyses. Overlying the core congruent patterns were differentially regulated genes that resulted in distinct sample-specific gene expression "fingerprints." Consistent upregulation of Il1f5 and downregulation of Ccr7 was observed across all samples, while TNFα was upregulated in half of the samples and downregulated in

  19. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles.

    Science.gov (United States)

    Jonitz-Heincke, Anika; Lochner, Katrin; Schulze, Christoph; Pohle, Diana; Pustlauk, Wera; Hansmann, Doris; Bader, Rainer

    2016-08-01

    One of the major reasons for failure after total joint arthroplasty is aseptic loosening of the implant. At articulating surfaces, defined as the interface between implant and surrounding bone cement, wear particles can be generated and released into the periprosthetic tissue, resulting in inflammation and osteolysis. The aim of the present study was to evaluate the extent to which osteoblasts and macrophages are responsible for the osteolytic and inflammatory reactions following contact with generated wear particles from Ti‑6Al‑7Nb and Co‑28Cr‑6Mo hip stems. To this end, human osteoblasts and THP‑1 monocytic cells were incubated with the experimentally generated wear particles as well as reference particles (0.01 and 0.1 mg/ml) for 48 h under standard culture conditions. To evaluate the impact of these particles on the two cell types, the release of different bone matrix degrading matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and relevant cytokines were determined by multiplex enzyme‑linked immunosorbent assays. Following incubation with wear particles, human osteoblasts showed a significant upregulation of MMP1 and MMP8, whereas macrophages reacted with enhanced MMP3, MMP8 and MMP10 production. Moreover, the synthesis of TIMPs 1 and 2 was inhibited. The osteoblasts and macrophages also responded with modified expression of the inflammatory mediators interleukin (IL)‑6, IL‑8, monocyte chemoattractant protein‑1 and vascular endothelial growth factor. These results demonstrate that the release of wear particles affects the release of proinflammatory cytokines and has a negative impact on bone matrix formation during the first 48 h of particle exposure. Human osteoblasts are directly involved in the proinflammatory cascade of bone matrix degradation. The simultaneous activation and recruitment of monocytes/macrophages boosted osteolytic processes in the periprosthetic tissue. By the downregulation of TIMP production and the

  20. Characterization of the Kynurenine Pathway and Quinolinic Acid Production in Macaque Macrophages

    Directory of Open Access Journals (Sweden)

    Chai K. Lim

    2013-01-01

    Full Text Available The kynurenine pathway (KP and one of its end-products, the excitotoxin quinolinic acid (QUIN, are involved in the pathogenesis of several major neuroinflammatory brain diseases. A relevant animal model to study KP metabolism is now needed to assess whether intervention in this pathway may improve the outcome of such diseases. Humans and macaques share a very similar genetic makeup. In this study, we characterized the KP metabolism in macaque primary macrophages of three different species in comparison to human cells. We found that the KP profiles in simian macrophages were very similar to those in humans when challenged with inflammatory cytokines. Further, we found that macaque macrophages are capable of producing a pathophysiological concentration of QUIN. Our data validate the simian model as a relevant model to study the human cellular KP metabolism in the context of inflammation.

  1. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  2. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.

  3. Effects of xenoestrogens in human M1 and M2 macrophage migration, cytokine release, and estrogen-related signaling pathways.

    Science.gov (United States)

    Teixeira, Diana; Marques, Cláudia; Pestana, Diogo; Faria, Ana; Norberto, Sónia; Calhau, Conceição; Monteiro, Rosário

    2016-11-01

    Bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and di(n-butyl)phthalate (DBP) are environmental estrogens that have been associated with a wide range of adverse health outcomes for which inflammation has also been hypothesized as a potentially involved mechanism and where macrophages play a central role. This study was carried out to evaluate if xenoestrogen (XE) treatment of classically (M1) or alternatively (M2) activated macrophages could affect their behavior. For this purpose, human peripheral blood monocyte-derived macrophages either unstimulated or activated with lipopolysaccharide (100 ng/mL, M1) or with interleukin (IL) 4 (15 ng/mL, M2) were treated with 17β-estradiol (E 2 ), BPA, DEHP and DBP alone or in combination with selective ERα or ERβ antagonists. Migratory capability, cytokine release, and estrogen-associated signaling pathways were evaluated to assess macrophage function. All tested XEs had a tendency to stimulate M2 migration, an effect that followed the same direction than E 2 . Moreover, all XEs significantly induced IL10 in M1 and decreased IL6 and globally decreased IL10, IL6, TNFα, and IL1β release by M2 macrophages. However, DEHP and DBP significantly increased IL1β release in M1 and M2 macrophages, respectively. Some of the effects described above were shown to be mediated by either ERα or ERβ and were simultaneous to modulation of NF-κB, AP1, JNK, or ERK signaling pathways. We provide new evidence of the effect of XE on macrophage behavior and their mechanisms with relevance to the understanding of the action of environmental chemicals on the immune system and inflammation-associated diseases. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1496-1509, 2016. © 2015 Wiley Periodicals, Inc.

  4. Characterization of mode II-wear particles and cytokine response in a human macrophage-like cell culture.

    Science.gov (United States)

    Rolf, Olaf; Baumann, Bernd; Sterner, Thomas; Schütze, Norbert; Jakob, Franz; Eulert, Jochen; Rader, Christof Paul

    2005-01-01

    Informations about wear particles in metallosis (mode II wear) and their effects in vitro and in vivo are limited. The aim of this study was to characterize wear particles obtained intraoperatively and to analyse their effects on cytokine response in an established human macrophage-like cell culture model. Wear particles were obtained intraoperatively from four patients with metallosis resulting from CrCoMo/PE/TiAIV-implants (mode II wear) (3 knee, 1 hip prosthesis). After purification, particles were characterized regarding to their composition and size (particle size analyser, electron microscopy, edx-analysis, histological slices). The effects of particles on the release of cytokines (PDGF, IL-1beta, IL-8, TNF alpha) were determined in an established human macrophage-like cell culture system by ELISA-assays. The metal wear particles consisted of TiAIV with a mean size of 0.1 +/- 0.15 microm, independent of the prosthesis location. CrCoMo particles could not be detected. In the cell culture model 1456 x 10(8) particles per 1 x 10(6) macrophages released maximum amounts of TNFalpha (8-fold) and IL-8 and IL-1beta (5-fold) while the survival rate of the cells was more than 90 percent. A particle-dependent increase of PDGF-levels could not be detected. As already shown for mode I wear particles (contact between primary bearing surfaces), also mode II wear particles cause release of bone resorbing cytokines in a macrophage-like cell culture model. Because their local and systemic effects in vivo are still not completely understood, we recommend a complete removal of wear particles in cases of metallosis to avoid possible immunological reactions of the body as well as periprosthetic osteolysis.

  5. Inflammatory cytokine regulation by LPS and lymphoid cells in human gamma-irradiated monocytes/macrophages; Regulation des cytokines de l`inflammation en presence de LPS ou de lymphocytes dans les monocytes/macrophages humains irradies

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D. [Centre de Recherches du Service de Sante des Armees, La Tronche, 38 - Grenoble (France)]|[Centre de Recherches du Service de Sante des Armees - Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)]|[Paris-5 Univ., 75 (France)

    1997-12-31

    We have investigated the inflammatory cytokine regulation after ionizing radiation of monocytes/macrophages. We have not evidenced any significant induction of tumour necrosis factor-{alpha}(TNF{alpha}) after irradiation alone. For one donor only out of eight, interleukin-1{beta}(IL-l{beta}) gene expression was affected by {gamma}-irradiation, with a 2-3-fold increase in level, while for two other donors, interleukin-6 (IL-6) mRNA expression was 5-14 fold increased. For one of the eight donors tested, monocytes/macrophages responded to 10 Gy {gamma}-rays by releasing inflammatory cytokines. In the presence of LPS, a significant increase of IL-1{beta} mRNA expression was detected in 10 Gy {gamma}-irradiated cells treated with 1 {mu}g/ml LPS. In most cases, combination of LPS treatment and 10 Gy irradiation down-regulated cytokine secretion except for a TNF{alpha} induction at 6 h post-irradiation. In the presence of lymphoid cells, IL-6 mRNA level was increased in irradiated cells at 24 h. Increases of IL-1{beta} and IL-6 releases were detected at 24 h post-irradiation too. (authors)

  6. Cytokine gene expression in murine epidermal cell suspensions: interleukin 1 beta and macrophage inflammatory protein 1 alpha are selectively expressed in Langerhans cells but are differentially regulated in culture.

    Science.gov (United States)

    Heufler, C; Topar, G; Koch, F; Trockenbacher, B; Kämpgen, E; Romani, N; Schuler, G

    1992-10-01

    Epidermal Langerhans cells (LC) are considered direct yet immature precursors of dendritic cells (DC) in the draining lymph nodes. Although the development of LC into potent immunostimulatory DC occurs in vitro and has been studied in detail, little is known about their profile of cytokine gene expression. By using reverse transcriptase polymerase chain reaction analysis to screen 16 cytokines followed by Northern blotting for selected analysis, we determined the cytokine gene expression profile of murine LC at different time points in culture when T cell stimulatory activity is increasing profoundly. LC regularly expressed macrophage inflammatory proteins, MIP-1 alpha and MIP-2, and interleukin 1 beta (IL-1 beta). Both MIPs were downregulated upon culture and maturation into DC, whereas IL-1 beta was strongly upregulated in culture. MIP-1 alpha and IL-1 beta mRNA were found only in LC, but not in other epidermal cells. Apart from trace amounts of IL-6 in cultured LC, several macrophage and T cell products were not detected. The cytokine expression profile of LC thus appears distinct from typical macrophages. The exact role of the cytokine genes we found transcribed in LC remains to be determined.

  7. (1→3)-β-d-Glucan stimulates nitric oxide generation and cytokine mRNA expression in macrophages.

    Science.gov (United States)

    Ljungman, A G; Leanderson, P; Tagesson, C

    1998-06-02

    Beta-glucans are known for their potent ability to induce nonspecific inflammatory reactions and are believed to play a role in bioaerosol-induced respiratory symptoms seen in both occupational and residential environments. Here, the ability of a (1→3)-β-d-glucan (Curdlan) to stimulate nitric oxide generation and cytokine mRNA expression in rat alveolar macrophages (AMs) and the murine monocyte/macrophage cell line, RAW 264.7 was investigated. Exposure to (1→3)-β-d-glucan (20, 100 and 500 μg/ml) induced a dose-dependent increase in the expression of inducible nitric oxide synthase mRNA and a release of nitric oxide into the culture medium in both rat AMs and RAW 264.7 cells. The mRNA expression of a number of other inflammatory mediators such as interleukin-1β, interleukin-6, tumor necrosis factor-α and cyclooxygenase-2 was also increased by the exposure to β-glucan. The capability of (1→3)-β-d-glucan (500 μg/ml) to induce mRNA synthesis of these various mediators were comparable to that of endotoxin (1 μg/ml). These results imply that (1→3)-β-d-glucan stimulates the generation of nitric oxide, cytokines and prostaglandins in macrophages and suggest the possibility that this may contribute to bioaerosol-induced respiratory symptoms seen in exposed individuals.

  8. DMPD: Cytokine signaling modules in inflammatory responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18400190 Cytokine signaling modules in inflammatory responses. O'Shea JJ, Murray PJ.... Immunity. 2008 Apr;28(4):477-87. (.png) (.svg) (.html) (.csml) Show Cytokine signaling modules in inflamma...tory responses. PubmedID 18400190 Title Cytokine signaling modules in inflammatory responses. Authors O'Shea

  9. DMPD: Cytokines, PGE2 and endotoxic fever: a re-assessment. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15967158 Cytokines, PGE2 and endotoxic fever: a re-assessment. Blatteis CM, Li S, L... (.svg) (.html) (.csml) Show Cytokines, PGE2 and endotoxic fever: a re-assessment. PubmedID 15967158 Title C...ytokines, PGE2 and endotoxic fever: a re-assessment. Authors Blatteis CM, Li S, L

  10. DMPD: Regulation of cytokine signaling by SOCS family molecules. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14644140 Regulation of cytokine signaling by SOCS family molecules. Fujimoto M, Nak...a T. Trends Immunol. 2003 Dec;24(12):659-66. (.png) (.svg) (.html) (.csml) Show Regulation of cytokine signaling by SOCS family... molecules. PubmedID 14644140 Title Regulation of cytokine signaling by SOCS family molec

  11. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.

    Directory of Open Access Journals (Sweden)

    Juin-Hua Huang

    2015-07-01

    Full Text Available Collaboration between heterogeneous pattern recognition receptors (PRRs leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3 and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA, genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

  12. Gluten stimulates cytokine and nitric oxide production by macrophages

    Czech Academy of Sciences Publication Activity Database

    Zídek, Zdeněk; Franková, Daniela; Tučková, Ludmila; Tlaskalová, Helena

    1999-01-01

    Roč. 8, - (1999), s. 150-151 ISSN 0962-9351. [World Congress on Inflammation /4./. 27.06.1999-30.06.1999, Paris] R&D Projects: GA ČR GA307/97/0069; GA AV ČR IAA7020808 Subject RIV: FR - Pharmacology ; Medidal Chemistry

  13. Consequences of gamma-irradiation on inflammatory cytokine regulation in human monocytes/macrophages; Consequences de l`irradiation gamma sur la regulation des cytokines de l`inflammation dans les monocytes/macrophages humains

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D.

    1995-12-31

    Inflammation is a frequent radiation-induced damage, especially after therapeutic irradiation. In this study, we have investigated, the inflammatory cytokine regulation after ionizing irradiation of monocytes/macrophages from four donors. Semi-quantitative RT-PCR revealed, after in vitro 24 h-differentiated monocytes irradiation between 5 to 40 Gy, no induction of interleukin-I{beta} (IL I{beta}), interleukin-6 (IL-6) and tumor necrosis factor-{alpha} (TNF-{alpha} mRNA) expression. Moreover, protein quantitation shows no significant increase of post-irradiation secretion. (author). 6 refs.

  14. Generation of anti-inflammatory macrophages for implants and regenerative medicine using self-standing release systems with a phenotype-fixing cytokine cocktail formulation.

    Science.gov (United States)

    Riabov, Vladimir; Salazar, Fabián; Htwe, Su Su; Gudima, Alexandru; Schmuttermaier, Christina; Barthes, Julien; Knopf-Marques, Helena; Klüter, Harald; Ghaemmaghami, Amir M; Vrana, Nihal Engin; Kzhyshkowska, Julia

    2017-04-15

    The immediate tissue microenvironment of implanted biomedical devices and engineered tissues is highly influential on their long term fate and efficacy. The creation of a long-term anti-inflammatory microenvironment around implants and artificial tissues can facilitate their integration. Macrophages are highly plastic cells that define the tissue reactions on the implanted material. Local control of macrophage phenotype by long-term fixation of their healing activities and suppression of inflammatory reactions are required to improve implant acceptance. Herein, we describe the development of a cytokine cocktail (M2Ct) that induces stable M2-like macrophage phenotype with significantly decreased pro-inflammatory cytokine and increased anti-inflammatory cytokine secretion profile. The positive effect of the M2Ct was shown in an in vitro wound healing model; where M2Ct facilitated wound closure by human fibroblasts in co-culture conditions. Using a model for induction of inflammation by LPS we have shown that the M2Ct phenotype is stable for 12days. However, in the absence of M2Ct in the medium macrophages underwent rapid pro-inflammatory re-programming upon IFNg stimulation. Therefore, loading and release of the cytokine cocktail from a self-standing, transferable gelatin/tyraminated hyaluronic acid based release system was developed to stabilize macrophage phenotype for in vivo applications in implantation and tissue engineering. The M2Ct cytokine cocktail retained its anti-inflammatory activity in controlled release conditions. Our data indicate that the direct application of a potent M2 inducing cytokine cocktail in a transferable release system can significantly improve the long term functionality of biomedical devices by decreasing pro-inflammatory cytokine secretion and increasing the rate of wound healing. Uncontrollable activation of macrophages in the microenvironment of implants and engineered tissues is a significant problem leading to poor integration of

  15. Absence of a Classically Activated Macrophage Cytokine Signature in Peripheral Spondylarthritis, Including Psoriatic Arthritis

    NARCIS (Netherlands)

    Vandooren, Bernard; Noordenbos, Troy; Ambarus, Carmen; Krausz, Sarah; Cantaert, Tineke; Yeremenko, Nataliya; Boumans, Maartje; Lutter, Rene; Tak, Paul P.; Baeten, Dominique

    2009-01-01

    Objective. Peripheral spondylarthritis (SpA) is characterized by macrophages that express CD163, a marker of alternative activation (M2). The purpose of this study was to assess whether this differential infiltration with macrophage subsets was associated with a different local inflammatory milieu

  16. FEATURES OF CYTOKINE PRODUCTION IN PATIENTS WITH RECURRENT HERPETIC INFECTION

    Directory of Open Access Journals (Sweden)

    I. A. Novikovа

    2013-01-01

    Full Text Available Abstract. Cytokines play an important role in resistance to herpesvirus infections. Therefore, studies of cytokine profile are necessary in recurrent herpetic infection. However, functional studies of cytokine network upon remission of the disease yielded controversial results. In this paper, we provide some results concerning comprehensive evaluation of ex vivo cytokine production by whole blood leukocytes drawn from 15 patients observed during clinical remission of recurrent Herpes Simplex virus infection. We have found a decrease of IL-1β, IL-8 and IL-10 production, as well as imbalance of cytokine profile, with predominance of IFNγ and IL-8 synthesis over IL-10 production, along with increased IL-4 and IL-13 levels to IL-1β contents. Differently directed correlations between the content of activated lymphocytes (CD3+HLA-DR+ and CD3+CD4+CD25+, natural killers (СD3-СD16/56+, NKT-cells and cytokine production levels were found in the groups of patients and healthy individuals. These differences may be due to shifts in major cytokineproducing populations in herpesvirus infections.

  17. A synthetic peptide derived from the D1 domain of flagellin induced the expression of proinflammatory cytokines in fish macrophages.

    Science.gov (United States)

    González-Stegmaier, Roxana; Guzmán, Fanny; Albericio, Fernando; Villarroel-Espíndola, Franz; Romero, Alex; Mulero, Victoriano; Mercado, Luis

    2015-11-01

    Flagellin is the main protein component of flagellum in Gram negative and positive bacteria, and it is also the ligand that activates the Toll-like receptor 5 (TLR5) in fish and mammals. In higher vertebrates, flagellin induces the activation of the membrane-bound TLR5 (TLR5M), which promotes the expression of proinflammatory cytokines and chemokines, and other immunological functions. We have previously reported that recombinant flagellin from Vibrio anguillarum and its ND1 domain are able to upregulate the expression of genes encoding major the proinflammatory mediators in gilthead seabream and rainbow trout macrophages. Considering the key role of D1 domain of flagellin for binding to TLR5M and its immunostimulatory activity, we designed and chemically synthesized a peptide derived of this region. The effects of the synthetic peptide were evaluated in vitro using head kidney macrophages from gilthead seabream (Sparus aurata L., Perciformes, Sparidae) and rainbow trout (Oncorhynchus mykiss W., Salmoniformes, Salmonidae). In both species the expression of genes encoding the proinflammatory cytokines interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α), and the chemokine IL-8, was induced upon stimulation of macrophages with the D1 domain synthetic peptide. IL-1β and IL-8 were the most upregulated genes and to a lesser extent TNF-α. Interestingly, however, the induction activity of the synthetic peptide was higher in gilthead seabream than in rainbow trout macrophages. The results were confirmed at the protein levels for IL-8. Collectively, these results suggest that synthetic peptide derived from flagelling could be a promising approach for the immunostimulation and vaccination of farmed fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients.

    Science.gov (United States)

    Lam, Larry; Chin, Lydia; Halder, Ramesh C; Sagong, Bien; Famenini, Sam; Sayre, James; Montoya, Dennis; Rubbi, Liudmilla; Pellegrini, Matteo; Fiala, Milan

    2016-10-01

    We have investigated transcriptional and epigenetic differences in peripheral blood mononuclear cells (PBMCs) of monozygotic female twins discordant in the diagnosis of amyotrophic lateral sclerosis (ALS). Exploring DNA methylation differences by reduced representation bisulfite sequencing (RRBS), we determined that, over time, the ALS twin developed higher abundances of the CD14 macrophages and lower abundances of T cells compared to the non-ALS twin. Higher macrophage signature in the ALS twin was also shown by RNA sequencing (RNA-seq). Moreover, the twins differed in the methylome at loci near several genes, including EGFR and TNFRSF11A, and in the pathways related to the tretinoin and H3K27me3 markers. We also tested cytokine production by PBMCs. The ALS twin's PBMCs spontaneously produced IL-6 and TNF-α, whereas PBMCs of the healthy twin produced these cytokines only when stimulated by superoxide dismutase (SOD)-1. These results and flow cytometric detection of CD45 and CD127 suggest the presence of memory T cells in both twins, but effector T cells only in the ALS twin. The ALS twin's PBMC supernatants, but not the healthy twin's, were toxic to rat cortical neurons, and this toxicity was strongly inhibited by an IL-6 receptor antibody (tocilizumab) and less well by TNF-α and IL-1β antibodies. The putative neurotoxicity of IL-6 and TNF-α is in agreement with a high expression of these cytokines on infiltrating macrophages in the ALS spinal cord. We hypothesize that higher macrophage abundance and increased neurotoxic cytokines have a fundamental role in the phenotype and treatment of certain individuals with ALS.-Lam, L., Chin, L., Halder, R. C., Sagong, B., Famenini, S., Sayre, J., Montoya, D., Rubbi L., Pellegrini, M., Fiala, M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients. © FASEB.

  19. IL-27 affects helper T cell responses via regulation of PGE2 production by macrophages.

    Science.gov (United States)

    Sato, Yayoi; Hara, Hiromitsu; Okuno, Toshiaki; Ozaki, Naoko; Suzuki, Shinobu; Yokomizo, Takehiko; Kaisho, Tsuneyasu; Yoshida, Hiroki

    2014-08-22

    IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4(+) T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1-COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Impaired Functions of Macrophage from Cystic Fibrosis Patients: CD11b, TLR-5 Decrease and sCD14, Inflammatory Cytokines Increase

    Science.gov (United States)

    Simonin-Le Jeune, Karin; Le Jeune, André; Jouneau, Stéphane; Belleguic, Chantal; Roux, Pierre-François; Jaguin, Marie; Dimanche-Boitre, Marie-Thérèse; Lecureur, Valérie; Leclercq, Caroline; Desrues, Benoît; Brinchault, Graziella; Gangneux, Jean-Pierre; Martin-Chouly, Corinne

    2013-01-01

    Background Early in life, cystic fibrosis (CF) patients are infected with microorganisms. The role of macrophages has largely been underestimated in literature, whereas the focus being mostly on neutrophils and epithelial cells. Macrophages may however play a significant role in the initiating stages of this disease, via an inability to act as a suppressor cell. Yet macrophage dysfunction may be the first step in cascade of events leading to chronic inflammation/infection in CF. Moreover, reports have suggested that CFTR contribute to altered inflammatory response in CF by modification of normal macrophage functions. Objectives In order to highlight possible intrinsic macrophage defects due to impaired CFTR, we have studied inflammatory cytokines secretions, recognition of pathogens and phagocytosis in peripheral blood monocyte-derived macrophages from stable adult CF patients and healthy subjects (non-CF). Results In CF macrophage supernatants, concentrations of sCD14, IL-1β, IL-6, TNF-α and IL-10 were strongly raised. Furthermore expression of CD11b and TLR-5 were sorely decreased on CF macrophages. Beside, no difference was observed for mCD14, CD16, CD64, TLR-4 and TLR1/TLR-2 expressions. Moreover, a strong inhibition of phagocytosis was observed for CF macrophages. Elsewhere CFTR inhibition in non-CF macrophages also led to alterations of phagocytosis function as well as CD11b expression. Conclusions Altogether, these findings demonstrate excessive inflammation in CF macrophages, characterized by overproduction of sCD14 and inflammatory cytokines, with decreased expression of CD11b and TLR-5, and impaired phagocytosis. This leads to altered clearance of pathogens and non-resolution of infection by CF macrophages, thereby inducing an exaggerated pro-inflammatory response. PMID:24098711

  1. Bauer ketones 23 and 24 from Echinacea paradoxa var. paradoxa inhibit lipopolysaccharide-induced nitric oxide, prostaglandin E2 and cytokines in RAW264.7 mouse macrophages.

    Science.gov (United States)

    Zhang, Xiaozhu; Rizshsky, Ludmila; Hauck, Catherine; Qu, Luping; Widrlechner, Mark P; Nikolau, Basil J; Murphy, Patricia A; Birt, Diane F

    2012-02-01

    Among the nine Echinacea species, E. purpurea, E. angustifolia and E. pallida, have been widely used to treat the common cold, flu and other infections. In this study, ethanol extracts of these three Echinacea species and E. paradoxa, including its typical variety, E. paradoxa var. paradoxa, were screened in lipopolysaccharide (LPS)-stimulated macrophage cells to assess potential anti-inflammatory activity. E. paradoxa var. paradoxa, rich in polyenes/polyacetylenes, was an especially efficient inhibitor of LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by 46%, 32%, 53% and 26%, respectively, when tested at 20 μg/ml in comparison to DMSO control. By bioactivity-guided fractionation, pentadeca-8Z-ene-11, 13-diyn-2-one (Bauer ketone 23) and pentadeca-8Z, 13Z-dien-11-yn-2-one (Bauer ketone 24) from E. paradoxa var. paradoxa were found primarily responsible for inhibitory effects on NO and PGE2 production. Moreover, Bauer ketone 24 was the major contributor to inhibition of inflammatory cytokine production in LPS-induced mouse macrophage cells. These results provide a rationale for exploring the medicinal effects of the Bauer ketone-rich taxon, E. paradoxa var. paradoxa, and confirm the anti-inflammatory properties of Bauer ketones 23 and 24. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Virulent and Vaccine Strains of Streptococcus equi ssp. zooepidemicus Have Different Influences on Phagocytosis and Cytokine Secretion of Macrophages.

    Science.gov (United States)

    Jie, Peng; Zhe, Ma; Chengwei, Hua; Huixing, Lin; Hui, Zhang; Chengping, Lu; Hongjie, Fan

    2017-01-06

    Swine streptococcosis is a significant threat to the Chinese pig industry, and Streptococcus equi ssp. zooepidemicus (SEZ) is one of the major pathogens. SEZ ATCC35246 is a classical virulent strain, while SEZ ST171 is a Chinese attenuated vaccine strain. In this study, we employed stable isotope labeling by amino acids in cell culture and liquid chromatography-mass spectrometry (LC-MS) to determine the differential response of macrophages to infection by these two strains. Eighty-seven upregulated proteins and 135 downregulated proteins were identified. The proteomic results were verified by real-time polymerase chain reaction for 10 chosen genes and Western blotting for three proteins. All differentially abundant proteins were analyzed for their Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations. Certain downregulated proteins were associated with immunity functions, and the upregulated proteins were related to cytomembrane and cytoskeleton regulation. The phagocytosis rate and cytokine genes transcription in Raw264.7 cells during SEZ ATCC35246 and ST171 infection were detected to confirm the bioinformatics results. These results showed that different effects on macrophage phagocytosis and cytokine expression might explain the different phenotypes of SEZ ATCC35246 and ST171 infection. This research provided clues to the mechanisms of host immunity responses to SEZ ST171and SEZ ATCC35246, which could identify potential therapy and vaccine development targets.

  3. The effect of enzymatically polymerised polyphenols on CD4 binding and cytokine production in murine splenocytes.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamanaka

    Full Text Available High-molecular weight polymerised polyphenols have been shown to exhibit anti-influenza virus, anti-HIV, and anti-cancer activities. The purpose of this study was to evaluate the immunomodulating activities of enzymatically polymerised polyphenols, and to clarify the underlying mechanisms of their effects. The cytokine-inducing activity of the enzymatically polymerised polyphenols derived from caffeic acid (CA, ferulic acid (FA, and p-coumaric acid (CoA was investigated using murine splenocytes. Polymerised polyphenols, but not non-polymerised polyphenols, induced cytokine synthesis in murine splenocytes. Polymerised polyphenols induced several cytokines in murine splenocytes, with interferon-γ (IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF being the most prominent. The underlying mechanisms of the effects of the polymerised polyphenols were then studied using neutralising antibodies and fluorescent-activated cell sorting (FACS analysis. Our results show that polymerised polyphenols increased IFN-γ and GM-CSF production in splenocytes. In addition, the anti-CD4 neutralised monoclonal antibody (mAb inhibited polymerised polyphenol-induced IFN-γ and GM-CSF secretion. Moreover, polymerised polyphenols bound directly to a recombinant CD4 protein, and FACS analysis confirmed that interaction occurs between polymerised polyphenols and CD4 molecules expressed on the cell surface. In this study, we clearly demonstrated that enzymatic polymerisation confers immunoactivating potential to phenylpropanoic acids, and CD4 plays a key role in their cytokine-inducing activity.

  4. The Effect of Enzymatically Polymerised Polyphenols on CD4 Binding and Cytokine Production in Murine Splenocytes

    Science.gov (United States)

    Yamanaka, Daisuke; Tamiya, Yumi; Motoi, Masuro; Ishibashi, Ken-ichi; Miura, Noriko N.; Adachi, Yoshiyuki; Ohno, Naohito

    2012-01-01

    High-molecular weight polymerised polyphenols have been shown to exhibit anti-influenza virus, anti-HIV, and anti-cancer activities. The purpose of this study was to evaluate the immunomodulating activities of enzymatically polymerised polyphenols, and to clarify the underlying mechanisms of their effects. The cytokine-inducing activity of the enzymatically polymerised polyphenols derived from caffeic acid (CA), ferulic acid (FA), and p-coumaric acid (CoA) was investigated using murine splenocytes. Polymerised polyphenols, but not non-polymerised polyphenols, induced cytokine synthesis in murine splenocytes. Polymerised polyphenols induced several cytokines in murine splenocytes, with interferon-γ (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) being the most prominent. The underlying mechanisms of the effects of the polymerised polyphenols were then studied using neutralising antibodies and fluorescent-activated cell sorting (FACS) analysis. Our results show that polymerised polyphenols increased IFN-γ and GM-CSF production in splenocytes. In addition, the anti-CD4 neutralised monoclonal antibody (mAb) inhibited polymerised polyphenol-induced IFN-γ and GM-CSF secretion. Moreover, polymerised polyphenols bound directly to a recombinant CD4 protein, and FACS analysis confirmed that interaction occurs between polymerised polyphenols and CD4 molecules expressed on the cell surface. In this study, we clearly demonstrated that enzymatic polymerisation confers immunoactivating potential to phenylpropanoic acids, and CD4 plays a key role in their cytokine-inducing activity. PMID:22540016

  5. The macrophages in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Laria A

    2016-02-01

    Full Text Available Antonella Laria, Alfredomaria Lurati , Mariagrazia Marrazza , Daniela Mazzocchi, Katia Angela Re, Magda Scarpellini Rheumatology Unit, Fornaroli Hospital, Magenta, Italy Abstract: Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated and M2 (alternatively activated. M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. Keywords: macrophage, rheumatic diseases

  6. The influence of protein malnutrition on the production of GM-CSF and M-CSF by macrophages

    Directory of Open Access Journals (Sweden)

    Dalila Cunha de Oliveira

    Full Text Available ABSTRACT It is well established that protein malnutrition (PM impairs immune defenses and increases susceptibility to infection. Macrophages are cells that play a central role in innate immunity, constituting one of the first barriers against infections. Macrophages produce several soluble factors, including cytokines and growth factors, important to the immune response. Among those growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF and macrophage colony-stimulating factor (M-CSF. GM-CSF and M-CSF are important to monocyte and macrophage development and stimulation of the immune response process. Knowing the importance of GM-CSF and M-CSF, we sought to investigate the influence of PM on macrophage production of these growth factors. Two-month-old male BALB/c mice were subjected to PM with a low-protein diet (2% and compared to a control diet (12% mouse group. Nutritional status, hemogram and the number of peritoneal cells were evaluated. Additionally, peritoneal macrophages were cultured and the production of GM-CSF and M-CSF and mRNA expression were evaluated. To determine if PM altered macrophage production of GM-CSF and M-CSF, they were stimulated with TNF-α. The PM animals had anemia, leukopenia and a reduced number of peritoneal cells. The production of M-CSF was not different between groups; however, cells from PM animals, stimulated with or without TNF-α, presented reduced capability to produce GM-CSF. These data imply that PM interferes with the production of GM-CSF, and consequently would affect the production and maturation of hematopoietic cells and the immune response.

  7. Piliation of Lactobacillus rhamnosus GG Promotes Adhesion, Phagocytosis, and Cytokine Modulation in Macrophages

    Science.gov (United States)

    Vargas García, Cynthia E.; Petrova, Mariya; Claes, Ingmar J. J.; De Boeck, Ilke; Verhoeven, Tine L. A.; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M.; Vanderleyden, Jos

    2015-01-01

    Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili. PMID:25576613

  8. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle.

    Science.gov (United States)

    Hong, Eun-Gyoung; Ko, Hwi Jin; Cho, You-Ree; Kim, Hyo-Jeong; Ma, Zhexi; Yu, Tim Y; Friedline, Randall H; Kurt-Jones, Evelyn; Finberg, Robert; Fischer, Matthew A; Granger, Erica L; Norbury, Christopher C; Hauschka, Stephen D; Philbrick, William M; Lee, Chun-Geun; Elias, Jack A; Kim, Jason K

    2009-11-01

    Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance. We examined the role of IL-10 in glucose homeostasis using transgenic mice with muscle-specific overexpression of IL-10 (MCK-IL10). MCK-IL10 and wild-type mice were fed a high-fat diet (HFD) for 3 weeks, and insulin sensitivity was determined using hyperinsulinemic-euglycemic clamps in conscious mice. Biochemical and molecular analyses were performed in muscle to assess glucose metabolism, insulin signaling, and inflammatory responses. MCK-IL10 mice developed with no obvious anomaly and showed increased whole-body insulin sensitivity. After 3 weeks of HFD, MCK-IL10 mice developed comparable obesity to wild-type littermates but remained insulin sensitive in skeletal muscle. This was mostly due to significant increases in glucose metabolism, insulin receptor substrate-1, and Akt activity in muscle. HFD increased macrophage-specific CD68 and F4/80 levels in wild-type muscle that was associated with marked increases in tumor necrosis factor-alpha, IL-6, and C-C motif chemokine receptor-2 levels. In contrast, MCK-IL10 mice were protected from diet-induced inflammatory response in muscle. These results demonstrate that IL-10 increases insulin sensitivity and protects skeletal muscle from obesity-associated macrophage infiltration, increases in inflammatory cytokines, and their deleterious effects on insulin signaling and glucose metabolism. Our findings provide novel insights into the role of anti-inflammatory cytokine in the treatment of type 2 diabetes.

  9. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6......Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation...... to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...

  10. Effects of tributyltin on placental cytokine production.

    Science.gov (United States)

    Arita, Yuko; Kirk, Michael; Gupta, Neha; Menon, Ramkumar; Getahun, Darios; Peltier, Morgan R

    2018-03-15

    Tributyltin (TBT) is a persistent pollutant but its effects on placental function are poorly understood as are its possible interactions with infection. We hypothesized that TBT alters the production of sex hormones and biomarkers for inflammation and neurodevelopment in an infection-dependent manner. Placental explant cultures were treated with 0-5000 nM TBT in the presence and absence of Escherichia coli. A conditioned medium was harvested and concentrations of steroids (progesterone, P4; testosterone, T and estradiol, E2) as well as biomarkers of inflammation [interleukin (IL)-1β (IL-1β), tumor necrosis factor (TNF-α), IL-10, IL-6, soluble glycoprotein 130 (sgp-130) and heme oxygenase-1 (HO-1)], oxidative stress [8-iso-prostaglandin (8-IsoP)] and neurodevelopment [brain-derived neurotrophic factor (BDNF)] were quantified. TBT increased P4 slightly but had little or no effect on T or E2 production. IL-1β, IL-6, sgp-130, IL-10 and 8-IsoP production was enhanced by TBT. P4 and IL-6 production was also enhanced by TBT for bacteria-stimulated cultures but TBT significantly inhibited bacteria-induced IL-1β and sgp-130 production. High doses of TBT also inhibited BDNF production. TBT increases P4 but has minimal effect on downstream steroids. It enhances the production of inflammatory biomarkers such as IL-1β, TNF-α, IL-10 and IL-6. Inhibition of sgp-130 by TBT suggests that TBT may increase bioactive IL-6 production which has been associated with adverse neurodevelopmental outcomes. Reduced expression of BDNF also supports this possibility.

  11. Exposure to wear particles generated from studded tires and pavement induces inflammatory cytokine release from human macrophages.

    Science.gov (United States)

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2006-04-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. Lately, wear particles generated from traffic have been recognized to be a major contributing source to the overall particle load, especially in the Nordic countries were studded tires are used. In this work, we investigated the inflammatory effect of PM10 generated from the wear of studded tires on two different types of pavement. As comparison, we also investigated PM10 from a traffic-intensive street, a subway station, and diesel exhaust particles (DEP). Human monocyte-derived macrophages, nasal epithelial cells (RPMI 2650), and bronchial epithelial cells (BEAS-2B) were exposed to the different types of particles, and the secretion of IL-6, IL-8, IL-10, and TNF-alpha into the culture medium was measured. The results show a significant release of cytokines from macrophages after exposure for all types of particles. When particles generated from asphalt/granite pavement were compared to asphalt/quartzite pavement, the granite pavement had a significantly higher capacity to induce the release of cytokines. The granite pavement particles induced cytokine release at the same magnitude as the street particles did, which was higher than what particles from both a subway station and DEP did. Exposure of epithelial cells to PM10 resulted in a significant increase of TNF-alpha secreted from BEAS-2B cells for all types of particles used (DEP was not tested), and the highest levels were induced by subway particles. None of the particle types were able to evoke detectable cytokine release from RPMI 2650 cells. The results indicate that PM10 generated by the wear of studded tires on the street surface is a large contributor to the cytokine-releasing ability of particles in traffic-intensive areas and that the type of pavement used is important for the level of this contribution

  12. SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression

    Directory of Open Access Journals (Sweden)

    Pavlova Barbora

    2011-01-01

    Full Text Available Abstract Genes localized at Salmonella pathogenicity island-1 (SPI-1 are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression.

  13. Functional consequences of gamma-irradiation on cytokines synthesis by monocytes/macrophages; Consequences fonctionnelles de l`irradiation gamma sur la synthese des cytokines par les monocytes/macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D.

    1994-12-31

    Inflammation is a frequent radiation-induced damage involved in the injury after therapeutic thoracic irradiation. In this study, we investigated the inflammatory cytokines regulation after in vitro monocytes/macrophages irradiation. Semi-quantitative RT-PCR revealed that expression of interleukin-1{beta} (IL-1 {beta}), interleukin-6 (IL-6) and tumor necrosis factor-{alpha} (TNF{alpha}) genes were increased 2 hours after in vitro irradiation in 24 h-differentiated monocytes. Assays in supernatants of monocytes demonstrated a maximum concentration of IL-1 {beta} 2 hours after irradiation as well as a constant increase of IL-6 between 30 minutes and 24 hours post-irradiation. (author). 4 refs.

  14. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity

    NARCIS (Netherlands)

    Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Jansen, T.; Jacobs, L.; Bonder, M.J.; Kurilshikov, A.; Fu, J.; Joosten, L.A.; Zhernakova, A.; Huttenhower, C.; Wijmenga, C.; Netea, M.G.; Xavier, R.J.

    2016-01-01

    Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may

  15. Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages.

    Science.gov (United States)

    Vargas García, Cynthia E; Petrova, Mariya; Claes, Ingmar J J; De Boeck, Ilke; Verhoeven, Tine L A; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M; Vanderleyden, Jos; Lebeer, Sarah

    2015-03-01

    Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Dual-inflammatory cytokines on TiO2nanotube-coated surfaces used for regulating macrophage polarization in bone implants.

    Science.gov (United States)

    Gao, Lili; Li, Mengting; Yin, Lu; Zhao, Chanjuan; Chen, Junhong; Zhou, Jie; Duan, Ke; Feng, Bo

    2018-03-10

    Excessive immune responses following the use of implantable, biomaterial-based medical devices represent a substantial challenge for treatment efficacy and patient well-being. Specifically, after implantation, pro-inflammatory M1 macrophages are activated by cytokines such as interferon-γ (IFN-γ) followed by anti-inflammatory M2 macrophages polarized by cytokines including interleukin-4 (IL-4), leading to healing and long-term stability of implants. Here, we report the loading of an immunomodulatory cytokine,IL-4, into TiO 2 nanotubes (TNTs) followed by hydrogel coating on the TNTs for subsequent release of IL-4. Finally, IFN-γ was added onto the gel layer to effect rapid release. The release rates of both cytokines from the samples were monitored using an immersion test in phosphate-buffered solution. The cytocompatibility of the sample was evaluated using cultures of osteoblasts and macrophages. Macrophage phenotype switching in vitro was examined via cytokine secretion and gene expression analyses. In vitro testing showed that the sample could stimulate macrophage polarization from the M1 to M2 phenotype at the desired period owing to temporal release of IFN-γ and IL-4. Another biomaterial containing only IL-4 in TNTs was also able to modulate the transformation of M1 to M2 although with weaker effect than that containing IFN-γ and IL-4. The biomaterial may be useful as an osteoimplant in vivo owing to the inflammation caused by a wound or implantation. This study provided biomaterials capable of facilitating smooth M1 to M2 macrophages switching, which might be helpful to research immune responses of tissues to implants and will likely contribute to the development of bone substitute materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  17. Inhibitory Effect of Gallic acid on Production of Interleukins in Mouse Macrophage Stimulated by Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Wansu Park

    2010-09-01

    Full Text Available Objectives: Gallic acid (GA is the major component of tannin which could be easily founded in various natural materials such as green tea, red tea, grape juice, and Corni Fructus. The purpose of this study is to investigate the effect of Gallic acid (GA on production of interleukin (IL in mouse macrophage Raw 264.7 cells stimulated by lipopolysaccharide (LPS. Methods: Productions of interleukins were measured by High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on xMAP (multi-analyte profiling beads technology. Firstly, cell culture supernatant was obtained after treatment with LPS and GA for 24 hour. Then, it was incubated with the antibody-conjugated beads for 30 minutes. And detection antibody was added and incubated for 30 minutes. And Strepavidin-conjugated Phycoerythrin (SAPE was added. After incubation for 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System and concentration of interleukin was determined. Results: The results of the experiment are as follows. 1. GA significantly inhibited the production of IL-3, IL-10, IL-12p40, and IL-17 in LPS-induced mouse macrophage RAW 264.7 cells at the concentration of 25, 50, 100, 200 uM (p<0.05. 2. GA significantly inhibited the production of IL-6 in LPS-induced mouse macrophage RAW 264.7 cells at the concentration of 50, 100, 200 uM (p<0.05. 3. GA diminished the production of some cytokine such as IL-4, IL-5, and IL-13 in LPS-induced mouse macrophage RAW 264.7 cells. 4. GA did not show the inhibitory effect on the production of IL-1αand IL-9 in LPS-induced mouse macrophage RAW 264.7 cells. Conclusions: These results suggest that GA has anti-inflammatory activity related with its inhibitory effects on the production of interleukins such as IL-3, IL-10, IL-12p40, IL-17, and IL-6 in LPS-induced macrophages.

  18. Chamomile Flower, Myrrh, and Coffee Charcoal, Components of a Traditional Herbal Medicinal Product, Diminish Proinflammatory Activation in Human Macrophages.

