WorldWideScience

Sample records for macrophage activity resorption

  1. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio.

  2. Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment

    Science.gov (United States)

    Blair, H. C.

    1985-01-01

    Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.

  3. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    Science.gov (United States)

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  5. Icariin suppresses bone resorption activity of rabbit osteoclasts in vitro

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian; ZHANG JinChao; ZHANG TianLan; WANG Kui

    2007-01-01

    The effect of icariin on the bone resorption activity of rabbit osteoclasts is assessed in vitro. Osteoclasts were isolated from Japanese white rabbits and cultured on plates with a sterilized bone slice in each well. After treatment with icariin at various concentrations, the bone resorption activity of osteoclasts was evaluated by examining pit areas, superoxide anion (O2-) generation, size and number of actin rings and intracellular calcium concentration [Ca2+]i. As revealed by these data, icariin elicited continuous decline of [Ca2+]1, making actin ring constricted and O2- generation decreased. These events resulted in smaller and fewer pits which indicate suppressed bone resorption activity of rabbit osteoclasts by icariin.

  6. Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle

    DEFF Research Database (Denmark)

    Søe, Kent; Delaissé, Jean-Marie

    2010-01-01

    as a negative-feedback loop, switching resorptive activity off and promoting migration to a new resorption site, thereby generating an additional resorption pit. We conclude that glucocorticoids change the osteoclastic resorption mode from intermittent to continuous and speculate that this change may contribute...

  7. Commercial Honeybush (Cyclopia spp.) Tea Extract Inhibits Osteoclast Formation and Bone Resorption in RAW264.7 Murine Macrophages-An in vitro Study.

    Science.gov (United States)

    Visagie, Amcois; Kasonga, Abe; Deepak, Vishwa; Moosa, Shaakirah; Marais, Sumari; Kruger, Marlena C; Coetzee, Magdalena

    2015-10-28

    Honeybush tea, a sweet tasting caffeine-free tea that is indigenous to South Africa, is rich in bioactive compounds that may have beneficial health effects. Bone remodeling is a physiological process that involves the synthesis of bone matrix by osteoblasts and resorption of bone by osteoclasts. When resorption exceeds formation, bone remodeling can be disrupted resulting in bone diseases such as osteoporosis. Osteoclasts are multinucleated cells derived from hematopoietic precursors of monocytic lineage. These precursors fuse and differentiate into mature osteoclasts in the presence of receptor activator of NF-kB ligand (RANKL), produced by osteoblasts. In this study, the in vitro effects of an aqueous extract of fermented honeybush tea were examined on osteoclast formation and bone resorption in RAW264.7 murine macrophages. We found that commercial honeybush tea extract inhibited osteoclast formation and TRAP activity which was accompanied by reduced bone resorption and disruption of characteristic cytoskeletal elements of mature osteoclasts without cytotoxicity. Furthermore, honeybush tea extract decreased expression of key osteoclast specific genes, matrix metalloproteinase-9 (MMP-9), tartrate resistant acid phosphatase (TRAP) and cathepsin K. This study demonstrates for the first time that honeybush tea may have potential anti-osteoclastogenic effects and therefore should be further explored for its beneficial effects on bone.

  8. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells.

    Science.gov (United States)

    Grossardt, Christian; Ewald, Andrea; Grover, Liam M; Barralet, Jake E; Gbureck, Uwe

    2010-12-01

    Biocements are clinically applied materials for bone replacement in non-load-bearing defects. Depending on their final composition, cements can be either resorbed or remain stable at the implantation site. Degradation can occur by two different mechanisms, by simple dissolution (passive) or after osteoclastic bone remodeling (active). This study investigated both the passive and active in vitro resorption behavior of brushite (CaHPO₄ · 2H₂O), monetite (CaHPO₄), calcium-deficient hydroxyapatite (CDHA; Ca₉(PO₄)₅HPO₄OH), and struvite (MgNH₄PO₄ · 6H₂O) cements. Passive resorption was measured by incubating the cement samples in a cell culture medium, whereas active resorption was determined during the surface culture of multinuclear osteoclastic cells derived from RAW 264.7 macrophages. Osteoclast formation was confirmed by showing tartrate resistant acid phosphatase (TRAP) activity on CDHA, brushite, and monetite surfaces, as well as by measuring calcitonin receptor (CT-R) expression as an osteoclast-specific protein by Western blot analysis for struvite ceramics. An absence of passive degradation and only marginally active degradation of struvite cement was the most degradable with a passive (active) release of 9.26 (2.92) Mg²+ ions and a total weight loss of 4.7% over 13 days of the study.

  9. P38 mitogen-activated protein kinase inhibitor, FR167653, inhibits parathyroid hormone related protein-induced osteoclastogenesis and bone resorption.

    Directory of Open Access Journals (Sweden)

    Huiren Tao

    Full Text Available p38 mitogen-activated protein kinase (MAPK acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK, a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1 in bone marrow macrophages (BMMs stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption.

  10. Scanning electron microscopic description of cellular activity and mineral changes in feline odontoclastic resorptive lesions.

    Science.gov (United States)

    Gauthier, O; Boudigues, S; Pilet, P; Aguado, E; Heymann, D; Daculsi, G

    2001-12-01

    The cellular activity and changes in mineral composition of dental tissues involved in feline odontoclastic resorptive lesions were investigated. Teeth with at least 1 lesion (n = 10) were extracted from 10 different cats that were presented primarily for chronic gingivostomatitis and/or severe periodontal disease. Scanning electron microscopic methods were used to determine the presence of resorptive cells in 8 teeth while 2 teeth were evaluated for pathologic changes in dental mineral composition. Observations were complicated by the presence of organic wear on the dental surfaces, however resorptive cells could be clearly identified in feline odontoclastic resorptive lesions. Resorptive cells had morphologic features indicative of "osteoclast-like" cells or odontoclasts. Resorptive cell activity created a resorption area of darker dentin continuous with physiologic dentin. The darker dentin area seemed poorly mineralized and showed a significantly lower calcium/phosphorous ratio compared with adjacent physiologic denting in 1 tooth. A significantly higher level of magnesium combined with available carbonate ions may have increased the solubility in areas of darker dentin.

  11. Notch2 signaling promotes osteoclast resorption via activation of PYK2.

    Science.gov (United States)

    Jin, Won Jong; Kim, Bongjun; Kim, Jung-Wook; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2016-05-01

    Notch signaling plays a central role in various cell fate decisions, including skeletal development. Recently, Notch signaling was implicated in osteoclast differentiation and maturation, including the resorption activity of osteoclasts. However, the specific involvement of notch signaling in resorption activity was not fully investigated. Here, we investigated the roles of Notch signaling in the resorption activity of osteoclasts by use of the gamma-secretase inhibitor dibenzazepine (DBZ). Attenuating Notch signaling by DBZ suppressed the expression of NFATc1, a master transcription factor for osteoclast differentiation. However, overexpression of a constitutively active form of NFATc1 did not fully rescue the effects of DBZ. DBZ suppressed the autophosphorylation of PYK2, which is essential for the formation of the podosome belt and sealing zone, with reduced c-Src/PYK2 interaction. We found that RANKL increases PYK2 activation accompanied by increased NICD2 production in osteoclasts. Overexpression of NICD2 in osteoclasts rescued DBZ-mediated suppression of resorption activity with promotion of PYK2 autophosphorylation and microtubule acetylation. Consistent with the in vitro results, DBZ strongly suppressed bone destruction in an interleukin-1-induced bone loss model. Collectively, these results demonstrate that Notch2 in osteoclasts plays a role in the control of resorption activity via the PYK2-c-Src-microtubule signaling pathway.

  12. [Molecular mechanisms regulating the activity of macrophages].

    Science.gov (United States)

    Onoprienko, L V

    2011-01-01

    This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.

  13. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimulatin

  14. The Many Alternative Faces of Macrophage Activation.

    Directory of Open Access Journals (Sweden)

    David A. Hume

    2015-07-01

    Full Text Available Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. In large gene expression datasets from multiple cells and tissues, it is possible to identify sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, they include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and those associated with endocytosis. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile or pathogenic inflammatory stimuli. These stimuli alter gene expression to produce activated macrophages that are better equipped to eliminate the cause of their influx, and to restore homeostasis. Activation or polarization states of macrophages have been classified as classical and alternative or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide (LPS. This response is reviewed herein. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals and in other species such as pigs. The data and publication deluge related to macrophage activation requires the development of new analytical tools, and ways of presenting information in an

  15. Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption.

    NARCIS (Netherlands)

    Chang, E.J.; Ha, J.; Oerlemans, F.; Lee, Y.J.; Lee, S.W.; Ryu, J.; Kim, H.J.; Lee, Y.; Kim, H.M.; Choi, J.Y.; Kim, J.Y.; Shin, C.S.; Pak, Y.K.; Tanaka, S.; Wieringa, B.; Lee, Z.H.; Kim, H.H.

    2008-01-01

    Osteoclasts differentiate from precursor cells of the monocyte-macrophage lineage and subsequently become activated to be competent for bone resorption through programs primarily governed by receptor activator of nuclear factor-kappaB ligand in cooperation with macrophage colony-stimulating factor.

  16. Dehydroepiandrosterone indirectly inhibits human osteoclastic resorption via activating osteoblastic viability by the MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-dong; TAO Min-fang; CHENG Wei-wei; LIU Xiao-hua; WAN Xiao-ping; KeMi Cui

    2012-01-01

    Background Dehydroepiandrosterone (DHEA) is widely known for its beneficial effect on postmenopausal osteoporosis,although the underlying mechanisms remain mainly unclear.In this study,we tried to determine the activation of mitogen-activated protein kinase signal pathways during DHEA treatment and the indirect role of osteoblasts (OBs) on osteoclasts under the DHEA treatment of postmenopausal osteoporosis.@@Methods Primary human OBs and osteoclast-like cells were cultured and,we pretreated OBs with or without U0126 (a highly selective inhibitor of both MEK1 and MEK2).The OBs were treated with DHEA.We then tested the effects of DHEA on human osteoblastic viability,osteoprotegerin production and the expression of phosphor-ERK1/2 (extracellular signal-regulated kinase).In the presence or absence of OBs,the function of osteoclastic resorption upon DHEA treatment was calculated.@@Results DHEA promoted the human osteoblastic proliferation and inhibited the osteoblastic apoptosis within the concentration range of 108-10-6 mol/L (P <0.05,P <0.01,respectively).Within the effective concentration range,the expression of phosphor-ERK1/2 and osteoprotegerin was increased by DHEA and blocked by U0126.In the presence of OBs,DHEA could significantly decrease the number and the area of bone resorption lacuna (P <0.05 and P <0.01,respectively).Without OBs,however,the effects of DHEA on the bone resorption lacuna were almost completely abolished.@@Conclusions DHEA could indirectly inhibit the human osteoclastic resorption through promoting the osteoblastic viability and osteoprotegerin production,which is mediated by mitogen-activated protein kinases signal pathway involving the phosphor-ERK1/2.

  17. The Many Alternative Faces of Macrophage Activation

    Science.gov (United States)

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases

  18. Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions

    DEFF Research Database (Denmark)

    Boissy, P; Levin Andersen, Thomas; Lund, T

    2008-01-01

    Myeloma bone disease is due to bone degradation by osteoclasts, and absence of repair by bone forming osteoblasts. Recent observations suggest that the anti-myeloma drug bortezomib, a proteasome inhibitor, stimulates bone formation and may inhibit bone resorption. Here, we tested bortezomib...... on cultured osteoclasts in conditions mimicking the pulse treatment used in the clinic, thereby avoiding continuous proteasome inhibition and unselective toxicity. A 3h pulse with 25nM bortezomib followed by a 3-day culture in its absence markedly inhibited osteoclast activity as evaluated through bone...... resorption, TRAcP release, and RANKL-induced NF-kappaB translocation into nuclei, an event dependent on proteasomes and critical for osteoclast function. The effect on TRAcP was maximal during the first 24h post-pulse, and then tended to subside. Importantly, applying this pulse treatment to cultured myeloma...

  19. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title ...Receptor tyrosine kinases and the regulation of macrophage activation. Authors Co

  20. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  1. Experimental Trichinellosis in rats: Peritoneal macrophage activity

    Directory of Open Access Journals (Sweden)

    Gruden-Movsesijan Alisa

    2010-01-01

    Full Text Available The influence of Trichinella spiralis infection on macrophage activity in rats during the first 28 days of infection was examined by measuring the production of NO and IL-6, as well as the expression of mannose receptor on the surface of peritoneal macrophages. During the course of a dynamic shift in the 3 life-cycle stages of the parasite, intermittent variations in NO production were observed but ended with increased values that coincided with the highest values for IL-6 release in the final, muscle phase of infection. No change in mannose receptor expression was observed during the course of infection. These results confirm that the Trichinella spiralis infection provokes changes in macrophage activity that could influence not only the course of the parasitic disease but also the overall immune status of the host.

  2. Biphasic influence of PGE2 on the resorption activity of osteoclast-like cells derived from human peripheral blood monocytes and mouse RAW264.7 cells.

    Science.gov (United States)

    Lutter, Anne-Helen; Hempel, Ute; Anderer, Ursula; Dieter, Peter

    2016-08-01

    Osteoclasts are large bone-resorbing cells of hematopoietic origin. Their main function is to dissolve the inorganic component hydroxyapatite and to degrade the organic bone matrix. Prostaglandin E2 (PGE2) indirectly affects osteoclasts by stimulating osteoblasts to release factors that influence osteoclast activity. The direct effect of PGE2 on osteoclasts is still controversial. To study the influence of PGE2 on osteoclast activity, human peripheral blood monocytes (hPBMC) and mouse RAW264.7 cells were cultured on osteoblast-derived extracellular matrix. hPBMC and RAW264.7 cells were differentiated by the addition of macrophage colony-stimulation factor and receptor activator of NFκB ligand and treated with PGE2 before and after differentiation induction. The pit area, an indicator of resorption activity, and the activity of tartrate-resistant acid phosphatase were dose-dependently inhibited when PGE2 was present ab initio, whereas the resorption activity remained unchanged when the cells were exposed to PGE2 from day 4 of culture. These results lead to the conclusion that PGE2 treatment inhibits only the differentiation of precursor osteoclasts whereas differentiated osteoclasts are not affected.

  3. A radiographic analysis of external apical root resorption of maxillary incisors during active orthodontic treatment.

    Science.gov (United States)

    Mohandesan, Hooman; Ravanmehr, Hossein; Valaei, Nasser

    2007-04-01

    External apical root resorption (EARR) is an undesirable consequence of orthodontic treatment. The purpose of this study was to measure the amount of EARR and to examine its clinical significance in maxillary incisors, during a 12-month active treatment period. A further aim was to examine the contribution of gender, treatment technique, treatment duration, and extraction of maxillary first premolars to EARR. The sample comprised 151 maxillary incisor teeth in 40 patients (16 males, 24 females) aged 12-22 years, with different malocclusions. Standard periapical radiographs, using the long-cone paralleling technique, were obtained before and 6 and 12 months after the start of treatment. Quantitative measurements for 80 central and 71 lateral maxillary incisors were performed separately and corrected for image distortion. Root length reduction was calculated in millimetres and in terms of the percentage of the original root length. Resorption of more than 1 mm at 12 months of active treatment was considered to be clinically significant. On average, the degree of EARR for the maxillary central incisors was 0.77 +/- 0.42 and 1.67 +/- 0.64 mm, respectively, during the 6- and 12-month follow-up (P incisors, the degree of EARR was 0.88 +/- 0.51 and 1.79 +/- 0.66 mm, respectively (P resorption was found for 74 per cent of the centrals and 82 per cent of the laterals. No significant correlation was observed between EARR and treatment technique. EARR was found to be correlated with gender for the lateral incisors. The effect of treatment duration (P < 0.001) and premolar extraction (P < 0.001) was statistically significant for both tooth groups.

  4. Acid Phosphatase Activity May Affect the Tuber Swelling by Partially Regulating Sucrose-mediated Sugar Resorption in Potato

    Institute of Scientific and Technical Information of China (English)

    Da-Yong Wang; Yong Lian; De-Wei Zhu

    2008-01-01

    APase activity is involved in regulating many physiological and developmental events by affecting the resorption process.In this study, we investigate the role of APase activity in tuber development in potato. APase activities were mainly localized in cytoplasm, gaps among cells and stroma of amyloplasts of parenchyma cells at the stage of tuber swelling. AP1, encoding a putative APase, was also highly expressed in swelling tubers and a low level of expression was observed in elongated stolons and matured tubers. Inhibition of APase activity by applying Brefeldin A, an inhibitor of APase production and secretion, significantly suppressed the tuber swelling and moderately affected the stolon elongation and the tuberization frequency. During tuber development, sucrose serves as the main soluble sugar for long-distance transportation and resorption. Moreover, Inhibition of APase activity by Brefeldin A markedly reduced the sucrose content in tubers and further decreased the starch accumulation, suggesting that the function of APase in regulating the tuber swelling might be at least artially mediated by the sugar resorption. Exogenous sucrose treatments further indicate the important role of sucrose-mediated sugar resorption in tuber swelling. These results suggest that the APase activity might affect the tuber swelling by partially regulating the sucrose-mediated sugar resorption.

  5. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    Science.gov (United States)

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  6. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  7. Modulation of macrophage activation by prostaglandins

    Directory of Open Access Journals (Sweden)

    L. Sautebin

    1996-01-01

    Full Text Available The effect of prostaglandtn E2, iloprost and cAMP on both nitric oxide and tumour necrosis factor-α release in J774 macrophages has been studied. Both prostaglandin E2 and iloprost inhibited, in a concentration-dependent fashion, the lipopolysaccharide-induced generation of nitric oxide and tumour necrosis factor-α. The inhibitory effect of these prostanoids seems to be mediated by an increase of the second messenger cAMP since it was mimicked by dibutyryl cAMP and potentiated by the selective type IV phosphodiesterase inhibitor RO-20-1724. Our results suggest that the inhibition of nitric oxide release by prostaglandin E2 and iloprost in lipopolysaccharide-activated J774 macrophages may be secondary to the inhibition of tumour necrosis factor-α generation, which in turn is likely to be mediated by cAMP.

  8. The macrophage in HIV-1 infection: From activation to deactivation?

    Directory of Open Access Journals (Sweden)

    Varin Audrey

    2010-04-01

    Full Text Available Abstract Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1 induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2 induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM. Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  9. The macrophage in HIV-1 infection: from activation to deactivation?

    Science.gov (United States)

    Herbein, Georges; Varin, Audrey

    2010-04-09

    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-gamma display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  10. Mechanisms of Bone Resorption in Periodontitis

    Directory of Open Access Journals (Sweden)

    Stefan A. Hienz

    2015-01-01

    Full Text Available Alveolar bone loss is a hallmark of periodontitis progression and its prevention is a key clinical challenge in periodontal disease treatment. Bone destruction is mediated by the host immune and inflammatory response to the microbial challenge. However, the mechanisms by which the local immune response against periodontopathic bacteria disturbs the homeostatic balance of bone formation and resorption in favour of bone loss remain to be established. The osteoclast, the principal bone resorptive cell, differentiates from monocyte/macrophage precursors under the regulation of the critical cytokines macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. TNF-α, IL-1, and PGE2 also promote osteoclast activity, particularly in states of inflammatory osteolysis such as those found in periodontitis. The pathogenic processes of destructive inflammatory periodontal diseases are instigated by subgingival plaque microflora and factors such as lipopolysaccharides derived from specific pathogens. These are propagated by host inflammatory and immune cell influences, and the activation of T and B cells initiates the adaptive immune response via regulation of the Th1-Th2-Th17 regulatory axis. In summary, Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss through upregulated production of proinflammatory mediators and activation of the RANK-L expression pathways.

  11. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    for the resolution of inflammation. Clin Exp Immunol. 2005 Dec;142(3):481-9. 2. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004 Dec;25(12):677-86. 3. Weaver LK, Hintz-Goldstein KA, Pioli PA, Wardwell...

  12. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  13. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone.

    Science.gov (United States)

    Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min

    2017-08-01

    Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption.

  14. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: role...ivation and deactivation bylipopolysaccharide: roles of the receptor complex. Pub...medID 14609719 Title Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: role

  15. The relationship between LDL oxidation and macrophage myeloperoxidase activity

    Institute of Scientific and Technical Information of China (English)

    武军驻; 刘艳红; 李小明; 陈丽达; 夏腊菊; 洪嘉玲

    2003-01-01

    Objective To explore low density lipoprotein (LDL) oxidation by macrophage myeloperoxidase (MPO) at molecular level.Methods Using a mouse macrophage model, we examined the relationship between LDL oxidation and macrophage MPO by measuring macrophage MPO activity, LDL oxidation products, MPO gene expression and cellular orientation of LDL oxidation. Results MPO gene expression increased to its maximum gradually when the concentration of LDL was increased, and then maintained at that level. NaN3 inhibied the elevation of MPO activity and LDL oxidation, which was LDL concentration-dependent. After the composition of macrophage membrane was roughly analyzed, it was determined that the contents of MPO and LDL in 5% sucrose were 7.667 and 21 times higher than those in 10% sucrose, respectively. Conclusion LDL is attached to the "microdomain" of the macrophage membrane in which LDL is oxidized by MPO.

  16. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    Science.gov (United States)

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-01

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury.

  17. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  18. DMPD: Toll receptors, CD14, and macrophage activation and deactivation by LPS. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106783 Toll receptors, CD14, and macrophage activation and deactivation by LPS. D...ceptors, CD14, and macrophage activation and deactivation by LPS. PubmedID 12106783 Title Toll receptors, CD14, and macrophage activa...tion and deactivation by LPS. Authors Dobrovolskaia MA,

  19. Contribution of macrophages to plasmin activity in ewe bulk milk

    OpenAIRE

    Albenzio, M; A. Sevi; A. Marzano; Marino, R; Schena, L.; Caroprese , M

    2010-01-01

    A total of 225 bulk sheep milk samples were collected throughout lactation to assess the contribution of macrophages to the regulation of the plasmin/plasminogen system. Samples were analyzed for composition, milk renneting parameters, and for activities of plasmin (PL), plasminogen (PG) and plasminogen activators (PA). Isolation of macrophages from milk was performed using a magnetic positive separation; separated cells were lysed and activity of urokinase-PA was determined. PL activity in m...

  20. Macrophage Activation Syndrome in Paediatric Rheumatic Diseases.

    Science.gov (United States)

    Islam, M I; Talukder, M K; Islam, M M; Laila, K; Rahman, S A

    2017-04-01

    Macrophage activation syndrome (MAS) is a potentially fatal complication of rheumatic disorders, which commonly occurs in systemic juvenile idiopathic arthritis (sJIA).This study was carried out with the aims of describing the clinical features, laboratory findings and outcomes of MAS associated with paediatric rheumatic diseases in the Department of Paediatrics, Bangabandhu Sheikh Mujib Medical University (BSMMU) and compare these results with previous studies on MAS. This retrospective study was conducted in the paediatric rheumatology wing of the Department of Paediatrics, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. Clinical and laboratory profile of all the diagnosed cases of MAS were analyzed from the medical records from January 2010 to July 2015. Among 10 MAS patients, 6 were female and 4 were male. Seven patients of systemic JIA, two patients of SLE and one patient with Kawasaki Disease developed MAS in their course of primary disease. Mean duration of primary disease prior to development of MAS was 2.9 years and mean age of onset was 9.1 years. High continued fever and new onset hepatosplenomegaly were the hallmark of the clinical presentation. White blood cell count and platelet count came down from the mean of 16.2 to 10.2×10⁹/L and 254 to 90×10⁹/L. Mean erythrocyte sedimentation rate was dropped from 56 to 29 mm/hr. Six patients had abnormal liver enzyme level (ALT) and 5 had evidence of coagulopathy (prolonged prothrombin time and APTT) at the onset of disease. Hyperferritinnemia were found in all the patients. Bone marrow study was done in 5 patients but features of hamophagocytosis were found only in 2 patients. All patients received intravenous steroid and 3 patients who did not respond to steroid received additional cyclosporine. Mortality rate was 30% in this series. Macrophage activation syndrome is a fatal complication of paediatric rheumatic diseases among which s-JIA was predominant. Early diagnosis and

  1. The Many Alternative Faces of Macrophage Activation

    OpenAIRE

    Hume, David A

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and g...

  2. Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis.

    Science.gov (United States)

    Zheng, Y; Chen, M; He, L; Marão, H F; Sun, D M; Zhou, J; Kim, S G; Song, S; Wang, S L; Mao, J J

    2015-06-01

    Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone-derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal

  3. Molecular and epigenetic basis of macrophage polarized activation.

    Science.gov (United States)

    Porta, Chiara; Riboldi, Elena; Ippolito, Alessandro; Sica, Antonio

    2015-08-01

    Macrophages are unique cells for origin, heterogeneity and plasticity. At steady state most of macrophages are derived from fetal sources and maintained in adulthood through self-renewing. Despite sharing common progenitors, a remarkable heterogeneity characterized tissue-resident macrophages indicating that local signals educate them to express organ-specific functions. Macrophages are extremely plastic: chromatin landscape and transcriptional programs can be dynamically re-shaped in response to microenvironmental changes. Owing to their ductility, macrophages are crucial orchestrators of both initiation and resolution of immune responses and key supporters of tissue development and functions in homeostatic and pathological conditions. Herein, we describe current understanding of heterogeneity and plasticity of macrophages using the M1-M2 dichotomy as operationally useful simplification of polarized activation. We focused on the complex network of signaling cascades, metabolic pathways, transcription factors, and epigenetic changes that control macrophage activation. In particular, this network was addressed in sepsis, as a paradigm of a pathological condition determining dynamic macrophage reprogramming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Contribution of macrophages to plasmin activity in ewe bulk milk

    Directory of Open Access Journals (Sweden)

    M. Albenzio

    2010-04-01

    Full Text Available A total of 225 bulk sheep milk samples were collected throughout lactation to assess the contribution of macrophages to the regulation of the plasmin/plasminogen system. Samples were analyzed for composition, milk renneting parameters, and for activities of plasmin (PL, plasminogen (PG and plasminogen activators (PA. Isolation of macrophages from milk was performed using a magnetic positive separation; separated cells were lysed and activity of urokinase-PA was determined. PL activity in milk decreased during lactation (P < 0.001. The reduction in plasmin activity recorded in the mid and late lactation milk matched with the increase in PG/PL ratio (P < 0.001. The activity of PA increased throughout lactation (P < 0.001, the highest value being recorded in the late lactation milk.The amount of isolated and concentrated macrophages was higher in early and mid lactation milk than in late lactation milk (P < 0.01. Stage of lactation did not influence the activity of u-PA detected in isolated macrophages. The activity of u-PA associated with macrophages was lower than total PA activity detected in milk. Our results lend support to the hypothesis that in ewe bulk milk from healthy flocks macrophages only slightly contributed to the activation of plasmin/plasminogen system.

  5. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available BACKGROUND: Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. CONCLUSIONS/SIGNIFICANCE: HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute

  6. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype

    Science.gov (United States)

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  7. Mechanisms of macrophage activation in obesity-induced insulin resistance

    OpenAIRE

    Odegaard, Justin I.; Chawla, Ajay

    2008-01-01

    Chronic inflammation is now recognized as a key step in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes mellitus. This low-grade inflammation is mediated by the inflammatory (classical) activation of recruited and resident macrophages that populate metabolic tissues, including adipose tissue and liver. These findings have led to the concept that infiltration and activation of adipose tissue macrophages is causally linked to obesity-induced insulin resistance. Studie...

  8. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  9. Pathway data concerning differentiation and activation of macrophage - DMPD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available DMPD Pathway data concerning differentiation and activation of macrophage Data detail Data name Pathway data... concerning differentiation and activation of macrophage Description of data contents Pathways concerning differentiation and activat...History of This Database Site Policy | Contact Us Pathway data concerning differentiation and activation of macrophage - DMPD | LSDB Archive ... ...ion of macrophage extracted from the literature list in

  10. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages.

    Directory of Open Access Journals (Sweden)

    Michael S Ball

    Full Text Available Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer.

  11. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D.

    Science.gov (United States)

    Kleinhans, C; Schmid, F F; Schmid, F V; Kluger, P J

    2015-07-10

    Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts.

  12. Gene expression in IFN-g-activated murine macrophages

    Directory of Open Access Journals (Sweden)

    Pereira C.A.

    2004-01-01

    Full Text Available Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated or BALB/c (297 and 58 genes, respectively, up- and down-regulated mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.

  13. Endogenous epoxygenases are modulators of monocyte/macrophage activity.

    Directory of Open Access Journals (Sweden)

    Jonas Bystrom

    Full Text Available BACKGROUND: Arachidonic acid is metabolized through three major metabolic pathways, the cyclooxygenase, lipoxygenase and CYP450 enzyme systems. Unlike cyclooxygenase and lipoxygenases, the role of CYP450 epoxygenases in monocyte/macrophage-mediated responses is not known. METHODOLOGY/PRINCIPAL FINDINGS: When transfected in vitro, CYP2J2 is an efficient activator of anti-inflammatory pathways through the nuclear receptor peroxisome proliferator-activated receptor (PPAR α. Human monocytes and macrophages contain PPARα and here we show they express the epoxygenases CYP2J2 and CYP2C8. Inhibition of constitutive monocyte epoxygenases using the epoxygenase inhibitor SKF525A induces cyclooxygenase (COX-2 expression and activity, and the release of TNFα, and can be reversed by either add back of the endogenous epoxygenase products and PPARα ligand 11,12- epoxyeicosatrienoic acid (EET or the addition of the selective synthetic PPARα ligand GW7647. In alternatively activated (IL-4-treated monocytes, in contrast to classically activated cells, epoxygenase inhibition decreased TNFα release. Epoxygenases can be pro-inflammatory via superoxide anion production. The suppression of TNFα by SKF525A in the presence of IL-4 was associated with a reduction in superoxide anion generation and reproduced by the superoxide dismutase MnCl(2. Similar to these acute activation studies, in monocyte derived macrophages, epoxygenase inhibition elevates M1 macrophage TNFα mRNA and further decreases M2 macrophage TNFα. CONCLUSIONS/SIGNIFICANCE: In conclusion, epoxygenase activity represents an important endogenous pathway which limits monocyte activation. Moreover endogenous epoxygenases are immuno-modulators regulating monocyte/macrophage activation depending on the underlying activation state.

  14. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis

    Science.gov (United States)

    Nguyen, Khoa D.; Qiu, Yifu; Cui, Xiaojin; Goh, Y.P. Sharon; Mwangi, Julia; David, Tovo; Mukundan, Lata; Brombacher, Frank; Locksley, Richard M.; Chawla, Ajay

    2011-01-01

    All homeotherms utilize thermogenesis to maintain core body temperature, ensuring that cellular functions and physiologic processes can ensue in cold environments1-3. In the prevailing model, when the hypothalamus senses cold temperatures, it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue (BAT) and white adipose tissue (WAT)4,5. Acting via the β3-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes6, whereas it stimulates the expression of thermogenic genes, such as PPARγ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1), and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes7-9. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report an unexpected requirement for the interleukin 4 (IL4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Cold exposure rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in BAT and lipolysis in WAT. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL4 increased thermogenic gene expression, fatty acid mobilization, and energy expenditure, all in a macrophage-dependent manner. We have thus discovered a surprising role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold. PMID:22101429

  15. Arginase in Parasitic Infections: Macrophage Activation, Immunosuppression, and Intracellular Signals

    Directory of Open Access Journals (Sweden)

    Cinthia C. Stempin

    2010-01-01

    Full Text Available A type 1 cytokine-dependent proinflammatory response inducing classically activated macrophages (CaMϕs is crucial for parasite control during protozoan infections but can also contribute to the development of immunopathological disease symptoms. Type 2 cytokines such as IL-4 and IL-13 antagonize CaMϕs inducing alternatively activated macrophages (AaMϕs that upregulate arginase-1 expression. During several infections, induction of arginase-1-macrophages was showed to have a detrimental role by limiting CaMϕ-dependent parasite clearance and promoting parasite proliferation. Additionally, the role of arginase-1 in T cell suppression has been explored recently. Arginase-1 can also be induced by IL-10 and transforming growth factor-β (TGF-β or even directly by parasites or parasite components. Therefore, generation of alternative activation states of macrophages could limit collateral tissue damage because of excessive type 1 inflammation. However, they affect disease outcome by promoting parasite survival and proliferation. Thus, modulation of macrophage activation may be instrumental in allowing parasite persistence and long-term host survival.

  16. An inducible transgene reports activation of macrophages in live zebrafish larvae.

    Science.gov (United States)

    Sanderson, Leslie E; Chien, An-Tzu; Astin, Jonathan W; Crosier, Kathryn E; Crosier, Philip S; Hall, Christopher J

    2015-11-01

    Macrophages are the most functionally heterogenous cells of the hematopoietic system. Given many diseases are underpinned by inappropriate macrophage activation, macrophages have emerged as a therapeutic target to treat disease. A thorough understanding of what controls macrophage activation will likely reveal new pathways that can be manipulated for therapeutic benefit. Live imaging fluorescent macrophages within transgenic zebrafish larvae has provided a valuable window to investigate macrophage behavior in vivo. Here we describe the first transgenic zebrafish line that reports macrophage activation, as evidenced by induced expression of an immunoresponsive gene 1(irg1):EGFP transgene. When combined with existing reporter lines that constitutively mark macrophages, we reveal this unique transgenic line can be used to live image macrophage activation in response to the bacterial endotoxin lipopolysaccharide and xenografted human cancer cells. We anticipate the Tg(irg1:EGFP) line will provide a valuable tool to explore macrophage activation and plasticity in the context of different disease models.

  17. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    Science.gov (United States)

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  18. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection

    Directory of Open Access Journals (Sweden)

    Sonia López-García

    2015-08-01

    Full Text Available Oleanolic (OA and ursolic acids (UA are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB. We evaluated production of nitric oxide (NO, reactive oxygen species (ROS, and cytokines (TNF-α and TGF-β as well as expression of cell membrane receptors (TGR5 and CD36 in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated to M1 (classically activated.

  19. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited sign...82. Epub 2003 Jul 22. (.png) (.svg) (.html) (.csml) Show Macrophage activation through CCR5- and CXCR4-media...on through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. Authors Lee C, Liu QH, Tomkowicz B, Yi

  20. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  1. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Swati Choksi; Kun Chen; Yelena Pobezinskaya; Ilona Linnoila; Zheng-Gang Liu

    2013-01-01

    Differentiation to different types of macrophages determines their distinct functions.Tumor-associated macrophages (TAMs) promote tumorigenesis owing to their proangiogenic and immune-suppressive functions similar to those of alternatively activated (M2) macrophages.We report that reactive oxygen species (ROS) production is critical for macrophage differentiation and that inhibition of superoxide (O2-) production specifically blocks the differentiation of M2 macrophages.We found that when monocytes are triggered to differentiate,O2-is generated and is needed for the biphasic ERK activation,which is critical for macrophage differentiation.We demonstrated that ROS elimination by butylated hydroxyanisole (BHA) and other ROS inhibitors blocks macrophage differentiation.However,the inhibitory effect of ROS elimination on macrophage differentiation is overcome when cells are polarized to classically activated (M1),but not M2,macrophages.More importantly,the continuous administration of the ROS inhibitor BHA efficiently blocked the occurrence of TAMs and markedly suppressed tumorigenesis in mouse cancer models.Targeting TAMs by blocking ROS can be a potentially effective method for cancer treatment.

  2. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.

    Science.gov (United States)

    Xue, Jia; Schmidt, Susanne V; Sander, Jil; Draffehn, Astrid; Krebs, Wolfgang; Quester, Inga; De Nardo, Dominic; Gohel, Trupti D; Emde, Martina; Schmidleithner, Lisa; Ganesan, Hariharasudan; Nino-Castro, Andrea; Mallmann, Michael R; Labzin, Larisa; Theis, Heidi; Kraut, Michael; Beyer, Marc; Latz, Eicke; Freeman, Tom C; Ulas, Thomas; Schultze, Joachim L

    2014-02-20

    Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.

  3. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  4. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  5. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    Science.gov (United States)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  6. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    Because of the important role of rat ICAM-1 in the development of lung inflammatory injury, soluble recombinant rat ICAM-1 (sICAM-1) was expressed in bacteria, and its biologic activities were evaluated. Purified sICAM-1 did bind to rat alveolar macrophages in a dose-dependent manner and induced...... of the proteosome inhibitor and by genistein. Alveolar macrophages showed adherence to immobilized sICAM-1 in a CD18-dependent manner. Finally, airway instillation of sICAM-1 intensified lung injury produced by intrapulmonary deposition of IgG immune complexes in a manner associated with enhanced lung production...... of TNF-alpha and MIP-2 and increased neutrophil recruitment. Therefore, through engagement of beta2 integrins, sICAM-1 enhances alveolar macrophage production of MIP-2 and TNF-alpha, the result of which is intensified lung injury after intrapulmonary disposition of immune complexes....

  7. Multiple external root resorption.

    Science.gov (United States)

    Yusof, W Z; Ghazali, M N

    1989-04-01

    Presented is an unusual case of multiple external root resorption. Although the cause of this resorption was not determined, several possibilities are presented. Trauma from occlusion, periodontal and pulpal inflammation, and resorption of idiopathic origin are all discussed as possible causes.

  8. Dynamics of lung macrophage activation in response to helminth infection

    Science.gov (United States)

    Most of our understanding of the development and phenotype of alternatively activated macrophages (AAM) has been obtained from studies investigating the response of bone marrow- and peritoneal-derived cells to IL-4 or IL-13 stimulation. Comparatively little is known about the development of the AAM...

  9. Diet Modifies the Neuroimmune System by Influencing Macrophage Activation

    Science.gov (United States)

    Sherry, Christina Lynn

    2009-01-01

    It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…

  10. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation.

  11. Crosstalk between circadian rhythmicity, mitochondrial dynamics and macrophage bactericidal activity

    Science.gov (United States)

    Oliva-Ramírez, Jacqueline; Moreno-Altamirano, María Maximina B; Pineda-Olvera, Benjamín; Cauich-Sánchez, Patricia; Sánchez-García, F Javier

    2014-01-01

    Biological functions show rhythmic fluctuations with 24-hr periodicity regulated by circadian proteins encoded by the so-called ‘clock’ genes. The absence or deregulation of circadian proteins in mice leads to metabolic disorders and in vitro models have shown that the synthesis of pro-inflammatory cytokines by macrophages follows a circadian rhythm so showing a link between circadian rhythmicity, metabolism and immunity. Recent evidence reveals that mitochondrial shape, position and size, collectively referred to as mitochondrial dynamics, are related to both cell metabolism and immune function. However, studies addressing the simultaneous crosstalk between circadian rhythm, mitochondrial dynamics and cell immune function are scarce. Here, by using an in vitro model of synchronized murine peritoneal macrophages, we present evidence that the mitochondrial dynamics and the mitochondrial membrane potential (Δψm) follow a circadian rhythmic pattern. In addition, it is shown that the fusion of mitochondria along with high Δψm, indicative of high mitochondrial activity, precede the highest phagocytic and bactericidal activity of macrophages on Salmonella typhimurium. Taken together, our results suggest a timely coordination between circadian rhythmicity, mitochondrial dynamics, and the bactericidal capacity of macrophages. PMID:24903615

  12. Paclitaxel-induced activation of murine peritoneal macrophage in vitro

    Institute of Scientific and Technical Information of China (English)

    Li Zhongxiang; Wang Fufeng; Qiao Yuhuan

    2004-01-01

    Objective: To study the effects of paclitaxel on macrophage activation. Methods:Mouse macrophages were isolated by peritoneal lavage and cultured in RPMI 1640 medium according to the following groups: paclitaxel (5μmol/L) group, IFN-γ (5U/L) group, paclitaxel (5μmol/L) and IFN-γ (5U/L) combination group, and control group(without paclitaxel and IFNγ) .24 hours later, supematants were collected for nitric oxide(NO) assessment using the Griess reagent, and ttanor necrosis factor-α(TNF-α) assessment using the enzyme linked immunosorbent assay. Antibody-dependent cell-mediated cytotoxicity(ADCC) of the macrophages was assessed using the method of hemoglobin-enzyme release assay (Hb-ERA). Results: Paclitaxel induced the production of higher levels of NO(8.86 ± 1.16μmol/L) and TNF-α(120.2 ± 10.2pg/ml) ,and enhanced the ADCC of macrophages[ (20.61 + 1.13)% ]. The differences were significant compared with the control group[no NO and TNF-α detected,ADCC (15.37 + 1.93)% ](P < 0.01). Paclitaxel and IFN-γ in combination induced the production of higher levels of NO(22.85 ± 0.91μmol/L) and TNF-α(358.6 ± 27 .5pg/ml), and enhanced the ADCC of macrophages[ (42.49 + 3.09) % ]. The differences were significant compared with paclitaxel or IFN-γ[NO 8.09 ± 1.13μmol/L, TNF-α1 24.8 + 9.6pg/ml, ADCC(23.32 ± 2.63) % ] alone (P<0.01). Conclusion: These findings indicate that paclitaxel can promote NO and TNF-α production,enhance ADCC of macrophages, and induce macrophage activation. The active effects are more significant with paclitaxel and IFN-γcombination.

  13. Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts.

    Science.gov (United States)

    Montazerolghaem, M; Karlsson Ott, M; Engqvist, H; Melhus, H; Rasmusson, A J

    2015-01-01

    Recently the interest for monetite based biomaterials as bone grafts has increased; since in vivo studies have demonstrated that they are degradable, osteoconductive and improve bone healing. So far osteoclastic resorption of monetite has received little attention. The current study focuses on the osteoclastic resorption of monetite cement using primary mouse bone marrow macrophages, which have the potential to differentiate into resorbing osteoclasts when treated with receptor activator NF-κB ligand (RANKL). The osteoclast viability and differentiation were analysed on monetite cement and compared to cortical bovine bone discs. After seven days live/dead stain results showed no significant difference in viability between the two materials. However, the differentiation was significantly higher on the bone discs, as shown by tartrate resistant acid phosphatase (TRAP) activity and Cathepsin K gene expression. Moreover monetite samples with differentiated osteoclasts had a 1.4 fold elevated calcium ion concentration in their culture media compared to monetite samples with undifferentiated cells. This indicates active resorption of monetite in the presence of osteoclasts. In conclusion, this study suggests that osteoclasts have a crucial role in the resorption of monetite based biomaterials. It also provides a useful model for studying in vitro resorption of acidic calcium phosphate cements by primary murine cells.

  14. Role of activated macrophages in experimental Fusarium solani keratitis.

    Science.gov (United States)

    Hu, Jianzhang; Hu, Yingfeng; Chen, Shikun; Dong, Chenhuan; Zhang, Jingjin; Li, Yanling; Yang, Juan; Han, Xiaoli; Zhu, Xuejun; Xu, Guoxing

    2014-12-01

    Macrophages under the conjunctival tissue are the first line defender cells of the corneas. Elimination of these cells would lead to aggravation of fungal keratitis. To determine how the course of fungal keratitis would be altered after the activation of these macrophages, a murine model was achieved by intrastromal instillation of latex beads before the corneas were infected with Fusarium solani. The keratitis was observed and clinically scored daily. Infected corneas were homogenized for colony counts. The levels of the IL-12, IL-4, MPO, MIF and iNOS cytokines were measured in the corneas using real-time polymerase chain reactions and enzyme-linked immunosorbent assays. CD3+, CD4+ and CD8+ lymphocytes in the corneas, submaxillary lymph nodes and peripheral blood were detected using immunohistochemistry and flow cytometry, respectively. The latex bead-treated mice exhibited aggravated keratitis. Substantially increased macrophage and polymorphonuclear leukocyte infiltration was detected in the corneas, although few colonies were observed. There was a marked increase in the IL-12, IL-4, MPO, MIF and iNOS expression in the corneas. The numbers of CD3+, CD4+ and CD8+ lymphocytes and the CD4+/CD8+ ratio were significantly enhanced in the corneas and submaxillary lymph nodes. However, the number of CD4+ lymphocytes was decreased in the peripheral blood, while the number of CD8+ lymphocytes increased. Collectively, our data demonstrate that the activation of macrophages in the cornea may cause an excessive immune response. Macrophages appear to play a critical role in regulating the immune response to corneal infections with F. solani. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Histone Deacetylase Inhibitors Suppress Inflammatory Activation of Rheumatoid Arthritis Patient Synovial Macrophages and Tissue

    NARCIS (Netherlands)

    A.M. Grabiec; S. Krausz; W. de Jager; T. Burakowski; D. de Groot; M.E. Sanders; B.J. Prakken; W. Maslinski; E. Eldering; P.P. Tak; K.A. Reedquist

    2010-01-01

    Macrophages contribute significantly to the pathology of many chronic inflammatory diseases, including rheumatoid arthritis (RA), asthma, and chronic obstructive pulmonary disease. Macrophage activation and survival are tightly regulated by reversible acetylation and deacetylation of histones, trans

  16. Interactions between inflammatory mediators in expression of antitumor cytostatic activity of macrophages

    NARCIS (Netherlands)

    I.L. Bonta; S. Ben-Efraim

    1990-01-01

    markdownabstractAbstract Antitumor properties and participation in inflammatory events are important characteristics of activated macrophages. We show here that both antitumor cytostatic function of macrophages and participation of these cells at inflammatory sites are controlled by two main group

  17. Expression of the Inhibitory CD200 Receptor Is Associated with Alternative Macrophage Activation

    NARCIS (Netherlands)

    N. Koning; M. van Eijk; W. Pouwels; M.S.M. Brouwer; D. Voehringer; I. Huitinga; R.M. Hoek; G. Raes; J. Hamann

    2010-01-01

    Classical macrophage activation is inhibited by the CD200 receptor (CD200R). Here, we show that CD200R expression was specifically induced on human in vitro polarized macrophages of the alternatively activated M2a subtype, generated by incubation with IL-4 or IL-13. In mice, peritoneal M2 macrophage

  18. TLR signaling augments macrophage bactericidal activity through mitochondrial ROS

    OpenAIRE

    West, A. Phillip; Brodsky, Igor E.; Rahner, Christoph; Woo, Dong Kyun; Erdjument-Bromage, Hediye; Tempst, Paul; Walsh, Matthew C; Choi, Yongwon; Shadel, Gerald S.; Ghosh, Sankar

    2011-01-01

    Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria, and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase (Phox) machinery 1 . However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to macrophage bactericidal activity, although the mechanisms linking innate immune signaling to mitochondria for mROS generation remain unclear 2-4 . Here we demonstrate t...

  19. TNF gene expression in macrophage activation and endotoxin tolerance

    OpenAIRE

    Chow, Nancy Ann-Marie

    2013-01-01

    TNF is an inflammatory cytokine that plays a critical role in the acute phase response to infection, and its dysregulation has been implicated in the pathology of several inflammatory and autoimmune disorders. TNF gene expression is regulated in a cell type- and inducer-specific manner that involves chromatin alterations at both the TNF promoter and distal DNase I hypersensitive (DH) sites within the TNF/LT locus. While the mechanisms underlying TNF gene activation in monocytes/macrophages an...

  20. Phospholipase A2-modified low-density lipoprotein activates macrophage peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Namgaladze, Dmitry; Morbitzer, Daniel; von Knethen, Andreas; Brüne, Bernhard

    2010-02-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors modulating metabolic and inflammatory responses of phagocytes to stimuli such as fatty acids and their metabolites. We studied the role of PPARs in macrophages exposed to low-density lipoprotein (LDL) modified by secretory phospholipase A(2) (PLA). By analyzing PPAR ligand-binding domain luciferase reporter activation, we observed that PLA-LDL transactivates PPARalpha and PPARdelta, but not PPARgamma. We confirmed that PLA-LDL induced PPAR response element reporter activation by endogenous PPARalpha and PPARdelta in human THP-1 macrophages. By using THP-1 cells with a stable knockdown of PPARalpha and PPARdelta, we showed that PLA-LDL-activated PPARdelta altered macrophage gene expression related to lipid metabolism and lipid droplet formation. Although PPARalpha/delta silencing did not affect cholesterol and triglyceride accumulation in PLA-LDL-treated macrophages, PPARdelta activation by PLA-LDL attenuated macrophage inflammatory gene expression induced by interferon gamma and lipopolysaccharide. PPARdelta activation by PLA-LDL does not influence lipid accumulation in PLA-LDL-treated macrophages. However, it attenuates macrophage inflammatory responses, thus contributing to an anti-inflammatory cell phenotype.

  1. Hypoxia and classical activation limits Mycobacterium tuberculosis survival by Akt-dependent glycolytic shift in macrophages

    OpenAIRE

    Matta, S K; Kumar, D.

    2016-01-01

    Cellular reactive oxygen species (ROS) is a major antibacterial defense mechanism used by macrophages upon activation. Exposure of Mycobacterium tuberculosis (Mtb)-infected macrophages to hypoxia is known to compromise the survival of the pathogen. Here we report that the hypoxia-induced control of intracellular Mtb load in RAW 264.7 macrophages was mediated by regulating the cellular ROS levels. We show that similar to classical activation, hypoxia incubation of macrophages resulted in decre...

  2. Refractory ceramic fibers activate alveolar macrophage eicosanoid and cytokine release.

    Science.gov (United States)

    Leikauf, G D; Fink, S P; Miller, M L; Lockey, J E; Driscoll, K E

    1995-01-01

    Refractory ceramic fiber has been developed for industrial processes requiring materials with high thermal and mechanical stability. To evaluate the biological activity of this fiber, rat alveolar macrophages were exposed for < or = 24 h to 0-1,000 micrograms/ml of refractory ceramic fiber, crocidolite asbestos, silica (fibrogenic particles), or titanium dioxide (a nonfibrogenic particle), and eicosanoid, tumor necrosis factor-alpha (TNF), and lactate dehydrogenase release were measured. Particle dimensions were determined by electron microscopy. Radioactivity coeluting with leukotriene B4 (LTB4) and immunoreactive LTB4 and TNF release increased after refractory ceramic fiber and were similar in magnitude after asbestos but less than after silica. For example, the total [3H]eicosanoid release increased 3.9-fold after refractory ceramic fiber, 4.6-fold after asbestos, and 8.7-fold after silica. Refractory ceramic fiber and asbestos also have similar particle dimensions (diameter, length, and surface area). Inasmuch as macrophage-derived LTB4 and TNF are potent mediators in inflammatory events, including migration and activation of neutrophils, these findings suggest that refractory ceramic fiber can activate macrophages in vitro to release mediators relevant to in vivo findings of inflammation and fibrotic lung disease in laboratory animals.

  3. Loss of CD73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs.

    Science.gov (United States)

    de Leve, Simone; Wirsdörfer, Florian; Cappuccini, Federica; Schütze, Alexandra; Meyer, Alina V; Röck, Katharina; Thompson, Linda F; Fischer, Jens W; Stuschke, Martin; Jendrossek, Verena

    2017-07-01

    While radiotherapy is a mainstay for cancer therapy, pneumonitis and fibrosis constitute dose-limiting side effects of thorax and whole body irradiation. So far, the contribution of immune cells to disease progression is largely unknown. Here we studied the role of ecto-5'-nucelotidase (CD73)/adenosine-induced changes in the myeloid compartment in radiation-induced lung fibrosis. C57BL/6 wild-type or CD73(-/-) mice received a single dose of whole thorax irradiation (WTI, 15 Gy). Myeloid cells were characterized in flow cytometric, histologic, and immunohistochemical analyses as well as RNA analyses. WTI induced a pronounced reduction of alveolar macrophages in both strains that recovered within 6 wk. Fibrosis development in wild-type mice was associated with a time-dependent deposition of hyaluronic acid (HA) and increased expression of markers for alternative activation on alveolar macrophages. These include the antiinflammatory macrophage mannose receptor and arginase-1. Further, macrophages accumulated in organized clusters and expressed profibrotic mediators at ≥25 wk after irradiation (fibrotic phase). Irradiated CD73(-/-) mice showed an altered regulation of components of the HA system and no clusters of alternatively activated macrophages. We speculate that accumulation of alternatively activated macrophages in organized clusters represents the origins of fibrotic foci after WTI and is promoted by a cross-talk between HA, CD73/adenosine signaling, and other profibrotic mediators.-De Leve, S., Wirsdörfer, F., Cappuccini, F., Schütze, A., Meyer, A. V., Röck, K., Thompson, L. F., Fischer, J. W., Stuschke, M., Jendrossek, V. Loss of CD73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs. © FASEB.

  4. Increased physical activity ameliorates high fat diet-induced bone resorption in mice

    Science.gov (United States)

    It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...

  5. A Systematic Approach to Identify Markers of Distinctly Activated Human Macrophages

    Directory of Open Access Journals (Sweden)

    Bayan eSudan

    2015-05-01

    Full Text Available Polarization has been a useful concept for describing activated macrophage phenotypes and gene expression profiles. However, macrophage activation status within tumors and other settings are often inferred based on only a few markers. Complicating matters for relevance to human biology, many of the best studied macrophage activation markers have been best characterized in mice and sometimes are not similarly regulated in human macrophages. To identify novel markers of activated human macrophages, gene expression profiles for human macrophages of a single donor subjected to 33 distinct activating conditions were obtained and a set of putative activation markers were subsequently evaluated in macrophages from multiple donors using integrated fluidic circuit (IFC-based RT-PCR. Using unsupervised hierarchical clustering of the microarray screen, highly-altered transcripts (>4-fold change in expression sorted the macrophage transcription profiles into two major and 13 minor clusters. Among the 1874 highly-altered transcripts, over 100 were uniquely altered in one major or two related minor clusters. IFC PCR-derived data confirmed the microarray results and to show the kinetics of expression of potential macrophage activation markers. Transcripts encoding chemokines, cytokines, and cell surface were prominent in our analyses. The activation markers identified by this study could be used to better characterize tumor-associated macrophages from biopsies as well as other macrophage populations collected from human clinical samples.

  6. Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines.

    Directory of Open Access Journals (Sweden)

    Shuyi Zhang

    Full Text Available BACKGROUND: The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis. Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. METHODOLOGY/PRINCIPAL FINDINGS: To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS, and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. CONCLUSIONS/SIGNIFICANCE: This study provides global gene expression data for a diverse set of biologically

  7. DMPD: The role of macrophages in the hypothalamic-pituitary-adrenal activation inresponse to endotoxin (LPS). [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1315450 The role of macrophages in the hypothalamic-pituitary-adrenal activation in...png) (.svg) (.html) (.csml) Show The role of macrophages in the hypothalamic-pituitary-adrenal activation in...response to endotoxin (LPS). PubmedID 1315450 Title The role of macrophages in th

  8. Apical root resorption after orthodontic treatment -- a retrospective study.

    Science.gov (United States)

    Apajalahti, Satu; Peltola, Jaakko Sakari

    2007-08-01

    The purpose of the study was to compare the incidence and severity of apical root resorption in patients treated with different orthodontic appliances and to evaluate the effect of treatment duration on the degree of apical root resorption. A further aim was to analyse the degree of apical root resorption in different tooth groups in patients presenting with root resorption. The sample consisted of 625 patients (269 males, 356 females) aged 8-16 years at the beginning of treatment. Active removable plates and fixed appliances were used most frequently. Following exclusion of poor quality radiographs, the final sample included 601 patients (348 females, 253 males). Root resorption in all tooth groups, except third molars, was evaluated from pre- and post-treatment panoramic radiographs. The correlation of root resorption with treatment modality and duration was studied using multinomial logistic regression analysis. Of the tooth groups, maxillary incisors showed apical root resorption most frequently, followed by the mandibular incisors. Root resorption was significantly correlated with fixed appliance treatment (P resorption. The mean duration of treatment in patients without root resorption was 1.5 years, whereas in those with severe resorption was 2.3 years. The most severe resorption was seen in the maxillary incisors and premolars. It is concluded that with a long duration of fixed appliance treatment, the risk of severe resorption increases. In patients where treatment is prolonged, a 6-month radiographic follow-up is recommended.

  9. Tooth resorption in cats: contribution of vitamin D and inflammation

    NARCIS (Netherlands)

    Vrieling, H.E.

    2010-01-01

    Tooth resorption in cats Tooth resorption affecting several teeth is a painful disease with a prevalence of up to 75% in household cats and is often accompanied by periodontitis. Tooth resorption is caused by an increased number and activity of tooth-resorbing odontoclasts, cells that share function

  10. Intracellular water motion decreases in apoptotic macrophages after caspase activation.

    Science.gov (United States)

    Hortelano, S; García-Martín, M L; Cerdán, S; Castrillo, A; Alvarez, A M; Boscá, L

    2001-10-01

    Triggering of the macrophage cell line RAW 264.7 with lipopolysaccharide and interferon-gamma promoted apoptosis that was prevented by inhibitors of type 2 nitric oxide synthase or caspase. Using (1)H NMR analysis, we have investigated the changes of the intracellular transverse relaxation time (T(2)) and apparent diffusion coefficient (ADC) as parameters reflecting the rotational and translational motions of water in apoptotic macrophages. T(2) values decreased significantly from 287 to 182 ms in cells treated for 18 h with NO-donors. These changes of T(2) were prevented by caspase inhibitors and were not due to mitochondrial depolarization or microtubule depolymerization. The decrease of the intracellular values of T(2) and ADC in apoptotic macrophages was observed after caspase activation, but preceded phosphatidylserine exposure and nucleosomal DNA cleavage. The changes of water motion were accompanied by an enhancement of the hydrophobic properties of the intracellular milieu, as detected by fluorescent probes. These results indicate the occurrence of an alteration in the physicochemical properties of intracellular water during the course of apoptosis.

  11. Trichothecene mycotoxins activate inflammatory response in human macrophages.

    Science.gov (United States)

    Kankkunen, Päivi; Rintahaka, Johanna; Aalto, Annika; Leino, Marina; Majuri, Marja-Leena; Alenius, Harri; Wolff, Henrik; Matikainen, Sampsa

    2009-05-15

    Damp building-related illnesses have caused concern for years in many countries. Although the problem is extensive, the knowledge of the immunological reactions behind damp building-related illnesses is still quite limited. Trichothecene mycotoxins form one major group of toxins, which possibly contribute to the illnesses. Stachybotrys chartarum is a well-known, but also controversial damp building mold and many strains of this mold are capable of producing trichothecenes. In this report, we have examined the effect of S. chartarum and trichothecene mycotoxins on the proinflammatory cytokine response in human macrophages. As a result, satratoxin-positive S. chartarum activated inflammasome-associated caspase-1, which is needed for proteolytic processing of IL-1beta and IL-18. Furthermore, purified trichothecene mycotoxins, roridin A, verrucarin A, and T-2 toxin activated caspase-1, and these mycotoxins also strongly enhanced LPS-dependent secretion of IL-1beta and IL-18. The satratoxin-positive strain of S. chartarum and the trichothecenes also triggered the activation of caspase-3, which is an effector caspase of apoptosis. Satratoxin-negative S. chartarum was not able to activate either caspase-1 or caspase-3. In conclusion, our results indicate that human macrophages sense trichothecene mycotoxins as a danger signal, which activates caspase-1, and further enables the secretion of IL-1beta and IL-18 from the LPS-primed cells.

  12. Lectin coated MgO nanoparticle: its toxicity, antileishmanial activity, and macrophage activation.

    Science.gov (United States)

    Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Kazemi, Bahram; Allaveisie, Azra; Masoudi, Alireza; Daliri, Karim; Sedighi, Najme; Ranjbari, Javad

    2014-10-01

    The purpose of this research was to evaluate toxicity of uncoated magnesium oxide nanoparticles (MgO NPs), MgO NPs coated with Peanut agglutinin (PNA) lectin, and PNA alone on the promastigotes of Leishmania major (L. major) and macrophages of BALB/c mice. On the other hand, antileishmanial property of uncoated MgO NPs, lectin coated MgO NPs, and PNA lectin alone was evaluated, and also macrophage activation was investigated after treatment with these materials by measurement of nitrite, H2O2, and some interleukins. This study showed that PNA lectin and lectin coated MgO NPs had approximately no toxicity on L. major and macrophages, but some toxic effects were observed for uncoated MgO NPs, especially at concentration of 500 µg/mL. Interestingly, lectin coated MgO NPs had the highest antileishmanial activity and macrophage activation, compared with uncoated MgO NPs and PNA lectin.

  13. A novel approach to inhibit bone resorption

    DEFF Research Database (Denmark)

    Panwar, Preety; Søe, Kent; Guido, Rafael VC;

    2016-01-01

    -dihydrotanshinone (DHT1), and the active site inhibitor, odanacatib (ODN), on bone resorption and TGF-ß1 degradation. Cell cultures, Western blot, light and scanning electron microscopy as well as energy dispersive X-ray spectroscopy, molecular modelling and enzymatic assays were used to evaluate the inhibitors. KEY...... RESULTS: DHT1 selectively inhibited the collagenase activity of CatK, without affecting the viability of osteoclasts. Both inhibitors abolished the formation of resorption trenches, with DHT1 having a slightly higher IC50 value than ODN. Maximal reductions of other resorption parameters by DHT1 and ODN...

  14. [Hepatic manifestation of a macrophage activation syndrome (MAS)].

    Science.gov (United States)

    Nagel, Michael; Schwarting, Andreas; Straub, Beate K; Galle, Peter R; Zimmermann, Tim

    2017-05-01

    Background Elevated liver values are the most common pathological laboratory result in Germany. Frequent findings, especially in younger patients, are nutritive- or medicamentous- toxic reasons, viral or autoimmune hepatitis. A macrophage activation syndrome (MAS) may manifest like a viral infectious disease with fever, hepatosplenomegaly and pancytopenia and is associated with a high mortality. It is based on an enhanced activation of macrophages with increased cytokine release, leading to organ damage and multi-organ failure. In addition to genetic causes, MAS is commonly associated with infections and rheumatic diseases. We report the case of a 26-year-old female patient suffering from MAS as a rare cause of elevated liver enzymes. Methods Patient characteristics, laboratory values, liver histology, bone marrow and radiological imaging were documented and analyzed. Case Report After an ordinary upper airway infection with bronchitis, a rheumatic arthritis appeared and was treated with leflunomide und methotrexate. In the further course of the disease, the patient developed an acute hepatitis with fever, pancytopenia and massive hyperferritinemia. Immunohistochemistry of the liver biopsy revealed hemophagocytosis and activation of CD68-positive macrophages. In the radiological and histological diagnostics of the liver and bone marrow, an MAS was diagnosed as underlying disease of the acute hepatitis. Under therapy with prednisolone, the fever disappeared and transaminases and ferritin rapidly normalized. Conclusion Aside from the frequent causes of elevated liver values in younger patients, such as nutritive toxic, drug induced liver injury, viral or autoimmune hepatitis, especially in case of massive hyperferritinemia, a MAS should be considered as a rare cause of acute liver disease. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages.

    Directory of Open Access Journals (Sweden)

    Aline Cristina Abreu Moreira-Souza

    Full Text Available Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane--subdivided into P2Y and P2X subfamilies--whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection.

  16. THE EFFECT OF LIVER MACROPHAGES ON INVITRO CYTOLYTIC ACTIVITY OF 5FU AND FUDR ON COLON-CARCINOMA CELLS - EVIDENCE OF MACROPHAGE ACTIVATION

    NARCIS (Netherlands)

    DAEMEN, T; REGTS, J; MORSELT, H; SCHERPHOF, GL

    1992-01-01

    While investigating the effects of 5-fluorouracil (5FU) and 5-fluoro-2'-deoxyuridine (FUdR) on the tumoricidal state of rat liver macrophages activated in vitro by means of liposome-encapsulated muramyl dipeptide (MDP), we observed that 5FU in combination with macrophages produced substantially high

  17. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages

    Directory of Open Access Journals (Sweden)

    Nadhia H. C. Souza

    2014-08-01

    Full Text Available BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS and interferon - gamma (IFN-γ (activation for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2. Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT assay (after 1, 3 and 5 days in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle.

  18. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages

    Science.gov (United States)

    Souza, Nadhia H. C.; Ferrari, Raquel A. M.; Silva, Daniela F. T.; Nunes, Fabio D.; Bussadori, Sandra K.; Fernandes, Kristianne P. S.

    2014-01-01

    BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT) has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon - gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2). Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm) macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle. PMID:25076002

  19. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages.

    Science.gov (United States)

    Filardy, A A; He, J; Bennink, J; Yewdell, J; Kelsall, B L

    2016-07-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes and yet produce regulatory cytokines. Activity of the NLRP3 (nucleotide-binding leucine-rich repeat-containing pyrin receptor 3) inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death, must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation owing to a remarkable level of posttranscriptional control of NLRP3 and pro-interleukin-1β (proIL-1β) protein expression, which was also seen for tumor necrosis factor-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein but not mRNA levels in resident cMPs, implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic posttranscriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation, findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases.

  20. Echinacea purpurea Extract Polarizes M1 Macrophages in Murine Bone Marrow-Derived Macrophages Through the Activation of JNK.

    Science.gov (United States)

    Fu, Aikun; Wang, Yang; Wu, Yanping; Chen, Hongliang; Zheng, Shasha; Li, Yali; Xu, Xin; Li, Weifen

    2017-09-01

    Echinacea purpurea is an indigenous North American purple cone flower used by North Americans for treatment of various infectious diseases and wounds. This study investigated the effect of polysaccharide enriched extract of Echinacea purpurea (EE) on the polarization of macrophages. The results showed that 100 µg/mL of EE could markedly activate the macrophage by increasing the expression of CD80, CD86, and MHCII molecules. Meanwhile, EE upregulated the markers of classically activated macrophages (M1) such as CCR7 and the production of IL-1β, IL-6, IL-12p70, TNF-αand NO. The functional tests showed that EE enhanced the phagocytic and intracellular bactericidal activity of macrophage against ST. Furthermore, we demonstrated that JNK are required for EE-induced NO and M1-related cytokines production. Together, these results demonstrated that EE can polarize macrophages towards M1 phenotype, which is dependent on the JNK signaling pathways. J. Cell. Biochem. 118: 2664-2671, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  2. Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR

    Directory of Open Access Journals (Sweden)

    Francisco J. Rios

    2013-01-01

    Full Text Available OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPARγ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF-β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF-β, arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.

  3. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    Science.gov (United States)

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages.

  4. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype

    Directory of Open Access Journals (Sweden)

    Guiliano David

    2002-07-01

    Full Text Available Abstract Background "Alternatively-activated" macrophages are found in Th2-mediated inflammatory settings such as nematode infection and allergic pulmonary inflammation. Due in part to a lack of markers, these cells have not been well characterized in vivo and their function remains unknown. Results We have used murine macrophages elicited by nematode infection (NeMφ as a source of in vivo derived alternatively activated macrophages. Using three distinct yet complementary molecular approaches we have established a gene expression profile of alternatively activated macrophages and identified macrophage genes that are regulated in vivo by IL-4. First, genes abundantly expressed were identified by an expressed sequence tag strategy. Second, an array of 1176 known mouse genes was screened for differential expression between NeMφ from wild type or IL-4 deficient mice. Third, a subtractive library was screened to identify novel IL-4 dependent macrophage genes. Differential expression was confirmed by real time RT-PCR analysis. Conclusions Our data demonstrate that alternatively activated macrophages generated in vivo have a gene expression profile distinct from any macrophage population described to date. Several of the genes we identified, including those most abundantly expressed, have not previously been associated with macrophages and thus this study provides unique new information regarding the phenotype of macrophages found in Th2-mediated, chronic inflammatory settings. Our data also provide additional in vivo evidence for parallels between the inflammatory processes involved in nematode infection and allergy.

  5. cAMP Modulates Macrophage Development by Suppressing M-CSF-Induced MAPKs Activation

    Institute of Scientific and Technical Information of China (English)

    Ning Zhu; Jian Cui; Chunxia Qiao; Yan Li; Yuanfang Ma; Jiyan Zhang; Beifen Shen

    2008-01-01

    M-CSF is a key cytokine in macrophage development by inducing MAPKs activation, and cAMP can inhibit MAPKs activation induced by inflammatory stimuli. To explore the effects of cAMP on M-CSF-induced MAPKs activation and on macrophage development, the model of bone marrow-derived murine macrophages (BMMs) was used. The effects of cAMP on M-CSF-induced MAPKs activation were analyzed by Western blotting assay, and the effects of cAMP on CD14 and F4/80 expression during macrophage development were examined by FACS analysis.Macrophage morphology showed the successful establishment of the model of macrophage development. Western blotting assay revealed that M-CSF activated ERK, JNK and p38 in both mature and immature macrophages, and cAMP inhibited M-CSF-induced ERK, JNK and p38 activation in a time-dependent manner. FACS analysis revealed that macrophage development was impaired with cAMP pretreatment. In conclusion, cAMP modulates macrophage development by suppressing M-CSF-induced MAPKs activation.

  6. Tumoricidal activation of murine resident peritoneal macrophages on pancreatic carcinoma by interleukin-2 and monoclonal antibodies

    Institute of Scientific and Technical Information of China (English)

    Qi Kui Chen; Shi Zhen Yuan; Zhi Yong Zeng; Zhi Qing Huang

    2000-01-01

    @@INTRODUCTION Macrophages play an important role in tumor lysis and growth inhibition. They can be activated to a tumoricidal state by a variety of agents such as IFNr, TNFa or IL2. The killing machanisms of activated macrophages have been extensively investigated[1,2]. Recently, it has been proved that antibody dependent cellular cytotoxicity (ADCC) is one of the potent arms to lyse tumor cells resistant to cytotoxic macrophages,and that the antitumorous effect of a macrophage activator is significantly augmented by the combined use of mAbs capable of inducing ADCC to tumor cells[3].

  7. Phenotypic diversity and emerging new tools to study macrophage activation in bacterial infectious diseases

    Directory of Open Access Journals (Sweden)

    Jean-Louis eMege

    2014-10-01

    Full Text Available Macrophage polarization is a concept that has been useful to describe the different features of macrophage activation related to specific functions. Macrophage polarization is responsible for a dichotomic approach (killing versus repair of the host response to bacteria: M1-type conditions are protective, whereas M2-type conditions are associated with bacterial persistence. The use of the polarization concept to classify the features of macrophage activation in infected patients using transcriptional and/or molecular data and to provide biomarkers for diagnosis and prognosis has most often been unsuccessful. The confrontation of polarization with different clinical situations in which monocytes/macrophages encounter bacteria obliged us to reappraise this concept. With the exception of M2-type infectious diseases such as leprosy and Whipple’s disease, most acute (sepsis or chronic (Q fever, tuberculosis infectious diseases do not exhibit polarized monocytes/macrophages. This is also the case for commensals that shape the immune response and for probiotics that alter the immune response independent of macrophage polarization. We propose that the type of myeloid cells (monocytes vs. macrophages and the kinetics of the immune response (early vs. late responses are critical variables for understanding macrophage activation in human infectious diseases. Explorating the role of these new markers will provide important tools to better understand complex macrophage physiology.

  8. Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro.

    Science.gov (United States)

    Zhou, Jian; Ma, Xiao-Ni; Gao, Yu-Hai; Yan, Juan-Li; Shi, Wen-Gui; Xian, Cory J; Chen, Ke-Ming

    2016-01-01

    Effects of sinusoidal electromagnetic fields (SEMFs) on bone metabolism have not yet been well defined. The present study investigated SEMF effects on bone formation and resorption in rat femur bone tissues in vitro. Cultured femur diaphyseal (cortical bone) and metaphyseal (trabecular bone) tissues were treated with 50 Hz 1.8 mT SEMFs 1.5 h per day for up to 12 days and treatment effects on bone formation and resorption markers and associated gene expression were examined. Treatment with SEMFs caused a significant increase in alkaline phosphatase (ALP) activity and inhibited the tartrate-resistant acid phosphatase (TRACP) activity in the femoral diaphyseal or metaphyseal tissues. SEMFs also significantly increased levels of mRNA expression of osterix (OSX), insulin-like growth factor (IGF-1) and ALP in the bone tissues. SEMF treatment decreased glucose content and increased lactic acid contents in the culture conditioned medium. In addition, treatment with SEMFs decreased mRNA expression levels of bone resorption-related genes TRACP, macrophage colony stimulating factor (M-CSF) and cathepsin K (CTSK) in the cultured bone tissues. In conclusion, the current study demonstrated that treatment with 1.8 mT SEMFs at 1.5 h per day promoted bone formation, increased metabolism and inhibited resorption in both metaphyseal and diaphyseal bone tissues in vitro.

  9. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    Science.gov (United States)

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-01-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus. PMID:6286497

  10. Glucose-dependent insulinotropic polypeptide (GIP) dose-dependently reduces osteoclast differentiation and resorption.

    Science.gov (United States)

    Mabilleau, Guillaume; Perrot, Rodolphe; Mieczkowska, Aleksandra; Boni, Sébastien; Flatt, Peter R; Irwin, Nigel; Chappard, Daniel

    2016-10-01

    A role for glucose-dependent insulinotropic polypeptide (GIP) in controlling bone resorption has been suspected. However uncertainty remains to identify whether GIP act directly on osteoclasts. The aim of the present study were (i) to identify in different osteoclast differentiation models (human peripheral blood mononuclear cells-PBMC, murine bone marrow macrophage-BMM and murine Raw 264.7 cells) whether GIP was capable of reducing osteoclast formation and resorption; (ii) ascertain whether the highly potent GIP analogue N-AcGIP was capable of inducing a response at lower concentrations and (iii) to decipher the molecular mechanisms responsible for such effects. [d-Ala(2)]-GIP dose-dependently reduced osteoclast formation at concentration as low as 1nM in human PBMC and 10nM in murine BMM cultures. Furthermore, [d-Ala(2)]-GIP also reduced the extent of osteoclast resorption at concentration as low as 1nM in human PBMC and murine BMM cultures. The mechanism of action of [d-Ala(2)]-GIP appeared to be mediated by reduction in intracellular calcium concentration and oscillation that subsequently inhibited calcineurin activity and NFATc1 nuclear translocation. The potency of the highly potent N-AcGIP was determined and highlighted an effect on osteoclast formation and resorption at concentration ten times lower than observed with [d-Ala(2)]-GIP in vitro. Furthermore, N-AcGIP was also capable of reducing the number of osteoclast in ovariectomized mice as well as the circulating level of type I collagen C-telopeptide. Pharmacological concentrations required for reducing osteoclast formation and resorption provide the impetus to design and exploit enzymatically stable GIP analogues for the treatment of bone resorption disorders in humans.