    Science.gov (United States)

    Vissiennon, Cica; Hammoud, Dima; Rodewald, Steffen; Fester, Karin; Goos, Karl-Heinz; Nieber, Karen; Arnhold, Jürgen

    2017-07-01

    A traditional herbal medicinal product, containing myrrh, chamomile flower, and coffee charcoal, has been used in Germany for the relief of gastrointestinal complaints for decades. Clinical studies suggest its use in the maintenance therapy of inflammatory bowel disease. However, the pharmacological mechanisms underlying the clinical effects are not yet fully understood.The present study aims to elucidate immunopharmacological activities of myrrh, chamomile flower, and coffee charcoal by studying the influence of each plant extract on gene expression and protein release of activated human macrophages.The plant extracts effect on gene and protein expression of activated human monocyte-derived macrophages was investigated by microarray gene expression analysis and assessment of the release of pro- and anti-inflammatory mediators (TNF α , chemokine CXCL13, and interleukin-10) using an ELISA test system.The extracts of myrrh, chamomile flower, and coffee charcoal influenced gene expression of activated human macrophages within the cytokine/chemokine signaling pathway. Particularly, chemokine gene expression was suppressed. Subsequently, the production of CXCL13 and, to a minor extent, cytokine TNF α was inhibited by all herbal extracts. Chamomile flower and coffee charcoal extracts enhanced interleukin-10 release from activated macrophages. The observed effects on protein release were comparable to the effect of budesonide, which decreased TNF α and CXCL13 and enhanced interleukin-10 release.The components of the herbal medicinal product influence the activity of activated human macrophages on both gene and protein level. The induced alterations within chemokine/cytokine signaling could contribute to a positive effect on the immunological homeostasis, which is disturbed in patients with chronic intestinal inflammation. Georg Thieme Verlag KG Stuttgart · New York.

  19. The pathogenic and vaccine strains of equine infectious anemia virus differentially induce cytokine and chemokine expression and apoptosis in macrophages.

    Science.gov (United States)

    Lin, Yue-Zhi; Cao, Xue-Zhi; Li, Liang; Li, Li; Jiang, Cheng-Gang; Wang, Xue-Feng; Ma, Jian; Zhou, Jian-Hua

    2011-09-01

    The attenuated equine infectious anemia virus (EIAV) vaccine was the first attenuated lentivirus vaccine to be used in a large-scale application and has been used to successfully control the spread of equine infectious anemia (EIA) in China. To better understand the potential role of cytokines in the pathogenesis of EIAV infection and resulting immune response, we used branched DNA technology to compare the mRNA expression levels of 12 cytokines and chemokines, including IL-1α, IL-1β, IL-4, IL-10, TNF-α, IFN-γ, IP-10, IL-8, MIP-1α, MIP-1β, MCP-1, and MCP-2, in equine monocyte-derived macrophages (eMDMs) infected with the EIAV(DLV121) vaccine strain or the parental EIAV(DLV34) pathogenic strain. Infection with EIAV(DLV34) and EIAV(DLV121) both caused changes in the mRNA levels of various cytokines and chemokines in eMDMs. In the early stage of infection with EIAV(DLV34) (0-24h), the expression of the pro-inflammatory cytokines TNF-α and IL-1β were significantly up-regulated, while with EIAV(DLV121), expression of the anti-inflammatory cytokine IL-4 was markedly up-regulated. The effects on the expression of other cytokines and chemokines were similar between these two strains of virus. During the first 4 days after infection, the expression level of IL-4 in cells infected with the pathogenic strain were significantly higher than that in cells infected with the vaccine strain, but the expression of IL-1α and IL-1β induced by the vaccine strain was significantly higher than that observed with the pathogenic strain. In addition, after 4 days of infection with the pathogenic strain, the expression levels of 5 chemokines, but not IP-10, were markedly increased in eMDMs. In contrast, the vaccine strain did not up-regulate these chemokines to this level. Contrary to our expectation, induced apoptosis in eMDMs infected with the vaccine strain was significantly higher than that infected with the pathogenic strain 4 days and 6 days after infection. Together, these

  20. Dissecting innate immune signaling in viral evasion of cytokine production.

    Science.gov (United States)

    Zhang, Junjie; Zhu, Lining; Feng, Pinghui

    2014-03-02

    In response to a viral infection, the host innate immune response is activated to up-regulate gene expression and production of antiviral cytokines. Conversely, viruses have evolved intricate strategies to evade and exploit host immune signaling for survival and propagation. Viral immune evasion, entailing host defense and viral evasion, provides one of the most fascinating and dynamic interfaces to discern the host-virus interaction. These studies advance our understanding in innate immune regulation and pave our way to develop novel antiviral therapies. Murine γHV68 is a natural pathogen of murine rodents. γHV68 infection of mice provides a tractable small animal model to examine the antiviral response to human KSHV and EBV of which perturbation of in vivo virus-host interactions is not applicable. Here we describe a protocol to determine the antiviral cytokine production. This protocol can be adapted to other viruses and signaling pathways. Recently, we have discovered that γHV68 hijacks MAVS and IKKβ, key innate immune signaling components downstream of the cytosolic RIG-I and MDA5, to abrogate NFΚB activation and antiviral cytokine production. Specifically, γHV68 infection activates IKKβ and that activated IKKβ phosphorylates RelA to accelerate RelA degradation. As such, γHV68 efficiently uncouples NFΚB activation from its upstream activated IKKβ, negating antiviral cytokine gene expression. This study elucidates an intricate strategy whereby the upstream innate immune activation is intercepted by a viral pathogen to nullify the immediate downstream transcriptional activation and evade antiviral cytokine production.

  1. Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis.

    Science.gov (United States)

    Michael, Daryn R; Ashlin, Tim G; Davies, Charlotte S; Gallagher, Hayley; Stoneman, Thomas W; Buckley, Melanie L; Ramji, Dipak P

    2013-10-01

    A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-β, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-β-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages.

    Science.gov (United States)

    Yu, Xueyang; Buttgereit, Anne; Lelios, Iva; Utz, Sebastian G; Cansever, Dilay; Becher, Burkhard; Greter, Melanie

    2017-11-21

    Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1.

    Science.gov (United States)

    BoseDasgupta, Somdeb; Moes, Suzette; Jenoe, Paul; Pieters, Jean

    2015-04-01

    The induction of macropinocytosis in macrophages during an inflammatory response is important for clearance of pathogenic microbes as well as the generation of appropriate immune responses. Recent data suggest that cytokine stimulation of macrophages induces macropinocytosis through phosphorylation of the protein coronin 1, thereby redistributing coronin 1 from the cell cortex to the cytoplasm followed by the activation of phosphoinositol-3 (PI-3) kinase. However, how coronin 1 phosphorylation regulates these processes remains unclear. We here define an essential role for 14-3-3ζ in cytokine-induced and coronin-1-dependent macropinocytosis in macrophages. We found that, upon stimulation, phosphorylated coronin 1 transiently associated with 14-3-3ζ and receptor of activated C kinase 1 (RACK1). Importantly, downregulation of 14-3-3ζ, but not RACK1, prevented relocation of coronin 1, as well as the induction of PI-3 kinase activity and thereby macropinocytosis upon cytokine stimulation. Together these data define an essential role for 14-3-3ζ in the regulation of macropinocytosis in macrophages upon cytokine stimulation through modulation of the localization of coronin 1. © 2015 FEBS.

  4. Evolution of the Macrophage CD163 Phenotype and Cytokine Profiles in a Human Model of Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Betsy J. Evans

    2013-01-01

    Full Text Available Cantharidin skin blisters were examined over two days to model the acute and resolving phases of inflammation in human skin. Four blisters were created by topical administration of cantharidin (0.1% v/v to the forearm of healthy volunteers, with IRB approval. Duplicate skin blisters were aspirated at 16 and 40 hours to model the proinflammatory and resolving phases, respectively. There was a significant increase in leukocyte infiltrate at 40 h with appearance of a “resolving macrophage” phenotype CD14+CD163+ by flow cytometry. Neutrophils acquired apoptotic markers at 40 h and were observed to be phagocytosed by macrophagic “Reiter’s” cells. Multiplex cytokine analysis demonstrated that monocyte chemoattractant protein (MCP-1/CCL2, interleukin- (IL- 6, IL-8/CXCL8, macrophage inflammatory protein (MIP1α/CCL3, MIP-1β/CCL4, tumor necrosis factor- (TNF- α, and eotaxin (CCL11 were all significantly upregulated at 16 h compared with 40 h. In contrast, immunoregulatory transforming growth factor- (TGF- β, macrophage-derived chemokine (MDC/CCL22, and interferon-inducible protein (IP-10/CXCL10 were significantly elevated at 40 h. Our results demonstrate that the phases of inflammation and resolution can be discriminated in a two-day model of dermal wound healing. This confirms and extends our understanding of wound repair in humans and provides a powerful research tool for use in clinical settings and to track the molecular benefits of therapeutic intervention.

  5. The relationship of serum macrophage inhibitory cytokine-1 levels with gray matter volumes in community-dwelling older individuals.

    Directory of Open Access Journals (Sweden)

    Jiyang Jiang

    Full Text Available Using circulating inflammatory markers and magnetic resonance imaging (MRI, recent studies have associated inflammation with brain volumetric measures. Macrophage Inhibitory Cytokine-1 (MIC-1/GDF15 is a divergent transforming growth factor - beta (TGF-β superfamily cytokine. To uncover the underlying mechanisms of the previous finding of a negative association between MIC-1/GDF15 serum levels and cognition, the present study aimed to examine the relationship of circulating MIC-1/GDF15 levels with human brain gray matter (GM volumes, in a community-dwelling sample aged 70-90 years over two years (Wave 1: n = 506, Wave 2: n = 327, of which the age-related brain atrophy had been previously well defined. T1-weighted MRI scans were obtained at both waves and analyzed using the FMRIB Software Library and FreeSurfer. The results showed significantly negative associations between MIC-1/GDF15 serum levels and both subcortical and cortical GM volumes. GM volumes of the whole brain, cortex, temporal lobe, thalamus and accumbens showed significant mediating effects on the associations between MIC-1/GDF15 serum levels and global cognition scores. Increases in MIC-1/GDF15 serum levels were associated with decreases in cortical and subcortical GM volume over two years. In conclusion, MIC-1/GDF15 serum levels were inversely associated with GM volumes both cross-sectionally and longitudinally.

  6. Suppressor of Cytokine Signaling 3 in Macrophages Prevents Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early Permissiveness to Experimental Tuberculosis

    Directory of Open Access Journals (Sweden)

    Erik Schmok

    2017-11-01

    Full Text Available Suppressor of cytokine signaling 3 (SOCS3 is a feedback inhibitor of interleukin (IL-6 signaling in macrophages. In the absence of this molecule, macrophages become extremely prone to an IL-6-dependent expression of arginase-1 (Arg1 and nitric oxide synthase (NOS2, the prototype markers for alternative or classical macrophage activation, respectively. Because both enzymes are antipodean macrophage effector molecules in Mycobacterium tuberculosis (Mtb infection, we assessed the relevance of SOCS3 for macrophage activation during experimental tuberculosis using macrophage-specific SOCS3-deficient (LysMcreSOCS3loxP/loxP mice. Aerosol infection of LysMcreSOCS3loxP/loxP mice resulted in remarkably higher bacterial loads in infected lungs and exacerbated pulmonary inflammation. This increased susceptibility to Mtb infection was accompanied by enhanced levels of both classical and alternative macrophage activation. However, high Arg1 expression preceded the increased induction of NOS2 and at early time points of infection mycobacteria were mostly found in cells positive for Arg1. This sequential activation of Arg1 and NOS2 expression in LysMcreSOCS3loxP/loxP mice appears to favor the initial replication of Mtb particularly in Arg1-positive cells. Neutralization of IL-6 in Mtb-infected LysMcreSOCS3loxP/loxP mice reduced arginase activity and restored control of mycobacterial replication in LysMcreSOCS3loxP/loxP mice. Our data reveal an unexpected role of SOCS3 during experimental TB: macrophage SOCS3 restrains early expression of Arg1 and helps limit Mtb replication in resident lung macrophages, thereby limiting the growth of mycobacteria. Together, SOCS3 keeps IL-6-dependent divergent macrophage responses such as Nos2 and Arg1 expression under control and safeguard protective macrophage effector mechanisms.

  7. Differential effects of acyclic nucleoside phosphonates on nitric oxide and cytokines in rat hepatocytes and macrophages

    Czech Academy of Sciences Publication Activity Database

    Kostecká, Petra; Holý, Antonín; Farghali, H.; Zídek, Zdeněk; Kmoníčková, Eva

    2012-01-01

    Roč. 12, č. 2 (2012), s. 342-349 ISSN 1567-5769 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40550506 Keywords : acyclic nucleoside phosphonates * cytokines * nitric oxide Subject RIV: FR - Pharmacology ; Medidal Chemistry; CC - Organic Chemistry (UOCHB-X) Impact factor: 2.417, year: 2012

  8. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines.

    Science.gov (United States)

    Barak, V; Halperin, T; Kalickman, I

    2001-01-01

    Sambucus nigra L. products - Sambucol - are based on a standardized black elderberry extract. They are natural remedies with antiviral properties, especially against different strains of influenza virus. Sambucol was shown to be effective in vitro against 10 strains of influenza virus. In a double-blind, placebo-controlled, randomized study, Sambucol reduced the duration of flu symptoms to 3-4 days. Convalescent phase serum showed a higher antibody level to influenza virus in the Sambucol group, than in the control group. The present study aimed to assess the effect of Sambucol products on the healthy immune system - namely, its effect on cytokine production. The production of inflammatory cytokines was tested using blood - derived monocytes from 12 healthy human donors. Adherent monocytes were separated from PBL and incubated with different Sambucol preparations i.e., Sambucol Elderberry Extract, Sambucol Black Elderberry Syrup, Sambucol Immune System and Sambucol for Kids. Production of inflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8) was significantly increased, mostly by the Sambucol Black Elderberry Extract (2-45 fold), as compared to LPS, a known monocyte activator (3.6-10.7 fold). The most striking increase was noted in TNF-alpha production (44.9 fold). We conclude from this study that, in addition to its antiviral properties, Sambucol Elderberry Extract and its formulations activate the healthy immune system by increasing inflammatory cytokine production. Sambucol might therefore be beneficial to the immune system activation and in the inflammatory process in healthy individuals or in patients with various diseases. Sambucol could also have an immunoprotective or immunostimulatory effect when administered to cancer or AIDS patients, in conjunction with chemotherapeutic or other treatments. In view of the increasing popularity of botanical supplements, such studies and investigations in vitro, in vivo and in clinical trials need to be developed.

  9. Comparison of WTC dust size on macrophage inflammatory cytokine release in vivo and in vitro.

    Science.gov (United States)

    Weiden, Michael D; Naveed, Bushra; Kwon, Sophia; Segal, Leopoldo N; Cho, Soo Jung; Tsukiji, Jun; Kulkarni, Rohan; Comfort, Ashley L; Kasturiarachchi, Kusali J; Prophete, Colette; Cohen, Mitchell D; Chen, Lung-Chi; Rom, William N; Prezant, David J; Nolan, Anna

    2012-01-01

    The WTC collapse exposed over 300,000 people to high concentrations of WTC-PM; particulates up to ∼50 mm were recovered from rescue workers' lungs. Elevated MDC and GM-CSF independently predicted subsequent lung injury in WTC-PM-exposed workers. Our hypotheses are that components of WTC dust strongly induce GM-CSF and MDC in AM; and that these two risk factors are in separate inflammatory pathways. Normal adherent AM from 15 subjects without WTC-exposure were incubated in media alone, LPS 40 ng/mL, or suspensions of WTC-PM(10-53) or WTC-PM(2.5) at concentrations of 10, 50 or 100 µg/mL for 24 hours; supernatants assayed for 39 chemokines/cytokines. In addition, sera from WTC-exposed subjects who developed lung injury were assayed for the same cytokines. In the in vitro studies, cytokines formed two clusters with GM-CSF and MDC as a result of PM(10-53) and PM(2.5). GM-CSF clustered with IL-6 and IL-12(p70) at baseline, after exposure to WTC-PM(10-53) and in sera of WTC dust-exposed subjects (n = 70) with WTC lung injury. Similarly, MDC clustered with GRO and MCP-1. WTC-PM(10-53) consistently induced more cytokine release than WTC-PM(2.5) at 100 µg/mL. Individual baseline expression correlated with WTC-PM-induced GM-CSF and MDC. WTC-PM(10-53) induced a stronger inflammatory response by human AM than WTC-PM(2.5). This large particle exposure may have contributed to the high incidence of lung injury in those exposed to particles at the WTC site. GM-CSF and MDC consistently cluster separately, suggesting a role for differential cytokine release in WTC-PM injury. Subject-specific response to WTC-PM may underlie individual susceptibility to lung injury after irritant dust exposure.

  10. Comparison of WTC dust size on macrophage inflammatory cytokine release in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Michael D Weiden

    Full Text Available BACKGROUND: The WTC collapse exposed over 300,000 people to high concentrations of WTC-PM; particulates up to ∼50 mm were recovered from rescue workers' lungs. Elevated MDC and GM-CSF independently predicted subsequent lung injury in WTC-PM-exposed workers. Our hypotheses are that components of WTC dust strongly induce GM-CSF and MDC in AM; and that these two risk factors are in separate inflammatory pathways. METHODOLOGY/PRINCIPAL FINDINGS: Normal adherent AM from 15 subjects without WTC-exposure were incubated in media alone, LPS 40 ng/mL, or suspensions of WTC-PM(10-53 or WTC-PM(2.5 at concentrations of 10, 50 or 100 µg/mL for 24 hours; supernatants assayed for 39 chemokines/cytokines. In addition, sera from WTC-exposed subjects who developed lung injury were assayed for the same cytokines. In the in vitro studies, cytokines formed two clusters with GM-CSF and MDC as a result of PM(10-53 and PM(2.5. GM-CSF clustered with IL-6 and IL-12(p70 at baseline, after exposure to WTC-PM(10-53 and in sera of WTC dust-exposed subjects (n = 70 with WTC lung injury. Similarly, MDC clustered with GRO and MCP-1. WTC-PM(10-53 consistently induced more cytokine release than WTC-PM(2.5 at 100 µg/mL. Individual baseline expression correlated with WTC-PM-induced GM-CSF and MDC. CONCLUSIONS: WTC-PM(10-53 induced a stronger inflammatory response by human AM than WTC-PM(2.5. This large particle exposure may have contributed to the high incidence of lung injury in those exposed to particles at the WTC site. GM-CSF and MDC consistently cluster separately, suggesting a role for differential cytokine release in WTC-PM injury. Subject-specific response to WTC-PM may underlie individual susceptibility to lung injury after irritant dust exposure.

  11. Dissecting Innate Immune Signaling in Viral Evasion of Cytokine Production

    OpenAIRE

    Zhang, Junjie; Zhu, Lining; Feng, Pinghui

    2014-01-01

    In response to a viral infection, the host innate immune response is activated to up-regulate gene expression and production of antiviral cytokines. Conversely, viruses have evolved intricate strategies to evade and exploit host immune signaling for survival and propagation. Viral immune evasion, entailing host defense and viral evasion, provides one of the most fascinating and dynamic interfaces to discern the host-virus interaction. These studies advance our understanding in innate immune r...

  12. Identification of BCAP-{sub L} as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Takayuki [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Oyama, Masaaki; Kozuka-Hata, Hiroko [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Ishikawa, Kosuke; Inoue, Takafumi [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Muta, Tatsushi [Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578 (Japan); Semba, Kentaro, E-mail: ksemba@waseda.jp [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan)

    2010-09-17

    Research highlights: {yields} Twenty five tyrosine-phosphorylated proteins in LPS-stimulated macrophages were determined. {yields} BCAP is a novel tyrosine-phosphorylated protein in LPS-stimulated macrophages. {yields} BCAP-{sub L} inhibits IL-6 and IL-10 production in LPS-stimulated macrophages. -- Abstract: Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-{sub L}) and an alternatively initiated or spliced (Bcap-{sub S}) mRNA, and little is known about the differential functions of the BCAP-{sub L} and BCAP-{sub S} proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-{sub L} enhanced IL-6 and IL-10 production but not TNF-{alpha} production in TLR ligand-stimulated macrophages. We propose that BCAP-{sub L} (but not BCAP-{sub S}) is a negative regulator of the TLR-mediated host defense system in macrophages.

  13. [Spontaneous and mitogen-induced production of proinflammatory cytokines (interleukin-1 and tumor necrosis factor-alpha) in patients with chronic chlamydia infection of urogenital system].

    Science.gov (United States)

    Driians'ka, V Ie; Drannik, H M; Vashchenko, S M; Fesenkova, V I; Papakina, V S

    2004-03-01

    The article contributes to studying functional activity of mononuclear and macrophage immune cells by spontaneous and induced production of IL-1 and TNF-alpha cytokines in patients with chronic urogenital clamidiosis. The patients with monoinfection were shown to have high level of IL-1 and low level of TNF-alpha, while the patients with mixed infection of urogenital tract presented with the high production of TNF-alpha. The cells activation raise cytokines production not to the level observed among healthy persons. It suggests decreasing compensatory regulation in yet higher activated cells.

  14. Differentiated THP-1 Cells Exposed to Pathogenic and Nonpathogenic Borrelia Species Demonstrate Minimal Differences in Production of Four Inflammatory Cytokines.

    Science.gov (United States)

    Stokes, John V; Moraru, Gail M; McIntosh, Chelsea; Kummari, Evangel; Rausch, Keiko; Varela-Stokes, Andrea S

    2016-11-01

    Tick-borne borreliae include Lyme disease and relapsing fever agents, and they are transmitted primarily by ixodid (hard) and argasid (soft) tick vectors, respectively. Tick-host interactions during feeding are complex, with host immune responses influenced by biological differences in tick feeding and individual differences within and between host species. One of the first encounters for spirochetes entering vertebrate host skin is with local antigen-presenting cells, regardless of whether the tick-associated Borrelia sp. is pathogenic. In this study, we performed a basic comparison of cytokine responses in THP-1-derived macrophages after exposure to selected borreliae, including a nonpathogen. By using THP-1 cells, differentiated to macrophages, we eliminated variations in host response and reduced the system to an in vitro model to evaluate the extent to which the Borrelia spp. influence cytokine production. Differentiated THP-1 cells were exposed to four Borrelia spp., Borrelia hermsii (DAH), Borrelia burgdorferi (B31), B. burgdorferi (NC-2), or Borrelia lonestari (LS-1), or lipopolysaccharides (LPS) (activated) or media (no treatment) controls. Intracellular and secreted interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured using flow cytometric and Luminex-based assays, respectively, at 6, 24, and 48 h postexposure time points. Using a general linear model ANOVA for each cytokine, treatment (all Borrelia spp. and LPS compared to no treatment) had a significant effect on secreted TNF-α only. Time point had a significant effect on intracellular IFN-γ, TNF-α and IL-6. However, we did not see significant differences in selected cytokines among Borrelia spp. Thus, in this model, we were unable to distinguish pathogenic from nonpathogenic borreliae using the limited array of selected cytokines. While unique immune profiles may be detectable in an in vitro model and may reveal predictors for pathogenicity in borreliae

  15. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells

    International Nuclear Information System (INIS)

    Naha, Pratap C.; Davoren, Maria; Lyng, Fiona M.; Byrne, Hugh J.

    2010-01-01

    The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H 2 DCFDA to DCF both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-α (TNF-α) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at ∼ 4 h), TNF-α and IL-6 secretion (maximum at ∼ 24 h), MIP-2 levels and cell death (∼ 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.

  16. Virulent and avirulent strains of equine arteritis virus induce different quantities of TNF-α and other proinflammatory cytokines in alveolar and blood-derived equine macrophages

    International Nuclear Information System (INIS)

    Moore, Brian D.; Balasuriya, Udeni B.R.; Watson, Johanna L.; Bosio, Catharine M.; MacKay, Robert J.; MacLachlan, N. James

    2003-01-01

    Equine arteritis virus (EAV) infects endothelial cells (ECs) and macrophages in horses, and many of the clinical manifestations of equine viral arteritis (EVA) reflect vascular injury. To further evaluate the potential role of EAV-induced, macrophage-derived cytokines in the pathogenesis of EVA, we infected cultured equine alveolar macrophages (AMphi), blood monocyte-derived macrophages (BMphi), and pulmonary artery ECs with either a virulent (KY84) or an avirulent (CA95) strain of EAV. EAV infection of equine AMphi, BMphi, and ECs resulted in their activation with increased transcription of genes encoding proinflammatory mediators, including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. Furthermore, the virulent KY84 strain of EAV induced significantly higher levels of mRNA encoding proinflammatory cytokines in infected AMphi and BMphi than did the avirulent CA95 strain. Treatment of equine ECs with the culture supernatants of EAV-infected AMphi and BMphi also resulted in EC activation with cell surface expression of E-selectin, whereas infection of ECs with purified EAV alone caused only minimal expression of E-selectin. The presence of TNF-α in the culture supernatants of EAV-infected equine AMphi, BMphi, and ECs was confirmed by bioassay, and the virulent KY84 strain of EAV induced significantly more TNF-α in all cell types than did the avirulent CA95 strain. Thus, the data indicate that EAV-induced, macrophage-derived cytokines may contribute to the pathogenesis of EVA in horses, and that the magnitude of the cytokine response of equine AMphi, BMphi, and ECs to EAV infection reflects the virulence of the infecting virus strain

  17. The Effects of Ex Vivo Administration of Granulocyte-Macrophage Colony-Stimulating Factor and Endotoxin on Cytokine Release of Whole Blood Are Determined by Priming Conditions

    Directory of Open Access Journals (Sweden)

    A. Nierhaus

    2017-01-01

    Full Text Available Background. Lipopolysaccharide- (LPS- induced tumour necrosis factor alpha (TNFα secretion in critically ill patients can be considered as a measure of immune responsiveness. It can be enhanced by granulocyte-macrophage colony stimulating factor (GM-CSF. We investigated the effect of GM-CSF on ex vivo stimulated cytokine production using various preincubation regimens in healthy donors and patients with sepsis. Results. The maxima for the stimuli occurred 3 hours after stimulation. In donors, there was an increase (p<0.001 of LPS-induced TNFα levels following incubation with GM-CSF. The simultaneous incubation with GM-CSF and LPS caused an inhibition of TNFα production (p<0.001. Postincubation with GM-CSF did not yield any difference. In patients, preincubation with GM-CSF yielded an enhanced ex vivo TNFα-response when TNFα levels were low. Patients with increased TNFα concentrations did not show a GM-CSF stimulation effect. The GM-CSF preincubation yielded an increase of IL-8 production in patients and donors. Conclusions. This study demonstrates the immune-modulating properties of GM-CSF depending on the absence or presence of LPS or systemic TNFα. The timing of GM-CSF administration may be relevant for the modulation of the immune system in sepsis. The lack of stimulation in patients with high TNFα may represent endotoxin tolerance.

  18. Effects of CD14 macrophages and proinflammatory cytokines on chondrogenesis in osteoarthritic synovium-derived stem cells.

    Science.gov (United States)

    Han, Sun Ae; Lee, Sahnghoon; Seong, Sang Cheol; Lee, Myung Chul

    2014-10-01

    We investigated the effects of CD14 macrophages and proinflammatory cytokines on chondrogenic differentiation of osteoarthritic synovium-derived stem cells (SDSCs). Osteoarthritic synovial fluid was analyzed for interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Levels of stem cell surface markers in osteoarthritic SDSCs were evaluated using flow cytometry. CD14-negative cells were obtained using magnetically activated cell sorting. We compared chondrogenic potentials between whole cells and CD14-negative cells in CD14(low) cells and CD14(high) cells, respectively. To assess whether nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ) modulate IL-1β-induced alterations in chondrogenic potential, we performed small interfering RNA transfection. We observed a significant correlation between the CD14 ratio in osteoarthritic SDSCs and IL-1β and TNF-α in osteoarthritic synovial fluid. Phenotypic characterization of whole cells and CD14-negative cells showed no significant differences in levels of stem cell markers. mRNA expression of type II collagen was higher in CD14-negative cell pellets than in whole cell pellets. Immunohistochemical staining indicated higher levels of type II collagen in the CD14-negative cell pellets of CD14(high) cells than in whole cell pellets of CD14(high) cells. As expected, IL-1β and TNF-α significantly inhibited the expression of chondrogenic-related genes in SDSCs, an effect which was antagonized by knockdown of NF-κB and C/EBPβ. Our results suggest that depletion of CD14(+) synovial macrophages leads to improved chondrogenic potential in CD14(high) cell populations in osteoarthritic SDSCs, and that NF-κB (RelA) and C/EBPβ are critical factors mediating IL-1β-induced suppression of the chondrogenic potential of human SDSCs.

  19. Vacuolar-ATPase isoform a2 regulates macrophages and cytokine profile necessary for normal spermatogenesis in testis.

    Science.gov (United States)

    Jaiswal, Mukesh K; Katara, Gajendra K; Mallers, Timothy; Chaouat, Gerard; Gilman-Sachs, Alice; Beaman, Kenneth D

    2014-08-01

    a2V is required for maturation of sperm. The decreased expression of a2V at the feto-maternal interphase causes poor pregnancy outcome. The present study examined the role of a2V in spermatogenesis and inflammatory network in the testis. A single dose of anti-a2V mouse IgG or mouse IgG isotype (3 μg/animal) was injected i.p. into male mice on alternate days for 10 days. Anti-a2V-treated males exhibit severe deficiencies of spermatogenesis, which is indicated by the presence of less numbers of postmeiotic cells. Sperm counts and sperm motility were reduced significantly in anti-a2V-treated males. The release of the cleaved a2NTD was significantly lower in anti-a2V-treated testes. The TMs were identified as M2-like macrophages, and this population and the expression of various cytokines/chemokines (Tgf-β, Il-6, Nos2, Tnf, Lif, Mcp1, Ccl5) were decreased significantly in anti-a2V-treated testis compared with control testis. Moreover, the cleaved a2NTD acts as a key mediator of TMs and significantly up-regulates the secretion of testicular cytokines/chemokines, which are associated with normal spermatogenesis. When these anti-a2V-treated males were used for mating with normal females, the number of implantation sites was decreased significantly in the females mated with anti-a2V-treated males than the females mated with control males. These observations suggest that a2V plays a crucial role in spermatogenesis by regulating testicular immune responses, and its inhibition in males leads to poor pregnancy outcome in females. © 2014 Society for Leukocyte Biology.

  20. An extract of Phellinus linteus grown on germinated brown rice inhibits inflammation markers in RAW264.7 macrophages by suppressing inflammatory cytokines, chemokines, and mediators and up-regulating antioxidant activity.

    Science.gov (United States)

    Park, Hye-Jin; Han, Eun Su; Park, Dong Ki; Lee, Chan; Lee, Ki Won

    2010-12-01

    The immunomodulatory activity of an organic extract of Phellinus linteus grown on slightly germinated brown rice (PBR) was previously demonstrated. Here, we investigated the possible anti-inflammatory activity of the PBR extract by analyzing its effect on the expression of macrophage-derived cytokines, chemokines, and mediator genes that participate in immune and inflammatory responses and diseases. The extract profoundly inhibited the induction of cytokines and chemokines, including tumor necrosis factor-α, chemokine (C-X-C motif) ligand-10, granulocyte-macrophage colony-stimulating factor, and interleukin-6, in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells. It also greatly inhibited LPS-stimulated production of nitric oxide (NO) and prostaglandin E(2) in RAW264.7 cells by suppressing the expression of inducible NO synthase and cyclooxygenase-2. PBR extract inhibited NO production with a twofold lower half-maximal inhibitory concentration value than P. linteus extract. To elucidate the underlying mechanism of action, we examined the effect of the PBR extract on the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in RAW264.7 cells. PBR extract greatly inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation and slightly inhibited p38 MAPK phosphorylation. It also significantly increased intracellular glutathione peroxidase activity and heme oxygenase-1 protein expression. Thus, the PBR extract has anti-inflammatory activity in LPS-stimulated RAW264.7 cells by virtue of its ability to suppress the production of inflammatory cytokines and chemokines via inhibition of MAPK activation and up-regulation of antioxidant activities.

  1. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFκB Pathway Suppression

    Directory of Open Access Journals (Sweden)

    Zhong’e Zhou

    2016-01-01

    Full Text Available Advanced glycation end products (AGEs are major inflammatory mediators in diabetes, affecting atherosclerosis progression via macrophages. Metformin slows diabetic atherosclerosis progression through mechanisms that remain to be fully elucidated. The present study of murine bone marrow derived macrophages showed that (1 AGEs enhanced proinflammatory cytokines (interleukin-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α mRNA expression, RAGE expression, and NFκB activation; (2 metformin pretreatment inhibited AGEs effects and AGEs-induced cluster designation 86 (CD86 (M1 marker expression, while promoting CD206 (M2 marker surface expression and anti-inflammatory cytokine (IL-10 mRNA expression; and (3 the AMPK inhibitor, Compound C, attenuated metformin effects. In conclusion, metformin inhibits AGEs-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression.

  2. Chocolate consumption modulates cytokine production in healthy individuals.

    Science.gov (United States)

    Netea, Stejara A; Janssen, Sam A; Jaeger, Martin; Jansen, Trees; Jacobs, Liesbeth; Miller-Tomaszewska, Gosia; Plantinga, Theo S; Netea, Mihai G; Joosten, Leo A B

    2013-04-01

    Epidemiological studies suggest that chocolate increases the incidence and severity of acne. Here we demonstrate that chocolate consumption primes human blood mononuclear cells from volunteers to release more interleukin-1β (IL-1β) and IL-10 upon stimulation with Propionibacterium acne or Staphylcoccus aureus, the two microorganisms involved in the pathogenesis of acne. In contrast, production of the Th17-derived cytokine IL-22 was inhibited by chocolate. Modulation of inflammation could represent an important mechanism through which chocolate consumption influences acne. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The macrophage in HIV-1 infection: From activation to deactivation?

    Directory of Open Access Journals (Sweden)

    Varin Audrey

    2010-04-01

    Full Text Available Abstract Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1 induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2 induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM. Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  4. GM-CSF and IL-4 produced by NKT cells inversely regulate IL-1β production by macrophages.

    Science.gov (United States)

    Ahn, Sehee; Jeong, Dongjin; Oh, Sae Jin; Ahn, Jiye; Lee, Seung Hyo; Chung, Doo Hyun

    2017-02-01

    Natural Killer T (NKT) cells are distinct T cell subset that link innate and adaptive immune responses. IL-1β, produced by various immune cells, plays a key role in the regulation of innate immunity in vivo. However, it is unclear whether NKT cells regulate IL-1β production by macrophages. To address this, we co-cultured NKT cells and peritoneal macrophages in the presence of TCR stimulation and inflammasome activators. Among cytokines secreted from NKT cells, GM-CSF enhanced IL-1β production by macrophages via regulating LPS-mediated pro-IL-1β expression and NLRP3-dependent inflammasome activation, whereas IL-4 enhanced M2-differentiation of macrophages and decreased IL-1β production. Together, our findings suggest the NKT cells have double-sided effects on IL-1β-mediated innate immune responses by producing IL-4 and GM-CSF. These findings may be helpful for a comprehensive understanding of NKT cell-mediated regulatory mechanisms of the pro-inflammatory effects of IL-1β in inflammatory diseases in vivo. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Terameprocol, a methylated derivative of nordihydroguaiaretic acid, inhibits production of prostaglandins and several key inflammatory cytokines and chemokines

    Directory of Open Access Journals (Sweden)

    Scholle F

    2009-01-01

    Full Text Available Abstract Background Extracts of the creosote bush, Larrea tridentata, have been used for centuries by natives of western American and Mexican deserts to treat a variety of infectious diseases and inflammatory disorders. The beneficial activity of this plant has been linked to the compound nordihydroguaiaretic acid (NDGA and its various substituted derivatives. Recently, tetra-O-methyl NDGA or terameprocol (TMP has been shown to inhibit the growth of certain tumor-derived cell lines and is now in clinical trials for the treatment of human cancer. In this report, we ask whether TMP also displays anti-inflammatory activity. TMP was tested for its ability to inhibit the LPS-induced production of inflammatory lipids and cytokines in vitro. We also examined the effects of TMP on production of TNF-α in C57BL6/J mice following a sublethal challenge with LPS. Finally, we examined the molecular mechanisms underlying the effects we observed. Methods RAW 264.7 cells and resident peritoneal macrophages from C57BL6/J mice, stimulated with 1 μg/ml LPS, were used in experiments designed to measure the effects of TMP on the production of prostaglandins, cytokines and chemokines. Prostaglandin production was determined by ELISA. Cytokine and chemokine production were determined by antibody array and ELISA. Western blots, q-RT-PCR, and enzyme assays were used to assess the effects of TMP on expression and activity of COX-2. q-RT-PCR was used to assess the effects of TMP on levels of cytokine and chemokine mRNA. C57BL6/J mice injected i.p. with LPS were used in experiments designed to measure the effects of TMP in vivo. Serum levels of TNF-α were determined by ELISA. Results TMP strongly inhibited the production of prostaglandins from RAW 264.7 cells and normal peritoneal macrophages. This effect correlated with a TMP-dependent reduction in levels of COX-2 mRNA and protein, and inhibition of the enzymatic activity of COX-2. TMP inhibited, to varying degrees, the

  6. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages.

    Science.gov (United States)

    Abrial, C; Grassin-Delyle, S; Salvator, H; Brollo, M; Naline, E; Devillier, P

    2015-09-01

    15-Lipoxygenase (15-LOX) activity is associated with inflammation and immune regulation. The objectives of the present study were to investigate the expression of 15-LOX-1 and 15-LOX-2 and evaluate the enzymes' roles in the polarization of human lung macrophages (LMs) in response to LPS and Th2 cytokines (IL-4/-13). LMs were isolated from patients undergoing surgery for carcinoma. The cells were cultured with a 15-LOX inhibitor (PD146176 or ML351), a COX inhibitor (indomethacin), a 5-LOX inhibitor (MK886) or vehicle and then stimulated with LPS (10 ng · mL(-1)), IL-4 (10 ng · mL(-1)) or IL-13 (50 ng · mL(-1)) for 24 h. Levels of ALOX15 (15-LOX-1) and ALOX15B (15-LOX-2) transcripts were determined by real-time quantitative PCR. Immunoassays were used to measure levels of LPS-induced cytokines (TNF-α, CCL2, CCL3, CCL4, CXCL1, CXCL8 and CXCL10) and Th2 cytokine-induced chemokines (CCL13, CCL18 and CCL22) in the culture supernatant. Stimulation of LMs with LPS was associated with increased expression of ALOX15B, whereas stimulation with IL-4/IL-13 induced the expression of ALOX15. PD146176 and ML351 (10 μM) reduced the release of the chemokines induced by LPS and Th2 cytokines. The effects of these 15-LOX inhibitors were maintained in the presence of indomethacin and MK886. Furthermore, indomethacin revealed the inhibitory effect of PD146176 on TNF-α release. Inhibition of the 15-LOX pathways is involved in the down-regulation of the in vitro production of chemokines in LMs. Our results suggest that the 15-LOX pathways have a role in the pathogenesis of inflammatory lung disorders and may thus constitute a potential drug target. © 2015 The British Pharmacological Society.

  7. Activation of monocytes and cytokine production in patients with peripheral atherosclerosis obliterans

    Directory of Open Access Journals (Sweden)

    Lastória Sidney

    2011-08-01

    Full Text Available Abstract Background Arterial peripheral disease is a condition caused by the blocked blood flow resulting from arterial cholesterol deposits within the arms, legs and aorta. Studies have shown that macrophages in atherosclerotic plaque are highly activated, which makes these cells important antigen-presenting cells that develop a specific immune response, in which LDLox is the inducing antigen. As functional changes of cells which participate in the atherogenesis process may occur in the peripheral blood, the objectives of the present study were to evaluate plasma levels of anti-inflammatory and inflammatory cytokines including TNF-α, IFN-γ, interleukin-6 (IL-6, IL-10 and TGF-β in patients with peripheral arteriosclerosis obliterans, to assess the monocyte activation level in peripheral blood through the ability of these cells to release hydrogen peroxide (H2O2 and to develop fungicidal activity against Candida albicans (C. albicans in vitro. Methods TNF-α, IFN-γ, IL-6, IL-10 and TGF-β from plasma of patients were detected by ELISA. Monocyte cultures activated in vitro with TNF-alpha and IFN-gamma were evaluated by fungicidal activity against C. albicans by culture plating and Colony Forming Unit (CFU recovery, and by H2O2 production. Results Plasma levels of all cytokines were significantly higher in patients compared to those detected in control subjects. Control group monocytes did not release substantial levels of H2O2 in vitro, but these levels were significantly increased after activation with IFN-γ and TNF-α. Monocytes of patients, before and after activation, responded less than those of control subjects. Similar results were found when fungicidal activity was evaluated. The results seen in patients were always significantly smaller than among control subjects. Conclusions: The results revealed an unresponsiveness of patient monocytes in vitro probably due to the high activation process occurring in vivo as corroborated by high

  8. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    Science.gov (United States)

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons, Ltd.

  9. DNAs from Brucella strains activate efficiently murine immune system with production of cytokines, reactive oxygen and nitrogen species.

    Science.gov (United States)

    Tavakoli, Zahra; Ardestani, Sussan K; Lashkarbolouki, Taghi; Kariminia, Amina; Zahraei Salehi, Taghi; Tavassoli, Nasser

    2009-09-01

    Brucellosis is an infectious disease with high impact on innate immune responses which is induced partly by its DNA. In the present study the potential differences of wild type and patients isolates versus attenuated vaccine strains in terms of cytokines, ROS and NO induction on murine splenocytes and peritoneal macrophages were investigated. This panel varied in base composition and included DNA from B. abortus, B. melitensis, B.abortus strain S19 and melitensis strain Rev1, as attenuated live vaccine. Also we included Escherichia coli DNA, calf thymus DNA (a mammalian DNA), as controls. These DNA were evaluated for their ability to stimulate IL-12, TNF-alpha, IL-10, IFN-gamma and ROS production from spleenocytes as well as NO production from peritoneal macrophages. Spleen cells were cultured in 24 well at a concentration of 106 cells/ ml with subsequent addition of 10 microg/ml of Brucella or Ecoli DNAs. These cultures were incubated at 37 degrees C with 5% CO2 for 5 days. Supernatants were harvested and cytokines, ROS and NOx were evaluated. It was observed that TNF-alpha was induced in days 1,3,5 by all Brucella strains DNAs and E. coli DNA, IL-10 only was induced in day 1, IFN- gamma was induced only in day 5 and IL-12 not induced. ROS and NOx were produced by all strains; however, we observed higher production of NOx which were stimulated by DNA of B. melitensis.

  10. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures.

    Science.gov (United States)

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesús; Fuenmayor, Edgard; Alvarez-Mon, Melchor

    2017-12-15

    The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Local Inflammatory Responses to Infection of the Peritoneal Cavity in Humans: Their Regulation by Cytokines, Macrophages, and Other Leukocytes

    Directory of Open Access Journals (Sweden)

    Marien Willem Johan Adriaan Fieren

    2012-01-01

    Full Text Available Studies on infection-induced inflammatory reactions in humans rely largely on findings in the blood compartment. Peritoneal leukocytes from patients treated with peritoneal dialysis offer a unique opportunity to study in humans the inflammatory responses taking place at the site of infection. Compared with peritoneal macrophages (pM from uninfected patients, pM from infected patients display ex vivo an upregulation and downregulation of proinflammatory and anti-inflammatory mediators, respectively. Pro-IL-1 processing and secretion rather than synthesis proves to be increased in pM from infectious peritonitis suggesting up-regulation of caspase-1 in vivo. A crosstalk between pM, γ T cells, and neutrophils has been found to be involved in augmented TNF expression and production during infection. The recent finding in experimental studies that alternatively activated macrophages (M2 increase by proliferation rather than recruitment may have significant implications for the understanding and treatment of chronic inflammatory conditions such as encapsulating peritoneal sclerosis (EPS.