  11. Immunology of root resorption: A literature review

    Directory of Open Access Journals (Sweden)

    Silva Luciano

    2008-01-01

    Full Text Available Root resorption seems to be related to a complex combination of mechanical factors and biological activity, which comprehends the role of immunologic structures including specialized cells. The aim of this research was to explain the development of the process - from mineralization to the destruction of hard tissues - and the possible relationship between root resorption and immunology, along with discussing current concepts described in the literature.

  12. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages.

    Science.gov (United States)

    Stolfi, Carmine; Caruso, Roberta; Franzè, Eleonora; Sarra, Massimiliano; De Nitto, Daniela; Rizzo, Angelamaria; Pallone, Francesco; Monteleone, Giovanni

    2011-01-01

    Interleukin-25 (IL-25), a T helper type 2 (Th2) -related factor, inhibits the production of inflammatory cytokines by monocytes/macrophages. Since Th2 cytokines antagonize classically activated monocytes/macrophages by inducing alternatively activated macrophages (AAMs), we here assessed the effect of IL-25 on the alternative activation of human monocytes/macrophages. The interleukins IL-25, IL-4 and IL-13 were effective in reducing the expression of inflammatory chemokines in monocytes. This effect was paralleled by induction of AAMs in cultures added with IL-4 or IL-13 but not with IL-25, regardless of whether cells were stimulated with lipopolysaccharide or interferon-γ. Moreover, pre-incubation of cells with IL-25 did not alter the ability of both IL-4 and IL-13 to induce AAMs. Both IL-4 and IL-13 activated signal transducer and activator of transcription 6 (STAT6), and silencing of this transcription factor markedly reduced the IL-4/IL-13-driven induction of AAMs. In contrast, IL-25 failed to trigger STAT6 activation. Among Th2 cytokines, only IL-25 and IL-10 were able to activate p38 mitogen-activated protein kinase. These results collectively indicate that IL-25 fails to induce AAMs and that Th2-type cytokines suppress inflammatory responses in human monocytes by activating different intracellular signalling pathways.

  13. A transient reversal of miRNA-mediated repression controls macrophage activation.

    Science.gov (United States)

    Mazumder, Anup; Bose, Mainak; Chakraborty, Abhijit; Chakrabarti, Saikat; Bhattacharyya, Suvendra N

    2013-11-01

    In mammalian macrophages, the expression of a number of cytokines is regulated by miRNAs. Upon macrophage activation, proinflammatory cytokine mRNAs are translated, although the expression of miRNAs targeting these mRNAs remains largely unaltered. We show that there is a transient reversal of miRNA-mediated repression during the early phase of the inflammatory response in macrophages, which leads to the protection of cytokine mRNAs from miRNA-mediated repression. This derepression occurs through Ago2 phosphorylation, which results in its impaired binding to miRNAs and to the corresponding target mRNAs. Macrophages expressing a mutant, non-phosphorylatable AGO2--which remains bound to miRNAs during macrophage activation--have a weakened inflammatory response and fail to prevent parasite invasion. These findings highlight the relevance of the transient relief of miRNA repression for macrophage function.

  14. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Mayi, Therese Hervee; Rigamonti, Elena [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Pattou, Francois [Univ Lille Nord de France, F-59000 Lille (France); Department of Endocrine Surgery, University Hospital, Lille (France); U859 Biotherapies for Diabetes, INSERM, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  15. Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Jonas Christian Schupp

    Full Text Available Acute exacerbation (AE of idiopathic pulmonary fibrosis (IPF is a common cause of disease acceleration in IPF and has a major impact on mortality. The role of macrophage activation in AE of IPF has never been addressed before.We evaluated BAL cell cytokine profiles and BAL differential cell counts in 71 IPF patients w/wo AE and in 20 healthy volunteers. Twelve patients suffered from AE at initial diagnosis while sixteen patients developed AE in the 24 months of follow-up. The levels of IL-1ra, CCL2, CCL17, CCL18, CCL22, TNF-α, IL-1β, CXCL1 and IL-8 spontaneously produced by BAL-cells were analysed by ELISA.In patients with AE, the percentage of BAL neutrophils was significantly increased compared to stable patients. We found an increase in the production rate of the pro-inflammatory cytokines CXCL1 and IL-8 combined with an increase in all tested M2 cytokines by BAL-cells. An increase in CCL18 levels and neutrophil counts during AE was observed in BAL cells from patients from whom serial lavages were obtained. Furthermore, high baseline levels of CCL18 production by BAL cells were significantly predictive for the development of future AE.BAL cell cytokine production levels at acute exacerbation show up-regulation of pro-inflammatory as well as anti-inflammatory/ M2 cytokines. Our data suggest that AE in IPF is not an incidental event but rather driven by cellular mechanisms including M2 macrophage activation.

  16. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    Science.gov (United States)

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2017-09-22

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone marrow derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2(-/-) BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2(-/-) BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very long chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2(-/-) macrophages led to decreased inflammatory activation of Mfp2(-/-) BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2(-/-) macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, likely by influencing the dynamic lipid profile during macrophage polarization. This article is protected by copyright. All rights reserved

  17. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  18. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  19. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages.

    Science.gov (United States)

    Liu, Zhenguang; Xing, Jie; Huang, Yee; Bo, Ruonan; Zheng, Sisi; Luo, Li; Niu, Yale; Zhang, Yan; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Wang, Deyun

    2016-01-01

    The activation of murine peritoneal macrophages by Ganoderma lucidum polysaccharides liposomes (GLPL) was investigated in vitro. After treatment with GLPL, the changes of the nitric oxide (NO) secretion and iNOS (inducible nitric oxide synthase) activity were evaluated. The results showed that NO production and iNOS activity of macrophages were enhanced compared to GLP and BL group. In addition, both the phagocytic activity and levels of cytokines IL-1β, TNF-α and IFN-γ were enhanced in the peritoneal macrophages of mice by stimulation of GLPL. The expression of the major histocompatibility complex class II molecule (MHC II) on the surface of peritoneal macrophages significantly increased. These indicated that GLPL could enhance the activation of peritoneal macrophages and their potential for use as a delivery system of GLP.

  20. One Year of Abaloparatide, a Selective Activator of the PTH1 Receptor, Increased Bone Formation and Bone Mass in Osteopenic Ovariectomized Rats Without Increasing Bone Resorption.

    Science.gov (United States)

    Varela, Aurore; Chouinard, Luc; Lesage, Elisabeth; Smith, Susan Y; Hattersley, Gary

    2017-01-01

    Abaloparatide is a novel 34-amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor (PTH1R) signaling pathway with 41% homology to PTH(1-34) and 76% homology to PTHrP(1-34). A 12-month treatment study was conducted in osteopenic ovariectomized (OVX) rats to characterize the mechanisms by which abaloparatide increases bone mass. Sprague-Dawley (SD) rats were subjected to OVX or sham surgery at age 6 months and left untreated for 3 months to allow OVX-induced bone loss. Ten OVX rats were euthanized after this bone depletion period, and the remaining OVX rats received daily subcutaneous injections of vehicle (n = 18) or abaloparatide at 1, 5, or 25 μg/kg/d (n = 18/dose level) for 12 months. Sham controls (n = 18) received vehicle daily. Bone densitometry and biochemical markers of bone formation and resorption were assessed longitudinally, and L3 vertebra and tibia were collected at necropsy for histomorphometry. Abaloparatide increased biochemical bone formation markers without increasing bone resorption markers or causing hypercalcemia. Abaloparatide increased histomorphometric indices of bone formation on trabecular, endocortical, and periosteal surfaces without increasing osteoclasts or eroded surfaces. Abaloparatide induced substantial increases in trabecular bone volume and density and improvements in trabecular microarchitecture. Abaloparatide stimulated periosteal expansion and endocortical bone apposition at the tibial diaphysis, leading to marked increases in cortical bone volume and density. Whole-body bone mineral density (BMD) remained stable in OVX-Vehicle controls while increasing 25% after 12 months of abaloparatide (25 μg/kg). Histomorphometry and biomarker data suggest that gains in cortical and trabecular bone mass were attributable to selective anabolic effects of abaloparatide, without evidence for stimulated bone resorption. © 2016 American Society for Bone and Mineral Research.

  1. Macrophage Infiltration and Alternative Activation during Wound Healing Promote MEK1-Induced Skin Carcinogenesis.

    Science.gov (United States)

    Weber, Christine; Telerman, Stephanie B; Reimer, Andreas S; Sequeira, Ines; Liakath-Ali, Kifayathullah; Arwert, Esther N; Watt, Fiona M

    2016-02-15

    Macrophages are essential for the progression and maintenance of many cancers, but their role during the earliest stages of tumor formation is unclear. To test this, we used a previously described transgenic mouse model of wound-induced skin tumorigenesis, in which expression of constitutively active MEK1 in differentiating epidermal cells results in chronic inflammation (InvEE mice). Upon wounding, the number of epidermal and dermal monocytes and macrophages increased in wild-type and InvEE skin, but the increase was greater, more rapid, and more sustained in InvEE skin. Macrophage ablation reduced tumor incidence. Furthermore, bioluminescent imaging in live mice to monitor macrophage flux at wound sites revealed that macrophage accumulation was predictive of tumor formation; wounds with the greatest number of macrophages at day 5 went on to develop tumors. Gene expression profiling of flow-sorted monocytes, macrophages, and T cells from InvEE and wild-type skin showed that as wound healing progressed, InvEE macrophages altered their phenotype. Throughout wound healing and after wound closure, InvEE macrophages demonstrated sustained upregulation of several markers implicated in alternative macrophage activation including arginase-1 (ARG1) and mannose receptor (CD206). Notably, inhibition of ARG1 activity significantly reduced tumor formation and epidermal proliferation in vivo, whereas addition of L-arginase to cultured keratinocytes stimulated proliferation. We conclude that macrophages play a key role in early, inflammation-mediated skin tumorigenesis, with mechanistic evidence suggesting that ARG1 secretion drives tumor development by stimulating epidermal cell proliferation. These findings highlight the importance of cancer immunotherapies aiming to polarize tumor-associated macrophages toward an antitumor phenotype.

  2. Inhibition of TNF-α Reverses the Pathological Resorption Pit Profile of Osteoclasts from Patients with Acute Charcot Osteoarthropathy

    Directory of Open Access Journals (Sweden)

    Nina L. Petrova

    2015-01-01

    Full Text Available We hypothesised that tumour necrosis factor-α (TNF-α may enhance receptor activator of nuclear factor-κβ ligand- (RANKL- mediated osteoclastogenesis in acute Charcot osteoarthropathy. Peripheral blood monocytes were isolated from 10 acute Charcot patients, 8 diabetic patients, and 9 healthy control subjects and cultured in vitro on plastic and bone discs. Osteoclast formation and resorption were assessed after treatment with (1 macrophage-colony stimulating factor (M-CSF and RANKL and (2 M-CSF, RANKL, and neutralising antibody to TNF-α (anti-TNF-α. Resorption was measured on the surface of bone discs by image analysis and under the surface using surface profilometry. Although osteoclast formation was similar in M-CSF + RANKL-treated cultures between the groups (p>0.05, there was a significant increase in the area of resorption on the surface (p<0.01 and under the surface (p<0.01 in Charcot patients compared with diabetic patients and control subjects. The addition of anti-TNF-α resulted in a significant reduction in the area of resorption on the surface (p<0.05 and under the surface (p<0.05 only in Charcot patients as well as a normalisation of the aberrant erosion profile. We conclude that TNF-α modulates RANKL-mediated osteoclastic resorption in vitro in patients with acute Charcot osteoarthropathy.

  3. Resident macrophages influence stem cell activity in the mammary gland

    NARCIS (Netherlands)

    Gyorki, D.E.; Asselin-Labat, M.L.; Rooijen, van N.; Lindeman, G.J.; Visvader, J.E.

    2009-01-01

    Introduction Macrophages in the mammary gland are essential for morphogenesis of the ductal epithelial tree and have been implicated in promoting breast tumor metastasis. Although it is well established that macrophages influence normal mammopoiesis, the mammary cell types that these accessory cells

  4. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions

    Science.gov (United States)

    MacCallum, Donna M.; Brown, Gordon D.

    2017-01-01

    ABSTRACT   The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. PMID:28119468

  5. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    of inflammatory markers (IL-1β, IL-6, IL-8, IL-10, and TNF-α) was determined by RT-qPCR. Normalized values of sCD163 and mCD163 were calculated by dividing each value by the median value of the healthy population. The MAcS-index was then calculated as the ratio between normalized sCD163 and normalized mCD163....... A MAcS-index > 1 indicates relative increase in sCD163 as compared to mCD163, suggested to reflect a predominant M1 activation.   RESULTS AND DISCUSSION: The MAcS-index of healthy individuals clustered around 1 (2.5-97.5 percentile: 0.28-3.11), whereas the MAcS-index of the patients varied from 0.......06 to 5139, with 4% below the 2.5 % limit of healthy individuals, and 60% above the 97.5 upper limit of healthy individuals.  The MAcS-index in infected patients (with assumed M1 activation) was clearly elevated. The index was significantly higher in patients with clinical signs of infection (median: 9...

  6. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile.

    Directory of Open Access Journals (Sweden)

    Alexander R Pinto

    Full Text Available Cardiac tissue macrophages (cTMs are a previously uncharacterised cell type that we have identified and characterise here as an abundant GFP(+ population within the adult Cx(3cr1(GFP/+ knock-in mouse heart. They comprise the predominant myeloid cell population in the myocardium, and are found throughout myocardial interstitial spaces interacting directly with capillary endothelial cells and cardiomyocytes. Flow cytometry-based immunophenotyping shows that cTMs exhibit canonical macrophage markers. Gene expression analysis shows that cTMs (CD45(+CD11b(+GFP(+ are distinct from mononuclear CD45(+CD11b(+GFP(+ cells sorted from the spleen and brain of adult Cx(3cr1(GFP/+ mice. Gene expression profiling reveals that cTMs closely resemble alternatively-activated anti-inflammatory M2 macrophages, expressing a number of M2 markers, including Mrc1, CD163, and Lyve-1. While cTMs perform normal tissue macrophage homeostatic functions, they also exhibit a distinct phenotype, involving secretion of salutary factors (including IGF-1 and immune modulation. In summary, the characterisation of cTMs at the cellular and molecular level defines a potentially important role for these cells in cardiac homeostasis.

  7. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.

  8. Activated macrophages containing tumor marker in colon carcinoma: immunohistochemical proof of a concept.

    Science.gov (United States)

    Faber, T J E; Japink, D; Leers, M P G; Sosef, M N; von Meyenfeldt, M F; Nap, M

    2012-04-01

    The presence of carcinoembryonic antigen (CEA)-containing activated macrophages has been demonstrated in peripheral blood from patients with colorectal carcinoma. Macrophages migrate from the circulation into the tissue, phagocytose debris, and return to the bloodstream. Hence it seems likely that activated macrophages containing tumor debris, i.e., tumor marker, are present in the stroma of colorectal carcinoma. After phagocytosis, they could follow a hematogenic or lymphogenic route to the peripheral blood. The aim of this study is to assess the presence of tumor marker-containing activated macrophages in the stroma of colon carcinoma and in regional lymph nodes. From 10 cases of colon carcinoma, samples of tumor tissue and metastasis-free lymph nodes were cut in serial sections and stained for CD68 to identify macrophages and for CEA, cytokeratin, or M30 presence. Slides were digitalised and visually inspected using two monitors, comparing the CD68 stain to the tumor marker stain to evaluate the presence of tumor marker-positive macrophages. Macrophages containing tumor marker could be identified in tumor stroma and in metastasis-free regional lymph nodes. The distribution varied for the different markers, CEA-positive macrophages being most abundant. The presence of macrophages containing tumor marker in the tumor stroma and lymph nodes from patients with colon carcinoma could be confirmed in this series using serial immunohistochemistry. This finding supports the concept of activated macrophages, after phagocytosing cell debris, being transported or migrating through the lymphatic system. These results support the potential of tumor marker-containing macrophages to serve as a marker for diagnosis and follow-up of colon cancer patients.

  9. Oxygen plasma surface modification augments poly(L-lactide-co-glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages.

    Science.gov (United States)

    Scislowska-Czarnecka, Anna; Szmigiel, Dariusz; Genet, Michel; Dupont-Gillain, Christine; Pamula, Elzbieta; Kolaczkowska, Elzbieta

    2015-12-01

    Here, we report on modification of one of the model biomedical polymers, poly L-lactide-co-glycolide (PLGA; 85:15), by reactive ion etching (RIE) oxygen plasma treatment. PLGA's major disadvantage is high hydrophobicity which restrains binding of cell-adhesive proteins and host cells. In the current approach, we aimed to answer two questions: (1) will only short (10 s) and moderate (20-200 mTorr, 45-90 W) RIE oxygen plasma treatment, leading to decrease of water contact angle by only up to 10°, sufficiently improve PLGA adherence to cells, and (2) how will this affect osteoblasts and activation of the immune system? All obtained modified PLGAs had improved hydrophilicity but unaltered roughness (as revealed by water contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy) resulting in significantly improved adhesion of osteoblasts (MG-63) and their low activation. Importantly, macrophages (RAW 264.7), one of the key cells initiating inflammation and bone resorption, responded significantly less vigorously to the modified polymers, expressing/releasing lower amounts of nitric oxide, matrix metalloproteinases (MMP-9), and pro-inflammatory cytokines (TNF-α, IL-6, IL-12p70, IFN-γ, IL-10). We conclude that already slight RIE oxygen plasma modification of PLGA is sufficient to improve its surface properties, and enhance cytocompatibility. Most importantly, this type of modification prevents excessive immune response.

  10. Mechanistic study of macrophage activation by LPS stimulation using fluorescence imaging techinques

    Science.gov (United States)

    Lu, Cuixia; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Lipopolysaccharide (LPS), a structural component of the outer membrane of gram negative bacteria, has been suggested that stimulates macrophages secrete a wide variety of inflammatory mediators, such as nitric oxide (NO). However, the cellular mechanisms of NO generation in macrophage by LPS stimulation are not well known. In this study, LPS stimulated NO generation in macrophage was determined by measuring fluorescence changes with a NO specific probe DAF-FM DA. Using the fluorescence resonance energy transfer (FRET) techniques, we found an increase of protein kinase C (PKC) activation was dynamically monitored in macrophages treated with LPS. Nuclear factor kappa B (NF-κB) translocated from the cytoplasm to the nucleus in macrophage was measured by confocal laser scanning microscopy. Moreover, the PKC inhibitor GÖ6983 inhibited LPS-stimulated NF-κB activation and NO production. These results indicated that LPS stimulated NF-κB mediated NO production by activating PKC.

  11. Macrophage activation and its role in repair and pathology after spinal cord injury.

    Science.gov (United States)

    Gensel, John C; Zhang, Bei

    2015-09-04

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Absence of a Classically Activated Macrophage Cytokine Signature in Peripheral Spondylarthritis, Including Psoriatic Arthritis

    NARCIS (Netherlands)

    B. Vandooren; T. Noordenbos; C. Ambarus; S. Krausz; T. Cantaert; N. Yeremenko; M. Boumans; R. Lutter; P.P. Tak; D. Baeten

    2009-01-01

    Objective. Peripheral spondylarthritis (SpA) is characterized by macrophages that express CD163, a marker of alternative activation (M2). The purpose of this study was to assess whether this differential infiltration with macrophage subsets was associated with a different local inflammatory milieu i

  13. OCLI-023, a Novel Pyrimidine Compound, Suppresses Osteoclastogenesis In Vitro and Alveolar Bone Resorption In Vivo

    Science.gov (United States)

    Kim, Ju Ang; Lee, Doohyun; Kim, Nam Doo; Shin, Hong-In; Bae, Yong Chul; Park, Eui Kyun

    2017-01-01

    An abnormal increase in osteoclast differentiation and activation results in various bone-resorptive diseases, including periodontitis, rheumatoid arthritis, and osteoporosis. Chemical compounds containing pyrimidine ring have been shown to regulate a variety of biological processes. Therefore, in order to identify an antiresorptive agent, we synthesized a series of pyrimidine ring-containing chemical compounds, and found that OCLI-023 suppressed the differentiation and activation of osteoclasts in vitro. OCLI-023 directly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced differentiation of bone marrow macrophages into osteoclasts, without a cytotoxic response. OCLI-023 also downregulated the RANKL-induced mRNA expression of osteoclast markers as well as inhibited the formation of actin rings and resorption pits. OCLI-023 attenuated the RANKL-induced activation of c-Jun N-terminal kinase and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathways. In a mouse model of periodontitis, ligature induced an increase of distance between cementoenamel junction (CEJ) and alveolar bone crest (ABC) in the second molar, and OCLI-023 significantly reduced it. Histological analysis showed ligature-induced increase of osteoclast numbers was also significantly reduced by OCLI-023. These data demonstrated the inhibitory effect of OCLI-023 on osteoclast differentiation and activity of osteoclasts in vitro, as well as on ligature-induced bone loss in vivo, and OCLI-023 can be proposed as a novel anti-resorptive compound. PMID:28085946

  14. Down-regulation of Stathmin Is Required for the Phenotypic Changes and Classical Activation of Macrophages.

    Science.gov (United States)

    Xu, Kewei; Harrison, Rene E

    2015-07-31

    Macrophages are important cells of innate immunity with specialized capacity for recognition and elimination of pathogens and presentation of antigens to lymphocytes for adaptive immunity. Macrophages become activated upon exposure to pro-inflammatory cytokines and pathogenic stimuli. Classical activation of macrophages with interferon-γ (IFNγ) and lipopolysaccharide (LPS) triggers a wide range of signaling events and morphological changes to induce the immune response. Our previous microtubule (MT) proteomic work revealed that the stathmin association with MTs is considerably reduced in activated macrophages, which contain significantly more stabilized MTs. Here, we show that there is a global decrease in stathmin levels, an MT catastrophe protein, in activated macrophages using both immunoblotting and immunofluorescent microscopy. This is an LPS-specific response that induces proteasome-mediated degradation of stathmin. We explored the functions of stathmin down-regulation in activated macrophages by generating a stable cell line overexpressing stathmin-GFP. We show that stathmin-GFP overexpression impacts MT stability, impairs cell spreading, and reduces activation-associated phenotypes. Furthermore, overexpressing stathmin reduces complement receptor 3-mediated phagocytosis and cellular activation, implicating a pivotal inhibitory role for stathmin in classically activated macrophages.

  15. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.

    Science.gov (United States)

    Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N

    2015-11-01

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis.

  16. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects

    Science.gov (United States)

    Hurchla, MA; Garcia-Gomez, A; Hornick, MC; Ocio, EM; Li, A; Blanco, JF; Collins, L; Kirk, CJ; Piwnica-Worms, D; Vij, R; Tomasson, MH; Pandiella, A; Miguel, JF San; Garayoa, M; Weilbaecher, KN

    2013-01-01

    Proteasome inhibitors (PIs), namely bortezomib, have become a cornerstone therapy for multiple myeloma (MM), potently reducing tumor burden and inhibiting pathologic bone destruction. In clinical trials, carfilzomib, a next generation epoxyketone-based irreversible PI, has exhibited potent anti-myeloma efficacy and decreased side effects compared with bortezomib. Carfilzomib and its orally bioavailable analog oprozomib, effectively decreased MM cell viability following continual or transient treatment mimicking in vivo pharmacokinetics. Interactions between myeloma cells and the bone marrow (BM) microenvironment augment the number and activity of bone-resorbing osteoclasts (OCs) while inhibiting bone-forming osteoblasts (OBs), resulting in increased tumor growth and osteolytic lesions. At clinically relevant concentrations, carfilzomib and oprozomib directly inhibited OC formation and bone resorption in vitro, while enhancing osteogenic differentiation and matrix mineralization. Accordingly, carfilzomib and oprozomib increased trabecular bone volume, decreased bone resorption and enhanced bone formation in non-tumor bearing mice. Finally, in mouse models of disseminated MM, the epoxyketone-based PIs decreased murine 5TGM1 and human RPMI-8226 tumor burden and prevented bone loss. These data demonstrate that, in addition to anti-myeloma properties, carfilzomib and oprozomib effectively shift the bone microenvironment from a catabolic to an anabolic state and, similar to bortezomib, may decrease skeletal complications of MM. PMID:22763387

  17. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation.

    Science.gov (United States)

    Van der Meeren, Anne; Gremy, Olivier; Renault, Daniel; Miroux, Amandine; Bruel, Sylvie; Griffiths, Nina; Tourdes, Françoise

    2012-01-01

    The physico-chemical form in which plutonium enters the body influences the lung distribution and the transfer rate from lungs to blood. In the present study, we evaluated the early lung damage and macrophage activation after pulmonary contamination of plutonium of various preparation modes which produce different solubility and distribution patterns. Whatever the solubility properties of the contaminant, macrophages represent a major retention compartment in lungs, with 42 to 67% of the activity from broncho-alveolar lavages being associated with macrophages 14 days post-contamination. Lung changes were observed 2 and 6 weeks post-contamination, showing inflammatory lesions and accumulation of activated macrophages (CD68 positive) in plutonium-contaminated rats, although no increased proliferation of pneumocytes II (TTF-1 positive cells) was found. In addition, acid phosphatase activity in macrophages from contaminated rats was enhanced 2 weeks post-contamination as compared to sham groups, as well as inflammatory mediator levels (TNF-α, MCP-1, MIP-2 and CINC-1) in macrophage culture supernatants. Correlating with the decrease in activity remaining in macrophages after plutonium contamination, inflammatory mediator production returned to basal levels 6 weeks post-exposure. The production of chemokines by macrophages was evaluated after contamination with Pu of increasing solubility. No correlation was found between the solubility properties of Pu and the activation level of macrophages. In summary, our data indicate that, despite the higher solubility of plutonium citrate or nitrate as compared to preformed colloids or oxides, macrophages remain the main lung target after plutonium contamination and may participate in the early pulmonary damage.

  18. Kaurane diterpenes protect against apoptosis and inhibition of phagocytosis in activated macrophages.

    Science.gov (United States)

    de las Heras, B; Hortelano, S; Girón, N; Bermejo, P; Rodríguez, B; Boscá, L

    2007-09-01

    The kaurane diterpenes foliol and linearol are inhibitors of the activation of nuclear factor kappaB, a transcription factor involved in the inflammatory response. Effects of these diterpenes on apoptosis and phagocytosis have been analysed in cultured peritoneal macrophages and in the mouse macrophage cell line, RAW 264.7. Macrophages were maintained in culture and activated with pro-inflammatory stimuli in the absence or presence of diterpenes. Apoptosis and the phagocytosis in these cells under these conditions were determined. Incubation of macrophages with a mixture of bacterial lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma) induced apoptosis through a NO-dependent pathway, an effect significantly inhibited by foliol and linearol in the low muM range, without cytotoxic effects. Apoptosis in macrophages induced by NO donors was also inhibited. The diterpenes prevented apoptosis through a mechanism compatible with the inhibition of caspase-3 activation, release of cytochrome c to the cytosol and p53 overexpression, as well as an alteration in the levels of proteins of the Bcl-2 family, in particular, the levels of Bax. Cleavage of poly(ADP-ribose) polymerase, a well-established caspase substrate, was reduced by these diterpenes. Treatment of cells with foliol and linearol decreased phagocytosis of zymosan bioparticles by RAW 264.7 cells and to a greater extent by peritoneal macrophages. Both diterpenes protected macrophages from apoptosis and inhibited phagocytosis, resulting in a paradoxical control of macrophage function, as viability was prolonged but inflammatory and phagocytic functions were impaired.

  19. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    Science.gov (United States)

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  20. Sustained nitric oxide delivery delays nitric oxide-dependent apoptosis in macrophages: contribution to the physiological function of activated macrophages.

    Science.gov (United States)

    Hortelano, Sonsoles; Través, Paqui G; Zeini, Miriam; Alvarez, Alberto M; Boscá, Lisardo

    2003-12-01

    Treatment of the macrophage cell line RAW 264.7 with the short-lived NO donor S-nitrosoglutathione triggers apoptosis through the release of mitochondrial mediators. However, continuous supply of NO by long-lived NO donors protected cells from apoptosis through mechanisms that involved the maintenance or an increase in the levels of the inhibitor of apoptosis proteins (IAPs) cIAP-1, cIAP-2, and xIAP and decreases in the accumulation of p53 and in the levels and targeting of Bax to the mitochondria. As a result of these changes, the activation of caspases 9 and 3 was notably delayed, expanding the time of viability of the macrophages. Moreover, inhibition of NO synthase 2 activity after 8 h of stimulation of RAW 264.7 cells with LPS and IFN-gamma accelerated apoptosis via an increase in the processing and activation of caspases. These data suggest that NO exerts an important role in the autoregulation of apoptosis in macrophages.

  1. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    Science.gov (United States)

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels.

  2. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    Science.gov (United States)

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  3. MicroRNAs Control Macrophage Formation and Activation: The Inflammatory Link between Obesity and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Richard Cheng-An Chang

    2014-07-01

    Full Text Available Activation and recruitment of resident macrophages in tissues in response to physiological stress are crucial regulatory processes in promoting the development of obesity-associated metabolic disorders and cardiovascular diseases. Recent studies have provided compelling evidence that microRNAs play important roles in modulating monocyte formation, macrophage maturation, infiltration into tissues and activation. Macrophage-dependent systemic physiological and tissue-specific responses also involve cell-cell interactions between macrophages and host tissue niche cell components, including other tissue-resident immune cell lineages, adipocytes, vascular smooth muscle and others. In this review, we highlight the roles of microRNAs in regulating the development and function of macrophages in the context of obesity, which could provide insights into the pathogenesis of obesity-related metabolic syndrome and cardiovascular diseases.

  4. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  5. Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Paola Del Porto

    Full Text Available Chronic inflammation of the lung, as a consequence of persistent bacterial infections by several opportunistic pathogens represents the main cause of mortality and morbidity in cystic fibrosis (CF patients. Mechanisms leading to increased susceptibility to bacterial infections in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR in microbicidal functions of macrophages is emerging. Tissue macrophages differentiate in situ from infiltrating monocytes, additionally, mature macrophages from different tissues, although having a number of common activities, exhibit variation in some molecular and cellular functions. In order to highlight possible intrinsic macrophage defects due to CFTR dysfunction, we have focused our attention on in vitro differentiated macrophages from human peripheral blood monocytes. Here we report on the contribution of CFTR in the bactericidal activity against Pseudomonas aeruginosa of monocyte derived human macrophages. At first, by real time PCR, immunofluorescence and patch clamp recordings we demonstrated that CFTR is expressed and is mainly localized to surface plasma membranes of human monocyte derived macrophages (MDM where it acts as a cAMP-dependent chloride channel. Next, we evaluated the bactericidal activity of P. aeruginosa infected macrophages from healthy donors and CF patients by antibiotic protection assays. Our results demonstrate that control and CF macrophages do not differ in the phagocytic activity when infected with P. aeruginosa. Rather, although a reduction of intracellular live bacteria was detected in both non-CF and CF cells, the percentage of surviving bacteria was significantly higher in CF cells. These findings further support the role of CFTR in the fundamental functions of innate immune cells including eradication of bacterial infections by macrophages.

  6. Glucocorticoid-induced impairment of macrophage antimicrobial activity: mechanisms and dependence on the state of activation.

    Science.gov (United States)

    Schaffner, A; Schaffner, T

    1987-01-01

    Experimental observations indicate that tissue macrophages deployed in great numbers at critical anatomic sites such as the liver, spleen, and lung are major targets for glucocorticoids compromising natural resistance of the host. Therapeutic concentrations of glucocorticoids appear to prevent destruction of microorganisms ingested by macrophages without interfering with phagocytosis, phagolysosomal fusion, and/or secretion of reactive oxygen intermediates. These findings indicate that at the cellular level the glucocorticoid target should be sought for in the nonoxidative armature of the phagocyte and that nonoxidative killing systems of resident tissue macrophages play an important role in natural resistance to opportunistic pathogens. Glucocorticoids do not prevent lymphokine-induced activation of oxidative killing systems. Thus, lymphokines such as interferon-gamma can restore the microbicidal activity of macrophages functionally impaired by glucocorticoids. Counterbalance of the suppressive effect of glucocorticoids by lymphokines might only be possible, however, for pathogens susceptible to oxidative killing and not for microorganisms that are more resistant to reactive oxygen intermediates such as Aspergillus spores and Nocardia, opportunists that appear to be particularly associated with hypercortisolism.

  7. Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Peter A Keyel

    Full Text Available Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA, which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.

  8. Biological response of tissues with macrophagic activity to titanium dioxide.

    Science.gov (United States)

    Olmedo, Daniel G; Tasat, Deborah R; Evelson, Pablo; Guglielmotti, María B; Cabrini, Rómulo L

    2008-03-15

    The titanium dioxide layer is composed mainly of anatase and rutile. This layer is prone to break, releasing particles to the milieu. Therefore, corrosion may cause implant failure and body contamination. We have previously shown that commercial anatase-titanium dioxide (TiO(2)-anatase) is deposited in organs with macrophagic activity, transported in the blood by phagocytic-mononuclear cells, and induces an increase in the production of reactive oxygen species (ROS). In this study, we evaluated the effects of rutile-titanium dioxide (TiO(2)-rutile). Male Wistar rats were injected i.p. with a suspension of TiO(2)-rutile powder at a dose of 1.60 g/100 g b.w. Six months postinjection, the presence of Ti was assessed in serum, blood cells, liver, spleen, and lung. Titanium was found in phagocytic mononuclear cells, serum, and in the parenchyma of all the organs tested. TiO(2)-rutile generated a rise in the percentage of reactive cells, which was smaller than that observed when TiO(2)-anatase was employed in a previous study. Although TiO(2)-rutile provoked an augmentation of ROS, it failed to induce damage to membrane lipids, possibly due to an adaptive response. The present study reveals that TiO(2)-rutile is less bioreactive than TiO(2)-anatase.

  9. Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages.

    Science.gov (United States)

    Jiménez-Garcia, Lidia; Herránz, Sandra; Luque, Alfonso; Hortelano, Sonsoles

    2015-01-01

    Alternative activation of macrophages plays an important role in a range of physiological and pathological processes. This alternative phenotype, also known as M2 macrophages, is induced by type 2 cytokines such as IL-4. The binding of IL-4 to its receptor leads to activation of two major signaling pathways: STAT-6 and PI3K. However, recent studies have described that p38 MAPK might play a role in IL-4-dependent signaling in some cells, although its role in macrophages is still controversial. In this study, we investigated whether p38 MAPK plays a role in the polarization of macrophages in mice. Our results reveal that IL-4 induces phosphorylation of p38 MAPK in thioglycollate-elicited murine peritoneal macrophages, in addition to STAT-6 and PI3K activation. Furthermore, p38 MAPK inactivation, by gene silencing or pharmacological inhibition, suppressed IL-4-induced typical M2 markers, indicating the involvement of p38 MAPK in the signaling of IL-4 leading to M2-macrophage polarization. Moreover, p38 MAPK inhibition blocked phosphorylation of STAT-6 and Akt, suggesting that p38 MAPK is upstream of these signaling pathways. Finally, we show that in an in vivo model of chitin-induced M2 polarization, p38 MAPK inhibition also diminished activation of M2 markers. Taken together, our data establish a new role for p38 MAPK during IL-4-induced alternative activation of macrophages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Macrophage CGI-58 Deficiency Activates ROS-Inflammasome Pathway to Promote Insulin Resistance in Mice

    Directory of Open Access Journals (Sweden)

    Hongming Miao

    2014-04-01

    Full Text Available Overnutrition activates a proinflammatory program in macrophages to induce insulin resistance (IR, but its molecular mechanisms remain incompletely understood. Here, we show that saturated fatty acid and lipopolysaccharide, two factors implicated in high-fat diet (HFD-induced IR, suppress macrophage CGI-58 expression. Macrophage-specific CGI-58 knockout (MaKO in mice aggravates HFD-induced glucose intolerance and IR, which is associated with augmented systemic/tissue inflammation and proinflammatory activation of adipose tissue macrophages. CGI-58-deficient macrophages exhibit mitochondrial dysfunction due to defective peroxisome proliferator-activated receptor (PPARγ signaling. Consequently, they overproduce reactive oxygen species (ROS to potentiate secretion of proinflammatory cytokines by activating NLRP3 inflammasome. Anti-ROS treatment or NLRP3 silencing prevents CGI-58-deficient macrophages from oversecreting proinflammatory cytokines and from inducing proinflammatory signaling and IR in the cocultured fat slices. Anti-ROS treatment also prevents exacerbation of inflammation and IR in HFD-fed MaKO mice. Our data thus establish CGI-58 as a suppressor of overnutrition-induced NLRP3 inflammasome activation in macrophages.

  11. Inhibition of osteocyte apoptosis prevents the increase in osteocytic receptor activator of nuclear factor κB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloading.