  12. DMPD: The atrial natriuretic peptide regulates the production of inflammatorymediators in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11890659 The atrial natriuretic peptide regulates the production of inflammatorymed...tml) (.csml) Show The atrial natriuretic peptide regulates the production of inflammatorymediators in macrop...hages. PubmedID 11890659 Title The atrial natriuretic peptide regulates the produ

  13. Effect of polybrominated diphenyl ether congeners on placental cytokine production.

    Science.gov (United States)

    Arita, Yuko; Yeh, Corinne; Thoma, Theodosia; Getahun, Darios; Menon, Ramkumar; Peltier, Morgan R

    2018-02-01

    Polybrominated diphenyl ethers (PBDEs) are pollutants that may increase the risk of preterm birth. In previous studies, we found that a mixture of PBDEs altered the expression of biomarkers for preterm birth by the placenta. However, there are 209 different PBDE congeners with different tissue distributions. How these different congeners may alter the production of immunomodulators by the placenta that help to maintain the survival of the fetal allograft is unclear. Therefore, we compared the effects 5 common congeners on basal and bacteria-stimulated cytokine production by the placenta. Placental explant cultures were incubated with 20 μM of PBDE congeners 47, 99, 100, 153, 209 or vehicle in the presence and absence of Escherichia coli for 20 h. Conditioned medium was harvested and concentrations of IL-1β, TNF-α, IL-6, sgp130, HO-1, IL-10, BDNF, and 8-IsoP quantified. For unstimulated cultures, all congeners, except for PBDE-47, reduced the production of IL-1β and IL-6 production was enhanced by PBDE-153. BDNF concentrations tended to be reduced by most PBDE congeners and IL-10 production was enhanced by PBDE-99, -153, and -209. 8-IsoP production was enhanced by PBDE-153, but not the other congeners. For bacteria-stimulated cultures, PBDE-47 increased IL-1β production and PBDE-47, -153, and -209 tended to reduce TNF-α production. IL-6 production was enhanced by all PBDEs except 153. IL-10 production was enhanced by all congeners except for PBDE-47. All congeners significantly enhanced BDNF and 8-IsoP. These results suggest that PBDEs can alter the expression of placental biomarkers in a congener and infection-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  15. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet

    Directory of Open Access Journals (Sweden)

    Sheisa Cyléia Sargi

    2012-05-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb. Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF-α. These cytokines stimulate the synthesis of nitric oxide (NO and hydrogen peroxide (H2O2, leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.

  16. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet.

    Science.gov (United States)

    Sargi, Sheisa Cyléia; Dalalio, Márcia Machado de Oliveira; Visentainer, Jesuí Vergílio; Bezerra, Rafael Campos; Perini, João Ângelo de Lima; Stevanato, Flávia Braidotti; Visentainer, Jeane Eliete Laguila

    2012-05-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF)-α. These cytokines stimulate the synthesis of nitric oxide (NO) and hydrogen peroxide (H₂O₂), leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN) oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H₂O₂. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H₂O₂, predominantly in the chronic phase of infection.

  17. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    2010-11-01

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  18. Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines.

    Directory of Open Access Journals (Sweden)

    Ga-Yeon Son

    Full Text Available Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs. ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis

  19. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  20. Pneumococcal DNA-binding proteins released through autolysis induce the production of proinflammatory cytokines via toll-like receptor 4.

    Science.gov (United States)

    Nagai, Kosuke; Domon, Hisanori; Maekawa, Tomoki; Oda, Masataka; Hiyoshi, Takumi; Tamura, Hikaru; Yonezawa, Daisuke; Arai, Yoshiaki; Yokoji, Mai; Tabeta, Koichi; Habuka, Rie; Saitoh, Akihiko; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-03-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia. Our previous study suggested that S. pneumoniae autolysis-dependently releases intracellular pneumolysin, which subsequently leads to lung injury. In this study, we hypothesized that pneumococcal autolysis induces the leakage of additional intracellular molecules that could increase the pathogenicity of S. pneumoniae. Liquid chromatography tandem-mass spectrometry analysis identified that chaperone protein DnaK, elongation factor Tu (EF-Tu), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were released with pneumococcal DNA by autolysis. We demonstrated that recombinant (r) DnaK, rEF-Tu, and rGAPDH induced significantly higher levels of interleukin-6 and tumor necrosis factor production in peritoneal macrophages and THP-1-derived macrophage-like cells via toll-like receptor 4. Furthermore, the DNA-binding activity of these proteins was confirmed by surface plasmon resonance assay. We demonstrated that pneumococcal DnaK, EF-Tu, and GAPDH induced the production of proinflammatory cytokines in macrophages, and might cause host tissue damage and affect the development of pneumococcal diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. TARM1 Is a Novel Leukocyte Receptor Complex-Encoded ITAM Receptor That Costimulates Proinflammatory Cytokine Secretion by Macrophages and Neutrophils.

    Science.gov (United States)

    Radjabova, Valeria; Mastroeni, Piero; Skjødt, Karsten; Zaccone, Paola; de Bono, Bernard; Goodall, Jane C; Chilvers, Edwin R; Juss, Jatinder K; Jones, Des C; Trowsdale, John; Barrow, Alexander David

    2015-10-01

    We identified a novel, evolutionarily conserved receptor encoded within the human leukocyte receptor complex and syntenic region of mouse chromosome 7, named T cell-interacting, activating receptor on myeloid cells-1 (TARM1). The transmembrane region of TARM1 contained a conserved arginine residue, consistent with association with a signaling adaptor. TARM1 associated with the ITAM adaptor FcRγ but not with DAP10 or DAP12. In healthy mice, TARM1 is constitutively expressed on the cell surface of mature and immature CD11b(+)Gr-1(+) neutrophils within the bone marrow. Following i.p. LPS treatment or systemic bacterial challenge, TARM1 expression was upregulated by neutrophils and inflammatory monocytes and TARM1(+) cells were rapidly recruited to sites of inflammation. TARM1 expression was also upregulated by bone marrow-derived macrophages and dendritic cells following stimulation with TLR agonists in vitro. Ligation of TARM1 receptor in the presence of TLR ligands, such as LPS, enhanced the secretion of proinflammatory cytokines by macrophages and primary mouse neutrophils, whereas TARM1 stimulation alone had no effect. Finally, an immobilized TARM1-Fc fusion protein suppressed CD4(+) T cell activation and proliferation in vitro. These results suggest that a putative T cell ligand can interact with TARM1 receptor, resulting in bidirectional signaling and raising the T cell activation threshold while costimulating the release of proinflammatory cytokines by macrophages and neutrophils. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. DMPD: Toll-like receptors, Notch ligands, and cytokines drive the chronicity of lunginflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18073395 Toll-like receptors, Notch ligands, and cytokines drive the chronicity of ...2007 Dec;4(8):635-41. (.png) (.svg) (.html) (.csml) Show Toll-like receptors, Notch ligands, and cytokines d...ors, Notch ligands, and cytokines drive the chronicity of lunginflammation. Authors Raymond T, Schaller M, H

  3. Fetuin-A induces cytokine expression and suppresses adiponectin production.

    Directory of Open Access Journals (Sweden)

    Anita M Hennige

    Full Text Available BACKGROUND: The secreted liver protein fetuin-A (AHSG is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. METHODOLOGY AND PRINCIPAL FINDINGS: Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05. Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively. These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both. Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02 and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01, and negatively with total- (r = -0.28, p = 0.02 and, particularly, high molecular weight adiponectin (r = -0.36, p = 0.01. CONCLUSIONS AND SIGNIFICANCE: We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and

  4. Lactobacillus Acidophilus Strain L-92 Regulates the Production of Th1 Cytokine as well as Th2 Cytokines

    Directory of Open Access Journals (Sweden)

    Akiko Torii

    2007-01-01

    Conclusions: Oral L-92 administration regulated both Th1 and Th2 cytokine responses, suppressed serum OVA-specific IgE, and induced TGF-β production in PPs. TGF-β is known to be associated with activation of regulatory T (Treg cells. These data suggest that LAB may have immunomodulative effect by Treg cells via TGF-β activity.

  5. Adjuvant effect of Asparagus racemosus Willd. derived saponins in antibody production, allergic response and pro-inflammatory cytokine modulation.

    Science.gov (United States)

    Tiwari, Nimisha; Gupta, Vivek Kumar; Pandey, Pallavi; Patel, Dinesh Kumar; Banerjee, Suchitra; Darokar, Mahendra Pandurang; Pal, Anirban

    2017-02-01

    The study manifests the immunoadjuvant potential of saponin rich fraction from Asparagus racemosus in terms of cellular and humoral immune response that can be exploited against microbial infections. Asparagus racemosus (AR) has been attributed as an adaptogen and rasayana in traditional medication systems for enhancing the host defence mechanism. Spectrophotometric and HPTLC analysis ensured the presence of saponins. The saponin rich fractions were tested for immunoadjuvant property in ovalbumin immunised mice for the humoral response, quantified in terms of prolonged antibody production upto a duration of 56days. Proinflammatory cytokines (IL-6 and TNF) were estimated for the cellular immune response in LPS stimulated primary murine macrophages. The safety evaluation in terms of cytotoxicity and allergic response has also been evaluated through in-vitro (MTT) and in-vivo (IgE) respectively. ARS significantly inhibited the pro-inflammatory cytokines, in LPS stimulated murine macrophages with no intrinsic cytotoxicity. The significant increase in IgG production infers the utility of ARS for prolonged humoral response. Further, the antigen specific response of IL-12 at early stage and IgE titres also suggests the generation of cellular immune response and low allergic reaction respectively, as compared to conventional adjuvants. IL-6 and TNF fluctuations in LPS stimulated and non-stimulated macrophages along with IgG and IL-12 also confirmed the Th1/Th2 modulating effect of ARS. The study indicates potential effect of ARS as an adjuvant for the stimulation of cellular immune response in addition to generating a sustained adaptive response without any adverse effects paving way for further validation with pathogenic organisms. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. CD163 and CD206 expression does not correlate with tolerance and cytokine production in LPS-tolerant human monocytes.

    Science.gov (United States)

    Alves-Januzzi, Amanda Barba; Brunialti, Milena Karina Colo; Salomao, Reinaldo

    2017-05-01

    Lipopolysaccharide (LPS)-tolerant monocytes produce small amounts of inflammatory cytokines, which is one of the characteristics of the alternative activated macrophages (AAM). These cells exhibited an increased expression of CD206 and CD163. Given the functional similarities of AAMs with the modulation of monocytes' functions observed during sepsis and LPS-tolerance, we evaluated whether the inhibition of inflammatory cytokine production by LPS-tolerant monocytes is associated with the phenotype of cells expressing CD206 and CD163. We investigated whether tolerant human monocytes would modulate their expression of CD206 and CD163, markers of alternative activation, and whether the level of their expression would be related to cytokines detection. Tolerance to LPS was induced in peripheral blood mononuclear cell by pre-incubating the cells with increasing concentrations of LPS. The expression of CD206 and CD163 and intracellular TNF-α and IL-6 was determined 24 h after LPS challenge by flow cytometry. No differences in CD163 expression were observed between tolerant and non-tolerant cells, while the expression of CD206, which was decreased following LPS stimulation in non-tolerized cells, was further reduced in tolerant cells. Decreased production of inflammatory cytokines was observed in the tolerized cells, regardless of the expression of CD163 and CD206, with the exception of IL-6 in CD206+ monocytes, which was similarly expressed in both tolerized and non-tolerized cells. The effect of LPS in the expression of CD163 and CD206 on monocytes is not reverted in LPS tolerant cells, and the inhibition of inflammatory cytokines in tolerant cells is not related with modulation of these receptors. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  7. Modulation of cytokine production profiles in splenic dendritic cells ...

    African Journals Online (AJOL)

    We examined the role of splenic dendritic cells in immune response to Toxoplasma gondii infection in SAG1 (P30+) transgenic mice by investigating the kinetics of intracellular cytokines expression of IL-4, IL-10, IL-12 and IFN-γ by intracellular cytokine staining (ICS) using flow cytometry, and compared the results to those of ...

  8. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells

    DEFF Research Database (Denmark)

    Hansen, Peter Riis; Rieneck, Klaus; Bendtzen, Klaus

    2004-01-01

    The mineralocorticoid receptor antagonist spironolactone (SPIR) reduces the mortality and morbidity in patients with congestive heart failure (CHF). Overexpression of proinflammatory cytokines contribute to the development and progression of CHF.......The mineralocorticoid receptor antagonist spironolactone (SPIR) reduces the mortality and morbidity in patients with congestive heart failure (CHF). Overexpression of proinflammatory cytokines contribute to the development and progression of CHF....

  9. MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in Mycobacterium tuberculosis-infected THP-1 human macrophages.

    Science.gov (United States)

    Fu, Xiangdong; Zeng, Lihong; Liu, Zhi; Ke, Xue; Lei, Lin; Li, Guobao

    2016-08-19

    Tuberculosis (TB) is a serious disease that is characterized by Mycobacterium tuberculosis (M.tb)-triggered immune system impairment and lung tissue damage shows limited treatment options. MicroRNAs (miRNAs) are regulators of gene expression that play critical roles in many human diseases, and can be up- or downregulated by M.tb infection in macrophage. Recently, tissue inhibitor of matrix metalloproteinase (TIMP) 3 has been found to play roles in regulating macrophage inflammation. Here, we found that TIMP3 expression was regulated by miR-206 in M.tb-infected THP-1 human macrophages. In THP-1 cells infected with M.tb, the miR-206 level was significantly upregulated and the expression of TIMP3 was markedly decreased when the secretion of inflammatory cytokines was increased. Inhibition of miR-206 markedly suppressed inflammatory cytokine secretion and upregulated the expression of TIMP3. In contrast, the upregulation of miR-206 promoted the matrix metalloproteinase (MMP) 9 levels and inhibited TIMP3 levels. Using a dual-luciferase reporter assay, a direct interaction between miR-206 and the 3'-untranslated region (UTR) of TIMP3 was confirmed. SiTIMP3, the small interfering RNA (siRNA) specific for TIMP3, significantly attenuated the suppressive effects of miR-206-inhibitor on inflammatory cytokine secretion and MMP9 expression. Our data suggest that miR-206 may function as an inflammatory regulator and drive the expression of MMP9 in M.tb-infected THP-1 cells by targeting TIMP3, indicating that miR-206 is a potential therapeutic target for patients with TB. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Glutathione peroxidase-1 primes pro-inflammatory cytokine production after LPS challenge in vivo.

    Directory of Open Access Journals (Sweden)

    Steven Bozinovski

    Full Text Available Reactive oxygen species produced during the innate immune response to LPS are important agents of anti-pathogen defence but may also cause oxidative lung damage. Glutathione peroxidase-1 (gpx-1 is an anti-oxidant enzyme that may protect lungs from such damage. We assessed the in vivo importance of gpx-1 in LPS-induced lung inflammation. Male wild-type (WT or gpx-1 deficient (gpx-1(-/- mice were treated intranasally with PBS or 10 µg LPS and killed 3 and 24 h post LPS. Lungs were lavaged with PBS and then harvested for inflammatory marker expression. LPS caused an intense neutrophilia in WT BALF evident 3 and 24 h post challenge that was reduced in gpx-1(-/- mice. In addition, LPS-treated gpx-1(-/- mice had significantly fewer macrophages than LPS-treated WT mice. To understand the basis for this paradoxical reduction we assessed inflammatory cytokines and proteases at protein and transcript levels. MMP-9 expression and net gelatinase activity in BALF of gpx-1(-/- mice treated with LPS for 3 and 24 h was no different to that found in LPS-treated WT mice. BALF from LPS-treated gpx-1(-/- mice (3 h had less TNF-α, MIP-2 and GM-CSF protein than LPS-treated WT mice. In contrast, LPS-induced increases in TNF-α, MIP-2 and GM-CSF mRNA expression in WT mice were similar to those observed in gpx-1(-/- mice. These attenuated protein levels were unexpectedly not mirrored by reduced mRNA transcripts but were associated with increased 20S proteasome expression. Thus, these data suggest that gpx-1 primes pro-inflammatory cytokine production after LPS challenge in vivo.

  11. Effect of azithromycin on Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-15

    Interleukin-6 (IL-6) is a key proinflammatory cytokine which plays a central role in the pathogenesis of periodontal disease. Host modulatory agents targeting at inhibiting IL-6, therefore, appear to be beneficial in slowing the progression of periodontal disease and potentially reducing destructive aspects of the host response. The present study was designed to investigate the effect of the macrolide antibiotic azithromycin on IL-6 generation in murine macrophages treated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. Azithromycin significantly suppressed IL-6 production as well as its mRNA expression in P. intermedia LPS-activated RAW264.7 cells. LPS-induced activation of JNK and p38 was not affected by azithromycin treatment. Azithromycin failed to prevent P. intermedia LPS from degrading IκB-α. Instead, azithromycin significantly diminished nuclear translocation and DNA binding activity of NF-κB p50 subunit induced with LPS. Azithromycin inhibited P. intermedia LPS-induced STAT1 and STAT3 phosphorylation. In addition, azithromycin up-regulated the mRNA level of SOCS1 in cells treated with LPS. In conclusion, azithromycin significantly attenuated P. intermedia LPS-induced production of IL-6 in murine macrophages via inhibition of NF-κB, STAT1 and STAT3 activation, which is possibly related to the activation of SOCS1 signaling. Further in vivo studies are required to better evaluate the potential of azithromycin in the treatment of periodontal disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Distinct PKC-mediated posttranscriptional events set cytokine production kinetics in CD8(+) T cells

    NARCIS (Netherlands)

    Salerno, Fiamma; Paolini, Nahuel A.; Stark, Regina; von Lindern, Marieke; Wolkers, Monika C.

    2017-01-01

    Effective T cell responses against invading pathogens require the concerted production of three key cytokines: TNF-alpha, IFN-gamma, and IL-2. The cytokines functionally synergize, but their production kinetics widely differ. How the differential timing of expression is regulated remains, however,

  13. Impaired production of cytokines is an independent predictor of mortality in HIV-1-infected patients

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Gerstoft, Jan; Pedersen, Bente K

    2003-01-01

    With regard to the natural history of HIV-1 infection this study investigated whether whole-blood culture cytokine production was associated with mortality in HIV-1-infected patients.......With regard to the natural history of HIV-1 infection this study investigated whether whole-blood culture cytokine production was associated with mortality in HIV-1-infected patients....

  14. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway

    International Nuclear Information System (INIS)

    Silswal, Nirupama; Singh, Anil K.; Aruna, Battu; Mukhopadhyay, Sangita; Ghosh, Sudip; Ehtesham, Nasreen Z.

    2005-01-01

    Resistin, a recently discovered 92 amino acid protein involved in the development of insulin resistance, has been associated with obesity and type 2 diabetes. The elevated serum resistin in human diabetes is often associated with a pro-inflammatory milieu. However, the role of resistin in the development of inflammation is not well understood. Addition of recombinant human resistin protein (hResistin) to macrophages (both murine and human) resulted in enhanced secretion of pro-inflammatory cytokines, TNF-α and IL-12, similar to that obtained using 5 μg/ml lipopolysaccharide. Both oligomeric and dimeric forms of hResistin were able to activate these cytokines suggesting that the inflammatory action of resistin is independent of its conformation. Heat denatured hResistin abrogated cytokine induction while treatment of recombinant resistin with polymyxin B agarose beads had no effect thereby ruling out the role of endotoxin in the recombinant hResistin mediated cytokine induction. The pro-inflammatory nature of hResistin was further evident from the ability of this protein to induce the nuclear translocation of NF-κB transcription factor as seen from electrophoretic mobility shift assays. Induction of TNF-α in U937 cells by hResistin was markedly reduced in the presence of either dominant negative IκBα plasmid or PDTC, a pharmacological inhibitor of NF-κB. A protein involved in conferring insulin resistance is also a pro-inflammatory molecule that has important implications

  15. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  16. Secretory products of macrophages: twenty-five years on

    OpenAIRE

    Nathan, Carl

    2012-01-01

    No longer do scientists look down on macrophages as “garbage men” that act “nonspecifically.” Last fall’s Nobel Prizes honored two of the few scientists who studied macrophages three decades ago. Now perhaps thousands do, and the subtypes they describe reflect ongoing discoveries of macrophages’ extraordinary plasticity.

  17. Dexamethasone prevents granulocyte-macrophage colony-stimulating factor-induced nuclear factor-κB activation, inducible nitric oxide synthase expression and nitric oxide production in a skin dendritic cell line

    Directory of Open Access Journals (Sweden)

    Ana Luísa Vital

    2003-01-01

    Full Text Available Aims: Nitric oxide (NO has been increasingly implicated in inflammatory skin diseases, namely in allergic contact dermatitis. In this work, we investigated the effect of dexamethasone on NO production induced by the epidermal cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF in a mouse fetal skin dendritic cell line.

  18. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs.

    Science.gov (United States)

    Sauter, Kristin A; Waddell, Lindsey A; Lisowski, Zofia M; Young, Rachel; Lefevre, Lucas; Davis, Gemma M; Clohisey, Sara M; McCulloch, Mary; Magowan, Elizabeth; Mabbott, Neil A; Summers, Kim M; Hume, David A

    2016-09-01

    Macrophage colony-stimulating factor (CSF1) is an essential growth and differentiation factor for cells of the macrophage lineage. To explore the role of CSF1 in steady-state control of monocyte production and differentiation and tissue repair, we previously developed a bioactive protein with a longer half-life in circulation by fusing pig CSF1 with the Fc region of pig IgG1a. CSF1-Fc administration to pigs expanded progenitor pools in the marrow and selectively increased monocyte numbers and their expression of the maturation marker CD163. There was a rapid increase in the size of the liver, and extensive proliferation of hepatocytes associated with increased macrophage infiltration. Despite the large influx of macrophages, there was no evidence of liver injury and no increase in circulating liver enzymes. Microarray expression profiling of livers identified increased expression of macrophage markers, i.e., cytokines such as TNF, IL1, and IL6 known to influence hepatocyte proliferation, alongside cell cycle genes. The analysis also revealed selective enrichment of genes associated with portal, as opposed to centrilobular regions, as seen in hepatic regeneration. Combined with earlier data from the mouse, this study supports the existence of a CSF1-dependent feedback loop, linking macrophages of the liver with bone marrow and blood monocytes, to mediate homeostatic control of the size of the liver. The results also provide evidence of safety and efficacy for possible clinical applications of CSF1-Fc. Copyright © 2016 the American Physiological Society.

  19. DMPD: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12773095 Principles of interleukin (IL)-6-type cytokine signalling and its regulati...):1-20. (.png) (.svg) (.html) (.csml) Show Principles of interleukin (IL)-6-type cytokine signalling and its... regulation. PubmedID 12773095 Title Principles of interleukin (IL)-6-type cytoki

  20. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Edwards, I.J.; Wagner, W.D.; Owens, R.T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion

  1. Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues.

    Science.gov (United States)

    Bao, Bin; Chen, Yan-Guang; Zhang, Lei; Na Xu, Yan Lin; Wang, Xin; Liu, Jian; Qu, Wei

    2013-01-01

    Obesity is a world-wide epidemic disease that correlates closely with type 2 diabetes and cardiovascular diseases. Obesity-induced chronic adipose tissue inflammation is now considered as a critical contributor to the above complications. Momordica charantia (bitter melon, BM) is a traditional Chinese food and well known for its function of reducing body weight gain and insulin resistance. However, it is unclear whether BM could alleviate adipose tissue inflammation caused by obesity. In this study, C57BL/6 mice were fed high fat diet (HFD) with or without BM for 12 weeks. BM-contained diets ameliorated HFD-induced obesity and insulin resistance. Histological and real-time PCR analysis demonstrated BM not only reduced macrophage infiltration into epididymal adipose tissues (EAT) and brown adipose tissues (BAT). Flow cytometry show that BM could modify the M1/M2 phenotype ratio of macrophages in EAT. Further study showed that BM lowered mast cell recruitments in EAT, and depressed pro-inflammatory cytokine monocyte chemotactic protein-1 (MCP-1) expression in EAT and BAT as well as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression in EAT. Finally, ELISA analysis showed BM-contained diets also normalized serum levels of the cytokines. In summary, in concert with ameliorated insulin resistance and fat deposition, BM reduced adipose tissue inflammation in diet-induced obese (DIO) mice.

  2. Momordica charantia (Bitter Melon reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues.

    Directory of Open Access Journals (Sweden)

    Bin Bao

    Full Text Available Obesity is a world-wide epidemic disease that correlates closely with type 2 diabetes and cardiovascular diseases. Obesity-induced chronic adipose tissue inflammation is now considered as a critical contributor to the above complications. Momordica charantia (bitter melon, BM is a traditional Chinese food and well known for its function of reducing body weight gain and insulin resistance. However, it is unclear whether BM could alleviate adipose tissue inflammation caused by obesity. In this study, C57BL/6 mice were fed high fat diet (HFD with or without BM for 12 weeks. BM-contained diets ameliorated HFD-induced obesity and insulin resistance. Histological and real-time PCR analysis demonstrated BM not only reduced macrophage infiltration into epididymal adipose tissues (EAT and brown adipose tissues (BAT. Flow cytometry show that BM could modify the M1/M2 phenotype ratio of macrophages in EAT. Further study showed that BM lowered mast cell recruitments in EAT, and depressed pro-inflammatory cytokine monocyte chemotactic protein-1 (MCP-1 expression in EAT and BAT as well as interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α expression in EAT. Finally, ELISA analysis showed BM-contained diets also normalized serum levels of the cytokines. In summary, in concert with ameliorated insulin resistance and fat deposition, BM reduced adipose tissue inflammation in diet-induced obese (DIO mice.

  3. Etanercept Inhibits Pro-inflammatory Cytokines Expression in ...

    African Journals Online (AJOL)

    Purpose: To investigate the inhibitory role of Etanercept in pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6 production in titanium (Ti) particle stimulated macrophages. Methods: Peritoneal macrophages were stimulated with 1 × 109 Ti particles and treated simultaneously with or without 10, 100, or 1000 ng/mL ...

  4. Etanercept Inhibits Pro-inflammatory Cytokines Expression in ...

    African Journals Online (AJOL)

    Purpose: To investigate the inhibitory role of Etanercept in pro-inflammatory cytokines such as TNF-α,. IL-1β and IL-6 production in titanium (Ti) particle stimulated macrophages. Methods: Peritoneal macrophages were stimulated with 1 × 109 Ti particles and treated simultaneously with or without 10, 100, or 1000 ng/mL ...

  5. Immunomodulatory activity of Melaleuca alternifolia concentrate (MAC): inhibition of LPS-induced NF-κB activation and cytokine production in myeloid cell lines.

    Science.gov (United States)

    Low, Pauline; Clark, Amanda M; Chou, Tz-Chong; Chang, Tsu-Chung; Reynolds, Maxwell; Ralph, Stephen J

    2015-05-01

    Melaleuca alternifolia concentrate (MAC) is a mixture predominantly composed of monoterpenoids and sesquiterpenes, refined from the essential oil of the tea tree by removing up to 99% of the more toxic, hydrophobic monoterpenes. MAC was examined here for its immunomodulatory effects on the human THP1 and murine RAW264.7 myeloid leukemic cell lines as models for macrophage-like cells. Firstly, MAC levels were determined that did not affect either the survival or proliferation of these cell lines in vitro. Next, the levels of lipopolysaccharide (LPS)-induced production of cytokines (IL-6, TNFα, IL-10, GM-CSF, IFNγ and IL-3) were examined from the myeloid cell lines using multiplex assays. Many of the LPS-inducible cytokines produced by either cell lines could be significantly inhibited by MAC. Closer examination of the mechanism of action of MAC showed that it inhibited the LPS-induced activation of IκB phosphorylation and nuclear factor (NF)-κB signalling and translocation, inhibiting iNOS protein expression and NO production. These results demonstrate that MAC exerts its immunomodulatory effects by inhibiting NF-κB signalling activation and levels of cytokine production by macrophage-like cell lines. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. A Novel Strategy for TNF-Alpha Production by 2-APB Induced Downregulated SOCE and Upregulated HSP70 in O. tsutsugamushi-Infected Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wu

    Full Text Available Orientia (O. tsutsugamushi-induced scrub typhus is endemic across many regions of Asia and the Western Pacific, where an estimated 1 million cases occur each year; the majority of patients infected with O. tsutsugamushi end up with a cytokine storm from a severe inflammatory response. Previous reports have indicated that blocking tumor necrosis factor (TNF-α reduced cell injury from a cytokine storm. Since TNF-α production is known to be associated with intracellular Ca2+ elevation, we examined the effect of store-operated Ca2+ entry (SOCE inhibitors on TNF-α production in O. tsutsugamushi-infected macrophages. We found that 2-aminoethoxydiphenyl borate (2-APB, but not SKF96365, facilitates the suppression of Ca2+ mobilization via the interruption of Orai1 expression in O. tsutsugamushi-infected macrophages. Due to the decrease of Ca2+ elevation, the expression of TNF-α and its release from macrophages was repressed by 2-APB. In addition, a novel role of 2-APB was found in macrophages that causes the upregulation of heat shock protein 70 (HSP70 expression associated with ERK activation; upregulated TNF-α production in the case of knockdown HSP70 was inhibited with 2-APB treatment. Furthermore, elevated HSP70 formation unexpectedly did not help the cell survival of O. tsutsugamushi-infected macrophages. In conclusion, the parallelism between downregulated Ca2+ mobilization via SOCE and upregulated HSP70 after treatment with 2-APB against TNF-α production was found to efficiently attenuate an O. tsutsugamushi-induced severe inflammatory response.

  7. Age, gender and litter-related variation in T-lymphocyte cytokine production in young pigs

    NARCIS (Netherlands)

    Groot, de J.; Kruijt, L.; Scholten, J.W.; Boersma, W.J.A.; Buist, W.G.; Engel, B.; Reenen, van C.G.

    2005-01-01

    The capacity of farm animals to produce cytokines could be an important determinant of robustness and health. From research in rodents and humans it appears that the production and the balance of T helper 1 (Th1) and T helper 2 (Th2)-type cytokines influences susceptibility to autoimmune and

  8. Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines

    DEFF Research Database (Denmark)

    Barfod, Lea; Kemp, Kåre; Hansen, Majbritt

    2002-01-01

    of cytokines revealed that the chalcones inhibited the production rather than the release of the cytokines. Taken together, these results indicate that LicA and some analogues may have immunomodulatory effects, and may thus be candidates not only as anti-microbial agents, but also for the treatment of other...

  9. The role of jab1, a putative downstream effector of the neurotrophic cytokine macrophage migration inhibitory factor (MIF) in zebrafish inner ear hair cell development.

    Science.gov (United States)

    Weber, Loren J; Marcy, Hannah K; Shen, Yu-Chi; Tomkovich, Sarah E; Brooks, Kristina M; Hilk, Kelly E; Barald, Kate F

    2018-03-01

    Macrophage migration inhibitory factor (MIF) is a neurotrophic cytokine essential for inner ear hair cell (HC) development and statoacoustic ganglion (SAG) neurite outgrowth, and SAG survival in mouse, chick and zebrafish. Another neurotrophic cytokine, Monocyte chemoattractant protein 1 (MCP1) is known to synergize with MIF; but MCP1 alone is insufficient to support mouse/chick SAG neurite outgrowth or neuronal survival. Because of the relatively short time over which the zebrafish inner ear develops (~30hpf), the living zebrafish embryo is an ideal system to examine mif and mcp1 cytokine pathways and interactions. We used a novel technique: direct delivery of antisense oligonucleotide morpholinos (MOs) into the embryonic zebrafish otocyst to discover downstream effectors of mif as well as to clarify the relationship between mif and mcp1 in inner ear development. MOs for mif, mcp1 and the presumptive mif and mcp1 effector, c-Jun activation domain-binding protein-1 (jab1), were injected and then electroporated into the zebrafish otocyst 25-48hours post fertilization (hpf). We found that although mif is important at early stages (before 30hpf) for auditory macular HC development, jab1 is more critical for vestibular macular HC development before 30hpf. After 30hpf, mcp1 becomes important for HC development in both maculae. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cytokine production by porcine mononuclear leukocytes stimulated by mitogens

    Czech Academy of Sciences Publication Activity Database

    Rašková, G.; Kovářů, František; Bártová, J.

    2005-01-01

    Roč. 74, - (2005), s. 521-525 ISSN 0001-7213 R&D Projects: GA ČR GA524/05/0267 Institutional research plan: CEZ:AV0Z50450515 Keywords : cytokine * ELISpot * mitogen Subject RIV: ED - Physiology Impact factor: 0.353, year: 2005

  11. Interaction between polyalkylcyanoacrylate nanoparticles and peritoneal macrophages: MTT metabolism, NBT reduction, and NO production.

    Science.gov (United States)

    Cruz, T; Gaspar, R; Donato, A; Lopes, C

    1997-01-01

    The nature of interactions between macrophages and drug carriers is of primordial importance either in the design of more effective therapeutic strategies for macrophage-associated pathogenesis or in establishing new approaches for pharmacological action avoiding macrophages. Polyalkylcyanoacrylate nanoparticles (PMCA, PECA, PBCA and PIBCA nanoparticles) were assayed for their toxicity on peritoneal resident and thioglycolate-elicited macrophages. Cellular viability was assessed by MTT tetrazolium salt assay, oxidative burst by NBT reduction and NO production by nitrite evaluation. The nanoparticles tested led to cellular morphological modifications and induced toxicity in both types of macrophages in culture. The polyalkylcyanoacrylate nanoparticles uptake by peritoneal macrophages caused an increase in respiratory burst, as assessed by the NBT reduction assay, and induced the release of soluble toxic factors to the culture medium. The association of LPS with the PMCA nanoparticles significantly stimulated the production of nitric oxide (NO) by resident macrophages. In contrast, the association of PBCA nanoparticles with LPS does not increase the nitrite production as compared with LPS alone, which may be due to a different physico-chemical interaction between LPS and the two types of polymers. In cultured mice peritoneal macrophages, nanoparticles of PACA induce the production of oxygen reactive products, which cause changes in the cell metabolism of both resident and elicited macrophages. PMCA nanoparticles in association with LPS significantly increase the expression of the inducible isoform of nitric oxide synthase, leading to the release of large amount of NO, which may be highly cytotoxic to the cultured cells in the presence of peroxide generated from the oxidative burst.

  12. Porphyromonas Gingivalis and E-coli induce different cytokine production patterns in pregnant women.

    Directory of Open Access Journals (Sweden)

    Marijke M Faas

    Full Text Available OBJECTIVE: Pregnant individuals of many species, including humans, are more sensitive to various bacteria or their products as compared with non-pregnant individuals. Pregnant individuals also respond differently to different bacteria or their products. Therefore, in the present study, we evaluated whether the increased sensitivity of pregnant women to bacterial products and their heterogeneous response to different bacteria was associated with differences in whole blood cytokine production upon stimulation with bacteria or their products. METHODS: Blood samples were taken from healthy pregnant and age-matched non-pregnant women and ex vivo stimulated with bacteria or LPS from Porphyromonas Gingivalis (Pg or E-coli for 24 hrs. TNFα, IL-1ß, IL-6, IL-12 and IL-10 were measured using a multiplex Luminex system. RESULTS: We observed a generally lower cytokine production after stimulation with Pg bacteria or it's LPS as compared with E-coli bacteria. However, there was also an effect of pregnancy upon cytokine production: in pregnant women the production of IL-6 upon Pg stimulation was decreased as compared with non-pregnant women. After stimulation with E-coli, the production of IL-12 and TNFα was decreased in pregnant women as compared with non-pregnant women. CONCLUSION: Our results showed that cytokine production upon bacterial stimulation of whole blood differed between pregnant and non-pregnant women, showing that the increased sensitivity of pregnant women may be due to differences in cytokine production. Moreover, pregnancy also affected whole blood cytokine production upon Pg or E-coli stimulation differently. Thus, the different responses of pregnant women to different bacteria or their products may result from variations in cytokine production.

  13. Purinergic signaling to terminate TLR responses in macrophages

    Directory of Open Access Journals (Sweden)

    Kajal eHamidzadeh

    2016-03-01

    Full Text Available Macrophages undergo profound physiological alterations when they encounter pathogen associated molecular patterns (PAMPs. These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active down-regulation of innate responses induced by the very PAMPs that initiated them. Here we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the down-regulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages, and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response.

  14. A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production

    DEFF Research Database (Denmark)

    Nachbur, Ueli; Stafford, Che A; Bankovacki, Aleksandra

    2015-01-01

    Intracellular nucleotide binding and oligomerization domain (NOD) receptors recognize antigens including bacterial peptidoglycans and initiate immune responses by triggering the production of pro-inflammatory cytokines through activating NF-κB and MAP kinases. Receptor interacting protein kinase 2...

  15. Modulation of cytokine production by interferential current in differentiated HL-60 cells.

    Science.gov (United States)

    Sontag, W

    2000-04-01

    The influence of interferential current (IFC) on the release of four cytokines was investigated. IFC is an amplitude-modulated 4 kHz current used in therapeutic applications. Human promyelocytes (HL-60) were differentiated to monocytes/macrophages by treatment with calcitriol. Release of tumor necrosis factor alpha (TNFalpha) and interleukines 1beta, 6, and 8 (IL-1beta, IL-6, and IL-8) into the supernatant was measured after exposure to IFC at different modulation frequencies. TNFalpha release was stimulated about twofold by 4 kHz sine waves alone. The influences of exposure time (5-30 min) and current density (2.5-2500 microA/c m(2)) were tested. A maximum field effect was found at an exposure time of 15 min and a current density of 250 microA/cm(2). With these exposure conditions (15 min and 250 microA/cm(2) ), cells were treated at different modulation frequencies and reacted for TNFalpha, IL-1beta, and IL-8 release in a complex manner. Within the frequencies studied (0-125 Hz), we found stimulation as well as depression of the release. In a second run the cells were activated by pretreatment with 10 microg/ml lipopolysaccharide (LPS) and exposed in the same way as the nonactivated cells. Again the modulation frequency influenced, in a complex way, the induction of TNFalpha, IL-1beta, and IL-8, resulting in a pattern of stimulation and depression of release different from that found in nonactivated cells. For IL-6 production no significant changes were detected in activated or non-activated cells. Copyright 2000 Wiley-Liss, Inc.

  16. Cytokine production in vitro and in rat model of colitis in response to Lactobacillus plantarum LS/07.

    Science.gov (United States)

    Štofilová, Jana; Langerholc, Tomaž; Botta, Cristian; Treven, Primož; Gradišnik, Lidija; Salaj, Rastislav; Šoltésová, Alena; Bertková, Izabela; Hertelyová, Zdenka; Bomba, Alojz

    2017-10-01

    Over the past decade, it has become clear that specific probiotic lactobacilli are valuable in the prevention and treatment of infectious and inflammatory diseases of gastrointestinal tract but their successful application would benefit greatly from a better understanding of the mechanisms of individual strains. Hence, each probiotic strain should be characterized for their immune activity before being proposed for clinical applications. The aim of the study was to characterize the immunomodulatory activity of the strain Lactobacillus (L.) plantarum LS/07 in vitro using functional gut model and to study its anti-inflammatory potential in dextran sulphate sodium (DSS)-induced colitis in rats. We showed that L. plantarum LS/07 induced production of IL-10 in macrophages derived from blood monocytes as well as monocyte/macrophages cell line stimulated indirectly via enterocytes in vitro. In rat model of colitis, L. plantarum LS/07 attenuated the DSS-induced signs of inflammatory process in colon such as weight loss, diarrhoea, infiltration of inflammatory cells associated with decreased colon weight/length ratio, inhibited gut mucosa destruction and depletion of goblet cells. Moreover, the strain increased the concentration of anti-inflammatory cytokine IL-10 in mucosal tissue. In conclusion, the protective effects of L. plantarum LS/07 in the DSS-induced colitis model seem to be related to the stimulation of IL-10 and the restoration of goblet cells and indicate it as a good candidate to prevent and treat diseases associated with inflammation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. In vivo kinetics of cytokine expression during peritonitits in carp: Evidence for innate an alternative macrophage polarization

    NARCIS (Netherlands)

    Chadzinska, M.K.; Leon, K.M.; Plytycz, B.; Verburg-van Kemenade, B.M.L.

    2008-01-01

    Despite the discovery of many cytokine genes in fish, knowledge on their functional homology is limited. To enlighten the biological function of inflammation-related mediators, we studied their kinetics of gene expression during peritonitis in carp. Zymosan-induced intraperitoneal influx of

  18. DMPD: Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ns. Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Cytokine Growth Factor Rev. 2006 Dec;17(6):431-9. ...SOCS) 2, a protein with multiple functions. Authors Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Pu

  19. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy.

    Science.gov (United States)

    Portillo, Jose-Andres C; Lopez Corcino, Yalitza; Miao, Yanling; Tang, Jie; Sheibani, Nader; Kern, Timothy S; Dubyak, George R; Subauste, Carlos S

    2017-02-01

    Müller cells and macrophages/microglia are likely important for the development of diabetic retinopathy; however, the interplay between these cells in this disease is not well understood. An inflammatory process is linked to the onset of experimental diabetic retinopathy. CD40 deficiency impairs this process and prevents diabetic retinopathy. Using mice with CD40 expression restricted to Müller cells, we identified a mechanism by which Müller cells trigger proinflammatory cytokine expression in myeloid cells. During diabetes, mice with CD40 expressed in Müller cells upregulated retinal tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), intracellular adhesion molecule 1 (ICAM-1), and nitric oxide synthase (NOS2), developed leukostasis and capillary degeneration. However, CD40 did not cause TNF-α or IL-1β secretion in Müller cells. TNF-α was not detected in Müller cells from diabetic mice with CD40 + Müller cells. Rather, TNF-α was upregulated in macrophages/microglia. CD40 ligation in Müller cells triggered phospholipase C-dependent ATP release that caused P2X 7 -dependent production of TNF-α and IL-1β by macrophages. P2X 7 -/- mice and mice treated with a P2X 7 inhibitor were protected from diabetes-induced TNF-α, IL-1β, ICAM-1, and NOS2 upregulation. Our studies indicate that CD40 in Müller cells is sufficient to upregulate retinal inflammatory markers and appears to promote experimental diabetic retinopathy and that Müller cells orchestrate inflammatory responses in myeloid cells through a CD40-ATP-P2X 7 pathway. © 2017 by the American Diabetes Association.

  20. Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines

    DEFF Research Database (Denmark)

    Barfod, Lea; Kemp, Kåre; Hansen, Majbritt

    2002-01-01

    Licochalcone A (LicA), an oxygenated chalcone, has been shown to inhibit the growth of both parasites and bacteria. In this study, we investigated the effect of LicA and four synthetic analogues on the activity of human peripheral blood mononuclear cell proliferation and cytokine production. Four...... out of five chalcones tested inhibited the proliferation of lymphocytes measured by thymidine incorporation and by flow cytometry. The production of pro- and anti-inflammatory cytokines from monocytes and T cells was also inhibited by four of five chalcones. Furthermore, intracellular detection...... of cytokines revealed that the chalcones inhibited the production rather than the release of the cytokines. Taken together, these results indicate that LicA and some analogues may have immunomodulatory effects, and may thus be candidates not only as anti-microbial agents, but also for the treatment of other...

  1. A Porphyra columbina hydrolysate upregulates IL-10 production in rat macrophages and lymphocytes through an NF-κB, and p38 and JNK dependent mechanism.

    Science.gov (United States)

    Cian, Raúl E; López-Posadas, Rocío; Drago, Silvina R; Sánchez de Medina, Fermín; Martínez-Augustin, Olga

    2012-10-15

    The marine environment represents a relatively untapped source of functional ingredients. Here we characterise a hydrolysate obtained from Phorphyra columbina (PcRH) and its effects on primary splenocytes, macrophages and T lymphocytes in vitro. Our product had a high degree of hydrolysis, due to the use of a mixture of endo-peptidase and exo-peptidase, and was enriched in Asp, Ala and Glu. PcRH had mitogenic effects on rat splenic lymphocytes. IL-10 secretion was enhanced by PcRH in splenocytes (235%), macrophages (150%) and in lymphocytes (472%), while the production of TNFα and other proinflammatory cytokines by macrophages was inhibited (15-75%), especially under lipopolysaccharide stimulation. The effect of the hydrolysate on IL-10 was evoked by JNK, p38 MAPK and NF-κB dependent pathways in T lymphocytes. We conclude that PcRH has immunomodulatory effects on macrophages and lymphocytes, activating NF-κB and MAPK dependent pathways, and predominantly inducing IL-10 production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. INDUCTION OF CYTOKINE PRODUCTION IN CHEETAH (ACINONYX JUBATUS) PERIPHERAL BLOOD MONONUCLEAR CELLS AND VALIDATION OF FELINE-SPECIFIC CYTOKINE ASSAYS FOR ANALYSIS OF CHEETAH SERUM.