    Science.gov (United States)

    Plotkin, Lilian I; Gortazar, Arancha R; Davis, Hannah M; Condon, Keith W; Gabilondo, Hugo; Maycas, Marta; Allen, Matthew R; Bellido, Teresita

    2015-07-31

    Apoptosis of osteocytes and osteoblasts precedes bone resorption and bone loss with reduced mechanical stimulation, and receptor activator of NF-κB ligand (RANKL) expression is increased with unloading in mice. Because osteocytes are major RANKL producers, we hypothesized that apoptotic osteocytes signal to neighboring osteocytes to increase RANKL expression, which, in turn, increases osteoclastogenesis and bone resorption. The traditional bisphosphonate (BP) alendronate (Aln) or IG9402, a BP analog that does not inhibit resorption, prevented the increase in osteocyte apoptosis and osteocytic RANKL expression. The BPs also inhibited osteoblast apoptosis but did not prevent the increase in osteoblastic RANKL. Unloaded mice exhibited high serum levels of the bone resorption marker C-telopeptide fragments of type I collagen (CTX), elevated osteoclastogenesis, and increased osteoclasts in bone. Aln, but not IG9402, prevented all of these effects. In addition, Aln prevented the reduction in spinal and femoral bone mineral density, spinal bone volume/tissue volume, trabecular thickness, mechanical strength, and material strength induced by unloading. Although IG9402 did not prevent the loss of bone mass, it partially prevented the loss of strength, suggesting a contribution of osteocyte viability to strength independent of bone mass. These results demonstrate that osteocyte apoptosis leads to increased osteocytic RANKL. However, blockade of these events is not sufficient to restrain osteoclast formation, inhibit resorption, or stop bone loss induced by skeletal unloading.

  12. Distinctive role of activated tumor-associated macrophages in photosensitizer accumulation

    Science.gov (United States)

    Korbelik, Mladen; Krosl, Gorazd

    1995-05-01

    Cells dissociated from tumors (carcinomas and sarcomas) growing subcutaneously in mice that have been administered Photofrin or other photosensitizers were analyzed by flow cytometry. Monoclonal antibodies were used for identification of major cellular populations contained in these tumors. The results demonstrate that a subpopulation of tumor-associated macrophages (TAMs) is unique among tumor cell populations in that it excels in the accumulation of very high levels of photosensitizers. These macrophages showed an increased expression of interleukin 2 receptor, which is indicative of their activated state. since macrophages were reported to concentrate in the periphery of human neoplasms, it is suggested that activates TAMs are the determinants of tumor-localized photosensitizer fluorescence.

  13. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process

    OpenAIRE

    Carlos de Torre-Minguela; Maria Barberà-Cremades; Gómez, Ana I.; Fátima Martín-Sánchez; Pablo Pelegrín

    2016-01-01

    The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released afte...

  14. Platelets Mediate Host Defense against Staphylococcus aureus through Direct Bactericidal Activity and by Enhancing Macrophage Activities.

    Science.gov (United States)

    Ali, Ramadan A; Wuescher, Leah M; Dona, Keith R; Worth, Randall G

    2017-01-01

    Platelets are the chief effector cells in hemostasis. However, recent evidence suggests they have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and, second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus In this study we report evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin-resistant S. aureus was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner whereas a methicillin-sensitive strain was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitive S. aureus by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways.

    Science.gov (United States)

    Xie, Song-Zi; Hao, Ran; Zha, Xue-Qiang; Pan, Li-Hua; Liu, Jian; Luo, Jian-Ping

    2016-08-01

    The present work aimed at investigating the pattern recognition receptor (PRR) and immunostimulatory mechanism of a purified Dendrobium huoshanense polysaccharide (DHP). We found that DHP could bind to the surface of macrophages and stimulate macrophages to secrete NO, TNF-α and IL-1β. To unravel the mechanism for the binding of DHP to macrophages, flow cytometry, confocal laser-scanning microscopy, affinity electrophoresis, SDS-PAGE and western blotting were employed to verify the type of PRR responsible for the recognition of DHP by RAW264.7 macrophages and peritoneal macrophages of C3H/HeN and C3H/HeJ macrophages. Results showed that toll-like receptor 4 (TLR4) was an essential receptor for macrophages to directly bind DHP. Further, the phosphorylation of ERK, JNK, Akt and p38 were observed to be time-dependently promoted by DHP, as well as the nuclear translocation of NF-κB p65. These results suggest that DHP activates macrophages via its direct binding to TLR4 to trigger TLR4 signaling pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy.

    Science.gov (United States)

    Kim, Su-Mi; Lee, Sang-Ho; Kim, Yang-Gyun; Kim, Se-Yun; Seo, Jung-Woo; Choi, Young-Wook; Kim, Dong-Jin; Jeong, Kyung-Hwan; Lee, Tae-Won; Ihm, Chun-Gyoo; Won, Kyu-Yeoun; Moon, Ju-Young

    2015-05-01

    IL-1β-secreting nucleotide-binding oligomerization domain protein 3 (NLRP3) inflammasomes play a pivotal role in triggering innate immune responses in metabolic disease. We investigated the role of soluble uric acid in NLRP3 inflammasome activation in macrophages to demonstrate the effect of systemic hyperuricemia on progressive kidney damage in type 2 diabetes. THP-1 cells, human acute monocytic leukemia cells, were cultured to obtain macrophages, and HK-2 cells, human renal proximal tubule cells, were cultured and stimulated with uric acid. In vivo, we designed four rat groups as follows: 1) Long-Evans Tokushima Otsuka (LETO); 2) Otsuka Long-Evans Tokushima Fatty (OLETF); 3) OLETF+high-fructose diet (HFD) for 16 wk; and 4) OLETF+HFD+allopurinol (10 mg/dl administered in the drinking water). Soluble uric acid stimulated NLRP3 inflammasomes to produce IL-1β in macrophages. Uric acid-induced MitoSOX mediates NLRP3 activation and IL-1β secretion. IL-1β from macrophages activates NF-κB in cocultured proximal tubular cells. In vivo, intrarenal IL-1β expression and macrophage infiltration increased in HFD-fed OLETF rats. Lowering the serum uric acid level resulted in improving the albuminuria, tubular injury, macrophage infiltration, and renal IL-1β (60% of HFD-fed OLETF) independently of glycemic control. Direct activation of proximal tubular cells by uric acid resulted in (C-X-C motif) ligand 12 and high mobility group box-1 release and accelerated macrophage recruitment and the M1 phenotype. Taken together, these data support direct roles of hyperuricemia in activating NLRP3 inflammasomes in macrophages, promoting chemokine signaling in the proximal tubule and contributing to the progression of diabetic nephropathy through cross talk between macrophages and proximal tubular cells.

  17. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Science.gov (United States)

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis.

  18. Hyper-inflammation and skin destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency

    DEFF Research Database (Denmark)

    Das, Lopa M; Rosenjack, Julie; Au, Liemin;

    2015-01-01

    Injury initiates recruitment of macrophages to support tissue repair; however, excessive macrophage activity may exacerbate tissue damage causing further destruction and subsequent delay in wound repair. Here we show that the peroxisome proliferation-activated receptor-γ agonist, rosiglitazone......-antibodies against IL-6, mimicking IL-6 deficiency in human diseases. IL-6 deficiency when combined with Rosi-mediated upregulation of suppressor of cytokine signaling 3 leads to an altered ratio of nuclear signal transducer and activator of transcription 3/NF-κB that allows hyper-induction of inducible nitric oxide...... synthase (iNOS). Macrophages activated in this manner cause de novo tissue destruction, recapitulating human chronic wounds, and can be reversed in vivo by recombinant IL-6, blocking macrophage infiltration, or neutralizing iNOS. This study provides insight into an unanticipated paradoxical role of Rosi...

  19. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  20. Novel use of a Dektak 150 surface profiler unmasks differences in resorption pit profiles between control and Charcot patient osteoclasts.

    Science.gov (United States)

    Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M

    2014-04-01

    We hypothesized that newly formed osteoclasts from patients with acute Charcot osteoarthropathy can resorb surfaces of bone more extensively compared with controls. Peripheral blood monocytes, isolated from eight Charcot patients and nine controls, were cultured in vitro on 24-well plates and bovine bone discs in duplicate with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast formation was assessed by tartrate-resistant acid phosphatase staining (TRAcP) at day 17. Resorption was measured at day 21 after toluidine blue staining by two methods: (1) area of resorption at the surface by image analysis (%) and (2) area of resorption under the surface (μm(2)) measured by a Dektak 150 Surface Profiler. Ten 1,000 μm-long scans were performed per disc. Pits were classified as unidented, bidented, and multidented according to their shape. Although the number of newly formed TRAcP positive multinucleated cells (>3 nuclei) was similar in M-CSF + RANKL-treated cultures between controls and Charcot patients, the latter exhibited increased resorbing activity. The area of resorption on the surface by image analysis was significantly greater in Charcot patients compared with controls (21.1 % [14.5-26.2] vs. 40.8 % [35.4-46.0], median [25-75th percentile], p Charcot patients pits were deeper and wider and more frequently presented as multidented pits. This application of the Dektak 150 Surface Profiler revealed novel differences in resorption pit profile from osteoclasts derived from Charcot patients compared with controls. Resorption in Charcot patients was mediated by highly aggressive newly formed osteoclasts from monocytes eroding large and deep areas of bone.

  1. Effect of RGD-insulin on activities of bone resorption and the possible mechanism in human osteoclast-like cells in vitro.

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective: In this study, we explored the mechanism of anti-bone resorption of RGD-insulin using osteoclastlike cells(OLCs) from giant cell tumor of bone as an in vitro model. Methods: The function of bone resorption was observed and the staining for tartrate-resistant acid

  2. In vitro, but not in vivo, reversibility of peritoneal macrophages activation during experimental acute pancreatitis

    OpenAIRE

    Closa Daniel; Gea-Sorlí Sabrina

    2009-01-01

    Abstract Background Systemic inflammatory response syndrome is one of the major pathobiologic processes underlying severe acute pancreatitis and the degree of macrophage activation could be one of the factors that finally determine the severity of the disease. We evaluated the activation phenotype in peritoneal macrophages during the progression of an experimental model of acute pancreatitis induced in rats by intraductal administration of 5% sodium taurocholate and the effect of IL-4 and IL-...

  3. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    Science.gov (United States)

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  4. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    Science.gov (United States)

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal biocompatibility, specifically through the quantification of cell-surface markers of leukocyte activation.

  5. High salt primes a specific activation state of macrophages, M(Na)

    Science.gov (United States)

    Zhang, Wu-Chang; Zheng, Xiao-Jun; Du, Lin-Juan; Sun, Jian-Yong; Shen, Zhu-Xia; Shi, Chaoji; Sun, Shuyang; Zhang, Zhiyuan; Chen, Xiao-qing; Qin, Mu; Liu, Xu; Tao, Jun; Jia, Lijun; Fan, Heng-yu; Zhou, Bin; Yu, Ying; Ying, Hao; Hui, Lijian; Liu, Xiaolong; Yi, Xianghua; Liu, Xiaojing; Zhang, Lanjing; Duan, Sheng-Zhong

    2015-01-01

    High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na). PMID:26206316

  6. Polysaccharide-rich fraction of Agaricus brasiliensis enhances the candidacidal activity of murine macrophages

    Directory of Open Access Journals (Sweden)

    Priscila Raquel Martins

    2008-05-01

    Full Text Available A polysaccharide-rich fraction (ATF of medicinal mushroom Agaricus brasiliensis was evaluated on the candidacidal activity, H2O2 and nitric oxide (NO production, and expression of mannose receptors by murine peritoneal macrophages. Mice received three intraperitoneal (i.p. injections of ATF and after 48 h their peritoneal resident macrophages were assayed against Candida albicans yeast forms. The treatment increased fungicidal activity and it was associated with higher levels of H2O2, whereas NO production was not affected. We also found that the treatment enhances mannose receptor expression by peritoneal macrophages, which are involved in the attachment and phagocytosis of non-opsonized microorganisms. Treatment of animals with ATF was able to enhance the clearance of C. albicans during the first 6 h after the experimental i.p. infection. Our results suggest that this extract can increase host resistance against some infectious agents through the stimulation of microbicidal activity of macrophages.

  7. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia.

    Directory of Open Access Journals (Sweden)

    Santosh K Panda

    Full Text Available Sepsis is a consequence of systemic bacterial infections leading to hyper activation of immune cells by bacterial products resulting in enhanced release of mediators of inflammation. Endotoxin (LPS is a major component of the outer membrane of Gram negative bacteria and a critical factor in pathogenesis of sepsis. Development of antagonists that inhibit the storm of inflammatory molecules by blocking Toll like receptors (TLR has been the main stay of research efforts. We report here that a filarial glycoprotein binds to murine macrophages and human monocytes through TLR4 and activates them through alternate pathway and in the process inhibits LPS mediated classical activation which leads to inflammation associated with endotoxemia. The active component of the nematode glycoprotein mediating alternate activation of macrophages was found to be a carbohydrate residue, Chitohexaose. Murine macrophages and human monocytes up regulated Arginase-1 and released high levels of IL-10 when incubated with chitohexaose. Macrophages of C3H/HeJ mice (non-responsive to LPS failed to get activated by chitohexaose suggesting that a functional TLR4 is critical for alternate activation of macrophages also. Chitohexaose inhibited LPS induced production of inflammatory molecules TNF-α, IL-1β and IL-6 by macropahges in vitro and in vivo in mice. Intraperitoneal injection of chitohexaose completely protected mice against endotoxemia when challenged with a lethal dose of LPS. Furthermore, Chitohexaose was found to reverse LPS induced endotoxemia in mice even 6/24/48 hrs after its onset. Monocytes of subjects with active filarial infection displayed characteristic alternate activation markers and were refractory to LPS mediated inflammatory activation suggesting an interesting possibility of subjects with filarial infections being less prone to develop of endotoxemia. These observations that innate activation of alternate pathway of macrophages by chtx through TLR4 has

  8. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  9. Low Dose BCG Infection as a Model for Macrophage Activation Maintaining Cell Viability

    Directory of Open Access Journals (Sweden)

    Leslie Chávez-Galán

    2016-01-01

    Full Text Available Mycobacterium bovis BCG, the current vaccine against tuberculosis, is ingested by macrophages promoting the development of effector functions including cell death and microbicidal mechanisms. Despite accumulating reports on M. tuberculosis, mechanisms of BCG/macrophage interaction remain relatively undefined. In vivo, few bacilli are sufficient to establish a mycobacterial infection; however, in vitro studies systematically use high mycobacterium doses. In this study, we analyze macrophage/BCG interactions and microenvironment upon infection with low BCG doses and propose an in vitro model to study cell activation without affecting viability. We show that RAW macrophages infected with BCG at MOI 1 activated higher and sustained levels of proinflammatory cytokines and transcription factors while MOI 0.1 was more efficient for early stimulation of IL-1β, MCP-1, and KC. Both BCG infection doses induced iNOS and NO in a dose-dependent manner and maintained nuclear and mitochondrial structures. Microenvironment generated by MOI 1 induced macrophage proliferation but not MOI 0.1 infection. In conclusion, BCG infection at low dose is an efficient in vitro model to study macrophage/BCG interactions that maintains macrophage viability and mitochondrial structures. This represents a novel model that can be applied to BCG research fields including mycobacterial infections, cancer immunotherapy, and prevention of autoimmunity and allergies.

  10. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages.

    Science.gov (United States)

    Dai, Ming; Wang, Xu; Li, Jie-Liang; Zhou, Yu; Sang, Ming; Liu, Jin-Biao; Wu, Jian-Guo; Ho, Wen-Zhe

    2015-12-01

    Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type Ι interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-α, macrophage inflammatory protein 1-β, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV.

  11. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events

    Directory of Open Access Journals (Sweden)

    Liviu Feller

    2016-01-01

    Full Text Available Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.

  12. Ameloginins promote an alternatively activated macrophage phenotype in vitro

    DEFF Research Database (Denmark)

    Almqvist, S; Werthen, M; Lyngstadas, SP

    2011-01-01

    Amelogenins are extracellular matrix proteins used for the topical treatment of chronically inflamed tissues. The influence of amelogenins on human monocyte-derived macrophages was studied by measuring the concentrations of cytokines in culture supernatants. The interactions of cells and protein...

  13. The phosphoproteome of toll-like receptor-activated macrophages

    DEFF Research Database (Denmark)

    Weintz, Gabriele; Olsen, Jesper Velgaard; Frühauf, Katja;

    2010-01-01

    Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome...

  14. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice

    OpenAIRE

    Chen, H.; Shi, R.; Luo, B.; Yang, X.; Qiu, L; Xiong, J.; Jiang, M; Y. Liu; Zhang, Z; Wu, Y

    2015-01-01

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced co...

  15. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    Science.gov (United States)

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  16. PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation.

    Science.gov (United States)

    Chen, Hongen; Liu, Yan; Li, Di; Song, Jiayi; Xia, Min

    2016-02-01

    Inflammation of infiltrated macrophages in adipose tissue is a key contributor to the initiation of adipose insulin resistance. These macrophages are exposed to high local concentrations of free fatty acids (FFAs) and can be proinflammatory activated by saturated fatty acids (SFAs). However, the regulatory mechanisms on SFA-induced macrophage inflammation are still elusive. Peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) is a member of the PGC-1 family of transcriptional coactivators and has been reported to play a key role in SFAs metabolism and in the regulation of inflammatory signaling. However, it remains unclear whether PGC-1β is involved in SFA-induced macrophage inflammation. In this study, we found that PGC-1β expression was significantly decreased in response to palmitic acid (PA) in macrophages in a dose dependent manner. PGC-1β inhibited PA induced TNFα, MCP-1, and IL-1β mRNA and protein expressions. Furthermore, PGC-1β significantly antagonized PA induced macrophage nuclear factor-κB (NF-κB) p65 and JUN N-terminal kinase activation. Mechanistically, we revealed that TGF-β-activated kinase 1 (TAK1) and its adaptor protein TAK1 binding protein 1 (TAB1) played a dominant role in the regulatory effects of PGC-1β. We confirmed that PGC-1β inhibited downstream inflammatory signals via binding with TAB1 and thus preventing TAB1/TAK1 binding and TAK1 activation. Finally, we showed that PGC-1β overexpression in PA treated macrophages improved adipocytes PI3K-Akt insulin signaling in a paracrine fashion. Collectively, our results uncovered a novel mechanism on how macrophage inflammation induced by SFAs was regulated and suggest a potential target in the treatment of obesity induced insulin resistance.

  17. Peroxisome Proliferator-activated Receptor - Activation Promotes Infiltration of Alternatively Activated Macrophages into Adipose Tissue

    NARCIS (Netherlands)

    Stienstra, R.; Duval, C.N.C.; Keshtkar Ghiasabadi, S.; Laak, van der J.; Kersten, A.H.; Müller, M.R.

    2008-01-01

    Obesity is associated with infiltration of macrophages into adipose tissue. Adipose macrophages may contribute to an elevated inflammatory status by secreting a variety of proinflammatory mediators, including tumor necrosis factor alpha and interleukin-6 (IL-6). Recent data suggest that during diet-

  18. Peroxisome proliferator-activated receptor gamma activation promotes infiltration of alternatively activated macrophages into adipose tissue.

    NARCIS (Netherlands)

    Stienstra, R.; Duval, C.; Keshtkar, S.; Laak, J. ter; Kersten, S.; Muller, M.

    2008-01-01

    Obesity is associated with infiltration of macrophages into adipose tissue. Adipose macrophages may contribute to an elevated inflammatory status by secreting a variety of proinflammatory mediators, including tumor necrosis factor alpha and interleukin-6 (IL-6). Recent data suggest that during diet-

  19. Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation.

    Directory of Open Access Journals (Sweden)

    Helmy Rachman

    Full Text Available Apoptosis and activation of macrophages play an important role in the host response to mycobacterial infection involving TNF-alpha as a critical autocrine mediator. The underlying mechanisms are still ill-defined. Here, we demonstrate elevated levels of methylglyoxal (MG, a small and reactive molecule that is usually a physiological product of various metabolic pathways, and advanced glycation end products (AGE during mycobacterial infection of macrophages, leading to apoptosis and activation of macrophages. Moreover, we demonstrate abundant AGE in pulmonary lesions of tuberculosis (TB patients. Global gene expression profiling of MG-treated macrophages revealed a diverse spectrum of functions induced by MG, including apoptosis and immune response. Our results not only provide first evidence for the involvement of MG and AGE in TB, but also form a basis for novel intervention strategies against infectious diseases in which MG and AGE play critical roles.

  20. Functional activity of monocytes and macrophages in HTLV-1 infected subjects.

    Directory of Open Access Journals (Sweden)

    Camila F Amorim

    2014-12-01

    Full Text Available The Human T lymphotropic virus type-1 (HTLV-1 infects predominantly T cells, inducing proliferation and lymphocyte activation. Additionally, HTLV-1 infected subjects are more susceptible to other infections caused by other intracellular agents. Monocytes/macrophages are important cells in the defense against intracellular pathogens. Our aims were to determine the frequency of monocytes subsets, expression of co-stimulatory molecules in these cells and to evaluate microbicidal ability and cytokine and chemokine production by macrophages from HTLV-1 infected subjects. Participants were 23 HTLV-1 carriers (HC, 22 HAM/TSP patients and 22 healthy subjects (HS not infected with HTLV-1. The frequencies of monocyte subsets and expression of co-stimulatory molecules were determined by flow cytometry. Macrophages were infected with L. braziliensis or stimulated with LPS. Microbicidal activity of macrophages was determined by optic microscopy. Cytokines/chemokines from macrophage supernatants were measured by ELISA. HAM/TSP patients showed an increase frequency of intermediate monocytes, but expression of co-stimulatory molecules was similar between the groups. Macrophages from HTLV-1 infected individuals were infected with L. braziliensis at the same ratio than macrophages from HS, and all the groups had the same ability to kill Leishmania parasites. However, macrophages from HTLV-1 infected subjects produced more CXCL9 and CCL5, and less IL-10 than cells from HS. While there was no correlation between IFN-γ and cytokine/chemokine production by macrophages, there was a correlation between proviral load and TNF and CXCL10. These data showed a dissociation between the inflammatory response and microbicidal ability of macrophages from HTLV-1 infected subjects. While macrophages ability to kill an intracellular pathogen did not differ among HTLV-1 infected subjects, these cells secreted high amount of chemokines even in unstimulated cultures. Moreover the

  1. Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men.

    Science.gov (United States)

    Dasgupta, Preeta; Keegan, Achsah D

    2012-01-01

    The concept that macrophages play an active role in inflammatory responses began its development in the late 1800s with the now iconic studies by Elie Metchnikoff using starfish larvae and Daphnia [reviewed in Kaufmann SHE: Nat Immunol 2008;9:705-712 and Cavaillon JM: J Leukoc Biol 2011;90:413-424]. Based on his observation of the phagocyte response to a foreign body (rose thorn) and yeast, he proposed that phagocytes acted in host defense and were active participants in the inflammatory process. Flash forward more than 100 years and we find that these basic tenets hold true. However, it is now appreciated that macrophages come in many different flavors and can adopt a variety of nuanced phenotypes depending on the tissue environment in which the macrophage is found. In this brief review, we discuss the role of one type of macrophage termed the alternatively activated macrophage (AAM), also known as the M2 type of macrophage, in regulating allergic lung inflammation and asthma. Recent studies using mouse models of allergic lung inflammation and samples from human asthma patients contribute to the emerging concept that AAMs are not just bystanders of the interleukin (IL)-4- and IL-13-rich environment found in allergic asthma but are also active players in orchestrating allergic lung disease.

  2. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway.

    Directory of Open Access Journals (Sweden)

    Bingzhong Xue

    Full Text Available Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA exert anti-inflammatory functions in both humans and animal models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found that two nutrient sensors AMP-activated protein kinase (AMPK and SIRT1 interact to regulate macrophage inflammation. Here we aim to determine whether ω-3 PUFAs antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. Treatment of ω-3 PUFAs suppresses lipopolysaccharide (LPS-induced cytokine expression in macrophages. Luciferase reporter assays, electrophoretic mobility shift assays (EMSA and Chromatin immunoprecipitation (ChIP assays show that treatment of macrophages with ω-3 PUFAs significantly inhibits LPS-induced NF-κB signaling. Interestingly, DHA also increases expression, phosphorylation and activity of the major isoform α1AMPK, which further leads to SIRT1 over-expression. More importantly, DHA mimics the effect of SIRT1 on deacetylation of the NF-κB subunit p65, and the ability of DHA to deacetylate p65 and inhibit its signaling and downstream cytokine expression require SIRT1. In conclusion, ω-3 PUFAs negatively regulate macrophage inflammation by deacetylating NF-κB, which acts through activation of AMPK/SIRT1 pathway. Our study defines AMPK/SIRT1 as a novel cellular mediator for the anti-inflammatory effects of ω-3 PUFAs.

  3. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  4. Invasive cervical resorption: treatment challenges

    OpenAIRE

    2012-01-01

    Invasive cervical resorption is a relatively uncommon form of external root resorption. It is characterized by invasion of cervical region of the root by fibrovascular tissue derived from the periodontal ligament. This case presents an invasive cervical resorption occurring in maxillary lateral incisor, following damage in cervical cementum from avulsion and intracoronal bleaching procedure. Flap reflection, debridement and restoration with glass ionomer cement were performed in an attempt to...

  5. The TLR4-active morphine metabolite morphine-3-glucuronide does not elicit macrophage classical activation in vitro

    Directory of Open Access Journals (Sweden)

    Samira Khabbazi

    2016-11-01

    Full Text Available Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G. We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS, alone or in combination with interferon gamma (IFN-γ. The classical macrophage activation markers tested were iNOS, CD86, IL-6 or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10 and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages.

  6. Localization of cathepsins G and L in spontaneous resorption of intervertebral discs in a rat experimental model.

    Science.gov (United States)

    Meng, W; Yonenobu, K; Ariga, K; Nakase, T; Okuda, S; Obata, K; Yoshikawa, H

    2001-12-01

    To determine the involvement of cathepsins G and L in the mechanism of spontaneous resorption of herniated intervertebral discs, localization of these cathepsins in this process was examined immunohistochemically using a rat model of autologous transplantation of coccygeal discs. Rat coccygeal discs were resected and autotransplanted into the subcutaneous space of the skin of the back. Paraffin-embedded sections of intervertebral disc tissue, harvested at various post-transplantational periods, were immunohistochemically stained with antibodies for cathepsin G, cathepsin L, MMP-1, MMP-3 and ED-2. The number of positive cells was counted in each part of the transplanted discs. Immunolocalization of cathepsins G and L in various types of disc cells was first observed early in the post-transplantation period. From two days after the operation, histology showed invasion by granulation tissue, with many macrophages, in all sections. Subsequently, the number of macrophages in granulation tissue was observed to increase, along with a gradual increase in the percentage of cells positive for MMP-1 and MMP-3. In addition to the ability of cathepsins G and L to degrade major extracellular matrix components of intervertebral discs, cathepsin G is capable of activating latent pro-MMPs. The up-regulation of cathepsins G and L in the intervertebral disc tissue in this spontaneous resorption model suggests that these proteinases may be involved in degradation of extracellular matrix, leading to the natural resorption of herniated discs.

  7. Direct Effects of Activin A on the Activation of Mouse Macrophage RAW264.7 Cells

    Institute of Scientific and Technical Information of China (English)

    Jingyan Ge; Yinan Wang; Ye Feng; Haiyan Liu; Xueling Cui; Fangfang Chen; Guixiang Tai; Zhonghui Liu

    2009-01-01

    Macrophages play critical roles in innate immune and acquired immune via secreting pro-inflammatory mediators, phagocytosing microorganisms and presenting antigens. Activin A, a member of transforming growth factor β (TGF-β) superfamily, is produced by macrophages and microglia cells. In this study, we reported a direct effect of activin A as a pro-inflammatory factor on mouse macrophage cell line RAW264.7 cells. Our data revealed that activin A could not only increase IL-1v and IL-6 production from RAW264.7 cells, but also promote pinocytic and phagocytic activities of RAW264.7 cells. In addition, activin A obviously up-regulated MHC Ⅱ expression on the surface of RAW264.7 cells, whereas did not influence MHC I expression. Activin A also enhanced CD80 expression, which is a marker of activated macrophages, but did not influence RAW264.7 cell proliferation. These data suggest that activin A may regulate primary macrophage-mediated innate and acquired immune response via promoting the activation of rest macrophages. Cellular & Molecular Immunology.

  8. Progranulin promotes activation of microglia/macrophage after pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Zhu, Shanshan; Tai, Chao; Petkau, Terri L; Zhang, Si; Liao, Chengyong; Dong, Zhifang; Wen, Wendy; Chang, Qing; Tian Wang, Yu; MacVicar, Brian A; Leavitt, Blair R; Jia, William; Cynader, Max S

    2013-09-12

    Progranulin (PGRN) haploinsufficiency accounts for up to 10% of frontotemporal lobe dementia. PGRN has also been implicated in neuroinflammation in acute and chronic neurological disorders. Here we report that both protein and mRNA levels of cortical and hippocampal PGRN are significantly enhanced following pilocarpine-induced status epilepticus. We also identify intense PGRN immunoreactivity that colocalizes with CD11b in seizure-induced animals, suggesting that PGRN elevation occurs primarily in activated microglia and macrophages. To test the role of PGRN in activation of microglia/macrophages, we apply recombinant PGRN protein directly into the hippocampal formation, and observe no change in the number of CD11b(+) microglia/macrophages in the dentate gyrus. However, with pilocarpine-induced status epilepticus, PGRN application significantly increases the number of CD11b(+) microglia/macrophages in the dentate gyrus, without affecting the extent of hilar cell death. In addition, the number of CD11b(+) microglia/macrophages induced by status epilepticus is not significantly different between PGRN knockout mice and wildtype. Our findings suggest that status epilepticus induces PGRN expression, and that PGRN potentiates but is not required for seizure-induced microglia/macrophage activation.

  9. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    Science.gov (United States)

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive.

  10. Effect of Tityus serrulatus venom on cytokine production and the activity of murine macrophages

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2002-01-01

    Full Text Available The purpose of this study was to investigate the effects of Tityus serrulatus venom (TSV on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2 and nitric oxide (NO in supernatants of peritoneal macrophages. Several functional bioassays were employed including an in vitro model for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6 and interferon-γ (IFN-γ were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2 release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functions in vitro.

  11. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation.

    Science.gov (United States)

    Jia, Xiaoqin; Li, Xiaomin; Shen, Yating; Miao, Junjun; Liu, Hao; Li, Guoli; Wang, Zhengbing

    2016-10-01

    MiR-16 is a tumour suppressor that is down-regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR-16 on macrophage polarization and subsequent T-cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon-γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)-4. The identity of polarized macrophages was determined by profiling cell-surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus-expressing miR-16 to assess the effects of miR-16. Effects on macrophage-T cell interactions were analysed by co-culturing purified CD4(+) T cells with miR-16-expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR-16 targets and understand its underlying mechanisms. MiR-16-induced M1 differentiation of mouse peritoneal macrophages from either the basal M0- or M2-polarized state is indicated by the significant up-regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin-1, and increased secretion of M1 cytokine IL-12 and nitric oxide. Consistently, miR-16-expressing macrophages stimulate the activation of purified CD4(+) T cells. Mechanistically, miR-16 significantly down-regulates the expression of PD-L1, a critical immune suppressor that controls macrophage-T cell interaction and T-cell activation. MiR-16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4(+) T cells. This effect is potentially mediated through the down-regulation of immune suppressor PD-L1.

  12. Moxibustion Activates Macrophage Autophagy and Protects Experimental Mice against Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Xiaojuan Li

    2014-01-01

    Full Text Available Moxibustion is one of main therapies in traditional Chinese medicine and uses heat stimulation on the body surface from the burning of moxa to release pain or treat diseases. Emerging studies have shown that moxibustion can generate therapeutic effects by activating a series of signaling pathways and neuroendocrine-immune activities. Here we show moxibustion promoted profound macrophage autophagy in experimental Kunming mice, with reduced Akt phosphorylation and activated eIF2α phosphorylation. Consequently, moxibustion promoted bacterial clearance by macrophages and protected mice from mortality due to bacterial infection. These results indicate that moxibustion generates a protective response by activating autophagy against bacterial infections.

  13. IMMUNOBIOLOGICAL ACTIVITY OF REGULATORY PEPTIDE FRACTIONS SYNTHESIZED BY NEUTROPHILS, AS TESTED IN A MACROPHAGE MODEL

    Directory of Open Access Journals (Sweden)

    G. I. Vasilieva

    2010-01-01

    Full Text Available The article presents experimental data on regulatory effect of neutrophilokine helper fractions on the macrophage (Mph functional activity in the course of antiplague immunity formation. It has revealed that these fractions content biologically active, low-molecular weight peptides. They stimulate Mph killing activity by increasing phagosome-lysosome fusion, thus boosting transformation of monocytes to Mph, and causing redistribution of macrophage subpopulations in the total cellular pool. The helper effect of neutrophilokine fractions upon functional activity of MPh is more pronounced during secondary immune response.

  14. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate

    Science.gov (United States)

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente

    2017-01-01

    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  15. Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation?

    Directory of Open Access Journals (Sweden)

    Eleonora Derlindati

    Full Text Available Macrophages are a heterogeneous cell population which in response to the cytokine milieu polarize in either classically activated macrophages (M1 or alternatively activated macrophages (M2. This plasticity makes macrophages essential in regulating inflammation, immune response and tissue remodeling and a novel therapeutic target in inflammatory diseases such as atherosclerosis. The aim of the study was to describe the transcriptomic profiles of differently polarized human macrophages to generate new hypotheses on the biological function of the different macrophage subtypes.Polarization of circulating monocytes/macrophages of blood donors was induced in vitro by IFN-γ and LPS (M1, by IL-4 (M2a, and by IL-10 (M2c. Unstimulated cells (RM served as time controls. Gene expression profile of M1, M2a, M2c and RM was assessed at 6, 12 and 24h after polarization with Whole Human Genome Agilent Microarray technique. When compared to RM, M1 significantly upregulated pathways involved in immunity and inflammation, whereas M2a did the opposite. Conversely, decreased and increased expression of mitochondrial metabolism, consistent with insulin resistant and insulin sensitive patterns, was seen in M1 and M2a, respectively. The time sequence in the expression of some pathways appeared to have some specific bearing on M1 function. Finally, canonical and non-canonical Wnt genes and gene groups, promoting inflammation and tissue remodeling, were upregulated in M2a compared to RM.Our data in in vitro polarized human macrophages: 1. confirm and extend known inflammatory and anti-inflammatory gene expression patterns; 2. demonstrate changes in mitochondrial metabolism associated to insulin resistance and insulin sensitivity in M1 and M2a, respectively; 3. highlight the potential relevance of gene expression timing in M1 function; 4. unveil enhanced expression of Wnt pathways in M2a suggesting a potential dual (pro-inflammatory and anti-inflammatory role of M2a in

  16. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  17. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Directory of Open Access Journals (Sweden)

    Bruno Bueno-Silva

    Full Text Available Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP, the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1 and of Il1β and Il1f9 (fold-change rate > 5, which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal, also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  18. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S; Alencar, Severino M; Rosalen, Pedro L; Mayer, Marcia P A

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  19. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    Directory of Open Access Journals (Sweden)

    Dijkstra Christine D

    2011-05-01

    Full Text Available Abstract Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS and spinal cord injury (SCI, being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1, pro-inflammatory, macrophages and alternatively activated (AA/M2, growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight ( Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.

  20. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: Dongqi.Tang@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  1. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages.

    Science.gov (United States)

    Zhao, Ting; Feng, Yun; Li, Jing; Mao, Riwen; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Chen, Yao; Yang, Liuqing; Wu, Xiangyang

    2014-04-01

    Schisandra chinensis (Turcz.) Baill has been used in traditional Chinese medicine for centuries. Previous studies have shown that Schisandra polysaccharide (SCPP11) has robust antitumor activity in vivo. In this study, the immunomodulatory activity and mechanisms of action of SCPP11 were investigated further to reveal its mechanism of action against tumors. Results showed that SCPP11 increased the thymus and spleen indices, pinocytic activity of peritoneal macrophages, and hemolysin formation in CTX-induced immunosuppressed mice. Moreover, SCPP11 significantly increased immunoglobulin levels, cytokines levels in vivo and induced RAW264.7 cells to secrete cytokines in vitro. RAW264.7 cells pretreated with SCPP11 significantly inhibited the proliferation of HepG-2 cells. In addition, SCPP11 promoted both the expression of iNOS protein and of iNOS and TNF-α mRNA. TLR-4 is a possible receptor for SCPP11-mediated macrophage activation. Therefore, the data suggest that SCPP11 exerted its antitumor activity by improving immune system functions through TLR-4-mediated up-regulation of NO and TNF-α.

  2. Macrophage activation syndrome triggered by coeliac disease: a unique case report.

    Science.gov (United States)

    Palman, J; May, J; Pilkington, C

    2016-12-09

    Macrophage activation syndrome is described as a "clinical syndrome of hyperinflammation resulting in an uncontrolled and ineffective immune response" in the context of an autoinflammatory or rheumatic disease. Current associations of macrophage activation syndrome with autoimmune disease most notably include a host of rheumatological conditions and inflammatory bowel disease. Epidemiological studies have shown that macrophage activation syndrome is precipitated by autoimmune disease more commonly than previously thought. Diagnosing the precipitating factor is essential for effective treatment and prognosis. We report a case of a six year old girl with coeliac disease diagnosed after two episodes of secondary haemophagocytic lymphohistiocytosis. Her condition only responded to treatment once the patient was placed on a gluten free diet. Further immunological testing confirmed anti-transglutaminase and anti-endomysial antibodies, however histological biopsy was deemed inappropriate due to the severity of her condition. She has remained stable with no further episodes of macrophage activation syndrome since commencing a gluten free diet. This case report is the first literature that links macrophage activation syndrome to coeliac disease and highlights the challenge of diagnosing coeliac disease with unusual features such as associated prolonged fever. Clinicians should have a low threshold for screening children with other autoimmune diseases for coeliac disease.

  3. Clinical Management of Two Root Resorption Cases in Endodontic Practice

    Directory of Open Access Journals (Sweden)

    Jozef Mincik

    2016-01-01

    Full Text Available Root resorption is a pathological process involving loss of hard dental tissues. It may occur as a consequence of dental trauma, orthodontic treatment, and bleaching, and occasionally it accompanies periodontal disease. Although the mechanism of resorption process is examined in detail, its etiology is not fully understood. Wide open apical foramen is more difficult to manage and the root canal may often overfill. In this report we present two cases of root resorption and describe means for its clinical management. We conclude that useful measure of a success or failure in managing root resorption is the persistence of the resorption process. It is a clear sign of an active ongoing inflammatory process and shows the clinical need for retreatment.

  4. Neutrophils activate macrophages for intracellular killing of Leishmania major through recruitment of TLR4 by neutrophil elastase.

    Science.gov (United States)

    Ribeiro-Gomes, Flavia L; Moniz-de-Souza, Maria Carolina A; Alexandre-Moreira, Magna S; Dias, Wagner B; Lopes, Marcela F; Nunes, Marise P; Lungarella, Giuseppe; DosReis, George A

    2007-09-15

    We investigated the role of neutrophil elastase (NE) in interactions between murine inflammatory neutrophils and macrophages infected with the parasite Leishmania major. A blocker peptide specific for NE prevented the neutrophils from inducing microbicidal activity in macrophages. Inflammatory neutrophils from mutant pallid mice were defective in the spontaneous release of NE, failed to induce microbicidal activity in wild-type macrophages, and failed to reduce parasite loads upon transfer in vivo. Conversely, purified NE activated macrophages and induced microbicidal activity dependent on secretion of TNF-alpha. Induction of macrophage microbicidal activity by either neutrophils or purified NE required TLR4 expression by macrophages. Injection of purified NE shortly after infection in vivo reduced the burden of L. major in draining lymph nodes of TLR4-sufficient, but not TLR4-deficient mice. These results indicate that NE plays a previously unrecognized protective role in host responses to L. major infection.

  5. Nutrient resorption from seagrass leaves

    NARCIS (Netherlands)

    Stapel, J.; Hemminga, M.A.

    1997-01-01

    The resorption of nutrients (C, N and P) from senescent leaves of six seagrass species from nine different locations in tropical (Indonesia and Kenya), Mediterranean (Spain) and temperate (The Netherlands) regions has been investigated. Resorption was quantitatively assessed by calculating the diffe

  6. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Energy Technology Data Exchange (ETDEWEB)

    Aldossari, Abdullah A.; Shannahan, Jonathan H. [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States); Podila, Ramakrishna [Clemson University, Department of Physics and Astronomy (United States); Brown, Jared M., E-mail: jared.brown@ucdenver.edu [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States)

    2015-07-15

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf-α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  7. Polyoxygenated Cholesterol Ester Hydroperoxide Activates TLR4 and SYK Dependent Signaling in Macrophages

    Science.gov (United States)

    Choi, Soo-Ho; Yin, Huiyong; Ravandi, Amir; Armando, Aaron; Dumlao, Darren; Kim, Jungsu; Almazan, Felicidad; Taylor, Angela M.; McNamara, Coleen A.; Tsimikas, Sotirios; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography – tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis. PMID:24376657

  8. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages.

    Directory of Open Access Journals (Sweden)

    Soo-Ho Choi

    Full Text Available Oxidation of low-density lipoprotein (LDL is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography - tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis.

  9. Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity.

    Directory of Open Access Journals (Sweden)

    Mariana Cabanel

    Full Text Available Inflammatory chronic pathologies are complex processes characterized by an imbalance between the resolution of the inflammatory phase and the establishment of tissue repair. The main players in these inflammatory pathologies are bone marrow derived monocytes (BMDMs. However, how monocyte differentiation is modulated to give rise to specific macrophage subpopulations (M1 or M2 that may either maintain the chronic inflammatory process or lead to wound healing is still unclear. Considering that inhibitors of Histone Deacetylase (HDAC have an anti-inflammatory activity, we asked whether this enzyme would play a role on monocyte differentiation into M1 or M2 phenotype and in the cell shape transition that follows. We then induced murine bone marrow progenitors into monocyte/macrophage differentiation pathway using media containing GM-CSF and the HDAC blocker, Trichostatin A (TSA. We found that the pharmacological inhibition of HDAC activity led to a shape transition from the typical macrophage pancake-like shape into an elongated morphology, which was correlated to a mixed M1/M2 profile of cytokine and chemokine secretion. Our results present, for the first time, that HDAC activity acts as a regulator of macrophage differentiation in the absence of lymphocyte stimuli. We propose that HDAC activity down regulates macrophage plasticity favoring the pro-inflammatory phenotype.

  10. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    Science.gov (United States)

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Immunostimulatory activity of polysaccharides isolated from Caulerpa lentillifera on macrophage cells.

    Science.gov (United States)

    Maeda, Reiko; Ida, Tomoaki; Ihara, Hideshi; Sakamoto, Tatsuji

    2012-01-01

    Polysaccharides were extracted from Caulerpa lentillifera by treating with water and then purified by size-exclusion chromatography. The purified polysaccharides, termed SP1, were found to be sulfated xylogalactans with a molecular mass of more than 100 kDa. Adding SP1 to murine macrophage RAW 264.7 cells increased the production of nitric oxide (NO) in a dose-dependent manner. NO was found by immunoblotting and RT-PCR analyses to be synthesized by an inducible NO synthase. SP1 caused the degradation of IκB-α and the nuclear translocation of nuclear factor (NF)-κB subunit p65 in macrophage cells. SP1 also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results demonstrate that SP1 activated macrophage cells via both the NF-κB and p38 MAPK signaling pathways. Moreover, SP1 increased the expression of various genes encoding cytokines, and the phagocytic activity of macrophage cells. These combined results show that SP1 immunostimulated the activity of macrophage cells.

  12. Aging Enhances Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Up-Regulating Classical Activation Pathways

    Science.gov (United States)

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-01-01

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection is central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 mo) and aged (14–15 mo) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in macrophage recruitment into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to LPS. Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in proteins linked to immune cell pathways under both basal conditions and following LPS activation. Immune pathways up-regulated in macrophages isolated from aged mice include proteins critical to formation of the immunoproteasome. Detection of these latter proteins are dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases many proteins involved in immune cell function in aged Balb/c mice. Collectively these results indicate that macrophages isolated from

  13. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages

    Science.gov (United States)

    Sun, Li; Wang, Xu; Zhou, Yu; Zhou, Run-Hong; Ho, Wen-Zhe; Li, Jie-Liang

    2017-01-01

    Human brain microvascular endothelial cells (HBMECs), the major cell type in the blood-brain barrier (BBB), play a key role in maintaining brain homeostasis. However, their role in the BBB innate immunity against HIV invasion of the central nervous system (CNS) remains to be determined. Our early work showed that TLR3 signaling of HBMECs could produce the antiviral factors that inhibit HIV replication in macrophages. The present study examined whether exosomes from TLR3-activated HBMECs mediate the intercellular transfer of antiviral factors to macrophages. Primary human macrophages could take up exosomes from TLR3-activated HBMECs. HBMECs-derived exosomes contained multiple antiviral factors, including several key IFN-stimulated genes (ISGs; ISG15, ISG56, and Mx2) at mRNA and protein levels. The depletion of exosomes from TLR3-activated HBMECs culture supernatant diminished HBMECs-mediated anti-HIV activity in macrophages. In conclusion, we demonstrate that exosomes shed by HBMECs are able to transport the antiviral molecules to macrophages. This finding suggests the possibility that HIV nonpermissive BBB cells (HBMECs) can help to restore the antiviral state in HIV-infected macrophages, which may be a defense mechanism against HIV neuroinvasion. PMID:27496004

  14. Platelet-activating factor increases reactive oxygen species-mediated microbicidal activity of human macrophages infected with Leishmania (Viannia) braziliensis.

    Science.gov (United States)

    Borges, Arissa Felipe; Morato, Camila Imai; Gomes, Rodrigo Saar; Dorta, Miriam Leandro; de Oliveira, Milton Adriano Pelli; Ribeiro-Dias, Fátima

    2017-09-29

    Platelet-activating factor (PAF) is produced by macrophages during inflammation and infections. We evaluated whether PAF is able to modulate the infection of human macrophages by Leishmania braziliensis, the main Leishmania sp. in Brazil. Monocyte-derived macrophages were incubated with promastigote forms in absence or presence of exogenous PAF. We observed that the treatment of macrophages with low concentrations of PAF prior to infection increased the phagocytosis of L. braziliensis. More importantly, exogenous PAF reduced the parasitism when it was added before, during or after infection. In addition, treatment with a PAF antagonist (PCA 4248) resulted in a significant increase of macrophage infection in a concentration-dependent manner, suggesting that endogenous PAF is important to control L. braziliensis infection. Mechanistically, while exogenous PAF increased production of reactive oxygen species (ROS) treatment with PCA 4248 reduced oxidative burst during L. braziliensis infection. The microbicidal effects of exogenous PAF were abolished when macrophages were treated with apocynin, an NADPH oxidase inhibitor. The data show that PAF promotes the production of ROS induced by L. braziliensis, suggesting that this lipid mediator may be relevant to control L. braziliensis infection in human macrophages. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. [Multi-organ failure as first clinical sign of macrophage activation syndrome in childhood Still's disease].

    Science.gov (United States)

    López-Sánchez, M; Rubio-López, I; Obeso-González, T; Teja-Barbero, J L; Santidrián-Miguel, J P; Peiro-Callizo, E

    2010-10-01

    Macrophage activation syndrome is a form of secondary haemophagocytic lymphohistiocytosis seen in the context of rheumatic diseases. It is seen most frequently in association with systemic onset juvenile arthritis or childhood Still's disease. Hemophagocytosis is part of a sepsis-like clinical syndrome caused by hypercytokinemia due to a highly stimulated but ineffective immune response. Coagulopathy and hemorrhages, decreased white cell count, elevated levels of aspartate aminotransferase, fever, rash, hepatosplenomegaly and central nervous system dysfunction are some of diagnostic criteria of macrophage activation syndrome, but it is very difficult to diagnose due to the lack of specific clinical signs. We report a 8-year-old child who was admitted to the ICU with lethargy, fever, acute respiratory failure, coagulopathy, metabolic acidosis and multiorgan failure. Septic shock was suspected, but he was diagnosed with macrophage activation syndrome and treated with corticosteroids and intravenous immunoglobulin and later discharged from the ICU.

  16. Contribution of macrophages to proteolysis and plasmin activity in ewe bulk milk.

    Science.gov (United States)

    Caroprese, M; Marzano, A; Schena, L; Marino, R; Santillo, A; Albenzio, M

    2007-06-01

    A total of 225 bulk sheep milk samples were collected from 5 intensively managed flocks during early, mid, and late lactation to assess the contribution of macrophages to the regulation of the plasmin-plasminogen system. Samples were analyzed for composition, somatic cell counts, milk renneting characteristics, and for plasmin (PL), plasminogen (PG), and plasminogen activators (PA) activities. Isolation of macrophages from milk was performed using a magnetic positive separation and mouse antiovine macrophage antibody; separated cells were lysed by several freeze-thaw cycles, and activity of urokinase PA (u-PA) was determined. Plasmin activity decreased during lactation (42.06 +/- 0.66, early; 31.29 +/- 0.66, mid; 28.19 +/- 0.66 U/mL, late). The reduction in PL activity recorded in the mid and late lactation milk matched the increase in PG:PL ratio. The activity of PA increased throughout lactation; the highest value being recorded in the late lactation milk (260.20 +/- 8.66 U/mL). Counts of isolated and concentrated macrophages were higher in early and mid lactation milk (3.89 +/- 0.08 and 3.98 +/- 0.08 log10 cells/mL, respectively) than in late lactation milk (3.42 +/- 0.08 log10 cells/mL). Stage of lactation did not influence the activity of u-PA detected in isolated macrophages. The activity of u-PA associated with isolated milk macrophages only minimally contributed to total PA activity detected in milk. Proteolytic enzymes, associated with isolated macrophages, act on alpha-casein hydrolysis, as shown by urea-PAGE electrophoresis analysis. Somatic cell counts did not exceed 600,000 cells/mL, and this threshold can be considered a good index of health status of the flock and of the ability of milk to being processed. Our results lend support to the hypothesis that macrophages in ewe bulk milk from healthy flocks only slightly contribute to the activation of the PL-PG system.

  17. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  18. Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

    Directory of Open Access Journals (Sweden)

    Andrade Marcelle RM

    2012-08-01

    Full Text Available Abstract Background Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1, or IL-10, inducing anti-inflammatory type-2 cells (M2. Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR and arginase-1 (Arg-1. Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate

  19. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages.

    Directory of Open Access Journals (Sweden)

    Wai Nam Liu

    Full Text Available This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

  20. Activation of Macrophages by Lipopolysaccharide for Assessing the Immunomodulatory Property of Biomaterials.

    Science.gov (United States)

    Han, Shengwei; Chen, Zetao; Han, Pingping; Hu, Qingang; Xiao, Yin

    2017-03-24

    The design paradigm of biomaterials has been changed to ones with favorable immunomodulatory effects, indicating the importance of accurately evaluating the immunomodulatory properties of biomaterials. Among all the immune cells macrophages receive most attention, due to their plasticity and multiple roles in the materials and host interactions, and thereby become model immune cells for the evaluation of immunomodulatory properties of biomaterials in many studies. Lipopolysaccharides (LPS), a polysaccharide in the outer membrane of Gram-negative bacteria, elicit strong immune responses, which was often applied to activate macrophages, resulting in a proinflammatory M1 phenotype, and the release of proinflammatory cytokines, including tumor necrosis factor alpha (TNFα), interleukin (IL)-1, and IL-6. However, there is no consensus on how to apply macrophages and LPS to detect the immunomodulatory properties of biomaterials. The lack of scientific consideration of this issue has led to some inaccurate and insufficient conclusions on the immunomodulatory properties of biomaterials, and inconsistences between different research groups. In this study, we carried out a systemic study to investigate the stimulatory effects of LPS with different times, doses, and conditions on the activation of macrophages. An experimental pathway was proposed accordingly for the activation of macrophages using LPS for assessing the immunomodulatory property of biomaterials.

  1. Activation of Alveolar Macrophages after Plutonium Oxide Inhalation in Rats: Involvement in the Early Inflammatory Response

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meeren, A.; Tourdes, F.; Gremy, O.; Grillon, G.; Abram, M.C.; Poncy, J.L.; Griffiths, N. [CEA, DSV, DRR, SRCA, Centre DAM Ile de France, F-91297 Bruyeres Le Chatel, Arpajon (France)

    2008-07-01

    Alveolar macrophages play an important role in the distribution, clearance and inflammatory reactions after particle inhalation, which may influence long-term events such as fibrosis and tumorigenesis. The objectives of the present study were to investigate the early inflammatory events after plutonium oxide inhalation in rats and involvement of alveolar macrophages. Lung changes were studied from 3 days to 3 months after inhalation of PuO{sub 2} or different isotopic compositions (70% or 97% {sup 239}Pu) and initial lung deposits (range 2.1 to 43.4 kBq/rat). Analyses of bronchoalveolar lavages showed early increases in the numbers of granulocytes, lymphocytes and multi-nucleated macrophages. The activation of macrophages was evaluated ex vivo by measurement of inflammatory mediator levels in culture supernatants. TNF-alpha and chemokine MCP-1, MIP-2 and CINC-1 production was elevated from 7 days after inhalation and remained so up to 3 months. In contrast, IL-1 beta, IL-6 and IL-10 production was unchanged. At 6 weeks, pulmonary macrophage numbers and activation state were increased as observed from an immunohistochemistry study of lung sections with anti-ED1. Similarly, histological analyses of lung sections also showed evidence of inflammatory responses. In conclusion, our results indicate early inflammatory changes in the lungs of PuO{sub 2}-contaminated animals and the involvement of macrophages in this process. A dose-effect relationship was observed between the amount of radionuclide inhaled or retained at the time of analysis and inflammatory mediator production by alveolar macrophages 14 days after exposure. For similar initial lung deposits, the inflammatory manifestation appears higher for 97% {sup 239}Pu than for 70% {sup 239}Pu. (authors)

  2. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance.

    Science.gov (United States)

    Ye, Lifang; Liang, Shu; Guo, Chao; Yu, Xizhong; Zhao, Juan; Zhang, Hao; Shang, Wenbin

    2016-12-01

    Insulin resistance is associated with a chronic inflammation in adipose tissue which is propagated by a phenotypic switch in adipose tissue macrophage (ATM) polarization. This study aimed to investigate whether berberine, the major alkaloid of rhizoma coptidis, can improve insulin resistance through inhibiting ATM activation and inflammatory response in adipose tissue. High-fat-diet induced obese mice were administered oral with berberine (50mg/kg/day) for 14days. ATMs were analysed using FACS and insulin resistance was evaluated. Expressions of pro-inflammatory cytokines and activation of inflammatory pathways were detected. The chemotaxis of macrophages was measured. Glucose consumption and insulin signalling of adipocytes were examined. Berberine significantly decreased F4/80(+)/CD11c(+)/CD206(-) cells in the stromal vascular fraction from adipose tissue and improved glucose tolerance in obsess mice. In addition, berberine reduced the elevated levels of serum TNF-α, IL-6 and MCP-1 and the expressions of TNF-α, IL-6 and MCP-1 and attenuated the phosphorylation of JNK and IKKβ and the expression of NF-κB p65 in the obese adipose tissue, Raw264.7 macrophages and 3T3-L1 adipocytes, respectively. The phosphorylation of IRS-1 (Ser307) was inhibited by berberine in adipose tissue and cultured adipocytes. The phosphorylation of AKT (Ser473) was increased in berberine-treated adipose tissue. Conditioned medium from adipocytes treated with berberine reduced the number of infiltrated macrophages. Berberine partly restored the impaired glucose consumption and the activation of IRS-1 (Ser307) in adipocytes induced by the activation of macrophages. Our findings imply that berberine improves insulin resistance by inhibiting M1 macrophage activation in adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages

    Directory of Open Access Journals (Sweden)

    Pillon Nicolas J

    2012-10-01

    Full Text Available Abstract Obesity is associated with chronic low-grade inflammation. Within adipose tissue of mice fed a high fat diet, resident and infiltrating macrophages assume a pro-inflammatory phenotype characterized by the production of cytokines which in turn impact on the surrounding tissue. However, inflammation is not restricted to adipose tissue and high fat-feeding is responsible for a significant increase in pro-inflammatory cytokine expression in muscle. Although skeletal muscle is the major disposer of dietary glucose and a major determinant of glycemia, the origin and consequence of muscle inflammation in the development of insulin resistance are poorly understood. We used a cell culture approach to investigate the vectorial crosstalk between muscle cells and macrophages upon exposure to physiological, low levels of saturated and unsaturated fatty acids. Inflammatory pathway activation and cytokine expression were analyzed in L6 muscle cells expressing myc-tagged GLUT4 (L6GLUT4myc exposed to 0.2 mM palmitate or palmitoleate. Conditioned media thereof, free of fatty acids, were then tested for their ability to activate RAW264.7 macrophages. Palmitate -but not palmitoleate- induced IL-6, TNFα and CCL2 expression in muscle cells, through activation of the NF-κB pathway. Palmitate (0.2 mM alone did not induce insulin resistance in muscle cells, yet conditioned media from palmitate-challenged muscle cells selectively activated macrophages towards a pro-inflammatory phenotype. These results demonstrate that low concentrations of palmitate activate autonomous inflammation in muscle cells to release factors that turn macrophages pro-inflammatory. We hypothesize that saturated fat-induced, low-grade muscle cell inflammation may trigger resident skeletal muscle macrophage polarization, possibly contributing to insulin resistance in vivo.

  4. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    Science.gov (United States)

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  5. Outer Membrane Vesicles Prime and Activate Macrophage Inflammasomes and Cytokine Secretion In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Jessica D. Cecil

    2017-08-01

    Full Text Available Outer membrane vesicles (OMVs are proteoliposomes blebbed from the surface of Gram-negative bacteria. Chronic periodontitis is associated with an increase in subgingival plaque of Gram-negative bacteria, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. In this study, we investigated the immune-modulatory effects of P. gingivalis, T. denticola, and T. forsythia OMVs on monocytes and differentiated macrophages. All of the bacterial OMVs were phagocytosed by monocytes, M(naïve and M(IFNγ macrophages in a dose-dependent manner. They also induced NF-κB activation and increased TNFα, IL-8, and IL-1β cytokine secretion. P. gingivalis OMVs were also found to induce anti-inflammatory IL-10 secretion. Although unprimed monocytes and macrophages were resistant to OMV-induced cell death, lipopolysaccharide or OMV priming resulted in a significantly reduced cell viability. P. gingivalis, T. denticola, and T. forsythia OMVs all activated inflammasome complexes, as monitored by IL-1β secretion and ASC speck formation. ASC was critical for OMV-induced inflammasome formation, while AIM2−/− and Caspase-1−/− cells had significantly reduced inflammasome formation and NLRP3−/− cells exhibited a slight reduction. OMVs were also found to provide both priming and activation of the inflammasome complex. High-resolution microscopy and flow cytometry showed that P. gingivalis OMVs primed and activated macrophage inflammasomes in vivo with 80% of macrophages exhibiting inflammasome complex formation. In conclusion, periodontal pathogen OMVs were found to have significant immunomodulatory effects upon monocytes and macrophages and should therefore influence pro-inflammatory host responses associated with disease.

  6. Outer Membrane Vesicles Prime and Activate Macrophage Inflammasomes and Cytokine Secretion In Vitro and In Vivo

    Science.gov (United States)

    Cecil, Jessica D.; O’Brien-Simpson, Neil M.; Lenzo, Jason C.; Holden, James A.; Singleton, William; Perez-Gonzalez, Alexis; Mansell, Ashley; Reynolds, Eric C.

    2017-01-01

    Outer membrane vesicles (OMVs) are proteoliposomes blebbed from the surface of Gram-negative bacteria. Chronic periodontitis is associated with an increase in subgingival plaque of Gram-negative bacteria, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. In this study, we investigated the immune-modulatory effects of P. gingivalis, T. denticola, and T. forsythia OMVs on monocytes and differentiated macrophages. All of the bacterial OMVs were phagocytosed by monocytes, M(naïve) and M(IFNγ) macrophages in a dose-dependent manner. They also induced NF-κB activation and increased TNFα, IL-8, and IL-1β cytokine secretion. P. gingivalis OMVs were also found to induce anti-inflammatory IL-10 secretion. Although unprimed monocytes and macrophages were resistant to OMV-induced cell death, lipopolysaccharide or OMV priming resulted in a significantly reduced cell viability. P. gingivalis, T. denticola, and T. forsythia OMVs all activated inflammasome complexes, as monitored by IL-1β secretion and ASC speck formation. ASC was critical for OMV-induced inflammasome formation, while AIM2−/− and Caspase-1−/− cells had significantly reduced inflammasome formation and NLRP3−/− cells exhibited a slight reduction. OMVs were also found to provide both priming and activation of the inflammasome complex. High-resolution microscopy and flow cytometry showed that P. gingivalis OMVs primed and activated macrophage inflammasomes in vivo with 80% of macrophages exhibiting inflammasome complex formation. In conclusion, periodontal pathogen OMVs were found to have significant immunomodulatory effects upon monocytes and macrophages and should therefore influence pro-inflammatory host responses associated with disease. PMID:28890719

  7. The Interaction of Adrenomedullin and Macrophages Induces Ovarian Cancer Cell Migration via Activation of RhoA Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaoyan Pang

    2013-01-01

    Full Text Available Tumor-associated macrophages (TAMs are correlated with poor prognosis in many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer cell migration and invasion remains unknown. This study was aimed to examine the function of adrenomedullin (ADM in macrophage polarization and their further effects on the migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA (siRNA specific for ADM expression were treated to macrophages and EOC cell line HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage phenotype and cytokine production. The migration ability and cytoskeleton rearrangement of ovarian cancer cells were determined by Transwell migration assay and phalloidin staining. Western blot was performed to evaluate the activity status of signaling molecules in the process of ovarian cancer cell migration. The results showed that ADM induced macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The expression of RhoA and its downstream effector, cofilin, were upregulated in macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize macrophages similar to TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of RhoA signaling pathway in vitro.

  8. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages

    Science.gov (United States)

    Donnelly, Sheila; Stack, Colin M.; O'Neill, Sandra M.; Sayed, Ahmed A.; Williams, David L.; Dalton, John P.

    2008-01-01

    During helminth infections, alternatively activated macrophages (AAMacs) are key to promoting Th2 responses and suppressing Th1-driven inflammatory pathology. Th2 cytokines IL-4 and/or IL-13 are believed to be important in the induction and activation of AAMacs. Using murine models for the helminth infections caused by Fasciola hepatica (Fh) and Schistosoma mansoni (Sm), we show that a secreted antioxidant, peroxiredoxin (Prx), induces alternative activation of macrophages. These activated, Ym1-expressing macrophages enhanced the secretion of IL-4, IL-5, and IL-13 from naive CD4+ T cells. Administration of recombinant FhPrx and SmPrx to wild-type and IL-4−/− and IL-13−/− mice induced the production of AAMacs. In addition, Prx stimulated the expression of markers of AAMacs (particularly, Ym1) in vitro, and therefore can act independently of IL-4/IL-13 signaling. The immunomodulatory property of Prx is not due to its antioxidant activity, as an inactive recombinant variant with active site Cys residues replaced by Gly could also induce AAMacs and Th2 responses. Immunization of mice with recombinant Prx or passive transfer of anti-Prx antibodies prior to infection with Fh not only blocked the induction of AAMacs but also the development of parasite-specific Th2 responses. We propose that Prx activates macrophages as an initial step in the induction of Th2 responses by helminth parasites and is thereby a novel pathogen-associated molecular pattern.—Donnelly, S., Stack, C. M., O'Neill, S. M., Sayed, A. A., Williams, D. L., Dalton, J. P. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. PMID:18708590

  9. Inhibition of Cholesterol Esterification Influences Cytokine Exspression in Lypopolisaccharide-activated P388D1 Macrophages

    Directory of Open Access Journals (Sweden)

    Rosa Rita Bonatesta

    2007-01-01

    Full Text Available Several in vivo and in vitro studies have demonstrated the involvement of infectious agents in the development of atherosclerosis. However, the mechanisms by which micro-organisms induce and/or aggravate atherosclerosis, are so far unclear. Accumulation of cholesterol esters and lipid laden cell formation are hallmark of the atherogenesis, however, the possible relationship between cholesterol esterification and the signal-transducing component of LPS recognition complex inducing cytokine secretion has not been yet investigated. In the present study, we investigated the effect of mevinolin, the ACAT inhibitor, Sandoz 58035, and plasma from statin-treated hypercholesterolemic patients on cholesterol metabolism and cytokine expression in LPS activated P388D1 macrophages. In P388D1 macrophages cholesterol synthesis and uptake, as well as cholesterol ester synthesis, were unchanged following LPS-activation. When cells were grown in presence of serum from patients under statin therapy, cholesterol esterification was lower compared to cells grown with plasma from healthy subjects, independently from the type of statin used. This effect was accompanied by inhibition of IL-1β expression in LPS activated cells. The ACAT inhibitor, Sandoz 58035, which completely blocked cholesterol esterification in normal and LPS-activated macrophages, prevented IL-1β and IL-6 over-expression in LPS activated cells. Although preliminary, these data point to a possible relationship between cholesterol esterification and cytokine production in macrophages, prospecting new possible mechanisms by which microbial or inflammatory agents may induce and/or accelerate the atherosclerotic process.

  10. Macrophage activation markers predict mortality in patients with liver cirrhosis without or with acute-on-chronic liver failure (ACLF)

    DEFF Research Database (Denmark)

    Grønbæk, Henning; Rødgaard-Hansen, Sidsel; Aagaard, Niels Kristian

    2016-01-01

    BACKGROUND & AIMS: Activation of liver macrophages plays a key role in liver and systemic inflammation and may be involved in development and prognosis of acute-on-chronic liver failure (ACLF). We therefore measured the circulating macrophage activation markers soluble sCD163 and mannose receptor...

  11. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure.

    Science.gov (United States)

    Jessop, Forrest; Hamilton, Raymond F; Rhoderick, Joseph F; Shaw, Pamela K; Holian, Andrij

    2016-10-15

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis.

  12. Contribution of inflammatory cytokine release to activation of resident peritoneal macrophages after in vivo low-dose {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ibuki, Yuko; Goto, Rensuke [Shizuoka Univ. (Japan). Graduate School of Nutritional and Environmental Sciences

    1999-09-01

    The activation mechanism of resident peritoneal macrophages by in vivo {gamma}-irradiation was investigated. The function of macrophages as accessory cells in concanavalin A-induced proliferation of spleno-lymphocytes (accessory function) was enhanced 4 h after a low-dose irradiation (4 cGy) in vivo, but not in vitro, indicating that low-dose irradiation acts indirectly on the activation of macrophages. Because we expected that macrophages were activated by the recognition of substances damaged by in vivo irradiation, we co-cultured macrophages with oxidized erythrocyte-ghosts. No change was found in their accessory function. The production of inflammatory cytokines, interleukin-1{beta} (IL-1{beta}) and interferon-{gamma} (IFN-{gamma}), in the supernatant of co-cultures of spleno-lymphocytes and macrophages was determined by an ELISA. Production of both increased in the presence of in vivo irradiated macrophages. Furthermore, IL-1{beta} production from in vivo-irradiated macrophages treated with recombinant IFN-{gamma} also was enhanced. The mRNA expression of the cytokines released from macrophages and lymphocytes was determined by RT-PCR. Increased IL-1{beta}mRNA expression were found in both in vivo- and in vitro-irradiated macrophages. In vivo irradiation also enhanced the expression of IFN-{gamma}mRNA in lymphocytes, whereas there was no change after in vitro irradiation. On the basis of these observations, we propose that the activation of macrophages is caused by interaction with neighboring cells, such as lymphocytes, and by paracrine induction of certain cytokines which is initiated by the small amount of IL-1{beta} released by irradiated macrophages. (author)

  13. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, H.K.; Hastings, R.C.

    1985-05-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of /sup 14/C-amino acid mixture, (/sup 14/C)leucine, (/sup 14/C)uridine, and carrier-free /sup 32/P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli.

  14. Immunoregulation by macrophages II. Separation of mouse peritoneal macrophages having tumoricidal and bactericidal activities and those secreting PGE and interleukin I

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, K.E.; Cahill, J.M.

    1983-06-01

    Macrophage subpopulations having bactericidal or tumoricidal activities and secreting interleukin I (IL1) or prostaglandin E (PGE) were identified through primary or secondary infection with Salmonella enteritidis and separated by sedimentation velocity. Bactericidal activity was measured by (3H)-thymidine release from Listeria monocytogenes and tumoricidal activity by 51Cr-release from C-4 fibrosarcoma or P815 mastocytoma cells. Macrophages with bactericidal activity were distinguished from those with tumoricidal activity a) during secondary infection when cytolytic activity occurred only at days 1-4 post injection and bactericidal activity remained high throughout and b) after sedimentation velocity separation. Cytolysis was consistently greatest among adherent cells of low sedimentation velocity, whereas cells with bactericidal activity increased in size during the infection. Tumour cytostasis (inhibition and promotion of (3H)-thymidine uptake) differed from cytolysis in that the former was more prolonged during infection and was also detected among large cells. Secretion of immunoregulatory molecules PGE and IL1 occurred maximally among different macrophage subpopulations separated by sedimentation velocity and depending on the type of stimulus used in vitro. There was an inverse correlation between IL1 production and PGE production after stimulation with C3-zymosan or lipopolysaccharide (LPS). The development of immunity during infection may therefore be dependent upon the relative proportions of effector and regulatory macrophage subpopulations and the selective effects of environmental stimuli on these functions.

  15. Exploring the activated adipogenic niche: interactions of macrophages and adipocyte progenitors.

    Science.gov (United States)

    Lee, Yun-Hee; Thacker, Robert I; Hall, Brian Eric; Kong, Raymond; Granneman, James G

    2014-01-01

    Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue.

  16. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang

    2014-01-01

    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  17. An evaluation of root resorption after orthodontic treatment.

    Science.gov (United States)

    Thomas, E; Evans, W G; Becker, P

    2012-08-01

    Root resorption is commonly seen, albeit in varying degrees, in cases that have been treated orthodontically. In this retrospective study the objective was to compare the amount of root resorption observed after active orthodontic treatment had been completed with one of three different appliance systems, namely, Tip Edge, Modified Edgewise and Damon. The sample consisted of pre and post-treatment cephalograms of sixty eight orthodontic cases. Root resorption of the maxillary central incisor was assessed from pre- and post- treatment lateral ce phalograms using two methods. In the first, overall tooth length from the incisal edge to the apex was measured on both pre and post-treatment lateral cephalograms and root resorption was recorded as an actual millimetre loss of tooth length. There was a significant upward linear trend (p = 0.052) for root resorption from the Tip Edge Group to the Damon Group. In the second method root resorption was visually evaluated by using the five grade ordinal scale of Levander and Malmgren (1988). It was found that the majorty of cases in the sample came under Grade 1 and Grade 2 category of root resorption. Statistical evaluation tested the extent of agree ment in this study between visual measurements and actual measurements and demonstrated a significant association (p = 0.018) between the methods.

  18. Activated Macrophages Destroy Intracellular Leishmania Major Amastigotes by an l-Arginine-Dependent Killing Mechanism

    Science.gov (United States)

    1990-01-01

    conversion of site from one that is supportive of replication, to one that the sandfly -adapted promastigote to the amastigote form is hostile to...Inaddiion th cometiivein-room temperature for 5 min. Absorbance at 543 om was measured.activated macrophages. In addition, t e p titi e tn- No2- was qu

  19. Protease activated receptor-1 regulates macrophage-mediated cellular senescence : a risk for idiopathic pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; Rezaee, Farhad; Waasdorp, Maaike; Shi, Kun; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive disease in part resulting from premature or mature cellular aging. Protease-activated receptor-1 (PAR-1) recently emerged as a critical component in the context of fibrotic lung diseases. Therefore, we aimed to study the role of macrophages in PAR

  20. Macrophage activity assessed by soluble CD163 in early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Greisen, Stinne Ravn; Møller, Holger Jon; Stengaard-Pedersen, Kristian;

    2015-01-01

    OBJECTIVES: Rheumatoid arthritis (RA) is a chronic autoimmune disease where TNF-α is a central mediator of inflammation, and is cleaved from the cell surface by TACE/ADAM17. This metalloproteinase is also responsible for the release of soluble (s) CD163. Soluble CD163 reflects macrophage activation...

  1. Activation of macrophages by silicones: phenotype and production of oxidant metabolites

    Directory of Open Access Journals (Sweden)

    Sodero Natalia

    2002-07-01

    Full Text Available Abstract Background The effect of silicones on the immune function is not fully characterized. In clinical and experimental studies, immune alterations associated with silicone gel seem to be related to macrophage activation. In this work we examined in vivo, phenotypic and functional changes on peritoneal macrophages early (24 h or 48 h and late (45 days after the intraperitoneal (i.p. injection of dimethylpolysiloxane (DMPS (silicone. We studied the expression of adhesion and co-stimulatory molecules and both the spontaneous and the stimulated production of reactive oxygen intermediates and nitric oxide (NO. Results The results presented here demonstrate that the fluid compound DMPS induced a persistent cell recruitment at the site of the injection. Besides, cell activation was still evident 45 days after the silicone injection: activated macrophages exhibited an increased expression of adhesion (CD54 and CD44 and co-stimulatory molecules (CD86 and an enhanced production of oxidant metabolites and NO. Conclusions Silicones induced a persistent recruitment of leukocytes at the site of the injection and macrophage activation was still evident 45 days after the injection.

  2. Vagus Nerve Activity Augments Intestinal Macrophage Phagocytosis via Nicotinic Acetylcholine Receptor alpha 4 beta 2

    NARCIS (Netherlands)

    van der Zanden, Esmerij P.; Snoek, Susanne A.; Heinsbroek, Sigrid E.; Stanisor, Oana I.; Verseijden, Caroline; Boeckxstaens, Guy E.; Peppelenbosch, Maikel P.; Greaves, David R.; Gordon, Siamon; de Jonge, Wouter J.