    Science.gov (United States)

    Franklin, Ashley D; Crosier, Adrienne E; Vansandt, Lindsey M; Mattson, Elliot; Xiao, Zhengguo

    2015-06-01

    Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of cheetahs (Acinonyx jubatus ; n=3) and stimulated with lipopolysaccharides (LPS) to induce the production of proinflammatory cytokines TNF-α, IL-1β, and IL-6 for establishment of cross-reactivity between these cheetah cytokines and feline-specific cytokine antibodies provided in commercially available Feline DuoSet® ELISA kits (R&D Systems, Inc., Minneapolis, Minnesota 55413, USA). This study found that feline-specific cytokine antibodies bind specifically to cheetah proinflammatory cytokines TNF-α, IL-1β, and IL-6 from cell culture supernatants. The assays also revealed that cheetah PBMCs produce a measurable, cell concentration-dependent increase in proinflammatory cytokine production after LPS stimulation. To enable the use of these kits, which are designed for cell culture supernatants for analyzing cytokine concentrations in cheetah serum, percent recovery and parallelism of feline cytokine standards in cheetah serum were also evaluated. Cytokine concentrations in cheetah serum were approximated based on the use of domestic cat standards in the absence of cheetah standard material. In all cases (for cytokines TNF-α, IL-1β, and IL-6), percent recovery increased as the serum sample dilution increased, though percent recovery varied between cytokines at a given dilution factor. A 1:2 dilution of serum resulted in approximately 45, 82, and 7% recovery of TNF-α, IL-1β, and IL-6 standards, respectively. Adequate parallelism was observed across a large range of cytokine concentrations for TNF-α and IL-1β; however, a significant departure from parallelism was observed between the IL-6 standard and the serum samples (P=0.004). Therefore, based on our results, the Feline DuoSet ELISA (R&D Systems, Inc.) kits are valid assays for the measurement of TNF-α and IL-1β in cheetah serum but should not be used for accurate measurement of IL-6.

  3. Inhibitory effects of the flavonoids isolated from Waltheria indica on the production of NO, TNF-alpha and IL-12 in activated macrophages.

    Science.gov (United States)

    Rao, Yerra Koteswara; Fang, Shih-Hua; Tzeng, Yew-Min

    2005-05-01

    Three flavonoids were isolated from the whole plants of Waltheria indica and biological properties investigated. On the basis of their spectroscopic data, these compounds were identified as (-)-epicatechin, quercetin, and tiliroside. These flavonoids significantly and dose-dependently inhibited the production of the inflammatory mediator nitric oxide (NO), and the cytokines (tumor necrosis factor (TNF)-alpha and interleukin (IL)-12), in lipopolysaccharide (LPS) and interferon (IFN)-gamma activated murine peritoneal macrophages, without displaying cytotoxicity. The order of inhibitory activity was quercetin>tiliroside>(-)-epicatechin. Furthermore, peritoneal macrophages were pre-activated with LPS/IFN-gamma for 24 h, and the inhibitory effects of the above mentioned isolates on the production of NO were determined after a further 24 h, to address the possible mechanisms of their action. The present study supports the use of W. indica for the treatment of inflammatory diseases in traditional medicine.

  4. Inhibition of dengue virus production and cytokine/chemokine expression by ribavirin and compound A.

    Science.gov (United States)

    Rattanaburee, Thidarath; Junking, Mutita; Panya, Aussara; Sawasdee, Nunghathai; Songprakhon, Pucharee; Suttitheptumrong, Aroonroong; Limjindaporn, Thawornchai; Haegeman, Guy; Yenchitsomanus, Pa-thai

    2015-12-01

    Dengue virus (DENV) infection is a worldwide public health problem with an increasing magnitude. The severity of disease in the patients with DENV infection correlates with high viral load and massive cytokine production - the condition referred to as "cytokine storm". Thus, concurrent inhibition of DENV and cytokine production should be more effective for treatment of DENV infection. In this study, we investigated the effects of the antiviral agent - ribavirin (RV), and the anti-inflammatory compound - compound A (CpdA), individually or in combination, on DENV production and cytokine/chemokine transcription in human lung epithelial carcinoma (A549) cells infected with DENV. Initially, the cells infected with DENV serotype 2 (DENV2) was studied. The results showed that treatment of DENV-infected cells with RV could significantly reduce both DENV production and cytokine (IL-6 and TNF-α) and chemokine (IP-10 and RANTES) transcription while treatment of DENV-infected cells with CpdA could significantly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES) transcription. Combined RV and CpdA treatment of the infected cells showed greater reduction of DENV production and cytokine/chemokine transcription. Similar results of this combined treatment were observed for infection with any one of the four DENV (DENV1, 2, 3, and 4) serotypes. These results indicate that combination of the antiviral agent and the anti-inflammatory compound offers a greater efficiency in reduction of DENV and cytokine/chemokine production, providing a new therapeutic approach for DENV infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The role of cytokines in cervical ripening: correlations between the concentrations of cytokines and hyaluronic acid in cervical mucus and the induction of hyaluronic acid production by inflammatory cytokines by human cervical fibroblasts.

    Science.gov (United States)

    Ogawa, M; Hirano, H; Tsubaki, H; Kodama, H; Tanaka, T

    1998-07-01

    The purpose of our study was (1) to explain the relationship between levels of inflammatory cytokines and levels of hyaluronic acid in cervical mucus of pregnant women and (2) to investigate whether cytokines promote hyaluronic acid production by human cervical fibroblasts in vitro. The concentration of hyaluronic acid, interleukin-1beta, and interleukin-8 were measured in cervical mucus of pregnant women, and hyaluronic acid production by cytokine-treated (interleukin-1beta and interleukin-8) cultured fibroblasts was measured. Hyaluronic acid concentrations in the mucus of pregnant women with threatened premature labor were higher than in mucus of normal pregnant women (P hyaluronic acid concentrations and interleukin-1beta (P = .018) and interleukin-8 (P = .003) concentrations in cervical mucus. Cytokines (especially interleukin-8) stimulated hyaluronic acid production by cultured cervical fibroblasts. Cytokines induce hyaluronic acid production by human cervical fibroblasts, which may promote cervical ripening.

  6. Phagocytosis of mast cell granules results in decreased macrophage superoxide production

    Directory of Open Access Journals (Sweden)

    Bobby A. Shah

    1995-01-01

    Full Text Available The mechanism by which phagocytosed mast cell granules (MCGs inhibit macrophage superoxide production has not been defined. In this study, rat peritoneal macrophages were co-incubated with either isolated intact MCGs or MCG-sonicate, and their respiratory burst capacity and morphology were studied. Co-incubation of macrophages with either intact MCGs or MCG-sonicate resulted in a dose-dependent inhibition of superoxide- mediated cytochrome c reduction. This inhibitory effect was evident within 5 min of incubation and with MCG-sonicate was completely reversed when macrophages were washed prior to activation with PMA. In the case of intact MCGs, the inhibitory effect was only partially reversed by washing after a prolonged co-incubation time. Electron microscopic analyses revealed that MCGs were rapidly phagocytosed by macrophages and were subsequently disintegrated within the phagolysosomes. Assay of MCGs for superoxide dismutase (SOD revealed the presence of significant activity of this enzyme. A comparison of normal macrophages and those containing phagocytosed MCGs did not reveal a significant difference in total SOD activity. It is speculated that, although there was no significant increase in total SOD activity in macrophages containing phagocytosed MCGs, the phagocytosed MCGs might cause a transient increase in SOD activity within the phagolysosomes. This transient rise in SOD results in scavenging of the newly generated superoxide. Alternatively, MCG inhibition of NADPH oxidase would explain the reported observations.

  7. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions.

    Directory of Open Access Journals (Sweden)

    Aruna Amarasinghe

    Full Text Available Infectious bronchitis virus (IBV causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41 and Connecticut A5968 (Conn A5968 strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens.

  8. Granulocyte macrophage colony-stimulating factor enhances the modulatory effect of cytokines on monocyte-derived multinucleated giant cell formation and fungicidal activity against Paracoccidioides brasiliensis

    Directory of Open Access Journals (Sweden)

    Magda Paula Pereira do Nascimento

    2011-09-01

    Full Text Available Multinucleated giant cells (MGC are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF in association with other cytokines such as interferon-gamma (IFN-γ, tumour necrosis factor-alpha, interleukin (IL-10 or transforming growth factor beta (TGF-β1 on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg. The generation of MGC was determined by fusion index (FI and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18. The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.

  9. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  10. Retinoic acid suppresses growth of lesions, inhibits peritoneal cytokine secretion, and promotes macrophage differentiation in an immunocompetent mouse model of endometriosis.

    Science.gov (United States)

    Wieser, Friedrich; Wu, Juanjuan; Shen, Zhaoju; Taylor, Robert N; Sidell, Neil

    2012-06-01

    To determine the effects of all-trans-retinoic acid (RA) on establishment and growth of endometrial lesions, peritoneal interleukin-6 (IL-6) and macrophage chemotactic factor-1 (MCP-1) concentrations, and CD38, CD11b, and F4/80 expression on peritoneal macrophages in an immunocompetent mouse model of endometriosis. Experimental transplantation study using mice. Academic medical center. C57BL/6 recipient mice and syngeneic green fluorescent protein transgenic (GFP+) mice. Recipient mice were inoculated with GFP+ minced uterine tissue to induce endometriosis and treated with RA (400 nmol/day) or vehicle for 17 days (3 days before to 14 days after tissue injection). Total number of GFP+ implants in recipient mice, number of implants showing visible blood vessels, total volume of established lesions per mouse, concentrations of IL-6 and MCP-1 in peritoneal fluid, and expression of CD11b, F4/80, and CD38 on peritoneal macrophages. Retinoic acid treatment for 17 days reduced the number of implants versus controls and decreased the frequency of lesions with vessels. Peritoneal washings in RA-treated animals had lower concentrations of IL-6 and MCP-1 than controls 3 days after endometrial inoculation and lower levels of IL-6 on day 14 after inoculation. Concomitant with these effects on day 14, CD38, CD11b, and F4/80 were higher on macrophages from RA-treated mice versus controls. The development of endometriotic implants is inhibited by RA. This effect may be caused, at least in part, by reduced IL-6 and MCP-1 production and enhanced differentiation of peritoneal macrophages. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Fang, Yangyi; Kang, Yanhua; Zou, Han; Cheng, Xiaxuan; Xie, Tian; Shi, Liyun; Zhang, Hang

    2018-01-01

    β-elemene, extracted from Rhizoma zedoariae, has been widely used as a traditional medicine for its antitumor activity against a broad range of cancers. However, the effect of β-elemene in inflammation disorders has yet to be determined. The present study was designed to investigate the anti-inflammatory effects and potential molecular mechanisms of β-elemene in lipopolysaccharide (LPS)-induced murine macrophage cells RAW264.7. We found that the production of pro-inflammatory mediators, including interleukin-6(IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), induced by LPS was significantly suppressed by β-elemene in a dose-dependent manner in RAW264.7 macrophage cell line. Also, β-elemene inhibited LPS-induced nitric oxide synthase (iNOS) and interleukin-10 (IL-10) expression by RAW264.7, which was related to the down-regulation of Wnt/β-catenin signaling pathway. Importantly, this study demonstrates that β-catenin was significantly inhibited by β-elemene, which appeared to be largely responsible for the down-regulation of Wnt/β-catenin signaling pathway. Accordingly, the deletion of β-catenin in primary macrophages reversed β-catenin-elicited inhibition of immune response. Furthermore, β-catenin expression and Wnt/β-catenin signaling pathway induced by LPS in RAW264.7 was also significantly inhibited by α-humulene, one isomeric sesquiterpene of β-elemene. α-humulene was also found to significantly inhibit LPS-induced production of proinflammatory cytokines. However, α-humulene showed more cytotoxic ability than β-elemene. Collectively, our data illustrated that β-elemene exerted a potent inhibitory effect on pro-inflammatory meditator and cytokines production via the inactivation of β-catenin, and also demonstrated the protective functions of β-elemene in endotoxin-induced inflammation. β-elemene may serve as potential nontoxic modulatory agents for the prevention and treatment of inflammatory diseases. Copyright

  12. Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Benvenuto Federica

    2009-03-01

    Full Text Available Abstract Background Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2 by ascorbic acid pre-treated quartz (QA compared to untreated quartz (Q in the murine macrophage cell line RAW 264.7. Methods Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-α, a cytokine that activates both inflammatory and fibrogenic pathways. Results Here we demonstrate that TNF-α mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-α production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself. Conclusion Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.

  13. Ascorbic acid pre-treated quartz stimulates TNF-alpha release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation.

    Science.gov (United States)

    Scarfì, Sonia; Magnone, Mirko; Ferraris, Chiara; Pozzolini, Marina; Benvenuto, Federica; Benatti, Umberto; Giovine, Marco

    2009-03-19

    Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7. Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-alpha, a cytokine that activates both inflammatory and fibrogenic pathways. Here we demonstrate that TNF-alpha mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-alpha production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself. Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.

  14. Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation

    Science.gov (United States)

    Scarfì, Sonia; Magnone, Mirko; Ferraris, Chiara; Pozzolini, Marina; Benvenuto, Federica; Benatti, Umberto; Giovine, Marco

    2009-01-01

    Background Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7. Methods Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-α, a cytokine that activates both inflammatory and fibrogenic pathways. Results Here we demonstrate that TNF-α mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-α production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself. Conclusion Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals. PMID:19298665

  15. Optimal Method to Stimulate Cytokine Production and Its Use in Immunotoxicity Assessment

    Directory of Open Access Journals (Sweden)

    Huiming Chen

    2013-08-01

    Full Text Available Activation of lymphocytes can effectively produce a large amount of cytokines. The types of cytokines produced may depend on stimulating reagents and treatments. To find an optimal method to stimulate cytokine production and evaluate its effect on immunotoxicity assessments, the authors analyzed production of IL-2, IL-4, IL-6, IL-10, IL-13, IFN-γ, TNF-α, GM-CSF, RANTES and TGF-β in undiluted rat whole blood culture (incubation for 0, 2, 4, 6, 8 or 10 h with different concentrations of PMA/ionomycin, PHA, Con A, LPS and PWM. We also evaluated the effects of cyclosporin A and azathioprine on cytokine production. The results revealed a rapid increase of IL-2, IFN-γ, TNF-α, RANTES and TGF-β secretion within 6 h after stimulation with 25 ng/mL PMA and 1 μg/mL ionomycin. The inhibition of these cytokine profiles reflected the effects of immunosuppressants on the immune system. Therefore, the results of this is study recommend the detection of cytokine profiles in undiluted whole blood stimulated 6 h with 25 ng/mL PMA and 1 μg/mL ionomycin as a powerful immunotoxicity assessment method.

  16. Misoprostol Inhibits Lipopolysaccharide-Induced Pro-inflammatory Cytokine Production by Equine Leukocytes

    Directory of Open Access Journals (Sweden)

    Emily Medlin Martin

    2017-09-01

    Full Text Available Pro-inflammatory cytokines including tumor necrosis factor α (TNFα, IL-1β, IL-6, and IL-8 are potent immune mediators that exacerbate multiple equine diseases such as sepsis and laminitis. Unfortunately, safe and effective cytokine-targeting therapies are lacking in horses; therefore, novel mechanisms of inhibiting cytokine production are critically needed. One potential mechanism for inhibiting cytokine synthesis is elevation of intracellular cyclic AMP (cAMP. In human leukocytes, intracellular cAMP production is induced by activation of E-prostanoid (EP receptors 2 and 4. These receptors can be targeted by the EP2/4 agonist and prostaglandin E1 analog, misoprostol. Misoprostol is currently used as a gastroprotectant in horses but has not been evaluated as a cytokine-targeting therapeutic. Thus, we hypothesized that misoprostol treatment would inhibit pro-inflammatory cytokine production by lipopolysaccharide (LPS-stimulated equine leukocytes in an in vitro inflammation model. To test this hypothesis, equine leukocyte-rich plasma (LRP was collected from 12 healthy adult horses and used to model LPS-mediated inflammatory signaling. LRP was treated with varying concentrations of misoprostol either before (pretreated or following (posttreated LPS stimulation. LRP supernatants were assayed for 23 cytokines using an equine-specific multiplex bead immunoassay. Leukocytes were isolated from LRP, and leukocyte mRNA levels of four important cytokines were evaluated via RT-PCR. Statistical differences between treatments were determined using one-way RM ANOVA (Holm–Sidak post hoc testing or Friedman’s RM ANOVA on Ranks (SNK post hoc testing, where appropriate (p < 0.05, n = 3–6 horses. These studies revealed that misoprostol pre- and posttreatment inhibited LPS-induced TNFα and IL-6 protein production in equine leukocytes but had no effect on IL-8 protein. Interestingly, misoprostol pretreatment enhanced IL-1β protein synthesis

  17. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages.

    Science.gov (United States)

    Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2017-04-25

    Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.

  18. VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Torsten A Krause

    Full Text Available Age-related macular degeneration (AMD is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF. Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source

  19. Rate of Production of Inflammatory Cytokines TNF and IL- by Peripheral Blood Mononuclear Cells Stimulated with Mycolactone

    Directory of Open Access Journals (Sweden)

    P Mohajeri

    2010-08-01

    Full Text Available Introduction: Mycobacterium ulcerans is the etiological agent of Buruli ulcer (BU the third most common mycobacterial infection in humans after tuberculosis and leprosy. BU is now considered by the WHO to be an emerging infection of major concern. M. ulcerans produces mycolactone toxin, which is required for the organism’s virulence. Mycolactone destroys tissue and suppresses host immune responses. Methods: In this descriptive analytical study, peripheral blood mononuclear cells from three volunteers with no history of buruli ulcer were used. IL-6 and TNF produced by these cells at different preincubation times with LPS and mycolactone were measured by using ELISA kits. Results: This study showed hyper inhibition of IL-6 and TNF production by mycolactone. TNF levels in the control tubes (containing LPS in 4hours reached its maximum value and then decreased. While the production of IL-6 in the tube with fresh cells (zero time had the highest value, after 16hours, it reached its minimum. Conclusion: Since TNF and IL-6 are important immunity inflammatory cytokines, it can be well imagined that decrease of TNF production by this bacterium plays a role in weakening of inflammatory response. So Mycobacterium ulcerans destroys macrophages and at the same time prevents TNF production by important cells in innate immune mechanism.

  20. Misoprostol Inhibits Lipopolysaccharide-Induced Pro-inflammatory Cytokine Production by Equine Leukocytes

    Science.gov (United States)

    Martin, Emily Medlin; Messenger, Kristen M.; Sheats, Mary Katherine; Jones, Samuel L.

    2017-01-01

    Pro-inflammatory cytokines including tumor necrosis factor α (TNFα), IL-1β, IL-6, and IL-8 are potent immune mediators that exacerbate multiple equine diseases such as sepsis and laminitis. Unfortunately, safe and effective cytokine-targeting therapies are lacking in horses; therefore, novel mechanisms of inhibiting cytokine production are critically needed. One potential mechanism for inhibiting cytokine synthesis is elevation of intracellular cyclic AMP (cAMP). In human leukocytes, intracellular cAMP production is induced by activation of E-prostanoid (EP) receptors 2 and 4. These receptors can be targeted by the EP2/4 agonist and prostaglandin E1 analog, misoprostol. Misoprostol is currently used as a gastroprotectant in horses but has not been evaluated as a cytokine-targeting therapeutic. Thus, we hypothesized that misoprostol treatment would inhibit pro-inflammatory cytokine production by lipopolysaccharide (LPS)-stimulated equine leukocytes in an in vitro inflammation model. To test this hypothesis, equine leukocyte-rich plasma (LRP) was collected from 12 healthy adult horses and used to model LPS-mediated inflammatory signaling. LRP was treated with varying concentrations of misoprostol either before (pretreated) or following (posttreated) LPS stimulation. LRP supernatants were assayed for 23 cytokines using an equine-specific multiplex bead immunoassay. Leukocytes were isolated from LRP, and leukocyte mRNA levels of four important cytokines were evaluated via RT-PCR. Statistical differences between treatments were determined using one-way RM ANOVA (Holm–Sidak post hoc testing) or Friedman’s RM ANOVA on Ranks (SNK post hoc testing), where appropriate (p equine leukocytes but had no effect on IL-8 protein. Interestingly, misoprostol pretreatment enhanced IL-1β protein synthesis following 6 h of LPS stimulation, while misoprostol posttreatment inhibited IL-1β protein production after 24 h of LPS stimulation. At the mRNA level, misoprostol pre

  1. Inhibitory Effects of Palmultang on Inflammatory Mediator Production Related to Suppression of NF-κB and MAPK Pathways and Induction of HO-1 Expression in Macrophages

    Directory of Open Access Journals (Sweden)

    You-Chang Oh

    2014-05-01

    Full Text Available Palmultang (PM is an herbal decoction that has been used to treat anorexia, anemia, general prostration, and weakness due to chronic illness since medieval times in Korea, China, and Japan. The present study focused on the inhibitory effects of PM on the production of inflammatory factors and on the activation of mechanisms in murine macrophages. PM suppressed the expression of nitric oxide (NO, inflammatory cytokines and inflammatory proteins by inhibiting nuclear factor (NF-κB and mitogen-activated protein kinase (MAPK signaling pathways and by inducing heme oxygenase (HO-1 expression. Collectively, our results explain the anti-inflammatory effect and inhibitory mechanism of PM in macrophages stimulated with lipopolysaccharide (LPS.

  2. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

    Directory of Open Access Journals (Sweden)

    Maria Jesus Iglesias

    Full Text Available Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS.To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches--gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII, which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF, was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines, was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/-LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40% was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at

  3. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    Science.gov (United States)

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Alpha-1-antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood.

    Science.gov (United States)

    Pott, Gregory B; Chan, Edward D; Dinarello, Charles A; Shapiro, Leland

    2009-05-01

    Several observations suggest endogenous suppressors of inflammatory mediators are present in human blood. alpha-1-Antitrypsin (AAT) is the most abundant serine protease inhibitor in blood, and AAT possesses anti-inflammatory activity in vitro and in vivo. Here, we show that in vitro stimulation of whole blood from persons with a genetic AAT deficiency resulted in enhanced cytokine production compared with blood from healthy subjects. Using whole blood from healthy subjects, dilution of blood with RPMI tissue-culture medium, followed by incubation for 18 h, increased spontaneous production of IL-8, TNF-alpha, IL-1 beta, and IL-1R antagonist (IL-1Ra) significantly, compared with undiluted blood. Dilution-induced cytokine production suggested the presence of one or more circulating inhibitors of cytokine synthesis present in blood. Serially diluting blood with tissue-culture medium in the presence of cytokine stimulation with heat-killed Staphylococcus epidermidis (S. epi) resulted in 1.2- to 55-fold increases in cytokine production compared with S. epi stimulation alone. Diluting blood with autologous plasma did not increase the production of IL-8, TNF-alpha, IL-1 beta, or IL-1Ra, suggesting that the endogenous, inhibitory activity of blood resided in plasma. In whole blood, diluted and stimulated with S. epi, exogenous AAT inhibited IL-8, IL-6, TNF-alpha, and IL-1 beta significantly but did not suppress induction of the anti-inflammatory cytokines IL-1Ra and IL-10. These ex vivo and in vitro observations suggest that endogenous AAT in blood contributes to the suppression of proinflammatory cytokine synthesis.

  5. α-1-Antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood

    Science.gov (United States)

    Pott, Gregory B.; Chan, Edward D.; Dinarello, Charles A.; Shapiro, Leland

    2009-01-01

    Several observations suggest endogenous suppressors of inflammatory mediators are present in human blood. α-1-Antitrypsin (AAT) is the most abundant serine protease inhibitor in blood, and AAT possesses anti-inflammatory activity in vitro and in vivo. Here, we show that in vitro stimulation of whole blood from persons with a genetic AAT deficiency resulted in enhanced cytokine production compared with blood from healthy subjects. Using whole blood from healthy subjects, dilution of blood with RPMI tissue-culture medium, followed by incubation for 18 h, increased spontaneous production of IL-8, TNF-α, IL-1β, and IL-1R antagonist (IL-1Ra) significantly, compared with undiluted blood. Dilution-induced cytokine production suggested the presence of one or more circulating inhibitors of cytokine synthesis present in blood. Serially diluting blood with tissue-culture medium in the presence of cytokine stimulation with heat-killed Staphylococcus epidermidis (S. epi) resulted in 1.2- to 55-fold increases in cytokine production compared with S. epi stimulation alone. Diluting blood with autologous plasma did not increase the production of IL-8, TNF-α, IL-1β, or IL-1Ra, suggesting that the endogenous, inhibitory activity of blood resided in plasma. In whole blood, diluted and stimulated with S. epi, exogenous AAT inhibited IL-8, IL-6, TNF-α, and IL-1β significantly but did not suppress induction of the anti-inflammatory cytokines IL-1Ra and IL-10. These ex vivo and in vitro observations suggest that endogenous AAT in blood contributes to the suppression of proinflammatory cytokine synthesis. PMID:19197072

  6. Constant light suppresses production of Met-enkephalin-containing peptides in cultured splenic macrophages and impairs primary immune response in rats.

    Science.gov (United States)

    Valdés-Tovar, Marcela; Escobar, Carolina; Solís-Chagoyán, Héctor; Asai, Miguel; Benítez-King, Gloria

    2015-03-01

    The light-dark cycle is an environmental factor that influences immune physiology, and so, variations of the photoperiod length result in altered immune responsivity. Macrophage physiology comprises a spectrum of functions that goes from host defense to immune down-regulation, in addition to their homeostatic activities. Macrophages also play a key role in the transition from innate to adaptive immune responses. Met-enkephalin (MEnk) has been recognized as a modulator of macrophage physiology acting in an autocrine or paracrine fashion to influence macrophage activation, phenotype polarization and production of cytokines that would enhance lymphocyte activation at early stages of an immune response. Previously it was shown that splenic MEnk tissue content is reduced in rats exposed to constant light. In this work, we explored whether production of Met-enkephalin-containing peptides (MECPs) in cultured splenic macrophages is affected by exposure of rats to a constant light regime. In addition, we explored whether primary immune response was impaired under this condition. We found that in rats, 15 days in constant light was sufficient to disrupt their general activity rhythm. Splenic MEnk content oscillations and levels were also blunted throughout a 24-h period in animals subjected to constant light. In agreement, de novo synthesis of MECPs evaluated through incorporation of (35)S-methionine was reduced in splenic macrophages from rats exposed to constant light. Moreover, MECPs immunocytochemistry showed a decrease in the intracellular content and lack of granule-like deposits in this condition. Furthermore, we found that primary T-dependent antibody response was compromised in rats exposed to constant light. In those animals, pharmacologic treatment with MEnk increased IFN-γ-secreting cells. Also, IL-2 secretion from antigen-stimulated splenocytes was reduced after incubation with naloxone, suggesting that immune-derived opioid peptides and stimulation of opioid

  7. Th1/Th2 cytokine production and reception features in Graves' disease

    Directory of Open Access Journals (Sweden)

    T V Saprina

    2012-06-01

    Full Text Available Cytokines and their receptors belong to a significant role in the initiation and the subsequent course and outcome of autoimmune thyroid disease. Interleukin-2 (IL-2, interleukin-4 (IL-4 and tumor necrosis factor-alpha (TNF-α-cytokines, which have a multifaceted impact on the various stages of the immune response: the development of inflammatory response, cell proliferation, antibody and acute phase proteins synthesis. Pre-existing pattern of development of autoimmune thyroiditis (Hashimoto's thyroiditis and Graves' disease (GD as a state with two opposite positions of the predominant profile of Th1/Th2-lymphocyte activation. The study evaluated the cytokine production by Th1- and Th2-lymphocytes in patients with GD, assessment of lymphocyte receptor system and identified lymphocytes subpopulation in patients with BG, and the impact on the functional state of thyroid gland. It was shown that the immunoregulatory cytokines as Th1(IL2- and Th2(IL-4-helper lymphocytes are involved in the immune mechanism of BG. The level of IL-2, IL4, and TNF-α, and the number complementary lymphocyte receptors were not significantly changed in euthyroid or hyperthyroid GD patient. Nevertheless, there are strong correla! tions between production of immunoregulatory cytokines (IL-2, IL-4 with the functional state of the thyroid gland and increase of its volume in GD patient, what confirms the “functional synergies” of these cytokines in autoimmune inflammation in the GD.

  8. Modulation of the effects of alveolar macrophages on lung fibroblast collagen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.G.; Greenberg, J.

    1987-01-01

    Alveolar macrophages (AM) may function as effector cells that can either stimulate or inhibit lung fibroblast collagen production. However, conditions that determine the predominant effect of AM on fibroblasts are not well understood. To delineate factors that modulate the effects of AM on lung fibroblasts, we studied the interaction of AM products and fibroblasts in vitro. The AM were obtained by bronchoalveolar lavage of hamsters with bleomycin-induced pulmonary fibrosis. Conditioned medium (CM) from the AM cultures was incubated in varying amounts with lung fibroblast (IMR-90) cultures. After metabolic labeling with (/sup 3/H)proline, fibroblast collagen production based on procollagen-specific radioactivity was determined. Macrophage CM in concentrations greater than 5% suppressed collagen production, an event attributed to the macrophage-derived suppressive factor that we have previously characterized. Macrophages were also determined to produce PGE2 in culture. Authentic PGE2 at concentrations found in CM was found to suppress fibroblast collagen production, indicating that AM-derived PGE2 contributes to the suppressive activity in CM. To examine possible stimulatory factors in CM, the fibroblasts were preincubated with indomethacin. This approach was based on our previous observation that AM-derived suppressive factor increases endogenous fibroblast PGE2 and that its activity can be blocked by indomethacin. Macrophage CM in a concentration of 20% did not suppress the collagen production of indomethacin-treated fibroblasts. However, CM concentrations of 5 and 10% increased collagen production (173 and 143% of control values, respectively), indicating the presence of stimulatory factor(s) in macrophage-conditioned medium.

  9. Induction of cytotoxicity and production of inflammatory mediators in raw264.7 macrophages by spores grown on six different plasterboards.

    Science.gov (United States)

    Murtoniemi, T; Nevalainen, A; Suutari, M; Toivola, M; Komulainen, H; Hirvonen, M R

    2001-03-01

    Dampness and microbial growth in buildings are associated with respiratory symptoms in the occupants, but details of the phenomenon are not sufficiently understood. The current study examined the effects of growth conditions provided by six plasterboards on cytotoxicity and inflammatory potential of the spores of Streptomyces californicus, Penicillium spinulosum, Aspergillus versicolor, and Stachybotrys chartarum. The microbes were isolated from mold problem buildings and thereafter grown on six different plasterboards. The spores were harvested, applied to RAW264.7 macrophages (10(4), 10(5), 10(6) spores/10(6) cells), and evaluated 24 h after exposure for the ability to cause cytotoxicity and to stimulate production of nitric oxide (NO), interleukin-1 beta (IL-1beta), tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6). The data indicate clear differences between spores of different microbes in their ability to induce the production of these inflammatory mediators and to cause cell death in macrophages. Also, for each microbe, the induction ability specifically depended on the brand of plasterboard. The spores of Streptomyces californicus collected from all plasterboards were the most potent at inducing NO and cytokine production. Cytotoxicity caused by P. spinulosum and Streptomyces californicus spores was consistent with NO, IL-1beta and IL-6 production induced by those microbes. However, the production of these inflammatory mediators by the spores of Stachybotrys chartarum was not parallel to their ability to cause cell death. The low productions of NO and cytokines were associated with high cytotoxicity caused by the spores of the A. versicolor. These data suggest that growth condition of microbes on different plasterboards affect the ability of microbial spores to induce inflammatory responses and cytotoxicity in macrophages.

  10. Allergen-induced cytokine production, atopic disease, IgE, and wheeze in children

    NARCIS (Netherlands)

    Contreras, JP; Ly, NR; Gold, DR; He, HZ; Wand, M; Weiss, ST; Perkins, DL; Platts-Mills, TAE; Finn, PW

    2003-01-01

    Background: The early childhood allergen-induced immune responses associated with atopic disease and IgE production in early life are not well understood. Objective: We assessed the relationship of allergen-induced cytokine production by PBMCs to both atopic disease and to IgE increase in a cohort

  11. Impact of Antidepressants on Cytokine Production of Depressed Patients in Vitro

    Directory of Open Access Journals (Sweden)

    Alexander Munzer

    2013-11-01

    Full Text Available The interplay between immune and nervous systems plays a pivotal role in the pathophysiology of depression. In depressive episodes, patients show increased production of pro-inflammatory cytokines such as interleukin (IL-1β and tumor necrosis factor (TNF-α. There is limited information on the effect of antidepressant drugs on cytokines, most studies report on a limited sample of cytokines and none have reported effects on IL-22. We systematically investigated the effect of three antidepressant drugs, citalopram, escitalopram and mirtazapine, on secretion of cytokines IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22 and TNF-α in a whole blood assay in vitro, using murine anti-human CD3 monoclonal antibody OKT3, and 5C3 monoclonal antibody against CD40, to stimulate T and B cells respectively. Citalopram increased production of IL-1β, IL-6, TNF-α and IL-22. Mirtazapine increased IL-1β, TNF-α and IL-22. Escitalopram decreased IL-17 levels. The influence of antidepressants on IL-2 and IL-4 levels was not significant for all three drugs. Compared to escitalopram, citalopram led to higher levels of IL-1β, IL-6, IL-17 and IL-22; and mirtazapine to higher levels of IL-1β, IL-17, IL-22 and TNF-α. Mirtazapine and citalopram increased IL-22 production. The differing profile of cytokine production may relate to differences in therapeutic effects, risk of relapse and side effects.

  12. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production.

    Science.gov (United States)

    Mashiba, Michael; Collins, David R; Terry, Valeri H; Collins, Kathleen L

    2014-12-10

    The HIV-1 accessory protein Vpr enhances infection of primary macrophages through unknown mechanisms. Recent studies demonstrated that Vpr interactions with the cellular DCAF1-DDB1-CUL4 E3 ubiquitin ligase complex limit activation of innate immunity and interferon (IFN) induction. We describe a restriction mechanism that targets the HIV-1 envelope protein Env, but is overcome by Vpr and its interaction with DCAF1. This restriction is active in the absence of Vpr in HIV-1-infected primary macrophages and macrophage-epithelial cell heterokaryons, but not epithelial cell lines. HIV-1-infected macrophages lacking Vpr express more IFN following infection, target Env for lysosomal degradation, and produce fewer Env-containing virions. Conversely, Vpr expression reduces IFN induction, rescues Env expression, and enhances virion release. Addition of IFN or silencing DCAF1 reduces the amount of cell-associated Env and virion production in wild-type HIV-1-infected primary macrophages. These findings provide insight into an IFN-stimulated macrophage-specific restriction pathway targeting HIV-1 Env that is counteracted by Vpr. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  14. Nucleotide-Binding Oligomerization Domain 2 Contributes to Limiting Growth of Mycobacterium abscessus in the Lung of Mice by Regulating Cytokines and Nitric Oxide Production

    Directory of Open Access Journals (Sweden)

    Jun-Young Lee

    2017-11-01

    Full Text Available Mycobacterium abscessus is a prominent cause of pulmonary infection in immunosuppressed patients and those with cystic fibrosis. Nucleotide-binding oligomerization domain (NOD 2 is a cytosolic receptor which senses a bacterial peptidoglycan component, muramyl dipeptide (MDP. Although nucleotide-binding oligomerization domain 2 (NOD2 contributes to protect host against various microbial infections, it is still unclear whether NOD2 is essential to regulate host immune responses against M. abscessus infection. In this study, we sought to clarify the role of NOD2 and the underlying mechanism in host defense against M. abscessus infection. Mice were infected intranasally with M. abscessus and sacrificed at indicated time points. Bacterial survival, cytokines production, and pathology in the lungs were determined. Bone marrow-derived macrophages were used to clarify cellular mechanism of NOD2-mediated immune response. Bacterial clearance was impaired, and pathology was more severe in the lungs of NOD2-deficient mice compared with the wild-type mice. In macrophages, NOD2-mediated activation of p38 and JNK were required for production of proinflammatory cytokines and nitric oxide (NO and expression of iNOS in response to M. abscessus. NO was critical for limiting intracellular growth of the pathogen. Intranasal administration of MDP reduced in vivo bacterial replication and thus improved lung pathology in M. abscessus-infected mice. This study offers important new insights into the potential roles of the NOD2 in initiating and potentiating innate immune response against M. abscessus pulmonary infection.

  15. Production of fibrogenic cytokines by interleukin-2-treated peripheral blood leukocytes

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Silber, I E

    1993-01-01

    OBJECTIVE: To assess the production of fibrogenic cytokines by interleukin-2 (IL-2)-stimulated peripheral blood leukocytes and to examine their ability to stimulate the production of connective tissue. METHODS: Culture medium from human peripheral blood leukocytes incubated with or without IL-2...... was tested for induction of fibroblast proliferation, collagen synthesis, and expression of cytokine genes. RESULTS: Supernatants from IL-2-treated peripheral blood leukocytes induced six times more fibroblast proliferation than medium from leukocytes cultured without IL-2. The expression of type I....... CONCLUSION: Mediators that induce connective tissue production are secreted by IL-2-treated peripheral blood leukocytes. These cytokines may be responsible, in part, for the stimulation of abdominal adhesions in patients receiving intraperitoneal immunotherapy....

  16. MEK1 Dependent and Independent ERK Activation Regulates IL-10 and IL-12 Production in Bone Marrow Derived Macrophages

    Science.gov (United States)

    Bouhamdan, Mohamad; Bauerfeld, Christian; Talreja, Jaya; Beuret, Laurent; Charron, Jean; Samavati, Lobelia

    2015-01-01

    The mitogen activated protein kinases ERK1/2 play an important role in response to toll like receptor (TLR) activation and cytokine production, including IL-10 and IL-12. Here, we examined the role of MEK1 in ERK1/2 activation in response to TLR4 agonist by using bone marrow-derived macrophages (BMDMs) from wild type (WT) and Mek1d/dSox2Cre mice. Our data demonstrates that MEK1 is essential for ERK1/2 activation in response to LPS. Furthermore, stimulation of the TLR4 receptor of BMDMs derived from Mek1d/d Sox2Cre mice showed enhanced STAT4 phosphorylation and increased IL-12 secretion, but exhibited a significantly lower IL-10 production as compared to WT macrophages. Most interestingly, TLR ligation in the presence of recombinant IL-10 (rIL-10) or retinoic acid (RA) led to ERK1/2 activation independent of MEK1 in BMDMs derived from Mek1d/dSox2Cre mice and led to inhibition of STAT4 and decreased IL-12 levels. Collectively, these data suggest that MEK1 is required for TLR4 mediated ERK activation and in turn regulates production of IL-10 and IL-12. It also indicates that ERK1/2 can be activated independent of MEK1 in the presence of IL-10 and RA and this activation negatively regulates IL-12, but positively regulates IL-10 production. These findings may have significant implications for the development of drugs that modulate MEK1 activity in the treatment of inflammatory, autoimmune and proliferative diseases such as cancer. PMID:26208884

  17. Modern lineages of Mycobacterium tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Rajesh Sarkar

    Full Text Available Strains of Mycobacterium tuberculosis vary in virulence. Strains that have caused outbreaks in the United States and United Kingdom have been shown to subvert the innate immune response as a potential immune evasion mechanism. There is, however, little information available as to whether these patterns of immune subversion are features of individual strains or characteristic of broad clonal lineages of M. tuberculosis.Strains from two major modern lineages (lineage 2 [East-Asian] and lineage 4 [Euro-American] circulating in the Western Cape in South Africa as well as a comparator modern lineage (lineage 3 [CAS/Delhi] were identified. We assessed two virulence associated characteristics: mycobacterial growth (in liquid broth and monocyte derived macrophages and early pro-inflammatory cytokine induction.In liquid culture, Lineage 4 strains grew more rapidly and reached higher plateau levels than other strains (lineage 4 vs. lineage 2 p=0.0024; lineage 4 vs. lineage 3 p=0.0005. Lineage 3 strains were characterized by low and early plateau levels, while lineage 2 strains showed an intermediate growth phenotype. In monocyte-derived macrophages, lineage 2 strains grew faster than lineage 3 strains (p<0.01 with lineage 4 strains having an intermediate phenotype. Lineage 2 strains induced the lowest levels of pro-inflammatory TNF and IL-12p40 as compared to other lineages (lineage 2: median TNF 362 pg/ml, IL-12p40 91 pg/ml; lineage 3: median TNF 1818 pg/ml, IL-12p40 123 pg/ml; lineage 4: median TNF 1207 pg/ml, IL-12p40 205 pg/ml;. In contrast, lineage 4 strains induced high levels of IL-12p40 and intermediate level of TNF. Lineage 3 strains induced high levels of TNF and intermediate levels of IL-12p40.Strains of M. tuberculosis from the three major modern strain lineages possess distinct patterns of growth and cytokine induction. Rapid growth and immune subversion may be key characteristics to the success of these strains in different human populations.

  18. Effects of low molecular weight heparin on the polarization and cytokine profile of macrophages and T helper cells in vitro.

    Science.gov (United States)

    Bruno, Valentina; Svensson-Arvelund, Judit; Rubér, Marie; Berg, Göran; Piccione, Emilio; Jenmalm, Maria C; Ernerudh, Jan

    2018-03-08

    Low molecular weight heparin (LMWH) is widely used in recurrent miscarriage treatment. The anti-coagulant effects are established, while immunological effects are not fully known. Our aim was to assess LMWH effects on activation and polarization of central regulatory immune cells from healthy women, and on placenta tissues from women undergoing elective abortions. Isolated blood monocytes and T helper (Th) cells under different activation and polarizing conditions were cultured with or without LMWH. Flow cytometry showed that LMWH exposure induced increased expression of HLA-DR and CD206 in macrophages. This phenotype was associated with increased secretion of Th17-associated CCL20, and decreased secretion of CCL2 (M2-associated) and CCL22 (Th2), as measured by multiplex bead array. In accordance, LMWH exposure to Th cells reduced the proportion of CD25highFoxp3+ regulatory T-cells, intensified IFN-γ secretion and showed a tendency to increase the lymphoblast proportions. Collectively, a mainly pro-inflammatory effect was noted on two essential tolerance-promoting cells. Although the biological significancies of these in vitro findings are uncertain and need to be confirmed in vivo, they suggest the possibility that immunological effects of LMWH may be beneficial mainly at an earlier gestational age to provide an appropriate implantation process in women with recurrent miscarriage.

  19. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  20. Metabolic reprogramming in macrophage polarization

    Directory of Open Access Journals (Sweden)

    Silvia eGalván-Peña

    2014-09-01

    Full Text Available Studying the metabolism of immune cells in recent years has emphasized the tight link existing between the metabolic state and the phenotype of these cells. Macrophages in particular are a good example of this phenomenon. Whether the macrophage obtains its energy through glycolysis or through oxidative metabolism can give rise to different phenotypes. Classically activated or M1 macrophages are key players of the first line of defense against bacterial infections and are known to obtain energy through glycolysis. Alternatively activated or M2 macrophages on the other hand, are involved in tissue repair and wound healing and use oxidative metabolism to fuel their longer-term functions. Metabolic intermediates however, are not just a source of energy but can be directly implicated in a particular macrophage phenotype. In M1 macrophages, the Krebs cycle intermediate succinate regulates HIF1α, which is responsible for driving the sustained production of the pro-inflammatory cytokine IL1β. In M2 macrophages, the sedoheptulose kinase CARKL is critical for regulating the pentose phosphate pathway. The potential to target these events and impact on disease is an exciting prospect.

  1. Temporal phenotypic features distinguish polarized macrophages in vitro.

    Science.gov (United States)

    Melton, David W; McManus, Linda M; Gelfond, Jonathan A L; Shireman, Paula K

    2015-05-01

    Macrophages are important in vascular inflammation and environmental factors influence macrophage plasticity. Macrophage transitions into pro-inflammatory (M1) or anti-inflammatory (M2) states have been defined predominately by measuring cytokines in culture media (CM). However, temporal relationships between cellular and secreted cytokines have not been established. We measured phenotypic markers and cytokines in cellular and CM of murine bone marrow-derived macrophages at multiple time points following stimulation with IFN-γ + LPS (M1), IL-4 (M2a) or IL-10 (M2c). Cytokines/proteins in M1-polarized macrophages exhibited two distinct temporal patterns; an early (0.5-3 h), transient increase in cellular cytokines (GM-CSF, KC-GRO, MIP-2, IP-10 and MIP-1β) and a delayed (3-6 h) response that was more sustained [IL-3, regulated on activation normal T cell expressed and secreted (RANTES), and tissue inhibitor of metalloproteinases 1 (TIMP-1)]. M2a-related cytokine/cell markers (IGF-1, Fizz1 and Ym1) were progressively (3-24 h) increased post-stimulation. In addition, novel patterns were observed. First, and unexpectedly, cellular pro-inflammatory chemokines, MCP-1 and MCP-3 but not MCP-5, were comparably increased in M1 and M2a macrophages. Second, Vegfr1 mRNA was decreased in M1 and increased in M2a macrophages. Finally, VEGF-A was increased in the CM of M1 cultures and strikingly reduced in M2a coinciding with increased Vegfr1 expression, suggesting decreased VEGF-A in M2a CM was secondary to increased soluble VEGFR1. In conclusion, macrophage cytokine production and marker expression were temporally regulated and relative levels compared across polarizing conditions were highly dependent upon the timing and location (cellular versus CM) of the sample collection. For most cytokines, cellular production preceded increases in the CM suggesting that cellular regulatory pathways should be studied within 6 h of stimulation. The divergent polarization-dependent expression

  2. Lipopolysaccharide-induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by Candida albicans mediated up-regulation of EBI3 expression.