    2009-01-01

    BACKGROUND & AIMS: The vagus nerve negatively regulates macrophage cytokine production via the release of acetylcholine (ACh) and activation of nicotinic acetylcholine receptors (nAChR). In various models of intestinal inflammation, vagus nerve efferent stimulation ameliorates disease. Given the act

  3. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    Energy Technology Data Exchange (ETDEWEB)

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  4. Modification of matrix metalloproteinase activities from alveolar macrophages during chronic coal mine dust exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Oberson, D.; Wastiaux, A.; Lefevre, J.P.; Sebastien, P.; Lafuma, C. [Centre National de la Recherche Scientifique (UA-CNRS), Creteil (France). Lab. de Biochimie du Tissu Conjunctif

    1994-12-31

    Macrophage derived products have been implicated in pneumoconiosis induced by chronic coal dust inhalation. To assess the role of macrophages during chronic inflammatory processes in relation to pneumoconiosis, their capacity to secrete matrix metalloproteinase (MMP) activities was studied. Two groups of rats were exposed to 100 or 200 mg m{sup -3}, 6 h per day, 5 days per week and sacrified at 9, 28 and 78 days of exposure, and 6 months following the end of exposure. A total of 92 kDa proform and 88 kDa active form collagenase type IV (gelatinase) were investigated in macrophage culture medium (MEM), macrophage extracts (MACs) and bronchoalveolar fluid (BAL). In parallel, net gelatinase and interstitial collagenase activities were evaluated by degradation of radiolabelled specific substrates. Pneumoconiotic lessons developed during the late dust exposure and the recovery phase and were associated with macrophage alveolitis. Results showed that chronic coal dust inhalation induced the increase of total gelatinase activities secreted into the MEM and the BAL. The net gelatinase and collagenase activities were increased in parallel in MEM whereas they appeared inhibited when secreted in the BAL whatever the dust exposure time. These results suggest that chronic coal mine dust exposure is capable of inducing chronic alveolar MACs activation in regard to their persistent highly increased capacity to degrade in situ extracelluar matrix components, namely collagen types IV or V. Such a deregulation associated with the acute inhibition process towards MMPs in the alveolar space, allowed the authors to propose a role of MMPs during pneumoconiosis. 17 refs., 5 figs., 1 tab.

  5. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Scott W Cousins

    Full Text Available The neovascular (wet form of age-related macular degeneration (AMD leads to vision loss due to choroidal neovascularization (CNV. Since macrophages are important in CNV development, and cytomegalovirus (CMV-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV, laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF, an outcome that requires active virus replication.

  6. Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway.

    Directory of Open Access Journals (Sweden)

    Guido Carpino

    Full Text Available Non-alcoholic fatty liver disease is one of the most important causes of liver-related morbidity in children. In non-alcoholic fatty liver disease, the activation of liver resident macrophage pool is a central event in the progression of liver injury. The aims of the present study were to evaluate the polarization of liver macrophages and the possible role of Wnt3a production by macrophages in hepatic progenitor cell response in the progression of pediatric non-alcoholic fatty liver disease. 32 children with biopsy-proven non-alcoholic fatty liver disease were included. 20 out of 32 patients were treated with docosahexaenoic acid for 18 months and biopsies at the baseline and after 18 months were included. Hepatic progenitor cell activation, macrophage subsets and Wnt/β-catenin pathway were evaluated by immunohistochemistry and immunofluorescence. Our results indicated that in pediatric non-alcoholic fatty liver disease, pro-inflammatory macrophages were the predominant subset. Macrophage polarization was correlated with Non-alcoholic fatty liver disease Activity Score, ductular reaction, and portal fibrosis; docosahexaenoic acid treatment determined a macrophage polarization towards an anti-inflammatory phenotype in correlation with the reduction of serum inflammatory cytokines, with increased macrophage apoptosis, and with the up-regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was correlated with β-catenin phosphorylation in hepatic progenitor cells and signs of commitment towards hepatocyte fate. In conclusion, macrophage polarization seems to have a key role in the progression of pediatric non-alcoholic fatty liver disease; the modulation of macrophage polarization could drive hepatic progenitor cell response by Wnt3a production.

  7. Dietary Zinc Reduces Osteoclast Resorption Activities and Increases Markers of Osteoblast Differentiation, Matrix Maturation, and Mineralization in the Long Bones of Growing Rats

    Science.gov (United States)

    The nutritional influence of zinc (Zn) on markers of bone extracellular matrix (ECM) resorption and mineralization was investigated in growing rats. Thirty male weanling rats were randomly assigned to consume AIN-93G based diets containing 2.5, 5, 7.5, 15, or 30 µg Zn/g diet for 24 d. Femur Zn incre...

  8. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation.

    Science.gov (United States)

    Shiraishi, Daisuke; Fujiwara, Yukio; Komohara, Yoshihiro; Mizuta, Hiroshi; Takeya, Motohiro

    2012-08-24

    It is known that glucagon-like peptide-1 (GLP-1) is a hormone secreted postprandially from the L-cells of the small intestine and regulates glucose homeostasis. GLP-1 is now used for the treatment of diabetes because of its beneficial role against insulin resistance. The GLP-1 receptor (GLP-1R) is expressed on many cell types, including macrophages, and GLP-1 suppresses the development of atherosclerosis by inhibiting macrophage function. However, there have so far been few studies that have investigated the significance of GLP-1/GLP-1R signaling in macrophage activation. In the present study, we examined the effect of GLP-1 and exenatide, a GLP-1R agonist, on human monocyte-derived macrophage (HMDM) activation. We found that GLP-1 induced signal transducer and activator of transcription 3 (STAT3) activation. Silencing of GLP-1R suppressed the GLP-1-induced STAT3 activation. In addition, alternatively activated (M2) macrophage-related molecules, such as IL-10, CD163, and CD204 in HMDM, were significantly upregulated by GLP-1. Furthermore, the co-culture of 3T3-L1 adipocytes with GLP-1-treated RAW 264.7 macrophages increased the secretion of adiponectin compared to co-culture of the 3T3-L1 adipocytes with untreated RAW 264.7 macrophages. Our results demonstrate that GLP-1 induces macrophage polarization toward the M2 phenotype, which may contribute to the protective effects of GLP-1 against diabetes and cardiovascular diseases.

  9. Mac-1 Regulates IL-13 Activity in Macrophages by Directly Interacting with IL-13Rα1.

    Science.gov (United States)

    Cao, Chunzhang; Zhao, Juanjuan; Doughty, Emily K; Migliorini, Mary; Strickland, Dudley K; Kann, Maricel G; Zhang, Li

    2015-08-28

    Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13Rα1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13Rα1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1(-/-) macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1(-/-)LDLR(-/-) mice develop significantly more foam cells than control LDLR(-/-) mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future.

  10. Mac-1 Regulates IL-13 Activity in Macrophages by Directly Interacting with IL-13Rα1*

    Science.gov (United States)

    Cao, Chunzhang; Zhao, Juanjuan; Doughty, Emily K.; Migliorini, Mary; Strickland, Dudley K.; Kann, Maricel G.; Zhang, Li

    2015-01-01

    Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13Rα1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13Rα1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1−/− macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1−/−LDLR−/− mice develop significantly more foam cells than control LDLR−/− mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future. PMID:26160172

  11. Activation of Proteinkinase ERK Mediates Induction of Macrophage MMP-12 by OxLDL

    Institute of Scientific and Technical Information of China (English)

    He Chun-yan; Zhou Xin; Li Xiao-ming; Yu Hong; Hong Jia-ling

    2004-01-01

    The present study was undertaken to investigate the effect of oxidized low density lipoprotein (oxLDL) on the expression of macrophage matrix metalloproteinase-12 (MMP-12), and the possible mechanisms. Activation of extracellular signal-regulated kinase 1/2 (ERK1/2) was detected by Western blot analysis. Enzymatic activity of MMP-12 was determined by β-casein zymogra-phy. RT-PCR analysis was used to measure the mRNA expression level of MMP-12. OxLDL-stimulated macrophages produced increased casein-degrading activities and oxLDL also significantly increased the mRNA level of MMP-12 in a dose-dependent manner. OxLDL stimulated the phosphorylation of ERK1/2 in macrophages. The use of the specific inhibitor indicated that the ERK1/2 signaling pathway was required for the induction of MMP-12. These data demonstrated that oxLDL induced MMP-12 expression in macrophages through an ERK1/2-dependent pathway.

  12. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation.

    Science.gov (United States)

    Fujiu, Katsuhito; Shibata, Munehiko; Nakayama, Yukiteru; Ogata, Fusa; Matsumoto, Sahohime; Noshita, Koji; Iwami, Shingo; Nakae, Susumu; Komuro, Issei; Nagai, Ryozo; Manabe, Ichiro

    2017-05-01

    Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell-cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6C(lo) macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic β2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6C(lo) macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.

  13. Comparison of various assays to quantitate macrophage activation by biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.M.; Nanda, S.; Altom, M.G.

    1984-01-01

    Macrophages treated with various compounds that enhance host antitumor resistance exhibit measurable changes in metabolism, function, and surface antigens. In this study, murine peptone-induced peritoneal macrophages were stimulated in vitro by bacterial lipopolysaccharide (LPS), muramyl dipeptide (MDP), and poly I.poly C. They were subsequently compared in their ability to release superoxide and act as tumoristatic and tumoricidal effector cells. Superoxide generation was assayed by the reduction of ferricytochrome C. All three compounds failed to induce significant O/sub 2/- release, unless the cells were also treated with phorbol myristate acetate (PMA). MDP was most active in potentiating the PMA response. In the tumor growth inhibition assay, cytostatic activity was comparable for all three compounds and did not exceed 32 percent. The combination of subthreshold levels of these compounds and hybridoma-derived MAF acted synergistically to induce potent cytostatic activity. In the chromium release assay, LPS and poly I.poly C rendered macrophages cytolytic for P815 target cells at concentrations greater than or equal to 1 microgram/ml. In contrast, significant cytolysis was observed with MDP only at 100 micrograms/ml. Defining precisely the effect of various biological response modifiers on several parameters of macrophage function may facilitate use of these agents in cancer therapy.

  14. Primed Activation of Macrophages by Oral Administration of Lipopolysaccharide Derived from Pantoea agglomerans.

    Science.gov (United States)

    Inagawa, Hiroyuki; Kobayashi, Yutaro; Kohchi, Chie; Zhang, Ran; Shibasaki, Yasuhiro; Soma, Gen-Ichiro

    2016-01-01

    Bacterial lipopolysaccharide (LPS) is involved in the activation of the innate immune responses on monocytes/macrophages in vitro, and by intravenous injection. Although small quantities of LPS are usually found in traditional Chinese medicines, vegetables and fruits, the mode of action of orally administered LPS is still unclear. LPS derived from Pantoea agglomerans (LPSp) was orally administered to C3H/HeN or C3H/HeJ mice ad libitum. The LPSp treatment enhanced phagocytosis by resident peritoneal macrophages of C3H/HeN mice but not of C3H/HeJ mice. This activation can be defined as primed activation because no augmentation of inflammatory cytokines production was detected. LPSp in peritoneal fluid was detected and successfully quantified. Moreover, the LPSp reduced the expression of avian reticuloendotheliosis viral oncogene-related B (RelB) in the macrophages without degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα). Orally administered LPSp can reach the peritoneum, and enhance phagocytosis via Toll-like receptor 4 signaling pathway in resident peritoneal macrophages. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Effects of chlorogenic acid,an active compound activating calcineurin,purified from Flos Lonicerae on macrophage

    Institute of Scientific and Technical Information of China (English)

    He-zhen WU; Jing LUO; Yan-xia YIN; Qun WEI

    2004-01-01

    AIM: To investigate the activation of chlorogenic acid (CHA) purified from Flos Lonicerae to calcineurin and its effects on macrophage functions in vivo and in vitro. METHODS: According to the screening results that Flos Lonicerae could activate calcineurin, the active component which could activate calcineurin was purified from Flos Lonicerae by column chromatography on silica gel and identified as CHA. The activation of CHA on calcineurin had been validated with both p-NPP and 32p-labeled RII peptide as the substrates. The clearance of charcoal particles in normal mice and the cytotoxicity of U937 to MCF-7 were used together to determine the effects of CHA on macrophage functions. RESULTS: CHA could activate calcineurin, and the concentration of CHA on maximal activating calcineurin was 282.5μmol/L. CHA administration (10 mg/kg,ig×7 d) significantly enhanced the macrophage functions in normal mice. CHA (70.6, 141.2, and 282.5μmol/L) obviously increased the cytotoxicity of U937 to MCF-7. CONCLUSION: CHA could activate calcineurin and enhance the macrophage functions in vivo and in vitro, and its functions in vivo may be realized via the signal pathways of calcineurin.

  16. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    KAUST Repository

    Roy, S.

    2015-06-27

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation.

  17. Commercial Honeybush (Cyclopia spp. Tea Extract Inhibits Osteoclast Formation and Bone Resorption in RAW264.7 Murine Macrophages—An in vitro Study

    Directory of Open Access Journals (Sweden)

    Amcois Visagie

    2015-10-01

    Full Text Available Honeybush tea, a sweet tasting caffeine-free tea that is indigenous to South Africa, is rich in bioactive compounds that may have beneficial health effects. Bone remodeling is a physiological process that involves the synthesis of bone matrix by osteoblasts and resorption of bone by osteoclasts. When resorption exceeds formation, bone remodeling can be disrupted resulting in bone diseases such as osteoporosis. Osteoclasts are multinucleated cells derived from hematopoietic precursors of monocytic lineage. These precursors fuse and differentiate into mature osteoclasts in the presence of receptor activator of NF-kB ligand (RANKL, produced by osteoblasts. In this study, the in vitro effects of an aqueous extract of fermented honeybush tea were examined on osteoclast formation and bone resorption in RAW264.7 murine macrophages. We found that commercial honeybush tea extract inhibited osteoclast formation and TRAP activity which was accompanied by reduced bone resorption and disruption of characteristic cytoskeletal elements of mature osteoclasts without cytotoxicity. Furthermore, honeybush tea extract decreased expression of key osteoclast specific genes, matrix metalloproteinase-9 (MMP-9, tartrate resistant acid phosphatase (TRAP and cathepsin K. This study demonstrates for the first time that honeybush tea may have potential anti-osteoclastogenic effects and therefore should be further explored for its beneficial effects on bone.

  18. Molecular regulation of osteoclast activity.

    Science.gov (United States)

    Bruzzaniti, Angela; Baron, Roland

    2006-06-01

    Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed.

  19. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Huang

    Full Text Available Remodelling of the extracellular matrix (ECM and cell surface by matrix metalloproteinases (MMPs is an important function of monocytes and macrophages. Recent work has emphasised the diverse roles of classically and alternatively activated macrophages but the consequent regulation of MMPs and their inhibitors has not been studied comprehensively. Classical activation of macrophages derived in vitro from un-fractionated CD16(+/- or negatively-selected CD16(- macrophages up-regulated MMP-1, -3, -7, -10, -12, -14 and -25 and decreased TIMP-3 steady-state mRNA levels. Bacterial lipopolysaccharide, IL-1 and TNFα were more effective than interferonγ except for the effects on MMP-25, and TIMP-3. By contrast, alternative activation decreased MMP-2, -8 and -19 but increased MMP -11, -12, -25 and TIMP-3 steady-state mRNA levels. Up-regulation of MMPs during classical activation depended on mitogen activated protein kinases, phosphoinositide-3-kinase and inhibitor of κB kinase-2. Effects of interferonγ depended on janus kinase-2. Where investigated, similar effects were seen on protein concentrations and collagenase activity. Moreover, activity of MMP-1 and -10 co-localised with markers of classical activation in human atherosclerotic plaques in vivo. In conclusion, classical macrophage activation selectively up-regulates several MMPs in vitro and in vivo and down-regulates TIMP-3, whereas alternative activation up-regulates a distinct group of MMPs and TIMP-3. The signalling pathways defined here suggest targets for selective modulation of MMP activity.

  20. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  1. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation.

    Directory of Open Access Journals (Sweden)

    Kelly E Roney

    Full Text Available Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/- macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/- macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.

  2. Effect of Propyl Gallate on Activity of Cyclooxygenase 1 and 2 in Mice's Peritoneal Macrophages

    Institute of Scientific and Technical Information of China (English)

    殷惠军; 蒋跃绒; 吴晓华; 陈晓红; 陈可冀

    2004-01-01

    Objective: To investigate the effect of Red Peony 801 (propyl gallate,PrG) on cyclooxygenase (COX) activity in murine peritoneal macrophages. Methods: A screening model for COX inhibitors in vitro based on murine peritoneal macrophages was used. COX-1 activity was reflected by the level of 6-ketoprostaglandin F1α (6-keto-PGF1α) in supernatants of cultured macrophages which were stimulated with calcium ionophore A23187 for a short-term, while COX-2 activity was reflected by the level of prostaglandin E2(PGE2) in supernatants of cultured macrophages which were stimulated with lipopolysaccharide (LPS) for a long-term. Results: PrG did not affect A23187-induced, COX-1-derived 6-keto-PGF1α synthesis at the concentrations of 1 × 10-5, 5 × 10 6 mol/L (P>0.05), but enhanced 6-keto-PGF1α synthesis at the concentrations of 1×10-6, 5×10-7, 1×10-7 mol/L (P<0.01) in vitro, and showed a good dose-dependent manner. It inhibited LPS-induced, COX-2-derived PGE2 synthesis at the concentrations of 1 × 10-5 , 1 × 10-6 mol/L ( P<0.05). Conclusion: Within the range of 1 × 10-5 to 1 × 10-7 mol/L, PrG activated COX-1 at lower concentrations and inhibited COX-2 at higher concentrations in murine peritoneal macrophages.

  3. Root resorption related to orthodontics and other factors: a review of the literature.

    Science.gov (United States)

    Rupp, R

    1995-09-01

    Each patient (and parents or guardian) should be clearly informed that there is a real possibility of one or more teeth undergoing root resorption during orthodontic procedures. They should sign an Information and Consent Form arranged by the dentist that they understand these risks before treatment is begun. Open bite cases possess significantly great degrees of resorption. Since trauma is closely associated with root resorption, the patient (and parents or guardian) should be questioned concerning previous traumatic occurrences that involved blows or accidents involving the teeth. Periapical radiographs are an important part of orthodontic records. They are useful to compare pretreatment and posttreatment root resorption. Maxillary incisors are affected more frequently and to a greater degree than the rest of the teeth during active treatment. Also, root resorption of the upper incisors during the initial 6-9 months of treatment with fixed appliances gives a high risk for continued resorption during the subsequent treatment. Therefore, it would be prudent to take periapical radiographs periodically during treatment. When root resorption is detected during active treatment, a decision must be made as to whether to continue, modify or discontinue the treatment. Extremely heavy forces should be avoided, since they have been shown to produce greater resorption activity. The ectopic eruption of canines causes a significant number of resorptions in lateral incisors. Habits adversely affect root resorption and should be eliminated if possible. Pathological lesions increase the risk of resorption. Periodontal disease increases the risk of resorption. The practitioner contemplating doing orthodontics should be cognizant of the above factors in evaluating the risk of root resorption. Patients (and parents or guardians) should be made clearly aware that any type of orthodontic treatment carries with it the risk of root tip blunting or resorption during orthodontic therapy.

  4. Multiple idiopathic external and internal resorption: Case report with cone-beam computed tomography findings

    Energy Technology Data Exchange (ETDEWEB)

    Celikten, Berkan; Uzuntas, Ceren Feriha; Kurt, Hakan [Faculty of Dentistry, Ankara University, Ankara (Turkmenistan)

    2014-12-15

    Root resorption is loss of dental hard tissue as a result of clastic activities. The dental hard tissue of permanent teeth does not normally undergo resorption, except in cases of inflammation or trauma. However, there are rare cases of tooth resorption of an unknown cause, known as 'idiopathic root resorption.' This report would discuss a rare case of multiple idiopathic resorption in the permanent maxillary and mandibular teeth of an otherwise healthy 36-year-old male patient. In addition to a clinical examination, the patient was imaged using conventional radiography and cone-beam computed tomography (CBCT). The examinations revealed multiple external and internal resorption of the teeth in all four quadrants of the jaws with an unknown cause. Multiple root resorption is a rare clinical phenomenon that should be examined using different radiographic modalities. Cross-sectional CBCT is useful in the diagnosis and examination of such lesions.

  5. Multiple idiopathic external and internal resorption: Case report with cone-beam computed tomography findings.

    Science.gov (United States)

    Celikten, Berkan; Uzuntas, Ceren Feriha; Kurt, Hakan

    2014-12-01

    Root resorption is loss of dental hard tissue as a result of clastic activities. The dental hard tissue of permanent teeth does not normally undergo resorption, except in cases of inflammation or trauma. However, there are rare cases of tooth resorption of an unknown cause, known as "idiopathic root resorption." This report would discuss a rare case of multiple idiopathic resorption in the permanent maxillary and mandibular teeth of an otherwise healthy 36-year-old male patient. In addition to a clinical examination, the patient was imaged using conventional radiography and cone-beam computed tomography (CBCT). The examinations revealed multiple external and internal resorption of the teeth in all four quadrants of the jaws with an unknown cause. Multiple root resorption is a rare clinical phenomenon that should be examined using different radiographic modalities. Cross-sectional CBCT is useful in the diagnosis and examination of such lesions.

  6. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Wakabayashi, Hideyuki [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan); Taniguchi, Yoshimasa [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Shindo, Kazutoshi [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan); Yajima, Hiroaki [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Yoshida, Aruto [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  7. Anti-tumor and macrophage activation induced by alkali-extracted polysaccharide from Pleurotus ostreatus.

    Science.gov (United States)

    Kong, Fanli; Li, Feng-E; He, Zhongmei; Jiang, Yong; Hao, Ruoyi; Sun, Xin; Tong, Haibin

    2014-08-01

    Pleurotus ostreatus is popularly consumed as traditional medicine and health food for enhancing immune function in China. Polysaccharides from mushroom have been demonstrated to possess a wide range of health beneficial properties. This study was carried out to elucidate the immunomodulating effects and molecular mechanism involved in the in vivo and in vitro anti-tumor activities of alkali-extracted polysaccharide (WPOP-N1) from the fruiting bodies of P. ostreatus. The results showed that WPOP-N1 significantly inhibited the tumor growth of Sarcoma 180 tumor-bearing mice, and markedly increased the secretion level of TNF-α in serum. In addition, WPOP-N1 enhanced the phagocytic capability of peritoneal macrophages in vitro. Furthermore, the secretion of TNF-α and NO and the amount of TNF-α and iNOS transcript were increased significantly when the peritoneal macrophages were exposed to WPOP-N1. Meanwhile, Western blot analysis revealed that the stimulation of peritoneal macrophages by WPOP-N1 induced the phosphorylation of p65 and a marked decrease of IκB expression. These results suggest that WPOP-N1 could activate macrophages through NF-κB signaling pathway, and the anti-tumor effects of WPOP-N1 can be achieved by its immunostimulating property. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Interplay Between Amphioxus Complement with Sea Bass Macrophages: Opsonic Activity of Amphioxus Humoral Fluids

    Institute of Scientific and Technical Information of China (English)

    PAN Junli; LIU Min; ZHANG Shicui

    2011-01-01

    Previous studies have shown the existence of a complement system in the amphioxus Branchiostoma japonicum.However,whether it has an opsonic activity similar to that of vertebrates remains unknown.We demonstrated that the humoral fluid (HF)of amphioxus promoted the phagocytosis of yeast cells with sea bass (Lateolabraxjaponicus) macrophages,whereas the C3-depleted and heated HF significantly lost the phagocytosis-promoting capacity.In addition,the precipitation of factor B (Bf) led to a marked loss of opsonic activity.Moreover,C3 fragments in the HF were found to bind to yeast cell surfaces.The results indicate that the amphioxus complement system is an important element involved in the opsonic activity,which promotes the sea bass macrophage phagocytosis by tagging yeast cells with C3 fragments via the activation of alternative complement pathway.

  9. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages : similarities and differences

    NARCIS (Netherlands)

    Martinez, Fernando O.; Helming, Laura; Milde, Ronny; Varin, Audrey; Melgert, Barbro N.; Draijer, Christina; Thomas, Benjamin; Fabbri, Marco; Crawshaw, Anjali; Ho, Ling Pei; Ten Hacken, Nick H.; Jimenez, Viviana Cobos; Kootstra, Neeltje A.; Hamann, Jorg; Greaves, David R.; Locati, Massimo; Mantovani, Alberto; Gordon, Siamon

    2013-01-01

    The molecular repertoire of macrophages in health and disease can provide novel biomarkers for diagnosis, prognosis, and treatment. Th2-IL-4-activated macrophages (M2) have been associated with important diseases in mice, yet no specific markers are available for their detection in human tissues. Al

  10. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo

    NARCIS (Netherlands)

    Siebelt, Michiel; Korthagen, Nicoline; Wei, Wu; Groen, Harald; Bastiaansen-Jenniskens, Yvonne; Müller, Christina; Waarsing, Jan Hendrik; de Jong, Marion; Weinans, Harrie|info:eu-repo/dai/nl/087198622

    2015-01-01

    INTRODUCTION: Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence macrophage activa

  11. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption.

    Science.gov (United States)

    An, Jing; Hao, Dingjun; Zhang, Qian; Chen, Bo; Zhang, Rui; Wang, Yi; Yang, Hao

    2016-07-01

    Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine.

  12. Immunostimulatory activity of snake fruit (Salacca edulis Reinw.) cultivar Pondoh Hitam extract on the activation of macrophages in vitro

    Science.gov (United States)

    Wijanarti, Sri; Putra, Agus Budiawan Naro; Nishi, Kosuke; Harmayani, Eni; Sugahara, Takuya

    2017-05-01

    Snake fruit (Salacca edulis Reinw) cultivar Pondoh Hitam is a tropical fruit produced in Indonesia. It is consumed freshly or processed and believed as the most delicious snake fruit cultivar. Snake fruit flesh contains high polisaccharides such as pectin and dietary fiber. Therefore, snake fruit is a potential immunostimulator candidates but the immunological effect of snake fruit flesh has not been reported. In the present study, immunostimulatory activity of snake fruit flesh extract (SFFE) on macrophages activation was evaluated. SFFE was prepared by extracting from snake fruit flesh with water, methanol 70%, and ethanol 70% for 15 h at 4°C. Then obtained SFFE was used to stimulated cytokine production in vitro using J774.1 cell line. The extract giving strongest stimulation was sellected for in vivo assay to stimulate cytokines production and gene expression using peritoneal macrophage (P-mac) of BALB/c mice. The results showed that SFFE exhibited immunostimulatory activities. Immunostimulatory activity could be indicated by macrophages activation characteristics such as cytokines production. Water extract of SFFE gave strongest stimulation on cytokines production in vitro and sellected for in vivo assay. In vivo assay showed that SFFE stimulated cytokines production as well as their gene expression levels. The optimum stimulation was demonstrated by SFFE 16.7 mg/g. Overall findings suggest that SFFE has a potent beneficial effects to promote the body health through activating macrophages.

  13. Evolutionary conservation of alternative activation of macrophages: structural and functional characterization of arginase 1 and 2 in carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Joerink, M.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2006-01-01

    Classically activated macrophages (caMF) play an important role in type-I immune responses and alternatively activated macrophages (aaMF) function in type-II immune responses. While the classical activation of fish macrophages has been well described, the existence of aaMF has not yet been described

  14. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation.

    Science.gov (United States)

    Bessler, Waylan K; Kim, Grace; Hudson, Farlyn Z; Mund, Julie A; Mali, Raghuveer; Menon, Keshav; Kapur, Reuben; Clapp, D Wade; Ingram, David A; Stansfield, Brian K

    2016-03-15

    Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.

  15. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL

    Science.gov (United States)

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  16. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    Science.gov (United States)

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.

  17. The effect of activated alveolar macrophages on experimental lung emphysema development. II. The study of fibroblast and alveolar macrophage co-culture.

    Science.gov (United States)

    Sulkowska, M; Wołczyński, S; Sulkowski, S; Sobaniec-Lotowska, M; Chyczewski, L; Sulik, M; Kulikowski, M; Dziecioł, J; Berger, W

    1995-01-01

    The cell-cell interaction between fibroblasts and alveolar macrophages was examined using a co-culture system. Alveolar macrophages (AM) were harvested from the bronchoalveolar lavages (BAL) of rats with papain induced lung emphysema. The BCG-vaccine was applied as a macrophage mobilizing and activating agent. The morphological examinations carried out in scanning electron microscope (SEM) as well as the evaluation of the uptake of 3H-thymidine did not show any significant differences between respective co-cultures of fibroblasts and AM isolated both from the lungs of control and experimental animals (treated with BCG or papain, and BCG+papain). However, significant growth were noted in 3H-thymidine uptake between fibroblast cultures done with or without cells isolated from the lungs. The results obtained suggest that AM can promote fibroblast proliferation during the progression of experimental lung emphysema.

  18. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    OpenAIRE

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Stephanie A. Amici; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Lindsay M Webb; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity o...

  19. A Commercial Preparation of Catalase Inhibits Nitric Oxide Production by Activated Murine Macrophages: Role of Arginase

    OpenAIRE

    Tian, Y.; Xing, Y.; Magliozzo, R.; Yu, K.; Bloom, B R; Chan, J

    2000-01-01

    Catalase is widely used as a pharmacological probe to evaluate the role of hydrogen peroxide in antimicrobial activities of phagocytic cells. This report demonstrates that the ability of a commercial preparation of catalase to inhibit concomitantly macrophage antimycobacterial activity and production of reactive nitrogen intermediates can be attributed, at least in part, to the depletion of l-arginine by contaminating arginase. In experimental systems that employ pharmacological probes, the e...

  20. Injury-induced GR-1+ macrophage expansion and activation occurs independently of CD4 T-cell influence.

    Science.gov (United States)

    O'Leary, Fionnuala M; Tajima, Goro; Delisle, Adam J; Ikeda, Kimiko; Dolan, Sinead M; Hanschen, Marc; Mannick, John A; Lederer, James A

    2011-08-01

    Burn injury initiates an enhanced inflammatory condition referred to as the systemic inflammatory response syndrome or the two-hit response phenotype. Prior reports indicated that macrophages respond to injury and demonstrate a heightened reactivity to Toll-like receptor stimulation. Since we and others observed a significant increase in splenic GR-1 F4/80 CD11b macrophages in burn-injured mice, we wished to test if these macrophages might be the primary macrophage subset that shows heightened LPS reactivity. We report here that burn injury promoted higher level TNF-α expression in GR-1, but not GR-1 macrophages, after LPS activation both in vivo and ex vivo. We next tested whether CD4 T cells, which are known to suppress injury-induced inflammatory responses, might control the activation and expansion of GR-1 macrophages. Interestingly, we found that GR-1 macrophage expansion and LPS-induced TNF-α expression were not significantly different between wild-type and CD4 T cell-deficient CD4(-/-) mice. However, further investigations showed that LPS-induced TNF-α production was significantly influenced by CD4 T cells. Taken together, these data indicate that GR-1 F4/80 CD11b macrophages represent the primary macrophage subset that expands in response to burn injury and that CD4 T cells do not influence the GR-1 macrophage expansion process, but do suppress LPS-induced TNF-α production. These data suggest that modulating GR-1 macrophage activation as well as CD4 T cell responses after severe injury may help control the development of systemic inflammatory response syndrome and the two-hit response phenotype.

  1. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation.

    Science.gov (United States)

    Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-05-01

    Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation.

  2. Protective effect of cyclosporin A and FK506 from nitric oxide-dependent apoptosis in activated macrophages

    Science.gov (United States)

    Hortelano, Sonsoles; López-Collazo, Eduardo; Boscá, Lisardo

    1999-01-01

    Activation of macrophages with lipopolysaccharide (LPS) and low doses of interferon-γ (IFN-γ) induced apoptotic death through a nitric oxide-dependent pathway. Treatment of cells with the immunosuppressors cyclosporin A (CsA) or FK506 inhibited the activation-dependent apoptosis. These drugs decreased the up-regulation of p53 and Bax characteristic of activated macrophages. Moreover, incubation of activated macrophages with CsA and FK506 contributed to maintain higher levels of Bcl-2 than in LPS/IFN-γ treated cells. The inhibition of apoptosis exerted by CsA and FK506 in macrophages was also observed when cell death was induced by treatment with chemical nitric oxide donors. Incubation of macrophages with LPS/IFN-γ barely affected caspase-1 but promoted an important activation of caspase-3. Both CsA and FK506 inhibited pathways leading to caspase-3 activation. Moreover, the cleavage of poly(ADP-ribose) polymerase, a well established caspase substrate, was reduced by these immunosuppressive drugs. CsA and FK506 reduced the release of cytochrome c to the cytosol and the activation of caspase-3 in cells treated with nitric oxide donors. These results indicate that CsA and FK506 protect macrophages from nitric oxide-dependent apoptosis and suggest a contribution of the macrophage to innate immunity under conditions of immunosuppression of the host. PMID:10205001

  3. The role of p105 protein in NFkappaB activation in ANA-1 murine macrophages following stimulation with titanium particles.

    Science.gov (United States)

    Soloviev, Alexander; Schwarz, Edward M; Kuprash, Dmitry V; Nedospasov, Sergei A; Puzas, J Edward; Rosier, Randy N; O'Keefe, Regis J

    2002-07-01

    Macrophage activation by particulate debris from orthopaedic implants triggers an inflammatory response that ultimately leads to periprosthetic bone resorption and implant failure. TNFalpha has been identified as a critical cytokine involved in the response to debris particles but the mechanisms involved in activation of TNFalpha synthesis are unclear. The current study demonstrates rapid induction or TNFalpha following stimulation with titanium particles in the murine macrophage cell line. ANA-1. Electrophoretic mobility shift assays demonstrated NFkappaB DNA binding activity within 15 min of exposure to titanium particles, and experiments with an NFkappaB luciferase promoter confirmed the induction of NFkappaB mediated transcription by titanium particles. Furthermore, titanium particles induced a 2-fold induction in TNFalpha promoter activity, and mutation of the kappaB2a site, one of the four NFkappaB-binding sites in the TNFalpha promoter, resulted in decreased activation. Since NFtB is a critical regulator of inflammation and is involved in activation of the TNFalpha promoter, additional experiments were performed to determine the mechanism of NFkappaB activation by particles. NFKB activation was found to be dependent upon proteasome activity, since administration of MG 132, a proteasome inhibitor, blocked NFkappaB activation. However, IkappaBalpha is only slightly decreased following Ti treatment, in contrast to marked degradation following stimulation with LPS. Recently, another proteasome-dependent pathway of NFkappaB activation has been described involving degradation of p105. a precursor of p50 that binds to p65. p105 degradation occurred following titanium stimulation. suggesting that this recently described mechanism for NFKB activation is operant in ANA-1 cells following exposure to titanium particles. These findings demonstrate that activation of the NFkappaB signaling pathway is rapidly induced by titanium particles in ANA-1 cells and is associated

  4. Targeting formyl peptide receptor 1 of activated macrophages to monitor inflammation of experimental osteoarthritis in rat.

    Science.gov (United States)

    Yang, Xinlin; Chordia, Mahendra D; Du, Xuejun; Graves, John L; Zhang, Yi; Park, Yong-Sang; Guo, Yongfei; Pan, Dongfeng; Cui, Quanjun

    2016-09-01

    Macrophages play a crucial role in the pathogenesis of osteoarthritis (OA). In this study, the feasibility of a formyl peptide receptor 1 (Fpr1)-targeting peptide probe cFLFLF-PEG-(64) Cu via positron emission tomography (PET) imaging was investigated for detection of macrophage activity during development of OA. Monoiodoacetate (MIA) was intraarticularly injected into the knee joint of Sprague-Dawley rats to induce OA. Five days later, cFLFLF-PEG-(64) Cu (∼7,400 kBq/rat) was injected into the tail vein and microPET/CT imaging was performed to assess the OA inflammation by detecting infiltration of macrophages by Fpr1 expression. In addition, a murine macrophage cell line RAW264.7 and two fluorescent probes cFLFLF-PEG-cyanine 7 (cFLFLF-PEG-Cy7) and cFLFLF-PEG-cyanine 5 (cFLFLF-PEG-Cy5) were used to define the binding specificity of the peptide to macrophages. It was found with the MIA model that the maximal standard uptake values (SUVmax ) for right (MIA treated) and left (control) knees were 17.96 ± 5.45 and 3.00 ± 1.40, respectively. Histological evaluation of cryomicrotome sections showed that Fpr1 expression, cFLFLF-PEG-Cy5 binding, and tartrate-resistant acid phosphatase activity were elevated in the injured synovial membranes. The in vitro experiments demonstrated that both fluorescent peptide probes could bind specifically to RAW264.7 cells, which was blocked by cFLFLF but not by the scramble peptide. The findings highlighted the use of cFLFLF-PEG-(64) Cu/PET as an effective method potentially applied for detection and treatment evaluation of OA. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1529-1538, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection.

    Science.gov (United States)

    Boyle, Joseph J; Johns, Michael; Kampfer, Theresa; Nguyen, Aivi T; Game, Laurence; Schaer, Dominik J; Mason, Justin C; Haskard, Dorian O

    2012-01-06

    Intraplaque hemorrhage (IPH) drives atherosclerosis through the dual metabolic stresses of cholesterol-enriched erythrocyte membranes and pro-oxidant heme/iron. When clearing tissue hemorrhage, macrophages are typically seen storing either iron or lipid. We have recently defined hemorrhage-associated macrophages (HA-mac) as a plaque macrophage population that responds adaptively to IPH. This study aimed to define the key transcription factor(s) involved in HO-1 induction by heme. To address this question, we used microarray analysis and transfection with siRNA and plasmids. To maintain physiological relevance, we focused on human blood-derived monocytes. We found that heme stimulates monocytes through induction of activating transcription factor 1 (ATF-1). ATF-1 coinduces heme oxygenase-1 (HO-1) and Liver X receptor beta (LXR-β). Heme-induced HO-1 and LXR-β were suppressed by knockdown of ATF-1, and HO-1 and LXR-β were induced by ATF-1 transfection. ATF-1 required phosphorylation for full functional activity. Expression of LXR-β in turn led to induction of other genes central to cholesterol efflux, such as LXR-α and ABCA1. This heme-directed state was distinct from known macrophage states (M1, M2, Mox) and, following the same format, we have designated them Mhem. These results show that ATF-1 mediates HO-1 induction by heme and drives macrophage adaptation to intraplaque hemorrhage. Our definition of an ATF-1-mediated pathway for linked protection from foam cell formation and oxidant stress may have therapeutic potential.

  6. ELECTROSTATIC CHARGE ON NANO-PARTICLES ACTIVATES CNS MACROPHAGES (MICROGLIA).

    Science.gov (United States)

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  7. Molecular Mechanism of Macrophage Activation by Red Ginseng Acidic Polysaccharide from Korean Red Ginseng

    Directory of Open Access Journals (Sweden)

    Se Eun Byeon

    2012-01-01

    Full Text Available Red ginseng acidic polysaccharide (RGAP, isolated from Korean red ginseng, displays immunostimulatory and antitumor activities. Even though numerous studies have been reported, the mechanism as to how RGAP is able to stimulate the immune response is not clear. In this study, we aimed to explore the mechanism of molecular activation of RGAP in macrophages. RGAP treatment strongly induced NO production in RAW264.7 cells without altering morphological changes, although the activity was not strong compared to LPS-induced dendritic-like morphology in RAW264.7 cells. RGAP-induced NO production was accompanied with enhanced mRNA levels of iNOS and increases in nuclear transcription factors such as NF-κB, AP-1, STAT-1, ATF-2, and CREB. According to pharmacological evaluation with specific enzyme inhibitors, Western blot analysis of intracellular signaling proteins and inhibitory pattern using blocking antibodies, ERK, and JNK were found to be the most important signaling enzymes compared to LPS signaling cascade. Further, TLR2 seems to be a target surface receptor of RGAP. Lastly, macrophages isolated from RGS2 knockout mice or wortmannin exposure strongly upregulated RGAP-treated NO production. Therefore, our results suggest that RGAP can activate macrophage function through activation of transcription factors such as NF-κB and AP-1 and their upstream signaling enzymes such as ERK and JNK.

  8. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    Science.gov (United States)

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  9. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Shaobo [Department of Orthopaedics, PLA General Hospital, Beijing 100853 (China); Xu, Jiawei [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Chenghua [Department of Orthopaedics, Changle County Hospital of Traditional Chinese Medicine, Weifang 262400 (China); Xu, Chen [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Liu, Ming, E-mail: ming_li4717@sina.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yu, Degang, E-mail: ydg163@126.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China)

    2016-01-29

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  10. Activation of Phosphotyrosine Phosphatase Activity Attenuates Mitogen-Activated Protein Kinase Signaling and Inhibits c-FOS and Nitric Oxide Synthase Expression in Macrophages Infected with Leishmania donovani

    OpenAIRE

    Nandan, Devki; Lo, Raymond; Reiner, Neil E

    1999-01-01

    Intracellular protozoan parasites of the genus Leishmania antagonize host defense mechanisms by interfering with cell signaling in macrophages. In this report, the impact of Leishmania donovani on mitogen-activated protein (MAP) kinases and nitric oxide synthase (NOS) expression in the macrophage cell line RAW 264 was investigated. Overnight infection of cells with leishmania led to a significant decrease in phorbol-12-myristate-13-acetate (PMA)-stimulated MAP kinase activity and inhibited PM...

  11. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    Directory of Open Access Journals (Sweden)

    Wang Cheng-Li

    2012-08-01

    Full Text Available Abstract Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3, laminarin, or piceatannol (a spleen tyrosine kinase inhibitor, suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4. PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.

  12. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    Directory of Open Access Journals (Sweden)

    Maria Ruweka Fernando

    Full Text Available Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  13. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    Science.gov (United States)

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  14. Haemophilus ducreyi-induced interleukin-10 promotes a mixed M1 and M2 activation program in human macrophages.

    Science.gov (United States)

    Li, Wei; Katz, Barry P; Spinola, Stanley M

    2012-12-01

    During microbial infection, macrophages are polarized to classically activated (M1) or alternatively activated (M2) cells in response to microbial components and host immune mediators. Proper polarization of macrophages is critical for bacterial clearance. To study the role of macrophage polarization during Haemophilus ducreyi infection, we analyzed a panel of macrophage surface markers in skin biopsy specimens of pustules obtained from experimentally infected volunteers. Lesional macrophages expressed markers characteristic of both M1 and M2 polarization. Monocyte-derived macrophages (MDM) also expressed a mixed M1 and M2 profile of surface markers and cytokines/chemokines upon infection with H. ducreyi in vitro. Endogenous interleukin 10 (IL-10) produced by infected MDM downregulated and enhanced expression of several M1 and M2 markers, respectively. Bacterial uptake, mediated mainly by class A scavenger receptors, and activation of mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways were required for H. ducreyi-induced IL-10 production in MDM. Compared to M1 cells, IL-10-polarized M2 cells displayed enhanced phagocytic activity against H. ducreyi and similar bacterial killing. Thus, IL-10-modulated macrophage polarization may contribute to H. ducreyi clearance during human infection.

  15. Macrophage activation and wound healing%巨噬细胞活化与创面愈合

    Institute of Scientific and Technical Information of China (English)

    缪明远; 牛轶雯; 陆树良

    2011-01-01

    Macrophages play a vital role in wound healing. Macrophage activation is the main status for working, and recent studies have demonstrated that macrophage activation could be divided into classical macrophage activation and alternative macrophage activation. The phenotypes of macrophage in wound tissues lead to different outcomes of cutaneous repair. This paper discusses macrophage activation and the relation with wound healing.%巨噬细胞在创面愈合中扮演重要角色.巨噬细胞活化状态是其执行功能的主要工作状态,近年的研究表明巨噬细胞具有经典巨噬细胞活化和替代性巨噬细胞活化两种活化方式.创面中巨噬细胞所呈现的不同活化状态影响了创面修复的结局.该文就巨噬细胞活化及其与创面愈合的关系进行综述.

  16. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation.

    Science.gov (United States)

    Jung, Yun Chan; Kim, Mi Eun; Yoon, Ju Hwa; Park, Pu Reum; Youn, Hwa-Young; Lee, Hee-Woo; Lee, Jun Sik

    2014-12-01

    Inflammation is the major symptom of the innate immune response to microbial infection. Macrophages, immune response-related cells, play a role in the inflammatory response. Galangin is a member of the flavonols and is found in Alpinia officinarum, galangal root and propolis. Previous studies have demonstrated that galangin has antioxidant, anticancer, and antineoplastic activities. However, the anti-inflammatory effects of galangin are still unknown. In this study, we investigated the anti-inflammatory effects of galangin on RAW 264.7 murine macrophages. Galagin was not cytotoxic to RAW 264.7 cells, and nitric oxide (NO) production induced by lipopolysaccharide (LPS)-stimulated macrophages was significantly decreased by the addition of 50 μM galangin. Moreover, galangin treatment reduced mRNA levels of cytokines, including IL-1β and IL-6, and proinflammatory genes, such as iNOS in LPS-activated macrophages in a dose-dependent manner. Galangin treatment also decreased the protein expression levels of iNOS in activated macrophages. Galangin was found to elicit anti-inflammatory effects by inhibiting ERK and NF-κB-p65 phosphorylation. In addition, galangin-inhibited IL-1β production in LPS-activated macrophages. These results suggest that galangin elicits anti-inflammatory effects on LPS-activated macrophages via the inhibition of ERK, NF-κB-p65 and proinflammatory gene expression.

  17. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators

    Science.gov (United States)

    Raza, Sobia; Barnett, Mark W.; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A.; Freeman, Tom C.

    2014-01-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables—LPS dose, LPS versus IFN-β and -γ, and genetic background—on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli. PMID:24721704

  18. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators.

    Science.gov (United States)

    Raza, Sobia; Barnett, Mark W; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A; Freeman, Tom C

    2014-08-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables--LPS dose, LPS versus IFN-β and -γ, and genetic background--on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli.

  19. Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway.

    Science.gov (United States)

    Vidal, Berta; Serrano, Antonio L; Tjwa, Marc; Suelves, Mònica; Ardite, Esther; De Mori, Roberta; Baeza-Raja, Bernat; Martínez de Lagrán, María; Lafuste, Peggy; Ruiz-Bonilla, Vanessa; Jardí, Mercè; Gherardi, Romain; Christov, Christo; Dierssen, Mara; Carmeliet, Peter; Degen, Jay L; Dewerchin, Mieke; Muñoz-Cánoves, Pura

    2008-07-01

    In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen-Mac-1 receptor binding, through induction of IL-1beta, drives the synthesis of transforming growth factor-beta (TGFbeta) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGFbeta further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its alphavbeta3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy.

  20. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage.

    Science.gov (United States)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in -738 bp ∼  -723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies.

  1. Bone resorption: an actor of dental and periodontal development?

    Directory of Open Access Journals (Sweden)

    Andrea eGama

    2015-11-01

    Full Text Available Dental and periodontal tissue development is a complex process involving various cell-types. A finely orchestrated network of communications between these cells is implicated. During early development, communications between cells from the oral epithelium and the underlying mesenchyme govern the dental morphogenesis with successive bud, cap and bell stages. Later, interactions between epithelial and mesenchymal cells occur during dental root elongation. Root elongation and tooth eruption require resorption of surrounding alveolar bone to occur. For years, it was postulated that signaling molecules secreted by dental and periodontal cells control bone resorbing osteoclast precursor recruitment and differentiation. Reverse signaling originating from bone cells (osteoclasts and osteoblasts toward dental cells was not suspected. Dental defects reported in osteopetrosis were associated with mechanical stress secondary to defective bone resorption. In the last decade, consequences of bone resorption over-activation on dental and periodontal tissue formation have been analyzed with transgenic animals (RankTg and Opg-/- mice. Results suggest the existence of signals originating from osteoclasts toward dental and periodontal cells. Meanwhile, experiments consisting in transitory inhibition of bone resorption during root elongation, achieved with bone resorption inhibitors having different mechanisms of action (bisphosphonates and RANKL blocking antibodies, have evidenced dental and periodontal defects that support the presence of signals originating bone cells toward dental cells. The aim of the present manuscript is to present the data we have collected in the last years that support the hypothesis of a role of bone resorption in dental and periodontal development.

  2. Bone resorption: an actor of dental and periodontal development?

    Science.gov (United States)

    Gama, Andrea; Navet, Benjamin; Vargas, Jorge William; Castaneda, Beatriz; Lézot, Frédéric

    2015-01-01

    Dental and periodontal tissue development is a complex process involving various cell-types. A finely orchestrated network of communications between these cells is implicated. During early development, communications between cells from the oral epithelium and the underlying mesenchyme govern the dental morphogenesis with successive bud, cap and bell stages. Later, interactions between epithelial and mesenchymal cells occur during dental root elongation. Root elongation and tooth eruption require resorption of surrounding alveolar bone to occur. For years, it was postulated that signaling molecules secreted by dental and periodontal cells control bone resorbing osteoclast precursor recruitment and differentiation. Reverse signaling originating from bone cells (osteoclasts and osteoblasts) toward dental cells was not suspected. Dental defects reported in osteopetrosis were associated with mechanical stress secondary to defective bone resorption. In the last decade, consequences of bone resorption over-activation on dental and periodontal tissue formation have been analyzed with transgenic animals (RANK (Tg) and Opg (-∕-) mice). Results suggest the existence of signals originating from osteoclasts toward dental and periodontal cells. Meanwhile, experiments consisting in transitory inhibition of bone resorption during root elongation, achieved with bone resorption inhibitors having different mechanisms of action (bisphosphonates and RANKL blocking antibodies), have evidenced dental and periodontal defects that support the presence of signals originating bone cells toward dental cells. The aim of the present manuscript is to present the data we have collected in the last years that support the hypothesis of a role of bone resorption in dental and periodontal development.

  3. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  4. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    OpenAIRE

    Wei, Zhiquan; YAN Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interf...

  5. Inhibitory activity of lipid fractions myobacterium avium complex against macrophage respiratory burst

    OpenAIRE

    Shimizu, Toshiaki; 冨岡, 治明

    1998-01-01

    To explore possible mechanisms of the resistance of Mycobacterium avium complex (MAC) intracellular parasites to the antimicrobial activity of macrophages (MΦs), effects of the lipid components of these parasites on the MΦ respiratory burst were investigated. In this study, the MΦ respiratory burst was measured by luminoldependent chemiluminescence generated through the peroxidase-mediated halogenation reaction in murine peritoneal MΦs in response to phorbol myristate acetate (PMA) triggering...

  6. NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells

    Science.gov (United States)

    2011-08-01

    inflammation, neonatal sepsis , and chronic lung disease: a 13-year hospital cohort study. Pe- diatrics 123: 1314–1319. 8. Paananen, R., A. K. Husa, R... neonatal period. The inducible cIKKb transgene allows macrophage activation at distinct stages of lung development, as compared with postnatal rodent...Shriver National Institute of Child Health and Human Development Neonatal Research Network. 2010. Neonatal outcomes of extremely preterm infants from

  7. Microglia activation by SIV-infected macrophages: alterations in morphology and cytokine secretion

    OpenAIRE

    Renner, Nicole A.; Sansing, Hope A.; Morici, Lisa A.; Inglis, Fiona M.; Lackner, Andrew A.; Andrew G. MacLean

    2012-01-01

    HIV infection in brain and the resultant encephalitis affects approximately one-third of individuals infected with HIV, regardless of treatment with antiretroviral drugs. Microglia are the resident phagocytic cell type in the brain, serving as a “first responder” to neuroinvasion by pathogens. The early events of the microglial response to productively-infected monocyte/macrophages entering the brain can best be investigated using in vitro techniques. We hypothesized that activation of microg...

  8. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis

    DEFF Research Database (Denmark)

    Baeten, Dominique; Møller, Holger Jon; Delanghe, Joris

    2004-01-01

    OBJECTIVE: Since CD163+ macrophages are selectively increased in spondylarthropathy (SpA) synovitis, we investigated the role of CD163+ macrophages in synovial inflammation. METHODS: Synovial biopsy samples from 26 SpA and 23 rheumatoid arthritis (RA) patients were analyzed for macrophage...... and lymphocyte subsets. Synovial fluid (SF) samples were analyzed by Western blotting and enzyme-linked immunosorbent assay for soluble CD163 (sCD163) and by flow cytometry for lymphocyte activation. We also analyzed sCD163 in sera from 100 SpA patients, 23 RA patients, 20 healthy controls, and 20 SpA patients...... treated with infliximab. Polymorphism of haptoglobin (Hp), the CD163 ligand, was determined in 130 SpA and 23 RA patients. RESULTS: CD163+ macrophages, but not CD68+ macrophages, were significantly increased in SpA versus RA synovium and in HLA-B27+ versus HLA-B27- SpA. Despite similar lymphocyte numbers...

  9. The amount of macrophages and activated plasma cells on wound healing process affected by spirulina

    Directory of Open Access Journals (Sweden)

    Regina Purnama Dewi Iskandar

    2015-12-01

    Full Text Available Background: Spirulina which grows abundantly in tropical seas have been investigated to enhance immune system. The administration of spirulina in tooth extraction sockets was expected to optimise the function of immunocompetent cells. Therefore, wound healing process would be improved. Purpose: The aim of this study was to prove that administration of spirulina could influence immune system in tooth extraction sockets. Method: There were 28 Cavia cobayas used in this study and were put in group of four. Mandibular left incisive were extracted from each of them. The basis made from mixture of polyethylene glycol (PEG 400 and PEG 4000 was administrated into each socket in control group (TG0. In addition, spirulina 12% was administrated into group TG1, spirulina 24% was administrated into group TG2, and spirulina 48% was administrated into group TG3. All of the Cavia cobaya were decapitated and the jaws were removed in day 5 after tooth extraction. The jaws were decalcified in EDTA solution, formed into paraffin block, processed for hematoxylin and eosin (H & E and immunohistochemistry staining afterwards. Datas were analysed statistically using Anova method. Result: There was an augmentation in the number of macrophages and activated plasma cells after spirulina application. The administration of higher concentrations of Spirulina leads to greater amount of macrophages and activated plasma cells in each groups. Conclusion: In conclusion, spirulina is able to increase the amount of macrophages and activated plasma cells which play important role in healing process.

  10. Modified pectin from Theobroma cacao induces potent pro-inflammatory activity in murine peritoneal macrophage.

    Science.gov (United States)

    Amorim, Juliana C; Vriesmann, Lucia Cristina; Petkowicz, Carmen L O; Martinez, Glaucia Regina; Noleto, Guilhermina R

    2016-11-01

    In vitro effects of acetylated pectin (OP) isolated from cacao pod husks (Theobroma cacao L.), its partially deacetylated and de-esterified form (MOP), and a commercial homogalacturonan (PG) were investigated on murine peritoneal macrophages. MOP stood out among the studied pectins. After 48h of incubation, compared with the control group, it was able to promote significant macrophage morphological differentiation from resident to activated stage and also stimulated nitric oxide production, which reached a level of 85% of that of LPS stimulus. In the presence of the highest tested concentration of MOP (200μg·mL(-1)), the levels of the cytokines TNF-α (6h) and IL-12 and IL-10 (48h) increased substantially in relation to untreated cells. Our results show that the partial deacetylation and de-esterification of pectin extracted from cacao pod husks (T. cacao L.) produced a polymer with greater ability than its native form to activate macrophages to a cytotoxic phenotype. Like this, they provide the possibility of a therapeutic application to MOP, which could lead to a decreased susceptibility to microbial infection besides antitumor activity. Additionally, the present results also corroborate with the proposition of that the chemical modifications of the biopolymers can result in an improved molecule with new possibilities of application. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  12. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    Science.gov (United States)

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  13. Macrophages driven to a novel state of activation have anti-inflammatory properties in mice.

    Science.gov (United States)

    Brem-Exner, Beate G; Sattler, Christine; Hutchinson, James A; Koehl, Gudrun E; Kronenberg, Katharina; Farkas, Stefan; Inoue, Seiichiro; Blank, Christian; Knechtle, Stuart J; Schlitt, Hans J; Fändrich, Fred; Geissler, Edward K

    2008-01-01

    Recurrent episodes of inflammation underlie numerous pathologies, notably those of inflammatory bowel diseases. In this study, we describe a population of macrophages in a novel state of activation that mitigates colitis in mice. The cells responsible for this effect, called IFN-gamma-stimulated monocyte-derived cells (IFNgamma-MdC), derive from mouse spleen, blood, and bone marrow monocytes and are distinguished from known macrophage populations by mode of generation, cell surface phenotype, and function. IFNgamma-MdC only arise when macrophages are cultivated in the presence of CD40L-expressing CD4+ T cells, M-CSF, and IFN-gamma. IFNgamma-MdC express markers including F4/80, CD11b/c, CD86, and CD274; they are negative for CD4, CD8, Gr1, CD19, CD80, and CD207. Functionally, IFNgamma-MdC are defined by their capacity to enrich cocultured T cell populations for CD4+CD25+Foxp3+ regulatory cells; this enrichment, constituting up to 60% or more of residual lymphocytes, is attributed to an expansion, but also to a cell contact and caspase-dependent depletion of activated T cells. In mice, IFNgamma-MdC delivered i.v. traffic to gut-associated peripheral lymphoid tissues, including the mesenteric lymph nodes, Peyer's patches, and colonic mucosa, and promote the clinical and histological resolution of chronic colitis. We conclude that IFNgamma-MdC represent macrophages in a novel state of activation, possessing multiple T cell-suppressive effects with therapeutic potential for the treatment of autoimmune inflammation.

  14. Identification of a Denitrase Activity Against Calmodulin in Activated Macrophages Using High-Field Liquid Chromatography - FTICR Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Lourette, Natacha M.; Boschek, Curt B.; Bigelow, Diana J.; Smith, Richard D.; Pasa-Tolic, Liljiana; Squier, Thomas C.

    2007-09-18

    We have identified a denitrase activity in macrophages that is upregulated following macrophage activation, which is shown by mass spectrometry to recognize nitrotyrosines in the calcium signaling protein calmodulin (CaM) and convert them to their native tyrosine structure without the formation of any aminotyrosine. Comparable extents of methionine sulfoxide reduction are also observed that are catalyzed by endogenous methionine sulfoxide reductases. Competing with repair processes, oxidized CaM is a substrate for a peptidase activity that results in the selective cleavage of the C-terminus lysine (i.e., Lys148) that is expected to diminish CaM function. Thus, competing repair and peptidase activities define the abundances and functionality of CaM to modulate cellular metabolism in response to oxidative stress, where the presence of the truncated CaM species provides a useful biomarker for the transient appearance of oxidized CaM.

  15. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    Science.gov (United States)

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  16. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Ursula Manuelpillai

    Full Text Available Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl(4 twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2 × 10(6 were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively. Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl(4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl(4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl(4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl(4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl(4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl(4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established

  17. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes.

    Science.gov (United States)

    Jourdan, Tony; Godlewski, Grzegorz; Cinar, Resat; Bertola, Adeline; Szanda, Gergő; Liu, Jie; Tam, Joseph; Han, Tiffany; Mukhopadhyay, Bani; Skarulis, Monica C; Ju, Cynthia; Aouadi, Myriam; Czech, Michael P; Kunos, George

    2013-09-01

    Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta cell failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insulin resistance through activation of peripheral CB1 receptors (CB₁Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB₁R signaling in beta cells, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB₁R-deficient (Cnr1(-/-)) or Nlrp3(-/-) mice, with the endocannabinoid anandamide. Peripheral CB₁R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB₁R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB₁R as a therapeutic target in T2DM.

  18. Preeruptive intracoronal resorption observed in 13 patients

    DEFF Research Database (Denmark)

    Kjær, Inger; Steiniche, Kirsten; Kortegaard, Ulla;

    2012-01-01

    The literature on preeruptive intracoronal resorption is sparse, comprising mainly reports of single patients. This study includes 13 patients with preeruptive intracoronal resorption, forwarded for consultation regarding diagnostics and etiology. The purposes were to determine which teeth are af...

  19. Identification and characterization of a non-interferon antileishmanial macrophage activating factor (antileishmanial MAF).

    Science.gov (United States)

    Van Niel, A; Zacks, S E; David, J R; Remold, H G; Weiser, W Y

    1988-01-01

    A non-interferon lymphokine elaborated from PHA and Con A-stimulated human T-cell hybridoma, T-CEMA, has been found to activate monocyte-derived macrophages for the intracellular killing of L. donovani (antileishmanial MAF). This T-cell hybridoma derived antileishmanial MAF which has an apparent mw of 65,000 and pI of 5.3-5.6, contains neither antiviral activity nor colony stimulating activity. Furthermore, antileishmanial MAF is not neutralized by anti-MIF, anti-IFN-gamma or anti-GM-CSF antibodies.

  20. Soluble macrophage-derived CD163 is a marker of disease activity and progression in early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Greisen, Stinne Ravn; Moller, H J; Stengaard-Pedersen, Kristian

    2011-01-01

    To investigate the expression of the soluble form of the resident macrophage marker CD163 (sCD163) and its association with core parameters for disease activity, including radiographic progression in early rheumatoid arthritis (RA).......To investigate the expression of the soluble form of the resident macrophage marker CD163 (sCD163) and its association with core parameters for disease activity, including radiographic progression in early rheumatoid arthritis (RA)....

  1. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China.

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-29

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m(-2) year(-1)) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.

  2. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m-2 year-1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.

  3. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bréchot

    Full Text Available BACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI. However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1 is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/- mice subjected to femoral artery excision, we report that tsp-1(-/- mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/- and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/- mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/- mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/- mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue

  4. Genome-wide analysis of antiviral signature genes in porcine macrophages at different activation statuses.

    Directory of Open Access Journals (Sweden)

    Yongming Sang

    Full Text Available Macrophages (MФs can be polarized to various activation statuses, including classical (M1, alternative (M2, and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV infection, we used RNA Sequencing (RNA-Seq for transcriptomic analysis of differentially expressed genes (DEGs. Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153-5,303 significant DEGs [false discovery rate (FDR ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS and interferon (IFNγ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20-50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis.

  5. Nitric oxide production by chicken macrophages activated by Acemannan, a complex carbohydrate extracted from Aloe vera.

    Science.gov (United States)

    Karaca, K; Sharma, J M; Nordgren, R

    1995-03-01

    Cultures of normal chicken spleen cells and HD11 line cells produce nitric oxide (NO) in response to Acemannan, a complex carbohydrate derived from the Aloe vera plant. Neither cell type produced detectable amounts of NO in response to similar concentrations of yeast mannan, another complex carbohydrate. Nitric oxide production was dose dependent and inhibitable by the nitric oxide synthase inhibitor NG-methyl-L-arginine. In addition, the production of NO was inhibited by preincubation of ACM with concanavalin A in a dose-dependent manner. These results suggest that ACM-induced NO synthesis may be mediated through macrophage mannose receptors, and macrophage activation may be accountable for some of the immunomodulatory effects of ACM in chickens.

  6. MACROPHAGE ACTIVATION SYNDROME AS A COMPLICATION OF SYSTEMIC JUVENILE IDIOPATHIC ARTHRITIS – CASE REPORT

    Directory of Open Access Journals (Sweden)

    Viktorija Kerin

    2014-05-01

    Full Text Available 800x600 Abstract Macrophage activation syndrome (MAS is a life-threatening complication of systemic juvenile idiopathic arthritis (SJIA. MAS is characterized by systemic inflammation caused by excessive or uncontrolled release of proinflammatory cytokines (cytokine storm. The diagnostic hallmark are hemophagocytic macrophages, that could be present in bone marrow, liver, spleen or lymph nodes. Clinical features are similar to a flare of the underlying rheumatic disease which makes early recognition and choice of the appropriate treatment difficult. Diagnosis is made according to the preliminary diagnostic guidelines for MAS complicating SJIA.We report a case of an 11 years old girl with MAS as an initial presentation of SJIA. She was successfully treated with high doses of glucocorticoid and cyclosporine. After discontinuation of glucocorticoid therapy she developed a new flare of the disease which was successfully treated with interleukin 1 blocking agent anakinra.         

  7. Serum lipoproteins attenuate macrophage activation and Toll-Like Receptor stimulation by bacterial lipoproteins

    Directory of Open Access Journals (Sweden)

    James Richard W

    2010-09-01

    Full Text Available Abstract Background Chlamydia trachomatis was previously shown to express a lipoprotein, the macrophage infectivity potentiator (Mip, exposed at the bacterial surface, and able to stimulate human primary monocytes/macrophages through Toll Like Receptor (TLR2/TLR1/TLR6, and CD14. In PMA-differentiated THP-1 cells the proinflammatory activity of Mip was significantly higher in the absence than in the presence of serum. The present study aims to investigate the ability of different serum factors to attenuate Mip proinflammatory activity in PMA-differentiated THP-1 cells and in primary human differentiated macrophages. The study was also extend to another lipoprotein, the Borrelia burgdorferi outer surface protein (OspA. The proinflammatory activity was studied through Tumor Necrosis Factor alpha (TNF-α and Interleukin (IL-8 release. Finally, TLR1/2 human embryonic kidney-293 (HEK-293 transfected cells were used to test the ability of the serum factors to inhibit Mip and OspA proinflammatory activity. Results In the absence of any serum and in the presence of 10% delipidated FBS, production of Mip-induced TNF-α and IL-8 in PMA-differentiated THP-1 cells were similar whereas they were significantly decreased in the presence of 10% FBS suggesting an inhibiting role of lipids present in FBS. In the presence of 10% human serum, the concentrations of TNF-α and IL-8 were 2 to 5 times lower than in the presence of 10% FBS suggesting the presence of more potent inhibitor(s in human serum than in FBS. Similar results were obtained in primary human differentiated macrophages. Different lipid components of human serum were then tested (total lipoproteins, HDL, LDL, VLDL, triglyceride emulsion, apolipoprotein (apoA-I, B, E2, and E3. The most efficient inhibitors were LDL, VLDL, and apoB that reduced the mean concentration of TNF-α release in Mip-induced macrophages to 24, 20, and 2%, respectively (p Conclusions These results demonstrated the ability of

  8. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    Science.gov (United States)

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  9. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  10. Aspirin inhibits LPS-induced macrophage activation via the NF-κB pathway.

    Science.gov (United States)

    Liu, Yitong; Fang, Silian; Li, Xiaoyan; Feng, Jie; Du, Juan; Guo, Lijia; Su, Yingying; Zhou, Jian; Ding, Gang; Bai, Yuxing; Wang, Songling; Wang, Hao; Liu, Yi

    2017-09-14

    Aspirin (acetylsalicylic acid, ASA) has been shown to improve bone marrow mesenchymal stem cell-based calvarial bone regeneration by promoting osteogenesis and inhibiting osteoclastogenesis. However, it remains unknown whether aspirin influences other immune cells during bone formation. In the present study, we investigated whether ASA treatment influenced macrophage activation during the LPS inducement. We found that ASA could downregulate the expressions of iNOS and TNF-α both in mouse peritoneum macrophages and RAW264.7 cells induced by LPS via the IκK/IκB/NF-κB pathway and a COX2/PGE2/EP2/NF-κB feedback loop, without affecting the expressions of FIZZ/YM-1/ARG1 induced by IL-4. Furthermore, we created a rat mandibular bone defect model and showed that ASA treatment improved bone regeneration by inhibiting LPS-induced macrophage activation in the early stages of inflammation. Taken together, our results indicated that ASA treatment was a feasible strategy for improving bone regeneration, particularly in inflammatory conditions.

  11. Insulin resistance in Alzheimer's disease (AD) mouse intestinal macrophages is mediated by activation of JNK.

    Science.gov (United States)

    Zhou, Y-L; Du, Y-F; Du, H; Shao, P

    2017-04-01

    Alzheimer's disease (AD) has been considered as a metabolic disorder disease, which closely related to insulin signaling impairment. Therefore, identifying the potential mechanism of insulin resistance is important for AD treatment. An APP/PS1 double transgenic AD mouse model was introduced to study insulin resistance in gut. The expressions of AD markers and key elements of insulin signaling were detected in ileum and intestinal macrophages of AD mice by immunohistochemistry. Furthermore, mouse intestinal macrophage cell line RAW264.7 was treated by Aβ25-35 or Aβ25-35 + insulin to explore the mechanism of insulin resistance in vitro. The expression of IR-β and the activation of cell signaling related proteins (Insulin receptor substrate 1 (IRS1), protein kinase B (AKT) and c-Jun N-terminal kinase (JNK)) in Aβ25-35-stimulated macrophages were performed via Western blotting. The expressions of IRS1, Aβ and Tuj in AD mice ileum were significantly different from WT mice (pinsulin could reverse these changes (pinsulin addition. Activation of JNK pathway played an important role in insulin resistance of AD mice, suggesting that inhibition of JNK pathway might be a new strategy toward resolving insulin resistance related diseases, such as AD.

  12. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  13. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation.

    Science.gov (United States)

    Miró-Mur, Francesc; Pérez-de-Puig, Isabel; Ferrer-Ferrer, Maura; Urra, Xabier; Justicia, Carles; Chamorro, Angel; Planas, Anna M

    2016-03-01

    Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke.

  14. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    Science.gov (United States)

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process.

  15. Pioglitazone Suppresses CXCR7 Expression To Inhibit Human Macrophage Chemotaxis through Peroxisome Proliferator-Activated Receptor γ.

    Science.gov (United States)

    Zhao, Duo; Zhu, Zhicheng; Li, Dan; Xu, Rihao; Wang, Tiance; Liu, Kexiang

    2015-11-17

    Cardiovascular disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Pioglitazone, the widely used thiazolidinedione, is shown to be efficient in the prevention of cardiovascular complications of T2DM. In this study, we report that pioglitazone inhibits CXCR7 expression and thus blocks chemotaxis in differentiated macrophage without perturbing cell viability or macrophage differentiation. In addition, pioglitazone-mediated CXCR7 suppression and chemotaxis inhibition occur via activating peroxisome proliferator-activated receptor γ (PPARγ) but not PPARα in differentiated macrophage. More importantly, pioglitazone therapy-induced PPARγ activation suppresses CXCR7 expression in human carotid atherosclerotic lesions. Collectively, our data demonstrate that pioglitazone suppresses CXCR7 expression to inhibit human macrophage chemotaxis through PPARγ.

  16. Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Andrea Nemethova

    Full Text Available BACKGROUND: The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR. This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. METHODS: Calcium transients ([Ca(2+]i in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. RESULTS: In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900 nm. The ATP induced [Ca(2+]i increase was significantly inhibited in 65% or 55% of macrophages by 100 µM or 10 µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist, mecamylamine (α3β4 nAChR-preferring antagonist, α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist. Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. CONCLUSION: This study is the first in situ demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition

  17. Apolipoprotein E inhibits toll-like receptor (TLR)-3- and TLR-4-mediated macrophage activation through distinct mechanisms.

    Science.gov (United States)

    Zhu, Yanjuan; Kodvawala, Ahmer; Hui, David Y

    2010-04-28

    Previous studies have shown that apoE (apolipoprotein E) expression in macrophages suppresses inflammatory responses; however, whether endogenously synthesized apoE acts intracellularly or after its secretion in suppressing macrophage inflammation remains unclear. The present study used the murine monocyte macrophage cell line RAW 264.7 to examine the influence of exogenous apoE on macrophage inflammatory responses induced by TLR (Toll-like receptor)-4 and TLR-3 agonists LPS (lipopolysaccharide) and poly(I-C) respectively. Results showed that exogenously added apoE suppressed the LPS and poly(I-C) induction of IL (interleukin)-6, IL-1beta and TNF-alpha (tumour necrosis factor-alpha) secretion by RAW 264.7 cells. The mechanism was related to apoE suppression of TLR-agonist-induced phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun. A peptide containing the tandem repeat sequence of the receptor-binding domain of apoE, apoE-(141-155)2, was similarly effective in inhibiting LPS- and poly(I-C)-induced macrophage inflammatory responses. Reductive methylation of lysine residues in apoE, which abolished its receptor-binding capability without affecting its ability to interact with HSPGs (heparin sulfate proteoglycans), inhibited the ability of apoE to suppress macrophage responses to LPS, but had no effect on apoE suppression of poly(I-C)-induced macrophage activation. The ability of apoE to suppress poly(I-C)-induced pro-inflammatory cytokine production was abolished by heparinase treatment of RAW 264.7 cells to remove cell-surface HSPGs. Taken together, these results indicate that exogenous apoE inhibits macrophage inflammatory responses to TLR-4 and TLR-3 agonists through distinct mechanisms related to receptor and HSPG binding respectively, and that these inhibitory effects converged on suppression of JNK and c-Jun activation which are necessary for macrophage activation.

  18. Antitumor activity and macrophage nitric oxide producing action of medicinal herb, Crassocephalum crepidioides

    Directory of Open Access Journals (Sweden)

    Tomimori Koh

    2012-06-01

    Full Text Available Abstract Background Crassocephalum crepidioides, a plant distributed in Okinawa Islands, is known in folk medicine; however, its anticancer activity has not been investigated. The aim of this study was to determine the in vitro and in vivo antitumor activities of C. crepidioides on murine Sarcoma 180 (S-180 and related molecular mechanisms. Methods The antitumor effect of C. crepidioides was evaluated in S-180-cell-bearing mice. Cell growth was assessed using a colorimetric assay. Nitrite and nitrate levels were measured by colorimetry. The expression levels of inducible NO synthase (iNOS in murine RAW264.7 macrophages was assessed by reverse transcriptase-polymerase chain reaction. Activation of iNOS promoter was detected by reporter gene. Activation of nuclear factor-κB (NF-κB was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling was analyzed using inhibitors of NF-κB and dominant-negative mutants, and Western blot analysis. Results C. crepidioides extract delayed tumor growth in S-180-bearing mice. However, it did not inhibit S-180 cell growth in vitro. Supernatant of cultured C. crepidioides-stimulated RAW264.7 macrophages was cytotoxic to S-180 cells. This cytotoxicity was associated with nitric oxide (NO production. NF-κB signaling pathway was crucial for the transcriptional activation of iNOS gene. Isochlorogenic acid, a component of C. crepidioides, induced NF-κB activation and iNOS expression. Conclusions The results highlight the oncolytic and immunopotentiation properties of C. crepidioides mediated through NF-κB-induced release of NO from macrophages.

  19. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  20. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK).

    Science.gov (United States)

    Chan, Kenny L; Pillon, Nicolas J; Sivaloganathan, Darshan M; Costford, Sheila R; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-07-03

    A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.

  1. Comparative phytochemical profiling and effects of Nerium oleander extracts on the activities of murine peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Dey Priyankar

    2016-01-01

    Full Text Available Nerium oleander is a medicinal plant. Apart from its ethnopharmacological uses, pharmacognostic studies have revealed several of its bioactivities. Previously we demonstrated that the phenolic and flavonoid rich extracts of oleander leaf, stem and root possess potent antioxidant and free radical scavenging activities. Moreover, the leaf extract actively modulates the Th1/Th2 cytokine balance and exerts anti-inflammatory activities on murine splenic lymphocytes. Therefore, the present study was designed to evaluate the effect of oleander leaf, stem and root extracts on phagocytosis and the free radical-related activities of murine peritoneal macrophages. In addition, phytochemical profiling was performed using gas chromatography-mass spectrometry (GC-MS. The results demonstrated that the increase in phagocytosis and decrease in myeloperoxidase (MPO were in the order of leaf>root>stem. The inhibition of cell adhesion, nitric oxide (NO and elevation of respiratory burst activity was in the order of leaf>stem>root. However, the bioactivities of the leaf extract were much high than those of the stem and root extracts. Phytochemical analysis also revealed the presence of several bioactive constituents in oleander extracts. Therefore, the present study demonstrated that oleander possesses the capacity to modulate macrophage activities and the bioactivities are attributed to the numerous phytochemicals identified in oleander extracts.