    Directory of Open Access Journals (Sweden)

    Xing-Feng Zheng

    Full Text Available Macrophages are heterogeneous cell populations that are present in all tissues. Macrophages can be divided into classically activated inflammatory macrophages (M1 and alternatively activated anti-inflammatory macrophages (M2. It has been generally accepted that M1 macrophages are polarised in an inflammatory environment to produce pro-inflammatory cytokines, whilst M2 macrophages are involved in anti-inflammation and aid tissue repair in wound healing. Bacterial endotoxin (lipopolysaccharide; LPS is a potent factor in infection, which induces M1 macrophages resulting in higher levels of iNOS, TNFα and IL-12p70 which dictate inflammatory T cell responses. M2 macrophages can be transformed into M1 macrophages following LPS stimulation to promote inflammation. Candida albicans is a commensal fungal microorganism, which has been suggested to induce immune tolerance; however, the mechanism of C. albicans-induced immune tolerance has not been investigated in detail. IL-35 is a recently identified anti-inflammatory cytokine which is a heterodimeric protein consisting of the Epstein-Barr virus-induced gene 3 (EBI3 and IL-12p35. IL-35 shares the protein subunit p35, with IL-12p70. IL-12p70 is the most potent cytokine to induce Th1 responses during inflammation. In this study, we demonstrate that heat-killed C. albicans (HKC strongly suppressed LPS-induced IL-12p70 production in M2 macrophages. Candida albicans induced a high level of EBI3 expression in M2 macrophages, which served as a mechanism for IL-12p70 suppression by competitive binding of the common protein subunit (p35 of IL-35 and IL-12p70. To demonstrate that EBI3 expression had the ability to block IL-12p70 production intracellularly, a Chinese Hamster Ovary (CHO cell line with biscistronic expression of IL-12p40 and p35 was constructed, followed by ectopic over-expression of EBI3. The over-expression of EBI3 in the IL-12p70 producing cell line effectively suppressed IL-12p70 production. IL

  3. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  4. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Nagaya, Yoshiaki; Asai, Hayato; Hussein, Mohamed Hamed; Suzuki, Mieko; Kato, Shin; Saitoh, Shinji; Asai, Kiyofumi

    2013-01-01

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N G -monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for IAE

  5. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature

    Directory of Open Access Journals (Sweden)

    Aldag C

    2016-11-01

    Full Text Available Caroline Aldag,1,* Diana Nogueira Teixeira,1,* Phillip S Leventhal2 1Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany; 24Clinics, Paris, France *These authors contributed equally to this work Abstract: Skin aging is primarily due to alterations in the dermal extracellular matrix, especially a decrease in collagen I content, fragmentation of collagen fibrils, and accumulation of amorphous elastin material, also known as elastosis. Growth factors and cytokines are included in several cosmetic products intended for skin rejuvenation because of their ability to promote collagen synthesis. Matrikines and matrikine-like peptides offer the advantage of growth factor-like activities but better skin penetration due to their much smaller molecular size. In this review, we summarize the commercially available products containing growth factors, cytokines, and matrikines for which there is evidence that they promote skin rejuvenation. Keywords: cosmetics, skin, aging, growth factor, cytokine, matrikine

  6. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity.

    Science.gov (United States)

    Smith, Judith A

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis.

  7. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa

    2011-01-01

    In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin- 8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active...... adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  8. Colchicine Acutely Suppresses Local Cardiac Production of Inflammatory Cytokines in Patients With an Acute Coronary Syndrome

    Science.gov (United States)

    Martínez, Gonzalo J; Robertson, Stacy; Barraclough, Jennifer; Xia, Qiong; Mallat, Ziad; Bursill, Christina; Celermajer, David S; Patel, Sanjay

    2015-01-01

    Background Interleukin (IL)-1β, IL-18, and downstream IL-6 are key inflammatory cytokines in the pathogenesis of coronary artery disease. Colchicine is believed to block the NLRP3 inflammasome, a cytosolic complex responsible for the production of IL-1β and IL-18. In vivo effects of colchicine on cardiac cytokine release have not been previously studied. This study aimed to (1) assess the local cardiac production of inflammatory cytokines in patients with acute coronary syndromes (ACS), stable coronary artery disease and in controls; and (2) determine whether acute administration of colchicine inhibits their production. Methods and Results Forty ACS patients, 33 with stable coronary artery disease, and 10 controls, were included. ACS and stable coronary artery disease patients were randomized to oral colchicine treatment (1 mg followed by 0.5 mg 1 hour later) or no colchicine, 6 to 24 hours prior to cardiac catheterization. Blood samples from the coronary sinus, aortic root (arterial), and lower right atrium (venous) were collected and tested for IL-1β, IL-18, and IL-6 using ELISA. In ACS patients, coronary sinus levels of IL-1β, IL-18, and IL-6 were significantly higher than arterial and venous levels (P=0.017, Colchicine administration significantly reduced transcoronary gradients of all 3 cytokines in ACS patients by 40% to 88% (P=0.028, 0.032, and 0.032, for IL-1β, IL-18, and IL-6, respectively). Conclusions ACS patients exhibit increased local cardiac production of inflammatory cytokines. Short-term colchicine administration rapidly and significantly reduces levels of these cytokines. PMID:26304941

  9. Iron Reduces M1 Macrophage Polarization in RAW264.7 Macrophages Associated with Inhibition of STAT1

    Directory of Open Access Journals (Sweden)

    Zhen-Shun Gan

    2017-01-01

    Full Text Available Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions. The aim of this study is to investigate the cross-regulatory interactions between M1 macrophage polarization and iron metabolism. Firstly, we characterized the transcription of genes related to iron homeostasis in M1 RAW264.7 macrophages stimulated by IFN-γ. The molecular signature of M1 macrophages showed high levels of iron storage (ferritin, a low level of iron export (ferroportin, and changes of iron regulators (hepcidin and transferrin receptors, which favour iron sequestration in the reticuloendothelial system and are benefit for inflammatory disorders. Then, we evaluated the effect of iron on M1 macrophage polarization. Iron significantly reduced mRNA levels of IL-6, IL-1β, TNF-α, and iNOS produced by IFN-γ-polarized M1 macrophages. Immunofluorescence analysis showed that iron also reduced iNOS production. However, iron did not compromise but enhanced the ability of M1-polarized macrophages to phagocytose FITC-dextran. Moreover, we demonstrated that STAT1 inhibition was required for reduction of iNOS and M1-related cytokines production by the present of iron. Together, these findings indicated that iron decreased polarization of M1 macrophages and inhibited the production of the proinflammatory cytokines. The results expanded our knowledge about the role of iron in macrophage polarization.

  10. Macrophage migration inhibitory factor regulates interleukin-6 production by facilitating nuclear factor-kappa B activation during Vibrio vulnificus infection

    Directory of Open Access Journals (Sweden)

    Choi Pui-Ching

    2010-10-01

    Full Text Available Abstract Background Patients infected with Vibrio vulnificus (V. vulnificus show severe inflammatory responses characterised by the upregulation of proinflammatory cytokines. Macrophage migration inhibitory factor (MIF, an upstream proinflammatory regulator, increases the inflammation caused by sepsis. Whether MIF regulates responses to V. vulnificus infection and the actual mechanism by which V. vulnificus initiates these MIF-modulated proinflammatory cytokines remain unclear. Results MIF increased inflammation during V. vulnificus infection in vivo. In V. vulnificus-infected mice, MIF was produced earlier than tumour necrosis factor (TNF-α and interleukin (IL-6 and was expressed in a time-dependent manner. ISO-1 ((S, R-3-(4-hydroxyphenyl-4,5-dihydro-5-isoxazole acetic acid methyl ester, a small-molecule inhibitor of MIF, significantly decreased IL-6, IL-8, and TNF-α production in a time- and dose-dependent manner in human peripheral blood cells infected with V. vulnificus. The induction of IL-6, IL-8, and TNF-α production by V. vulnificus infection was mediated via the NF-κB- and p38 MAPK-regulated pathways but not via the Akt pathway. ISO-1-treated human peripheral blood cells showed lower V. vulnificus-induced NF-κB activation, IL-6 mRNA expression, and IκB phosphorylation, but they did not show lower p38 MAPK activation. Conclusions We conclude that MIF regulates V. vulnificus-induced IL-6 production via NF-κB activation and that p38 MAPK activation in V. vulnificus infection is not MIF dependent.

  11. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production.

    Science.gov (United States)

    Li, Miao; Wang, Jinli; Fang, Yimin; Gong, Sitang; Li, Meiyu; Wu, Minhao; Lai, Xiaomin; Zeng, Gucheng; Wang, Yi; Yang, Kun; Huang, Xi

    2016-03-30

    Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis.

  12. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-01-01

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  13. Higher mRNA levels of chemokines and cytokines associated with macrophage activation in erythema migrans skin lesions in patients from the United States than in patients from Austria with Lyme borreliosis.

    Science.gov (United States)

    Jones, Kathryn L; Muellegger, Robert R; Means, Terry K; Lee, Marshall; Glickstein, Lisa J; Damle, Nitin; Sikand, Vijay K; Luster, Andrew D; Steere, Allen C

    2008-01-01

    Erythema migrans (EM) is caused primarily by Borrelia afzelii in Europe and solely by Borrelia burgdorferi in the United States. B. burgdorferi infection in the United States has previously been associated with faster expansion of EM lesions and with more associated symptoms, compared with B. afzelii infection in Europe. However, reasons for these differences are not yet known. We determined the Borrelia species infecting 67 US or Austrian patients with EM. The clinical pictures and chemokine and cytokine mRNA levels in lesional skin were then compared in the 19 B. burgdorferi-infected US patients and the 37 B. afzelii-infected Austrian patients, the 2 largest groups. The 19 B. burgdorferi-infected US patients had faster-expanding EM lesions and a median of 4 associated signs and symptoms, whereas the 37 B. afzelii-infected Austrian patients had slower-expanding lesions and usually did not experience associated symptoms. Compared with the EM lesions of B. afzelii-infected Austrian patients, those of B. burgdorferi-infected US patients had significantly higher mRNA levels of chemokines associated with activation of macrophages, including chemoattractants for neutrophils (CXCL1), macrophages (CCL3 and CCL4), and T helper 1 cells (CXCL9, CXCL10, and CXCL11). In addition, compared with the EM lesions of Austrian patients, the EM lesions of US patients tended to have higher mRNA levels of the macrophage-associated proinflammatory cytokines interleukin 1beta and tumor necrosis factor alpha, and they had significantly higher mRNA expression of the antiinflammatory cytokines interleukin 10 and transforming growth factor beta. The EM lesions of B. burgdorferi-infected US patients expanded faster, were associated with more symptoms, and had higher mRNA levels of macrophage-associated chemokines and cytokines than did the EM lesions of B. afzelii-infected Austrian patients.

  14. Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Jeurink, P.V.; Lull Noguera, C.; Savelkoul, H.F.J.; Wichers, H.J.

    2008-01-01

    Immunomodulation by fungal compounds can be determined by the capacity of the compounds to influence the cytokine production by human peripheral blood mononuclear cells (hPBMC). These activities include mitogenicity, stimulation and activation of immune effector cells. Eight mushroom strains

  15. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains

    NARCIS (Netherlands)

    Kunnen, A.; Dekker, D.C.; van Pampus, M.G.; Harmsen, H.J.; Aarnoudse, J.G.; Abbas, F.; Faas, M.M.

    2012-01-01

    Objective: Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their

  16. Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis

    NARCIS (Netherlands)

    Fabriek, B.O.; Møller, H.J.; Vloet, R.P.M.; Winsen, L.M. van; Hanemaaijer, R.; Teunissen, C.E.; Uitdehaag, B.M.J.; Berg, T.K. van den; Dijkstra, C.D.

    2007-01-01

    The scavenger receptor CD163 is selectively expressed on tissue macrophages and human monocytes. CD163 has been implicated to play a role in the clearance of hemoglobin and in the regulation of cytokine production by macrophages. Membrane CD163 can be cleaved by matrix metalloproteinases (MMP)

  17. Lutzomyia longipalpis saliva triggers lipid body formation and prostaglandin E₂ production in murine macrophages.

    Directory of Open Access Journals (Sweden)

    Théo Araújo-Santos

    Full Text Available BACKGROUND: Sand fly saliva contains molecules that modify the host's hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS from Lutzomyia (L. longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo. METHODOLOGY/PRINCIPAL FINDINGS: Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE₂ and LTB₄ production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE₂ production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE₂ production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE₂ production by macrophages. CONCLUSION: In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE₂ production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC

  18. Tristetraprolin mediates radiation-induced TNF-α production in lung macrophages.

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    Full Text Available The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT. Although tumor necrosis factor-alpha (TNF-α signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP, in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/- mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178 phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.

  19. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production.

    LENUS (Irish Health Repository)

    Lynch, Lydia

    2012-09-21

    Invariant natural killer T (iNKT) cells are evolutionarily conserved innate T cells that influence inflammatory responses. We have shown that iNKT cells, previously thought to be rare in humans, were highly enriched in human and murine adipose tissue, and that as adipose tissue expanded in obesity, iNKT cells were depleted, correlating with proinflammatory macrophage infiltration. iNKT cell numbers were restored in mice and humans after weight loss. Mice lacking iNKT cells had enhanced weight gain, larger adipocytes, fatty livers, and insulin resistance on a high-fat diet. Adoptive transfer of iNKT cells into obese mice or in vivo activation of iNKT cells via their lipid ligand, alpha-galactocylceramide, decreased body fat, triglyceride levels, leptin, and fatty liver and improved insulin sensitivity through anti-inflammatory cytokine production by adipose-derived iNKT cells. This finding highlights the potential of iNKT cell-targeted therapies, previously proven to be safe in humans, in the management of obesity and its consequences.

  20. The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells.

    Science.gov (United States)

    Gauliard, Benoit; Grieve, Douglas; Wilson, Rhoda; Crozier, Alan; Jenkins, Carol; Mullen, William D; Lean, Michael

    2008-06-01

    Levels of inflammatory cytokines are raised in chronic obstructive pulmonary disease (COPD). A diet rich in antioxidant vitamins may protect against the development of COPD. This study examined the effects of phenolic compounds and food sources on cytokine and antioxidant production by A549 cells. The effects of the following phenolic compounds on basal and interleukin (IL)-1-stimulated release of IL-8, IL-6, and reduced glutathione (GSH) were examined: resveratrol; Bouvrage, a commercially available raspberry juice (Ella Drinks Ltd., Alloa, Clacksmannanshire, UK); and quercetin 3'-sulfate. Purification of the raspberry juice by high-performance liquid chromatography gave three fractions: Fraction 1 contained phenolic acid and vitamin C, Fraction 2 contained flavonoids and ellagic acid, and Fraction 3 contained anthocyanins and ellagitannins. IL-8 production was increased in the presence of IL-1 (165 vs. 6,011 pg/mL, P or =50 micromol/mL significantly inhibited IL-8 and IL-6 production. Similar findings were made with raspberry juice at concentrations > or =25 microL/mL, and Fractions 1 and 3 were best able to inhibit IL-8 production. Quercetin 3'-sulfate, at 25 micromol/mL, inhibited IL-8 and IL-6 production. The changes observed in IL-8 were paralleled by changes in tumor necrosis factor-alpha. Thus, phenolic compounds can significantly alter cytokine and antioxidant production.

  1. The Role of Cytokine in the Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Yasunori Iwata

    2011-01-01

    Full Text Available Lupus nephritis (LN is a major clinical manifestation of systemic lupus erythematosus (SLE. Although numerous abnormalities of immune system have been proposed, cytokine overexpression plays an essential role in the pathogenesis of LN. In the initial phase of the disease, the immune deposits and/or autoantibodies induce cytokine production in renal resident cells, leading to further inflammatory cytokine/chemokine expression and leukocyte infiltration and activation. Then, infiltrate leukocytes, such as macrophages (Mφ and dendritic cells (DCs, secrete a variety of cytokines and activate naïve T cells, leading the cytokine profile towards T helper (Th1, Th2, and/or Th17. Recent studies revealed these inflammatory processes in experimental animal models as well as human LN. The cytokine targeted intervention may have the therapeutic potentials for LN. This paper focuses on the expression of cytokine and its functional role in the pathogenesis of LN.

  2. Soluble Calreticulin Induces Tumor Necrosis Factor-α (TNF-α and Interleukin (IL-6 Production by Macrophages through Mitogen-Activated Protein Kinase (MAPK and NFκB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Cui-Cui Duo

    2014-02-01

    Full Text Available We have recently reported that soluble calreticulin (CRT accumulates in the sera of patients with rheumatoid arthritis or systemic lupus erythematosus. Moreover, following self-oligomerization, soluble recombinant CRT (rCRT polypeptides exhibit potent immunostimulatory activities including macrophage activation in vitro and antibody induction in vivo. This study was designed to further investigate the underlying molecular mechanisms for soluble CRT-induced macrophage activation. Treatment of murine macrophages with oligomerized rCRT (OrCRT led to (i TNF-α and IL-6 transcription and protein expression without affecting intracellular mRNA stability; and (ii IκBα degradation, NFκB phosphorylation and sustained MAPK phosphorylation in cells. Inhibition of IKK and JNK in macrophages substantially abrogated production of TNF-α and IL-6 induced by OrCRT, while ERK suppression only reduced IL-6 expression in parallel experiments. In vitro, fucoidan, a scavenger receptor A (SRA-specific ligand, significantly reduced the uptake of FITC-labeled OrCRT by macrophages and subsequent MAPK and NFκB activation, thereby suggesting SRA as one of the potential cell surface receptors for soluble CRT. Together, these data indicate that soluble CRT in oligomerized form could play a pathogenic role in autoimmune diseases through induction of pro-inflammatory cytokines (e.g., TNF-α and IL-6 by macrophages via MAPK-NFκB signaling pathway.

  3. Activation of macrophages by silicones: phenotype and production of oxidant metabolites

    Directory of Open Access Journals (Sweden)

    Sodero Natalia

    2002-07-01

    Full Text Available Abstract Background The effect of silicones on the immune function is not fully characterized. In clinical and experimental studies, immune alterations associated with silicone gel seem to be related to macrophage activation. In this work we examined in vivo, phenotypic and functional changes on peritoneal macrophages early (24 h or 48 h and late (45 days after the intraperitoneal (i.p. injection of dimethylpolysiloxane (DMPS (silicone. We studied the expression of adhesion and co-stimulatory molecules and both the spontaneous and the stimulated production of reactive oxygen intermediates and nitric oxide (NO. Results The results presented here demonstrate that the fluid compound DMPS induced a persistent cell recruitment at the site of the injection. Besides, cell activation was still evident 45 days after the silicone injection: activated macrophages exhibited an increased expression of adhesion (CD54 and CD44 and co-stimulatory molecules (CD86 and an enhanced production of oxidant metabolites and NO. Conclusions Silicones induced a persistent recruitment of leukocytes at the site of the injection and macrophage activation was still evident 45 days after the injection.

  4. Decreased proinflammatory cytokine production by peripheral blood mononuclear cells from vitiligo patients following aspirin treatment

    International Nuclear Information System (INIS)

    Zailaie, Mohammad Z.

    2005-01-01

    Limited studies have shown that treatment of cells with aspirin modulates their cytokine production. Consequently, the aim of the present study is to investigate the pattern of important proinflammatory cytokines production by stimulated peripheral blood mononuclear cells (PBMC) from patients with active vitiligo following long-term treatment with low-dose oral aspirin. The study was conducted at the Vitiligo Unit, King Abdul-Aziz University Medical Center, Jeddah, Kingdom of Saudi Arabia between March and October 2003. Thirty-two patients (18 females and 14 males) with non-segmental vitiligo were divided into 2 equal groups, one group received a daily single dose of oral aspirin (300 mg) and the other group received placebo for a period of 12 weeks. The concentrations of interleukin (IL)-1beta, IL-6, IL-8 and tumor necrosis factor-alpha (TNF-alpha) were determined in the supernatant of isolated cultured PMBC after being stimulated with bacterial lipopolysaccharide (LPS), before the start of aspirin treatment and at end of treatment period. Cytokine levels were measured using the quantitative sandwich enzyme-linked immunosorbent assay (ELISA) technique, utilizing commercially available kits. The proinflammatory cytokine production by the PBMC of patients with active vitiligo was significantly increased compared to normal controls. Thus, the relative percentage increase in the production of IL-1beta, IL-6, IL-8 and TNF-alpha was: 39.4%, 110.5% (p<0.05), 91.5% (p<0.01), and 37% (p<0.05). At the end of treatment, proinflammatory cytokine production in the aspirin-treated group of active vitiligo patients was significantly decreased compared to the placebo group. Thus, the relative percentage decrease in the production of IL-1beta IL-6, IL-8 and TNF-alpha was: 42.5%, 45.2% (p<0.05), 30.8% (p<0.01), and 50.6% (p<0.05). The vitiligo activity was arrested in all aspirin-treated patients, while 2 patients demonstrated significant repigmentation.Chronic administration of

  5. REDUCED NITRIC OXIDE PRODUCTION AND INOS MRNA EXPRESSION IN IFN-G STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH INOS SIRNAS

    Science.gov (United States)

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the inhibition or knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-y' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biolo...

  6. NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus.

    Science.gov (United States)

    Silveira, Tatiana N; Gomes, Marco Túlio R; Oliveira, Luciana S; Campos, Priscila C; Machado, Gabriela G; Oliveira, Sergio C

    2017-01-01

    Brucella abortus is the causative agent of brucellosis, which causes abortion in domestic animals and undulant fever in humans. This bacterium infects and proliferates mainly in macrophages and dendritic cells, where it is recognized by pattern recognition receptors (PRRs) including Nod-like receptors (NLRs). Our group recently demonstrated the role of AIM2 and NLRP3 in Brucella recognition. Here, we investigated the participation of NLRP12 in innate immune response to B. abortus. We show that NLRP12 inhibits the early production of IL-12 by bone marrow-derived macrophages upon B. abortus infection. We also observed that NLRP12 suppresses in vitro NF-κB and MAPK signaling in response to Brucella. Moreover, we show that NLRP12 modulates caspase-1 activation and IL-1β secretion in B. abortus infected-macrophages. Furthermore, we show that mice lacking NLRP12 are more resistant in the early stages of B. abortus infection: NLRP12 -/- infected-mice have reduced bacterial burdens in the spleens and increased production of IFN-γ and IL-1β compared with wild-type controls. In addition, NLRP12 deficiency leads to reduction in granuloma number and size in mouse livers. Altogether, our findings suggest that NLRP12 plays an important role in negatively regulating the early inflammatory responses against B. abortus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lactobacillus helveticus SBT2171, a cheese starter, regulates proliferation and cytokine production of immune cells.

    Science.gov (United States)

    Yamashita, M; Ukibe, K; Uenishi, H; Hosoya, T; Sakai, F; Kadooka, Y

    2014-01-01

    Consumption of a Lactobacillus helveticus SBT2171 (LH2171)-containing cheese has been reported to exhibit immunoregulatory actions, including an increase in regulatory T cell population and reduction in proinflammatory cytokine production in mice. We examined the in vitro effects of LH2171 cells per se on immune cell function, specifically proliferation and cytokine production, which are primary reactions of the immune response. Immune cell fractions were prepared by mechanical disruption of mesenteric lymph nodes (MLN), Peyer's patches (PP), and spleens (SP) of mice. The cell fractions were dispensed into a culture plate and stimulated with anti-CD3/CD28 antibody beads in place of antigen-presenting cells or lipopolysaccharide (LPS) in the presence or absence of heat-treated LH2171 cells and other bacterial strains for comparison. After incubation, proliferation, cytokine production, and cell viability of the immune cells were determined. The LH2171 significantly inhibited the proliferation of MLN immune cells stimulated with anti-CD3/CD28 compared with other bacterial strains. The antiproliferative potency of LH2171 was effective not only on MLN but also on PP and SP stimulated with anti-CD3/CD28 or LPS. The LH2171 also decreased LPS-stimulated IL-6 production from MLN, PP, and SP, and IL-1β production from SP, but LH2171 did not affect the viability of immune cells. The LH2171 inhibited immune cell proliferation and proinflammatory cytokine (IL-6 and IL-1β) production. The inhibitory actions were not due to cytotoxicity to immune cells, suggesting that LH2171 is a dairy Lactobacillus strain with beneficial immunoregulatory properties. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Macrophage Inhibitory Cytokine-1 (MIC-1 as A Biomarker for Diagnosis 
and Prognosis of Stage I-II Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuning LIU

    2016-04-01

    Full Text Available Background and objective Increased macrophage inhibitory cytokine-1 (MIC-1, member of transforming growth factor-β (TGF-β superfamily, was found in patients serum with epithelial tumors. Therefore, our aim was to delineate the diagnostic and prognostic value of serum MIC-1 in patients with stage I-II non-small cell lung cancer (NSCLC. Methods A total of 152 consecutive patients with stage I–II NSCLC were prospectively enrolled and underwent follow up after total resection of tumor. Serum MIC-1 level was detected in lung cancer patients by ELISA, 48 benign pulmonary disease patients and 105 healthy controls, and was correlated with clinical features and prognosis of patients. Results The level of MIC-1 of NSCLC patients was significantly higher than that of controls (P<0.001 and benign pulmonary disease patients (P<0.001. A threshold of 1,000 pg/mL could be used to diagnose early-stage NSCLC with 70.4% sensitivity and 99.0% specificity. The level of MIC-1 was associated with elder age (P=0.001, female (P=0.03 and T2 (P=0.022. A threshold of 1,465 pg/mL could identify patients with early poor outcome with 72.2% sensitivity and 66.1% specificity. The overall 3-year survival rate in patients with high level of MIC-1 (≥1,465 pg/mL was significantly lower than that of patients with low MIC-1 level (77.6% vs 94.8%. Multivariable Cox regression revealed that a high level of MIC-1 was an independent risk factor for compromised overall survival (HR=3.37, 95%CI: 1.09-10.42, P=0.035. Conclusion High level of serum MIC-1 could be served as a potential biomarker for diagnosis and poorer outcome in patients with early-stage NSCLC.

  9. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  10. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Eun-Min Kim

    2017-05-01

    Full Text Available Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages. Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype, which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  11. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Science.gov (United States)

    Kim, Eun-Min; Kwak, You Shine; Yi, Myung-Hee; Kim, Ju Yeong; Sohn, Woon-Mok; Yong, Tai-Soon

    2017-05-01

    Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  12. Anti-Estrogen Regulation of Macrophage Products That Influence Breast Cancer Cell Proliferation and Susceptibility to Apoptosis

    Science.gov (United States)

    2005-08-01

    and possess a more " motile " morphology than MCF-7 cells. Because inflammatory cytokines secreted by macrophages may act at different stages in tumor...Instituto de Biociencias, Universidade de Sgo Paulo, Sgo Paulo, Brasil. Worked in the laboratory of Professor Renato Basile on the cytogenetics of...Jack, M., Earlington, M., Williams, T., Bremner, T., Asseffa, A., and Smoot, D. (1993). Exposure of Helicobacterpylori to differentiated THP-1 cells. J

  13. Increased pro-inflammatory cytokine production after lipopolysaccharide stimulation in patients with X-linked agammaglobulinemia.

    Science.gov (United States)

    González-Serrano, María Edith; Estrada-García, Iris; Mogica-Martínez, Dolores; González-Garay, Alejandro; López-Herrera, Gabriela; Berrón-Ruiz, Laura; Espinosa-Padilla, Sara Elva; Yamazaki-Nakashimada, Marco Antonio; Vargas-Hernández, Alexander; Santos-Argumedo, Leopoldo; Estrada-Parra, Sergio Antonio; Espinosa-Rosales, Francisco J

    2012-10-01

    To evaluate the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine response by peripheral blood mononuclear cells (PBMCs) from XLA patients. Thirteen patients with XLA were included in the study. LPS-induced TNF-α, IL-1β, IL-6, and IL-10 production was determined in PBMCs from patients and matched healthy controls by ELISA. Cytokine production was correlated with the severity of mutation, affected domain and clinical characteristics. In response to LPS, PBMCs from XLA patients produced significantly higher amounts of pro-inflammatory cytokines and IL-10 compared to controls, and this production was influenced neither by the severity of the mutation nor the affected domain. PBMCs from patients with a history of more hospital admissions before their diagnosis produced higher levels of TNF-α. PBMCs from patients with lower serum IgA levels showed a higher production of TNF-α and IL-1β. Less severe (punctual) mutations in the Btk gene were associated with higher serum IgG levels at diagnosis. Our results demonstrate a predominantly inflammatory response in XLA patients after LPS stimulation and suggest a deregulation of TLR signaling in the absence of Btk. This response may be influenced by environmental factors.

  14. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures

    Directory of Open Access Journals (Sweden)

    Studzinski Diane

    2009-01-01

    Full Text Available Abstract Background Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS in multiple sclerosis (MS. Methods We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M. Results In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE, related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1 seen at 6 hours with microarray. Conclusion Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter

  15. Nitric oxide production by rat bronchoalveolar macrophages or ...

    Indian Academy of Sciences (India)

    Unknown

    inflammatory responses to either LPS or silica. For in- stance, the capacity of AMs to respond directly to LPS with increases in NO production has been well docu- mented (Jorens et al 1991; Warner et al 1995). AMs also are a likely source of the NO produced following silica exposure (Huffman et al 1998; Porter et al 2002).

  16. Nitric oxide production by rat bronchoalveolar macrophages or ...

    Indian Academy of Sciences (India)

    were given LPS (10 g/100 g body wt.) or silica (5 mg/100 g body wt.). BAL cells were harvested 18–24 h post-IT and enriched for AMs or PMNs using density gradient centrifugation. Media levels of nitrate and nitrite (NOx; the stable decomposition products of NO) were then measured 18 h after ex vivo culture of these cells.

  17. Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach.

    Directory of Open Access Journals (Sweden)

    John S Cho

    2009-09-01

    Full Text Available The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha. How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.We report here the development a completely random short-hairpin RNA (shRNA library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production.Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses.

  18. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    . The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...... in an increased passage of soluble compounds to the basolateral side that affected DC function. In addition, T. suis E/S suppressed LPS-induced pro-inflammatory cytokine production by CMT93/69 cells, whereas the production of the TH2 response-inducing cytokine thymic stromal lymphopoietin (TSLP) was induced. Our...

  19. Acrolein inhalation suppresses lipopolysaccharide-induced inflammatory cytokine production but does not affect acute airways neutrophilia.

    Science.gov (United States)

    Kasahara, David Itiro; Poynter, Matthew E; Othman, Ziryan; Hemenway, David; van der Vliet, Albert

    2008-07-01

    Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 microg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either before or after LPS challenge. Exposure to acrolein either before or after LPS challenge did not significantly affect the overall extent of LPS-induced lung inflammation, or the duration of the inflammatory response, as observed from recovered lung lavage leukocytes and histology. However, exposure to acrolein after LPS instillation markedly diminished the LPS-induced production of several inflammatory cytokines, specifically TNF-alpha, IL-12, and the Th1 cytokine IFN-gamma, which was associated with reduction in NF-kappaB activation. Our data demonstrate that acrolein exposure suppresses LPS-induced Th1 cytokine responses without affecting acute neutrophilia. Disruption of cytokine signaling by acrolein may represent a mechanism by which smoking contributes to chronic disease in chronic obstructive pulmonary disease and asthma.

  20. Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs

    DEFF Research Database (Denmark)

    Cheng, Shih-Chin; Sprong, Tom; Joosten, Leo A B

    2012-01-01

    In experimental studies, the role of complement in antifungal host defense has been attributed to its opsonizing capability. In this study, we report that in humans an activated complement system mainly augments Candida albicans-induced host proinflammatory cytokine production via C5a-C5a......R signaling, while phagocytosis and intracellular killing of Candida are not influenced. By blocking the C5a-C5aR signaling pathway, either with anti-C5a antagonist antibodies or with the C5aR antagonist W-54001, C. albicans-induced IL-6 and IL-1β levels were significantly reduced. Recombinant C5a augmented...... in augmenting host proinflammatory cytokine production upon contact with C. albicans, and define the role of the complement system in anti-Candida host defense in humans....

  1. Inflammation-Induced Changes in Circulating T-Cell Subsets and Cytokine Production During Human Endotoxemia

    DEFF Research Database (Denmark)

    Ronit, Andreas; Plovsing, Ronni R; Gaardbo, Julie C

    2017-01-01

    Observational clinical studies suggest the initial phase of sepsis may involve impaired cellular immunity. In the present study, we investigated temporal changes in T-cell subsets and T-cell cytokine production during human endotoxemia. Endotoxin (Escherichia coli lipopolysaccharide 4 ng....../kg) was administered intravenously in 15 healthy volunteers. Peripheral blood and bronchoalveolar lavage fluid (BALF) were collected at baseline and after 2, 4, 6, 8, and 24 hours for flow cytometry. CD4(+)CD25(+)CD127lowFoxp3(+) regulatory T cells (Tregs), CD4(+)CD161(+) cells, and activated Human leukocyte antigen......, HLA-DR(+)CD38(+) T cells were determined. Ex vivo whole-blood cytokine production and Toll-like receptor (TLR)-4 expression on Tregs were measured. Absolute number of CD3(+)CD4(+) (P = .026), CD3(+)CD8(+) (P = .046), Tregs (P = .023), and CD4(+)CD161(+) cells (P = .042) decreased after endotoxin...

  2. CD1d-restricted IFN-γ-secreting NKT cells promote immune complex-induced acute lung injury by regulating macrophage-inflammatory protein-1α production and activation of macrophages and dendritic cells.

    Science.gov (United States)

    Kim, Ji Hyung; Chung, Doo Hyun

    2011-02-01

    Immune complex-induced acute lung injury (IC-ALI) has been implicated in various pulmonary disease states. However, the role of NKT cells in IC-ALI remains unknown. Therefore, we explored NKT cell functions in IC-ALI using chicken egg albumin and anti-chicken egg albumin IgG. The bronchoalveolar lavage fluid of CD1d(-/-) and Jα18(-/-) mice contained few Ly6G(+)CD11b(+) granulocytes, whereas levels in B6 mice were greater and were increased further by α-galactosyl ceramide. IFN-γ and MIP-1α production in the lungs was greater in B6 than CD1d(-/-) mice. Adoptive transfer of wild type (WT) but not IFN-γ-, MIP-1α-, or FcγR-deficient NKT cells into CD1d(-/-) mice caused recruitment of inflammatory cells to the lungs. Moreover, adoptive transfer of IFN-γR-deficient NKT cells enhanced MIP-1α production and cell recruitment in the lungs of CD1d(-/-) or CD1d(-/-)IFN-γ(-/-) mice, but to a lesser extent than WT NKT cells. This suggests that IFN-γ-producing NKT cells enhance MIP-1α production in both an autocrine and a paracrine manner. IFN-γ-deficient NKT cells induced less IL-1β and TNF-α production by alveolar macrophages and dendritic cells in CD1d(-/-) mice than did WT NKT cells. Taken together, these data suggest that CD1d-restricted IFN-γ-producing NKT cells promote IC-ALI by producing MIP-1α and enhancing proinflammatory cytokine production by alveolar macrophages and dendritic cells.

  3. Roles of alternatively activated M2 macrophages in allergic contact dermatitis

    Directory of Open Access Journals (Sweden)

    Kotaro Suzuki

    2017-07-01

    Full Text Available Alternatively activated macrophages (M2 macrophages play key roles in the suppression of Th1 cell responses and the orchestration of tissue repair. However, recent studies have shown that M2 macrophages have potentials to produce high levels of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α, suggesting that M2 macrophages may exacerbate inflammation in some settings. In this regard, we have recently shown that large numbers of M2 macrophages accumulate in the sites of hapten-induced contact hypersensitivity (CHS, an animal model of allergic contact dermatitis, and that M2 macrophages exacerbate hapten-induced CHS by producing matrix metalloproteinase 12 (MMP12. We have also shown that suppressor of cytokine signaling-3 (SOCS3, a member of SOCS family proteins that are cytokine-inducible negative regulators of the JAK/STAT signaling pathways, is highly and preferentially expressed in M2 macrophages in hapten-induced CHS and that SOCS3 expressed in M2 macrophages is involved in the attenuation of CHS by suppressing MMP12 production. These findings underscore the importance of M2 macrophage-derived MMP12 in the development of CHS, and suggest that inhibition of M2 macrophages or MMP12 could be a potential therapeutic strategy for the treatment of allergic contact dermatitis.

  4. Short communication: Probiotic induction of interleukin-10 and interleukin-12 production by macrophages is modulated by co-stimulation with microbial components.

    Science.gov (United States)

    Kaji, Rumi; Kiyoshima-Shibata, Junko; Tsujibe, Satoshi; Nanno, Masanobu; Shida, Kan

    2018-04-01

    Probiotic lactobacilli stimulate macrophages and dendritic cells to secrete cytokines and thereby regulate the immune responses of the host. The balance of the IL-10 and IL-12 production induced by a probiotic is crucial for determining the direction of the immune response. In the present study, we examined the ability of microbial components to modify IL-10 and IL-12 production induced by a popular probiotic strain, Lactobacillus casei strain Shirota (LcS), which itself predominantly induces IL-12 production. Microbial ligands for toll-like receptor (TLR)3 and TLR5 further enhanced the IL-12 induction by LcS, whereas ligands for TLR2, TLR4, TLR7, and TLR9 converted the cytokine production pattern from IL-12 predominant to IL-10 predominant. These results indicate that the probiotic induction of IL-10 and IL-12 production can be flexibly modified by co-stimulation with microbial components. This could explain the variety of immunomodulatory functions (immunoactivation or anti-inflammation) exerted by this probiotic strain. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. α-1-Antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood

    OpenAIRE

    Pott, Gregory B.; Chan, Edward D.; Dinarello, Charles A.; Shapiro, Leland

    2009-01-01

    Several observations suggest endogenous suppressors of inflammatory mediators are present in human blood. α-1-Antitrypsin (AAT) is the most abundant serine protease inhibitor in blood, and AAT possesses anti-inflammatory activity in vitro and in vivo. Here, we show that in vitro stimulation of whole blood from persons with a genetic AAT deficiency resulted in enhanced cytokine production compared with blood from healthy subjects. Using whole blood from healthy subjects, dilution of blood with...

  6. Photodynamic therapy induced production of cytokines by latent Epstein Barr virus infected epithelial tumor cells

    Science.gov (United States)

    Koon, H. K.; Lo, K. W.; Lung, M. L.; Chang, C. K. C.; Wong, R. N. S.; Mak, N. K.

    2007-02-01

    Photodynamic therapy (PDT) is a method to treat cancer or non-cancer diseases by activation of the light-sensitive photosensitizers. Epstein Barr virus (EBV) has been implicated in the development of certain cancers such as nasopharyngeal carcinoma and B cell lymphoma. This study aims to examine the effects of EBV infection on the production of pro-inflammatory cytokines and chemokines in cells after the photosensitizer Zn-BC-AM PDT treatment. Epithelial tumor cell lines HONE-1 and latent EBV-infected HONE-1 (EBV-HONE-1) cells were used in this study. Cells were treated with the photosensitizer Zn-BC-AM for 24 hours before light irradiation. RT-PCR and quantitative ELISA methods were used for the evaluation of mRNA expression and production of cytokines, respectively. Results show that Zn-BC-AM PDT increases the production of IL-1a and IL-1b in EBV-HONE-1. Over a 10-fold increase in the production of IL-6 was observed in the culture supernatant of Zn-BC-AM PDT-treated HONE-1 cells. PDT-induced IL-6 production was observed in HONE-1 cells. EBV-HONE-1 has a higher background level of IL-8 production than the HONE-1. The production of IL-8 was suppressed in EBV-HONE-1cells after Zn-BC-AM PDT. Our results indicate that the response of HONE-1 cells to Zn-BC-AM PDT depends on the presence of latent EBV infection. Since IL-8 is a cytokine with angiogenic activity, Zn-BC-AM PDT may exert an anti-angiogenic effect through the suppression of IL-8 production by the EBV-infected cells.

  7. T-cell immunity and cytokine production in cosmonauts after long-duration space flights

    Science.gov (United States)

    Morukov, B.; Rykova, M.; Antropova, E.; Berendeeva, T.; Ponomaryov, S.; Larina, I.

    2011-04-01

    Long-duration spaceflight effects on T-cell immunity and cytokine production were studied in 12 Russian cosmonauts flown onto the International Space Station. Specific assays were performed before launch and after landing and included analysis of peripheral leukocyte distribution, analysis of T-cell phenotype, expression of activation markers, apoptosis, proliferation of T cells in response to a mitogen, concentrations of cytokines in supernatants of cell cultures. Statistically significant increase was observed in leukocytes', lymphocytes', monocytes' and granulocytes' total number, increase in percentage and absolutely number of CD3 +CD4 +-cells, CD4 +CD45RA +-cells and CD4 +CD45RA +/CD4 +CD45RО + ratio, CD4 +CD25 +Bright regulatory cells ( pcytokine production and T-cell activation (CD25+, CD38+) and negative correlation ( pcytokine production and number of bulk memory CD4+T-cells (CD45RO+). Thus, these results suggest that T-cell dysfunction can be conditioned by cytokine dysbalance and could lead to development of disease after long-duration space flights.

  8. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  9. DMPD: Inhibition of toll-like receptor and cytokine signaling--a unifying theme inischemic tolerance. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15545925 Inhibition of toll-like receptor and cytokine signaling--a unifying theme ...png) (.svg) (.html) (.csml) Show Inhibition of toll-like receptor and cytokine signaling--a unifying theme i...nischemic tolerance. PubmedID 15545925 Title Inhibition of toll-like receptor and cytokine sign

  10. Effects of Glycated Whey Protein Concentrate on Pro-inflammatory Cytokine Expression and Phagocytic Activity in RAW264.7 Macrophages.

    Science.gov (United States)

    Chun, Su-Hyun; Lee, Hyun Ah; Lee, Keon Bong; Kim, Sae Hun; Park, Kun-Young; Lee, Kwang-Won

    2016-01-01

    The aim of this study was to determine the stimulatory effects of Maillard reaction, a non-enzymatic browning reaction on the expression of pro-inflammatory cytokines and phagocytic activity induced by whey protein concentrate (WPC). Glycated WPC (G-WPC) was prepared by a reaction between WPC and the lactose it contained. The fluorescence intensity of G-WPC dramatically increased after one day, and high molecular weight complexes formed via the Maillard reaction were also observed in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles. G-WPC demonstrated immunomodulatory effects, including stimulation of increased nitric oxide production and cytokine expressions (i.e., tumor necrosis factor-α, interleukin (IL)-1β, and IL-6), compared to WPC. Furthermore, the phagocytic activity of RAW264.7 cells was significantly increased upon treatment with G-WPC, compared to WPC. Therefore, we suggest that G-WPC can be utilized as an improved dietary source for providing immune modulating activity.

  11. Changes in cytokine production in healthy subjects practicing Guolin Qigong : a pilot study

    Directory of Open Access Journals (Sweden)

    Jones Brian M

    2001-10-01

    Full Text Available Abstract Background Guolin Qigong is a combination of meditation, controlled breathing and physical movement designed to control the vital energy (qi of the body and consequently to improve spiritual, physical and mental health. Practice of Qigong has been reported to alter immunological function, but there have been few studies of its effects on cytokines, the key regulators of immunity. Methods Numbers of peripheral blood cytokine-secreting cells were determined by ELISPOT in 19 healthy volunteers aged 27 – 55, before they were taught the practice of Qigong and after 3, 7 and 14 weeks of daily practice. The effect of Qigong on blood cortisol was also examined. Results Numbers of IL4 and IL12-secreting cells remained stable. IL6 increased at 7 weeks and TNFα increased in unstimulated cultures at 3 and 7 weeks but decreased at these times in LPS and SAC-stimulated cultures. Of particular interest, IFNγ-secreting cells increased and IL10-secreting cells decreased in PHA-stimulated cultures, resulting in significant increases in the IFNγ:IL10 ratio. Cortisol, a known inhibitor of type 1 cytokine production, was reduced by practicing Qigong. Conclusion These preliminary studies in healthy subjects, although not necessarily representative of a randomized healthy population and not including a separate control group, have indicated that blood levels of the stress-related hormone cortisol may be lowered by short-term practice of Qigong and that there are concomitant changes in numbers of cytokine-secreting cells. Further studies of the effect of Qigong in patients with clinical diseases known to be associated with type 2 cytokine predominance are merited.

  12. Omega-3 polyunsaturated fatty acids enhance cytokine production and oxidative stress in a mouse model of preterm labor.

    Science.gov (United States)

    Boulis, Tharwat Stewart; Rochelson, Burton; Novick, Olivia; Xue, Xiangying; Chatterjee, Prodyot K; Gupta, Madhu; Solanki, Malvika H; Akerman, Meredith; Metz, Christine N

    2014-11-01

    Omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation during pregnancy remains controversial. We sought to examine the effects of ω-3 PUFA on inflammation and oxidative stress in vitro and in vivo using a model of preterm labor. In vivo. Female Swiss Webster mice were fed a normal diet or a 5% fish oil (FO) diet for 3 weeks then mated with normal-fed males. On gestational day 15, dams were injected with either saline (n=10 per group) or lipopolysaccharide (LPS, intrauterine) (n=10 per group). Maternal plasma, amniotic fluid, placentas, and uteri were collected 4 h later and assessed for cytokines; maternal plasma and amniotic fluids were analyzed for oxidative stress. In vitro. RAW264.7 mouse macrophage-like cells were treated with either: vehicle, H2O2, docosahexaenoic acid (DHA), or eicosapentaenoic acid (EPA) (0, 0.1-100 μM) and analyzed for oxidative stress. In vivo. Administration of the 5% FO diet enhanced LPS-induced cytokines in the placenta (Pstress than control-fed animals (Pstress were observed in the amniotic fluid. In vitro. Treatment of macrophage-like cells with ω-3 PUFA significantly and dose-dependently increased oxidative stress (Pstress in vivo. Likewise, DHA and EPA induced oxidative stress in macrophage-like cells in vitro.

  13. Storage xyloglucans: potent macrophages activators.

    Science.gov (United States)

    do Rosário, Marianna Maia Taulois; Kangussu-Marcolino, Mônica Mendes; do Amaral, Alex Evangelista; Noleto, Guilhermina Rodrigues; Petkowicz, Carmen Lúcia de Oliveira

    2011-01-15

    Storage xyloglucans from the seeds of Copaifera langsdorffii, Hymenaea courbaril and Tamarindus indica were obtained by aqueous extraction from the milled and defatted cotyledons, XGC, XGJ and XGT, respectively. The resulting fractions showed similar monosaccharide composition with Glc:Xyl:Gal molar ratios of 2.4:1.5:1.0, 3.8:1.5:1,0 and 3.6:2.4:1.0 for XGC, XGJ and XGT, respectively. High-performance size-exclusion chromatography of the polysaccharides showed unimodal profiles, and the average molar mass (M(w)) was obtained for XGC (9.6 × 10⁵ g/mol), XGJ (9.1 × 10⁵ g/mol) and XGT (7.3 × 10⁵ g/mol). The immunomodulatory effects of the xyloglucans on peritoneal macrophages were evaluated. Phagocytic activity was observed in macrophages treated with XGT. The effect of XGT was tested on the production of O₂(.-) and NO. At 25 μg/ml XGT caused a 100% increase in NO production when compared to the control group; however, it did not affect O₂(.-) production in the absence of PMA. The production of TNF-α, interleukins 1β and 6 by macrophages in the presence of the xyloglucans was evaluated. The polysaccharides affected the production of the cytokines by macrophages to different degrees. XGC caused an enhancement of IL-1β and TNF-α production, compared to the other xyloglucans. For IL-6 production, XGT gave greater stimulation than XGC and XGJ, reaching 87% at 50 μg/ml. XGJ promoted a statistically significant effect on all cytokine productions tested. The results indicate that the xyloglucans from C. langsdorffii, H. courbaril and T. indica can be classified as biological response modifiers (BRM). Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone

    Science.gov (United States)

    Rajagopal, S.P.; Hutchinson, J.L.; Dorward, D.A.; Rossi, A.G.; Norman, J.E.

    2015-01-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. PMID:26002969

  15. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    1999-01-01

    Ageing is associated with decreased resistance to bacterial infections and concomitant increased circulating levels of inflammatory cytokines. The purpose of the present study was to research age-related changes in levels of early mediators of the acute-phase response in whole blood supernatants...... following LPS stimulation, representing an ex vivo model of sepsis. Levels of tumour necrosis factor-alpha (TNF-alpha), IL-1 beta and IL-6 in whole blood supernatants were measured after in vitro LPS stimulation for 24 h in 168 elderly humans aged 81 years from the 1914 cohort in Glostrup, Denmark and in 91...... of proinflammatory cytokines compared with young men, but this difference was blurred by ageing. No relation was found between circulating plasma levels of TNF-alpha and levels after in vitro LPS stimulation. In conclusion, decreased production of TNF-alpha and IL-1 beta after exposure to LPS may reflect impaired...

  16. Sodium chloride-enriched Diet Enhanced Inflammatory Cytokine Production and Exacerbated Experimental Colitis in Mice.

    Science.gov (United States)

    Monteleone, Ivan; Marafini, Irene; Dinallo, Vincenzo; Di Fusco, Davide; Troncone, Edoardo; Zorzi, Francesca; Laudisi, Federica; Monteleone, Giovanni

    2017-02-01

    Environmental factors are supposed to play a decisive role in the pathogenesis of inflammatory bowel diseases [IBDs]. Increased dietary salt intake has been linked with the development of autoimmune diseases, but the impact of a salt-enriched diet on the course of IBD remains unknown. In this study, we examined whether high salt intake alters mucosal cytokine production and exacerbates colitis. Normal intestinal lamina propria mononuclear cells [LPMCs] were activated with anti-CD3/CD28 in the presence or absence of increasing concentrations of sodium chloride [NaCl] and/or SB202190, a specific inhibitor of p38/MAP Kinase. For in vivo experiments, a high dose of NaCl was administered to mice 15 days before induction of trinitrobenzene-sulfonic acid [TNBS]-colitis or dextran sulfate sodium [DSS]-colitis. In parallel, mice were given SB202190 before induction of TNBS-colitis. Transcription factors and effector cytokines were evaluated by flow-cytometry and real-time PCR. IL-17A, IL-23R, TNF-α, and Ror-γT were significantly increased in human LPMCs following NaCl exposure, while there was no significant change in IFN-γ, T-bet or Foxp3. Pharmacologic inhibition of p38/MAPK abrogated the NaCl-inducing effect on LPMC-derived cytokines. Mice receiving the high-salt diet developed a more severe colitis than control mice, and this effect was preventable by SB202190. Our data indicated that exposure of intestinal mononuclear cells to a high-NaCl diet enhanced effector cytokine production and contributed to the exacerbation of experimental colitis in mice. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2011-03-01

    Full Text Available Abstract Background Intermittent fasting (IF improves healthy lifespan in animals by a mechanism involving reduced oxidative damage and increased resistance to stress. However, no studies have evaluated the impact of controlled meal frequency on immune responses in human subjects. Objective A study was conducted to establish the effects of controlled diets with different meal frequencies, but similar daily energy intakes, on cytokine production in healthy male and female subjects. Design In a crossover study design with an intervening washout period, healthy normal weight middle-age male and female subjects (n = 15 were maintained for 2 months on controlled on-site one meal per day (OMD or three meals per day (TMD isocaloric diets. Serum samples and peripheral blood mononuclear cells (PBMCs culture supernatants from subjects were analyzed for the presence of inflammatory markers using a multiplex assay. Results There were no significant differences in the inflammatory markers in the serum of subjects on the OMD or TMD diets. There was an increase in the capacity of PBMCs to produce cytokines in subjects during the first month on the OMD or TMD diets. Lower levels of TNF-α, IL-17, MCP-1 and MIP-1β were produced by PBMCs from subjects on the OMD versus TMD diet. Conclusions PBMCs of subjects on controlled diets exhibit hypersensitivities to cellular stimulation suggesting that stress associated with altered eating behavior might affect cytokine production by immune cells upon stimulation. Moreover, stimulated PBMCs derived from healthy individuals on a reduced meal frequency diet respond with a reduced capability to produce cytokines.

  18. Effects of florfenicol on LPS-induced nitric oxide and prostaglandin E₂ production in RAW 264.7 macrophages.

    Science.gov (United States)

    Zhang, Xuemei; Xiong, Huanzhang; Li, Hongyu; Yu, Lu; Deng, Xuming

    2011-10-01

    Florfenicol, an antibiotic commonly used to treat infections, has previously been shown to modulate lipopolysaccharide (LPS)-induced early cytokine responses by blocking the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the effects of florfenicol on nitric oxide (NO) and prostaglandin E₂ (PGE₂) production as well as on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated murine RAW 264.7 macrophages. We also analysed the effects of florfenicol on mitogen-activated protein kinase (MAPK) pathways. Florfenicol significantly inhibited LPS-induced NO and PGE₂ production. Consistent with these observations, mRNA and protein expression of iNOS and COX-2 were also inhibited by florfenicol in a dose-dependent manner. Furthermore, phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) in LPS-stimulated RAW 264.7 cells was suppressed by florfenicol. However, c-Jun N-terminal kinase (JNK) phosphorylation remained unaffected. Using specific inhibitors of ERK and p38, we found that florfenicol may inhibit NO and PGE₂ mostly through ERK and p38 pathway. These results suggest that florfenicol inhibits NO and PGE₂ production in conjunction with an inhibition of iNOS and COX-2 expression, at least partially via suppression of ERK1/2 and p38 MAPK phosphorylation. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  19. Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naïve T cells into cytokine-producing mature T cells.

    Directory of Open Access Journals (Sweden)

    Kenshiro Tsuda

    Full Text Available T cells have been classified as belonging to the Th1 or Th2 subsets according to the production of defining cytokines such as IFN-γ and IL-4. The discovery of the Th17 lineage and regulatory T cells shifted the simple concept of the Th1/Th2 balance into a 4-way mechanistic pathway of local and systemic immunological activity. Clinically, the blockage of cytokine signals or non-specific suppression of cytokine predominance by immunosuppressants is the first-line treatment for inflammatory T cell-mediated disorders. Cyclosporine A (CsA and Tacrolimus (Tac are commonly used immunosuppressants for the treatment of autoimmune disease, psoriasis, and atopic disorders. Many studies have shown that these compounds suppress the activation of the calcium-dependent phosphatase calcineurin, thereby inhibiting T-cell activation. Although CsA and Tac are frequently utilized, their pharmacological mechanisms have not yet been fully elucidated.In the present study, we focused on the effects of CsA and Tac on cytokine secretion from purified human memory CD4(+T cells and the differentiation of naïve T cells into cytokine-producing memory T cells. CsA or Tac significantly inhibited IFN-γ, IL-4, and IL-17 production from memory T cells. These compounds also inhibited T cell differentiation into the Th1, Th2, and Th17 subsets, even when used at a low concentration. This study provided critical information regarding the clinical efficacies of CsA and Tac as immunosuppressants.

  20. Inflammatory Mediators and Insulin Resistance in Obesity: Role of Nuclear Receptor Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Lucía Fuentes

    2010-01-01

    Full Text Available Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR. The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs, which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  1. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Hussein, Mohamed Hamed; Kato, Shin; Suzuki, Satoshi; Ito, Tetsuya; Togari, Hajime; Asai, Kiyofumi

    2009-01-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  2. Nicotine inhibits LPS-induced cytokine production and leukocyte infiltration in rat placenta.

    Science.gov (United States)

    Bao, Junjie; Liu, Yuanyuan; Yang, Jinying; Gao, Qiu; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2016-03-01

    Previous work conducted by our group has shown that nicotine reduces lipopolysaccharide (LPS)-induced systemic inflammatory responses and protects fetuses in pregnant Sprague-Dawley (SD) rats. In the present study, we aim to evaluate the influence of nicotine on rat placenta, including cytokine release, leukocyte infiltration, and α7 nicotinic acetylcholine receptor (α7-nAChR) expression. Placental tissues of SD rats on gestation day 14 (GD14) were obtained and cultured in the presence or absence of LPS and/or nicotine. Culture media after 24 h were analyzed for cytokines release using Luminex. Other pregnant SD rats were first pretreated with nicotine on GD14 and GD15, followed by LPS injection on GD16. Placentas were collected on GD18 for H&E staining to evaluate leukocyte density and for real-time PCR and western blotting to identify the α7-nAChR expression in different groups. Nicotine suppresses LPS-stimulated placental proinflammatory cytokines (IL-1, IL-2, IL-6, TNF-α, IFN-γ) production except IL-17 in vitro, and reduces leucocytes infiltration in the placental chorionic plate caused by LPS in vivo. Moreover, LPS increases the α7-nAChR protein expression in placentas while pretreatment of nicotine inhibits it. These data show that nicotine suppresses LPS-induced placental inflammation by inhibition of cytokine release and infiltration of leukocytes into the placenta, and regulates the increased expression of α7-nAChR in placenta after LPS treatment. Nicotine and other nicotinic agonists may be an alternative therapeutic strategy for placental inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production

    Directory of Open Access Journals (Sweden)

    Ju Hee Lee

    2015-01-01

    Full Text Available The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549 and the major constituent, methyl protodioscin (MP, also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF- α from A549 cells at 10–100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS- induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100–400 mg/kg and 30–60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders.

  4. Social role conflict predicts stimulated cytokine production among men, not women.

    Science.gov (United States)

    Schreier, Hannah M C; Hoffer, Lauren C; Chen, Edith

    2016-11-01

    To assess whether perceived role conflict is associated with stimulated pro-inflammatory cytokine production and glucocorticoid sensitivity, and whether these associations are moderated by sex. 153 healthy adults (aged 45.8±5.5years, 78% female) listed their 3 main social roles and indicated the amount of role conflict they perceived between each pair of social roles. Subsequently, participants underwent blood draws and leukocyte response to microbial challenge and glucocorticoid sensitivity were assessed by incubating whole blood with lipopolysaccharide (LPS) in the presence or absence of hydrocortisone. Stimulated levels of Interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNFα) were measured. Multiple regression analyses controlling for sociodemographics revealed significant sex×role conflict interactions for LPS-stimulated production of IL-1β, IL-6, and TNFα (all interaction psrole conflict was associated with greater pro-inflammatory cytokine production in response to microbial stimulation only among men, not women. There also were significant sex×role conflict interactions with respect to glucocorticoid sensitivity for IL-1β, IL-6, and TNFα production (all interaction psrole conflict was unrelated to glucocorticoid sensitivity among women, but associated with less sensitivity to glucocorticoid signaling among men. Perceived social role conflict, indicating greater perceived demand across multiple social roles, may take a greater toll on the regulation of inflammatory processes among men compared to women. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of Bacillus thuringiensis parasporal toxin on stimulating of IL-2 and IL-5 cytokines production

    Directory of Open Access Journals (Sweden)

    Marzieh Soleimany

    2018-03-01

    Full Text Available Introduction:Bacillus thuringiensis, is a Gram-positive spore-forming bacterium that produces crystalline parasporal protein (Cry during sporulation. Some of these Cry toxins do not show cytotoxicity against insects but they are capable to kill some human and animal cancer cells. The aim of this study was to verify whether cytocidal parasporal of B thuringiensis strains have immunostimulatory activity on human peripheral blood mononuclear cells (PBMNC and to evaluate the ability of IL-2 and IL-5 production. Materials and methods: B. thuringiensis toxin with cytocidal activity was isolated and treated with proteinase K. PBMNC was cultured and treated with activated crystal proteins. We evaluated the ability of different cytokines production with Flow Cytometry. Results: In this study, immune stimulatory toxins Cry1 were distinguished. This toxin can stimulate production of cytokines IL-2 and stop production of IL-5. Discussion and conclusion: According to anti-cancer effect of B. thuringiensis toxins and also immune stimulatory effect, with more research these toxins can be introduced as immunotherapy drug in cancer treatment.

  6. Collectin-11 Is an Important Modulator of Retinal Pigment Epithelial Cell Phagocytosis and Cytokine Production.

    Science.gov (United States)

    Dong, Xia; Wu, Weiju; Ma, Liang; Liu, Chengfei; Bhuckory, Mohajeet B; Wang, Liping; Nandrot, Emeline F; Xu, Heping; Li, Ke; Liu, Yizhi; Zhou, Wuding

    2017-01-01

    In this paper, we report previously unknown roles for collectin-11 (CL-11, a soluble C-type lectin) in modulating the retinal pigment epithelial (RPE) cell functions of phagocytosis and cytokine production. We found that CL-11 and its carbohydrate ligand are expressed in both the murine and human neural retina; these resemble each other in terms of RPE and photoreceptor cells. Functional analysis of murine RPE cells showed that CL-11 facilitates the opsonophagocytosis of photoreceptor outer segments and apoptotic cells, and also upregulates IL-10 production. Mechanistic analysis revealed that calreticulin on the RPE cells is required for CL-11-mediated opsonophagocytosis whereas signal-regulatory protein α and mannosyl residues on the cells are involved in the CL-11-mediated upregulation of IL-10 production. This study is the first to demonstrate the role of CL-11 and the molecular mechanisms involved in modulating RPE cell phagocytosis and cytokine production. It provides a new insight into retinal health and disease and has implications for other phagocytic cells. © 2017 S. Karger AG, Basel.

  7. Aquatic exercise improves the monocyte pro- and anti-inflammatory cytokine production balance in fibromyalgia patients.

    Science.gov (United States)

    Ortega, E; Bote, M E; Giraldo, E; García, J J

    2012-02-01

    Current hypotheses of the etiology of fibromyalgia (FM) include inflammatory disorders. We evaluated the effect of a pool-aquatic exercise program (8 months, two weekly 60-min sessions) on the inflammatory cytokine production by isolated monocytes, and on the serum concentration of C-reactive protein (CRP), in a group of female FM patients. Monocytes from FM patients released more IL-1β, TNFα, IL-6, and IL-10 than those from an age-matched control group of healthy women (HW). This inflammatory disorder in FM women was also manifested by high circulating concentrations of CRP. Increased IL-6 with a concomitant decreased TNFα spontaneous release was found after 4 months (midway through) of the exercise program. At the end of the program (8 months), monocytes from FM patients showed diminished spontaneous production of pro-/anti-inflammatory cytokines, with a similar spontaneous release of IL-1β and IL-6 to that of HW, but a lower production of TNFα and higher of IL-10. Lipopolysaccharide-induced production of IL-1β, TNFα, IL-6, and IL-10 also decreased at the end of the exercise program, although IL-10 remained higher than HW. The anti-inflammatory effect of the exercise program was also corroborated by a decrease in the circulating CRP concentration. Exercise also improved the health-related quality of life of FM patients. © 2010 John Wiley & Sons A/S.

  8. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia.

    Science.gov (United States)

    Delgado, R; Carlin, A; Airaghi, L; Demitri, M T; Meda, L; Galimberti, D; Baron, P; Lipton, J M; Catania, A

    1998-06-01

    Inflammatory processes contribute to neurodegenerative disease, stroke, encephalitis, and other central nervous system (CNS) disorders. Activated microglia are a source of cytokines and other inflammatory agents within the CNS and it is therefore important to control glial function in order to preserve neural cells. Melanocortin peptides are pro-opiomelanocortin-derived amino acid sequences that include alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). These peptides have potent and broad anti-inflammatory effects. We tested effects of alpha-MSH (1-13), alpha-MSH (11-13), and ACTH (1-24) on production of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) in a cultured murine microglial cell line (N9) stimulated with lipopolysaccharide (LPS) plus interferon gamma (IFN-gamma). Melanocortin peptides inhibited production of these cytokines and NO in a concentration-related fashion, probably by increasing intracellular cAMP. When stimulated with LPS + IFN-gamma, microglia increased release of alpha-MSH. Production of TNF-alpha, IL-6, and NO was greater in activated microglia after innmunoneutralization of endogenous alpha-MSH. The results suggest that alpha-MSH is an autocrine factor in microglia. Because melanocortin peptides inhibit production of pro-inflammatory mediators by activated microglia they might be useful in treatment of inflammatory/degenerative brain disorders.

  9. Fusobacterium nucleatum induces cytokine production through Toll-like-receptor-independent mechanism.

    Science.gov (United States)

    Quah, S Y; Bergenholtz, G; Tan, K S

    2014-06-01

    To determine whether Fusobacterium nucleatum's ability to invade cells allows the bacteria to activate pro-inflammatory response through cytosolic pattern recognition receptors, independent of surface Toll-like receptors (TLRs). HEK293T cells, which lack endogenous TLRs, and overexpressing dominant negative myeloid differentiation primary response gene 88 (MyD88DN) protein, were infected with F. nucleatum and the production of interleukin-8 (IL-8) was determined. The necessity for intracellular invasion of the bacteria for cytokine production was also investigated by blocking bacterial invasion with cytochalasin D. The roles of NFĸB and p38 mitogen-activated protein kinase (MAPK) and nucleotide-binding oligomerization domain-1 (NOD-1) signalling pathways in F. nucleatum-induced IL-8 secretion were determined. Fusobacterium nucleatum-infected HEK293T cells produced IL-8 independent of the MYD88 signalling. This response was inhibited by preventing F. nucleatum invasion into HEK293T cells. p38 MAPK but not the NFĸB signalling pathway was required for F. nucleatum-mediated IL-8 production. HEK293T cells expressed NOD-1 but not NOD-2. Yet, inhibition of NOD-1 signalling did not affect F. nucleatum-induced IL-8 secretion. Fusobacterium nucleatum invasion led to cytokine production, which is mediated by the p38 MAPK signalling but independent of TLRs, NOD-1, NOD-2 and NFĸB signalling. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition

    Directory of Open Access Journals (Sweden)

    Mariusz P. Madej

    2017-06-01

    Full Text Available Production and activity of interleukin (IL-1β are kept under strict control in our body, because of its powerful inflammation-promoting capacity. Control of IL-1β production and activity allows IL-1 to exert its defensive activities without causing extensive tissue damage. Monocytes are the major producers of IL-1β during inflammation, but they are also able to produce significant amounts of IL-1 inhibitors such as IL-1Ra and the soluble form of the decoy receptor IL-1R2, in an auto-regulatory feedback loop. Here, we investigated how innate immune memory could modulate production and activity of IL-1β by human primary monocytes and monocyte-derived tissue-like/deactivated macrophages in vitro. Cells were exposed to Gram-negative (Escherichia coli and Gram-positive (Lactobacillus acidophilus bacteria for 24 h, then allowed to rest, and then re-challenged with the same stimuli. The presence of biologically active IL-1β in cell supernatants was calculated as the ratio between free IL-1β (i.e., the cytokine that is not bound/inhibited by sIL-1R2 and its receptor antagonist IL-1Ra. As expected, we observed that the responsiveness of tissue-like/deactivated macrophages to bacterial stimuli was lower than that of monocytes. After resting and re-stimulation, a memory effect was evident for the production of inflammatory cytokines, whereas production of alarm signals (chemokines was minimally affected. We observed a high variability in the innate memory response among individual donors. This is expected since innate memory largely depends on the previous history of exposure or infections, which is different in different subjects. Overall, innate memory appeared to limit the amount of active IL-1β produced by macrophages in response to a bacterial challenge, while enhancing the responsiveness of monocytes. The functional re-programming of mononuclear phagocytes through modulation of innate memory may provide innovative approaches in the management

  11. Effect of perceived stress on cytokine production in healthy college students.

    Science.gov (United States)

    Sribanditmongkol, Vorachai; Neal, Jeremy L; Patrick, Thelma E; Szalacha, Laura A; McCarthy, Donna O

    2015-04-01

    Chronic psychological stress impairs antibody synthesis following influenza vaccination. Chronic stress also increases circulating levels of proinflammatory cytokines and glucocorticoids in elders and caregivers, which can impair antibody synthesis. The purpose of this study was to determine whether psychological stress increases ex vivo cytokine production or decreases glucocorticoid sensitivity (GCS) of peripheral blood leukocytes from healthy college students. A convenience sample of Reserve Officer Training Corps (ROTC) students completed the Perceived Stress Scale (PSS). Whole blood was incubated in the presence of influenza vaccine and dexamethasone to evaluate production of interleukin-6 (IL-6), interleukin-1-beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). Multiple regression models controlling for age, gender, and grade point average revealed a negative relationship between PSS and GCS for vaccine-stimulated production of IL-1β, IL-6, and TNF-α. These data increase our understanding of the complex relationship between chronic stress and immune function. © The Author(s) 2014.

  12. Radiation-induced surge of macrophage foam cell formation, oxidative damage, and cytokine release is attenuated by a nanoformulation of curcumin.

    Science.gov (United States)

    Soltani, Behrooz; Bodaghabadi, Narges; Ghaemi, Nasser; Sadeghizadeh, Majid

    2017-03-01

    We examined the potential of a dendrosomal nanoformulation of curcumin (DNC) for intervention of ionizing radiation (IR)-induced damage (particularly leading to atherosclerosis), employing an irradiated THP-1 macrophage model. Differentiated THP-1 macrophages were irradiated and treated with curcumin or DNC nanoformulation (and oxidized low density lipoprotein, ox-LDL, to promote foam cells). Chemical, biochemical, and genetics tools including viability and apoptosis, multiple ELISA, real-time PCR, Western blotting, enzyme activity, and fluorimetry assays were employed to illustrate IR damage as well as the DNC intervention potential. DNC per se at 10 μM exerted no cytotoxic effects on macrophages. However, it caused apoptosis in 2 Gy-irradiated macrophages which were treated with ox-LDL, chiefly through a caspase-dependent pathway involving caspase-3. Concurrently, 10 μM DNC prevented the IR-induced rise in lipid accumulation (72% decrease compared to IR control, p DNC facilitated the uptake of curcumin in irradiated macrophages, increased glutathione peroxidase expression and activity, restored glutathione (GSH) level, and upregulated the expression of a cholesterol efflux gene, ABCA1. Two other antioxidants, resveratrol and N-acetyl cycteine (NAC), could simulate some of the beneficial effects of DNC against IR-induced CD36 expression and lipid accumulation, which were obviated by buthionine sulfoximine (BSO) pre-treatment of macrophages. However, some modulatory effects of DNC, particularly on lipid accumulation and the expression of SR-A and ABCA1 genes, seemed to be independent of its antioxidant effect, since they were still observed in BSO-pretreated macrophages, depleted of GSH. DNC treatment suppresses IR-induced oxidative damage, inflammation, and foam cell formation in macrophages through multiple mechanisms.

  13. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Xian Jin

    2015-01-01

    Full Text Available Atherosclerotic lesions are accelerated in patients with diabetes. M1 (classically activated in contrast to M2 alternatively activated macrophages play key roles in the progression of atherosclerosis. Since advanced glycation end products (AGEs are major pathogenic factors and active inflammation inducers in diabetes mellitus, this study assessed the effects of AGEs on macrophage polarization. The present study showed that AGEs significantly promoted macrophages to express IL-6 and TNF-α. M1 macrophage markers such as iNOS and surface markers including CD11c and CD86 were significantly upregulated while M2 macrophage markers such as Arg1 and CD206 remained unchanged after AGEs stimulation. AGEs significantly increased RAGE expression in macrophages and activated NF-κB pathway, and the aforementioned effects were partly abolished by administration of anti-RAGE antibody or NF-κB inhibitor PDTC. In conclusion, our results suggest that AGEs enhance macrophage differentiation into proinflammatory M1 phenotype at least partly via RAGE/NF-κB pathway activation.

  14. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-κB Pathway

    Science.gov (United States)

    Jin, Xian; Yao, Tongqing; Zhou, Zhong'e; Zhu, Jian; Zhang, Song; Hu, Wei; Shen, Chengxing

    2015-01-01

    Atherosclerotic lesions are accelerated in patients with diabetes. M1 (classically activated in contrast to M2 alternatively activated) macrophages play key roles in the progression of atherosclerosis. Since advanced glycation end products (AGEs) are major pathogenic factors and active inflammation inducers in diabetes mellitus, this study assessed the effects of AGEs on macrophage polarization. The present study showed that AGEs significantly promoted macrophages to express IL-6 and TNF-α. M1 macrophage markers such as iNOS and surface markers including CD11c and CD86 were significantly upregulated while M2 macrophage markers such as Arg1 and CD206 remained unchanged after AGEs stimulation. AGEs significantly increased RAGE expression in macrophages and activated NF-κB pathway, and the aforementioned effects were partly abolished by administration of anti-RAGE antibody or NF-κB inhibitor PDTC. In conclusion, our results suggest that AGEs enhance macrophage differentiation into proinflammatory M1 phenotype at least partly via RAGE/NF-κB pathway activation. PMID:26114112

  15. Macrophages and bone inflammation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2017-07-01

    Full Text Available Bone metabolism is tightly regulated by the immune system. Accelerated bone destruction is observed in many bone diseases, such as rheumatoid arthritis, fracture, and particle-induced osteolysis. These pathological conditions are associated with inflammatory responses, suggesting the contribution of inflammation to bone destruction. Macrophages are heterogeneous immune cells and are polarized into the proinflammatory M1 and antiinflammatory M2 phenotypes in different microenvironments. The cytokines produced by macrophages depend on the macrophage activation and polarization. Macrophages and macrophage-derived cytokines are important to bone loss in inflammatory bone disease. Recent studies have shown that macrophages can be detected in bone tissue and interact with bone cells. The interplay between macrophages and bone cells is critical to bone formation and repair. In this article, we focus on the role of macrophages in inflammatory bone diseases, as well as discuss the latest studies about macrophages and bone formation, which will provide new insights into the therapeutic strategy for bone disease.

  16. Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes

    Directory of Open Access Journals (Sweden)

    Olerud John E

    2011-06-01

    Full Text Available Abstract Background Many chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. Staphylococcus aureus is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen. Results The impact of S. aureus soluble products in biofilm-conditioned medium (BCM or in planktonic-conditioned medium (PCM on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic S. aureus was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, S. aureus biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms. Conclusions Collectively the results indicate that S

  17. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    International Nuclear Information System (INIS)

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard; Gorelik, Elieser; Lokshin, Anna E.

    2008-01-01

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blocked TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-β-gal, p21 Waf1/Cip1 , p16 INK4a , and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects

  18. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    van Rensburg, C.E.J.; Naude, P.J. [University of Pretoria, Pretoria (South Africa)

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  19. Analgesic activity of piracetam: effect on cytokine production and oxidative stress.

    Science.gov (United States)

    Navarro, Suelen A; Serafim, Karla G G; Mizokami, Sandra S; Hohmann, Miriam S N; Casagrande, Rubia; Verri, Waldiceu A

    2013-04-01

    Piracetam is a prototype of nootropic drugs used to improve cognitive impairment. However, recent studies suggest that piracetam can have analgesic and anti-inflammatory effects. Inflammatory pain is the result of a process that depends on neutrophil migration, cytokines and prostanoids release and oxidative stress. We analyze whether piracetam has anti-nociceptive effects and its mechanisms. Per oral pretreatment with piracetam reduced in a dose-dependent manner the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, formalin and complete Freund's adjuvant. Piracetam also diminished carrageenin-induced mechanical and thermal hyperalgesia, myeloperoxidase activity, and TNF-α-induced mechanical hyperalgesia. Piracetam presented analgesic effects as post-treatment and local paw treatment. The analgesic mechanisms of piracetam were related to inhibition of carrageenin- and TNF-α-induced production of IL-1β as well as prevention of carrageenin-induced decrease of reduced glutathione, ferric reducing ability and free radical scavenging ability in the paw. These results demonstrate that piracetam presents analgesic activity upon a variety of inflammatory stimuli by a mechanism dependent on inhibition of cytokine production and oxidative stress. Considering its safety and clinical use for cognitive function, it is possible that piracetam represents a novel perspective of analgesic. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  1. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  2. The role of stress mediators in modulation of cytokine production by ethanol

    International Nuclear Information System (INIS)

    Glover, Mitzi; Cheng Bing; Fan Ruping; Pruett, Stephen

    2009-01-01

    Acute ethanol exposure in humans and in animal models activates the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS); the resultant increases in concentration of neuroendocrine mediators contribute to some of the immunosuppressive effects of ethanol. However, the role of these mediators in the ethanol-induced inhibition of inflammatory responses is not clear. This is complicated by the fact that most inflammatory stimuli also activate the HPA axis and SNS, and it has not been determined if ethanol plus an inflammatory stimulus increases these stress responses. Addressing this issue is the major focus of the study described herein. Complementary approaches were used, including quantitative assessment of the stress response in mice treated with polyinosinic-polycytidylic acid (poly I:C, as an inflammatory stimulus) and inhibition of the production or action of key HPA axis and SNS mediators. Treatment of mice with ethanol shortly before treatment with poly I:C yielded a significant increase in the corticosterone response as compared to the response to poly I:C alone, but the increase was small and not likely sufficient to account for the anti-inflammatory effects of ethanol. Inhibition of catecholamine and glucocorticoid production by adrenalectomy, and inhibition of catecholamine action with a sustained release antagonist (nadalol) supported this conclusion and revealed that 'excess' stress responses associated with ethanol treatment is not the mechanism of suppression of pro-inflammatory cytokine production, but stress-induced corticosterone does regulate production of several of these cytokines, which has not previously been reported.

  3. 8,8'-Bieckol, isolated from edible brown algae, exerts its anti-inflammatory effects through inhibition of NF-κB signaling and ROS production in LPS-stimulated macrophages.

    Science.gov (United States)

    Yang, Yeong-In; Jung, Seung-Hyun; Lee, Kyung-Tae; Choi, Jung-Hye

    2014-12-01

    Ecklonia cava (E. cava) is an abundant brown alga that contains high levels of phlorotannins, which are unique marine polyphenolic compounds. It has been suggested that E. cava phlorotannins exert anti-inflammatory effects. However, the anti-inflammatory effects and underlying molecular mechanism exerted by 8,8'-bieckol isolated from E. cava have not been reported. Thus, in this study, we examined the anti-inflammatory effects of 8,8'-bieckol on lipopolysaccharide (LPS)-stimulated primary macrophages and RAW 264.7 macrophages. We found that 8,8'-bieckol suppressed key inflammatory mediator [i.e., nitric oxide (NO) and prostaglandin E2 (PGE2)] production in both primary and RAW 264.7 macrophages. 8,8'-Bieckol inhibited NO by suppressing LPS-induced expression of inducible nitric oxide synthase (iNOS) at the mRNA and protein levels in primary macrophages and RAW 264.7 cells. In addition, 8,8'-bieckol decreased the production and mRNA expression of the inflammatory cytokine interleukin-6 (IL-6), but not tumor necrosis factor (TNF)-α, in RAW 264.7 cells. Moreover, 8,8'-bieckol treatment diminished transactivation of nuclear factor-kappa B (NF-κB) and nuclear translocation of the NF-κB p65 subunit and suppressed LPS-induced intracellular reactive oxygen species (ROS) production in macrophages. Furthermore, 8,8'-bieckol markedly reduced mortality in LPS-induced septic mice. Taken together, these data indicate that the anti-inflammatory properties of 8,8'-bieckol are associated with the suppression of NO, PGE2, and IL-6 via negative regulation of the NF-κB pathway and ROS production in LPS-stimulated RAW 264.7 cells. Moreover, 8,8'-bieckol protects mice from endotoxin shock. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-01-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti-inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX-2, iNOS, pro-inflammatory cytokines [tumor necrosis factor-α and interleukin (IL)-1β] and anti-inflammatory cytokines (IL-6 and IL-10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX-2 expression and ROS production, as well as

  5. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  6. Pivotal Advance: Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes

    NARCIS (Netherlands)

    van den Bossche, Jan; Lamers, Wouter H.; Koehler, Eleonore S.; Geuns, Jan M. C.; Alhonen, Leena; Uimari, Anne; Pirnes-Karhu, Sini; van Overmeire, Eva; Morias, Yannick; Brys, Lea; Vereecke, Lars; de Baetselier, Patrick; van Ginderachter, Jo A.

    2012-01-01

    In macrophages, basal polyamine (putrescine, spermidine, and spermine) levels are relatively low but are increased upon IL-4 stimulation. This Th2 cytokine induces Arg1 activity, which converts arginine into ornithine, and ornithine can be decarboxylated by ODC to produce putrescine, which is

  7. Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Hui; Zhang, Jinliang; Xi, Li; Zhang, Junbo; Chen, Chuangfu

    2017-03-01

    The pathogenic mechanisms of Brucella are still poorly understood. GntR is a transcriptional regulator and plays an important role in the intracellular survival of Brucella. To investigate whether GntR is involved in the cytotoxicity of Brucella abortus (B. abortus), we created a 2308ΔgntR mutant of B. abortus 2308 (S2308). Lactate dehydrogenase (LDH) cytotoxicity assays using a murine macrophage cell line (RAW 264.7) show that high-dose infection with the parental strain produces a high level of cytotoxicity to macrophages, but the 2308ΔgntR mutant exhibits a very low level of cytotoxicity, indicating that mutation of GntR impairs the cytotoxicity of B. abortus to macrophages. After the macrophages are infected with 2308ΔgntR, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8) increase and are slightly higher than that for the S2308 infected group, indicating that the 2308ΔgntR mutant could induce the secretion of inflammatory cytokines. The virulence factor detection experiments indicate that genes involved in the type IV secretion system (T4SS) and quorum sensing system (QSS) are down-regulated in 2308ΔgntR. The lower levels of survival of 2308ΔgntR under various stress conditions and the increased sensitivity of 2308ΔgntR to polymyxin B suggest that GntR is a virulence factor and that deletion of gntR reduces of B. abortus to stress conditions. Taken together, our results demonstrate that GntR is involved in the cytotoxicity, virulence and intracellular survival of B. abortus during its infection.

  8. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  9. Dietary perilla oil inhibits proinflammatory cytokine production in the bronchoalveolar lavage fluid of ovalbumin-challenged mice.

    Science.gov (United States)

    Chang, Hui-Hsiang; Chen, Chin-Shun; Lin, Jin-Yuarn

    2008-06-01

    To evaluate the anti-inflammatory effects of different dietary oils on ovalbumin-sensitized and -challenged mice. Experimental BALB/c mice were fed with different diets containing 5% corn oil [rich in linoleic acid, 18:2n-6 polyunsaturated fatty acids (PUFA), as a control diet], 5% perilla oil (rich in alpha-linolenic acid, 18:3n-3 PUFA) or 5% compound oil containing 50% corn oil and 50% perilla oil, for 5 consecutive weeks. The leukocyte count, inflammatory mediators, and cytokine levels, including proinflammatory and Th1/Th2 cytokines in the bronchoalveolar lavage fluid (BALF) from the mice were determined. The results showed that 5% compound oil administration significantly (P 0.05) decrease the eosinophil accumulation or the secretions of inflammatory mediators such as prostaglandin E2 (PGE2), histamine, nitric oxide and eotaxin. However, dietary perilla oil significantly (P < 0.05) reduced proinflammatory cytokine (TNF-alpha, IL-1beta and IL-6) and Th1 cytokine (IFN-gamma and IL-2) production. The production of Th2 cytokine IL-10, but not IL-4 and IL-5, was also significantly inhibited by perilla oil administration. The results suggest that dietary perilla oil might alleviate inflammation via decreasing the secretion of pro-inflammatory cytokines in BALF, but failed to regulate the Th1/Th2 balance toward Th1 pole during the Th2-skewed allergic airway inflammation.

  10. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  11. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Danielsen, Pernille Høgh

    2014-01-01

    black (CB) exposure in cultured human umbilical vein endothelial cells (HUVECs), THP-1 (monocytes) and THP-1 derived macrophages (THP-1a). The proliferation of HUVECs or co-cultures of HUVECs and THP-1 cells were unaffected by CB exposure, whereas there was increased cytotoxicity, assessed by the LDH...... and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular...... GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects...

  12. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  13. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  14. Staphylococcus aureus Infection of Human Gestational Membranes Induces Bacterial Biofilm Formation and Host Production of Cytokines.

    Science.gov (United States)

    Doster, Ryan S; Kirk, Leslie A; Tetz, Lauren M; Rogers, Lisa M; Aronoff, David M; Gaddy, Jennifer A

    2017-02-15

    Staphylococcus aureus, a metabolically flexible gram-positive pathogen, causes infections in a variety of tissues. Recent evidence implicates S. aureus as an emerging cause of chorioamnionitis and premature rupture of membranes, which are associated with preterm birth and neonatal disease. We demonstrate here that S. aureus infects and forms biofilms on the choriodecidual surface of explanted human gestational membranes. Concomitantly, S. aureus elicits the production of proinflammatory cytokines, which could ultimately perturb maternal-fetal tolerance during pregnancy. Therefore, targeting the immunological response to S. aureus infection during pregnancy could attenuate disease among infected individuals, especially in the context of antibiotic resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Granulocyte-Macrophage Colony-Stimulating Factor Production and Tissue Eosinophilia in Chronic Rhinitis

    Directory of Open Access Journals (Sweden)

    Peric, Aleksandar

    2016-02-01

    Full Text Available Introduction Granulocyte-macrophage colony-stimulating factor (GM-CSF is a strong proinflammatory cytokine that takes part in allergic nasal inflammation as an eosinophil colony-stimulating factor. However, the role of GM-CSF in non-allergic rhinitis has not been fully explored. Objectives The aim of this investigation was to assess the concentration of GM-CSF in nasal secretions of patients with non-allergic rhinitis with eosinophilia syndrome (NARES in comparison to patients with perennial allergic rhinitis (PAR and healthy subjects, as well as to assess the relationship with the degree of eosinophilic inflammation and clinical characteristics of the patients. Methods Fourteen patients with diagnosis of NARES, 14 PAR patients, and 14 healthy subjects were included in this cross-sectional study. All patients underwent symptom score assessment, nasal endoscopy, allergy testing, and cytological evaluation. The concentration of GM-CSF in nasal secretions of all participants was measured by enzyme-linked immunosorbent assay (ELISA. Results We found significantly higher levels of GM-CSF in patients with NARES than in the control group (p = 0.035. The percent of eosinophils in nasal mucosa was higher in NARES patients in comparison to patients with PAR (p < 0.001 and control patients (p < 0.0001. We found positive correlations between GM-CSF levels and eosinophil counts only in NARES patients. Conclusion The concentrations of GM-CSF in nasal secretions correlate well with eosinophil counts in the nasal mucosa of NARES patients. These facts indicate a possible role of GM-CSF as a favorable marker for assessment of nasal disease severity and the degree of chronic eosinophilic inflammation in the nasal mucosa.

  16. Differential Effects of Tea Extracts on Growth and Cytokine Production by Normal and Leukemic Human Leukocytes

    Directory of Open Access Journals (Sweden)

    Diana Bayer

    2012-04-01

    Full Text Available Background: Tea is one of the world’s most highly consumed beverages, second only to water. It is affordable and abundant and thus has great potential for improving health of those in both developed and developing areas. Green, oolong, and black teas differ in the extent of fermentation and types of bioactive polyphenols produced. Green tea and its major polyphenol decrease growth of some cancer cells and effect production of immune system cytokines. This study compares the effects of different types of tea extracts on viability and cytokine production by normal and leukemic human T lymphocytes. Generation of the toxic reactive oxygen species H2O2 by extracts was also examined.Methods: The Jurkat T lymphoblastic leukemia cells and mitogen-stimulated normal human peripheral blood mononuclear cells were used in this study. Cell viability was determined by (3-4,5-dimethylthiamizol-2-yl-diphenyltetrazolium bromide assay and production of interleukin-2 by Enzyme-Linked ImmunoSorbent Assay. Levels of H2O2 generated by tea extracts were determined using the xylenol-orange method.Results: We found that green, oolong, and black tea extracts differentially effect the growth and viability of T lymphoblastic leukemia cells and normal peripheral blood mononuclear cells, substantially decreasing both growth and viability of leukemic T lymphocytes and having much lesser effects on their normal counterparts. Tea extracts also had differential effects on the production of the T lymphocyte growth factor interleukin-2, significantly decreasing production by leukemic cells while having only minor effects on normal cells. All three extracts induced H2O2 generation, with green and oolong tea extracts having the greatest effect. Leukemic cells were much more susceptible to growth inhibition and killing by H2O2 than normal lymphocytes.Functional Foods in Health and Disease 2012, 2(4:72-85 Conclusions: The three tea extracts studied altered leukemic T lymphocyte

  17. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes.

    Science.gov (United States)

    Juergens, Uwe R; Engelen, Tanja; Racké, Kurt; Stöber, Meinolf; Gillissen, Adrian; Vetter, Hans

    2004-01-01

    The therapeutic value of secretolytic agents in COPD and asthma is still disputed. For this reason, in a preclinical study we aimed to test the potential anti-inflammatory efficacy of 1,8-cineol (eucalyptol) in inhibiting polyclonal stimulated cytokine production by human unselected lymphocytes and LPS-stimulated monocytes. Cytokine production was determined following 20 h of incubation cells with 1,8-cineol simultaneously with the stimuli in culture supernatants by enzyme immunoassay. Therapeutic concentrations of 1,8-cineol (1.5 microg/ml=10(-5)M) inhibited significantly (n=13-19, p=0.0001) cytokine production in lymphocytes of TNF-alpha > IL-1beta> IL-4> IL-5 by 92, 84, 70, and 65%, respectively. Cytokine production in monocytes of TNF-alpha > IL-1beta> IL-6> IL-8 was also significantly (n=7-16, p1,8-cineol (0.15 microg/ml=10(-6)M) production of TNF-alpha>IL-1beta by monocytes and of IL-1beta> TNF-alpha by lymph-ocytes was significantly inhibited by 77, 61 and by 36, 16%, respectively. 1,8-cineol (10(-6)M) had a larger impact on TNF-alpha and IL-1beta-production in monocytes compared to lymphocytes (p0.59) at therapeutically relevant concentrations of 1,8-Cineol (10(-5)M). These results characterize 1,8-cineol as strong inhibitor of TNF-alpha and IL-1beta and suggest smaller effects on chemotactic cytokines. This is increasing evidence for the role of 1,8-cineol to control airway mucus hypersecretion by cytokine inhibition, suggesting long-term treatment to reduce exacerbations in asthma, sinusitis and COPD.

  18. Beryllium-stimulated apoptosis in macrophage cell lines.

    Science.gov (United States)

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S

    2000-08-21

    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  19. Effect of caffeic acid phenethyl ester on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choi, E-Y; Choe, S-H; Hyeon, J-Y; Choi, J-I; Choi, I S; Kim, S-J

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) has numerous potentially beneficial properties, including antioxidant, immunomodulatory and anti-inflammatory activities. However, the effect of CAPE on periodontal disease has not been studied before. This study was designed to investigate the efficacy of CAPE in ameliorating the production of proinflammatory mediators in macrophages activated by lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in periodontal disease. LPS from P. intermedia ATCC 25611 was isolated by using the standard hot phenol-water method. Culture supernatants were assayed for nitric oxide (NO), interleukin (IL)-1β and IL-6. We used real-time polymerase chain reaction to quantify inducible NO synthase, IL-1β, IL-6, heme oxygenase (HO)-1 and suppressors of cytokine signaling (SOCS) 1 mRNA expression. HO-1 protein expression and levels of signaling proteins were assessed by immunoblot analysis. DNA-binding activities of NF-κB subunits were analyzed by using the enzyme-linked immunosorbent assay-based kits. CAPE exerted significant inhibitory effects on P. intermedia LPS-induced production of NO, IL-1β and IL-6 as well as their mRNA expression in RAW264.7 cells. CAPE-induced HO-1 expression in cells activated with P. intermedia LPS, and selective inhibition of HO-1 activity by tin protoporphyrin IX attenuated the inhibitory effect of CAPE on LPS-induced NO production. CAPE did not interfere with IκB-α degradation induced by P. intermedia LPS. Instead, CAPE decreased nuclear translocation of NF-κB p65 and p50 subunits induced with LPS, and lessened LPS-induced p50 binding activity. Further, CAPE showed strong inhibitory effects on LPS-induced signal transducer and activator of transcription 1 and 3 phosphorylation. Besides, CAPE significantly elevated SOCS1 mRNA expression in P. intermedia LPS-stimulated cells. Modulation of host response by CAPE may represent an attractive strategy towards the treatment of periodontal disease

  20. Tumor-Associated Macrophages: Therapeutic Targets for Skin Cancer

    Directory of Open Access Journals (Sweden)

    Taku Fujimura

    2018-01-01

    Full Text Available Tumor-associated macrophages (TAMs and regulatory T cells (Tregs are significant components of the microenvironment of solid tumors in the majority of cancers. TAMs sequentially develop from monocytes into functional macrophages. In each differentiation stage, TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment (e.g., expression of immune checkpoint molecules, production of Treg-related chemokines and cytokines, production of arginase I. Although the main population of TAMs is immunosuppressive M2 macrophages, TAMs can be modulated into M1-type macrophages in each differential stage, leading to the suppression of tumor growth. Because the administration of certain drugs or stromal factors can stimulate TAMs to produce specific chemokines, leading to the recruitment of various tumor-infiltrating lymphocytes, TAMs can serve as targets for cancer immunotherapy. In this review, we discuss the differentiation, activation, and immunosuppressive function of TAMs, as well as their benefits in cancer immunotherapy.

  1. Modulation of bacterial ghosts--induced nitric oxide production in macrophages by bacterial ghost-delivered resveratrol.

    Science.gov (United States)

    Koller, Verena J; Dirsch, Verena M; Beres, Hortenzia; Donath, Oliver; Reznicek, Gottfried; Lubitz, Werner; Kudela, Pavol

    2013-03-01

    The present study aimed to investigate the capacity of resveratrol (RV) delivered into macrophages by bacterial ghosts (BGs), representing intact empty nonliving envelopes of Gram-negative bacteria, to modulate nitric oxide (NO) production related to the presence of the pathogen-associated molecular patterns on the surface of BGs. Incubation of the murine macrophage cell line RAW 264.7 with BGs leads to a dose-dependent activation of inducible NO synthase. To modify BG-induced NO formation in RAW 264.7 cells by RV; BGs were loaded with RV (RV-BGs) and incubated with murine macrophages in a dose-dependent manner. RV-BGs delivering RV to the target macrophages significantly reduced BG-induced NO production with concentration of RV more than one order of magnitude lower than the amount of RV capable of reducing NO formation when applied directly. Moreover, no cytotoxic impact of BGs on the viability of RAW 264.7 cells added to macrophages alone or loaded with RV was detected after a mutual 24 h incubation, whereas cell viability slightly decreased (~ 10%) when RV concentrations of 30 μm alone were applied. The results obtained in the present study clearly indicate that the intracellular delivery of RV by BGs significantly enhances the total RV effect. © 2012 The Authors Journal compilation © 2012 FEBS.

  2. Butter feeding enhances TNF-alpha production from macrophages and lymphocyte adherence in murine small intestinal microvessels.

    Science.gov (United States)

    Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi

    2007-11-01

    Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.

  3. Thalidomide treatment modulates macrophage pro-inflammatory function and cytokine levels in Klebsiella pneumoniae B5055 induced pneumonia in BALB/c mice.

    Science.gov (United States)

    Kumar, Vijay; Harjai, Kusum; Chhibber, Sanjay

    2010-07-01

    Lung innate immune response plays an important role in the clearance of pathogens from lungs, however, profound activation of innate immune cells (alveolar macrophages or neutrophils) can lead to development of acute lung inflammation or injury by producing various pro-inflammatory molecules (IL-1, TNF-alpha and H2O2 etc.). Present study is designed to investigate the immunomodulatory action of thalidomide in Klebsiella pneumoniae B5055 induced acute lung infection in BALB/c mice. Acute lung inflammation was induced by intranasal instillation of K. pneumoniae B5055 into mice without any anaesthesia and treated with thalidomide (30 mg/kg/day/po) or normal saline orally using a treatment schedule shown to modulate pro-inflammatory innate immune response. Thalidomide treatment modulated pro-inflammatory function of alveolar macrophages by significantly (ppneumonia caused by gram negative bacterial infection. 2010 Elsevier B.V. All rights reserved.

  4. Cyclosporin A Decreases Human Macrophage Interleukin-6 Synthesis at Post-Transcriptional Level

    Directory of Open Access Journals (Sweden)

    Juan E. Losa García

    1999-01-01

    Full Text Available In addition to its well-established effect on T cells, cyclosporin A (CsA also inhibits inflammatory cytokine production by macrophages. However, little is known about the mechanism of action of CsA on macrophage cytokine production. We measured the effect of CsA on basal and phorbol-myristate-acetate (PMA-stimulated production of interleukin-6 using the human monocyte cell line U937 differentiated with dimethylsulfoxide (DMSO. Interleukin-6 levels were measured in supernatant and cell lysates using specific enzyme-linked immunosorbent assays. We found that CsA decreases not only IL-6 release but also cytokine synthesis. The concentration of CsA used did not affect either cell viability or proliferation. Three possibilities may be advanced to explain the CsA-due decrease in IL-6 production by macrophages: (a inhibition of the synthesis of an early common regulatory protein, (b inhibition of cytokine gene transcription, or (c modulation of post-transcriptional events. The first possibility was tested by measuring the effect of cycloheximide on the experimental system during the first 3 hours of culture. Although cycloheximide decreased total cytokine synthesis, the pattern of cytokine modulation by CsA persisted. These data suggest that CsA-mediated macrophage cytokine inhibition is not mediated by an early common regulatory protein. To further explore the inhibition mechanism, we measured IL-6 mRNA levels by Northern blot. IL-6 mRNA levels were unaffected by CsA both in resting and PMA-stimulated cells. We conclude that in human macrophages CsA diminishes IL-6 production at post-transcriptional level.

  5. INFLUENCE OF ALPHA-1-ACID GLYCOPROTEIN UPON PRODUCTION OF CYTOKINES BY PERIPHERAL BLOOD MONONUCLEARS

    Directory of Open Access Journals (Sweden)

    М. V. Osikov

    2007-01-01

    Full Text Available Abstract. Alpha-1-acid glycoprotein (orosomucoid is a multifunctional acute phase reactant belonging to the family of lipocalines from plasma alpha-2 globulin fraction. In present study, we investigated dosedependent effects of orosomucoid upon secretion of IL-1â, IL-2, IL-3, IL-4 by mononuclear cells from venous blood of healthy volunteers. Mononuclear cells were separated by means of gradient centrifugation, followed by incubation for 24 hours with 250, 500, or 1000 mcg of orosomucoid per ml RPMI-1640 medium (resp., low, medium and high dose. The levels of cytokine production were assayed by ELISA technique. Orosomucoid-induced secretion of IL-1â and IL-4 was increased, whereas IL-3 secretion was inhibited. IL-2 production was suppressed at low doses of orosomucoid, and stimulated at medium and high doses. The effect of alpha-1-acid glycoprotein upon production of IL-2, IL-3 and IL-4 was dose-dependent. Hence, these data indicate that orosomucoid is capable of modifying IL-1â, IL-2, IL-3, and IL-4 secretion by blood mononuclear cells.

  6. Effect of the Premalignant and Tumor Microenvironment on Immune Cell Cytokine Production in Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Sara D. [Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425 (United States); De Costa, Anna-Maria A. [Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425 (United States); Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 (United States); Young, M. Rita I., E-mail: rita.young@va.gov [Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425 (United States); Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 (United States); Medical Research Service (151), Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401 (United States)

    2014-04-02

    Head and neck squamous cell carcinoma (HNSCC) is marked by immunosuppression, a state in which the established tumor escapes immune attack. However, the impact of the premalignant and tumor microenvironments on immune reactivity has yet to be elucidated. The purpose of this study was to determine how soluble mediators from cells established from carcinogen-induced oral premalignant lesions and HNSCC modulate immune cell cytokine production. It was found that premalignant cells secrete significantly increased levels of G-CSF, RANTES, MCP-1, and PGE{sub 2} compared to HNSCC cells. Splenocytes incubated with premalignant supernatant secreted significantly increased levels of Th1-, Th2-, and Th17-associated cytokines compared to splenocytes incubated with HNSCC supernatant. These studies demonstrate that whereas the premalignant microenvironment elicits proinflammatory cytokine production, the tumor microenvironment is significantly less immune stimulatory and may contribute to immunosuppression in established HNSCC.

  7. Tramadol differentially regulates M1 and M2 macrophages from human umbilical cord blood.

    Science.gov (United States)

    Zhang, Jun; Chen, Liang; Sun, Yunyun; Li, Yuanhai

    2017-03-17

    Tramadol is an analgesic drug and relieves pain through activating μ-opioid receptors and inhibiting serotonin and noradrenaline reuptake. Emerging evidence shows that it also stimulates immune cells, including NK cells, splenocytes, and lymphocytes, and elevates IL-2 production. However, it remains unknown whether and how tramadol directly affects macrophages. To answer these questions, we collected human umbilical cord blood, isolated macrophages, and examined their responses to tramadol. Although tramadol did not alter resting macrophages and the antigen-presenting function in lipopolysaccharide-activated macrophages, it regulated M1 and M2 macrophages, which are, respectively, transformed by IFN-γ and IL-4. Interestingly, tramadol inhibits production and secretion of cytokines in M1 macrophages, but facilitates the production of inflammation-responding molecules, synthesized in M2 macrophages. We also found that STAT6 cascade pathway in M2 macrophages was significantly enhanced by tramadol. Therefore, this study reveals that tramadol regulates inflammation by inhibiting M1 macrophages (killing process), but promoting the function of M2 macrophages (healing process).

  8. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  9. Invasion of human aortic endothelial cells by oral viridans group streptococci and induction of inflammatory cytokine production.

    Science.gov (United States)

    Nagata, E; de Toledo, A; Oho, T

    2011-02-01

    Oral viridans group streptococci are the major commensal bacteria of the supragingival oral biofilm and have been detected in human atheromatous plaque. Atherosclerosis involves an ongoing inflammatory response, reportedly involving chronic infection caused by multiple pathogens. The aim of this study was to examine the invasion of human aortic endothelial cells (HAECs) by oral viridans group streptococci and the subsequent cytokine production by viable invaded HAECs. The invasion of HAECs by bacteria was examined using antibiotic protection assays and was visualized by confocal scanning laser microscopy. The inhibitory effects of catalase and cytochalasin D on the invasion of HAECs were also examined. The production of cytokines by invaded or infected HAECs was determined using enzyme-linked immunosorbent assays, and a real-time polymerase chain reaction method was used to evaluate the expression of cytokine messenger RNA. The oral streptococci tested were capable of invading HAECs. The number of invasive bacteria increased with the length of the co-culture period. After a certain co-culture period, some organisms were cytotoxic to the HAECs. Catalase and cytochalasin D inhibited the invasion of HAECs by the organism. HAECs invaded by Streptococcus mutans Xc, Streptococcus gordonii DL1 (Challis), Streptococcus gordonii ATCC 10558 and Streptococcus salivarius ATCC 13419 produced more cytokine(s) (interleukin-6, interleukin-8, monocyte chemoattractant protein-1) than non-invaded HAECs. The HAECs invaded by S. mutans Xc produced the largest amounts of cytokines, and the messenger RNA expression of cytokines by invaded HAECs increased markedly compared with that by non-invaded HAECs. These results suggest that oral streptococci may participate in the pathogenesis of atherosclerosis. © 2010 John Wiley & Sons A/S.

  10. Suppression of nitric oxide production in mouse macrophages by soybean flavonoids accumulated in response to nitroprusside and fungal elicitation

    Directory of Open Access Journals (Sweden)

    Tamashiro Wirla MSC

    2004-04-01

    Full Text Available Abstract Background The anti-inflammatory properties of some flavonoids have been attributed to their ability to inhibit the production of NO by activated macrophages. Soybean cotyledons accumulate certain flavonoids following elicitation with an extract of the fungal pathogen Diaporthe phaseolorum f. sp. meridionalis (Dpm. Sodium nitroprusside (SNP, a nitric oxide donor, can substitute for Dpm in inducing flavonoid production. In this study, we investigated the effect of flavonoid-containing diffusates obtained from Dpm- and SNP-elicited soybean cotyledons on NO production by lipopolysaccharide (LPS- and LPS plus interferon-γ (IFNγ-activated murine macrophages. Results Significant inhibition of NO production, measured as nitrite formation, was observed when macrophages were activated in the presence of soybean diffusates from Dpm- or SNP-elicited cotyledons. This inhibition was dependent on the duration of exposure to the elicitor. Daidzein, genistein, luteolin and apigenin, the main flavonoids present in diffusates of elicited cotyledons, suppressed the NO production by LPS + IFNγ activated macrophages in a concentration-dependent manner, with IC50 values of 81.4 μM, 34.5 μM, 38.6 μM and 10.4 μM respectively. For macrophages activated with LPS alone, the IC50 values were 40.0 μM, 16.6 μM, 10.4 μM and 2.8 μM, respectively. Western blot analysis showed that iNOS expression was not affected by daidzein, was reduced by genistein, and was abolished by apigenin, luteolin and Dpm- and SNP-soybean diffusates at concentrations that significantly inhibited NO production by activated macrophages. Conclusions These results suggest that the suppressive effect of flavonoids on iNOS expression could account for the potent inhibitory effect of Dpm- and SNP-diffusates on NO production by activated macrophages. Since the physiological concentration of flavonoids in plants is normally low, the treatment of soybean tissues with SNP may provide a simple

  11. Tacrolimus does not alter the production of several cytokines and antimicrobial peptide in Malassezia furfur-infected-keratinocytes.

    Science.gov (United States)

    Balato, Anna; Paoletti, Iole; De Gregorio, Vincenza; Cantelli, Mariateresa; Ayala, Fabio; Donnarumma, Giovanna

    2014-03-01

    Topical immunosuppressant therapy is widely used in the treatment of inflammatory skin diseases, such as atopic dermatitis and psoriasis. Besides its beneficial therapeutic effects, application of topical anti-inflammatory drugs may render the epidermis more vulnerable to invading pathogens by suppressing innate immune responses in keratinocytes (KCs). Cytokines, chemokines and antimicrobial peptides (AMPs) produced by epithelial cells enable them to participate in innate and acquired immune responses. The aim of the present work was to study the influence of tacrolimus (FK506) on KCs infected with Malassezia furfur (M. furfur), evaluating the expression of pro-inflammatory cytokines IL-1α and IL-6, chemokine IL-8, anti-inflammatory cytokines transforming growth factor beta1 (TGF-β1) and IL-10 and AMP β-defensin-2. Human KCs were obtained from surgical specimens of normal adult skin. The expression of mRNAs in KCs: FK506-treated, FK506-treated and M. furfur-infected as well as only M. furfur-infected was quantified by real-time quantitative polymerase chain reaction. Next, the production of the AMP β-defensin-2 and of the above-mentioned pro-inflammatory and anti-inflammatory cytokines was evaluated using enzyme-linked immunosorbent assay. In this study, FK506 did not alter cytokine and AMP production by KCs; this led us to hypothesise that it may not enhance the risk of mycotic skin infections. © 2013 Blackwell Verlag GmbH.

  12. Antibiotic-Mediated Inhibition of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV Infection: A Novel Quinolone Function Which Potentiates the Antiviral Cytokine Response in MARC-145 Cells and Pig Macrophages

    Directory of Open Access Journals (Sweden)

    William A. Cafruny

    2008-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is an economically significant agent for which there currently are no effective treatments. Development of antiviral agents for PRRSV as well as many other viruses has been limited by toxicity of known antiviral compounds. In contrast, antibiotics for non-virus microbial infections have been widely useful, in part because of their acceptable toxicity in animals. We report here the discovery that the quinolonecontaining compound Plasmocin™, as well as the quinolones nalidixic acid and ciprofloxacin, have potent anti-PRRSV activity in vitro. PRRSV replication was inhibited by these antibiotics in both cultured MARC-145 cells and cultured primary alveolar porcine macrophages (PAMs. Furthermore, sub-optimal concentrations of nalidixic acid synergized with antiviral cytokines (AK-2 or IFN-γ to quantitatively and qualitatively inhibit PRRSV replication in MARC-145 cells or PAMs. The antiviral activity of Plasmocin and nalidixic acid correlated with reduced actin expression in MARC-145 cells. Replication of the related lactate dehydrogenase-elevating virus (LDV was also inhibited in primary mouse macrophages by Plasmocin. These results are significant to the development of antiviral strategies with potentially reduced toxicity, and provide a model system to better understand regulation of arterivirus replication.

  13. Antibiotic-Mediated Inhibition of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV Infection: A Novel Quinolone Function Which Potentiates the Antiviral Cytokine Response in MARC-145 Cells and Pig Macrophages

    Directory of Open Access Journals (Sweden)

    William A. Cafruny

    2008-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is an economically significant agent for which there currently are no effective treatments. Development of antiviral agents for PRRSV as well as many other viruses has been limited by toxicity of known antiviral compounds. In contrast, antibiotics for non-virus microbial infections have been widely useful, in part because of their acceptable toxicity in animals. We report here the discovery that the quinolone-containing compound Plasmocin ™ , as well as the quinolones nalidixic acid and ciprofloxacin, have potent anti-PRRSV activity in vitro. PRRSV replication was inhibited by these antibiotics in both cultured MARC-145 cells and cultured primary alveolar porcine macrophages (PAMs. Furthermore, sub-optimal concentrations of nalidixic acid synergized with antiviral cytokines (AK-2 or IFN-γ to quantitatively and qualitatively inhibit PRRSV replication in MARC-145 cells or PAMs. The antiviral activity of Plasmocin and nalidixic acid correlated with reduced actin expression in MARC-145 cells. Replication of the related lactate dehydrogenase-elevating virus (LDV was also inhibited in primary mouse macrophages by Plasmocin. These results are significant to the development of antiviral strategies with potentially reduced toxicity, and provide a model system to better understand regulation of arterivirus replication.

  14. Role of opioid peptides in the regulation of cytokine production by murine CD4+ T cells.

    Science.gov (United States)

    van den Bergh, P; Dobber, R; Ramlal, S; Rozing, J; Nagelkerken, L

    1994-03-01

    The presence of the opioid peptides alpha- and beta-endorphin (-End) but not methionine enkephalin (Met-enk) in in vitro cultures of purified CD4+ T cells, stimulated with concanavalin A in the presence of irradiated spleen cells, resulted in a threefold stimulation of IL-2, IL-4, and IFN-gamma production. The stimulating effect was dependent on the concentration of the peptides and reached optimal values in the dose range from 10(-12) to 10(-10) M. Similar results were obtained when purified CD4+ T cells were stimulated with immobilized anti-CD3, indicating a direct effect of opioid peptides on CD4+ T cells. Moreover, in this system a twofold enhancement of IL-6, but not IL-1, secretion was observed. These stimulatory effects were not mediated through opioid receptors since the peptide fragment beta-End6-31 that lacks the N-terminal opioid receptor binding part was still stimulatory. This is in agreement with our finding that beta-End did not affect cAMP, as described for the triggering of classical opioid receptors. Experiments undertaken to reveal the mechanism of action of opioid peptides suggest an overall enhancement of lymphokine production: (1) enhancement of IL-4 production occurred also in the presence of excess IL-2; and (2) neither IL-1 receptor-antagonizing protein nor anti-IL-6 were capable to abrogate the stimulatory effect on IL-2 and IL-4 production. Finally, the presence and activity of opioid receptors in cultures of CD4+ T cells were substantiated by the fact that the opioid receptor antagonist naloxone by itself enhanced cytokine synthesis, which points to the endogenous production by lymphocytes of down-regulating opioid peptides.

  15. Alternaria inhibits double-stranded RNA-induced cytokine production through Toll-like receptor 3.

    Science.gov (United States)

    Wada, Kota; Kobayashi, Takao; Matsuwaki, Yoshinori; Moriyama, Hiroshi; Kita, Hirohito

    2013-01-01

    Fungi may be involved in asthma and chronic rhinosinusitis (CRS). Peripheral blood mononuclear cells from CRS patients produce interleukin (IL)-5, IL-13 and interferon (IFN)-γ in the presence of Alternaria. In addition, Alternaria produces potent Th2-like adjuvant effects in the airway. Therefore, we hypothesized that Alternaria may inhibit Th1-type defense mechanisms against virus infection. Dendritic cells (DCs) were generated from mouse bone marrow. The functional responses were assessed by expression of cell surface molecules by FACS (MHC class II, CD40, CD80, CD86 and OX40L). Production of IL-6, chemokine CXCL10 (IP-10), chemokine CXCL11 (I-TAC) and IFN-β was measured by ELISA. Toll-like receptor 3 (TLR3) mRNA and protein expression was detected by quantitative real-time PCR and Western blot. Alternaria and polyinosinic-polycytidylic acid (poly I:C) enhanced cell surface expression of MHC class II, CD40, CD80, CD86 and OX40L, and IL-6 production in a concentration-dependent manner. However, Alternaria significantly inhibited production of IP-10, I-TAC and IFN-β, induced by viral double-stranded RNA (dsRNA) mimic poly I:C. TLR3 mRNA expression and protein production by poly I:C were significantly inhibited by Alternaria. These reactions are likely caused by heat-stable factor(s) in Alternaria extract with >100 kDa molecular mass. These findings suggest that the fungus Alternaria may inhibit production of IFN-β and other cytokines by DCs by suppressing TLR3 expression. These results indicate that Alternaria may inhibit host innate immunity against virus infection. Copyright © 2013 S. Karger AG, Basel.

  16. Alternaria Inhibits Double-stranded RNA-Induced Cytokines Productions through TLR3

    Science.gov (United States)

    Wada, Kota; Kobayashi, Takao; Matsuwaki, Yoshinori; Moriyama, Hiroshi; Kita, Hirohito

    2014-01-01

    Background Fungi may be involved in asthma and chronic rhinosinusitis (CRS). PBMCs from CRS patients produce IL-5, IL-13 and INF-γ by Alternaria. In addition, Alternaria produces potent Th2-like adjuvant effects in the airway. Therefore, we hypothesized that Alternaria may inhibit Th1-type defense mechanisms against virus infection. Methods Dendritic cells (DCs) were generated from mouse bone marrow. The functional responses were assessed by expression of cell surface molecules by FACS (MHC Class II, CD40, CD80, CD86 and OX40L. Production of IL-6, IP-10, I-TAC and IFN -β were measured by ELISA. TLR3 mRNA and protein expression were detected by quantitative Real time-PCR and Western blot. Results Alternaria and poly I:C enhanced cell surface expression of MHC Class II, CD40, CD80, CD86 and OX40L, and IL-6 production in a concentration-dependent manner. However, Alternaria significantly inhibited IP-10, I-TAC and IFN-β production induced by viral double-stranded RNA (dsRNA)-mimic poly I:C. TLR3 mRNA expression and protein production by poly I:C were significantly inhibited by Alternaria. These reactions are likely caused by heat-stable factor(s) in Alternaria extract with >100 kDa molecular mass. Conclusion These findings suggest that fungus, Alternaria may inhibit production of IFN-β and other cytokines by DCs by suppressing TLR3 expression. These results indicate that Alternaria may inhibit host innate immunity against virus infection. PMID:23711857

  17. Macrophage Infiltration Is a Causative Factor for Ligamentum Flavum Hypertrophy through the Activation of Collagen Production in Fibroblasts.

    Science.gov (United States)

    Saito, Takeyuki; Hara, Masamitsu; Kumamaru, Hiromi; Kobayakawa, Kazu; Yokota, Kazuya; Kijima, Ken; Yoshizaki, Shingo; Harimaya, Katsumi; Matsumoto, Yoshihiro; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Inagaki, Yutaka; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji

    2017-12-01

    Ligamentum flavum (LF) hypertrophy causes lumbar spinal canal stenosis, leading to leg pain and disability in activities of daily living in elderly individuals. Although previous studies have been performed on LF hypertrophy, its pathomechanisms have not been fully elucidated. In this study, we demonstrated that infiltrating macrophages were a causative factor for LF hypertrophy. Induction of macrophages into the mouse LF by applying a microinjury resulted in LF hypertrophy along with collagen accumulation and fibroblasts proliferation at the injured site, which were very similar to the characteristics observed in the severely hypertrophied LF of human. However, we found that macrophage depletion by injecting clodronate-containing liposomes counteracted LF hypertrophy even with microinjury. For identification of fibroblasts in the LF, we used collagen type I α 2 linked to green fluorescent protein transgenic mice and selectively isolated green fluorescent protein-positive fibroblasts from the microinjured LF using laser microdissection. A quantitative RT-PCR on laser microdissection samples revealed that the gene expression of collagen markedly increased in the fibroblasts at the injured site with infiltrating macrophages compared with the uninjured location. These results suggested that macrophage infiltration was crucial for LF hypertrophy by stimulating collagen production in fibroblasts, providing better understanding of the pathophysiology of LF hypertrophy. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis

    DEFF Research Database (Denmark)

    Baeten, Dominique; Møller, Holger Jon; Delanghe, Joris

    2004-01-01

    treated with infliximab. Polymorphism of haptoglobin (Hp), the CD163 ligand, was determined in 130 SpA and 23 RA patients. RESULTS: CD163+ macrophages, but not CD68+ macrophages, were significantly increased in SpA versus RA synovium and in HLA-B27+ versus HLA-B27- SpA. Despite similar lymphocyte numbers...... by infliximab therapy. The distribution of Hp polymorphism was not altered in SpA and was not related to CD163 expression. CONCLUSION: Increased numbers of CD163+ macrophages in SpA synovium and local production of sCD163 are associated with global inflammation as well as impairment of T cell activation...

  19. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing

    Directory of Open Access Journals (Sweden)

    Andrew S. Kimball

    2017-06-01

    Full Text Available Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAMLfloxedLyz2Cre+ demonstrated delayed early healing (days 1–3 and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D, Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAMLfloxedLyz2Cre+ on a high-fat diet, improved wound healing was seen at late time points (days 6–7. These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

  20. Cytokine production profile of heart-infiltrating T cells in Chagas' disease cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1998-01-01

    Full Text Available The hallmark of chronic Chagas' disease cardiomyopathy (CCC is the finding of a T cell-rich inflammatory mononuclear cell infiltrate in the presence of extremely few parasites in the heart lesions. The scarcity of parasites in affected heart tissue casts doubt on the direct participation of Trypanosoma cruzi in CCC heart tissue lesions, and suggests the possible involvement of autoimmunity. The cells in the infiltrate are presumably the ultimate effectors of tissue damage, and there is evidence that such cells recognize cardiac myosin in molecular mimicry with T. cruzi proteins rather than primary reactivity to T. cruzi antigens (Cunha-Neto et al. (1996 Journal of Clinical Investigation, 98: 1709-1712. Recently, we have studied heart-infiltrating T cells at the functional level. In this short review we summarize the studies about the role of cytokines in human and experimental T. cruzi infection, along with our data on heart-infiltrating T cells in human Chagas' cardiomyopathy. The bulk of evidence points to a significant production of IFN-g and TNF-a which may be linked to T. cruzi-induced IL-12 production

  1. Titanium surfaces with nanotopography modulate cytokine production in cultured human gingival fibroblasts.

    Science.gov (United States)

    Schwartz-Filho, Humberto Osvaldo; Morandini, Ana Carolina Faria; Ramos-Junior, Erivan Schnaider; Jimbo, Ryo; Santos, Carlos Ferreira; Marcantonio, Elcio; Wennerberg, Ann; Marcantonio, Rosemary Adriana Chiérici

    2012-10-01

    Implant topography is an important factor that influences many cell types. To understand the role of topography in the inflammatory events, we evaluated the response of human gingival fibroblasts (HGFs) by the release pattern of cytokines. HGFs were cultured on Ti discs for 24 and 48 h. Four different surface treatments were used: machining method (turned), blasting followed by an acid-etching method (BAE), oxidative nanopatterning (ON) method, and an association of blasting followed by an acid-etching plus oxidative nanopatterning (BAE+ON) method. Extracellular levels of IL-6, IL-8, transforming growth factor beta (TGF-β), IL-4, and IL-10 were measured by enzyme-linked immunosorbant assay. Increased levels of IL-6 and IL-8 were observed in all surfaces after 24 h which decreased after 48 h. BAE, ON, and BAE+ON surfaces showed a reduction in IL-6 levels compared with the turned after 48 h (p < 0.05). On one hand, IL-8 production was lower in BAE+ON in comparison to the turned surface (p < 0.05). On the other hand, IL-4 showed increased levels with 48 h, which were significantly different between turned, BAE, and ON surfaces, but not with BAE+ON. Additionally, TGF-β and IL-10 production were not detected. This study indicates that nanotopography might be important in the modulation of the inflammatory response in cultured HGFs. Copyright © 2012 Wiley Periodicals, Inc.

  2. Evaluation of tissue reaction, cell viability and cytokine production induced by Sealapex Plus

    Directory of Open Access Journals (Sweden)

    João Eduardo Gomes-Filho

    2011-08-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate the effects of mineral trioxide aggregate (MTA, Sealapex, and a combination of Sealapex and MTA (Sealapex Plus on the reaction of subcutaneous connective tissue of rats, and on cell viability and cytokine production in mouse fibroblasts. MATERIAL AND METHODS: The tissue reaction was carried out with dentin tubes containing the materials implanted in the dorsal connective tissue of rats. The histological analysis was performed after 7 and 30 days. Millipore culture plate inserts with polyethylene tubes filled with materials were placed into 24-well cell culture plates with mouse fibroblasts to evaluate the cell viability by MTT assay. ELISA assays were also performed after 24 h of exposure of the mouse fibroblasts to set material disks. RESULTS: Histopathologic examination showed Von Kossa-positive granules that were birefringent to polarized light for all the studied materials at the tube openings. No material inhibited the cell viability in the in vitro test. It was detected IL-6 production in all root-end filling materials. MTA and Sealapex Plus induced a slight raise of mean levels of IL-1β. CONCLUSIONS: The results suggest that Sealapex Plus is biocompatible and stimulates the mineralization of the tissue.

  3. 1,25-Dihydroxyvitamin D3 inhibits cytokine production by human blood monocytes at the post-transcriptional level

    DEFF Research Database (Denmark)

    Müller, K; Haahr, P M; Diamant, M

    1992-01-01

    1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] inhibits lymphocyte proliferation and production of antibodies and lymphokines such as interleukin (IL)-2 and interferon gamma. These lymphocyte functions are dependent upon cytokines, including IL-1 alpha, IL-1 beta, IL-6 and tumour necrosis factor alpha (...

  4. 1,25-dihydroxyvitamin D3 modulates cytokine production induced by Candida albicans: impact of seasonal variation of immune responses

    NARCIS (Netherlands)

    Khoo, A.L.; Chai, L.; Koenen, H.J.P.M.; Kullberg, B.J.; Joosten, I.; Ven, A.J.A.M. van der; Netea, M.G.

    2011-01-01

    BACKGROUND: Our interest in immunological effects produced by vitamin D(3) (1,25(OH)(2)D(3)) and its therapeutic potential prompted us to examine the role of 1,25(OH)(2)D(3) on cytokine production by Candida albicans. METHODS: Peripheral blood mononuclear cells (PBMC) with stimulated C. albicans and

  5. Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species

    Czech Academy of Sciences Publication Activity Database

    Rohoušová, Iva; Volf, P.; Lipoldová, Marie

    2005-01-01

    Roč. 12, č. 27 (2005), s. 469-473 ISSN 0141-9838 R&D Projects: GA ČR(CZ) GA310/03/1381 Institutional research plan: CEZ:AV0Z5052915 Keywords : cytokine production * Lutzomyia * Phlebotomus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.445, year: 2005

  6. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production.

    Science.gov (United States)

    Ip, Blanche; Cilfone, Nicholas A; Belkina, Anna C; DeFuria, Jason; Jagannathan-Bogdan, Madhumita; Zhu, Min; Kuchibhatla, Ramya; McDonnell, Marie E; Xiao, Qiang; Kepler, Thomas B; Apovian, Caroline M; Lauffenburger, Douglas A; Nikolajczyk, Barbara S

    2016-01-01

    T cell inflammation plays pivotal roles in obesity-associated type 2 diabetes (T2DM). The identification of dominant sources of T cell inflammation in humans remains a significant gap in understanding disease pathogenesis. It was hypothesized that cytokine profiles from circulating T cells identify T cell subsets and T cell cytokines that define T2DM-associated inflammation. Multiplex analyses were used to quantify T cell-associated cytokines in αCD3/αCD28-stimulated PBMCs, or B cell-depleted PBMCs, from subjects with T2DM or BMI-matched controls. Cytokine measurements were subjected to multivariate (principal component and partial least squares) analyses. Flow cytometry detected intracellular TNFα in multiple immune cell subsets in the presence/absence of antibodies that neutralize T cell cytokines. T cell cytokines were generally higher in T2DM samples, but Th17 cytokines are specifically important for classifying individuals correctly as T2DM. Multivariate analyses indicated that B cells support Th17 inflammation in T2DM but not control samples, while monocytes supported Th17 inflammation regardless of T2DM status. Partial least squares regression analysis indicated that both Th17 and Th1 cytokines impact %HbA1c. Among various T cell subsets, Th17 cells are major contributors to inflammation and hyperglycemia and are uniquely supported by B cells in obesity-associated T2DM. © 2015 The Obesity Society.

  7. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes.

    Science.gov (United States)

    Alnek, Kristi; Kisand, Kalle; Heilman, Kaire; Peet, Aleksandr; Varik, Karin; Uibo, Raivo

    2015-01-01

    The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In particular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.

  8. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection.To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication.HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute to immune pathogenesis, and provide important targets for therapeutic

  9. Altered Cytokine Production By Specific Human Peripheral Blood Cell Subsets Immediately Following Spaceflight

    Science.gov (United States)

    Crucian, Brian E.; Cubbage, Michael L.; Sams, Clarence F.

    1999-01-01

    In this study, we have attempted to combine standard immunological assays with the cellular resolving power of the flow cytometer to positively identify the specific cell types involved in spaceflight-induced immune alterations. We have obtained whole blood samples from 27 astronauts collected at three timepoints (L-10, R+0 and R+3) surrounding four recent space shuttle missions. The duration of these missions ranged from 10 to 18 days. Assays performed included serum/urine cortisol, comprehensive subset phenotyping, assessment of cellular activation markers and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following spaceflight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated trends towards a decreased percentage of T cells and an increased percentage of B cells. Nearly all of the astronauts exhibited an increased CD4:CD8 ratio, which was dramatic in some individuals. Assessment of memory (CD45RA+) vs. naive (CD45RO+) CD4+ T cell subsets was more ambiguous, with subjects tending to group more as a flight crew. All subjects from one mission demonstrated an increased CD45RA:CD45RO ratio, while all subjects from another Mission demonstrated a decreased ratio. While no significant trend was seen in the monocyte population as defined by scatter, a decreased percentage of the CD14+ CD16+ monocyte subset was seen following spaceflight in all subjects tested. In general, most of the cellular changes described above which were assessed at R+O and compared to L-10 trended to pre-flight levels by R+3. Although no significant differences were seen in the expression of the cellular activation markers CD69 and CD25 following exposure to microgravity, significant alterations were seen in cytokine production in response to mitogenic activation for specific subsets. T cell (CD3+) production of IL-2 was significantly decreased

  10. The Effect of IL-4 Gene Polymorphisms on Cytokine Production in Patients with Chronic Periodontitis and in Healthy Controls

    Directory of Open Access Journals (Sweden)

    Jirina Bartova

    2014-01-01

    Full Text Available Chronic periodontitis (CP is an inflammatory disease of the teeth-supporting tissues in which genetic predisposition, dental plaque bacteria, and immune mechanisms all play important roles. The aim of this study was to evaluate the occurrence of IL-4 gene polymorphisms in chronic periodontitis and to investigate the association between polymorphisms and cytokines production after bacterial stimulation. Sixty-two subjects (47 CP patients and 15 healthy controls with detected two polymorphisms in the IL-4 gene (-590C/T and intron 3 VNTR were examined. Production of cytokines (IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-17, TNFα, INFγ, and VEGF was studied after in vitro stimulation of isolated peripheral blood by mitogens (Pokeweed mitogen, Concanavalin A, dental plaque bacteria (Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis, and Prevotella intermedia, and Heat Shock Protein (HSP 70 by the Luminex multiplex cytokine analysis system. The results were correlated with IL-4 genotypes in patients with CP and healthy controls. The mononuclear cells isolated from peripheral blood of CP patients with selected IL-4 polymorphisms significantly altered the production of IFNγ, IL-10, IL-1β, IL-1α, TNFα, and IL-6 after stimulation by HSP 70 or selected bacteria (from P<0.001 to P<0.05. IL-4 gene polymorphisms may influence the function of mononuclear cells to produce not only interleukin-4 but also other cytokines, especially in patients with CP.

  11. Protease-activated receptor 1 suppresses Helicobacter pylori gastritis via the inhibition of macrophage cytokine secretion and interferon regulatory factor 5.

    Science.gov (United States)

    Chionh, Y-T; Ng, G Z; Ong, L; Arulmuruganar, A; Stent, A; Saeed, M A; Wee, J Lk; Sutton, P

    2015-01-01

    Chronic gastritis from Helicobacter pylori infection is a major factor in the development of gastric adenocarcinoma. Factors that regulate gastritis severity are important in determining which individuals are susceptible to H. pylori-associated disease. Although protease-activated receptor 1 (PAR1) has been identified as one such host factor, its mechanism of action is unknown. Using chimeric mice, we demonstrated that PAR1-mediated protection against H. pylori gastritis requires bone marrow-derived cells. Analyses of the gastric mucosa revealed that PAR1 suppresses cellular infiltration and both T helper type 1 (Th1) and T helper type 17 (Th17) responses to infection. Moreover, PAR1 expression was associated with reduced vaccine-mediated protection against H. pylori. Analyses of H. pylori-stimulated macrophages revealed that PAR1 activation suppressed secretion of interleukin (IL)-12 and IL-23, key drivers of Th1 and Th17 immunity, respectively. Furthermore, PAR1 suppressed interferon regulatory factor 5 (IRF5), an important transcription factor for IL-12 and IL-23, both in the infected mucosa and following bacterial stimulation. PAR1 suppression of IRF5 and IL-12/23 secretion by macrophages provides a novel mechanism by which the host suppresses the mucosal Th1 and Th17 response to H. pylori infection. Dysregulation of this process is likely an important factor in the susceptibility of some individuals to H. pylori-associated disease.

  12. Activation of LXRs using the synthetic agonist GW3965 represses the production of pro-inflammatory cytokines by murine mast cells

    Directory of Open Access Journals (Sweden)

    Satoshi Nunomura

    2015-09-01

    Conclusions: These findings demonstrate, for the first time, that the activation of LXRs by GW3965 attenuates the antigen- or LPS-induced production of pro-inflammatory cytokines, such as IL-1α and IL-1β, in murine MCs and that LXRβ plays an important role in the LXR-mediated repression of cytokine production.

  13. Cytokine production by cells in cerebrospinal fluid during experimental allergic encephalomyelitis in SJL/J mice

    DEFF Research Database (Denmark)

    Renno, T; Lin, J Y; Piccirillo, C

    1994-01-01

    progression with infiltration by memory/effector CD4+ T cells, the major source of these cytokines. This cytokine upregulation was specific to the CNS, since other organs from the same animals did not express significant levels of IL-2 and IFN-gamma. CSF was obtained from the cisterna magna of unperfused mice...... and verified as such by absence of red blood cells (RBCs) and by immunoglobulin concentration orders of magnitude lower than in serum. Cytokine message was measured in RNA isolated from cells in CSF. Levels of IL-2 and IFN-gamma mRNA in CSF cells were significantly elevated in mild EAE and strongly upregulated...

  14. Fenretinide corrects the imbalance between omega-6 to omega-3 polyunsaturated fatty acids and inhibits macrophage inflammatory mediators via the ERK pathway.

    Directory of Open Access Journals (Sweden)

    Claude Lachance

    Full Text Available We previously identified Fragile X-related protein 1 (FXR1 as an RNA-binding protein involved in the post-transcriptional control of TNF and other cytokines in macrophages. Macrophages derived from FXR1-KO mice overexpress several inflammatory cytokines including TNF. Recently, we showed that fenretinide (4HPR is able to inhibit several inflammatory cytokines in the lungs of cystic fibrosis mice, which also have abnormal immune responses. Therefore, we hypothesized that 4HPR might also be able to downregulate excessive inflammation even in macrophages with ablated FXR1. Indeed, our results demonstrate that 4HPR inhibited the excessive production of inflammatory mediators, including TNF, IL-6, CCL2 and CCL-5 in LPS-stimulated FXR1-KO macrophages, by selectively inhibiting phosphorylation of ERK1/2, which is naturally more phosphorylated in FXR1-KO cells. We also found that LPS stimulation of FXR1-KO macrophages led to significantly higher ratio of arachidonic acid/docosahexaenoic acid than observed in FXR1-WT macrophages. Interestingly, treatment with 4HPR was associated with the normalization of arachidonic acid/docosahexaenoic acid ratio in macrophages, which we found to impact phosphorylation of ERK1/2. Overall, this study shows for the first time that 4HPR modulates inflammatory cytokine expression in macrophages by correcting a phospholipid-bound fatty acid imbalance that impacts the phosphorylation of ERK1/2.

  15. Production of reactive nitrogen intermediates (RNI) by peritoneal macrophages from rats with experimental autoimmune prostatitis (EAP).

    Science.gov (United States)

    Orsilles, M A; Depiante-Depaoli, M

    1995-08-01

    Peritoneal macrophages from experimental autoimmune prostatitis (EAP) rats were examined for their capacity to secrete reactive nitrogen intermediates (RNI), measured by the release of nitrite (NO2-). Under basal conditions, there was a significant increase of NO2- secretion by cells from autoimmune rats in relation to resident cells. After stimulation in vitro with lipopolysaccharide (LPS), the NO2- production was higher in cells from autoimmune rats compared to treated and nontreated controls. The NO2- production was dependent upon the presence of L-arginine in the culture medium. The addition of L-NG-monomethyl arginine, an inhibitor of nitric oxide synthesis, to the medium reduced the amount of measurable NO2-. Kinetic studies in cells from EAP rats showed that in basal conditions there was an significant release of NO2- at day 7 of immunization that was maintained during the whole period studied. After LPS stimulation, there was a similar behavior and maximum values were reached at day 28 of immunization. These results, together with the lesion observed in the prostate gland, suggest that RNI may be of pathogenic importance in the development of early tissue inflammation and autoimmune disease of the prostate.

  16. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation.

    Science.gov (United States)

    Ishii, Tetsuro

    2015-11-01

    Inflammation is a complex biological self-defense reaction triggered by tissue damage or infection by pathogens. Acute inflammation is regulated by the time- and cell type-dependent production of cytokines and small signaling molecules including reactive oxygen species and prostaglandins. Recent studies have unveiled the important role of the transcription factor Nrf2 in the regulation of prostaglandin production through transcriptional regulation of peroxiredoxins 1 and 6 (Prx1 and Prx6) and lipocalin-type prostaglandin D synthase (L-PGDS). Prx1 and Prx6 are multifunctional proteins important for cell protection against oxidative stress, but also work together to facilitate production of prostaglandins E2 and D2 (PGE2 and PGD2). Prx1 secreted from cells under mild oxidative stress binds Toll-like receptor 4 and induces NF-κB activation, important for the expression of cyclooxygenase-2 and microsomal PGE synthase-1 (mPGES-1) expression. The activated MAPKs p38 and ERK phosphorylate Prx6, leading to NADPH oxidase-2 activation, which contributes to production of PGD2 by hematopoietic prostaglandin D synthase (H-PGDS). PGD2 and its end product 15-deoxy-∆(12,14)-prostaglandin J2 (15d-PGJ2) activate Nrf2 thereby forming a positive feedback loop for further production of PGD2 by L-PGDS. Maintenance of cellular glutathione levels is an important role of Nrf2 not only for cell protection but also for the synthesis of prostaglandins, as mPGES-1 and H-PGDS require glutathione for their activities. This review is aimed at describing the functions of Prx1 and Prx6 in the regulation of PGD2 and PGE2 production in acute inflammation in macrophages and the importance of 15d-PGJ2 as an intrinsic Nrf2 activator. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Simvastatin modulates gingival cytokine and MMP production in a rat model of ligature-induced periodontitis

    Directory of Open Access Journals (Sweden)

    Mouchrek Júnior JCE

    2017-05-01

    Full Text Available José Carlos Elias Mouchrek Júnior,1 Cristina Gomes Macedo,2 Henrique Ballassini Abdalla,2 Ana Karina Saba,1 Lucas Novaes Teixeira,1 Adriana Quinzeiro e Silva Mouchrek,3 Marcelo Henrique Napimoga,1 Juliana Trindade Clemente-Napimoga,1 Alvaro Henrique Borges,4 Mateus Rodrigues Tonetto,4 Shelon Cristina Souza Pinto,5 Matheus Coelho Bandeca,3 Elizabeth Ferreira Martinez1 1Laboratory of Cell and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, 2Physiological Sciences, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, 3Department of Dentistry, CEUMA University, São Luis, Maranhão, 4Department of Integrated Dental Science, University of Cuiaba, Cuiabá, Mato Grosso, 5Department of Dentistry, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil Purpose: The aim of this study was to evaluate the effect of simvastatin on the synthesis of cytokines TNF-α and IL-10 and metalloproteinase (MMPs 2 and 9 in a rat model of ligature-induced periodontitis.Materials and methods: Twenty Wistar rats were used, and a cotton ligature was place in a subgingival position encircling the entire cervix of the first molar of the left (ipsilateral side of the mandible. The right (contralateral side of the mandible had no ligature placed and was used as control. After the ligature placement, animals were randomly assigned to two experimental groups (n=10: 1 rats with ligature + vehicle (saline; 10 mL/kg; orally and 2 rats with ligature + simvastatin (25 mg/kg; orally. After 14 days of treatment, the animals were euthanized by anesthetic overdose and the gingival tissue was removed and homogenized in appropriate buffer. MMP-2 and -9 release as well as the IL-10 and TNF-α levels were detected by enzyme-linked immunosorbent assay. Statistical comparison was performed by unpaired Student’s t-test, with p<0.05 representing significance.Results: No differences were observed for TNF-α production between the

  18. Cytokine production by leukocytes of military personnel with depressive symptoms after deployment to a combat-zone: a prospective, longitudinal study.

    Directory of Open Access Journals (Sweden)

    Mirjam van Zuiden

    Full Text Available Major depressive disorder (MDD is frequently diagnosed in military personnel returning from deployment. Literature suggests that MDD is associated with a pro-inflammatory state. To the best of our knowledge, no prospective, longitudinal studies on the association between development of depressive symptomatology and cytokine production by peripheral blood leukocytes have been published. The aim of this study was to investigate whether the presence of depressive symptomatology six months after military deployment is associated with the capacity to produce cytokines, as assessed before and after deployment. 1023 military personnel were included before deployment. Depressive symptoms and LPS- and T-cell mitogen-induced production of 16 cytokines and chemokines in whole blood cultures were measured before (T0, 1 (T1, and 6 (T2 months after return from deployment. Exploratory structural equation modeling (ESEM was used for data reduction into cytokine patterns. Multiple group latent growth modeling was used to investigate differences in the longitudinal course of cytokine production between individuals with (n = 68 and without (n = 665 depressive symptoms at T2. Individuals with depressive symptoms after deployment showed higher T-cell cytokine production before deployment. Moreover, pre-deployment T-cell cytokine production significantly predicted the presence of depressive symptomatology 6 months after return. There was an increase in T-cell cytokine production over time, but this increase was significantly smaller in individuals developing depressive symptoms. T-cell chemokine and LPS-induced innate cytokine production decreased over time and were not associated with depressive symptoms. These results indicate that increased T-cell mitogen-induced cytokine production before deployment may be a vulnerability factor for development of depressive symptomatology in response to deployment to a combat-zone. In addition, deployment to a combat

  19. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  20. NITRIC OXIDE PRODUCTION AND iNOS mRNA EXPRESSION IN IFN-8-STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH iNOS siRNAs

    Science.gov (United States)

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biological pathway i...

  1. Ascitic fluid of experimental severe acute pancreatitis modulates the function of peritoneal macrophages.

    Science.gov (United States)

    Satoh, A; Shimosegawa, T; Masamune, A; Fujita, M; Koizumi, M; Toyota, T

    1999-10-01

    Although the pathophysiology of acute pancreatitis appears to be greatly influenced by the production of ascites, little is known about the mechanism. To investigate the effects of pancreatitis-associated ascitic fluid (PAAF) on macrophage function, we examined the effects of PAAF obtained from a rat model of severe acute pancreatitis on the ability of peritoneal macrophages to produce tumor necrosis factor-alpha (TNF-alpha). In addition, we compared the responses of PAAF-treated and PAAF-untreated macrophages to lipopolysaccharide (LPS) by evaluating their TNF-alpha production and nuclear factor-kappaB (NFkappaB) activation. Incubation of peritoneal macrophages with the PAAF led to the rapid and prolonged activation of NF-kappaB and to TNF-alpha production. Pyrrolidine dithiocarbamate, a potent inhibitor of NF-kappaB activation, attenuated the macrophage TNF-alpha production by PAAF. Macrophages produced TNF-alpha in response to LPS, but the cytokine production was significantly reduced when macrophages were pretreated with PAAF. The suppression of TNF-alpha production by PAAF pretreatment accompanied the impairment of NF-kappaB activation in response to LPS. These results indicate that the PAAF of severe acute pancreatitis may play important roles in the pathologic course of this disease through its effects on macrophage function.

  2. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10

    Directory of Open Access Journals (Sweden)

    Flotte Terence R

    2005-02-01

    Full Text Available Abstract Despite many decades of drug development, effective therapies for neuropathic pain remain elusive. The recent recognition of spinal cord glia and glial pro-inflammatory cytokines as important contributors to neuropathic pain suggests an alternative therapeutic strategy; that is, targeting glial activation or its downstream consequences. While several glial-selective drugs have been successful in controlling neuropathic pain in animal models, none are optimal for human use. Thus the aim of the present studies was to explore a novel approach for controlling neuropathic pain. Here, an adeno-associated viral (serotype II; AAV2 vector was created that encodes the anti-inflammatory cytokine, interleukin-10 (IL-10. This anti-inflammatory cytokine is known to suppress the production of pro-inflammatory cytokines. Upon intrathecal administration, this novel AAV2-IL-10 vector was successful in transiently preventing and reversing neuropathic pain. Intrathecal administration of an AAV2 vector encoding beta-galactosidase revealed that AAV2 preferentially infects meningeal cells surrounding the CSF space. Taken together, these data provide initial support that intrathecal gene therapy to drive the production of IL-10 may prove to be an efficacious treatment for neuropathic pain.

  3. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity

    OpenAIRE

    Judith A. Smith; Judith A. Smith

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defen...

  4. Alcohol extracts of Echinacea inhibit production of nitric oxide and tumor necrosis factor-alpha by macrophages in vitro.

    Science.gov (United States)

    Zhai, Zili; Haney, Devon; Wu, Lankun; Solco, Avery; Murphy, Patricia A; Wurtele, Eve S; Kohut, Marian L; Cunnick, Joan E

    2007-09-01

    It has been suggested that Echinacea has anti-inflammatory activity in vivo. Nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta are important mediators in the inflammatory response. The effect of alcohol extracts of E. angustifolia (EA), E. pallida (EPA) and E. purpurea (EP) on the production of these inflammatory mediators in both LPS-stimulated RAW 264.7 macrophages in vitro and murine peritoneal exudate cells (PECs) in vivo were investigated. As macrophages produce these inflammatory mediators in response to pathogenic infection, parallel cultures of macrophages were studied for phagocytosis and intracellular killing of Salmonella enterica. EPA and EP in vitro inhibited NO production and TNF-α release in a dose-dependent manner. RAW 264.7 cells treated with EA or EP showed decreased killing over 24 h, although EA enhanced bacterial phagocytosis. Upon bacterial infection, RAW 264.7 cells produce high levels of NO; however, an Echinacea-mediated decrease in NO production was observed. Echinacea alcohol extracts administered orally at 130 mg/kg per day for seven days had a weak effect on NO production and phagocytosis by LPS-stimulated PECs. The results indicated that all Echinacea species significantly decreased inflammatory mediators in vitro, however, only EA and EP reduced bacterial killing. Oral administration of Echinacea alcohol extracts did not adversely affect the development and anti-bacterial function of inflammatory PECs in vivo, however, NO production was decreased during bacterial infection of PECs.

  5. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan); Shiraishi, Hiroshi [Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga (Japan); Shimoda, Kouji [Department of Laboratory Animal Center, Keio University School of Medicine, Tokyo (Japan); Yoshimura, Akihiko, E-mail: yoshimura@a6.keio.jp [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  6. The macrophage switch in obesity development

    Directory of Open Access Journals (Sweden)

    Angela eCastoldi

    2016-01-01

    Full Text Available Immune cell infiltration in (white adipose tissue during obesity is associated with the development of insulin resistance. In adipose tissue, the main population of leukocytes are macrophages. Macrophages can be classified into two major populations: M1, classically activated macrophages, and M2, alternatively activated macrophages, although recent studies have identified a broad range of macrophage subsets. During obesity, adipose tissue M1 macrophage numbers increase and correlate with adipose tissue inflammation and insulin resistance. Upon activation, pro-inflammatory M1 macrophages induce aerobic glycolysis. By contrast, in lean humans and mice, the number of M2 macrophages predominates. M2 macrophages secrete anti-inflammatory cytokines and utilize oxidative metabolism to maintain adipose tissue homeostasis. Here we review the immunologic and metabolic functions of adipose tissue macrophages and their different facets in obesity and the metabolic syndrome.

  7. Immunostimulatory activity of snake fruit (Salacca edulis Reinw.) cultivar Pondoh Hitam extract on the activation of macrophages in vitro

    Science.gov (United States)

    Wijanarti, Sri; Putra, Agus Budiawan Naro; Nishi, Kosuke; Harmayani, Eni; Sugahara, Takuya

    2017-05-01

    Snake fruit (Salacca edulis Reinw) cultivar Pondoh Hitam is a tropical fruit produced in Indonesia. It is consumed freshly or processed and believed as the most delicious snake fruit cultivar. Snake fruit flesh contains high polisaccharides such as pectin and dietary fiber. Therefore, snake fruit is a potential immunostimulator candidates but the immunological effect of snake fruit flesh has not been reported. In the present study, immunostimulatory activity of snake fruit flesh extract (SFFE) on macrophages activation was evaluated. SFFE was prepared by extracting from snake fruit flesh with water, methanol 70%, and ethanol 70% for 15 h at 4°C. Then obtained SFFE was used to stimulated cytokine production in vitro using J774.1 cell line. The extract giving strongest stimulation was sellected for in vivo assay to stimulate cytokines production and gene expression using peritoneal macrophage (P-mac) of BALB/c mice. The results showed that SFFE exhibited immunostimulatory activities. Immunostimulatory activity could be indicated by macrophages activation characteristics such as cytokines production. Water extract of SFFE gave strongest stimulation on cytokines production in vitro and sellected for in vivo assay. In vivo assay showed that SFFE stimulated cytokines production as well as their gene expression levels. The optimum stimulation was demonstrated by SFFE 16.7 mg/g. Overall findings suggest that SFFE has a potent beneficial effects to promote the body health through activating macrophages.

  8. DHA suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-14

    Several reports have indicated that dietary intake of DHA is associated with lower prevalence of periodontitis. In the present study, we investigated the effect of DHA on the production of proinflammatory mediators in murine macrophage-like RAW264.7 cells stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. LPS was isolated from lyophilised P. intermedia ATCC 25,611 cells using the standard hot-phenol-water protocol. Culture supernatants were collected and assayed for NO, IL-1β and IL-6. Real-time PCR analysis was carried out to detect the expression of inducible NO synthase (iNOS), IL-1β, IL-6 and haeme oxygenase-1 (HO-1) mRNA. Immunoblot analysis was carried out to quantify the expression of iNOS and HO-1 protein and concentrations of signalling proteins. DNA-binding activities of NF-κB subunits were determined using an ELISA-based assay kit. DHA significantly attenuated the production of NO, IL-1β and IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. DHA induced the expression of HO-1 in cells treated with P. intermedia LPS. Selective inhibition of HO-1 activity by tin protoporphyrin IX significantly mitigated the inhibitory effects of DHA on LPS-induced NO production. DHA significantly attenuated the phosphorylation of c-Jun N-terminal kinase induced by LPS. In addition, DHA suppressed the transcriptional activity of NF-κB by regulating the nuclear translocation and DNA-binding activity of NF-κB p50 subunit and inhibited the phosphorylation of signal transducer and activator of transcription 1. Further in vivo studies are needed to better evaluate the potential of DHA in humans as a therapeutic agent to treat periodontal disease.

  9. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages.

    Science.gov (United States)

    Kamtchueng Simo, Olivier; Ikhlef, Souade; Berrougui, Hicham; Khalil, Abdelouahed

    2017-08-01

    Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [ 3 H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.

  10. Dysregulated cytokine production by dendritic cells modulates B cell responses in the NZM2410 mouse model of lupus.

    Directory of Open Access Journals (Sweden)

    Allison Sang

    Full Text Available The breakdown in tolerance of autoreactive B cells in the lupus-prone NZM2410-derived B6.Sle1.Sle2.Sle3 (TC mice results in the secretion of autoantibodies. TC dendritic cells (DCs enhance B cell proliferation and antibody secretion in a cytokine-dependent manner. However, the specific cytokine milieu by which TC DCs activate B cells was not known. In this study, we compared TC and C57BL/6 (B6 control for the distribution of DC subsets and for their production of cytokines affecting B cell responses. We show that TC DCs enhanced B cell proliferation through the production of IL-6 and IFN-γ, while antibody secretion was only dependent on IL-6. Pre-disease TC mice showed an expanded PDCA1(+ cells prior to disease onset that was localized to the marginal zone and further expanded with age. The presence of PDCA1(+ cells in the marginal zone correlated with a Type I Interferon (IFN signature in marginal zone B cells, and this response was higher in TC than B6 mice. In vivo administration of anti-chromatin immune complexes upregulated IL-6 and IFN-γ production by splenic DCs from TC but not B6 mice. The production of BAFF and APRIL was decreased upon TC DC stimulation both in vitro and in vivo, indicating that these B cell survival factors do not play a role in B cell modulation by TC DCs. Finally, TC B cells were defective at downregulating IL-6 expression in response to anti-inflammatory apoptotic cell exposure. Overall, these results show that the TC autoimmune genetic background induces the production of B cell-modulating inflammatory cytokines by DCs, which are regulated by the microenvironment as well as the interplay between DC.

  11. Dysregulated Cytokine Production by Dendritic Cells Modulates B Cell Responses in the NZM2410 Mouse Model of Lupus

    Science.gov (United States)

    Sang, Allison; Zheng, Ying-Yi; Yin, Yiming; Dozmorov, Igor; Li, Hao; Hsu, Hui-Chen; Mountz, John D.; Morel, Laurence

    2014-01-01

    The breakdown in tolerance of autoreactive B cells in the lupus-prone NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) mice results in the secretion of autoantibodies. TC dendritic cells (DCs) enhance B cell proliferation and antibody secretion in a cytokine-dependent manner. However, the specific cytokine milieu by which TC DCs activate B cells was not known. In this study, we compared TC and C57BL/6 (B6) control for the distribution of DC subsets and for their production of cytokines affecting B cell responses. We show that TC DCs enhanced B cell proliferation through the production of IL-6 and IFN-γ, while antibody secretion was only dependent on IL-6. Pre-disease TC mice showed an expanded PDCA1+ cells prior to disease onset that was localized to the marginal zone and further expanded with age. The presence of PDCA1+ cells in the marginal zone correlated with a Type I Interferon (IFN) signature in marginal zone B cells, and this response was higher in TC than B6 mice. In vivo administration of anti-chromatin immune complexes upregulated IL-6 and IFN-γ production by splenic DCs from TC but not B6 mice. The production of BAFF and APRIL was decreased upon TC DC stimulation both in vitro and in vivo, indicating that these B cell survival factors do not play a role in B cell modulation by TC DCs. Finally, TC B cells were defective at downregulating IL-6 expression in response to anti-inflammatory apoptotic cell exposure. Overall, these results show that the TC autoimmune genetic background induces the production of B cell-modulating inflammatory cytokines by DCs, which are regulated by the microenvironment as well as the interplay between DC. PMID:25093822

  12. Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase.

    Science.gov (United States)

    Zhang, Hanying; Du, Min; Yang, Qiyuan; Zhu, Mei-Jun

    2016-01-01

    Beyond their nutritional impact to colonic epithelial cells, the intestinal microbiota metabolite butyrate has pleotropic effects to host cells and is known for its beneficial effects on intestinal homeostasis and metabolism. However, it remains unclear how it modulates mast cell function. Here, we demonstrate that butyrate profoundly inhibited proliferation of mouse mastocytoma P815 cells through inducing cell cycle arrest and apoptosis, as well as decreasing c-Kit activation. In addition, butyrate increased early- and late-stage apoptotic P815 cells. In murine bone marrow-derived mast cells (BMMC), butyrate-suppressed FcεRI-dependent tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) release without affecting β-Hexosaminidase, but that was associated with decreased mitogen-activated protein kinase extracellular signal-regulated kinase 1/2, p38 and c-Jun N-terminal kinases activation. Butyrate treatment substantially enhanced histone 3 acetylation in both P815 and BMMC and decreased FcεRI-dependent mRNA expression of tnf-α and il-6 in BMMC, mimicking the effect of Trichostatin A, a known histone deacetylase inhibitor. Chromatin immunoprecipitation revealed that butyrate enhanced acetylation of the tnf-α and il-6 promoter regions but blocked RNA polymerase II binding to the promoters of tnf-α and il-6 genes, indicating suppressed transcription initiation. These phenotypes mimicked those of Trichostatin A treatment. In conclusion, butyrate inhibits cell proliferation and increases cell apoptosis in mastocytoma P815 cells and suppresses FcεRI-dependent cytokine production in murine primary BMMC, which are likely mediated by HDAC inhibition. Published by Elsevier Inc.

  13. Impact of shed blood products on stimulated cytokine release in an in vitro model of transfusion.

    Science.gov (United States)

    Schneider, S O; Biedler, A E; Behmenburg, F; Volk, T; Rensing, H

    2012-07-01

    Blood transfusion is reported to suppress the recipient's immune system. To avoid allogenic transfusion, post-operative shed blood retransfusion is a commonly used method. The aim of this study was to investigate the dose-related impact of post-operatively collected shed blood products on the stimulated cytokine release in an in vitro model of transfusion. Venous blood samples obtained from 20 patients undergoing hip arthroplasty were mixed with post-operatively collected unprocessed, processed, and irradiated shed blood as well as normal saline as a control. Shed blood was processed by centrifugation and separating the cellular fraction from the soluble fraction and washing the cellular fraction with phosphate buffered saline to eliminate any cell fragments and other substances. Mixing ratios were 1:3, 1:1, and 3:1. Endotoxin-stimulated release of Tumor Necrosis Factor-alpha (TNF-α) was measured after 24 h of culture by enzyme-linked immunosorbent assay. Unprocessed, irradiated shed blood and the soluble fraction caused a significant suppression of stimulated TNF-α release compared to control. The addition of the cellular shed blood fraction had no significant influence on the TNF-α release compared to control. Shed blood and its components caused a dose-independent immunomodulation as indicated by a suppressed stimulated TNF-α release. Leukocytes seem to play a minor role, as we observed a sustained suppression after transfusion of γ-irradiated shed blood. Only the elimination of soluble factors by centrifugation and followed by an additional washing step prevented the observed suppression of TNF-α. Thus, we assume that washing of shed blood can prevent potential detrimental effects. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  14. Impact of lithium alone and in combination with antidepressants on cytokine production in vitro.

    Science.gov (United States)

    Petersein, Charlotte; Sack, Ulrich; Mergl, Roland; Schönherr, Jeremias; Schmidt, Frank M; Lichtblau, Nicole; Kirkby, Kenneth C; Bauer, Katrin; Himmerich, Hubertus

    2015-01-01

    Lithium is an important psychopharmacological agent for the treatment of unipolar as well as bipolar affective disorders. Lithium has a number of side effects such as hypothyroidism and aggravation of psoriasis. On the other hand, lithium has pro-inflammatory effects, which appear beneficial in some disorders associated with immunological deficits, such as human immunodeficiency virus (HIV) infection and systemic lupus erythematosus (SLE). Therefore, immunological characteristics of lithium may be an important consideration in individualized therapeutic decisions. We measured the levels of the cytokines interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-22, IL-17 and tumour necrosis factor (TNF)-α in the stimulated blood of thirty healthy subjects supplemented with lithium alone, the antidepressants citalopram, escitalopram or mirtazapine alone, the combination of each antidepressant with lithium, and a no drug control. These drugs were tested under three blood stimulant conditions: murine anti-human CD3 monoclonal antibody OKT3 and the 5C3 monoclonal antibody (OKT3/5C3), phytohemagglutinin (PHA), and unstimulated blood. Lithium, alone and in combination with any of the tested antidepressants, led to a consistent increase of IL-1ß, IL-6 and TNF-α levels in the unstimulated as well as the stimulated blood. In the OKT3/5C3- and PHA-stimulated blood, IL-17 production was significantly enhanced by lithium. Lithium additionally increased IL-2 concentrations significantly in PHA-stimulated blood. The data support the view that lithium has pro-inflammatory properties. These immunological characteristics may contribute to side effects of lithium, but may also explain its beneficial effects in patients suffering from HIV infection or SLE.

  15. Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection.

    Science.gov (United States)

    Hernández-Fonseca, Juan Pablo; Durán, Anyelo; Valero, Nereida; Mosquera, Jesús

    2015-11-01

    The role of angiotensin II (Ang II) in dengue virus infection remains unknown. The aim of this study was to determine the effect of losartan, an antagonist of the angiotensin II type 1 receptor (AT1 receptor), and enalapril, an inhibitor of angiotensin I-converting enzyme (ACE), on viral antigen expression and IL-1β production in peritoneal macrophages infected with dengue virus type 2. Mice treated with losartan or enalapril and untreated controls were infected intraperitoneally with the virus, and macrophages were analyzed. Infection resulted in increased IL-1β production and a high percentage of cells expressing viral antigen, and this was decreased by treatment with anti-Ang II drugs, suggesting a role for Ang II in dengue virus infection.

  16. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    2010-09-01

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  17. The role of HFE genotype in macrophage phenotype.

    Science.gov (United States)

    Nixon, Anne M; Neely, Elizabeth; Simpson, Ian A; Connor, James R

    2018-02-01

    Iron regulation is essential for cellular energy production. Loss of cellular iron homeostasis has critical implications for both normal function and disease progression. The H63D variant of the HFE gene is the most common gene variant in Caucasians. The resulting mutant protein alters cellular iron homeostasis and is associated with a number of neurological diseases and cancer. In the brain, microglial and infiltrating macrophages are critical to maintaining iron homeostasis and modulating inflammation associated with the pathogenic process in multiple diseases. This study addresses whether HFE genotype affects macrophage function and the implications of these findings for disease processes. Bone marrow macrophages were isolated from wildtype and H67D HFE knock-in mice. The H67D gene variant in mice is the human equivalent of the H63D variant. Upon differentiation, the macrophages were used to analyze iron regulatory proteins, cellular iron release, migration, phagocytosis, and cytokine expression. The results of this study demonstrate that the H67D HFE genotype significantly impacts a number of critical macrophage functions. Specifically, fundamental activities such as proliferation in response to iron exposure, L-ferritin expression in response to iron loading, secretion of BMP6 and cytokines, and migration and phagocytic activity were all found to be impacted by genotype. Furthermore, we demonstrated that exposure to apo-Tf (iron-poor transferrin) can increase the release of iron from macrophages. In normal conditions, 70% of circulating transferrin is unsaturated. Therefore, the ability of apo-Tf to induce iron release could be a major regulatory mechanism for iron release from macrophages. These studies demonstrate that the HFE genotype impacts fundamental components of macrophage phenotype that could alter their role in degenerative and reparative processes in neurodegenerative disorders.

  18. Excretory/secretory products from two Fasciola hepatica isolates induce different transcriptional changes and IL-10 release in LPS-activated bovine "BOMA" macrophages.

    Science.gov (United States)

    Bąska, Piotr; Norbury, Luke James; Zawistowska-Deniziak, Anna; Wiśniewski, Marcin; Januszkiewicz, Kamil

    2017-10-01

    Fasciola hepatica are trematodes that reside in the bile ducts of mammals. Infection causes US$3 billion in losses annually in animal production and is considered a zoonosis of growing importance. An under-represented area in F. hepatica research has been the examination of the different immunomodulatory abilities of various parasite isolates on the host immune system. In this paper, this issue was explored, with the bovine macrophage cell line "BOMA". The cells were matured by LPS treatment and stimulated with excretory/secretory antigens (ES) from two Fasciola hepatica isolates: a laboratory isolate "Weybridge" (Fh-WeyES) and a wild isolate (Fh-WildES). As expected, stimulation with antigen mixtures with highly similar compositions resulted in mild transcriptomic differences. However, there were significant differences in cytokine levels. Compared to Fh-WeyES, exposure to Fh-WildES upregulated 27 and downregulated 30 genes. Fh-ES from both isolates diminished the release of TNF-α, whereas only Fh-WildES decreased IL-10 secretion. Neither Fh-WeyES nor Fh-WildES had an impact on IL-12 release. Our results indicate that various isolates can have different immunomodulatory abilities and impacts on the bovine immune system.

  19. IFNγ Enhances CD64-Potentiated Phagocytosis of Treponema pallidum Opsonized with Human Syphilitic Serum by Human Macrophages

    Science.gov (United States)

    Hawley, Kelly L.; Cruz, Adriana R.; Benjamin, Sarah J.; La Vake, Carson J.; Cervantes, Jorge L.; LeDoyt, Morgan; Ramirez, Lady G.; Mandich, Daniza; Fiel-Gan, Mary; Caimano, Melissa J.; Radolf, Justin D.; Salazar, Juan C.

    2017-01-01

    Syphilis is a multi-stage, sexually transmitted disease caused by the spirochete Treponema pallidum (Tp). Considered broadly, syphilis can be conceptualized as a dualistic process in which spirochete-driven inflammation, the cause of clinical manifestations, coexists to varying extents with bacterial persistence. Inflammation is elicited in the tissues, along with the persistence of spirochetes to keep driving a robust immune response while evading host defenses; this duality is best exemplified during the florid, disseminated stage called secondary syphilis (SS). SS lesions typically contain copious amounts of spirochetes along with a mixed cellular infiltrate consisting of CD4+ T cells, CD8+ T cells, NK cells, plasma cells, and macrophages. In the rabbit model, Tp are cleared by macrophages via antibody-mediated opsonophagocytosis. Previously, we demonstrated that human syphilitic serum (HSS) promotes efficient uptake of Tp by human monocytes and that opsonophagocytosis of Tp markedly enhances cytokine production. Herein, we used monocyte-derived macrophages to study Tp–macrophage interactions ex vivo. In the absence of HSS, monocyte-derived macrophages internalized low numbers of Tp and secreted little cytokine (e.g., TNF). By contrast, these same macrophages internalized large numbers of unopsonized Borrelia burgdorferi and secreted robust levels of cytokines. Maturation of macrophages with M-CSF and IFNγ resulted in a macrophage phenotype with increased expression of HLA-DR, CD14, inducible nitric oxide synthase, TLR2, TLR8, and the Fcγ receptors (FcγR) CD64 and CD16, even in the absence of LPS. Importantly, IFNγ-polarized macrophages resulted in a statistically significant increase in opsonophagocytosis of Tp accompanied by enhanced production of cytokines, macrophage activation markers (CD40, CD80), TLRs (TLR2, TLR7, TLR8), chemokines (CCL19, CXCL10, CXCL11), and TH1-promoting cytokines (IL-12, IL-15). Finally, the blockade of FcγRs, primarily CD64

  20. Gallium arsenide selectively up-regulates inflammatory cytokine expression at exposure site.

    Science.gov (United States)

    Becker, Stephen M; McCoy, Kathleen L

    2003-12-01

    Gallium arsenide (GaAs), a technologically and economically important semiconductor, is widely utilized in both military and commercial applications. This chemical is a potential health hazard as a carcinogen and immunotoxicant. We previously reported that macrophages at the exposure site exhibit characteristics of activation. In vitro culture of macrophages with GaAs fails to recapitulate the in vivo phenotype, suggesting that complete GaAs-mediated activation in vivo may require other cells or components found in the body's microenvironment. Our present study examined the role of cytokines upon GaAs-mediated macrophage activation. Intraperitoneal administration of GaAs elicited rapid specific recruitment of blood monocytes to the exposure site. This recruitment occurred concomitant with up-regulation of 17 chemokine and inflammatory cytokine mRNAs, while transcripts of three inhibitory cytokines diminished. Administration of latex beads caused less cytokine induction than GaAs, indicating that changes in mRNA levels could not be attributed to phagocytosis. Four representative chemokines and cytokines were selected for further analysis. Increased cytokine mRNA expression was paralleled by similar increases in cytokine protein levels, and secreted protein products were detected in peritoneal fluid. Cytokine protein expression was constrained to myeloid cells, and to a lesser extent to B cells. Alterations in patterns of cytokine gene expression elucidate mechanisms for increased cellular activation and antigen processing, and modulation of the inflammatory response. Our findings indicate that in vivo GaAs exposure alters cytokine gene expression, which may lead to an inflammatory reaction and contribute to pathological tissue damage.

  1. Ridostin inhibits HIV-1 replication in the T lymphoblastoid cell line C8166. Possible role of altered cytokine production.

    Science.gov (United States)

    Scheglovitova, O; Ameglio, F; Trento, E; Ershov, F

    1995-09-01

    Altered cytokine production in human immunodeficiency virus 1 (HIV-1) infection is well documented and cytokine modulators are currently under investigation as possible therapeutic agents. We tested the ability of Ridostin (dsRNA preparation derived from S. cervisiae) to inhibit HIV-1 replication in acutely infected T lymphoblastoid C8166 cells. Ridostin inhibited HIV-1 replication in a concentration range that is 100-fold lower than the toxic concentration for these cells. C8166 cells spontaneously produced interferon (IFN) alpha and gamma, as well as tumor necrosis factor (TNF) alpha. Ridostin activated IFN alpha and suppressed TNF alpha and IFN gamma production by these cells. Monoclonal antibodies (MoAbs) to TNF alpha dose-dependently inhibited HIV-1 replication in these cells. Therefore it is possible that the observed anti-HIV activity of Ridostin in C8166 cells is partly mediated by altered cytokine production. Particularly, suppression of TNF alpha synthesis, that is known to activate HIV-1 replication in several model systems, can play a major role in the observed inhibition of HIV-1 replication.

  2. FcγRIIa cross-talk with TLRs, IL-1R, and IFNγR selectively modulates cytokine production in human myeloid cells

    NARCIS (Netherlands)

    Vogelpoel, Lisa T. C.; Hansen, Ivo S.; Visser, Marijke W.; Nagelkerke, Sietse Q.; Kuijpers, Taco W.; Kapsenberg, Martien L.; de Jong, Esther C.; den Dunnen, Jeroen

    2015-01-01

    Myeloid antigen-presenting cells (APCs) tailor immune responses to the pathogen involved through the production of specific pro- and anti-inflammatory cytokines. It is becoming increasingly clear that the ultimate cytokine profile produced by myeloid APCs crucially depends on interaction between

  3. Glycine tomentella Hayata inhibits IL-1β and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells

    Directory of Open Access Journals (Sweden)

    Sun Yu-Shu

    2010-11-01

    Full Text Available Abstract Background To assess the effects of Glycine tomentella Hayata (GTH, a traditional herbal medicine for treatment of rheumatic diseases on the expression of the proinflammatory cytokines and on the clearance of apoptotic cells by macrophages. Methods RAW264.7 cells were cultured with lipopolysaccharide (LPS in the presence or absence of ethanol extract of GTH. The expression of proinflammatory cytokines IL-1β, IL-6, and TNF-α, and inducible nitric oxide synthase (iNOS and transglutaminase 2 (TG2 were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA. Matrix metalloproteinase (MMP-2 and MMP-9 were assayed by gelatin zymography. For detecting uptake of apoptotic cells, RAW264.7 cells were cultured with carboxyfluorescein diacetate (CFDA-stained apoptotic cells and assayed by flow cytometry. Results The major components of GTH analyzed by high-performance liquid chromatography (HPLC chromatogram were daidzein (42.5%, epicatechin (28.8%, and naringin (9.4%. GTH treatment inhibited the expression of proinflammatory cytokines IL-1β, IL-6 and MMP-9 but did not affect the expression of TNF-α and iNOS. GTH significantly enhanced the expression of TG2 and the clearance of apoptotic cells by RAW264.7 macrophages. Conclusions GTH inhibits proinflammatory cytokine secretion and MMP-9 activity, enhances apoptotic cell uptake and up-regulates TG2 expression. Our data show that GTH might have beneficial effects on rheumatic diseases.

  4. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  5. The impact of arginine-modified chitosan-DNA nanoparticles on the function of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lanxia; Bai Yuanyuan; Song Chunni; Zhu Dunwan; Song Liping; Zhang Hailing; Dong Xia; Leng Xigang, E-mail: lengxg@bme.org.c [Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Laboratory of Bioengineering (China)

    2010-06-15

    It has been demonstrated that incorporation of arginine moieties into chitosan significantly elevates the transgenic efficacy of the chitosan. However, little is known about the impact of arginine-modified chitosan on the function of macrophages, which play a vitally important role in the inflammatory response of the body to foreign substances, especially particulate substances. This study was designed to investigate the impact of arginine-modified chitosan/DNA nanoparticles on the function of the murine macrophage through observation of phagocytic activity and production of pro-inflammatory cytokines (IL-1{beta}, IL-6, IL-10, IL-12, and TNF-{alpha}). Results showed that both chitosan/DNA nanoparticles and arginine-modified chitosan/DNA nanoparticles, containing 20 {mu}g/mL DNA, were internalized by almost all the macrophages in contact. This led to no significant changes, compared to the non-exposure group, in production of cytokines and phagocytic activity of the macrophages 24 h post co-incubation, whereas exposure to LPS induced obviously elevated cytokine production and phagocytic activity, suggesting that incorporation of arginine moieties into chitosan does not have a negative impact on the function of the macrophages.

  6. Activation of macrophages by food antigens:enhancing effect of gluten on nitric oxide and cytokine production

    Czech Academy of Sciences Publication Activity Database

    Tučková, Ludmila; Flegelová, Z.; Tlaskalová, Helena; Zídek, Zdeněk

    2000-01-01

    Roč. 67, - (2000), s. 312-318 ISSN 0741-5400 R&D Projects: GA ČR GA307/97/0069; GA ČR GA310/96/1366; GA ČR GA306/98/0433; GA AV ČR IAA7020808; GA AV ČR IAA7020716; GA MZd NI5051; GA AV ČR KSK2039602 Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EC - Immunology Impact factor: 4.342, year: 2000

  7. Phenotypic changes in the brain of SIV-infected macaques exposed to methamphetamine parallel macrophage activation patterns induced by the common gamma-chain cytokine system

    Directory of Open Access Journals (Sweden)

    Nikki eBortell

    2015-09-01

    Full Text Available One factor in the development of neuroAIDS is the increase in the migration of pro-inflammatory CD8 T cells across the Blood Brain Barrier. Typically these cells are involved with keeping the viral load down. However, the persistence of above average numbers of CD8 T cells in the brain, not necessarily specific to viral peptides, is facilitated by the upregulation of IL15 from astrocytes, in the absence of IL2, in the brain environment. Both IL15 and IL2 are common gamma chain (γc cytokines. Here, using the non-human primate model of neuroAIDS, we have demonstrated that exposure to Methamphetamine, a powerful illicit drug that has been associated with HIV exposure and neuroAIDS severity, can cause an increase in molecules of the γc system. Among these molecules, IL15, which is upregulated in astrocytes by Methamphetamine, and that induces the proliferation of T cells, may also be involved in driving an inflammatory phenotype in innate immune cells of the brain. Therefore, Methamphetamine and IL15 may be critical in the development and aggravation of Central Nervous System immune-mediated inflammatory pathology in HIV-infected drug abusers.

  8. Effects of smoking on the ex vivo cytokine production in periodontitis

    NARCIS (Netherlands)

    de Heens, G. L. Torres; Kikkert, R.; Aarden, L. A.; van der Velden, U.; Loos, B. G.

    2009-01-01

    BACKGROUND AND OBJECTIVE: Smoking is associated with increased severity of periodontitis. The underlying mechanisms of this phenomenon are not well understood. The purpose of the present study was to compare the monocyte-derived T cell directing (Th1/Th2) response and pro-inflammatory cytokine

  9. Effects of smoking on the ex vivo cytokine production in periodontitis

    NARCIS (Netherlands)

    Torres de Heens, G.L.; Kikkert, R.; Aarden, L.A.; van der Velden, U.; Loos, B.G.

    2009-01-01

    Background and Objective:  Smoking is associated with increased severity of periodontitis. The underlying mechanisms of this phenomenon are not well understood. The purpose of the present study was to compare the monocyte-derived T cell directing (Th1/Th2) response and pro-inflammatory cytokine

  10. TLR-mediated NF-kB-dependent cytokine production is differently affected by HIV therapeutics

    DEFF Research Database (Denmark)

    Melchjorsen, Jesper; Paludan, Søren Riis; Mogensen, Trine

      Pathogen-recognizing Toll-like receptors 2 (TLR2) and TLR4 are known to recognize a number of pathogens, including E.Coli, S. Pneumonia and N. Meningococcus. We have studied whether a number of HIV therapeutics affect immediate proinflammatory cytokine responses in cell cultures. Preliminary...

  11. Divergent effects of Tenofovir and Retrovir (AZT) on TLR-mediated cytokine production

    DEFF Research Database (Denmark)

    Melchjorsen, Jesper; Tolstrup, Martin; Paludan, Søren Riis

      Pathogen-recognizing Toll-like receptors 2 (TLR2) and TLR4 are known to recognize a number of pathogens, including E.Coli, S. Pneumoniae and N. Meningitidis. We have studied whether a number of HIV therapeutics affect immediate proinflammatory cytokine responses in cell cultures. Preliminary...

  12. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Methanol extracts of Euphorbia cooperi inhibit the production of inflammatory mediators by inhibiting the activation of c‑Jun N‑terminal kinase and p38 in murine macrophages.

    Science.gov (United States)

    Cho, Young-Chang; Lee, In-Seon; Seo, Huiyun; Ju, Anna; Youn, Deokkyu; Kim, Younghyun; Choun, Jaehee; Cho, Sayeon

    2014-11-01

    Numerous Euphorbiaceae plants have been used for the treatment of diseases, including liver diseases, asthma and rheumatism. The present study evaluated the effect of methanol extracts from Euphorbia cooperi (MEC), a member of the Euphorbiaceae plant family, on the production of inflammatory cytokines interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α, nitric oxide (NO) as well as the activation of mitogen‑activated protein kinase and nuclear factor (NF)‑κB signaling. Non‑cytotoxic concentrations of MEC significantly reduced the production of NO and IL‑6, but not TNF‑α, in lipopolysaccharide (LPS)‑stimulated RAW 264.7 macrophages. The decreased production of NO by MEC was due to alleviated expression of inducible NO synthase. Reporter assays with cells treated with MEC demonstrated reduced activator protein‑1 (AP-1) activity, while NF‑κB activity was not reduced. Furthermore, the phosphorylation levels of c‑Jun N‑terminal kinase (JNK) and p38 were suppressed by MEC while phosphorylation levels of inhibitor of κB were not reduced by MEC, suggesting that MEC‑mediated inactivation of JNK and p38 is the underlying regulatory mechanism for inflammatory mediators in LPS‑stimulated RAW 264.7 macrophages.