  2. The predominance of alternatively activated macrophages following challenge with cell wall peptide-polysaccharide after prior infection with Sporothrix schenckii.

    Science.gov (United States)

    Alegranci, Pamela; de Abreu Ribeiro, Livia Carolina; Ferreira, Lucas Souza; Negrini, Thais de Cássia; Maia, Danielle Cardoso Geraldo; Tansini, Aline; Gonçalves, Amanda Costa; Placeres, Marisa Campos Polesi; Carlos, Iracilda Zeppone

    2013-08-01

    Sporotrichosis is a subcutaneous mycosis that is caused by the dimorphic fungus Sporothrix schenckii. This disease generally occurs within the skin and subcutaneous tissues, causing lesions that can spread through adjacent lymphatic vessels and sometimes leading to systemic diseases in immunocompromised patients. Macrophages are crucial for proper immune responses against a variety of pathogens. Furthermore, macrophages can play different roles in response to different microorganisms and forms of activation, and they can be divided into "classic" or "alternatively" activated populations, as also known as M1 and M2 macrophages. M1 cells can lead to tissue injury and contribute to pathogenesis, whereas M2 cells promote angiogenesis, tissue remodeling, and repair. The aim of this study was to investigate the roles of M1 and M2 macrophages in a sporotrichosis model. Toward this end, we performed phenotyping of peritoneal exudate cells and evaluated the concomitant production of several immunomediators, including IL-12, IL-10, TGF-β, nitric oxide, and arginase-I activity, which were stimulated ex vivo with cell wall peptide-polysaccharide. Our results showed the predominance of the M2 macrophage population, indicated by peaks of arginase-I activity as well as IL-10 and TGF-β production during the 6th and 8th weeks after infection. These results were consistent with cellular phenotyping that revealed increases in CD206-positive cells over this period. This is the first report of the participation of M2 macrophages in sporotrichosis infections.

  3. Clinical technique for invasive cervical root resorption

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Machado Silveira

    2011-01-01

    Full Text Available This clinical case report describes the diagnosis and treatment of an external invasive cervical resorption. A 17-year-old female patient had a confirmed diagnosis of invasive cervical resorption class 4 by cone beam computerized tomography. Although, there was no communication with the root canal, the invasive resorption process was extending into the cervical and middle third of the root. The treatment of the cervical resorption of the lateral incisor interrupted the resorptive process and restored the damaged root surface and the dental functions without any esthetic sequelae. Both the radiographic examination and computed tomography are imperative to reveal the extent of the defect in the differential diagnosis.

  4. NOD2 Contributes to Porphyromonas gingivalis–induced Bone Resorption

    Science.gov (United States)

    Prates, T.P.; Taira, T.M.; Holanda, M.C.; Bignardi, L.A.; Salvador, S.L.; Zamboni, D.S.; Cunha, F.Q.; Fukada, S.Y.

    2014-01-01

    The NOD-like receptors are cytoplasmic proteins that sense microbial by-products released by invasive bacteria. Although NOD1 and NOD2 are functionally expressed in cells from oral tissues and play a role triggering immune responses, the role of NOD2 receptor in the bone resorption and in the modulation of osteoclastogenesis is still unclear. We show that in an experimental model of periodontitis with Porphyromonas gingivalis W83, NOD2-/- mice showed lower bone resorption when compared to wild type. Quantitative polymerase chain reaction analysis revealed that wild-type infected mice showed an elevated RANKL/OPG ratio when compared to NOD2-/- infected mice. Moreover, the expression of 2 osteoclast activity markers—cathepsin K and matrix metalloproteinase 9—was significantly lower in gingival tissue from NOD2-/- infected mice compared to WT infected ones. The in vitro study reported an increase in the expression of the NOD2 receptor 24 hr after stimulation of hematopoietic bone marrow cells with M-CSF and RANKL. We also evaluated the effect of direct activation of NOD2 receptor on osteoclastogenesis, by the activation of this receptor in preosteoclasts culture, with different concentrations of muramyl dipeptide. The results show no difference in the number of TRAP-positive cells. Although it did not alter the osteoclasts differentiation, the activation of NOD2 receptor led to a significant increase of cathepsin K expression. We confirm that this enzyme was active, since the osteoclasts resorption capacity was enhanced by muramyl dipeptide stimulation, evaluated in osteoassay plate. These results show that the lack of NOD2 receptor impairs the bone resorption, suggesting that NOD2 receptor could contribute to the progression of bone resorption in experimental model of periodontitis. The stimulation of NOD2 by its agonist, muramyl dipeptide, did not affect osteoclastogenesis, but it does favor the bone resorption capacity identified by increased osteoclast

  5. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages.

    Science.gov (United States)

    Clark, Kristopher; MacKenzie, Kirsty F; Petkevicius, Kasparas; Kristariyanto, Yosua; Zhang, Jiazhen; Choi, Hwan Geun; Peggie, Mark; Plater, Lorna; Pedrioli, Patrick G A; McIver, Ed; Gray, Nathanael S; Arthur, J Simon C; Cohen, Philip

    2012-10-16

    Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of anti-inflammatory molecules, such as IL-10, and low levels of proinflammatory cytokines, like IL-12, and are important for the resolution of inflammatory responses. A central problem in this area is to understand how the formation of regulatory macrophages can be promoted at sites of inflammation to prevent and/or alleviate chronic inflammatory and autoimmune diseases. Here, we demonstrate that the salt-inducible kinases (SIKs) restrict the formation of regulatory macrophages and that their inhibition induces striking increases in many of the characteristic markers of regulatory macrophages, greatly stimulating the production of IL-10 and other anti-inflammatory molecules. We show that SIK inhibitors elevate IL-10 production by inducing the dephosphorylation of cAMP response element-binding protein (CREB)-regulated transcriptional coactivator (CRTC) 3, its dissociation from 14-3-3 proteins and its translocation to the nucleus where it enhances a gene transcription program controlled by CREB. Importantly, the effects of SIK inhibitors on IL-10 production are lost in macrophages that express a drug-resistant mutant of SIK2. These findings identify SIKs as a key molecular switch whose inhibition reprograms macrophages to an anti-inflammatory phenotype. The remarkable effects of SIK inhibitors on macrophage function suggest that drugs that target these protein kinases may have therapeutic potential for the treatment of inflammatory and autoimmune diseases.

  6. Inhibition of macrophage activation by the myxoma virus M141 protein (vCD200).

    Science.gov (United States)

    Zhang, Leiliang; Stanford, Marianne; Liu, Jia; Barrett, Catherine; Jiang, Lei; Barclay, A Neil; McFadden, Grant

    2009-09-01

    The M141 protein of myxoma virus (MYXV) is a viral CD200 homolog (also called vOX-2) that inhibits macrophage activation in infected rabbits. Here, we show that murine myeloid RAW 264.7 cells became activated when infected with MYXV in which the M141 gene was deleted (vMyx-M141KO) but not with the parental wild-type MYXV. Moreover, transcript and protein levels of tumor necrosis factor and granulocyte colony-stimulating factor were rapidly upregulated in an NF-kappaB-dependent fashion in the RAW 264.7 cells infected with vMyx-M141KO. M141 protein is present in the virion and counteracts this NF-kappaB activation pathway upon infection with the wild-type MYXV. Our data suggest that upregulation of these classic macrophage-related proinflammatory cytokine markers following infection of myeloid cells with the M141-knockout MYXV is mediated via the rapid activation of the cellular NF-kappaB pathway.

  7. A proteomic insight into the effects of the immunomodulatory hydroxynaphthoquinone lapachol on activated macrophages.

    Science.gov (United States)

    Oliveira, Renato A S; Correia-Oliveira, Janaina; Tang, Li-Jun; Garcia, Rodolfo C

    2012-09-01

    We report the effect of an immunomodulatory and anti-mycobacterial naphthoquinone, lapachol, on the bi-dimensional patterns of protein expression of toll-like receptor 2 (TLR2)-agonised and IFN-γ-treated THP-1 macrophages. This non-hypothesis driven proteomic analysis intends to shed light on the cellular functions lapachol may be affecting. Proteins of both cytosol and membrane fractions were analysed. After quantification of the protein spots, the protein levels corresponding to macrophages activated in the absence or presence of lapachol were compared. A number of proteins were identified, the levels of which were appreciably and significantly increased or decreased as a result of the action of lapachol on the activated macrophages: cofilin-1, fascin, plastin-2, glucose-6-P-dehydrogenase, adenylyl cyclase-associated protein 1, pyruvate kinase, sentrin-specific protease 6, cathepsin B, cathepsin D, cytosolic aminopeptidase, proteasome β type-4 protease, tryptophan-tRNA ligase, DnaJ homolog and protein disulphide isomerase. Altogether, the comparative analysis performed indicates that lapachol could be hypothetically causing an impairment of cell migration and/or phagocytic capacity, an increase in NADPH availability, a decrease in pyruvate concentration, protection from proteosomal protein degradation, a decrease in lysosomal protein degradation, an impairment of cytosolic peptide generation, and an interference with NOS2 activation and grp78 function. The present proteomic results suggest issues that should be experimentally addressed ex- and in-vivo, to establish more accurately the potential of lapachol as an anti-infective drug. This study also constitutes a model for the pre-in-vivo evaluation of drug actions.

  8. Biocompatibility and resorption of a brushite calcium phosphate cement.

    Science.gov (United States)

    Theiss, Felix; Apelt, Detlef; Brand, Bastian; Kutter, Annette; Zlinszky, Katalin; Bohner, Marc; Matter, Sandro; Frei, Christian; Auer, Joerg A; von Rechenberg, Brigitte

    2005-07-01

    A hydraulic calcium phosphate cement with beta-tricalcium phosphate (TCP) granules embedded in a matrix of dicalcium phosphate dihydrate (DCPD) was implanted in experimentally created defects in sheep. One type of defect consisted of a drill hole in the medial femoral condyle. The other, partial metaphyseal defect was located in the proximal aspect of the tibia plateau and was stabilized using a 3.5 mm T-plate. The bone samples of 2 animals each per group were harvested after 2, 4, 6 and 8 weeks. Samples were evaluated for cement resorption and signs of immediate reaction, such as inflammation, caused by the cement setting in situ. Differences regarding these aspects were assessed for both types of defects using macroscopical, radiological, histological and histomorphometrical evaluations. In both defects the brushite matrix was resorbed faster than the beta-TCP granules. The resorption front was followed directly by a front of new bone formation, in which residual beta-TCP granules were embedded. Cement resorption occurred through (i) extracellular liquid dissolution with cement disintegration and particle formation, and (ii) phagocytosis of the cement particles through macrophages. Signs of inflammation or immunologic response leading to delayed new bone formation were not noticed at any time. Cement degradation and new bone formation occurred slightly faster in the femur defects.

  9. Spontaneous resorption of a large cervical herniated nucleus pulposus.

    Science.gov (United States)

    Cvetanovich, Gregory L; Hsu, Andrew R; Frank, Rachel M; An, Howard S; Andersson, Gunnar B

    2014-07-01

    The majority of patients with symptomatic herniated discs can be successfully and conservatively managed and can achieve clinical improvement without surgical intervention. Resorption of the herniated nucleus pulposus (HNP) is 1 conservative mechanism for clinical improvement. We present the case of a 76-year-old healthy man with acute cervical radicular right arm pain and positive Spurling test. Magnetic resonance imaging (MRI) showed a large disc extrusion behind the C6 vertebral body, causing severe central canal stenosis and right-greater-than-left foraminal stenosis. The patient did not want surgical intervention, and his symptoms resolved with conservative treatment. A follow-up MRI 7 months after his initial presentation showed almost complete resorption of the herniated disc. The patient returned to his normal activities and has not had recurrence of symptoms for 2 years. This report provides an interesting example of complete resorption of a large, extruded cervical herniated disc in a symptomatic patient and a review of the literature on resorption of herniated discs. The review suggests that larger herniations with an epidural location (penetration of the posterior longitudinal ligament) have a greater chance of resorption.

  10. The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanling; Xu, Sanpeng; Xiao, Fei; Xiong, Yan; Wang, Xiaojin; Gao, Sui; Yan, Weiming [Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Ning, Qin, E-mail: qning@tjh.tjmu.edu.cn [Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2010-05-28

    Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of 'immune coagulation' and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.

  11. Macrophage biospecific extraction and HPLC-ESI-MSn analysis for screening immunological active components in Smilacis Glabrae Rhizoma.

    Science.gov (United States)

    Zheng, Zhao-Guang; Duan, Ting-Ting; He, Bao; Tang, Dan; Jia, Xiao-Bin; Wang, Ru-Shang; Zhu, Jia-Xiao; Xu, You-Hua; Zhu, Quan; Feng, Liang

    2013-04-15

    A cell-permeable membrane, as typified by Transwell insert Permeable Supports, permit accurate repeatable invasion assays, has been developed as a tool for screening immunological active components in Smilacis Glabrae Rhizoma (SGR). In this research, components in the water extract of SGR (ESGR) might conjugate with the receptors or other targets on macrophages which invaded Transwell inserts, and then the eluate which contained components biospecific binding to macrophages was identified by HPLC-ESI-MS(n) analysis. Six compounds, which could interact with macrophages, were detected and identified. Among these compounds, taxifolin (2) and astilbin (4) were identified by comparing with the chromatography of standards, while the four others including 5-O-caffeoylshikimic acid (1), neoastilbin (3), neoisoastilbin (5) and isoastilbin (6), were elucidated by their structure clearage characterizations of tandem mass spectrometry. Then compound 1 was isolated and purified from SGR, along with 2 and 4, was applied to the macrophage migration and adhesion assay in HUVEC (Human Umbilical Vein Endothelial Cells) -macrophages co-incultured Transwell system for immunological activity assessment. The results showed that compounds 1, 2 and 4 with concentration of 5μM (H), 500nM (M) and 50nM (L) could remarkably inhibit the macrophage migration and adhesion (Vs AGEs (Advanced Glycation End Produces) group, 1-L, 2-H and 4-L groups: pactive components from Traditional Chinese Medicine.

  12. Physiological and pathological factors and mechanisms in the process of root resorption in primary teeth

    Directory of Open Access Journals (Sweden)

    Bianca Zimmermann Santos

    2010-07-01

    Full Text Available Introduction: Tooth resorption is essential in the process of root resorption in primary teeth. However, pathological root resorption, mainly the inflammatory one, is a consequence and/or complication of several clinical conditions, such as dental trauma and periapical inflammatory lesions from dental caries, thus becoming a common cause of tooth loss. Objective: To present and discuss a literature review regarding the mechanisms of physiological and inflammatory pathological root resorption in primary teeth, emphasizing their biochemical and cellular events. Literature review: The odontoclasts cells are responsible for resorption of dental tissues, and they are influenced by several stimuli and molecular signals derived from cytokines, neuropeptides, hormones and degradation products released when tissue is injured. However, so far it is not clear what leads to the differentiation of the precursor cells of odontoclasts, what gives them the signal to start the resorption in a specific place and time (especially in primary teeth and why they are activated in some pathological conditions,but not in others.Conclusion: The knowledge regarding molecular mechanisms and factors that regulate the process of root resorption is still meager.Research in this area is of great relevance,since new knowledge about the molecular pathway(s involved in root resorption may allow the development of different therapies, more biological ones, in order to control or prevent resorption, thus preventing tooth loss and its consequences.

  13. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions.

    Science.gov (United States)

    Srivastava, Ritesh K; Li, Changzhao; Wang, Yong; Weng, Zhiping; Elmets, Craig A; Harrod, Kevin S; Deshane, Jessy S; Athar, Mohammad

    2016-10-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4(+/+) wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4(+/-) heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca(++) homeostasis. ATO induces Ca(++)-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca(++) homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic.

  14. Post-transcriptional control of NLRP3 inflammasome activation in colonic macrophages

    Science.gov (United States)

    Filardy, Alessandra A.; He, Jianping; Bennink, Jack; Yewdell, Jonathan; Kelsall, Brian L.

    2016-01-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes yet produce regulatory cytokines. Activity of the NLRP3 inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation due to a remarkable level of post-transcriptional control of NLRP3 and proIL-1β protein expression, which was also seen for TNF-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein, but not mRNA levels in resident cMPs implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic post-transcriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation; findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases. PMID:26627461

  15. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages

    Directory of Open Access Journals (Sweden)

    L. M. Rocha-Ramírez

    2017-01-01

    Full Text Available Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214 showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation. Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.

  16. Overcrowding stress decreases macrophage activity and increases Salmonella Enteritidis invasion in broiler chickens.

    Science.gov (United States)

    Gomes, A V S; Quinteiro-Filho, W M; Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Baskeville, E; Akamine, A T; Astolfi-Ferreira, C S; Ferreira, A J P; Palermo-Neto, J

    2014-01-01

    Overcrowding stress is a reality in the poultry industry. Chickens exposed to long-term stressful situations present a reduction of welfare and immunosuppression. We designed this experiment to analyse the effects from overcrowding stress of 16 birds/m(2) on performance parameters, serum corticosterone levels, the relative weight of the bursa of Fabricius, plasma IgA and IgG levels, intestinal integrity, macrophage activity and experimental Salmonella Enteritidis invasion. The results of this study indicate that overcrowding stress decreased performance parameters, induced enteritis and decreased macrophage activity and the relative bursa weight in broiler chickens. When the chickens were similarly stressed and infected with Salmonella Enteritidis, there was an increase in feed conversion and a decrease in plasma IgG levels in the stressed and Salmonella-infected birds. We observed moderate enteritis throughout the duodenum of chickens stressed and infected with Salmonella. The overcrowding stress decreased the macrophage phagocytosis intensity and increased Salmonella Enteritidis counts in the livers of birds challenged with the pathogenic bacterium. Overcrowding stress via the hypothalamic-pituitary-adrenal axis that is associated with an increase in corticosterone and enteritis might influence the quality of the intestinal immune barrier and the integrity of the small intestine. This effect allowed pathogenic bacteria to migrate through the intestinal mucosa, resulting in inflammatory infiltration and decreased nutrient absorption. The data strengthen the hypothesis that control of the welfare of chickens and avoidance of stress from overcrowding in poultry production are relevant factors for the maintenance of intestinal integrity, performance and decreased susceptibility to Salmonella infection.

  17. Different cell death modes of pancreatic acinar cells on macrophage activation in rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Tao; LIU Tie-fu; XUE Dong-bo; SUN Bei; SHI Li-jun

    2008-01-01

    Background The pathogenesis of acute pancreatitis is complex and largely unclear. The aim of this study was to explore the relationship between modes of cell death in pancreatic acinar cells, the release of cell contents and the inflammatory response of macrophagas.Methods Our experiment included four groups: group A (the control group), group B (AR42J cells overstimulated by caerulein), group C (AR42J cells treated with lipopolysaccharide and caerulein), and group D (AR42J cells treated with octreotide and caerulein). Apoptosis and oncosis, and the release of amylase and lactate dehydrogenase (LDH) from AR42J cells were detected. Rat macrophages were stimulated by 1 ml supematant of culture medium of AR42J cells.Finally, NF-кB activation and TNF-α and IL-1β secretion by macrophages were detected.Results Oncotlc cells in group C increased while apoptctic cells decreased (P <0.05); cells in group D had the inverse reaction. The release of amylase and LDH changed directly with the occurrence of oncosis. The transcription factor NF-кB was activated and secretion of TNF-α and IL-1β were significantly higher in group C than in group B (P <0.05); in group D, these actions were significantly lower than in group B (P<0.05). This trend was in line with changes in amylase and LDH production.Conclusion There is a close relationship between modes of pancreatic acinar cell death, the release of cell contents and the inflammatory reaction of macrophages.

  18. A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis.

    Science.gov (United States)

    Feng, Yanxian; Li, Qiu; Wu, Dang; Niu, Yiming; Yang, Cheng; Dong, Lei; Wang, Chunming

    2017-07-01

    Biomaterials scaffolds designed for many regenerative applications are expected to support neo-vascularisation, which is now being hampered by two limitations - the instability of exogenous growth factors (GFs) that are delivered to promote angiogenesis; and the loss of extracellular matrix components that bind and stabilise GFs. Here, we report the design and evaluation of an injectable hydrogel system aimed at restoring a GF-binding microenvironment to enhance the pro-angiogenic functions of endogenous GFs. This gel comprises two polysaccharides with their unique bioactivities: Konjac glucomannan (KGM) as the building block of the gel scaffold, for its demonstrated capacity to activate macrophages/monocytes to secrete pro-angiogenic/-mitogenic GFs; and heparin (Hep), a representative glycosaminoglycan molecule that binds numerous pro-angiogenic GFs, as functional moieties to sequester the macrophage-produced GFs. Modified with tyramine (TA) groups, the two polysaccharides can be co-polymerised and rapidly form into hydrogel upon enzyme catalysis. The designed KGM-TA/Hep-TA hydrogel successfully preserves the macrophage-activating function and GF-binding affinity of the two components, respectively, and, once subcutaneously implanted, effectively sequestered the locally-produced GFs in situ and promote the formation and maturation of blood vessels in mice. In summary, the designed hydrogel system demonstrates a feasible approach to stimulate the production and harness the function of endogenous GFs for inducing blood vessel formation in vivo, without the addition of any exogenous proteins. This design may provide an innovative, open platform to promote vascularisation for various regenerative purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3

    Science.gov (United States)

    Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang

    2016-09-01

    An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.

  20. Effect of cyhalothrin on Ehrlich tumor growth and macrophage activity in mice

    Directory of Open Access Journals (Sweden)

    W.M. Quinteiro-Filho

    2009-10-01

    Full Text Available Cyhalothrin, a pyrethroid insecticide, induces stress-like symptoms, increases c-fos immunoreactivity in the paraventricular nucleus of the hypothalamus, and decreases innate immune responses in laboratory animals. Macrophages are key elements in cellular immune responses and operate at the tumor-host interface. This study investigated the relationship among cyhalothrin effects on Ehrlich tumor growth, serum corticosterone levels and peritoneal macrophage activity in mice. Three experiments were done with 10 experimental (single gavage administration of 3.0 mg/kg cyhalothrin daily for 7 days and 10 control (single gavage administration of 1.0 mL/kg vehicle of cyhalothrin preparation daily for 7 days isogenic BALB/c mice in each experiment. Cyhalothrin i increased Ehrlich ascitic tumor growth after ip administration of 5.0 x 106 tumor cells, i.e., ascitic fluid volume (control = 1.97 ± 0.39 mL and experimental = 2.71 ± 0.92 mL; P < 0.05, concentration of tumor cells/mL in the ascitic fluid (control = 111.95 ± 16.73 x 106 and experimental = 144.60 ± 33.18 x 106; P < 0.05, and total number of tumor cells in the ascitic fluid (control = 226.91 ± 43.22 x 106 and experimental = 349.40 ± 106.38 x 106; P < 0.05; ii increased serum corticosterone levels (control = 200.0 ± 48.3 ng/mL and experimental = 420.0 ± 75.5 ng/mL; P < 0.05, and iii decreased the intensity of macrophage phagocytosis (control = 132.3 ± 19.7 and experimental = 116.2 ± 4.6; P < 0.05 and oxidative burst (control = 173.7 ± 40.8 and experimental= 99.58 ± 41.7; P < 0.05 in vitro in the presence of Staphylococcus aureus. These data provide evidence that cyhalothrin simultaneously alters host resistance to Ehrlich tumor growth, hypothalamic-pituitary-adrenocortical (HPA axis function, and peritoneal macrophage activity. The results are discussed in terms of data suggesting a link between stress, HPA axis activation and resistance to tumor growth.

  1. HIV-1 tat and rev upregulates osteoclast bone resorption

    Directory of Open Access Journals (Sweden)

    Nicholas Chew

    2014-11-01

    resorption pit volume by 11 and 6%, respectively. Tat protein treatment was associated with upregulation of NFATc1 and cathepsin K mRNA expression by 20 and 15%, respectively. Incubation with tat and rev led to a dose-dependent increase in intracellular ROS production in the monocytes and OC precursors and significant upregulation in TNFα cytokine production by the OC precursors. Conclusions: In addition to their effect of OC differentiation, we demonstrated the effects of tat and rev on OC resorption. HIV tat and rev are both biologically active in driving a pro-osteoclastic phenotype.

  2. Peculiarities of the bone tissue resorption under microgravity conditions

    Science.gov (United States)

    Rodionova, N.; Oganov, V.; Polkovenko, O.; Nitsevich, T.

    The actual problem - peculiarities of resorptive processes in the spongiose of thingbones - we studied with the use of tranmissive electron microscopy in experiments on rats (American space station SLS-2) and on monkeys Macaca mulatt? (BION-11). Animals were onboard during 2 weeks. There was established, that the resorption happen with osteoclasts participation. They can create groups of cells. In the osteoclasts population we indicated not typical for the control (ground experiment) "giant" cells, which have on ultrathin sections 5-6 nuclei, many lysosomes, well developed "light" zone and "brush-border". The destruction of minera lized matrix in bone lacunas also happens by the way of osteolytic activity of osteocytes. Lysosome ferments of osteocytes are secreted by the eczocytosis. The osteocytic osteolysis, as well as the osteoclastic one can be seen as a physiological, gormon-dependent mechanism of resorption. The presence of a considerable number of neutrophiles, which enter in some zones of resorption is also typical. When these neutrophiles destruct, they release lysosomic ferments that dissolve the bone matrix. In some zones of resorption we noted the presence of the row from collagen fibrils, which loosed crystals , on mineralized matrix borders. The cell detritus is noted in zones of surface dissolving among crystallic conglomerates. It certificates the processes of osteogenic cells destruction that happen here. So, under the microgravity conditions in zones of adaptive remodeling of the spongiose the processes of the bone tissue resorption happen by some ways, namely: by the functional activization of osteoclasts; by the osteocytic osteolysis increasing; as a result of hydrolytic activity of neutrophiles, entering in these zones, and also by the local demineralization and further destruction of bone matrix surface zones.

  3. Prolonged Ischemia Triggers Necrotic Depletion of Tissue-Resident Macrophages To Facilitate Inflammatory Immune Activation in Liver Ischemia Reperfusion Injury.

    Science.gov (United States)

    Yue, Shi; Zhou, Haoming; Wang, Xuehao; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhai, Yuan

    2017-05-01

    Although mechanisms of immune activation against liver ischemia reperfusion (IR) injury (IRI) have been studied extensively, questions regarding liver-resident macrophages, that is, Kupffer cells (KCs), remain controversial. Recent progress in the biology of tissue-resident macrophages implicates homeostatic functions of KCs. This study aims to dissect responses and functions of KCs in liver IRI. In a murine liver partial warm ischemia model, we analyzed liver-resident versus infiltrating macrophages by FACS and immunofluorescence staining. Our data showed that liver immune activation by IR was associated with not only infiltrations/activations of peripheral macrophages, but also necrotic depletion of KCs. Inhibition of receptor-interacting protein 1 (RIP1) by necrostatin-1s protected KCs from ischemia-induced depletion, resulting in the reduction of macrophage infiltration, suppression of proinflammatory immune activation, and protection of livers from IRI. The depletion of KCs by clodronate liposomes abrogated the effect of necrostatin-1s. Additionally, liver reconstitutions with KCs postischemia exerted anti-inflammatory/cytoprotective effects against IRI. These results reveal a unique response of KCs against liver IR, that is, RIP1-dependent necrosis, which constitutes a novel mechanism of liver inflammatory immune activation in the pathogenesis of liver IRI. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Management of Root Resorption Using Chemical Agents: A Review

    Science.gov (United States)

    Mohammadi, Zahed; C. Cehreli, Zafer; Shalavi, Sousan; Giardino, Luciano; Palazzi, Flavio; Asgary, Saeed

    2016-01-01

    Root resorption (RR) is defined as the loss of dental hard tissues because of clastic activity inside or outside of tooth the root. In the permanent dentition, RR is a pathologic event; if untreated, it might result in the premature loss of the affected tooth. Several hypotheses have been suggested as the mechanisms of root resorption such as absence of the remnants of Hertwig's epithelial root sheath (HERS) and the absence of some intrinsic factors in cementum and predentin such as amelogenin or osteoprotegerin (OPG). It seems that a barrier is formed by the less-calcified intermediate cementum or the cementodentin junction that prevents external RR. There are several chemical strategies to manage root resorption. The purpose of this paper was to review several chemical agents to manage RR such as tetracycline, sodium hypochlorite, acids (citric acid, phosphoric acid, ascorbic acid and hydrochloric acid), acetazolamide, calcitonin, alendronate, fluoride, Ledermix and Emdogain. PMID:26843869

  5. Bone resorption and mineral excretion in rats during spaceflight

    Science.gov (United States)

    Cann, C. E.; Adachi, R. R.

    1983-01-01

    Bone resorption was measured directly in flight and synchronous control rats during COSMOS 1129. Continuous tracer administration techniques were used, with replacement of dietary calcium with isotopically enriched Ca-40 and measurement by neutron activation analysis of the Ca-48 released by the skeleton. There is no large change in bone resorption in rats at the end of 20 days of spaceflight as has been found for bone formation. Based on the time course of changes, the measured 20-25 percent decrease in resorption is probably secondary to a decrease in total body calcium turnover. The excretion of sodium, potassium, and zinc all increase during flight, sodium and potassium to a level four to five times control values.

  6. [Root resorption associated to orthodontic treatment: a clinical case].

    Science.gov (United States)

    Houb-Dine, Afaf; Rerhrhaye, Mariam; Ismaili, Zouheir; Rerhrhaye, Wiam

    2011-12-01

    Root resorption associated to orthodontic treatment is of multiple etiologies and a non intentional iatrogenic side effect which exists in almost all the orthodontic treatment. This clinical case of an apparently healthy patient illustrates the occurrence during the orthodontic treatment of a root resorption interesting the left central incisor, victims of previous traumatism and presenting a moderate periodontal attachment loss. The orthodontic treatment was carried out with light and continuous forces and a per-orthodontic periodontal maintenance in respect of periodontal requirements. As soon as the root resorption on the left central incisive was diagnosed, the active orthodontic treatment was interrupted in order to stabilize the lesion and a regular clinical and radiological monitoring was established.

  7. Nrf2 regulates PU.1 expression and activity in the alveolar macrophage.

    Science.gov (United States)

    Staitieh, Bashar S; Fan, Xian; Neveu, Wendy; Guidot, David M

    2015-05-15

    Alveolar macrophage (AM) immune function depends on the activation of the transcription factor PU.1 by granulocyte macrophage colony-stimulating factor. We have determined that chronic alcohol ingestion dampens PU.1 signaling via an unknown zinc-dependent mechanism; specifically, although PU.1 is not known to be a zinc-dependent transcription factor, zinc treatment reversed alcohol-mediated dampening of PU.1 signaling. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a zinc-dependent basic leucine zipper protein essential for antioxidant defenses, is also impaired by chronic alcohol ingestion and enhanced by zinc treatment. We hypothesized that the response of PU.1 to zinc treatment may result from the action of Nrf2 on PU.1. We first performed Nrf2/PU.1 protein coimmunoprecipitation on a rat AM cell line (NR8383) and found no evidence of protein-protein interactions. We then found evidence of increased Nrf2 binding to the PU.1 promoter region by chromatin immunoprecipitation. We next activated Nrf2 using either sulforaphane or an overexpression vector and inhibited Nrf2 with silencing RNA to determine whether Nrf2 could actively regulate PU.1. Nrf2 activation increased protein expression of both factors as well as gene expression of their respective downstream effectors, NAD(P)H dehydrogenase[quinone] 1 (NQO1) and cluster of differentiation antigen-14 (CD14). In contrast, Nrf2 silencing decreased the expression of both proteins, as well as gene expression of their effectors. Activating and inhibiting Nrf2 in primary rat AMs resulted in similar effects. Taken together, these findings suggest that Nrf2 regulates the expression and activity of PU.1 and that antioxidant response and immune activation are coordinately regulated within the AM.

  8. HIV-1 Nef impairs key functional activities in human macrophages through CD36 downregulation.

    Directory of Open Access Journals (Sweden)

    Eleonora Olivetta

    Full Text Available Monocytes and macrophages utilize the class A and B scavenger receptors to recognize and perform phagocytosis of invading microbes before a pathogen-specific immune response is generated. HIV-1 Nef protein affects the innate immune system impairing oxidative burst response and phagocytic capacity of macrophages. Our data show that exogenous recombinant myristoylated Nef protein induces a marked CD36 downregulation in monocytes from Peripheral Blood Mononuclear Cells, in Monocyte-Derived Macrophages (MDMs differentiated by cytokines and in MDMs contained in a mixed culture obtained expanding PBMCs under Human Erythroid Massive Amplification condition. Under the latter culture condition we identify three main populations after 6 days of expansion: lymphocytes (37.8 ± 14.7%, erythroblasts (46.7±6.1% and MDMs (15.7 ± 7.5%. The Nef addition to the cell culture significantly downregulates CD36 expression in MDMs, but not in erythroid cells. Furthermore, CD36 inhibition is highly specific since it does not modify the expression levels of other MDM markers such as CD14, CD11c, CD86, CD68, CD206, Toll-like Receptor 2 and Toll-like Receptor 4. Similar results were obtained in MDMs infected with VSV-G pseudotyped HIV-1-expressing Nef. The reduced CD36 membrane expression is associated with decrease of correspondent CD36 mRNA transcript. Furthermore, Nef-induced CD36 downregulation is linked to both impaired scavenger activity with reduced capability to take up oxidized lipoproteins and to significant decreased phagocytosis of fluorescent beads and GFP-expressing Salmonella tiphymurium. In addition we observed that Nef induces TNF-α release in MDMs. Although these data suggest a possible involvement of TNF-α in mediating Nef activity, our results exclude a possible relationship between Nef-induced TNF-α release and Nef-mediated CD36 downregulation. The present work shows that HIV-1 Nef protein may have a role in the strategies elaborated by HIV-1 to

  9. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages

    Science.gov (United States)

    Wu, Shengqian Q; Otero, Miguel; Unger, Frank M; Goldring, Mary B; Phrutivorapongkul, Ampai; Chiari, Catharina; Kolb, Alexander; Viernstein, Helmut; Toegel, Stefan

    2012-01-01

    Aim of the study Caesalpinia sappan is a common remedy in Traditional Chinese Medicine and possesses diverse biological activities including anti-inflammatory properties. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. In order to provide a scientific basis for the applicability of Caesalpinia sappan in arthritic diseases, the present study aimed to assess the effects of an ethanolic Caesalpinia sappan extract (CSE) on human chondrocytes and macrophages. Materials and Methods Primary human chondrocytes were isolated from cartilage specimens of OA patients. Primary cells, SW1353 chondrocytes and THP-1 macrophages were serum-starved and pretreated with different concentrations of CSE prior to stimulation with 10 ng/ml of interleukin-1beta (IL-1ß) or lipopolysaccharide (LPS). Following viability tests, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) were evaluated by Griess assay and ELISA, respectively. Using validated real-time PCR assays, mRNA levels of IL-1ß, TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified. SW1353 cells were cotransfected with a COX-2 luciferase reporter plasmid and nuclear factor-kappa-B (NF-κB) p50 and p65 expression vectors in the presence or absence of CSE. Results CSE dose-dependently inhibited the expression of pro-inflammatory cytokines IL-1ß and TNF-α in IL-1ß-stimulated chondrocytes and LPS-stimulated THP-1 macrophages. CSE further suppressed the synthesis of NO in primary OA chondrocytes by blocking iNOS mRNA expression. The inhibition of COX-2 transcription was found to be related with the CSE inhibition of the p65/p50-driven transactivation of the COX-2 promoter. Conclusions The present report is first to demonstrate the anti-inflammatory activity of CSE in an in vitro cell model of joint inflammation. CSE can effectively abrogate the IL-1ß-induced over-expression of

  10. Macrophage activation syndrome in a patient with systemic onset of the juvenile idiopathic arthritis.

    Science.gov (United States)

    Jain, Deepak; Aggarwal, Hari K; Rao, Avinash; Mittal, Anshul; Jain, Promil

    2016-01-01

    Systemic onset juvenile idiopathic arthritis (sJIA) is defined as arthritis affecting one or more joint usually in the juvenile age group (< 16 years of age) with or preceded by fever of at least 2 weeks duration that is documented to be daily ("quotidian") for at least 3 days which may be associated with evanescent (non-fixed) erythematous rash or generalized lymph node enlargement or hepatomegaly/splenomegaly/both or serositis. Macrophage activation syndrome (MAS) is a life-threatening complication of sJIA marked by sudden onset of non-remitting high fever, profound depression in all three blood cell lines (i.e. leukopenia, anemia, and thrombocytopenia), hepatosplenomegaly, lymphadenopathy, and elevated serum liver enzyme levels. In children with systemic juvenile idiopathic arthritis, the clinical picture may mimic sepsis or an exacerbation of the underlying disease. We report a case of a 16-year-old female patient presenting with high grade fever with joint pains and generalized weakness which proved to be systemic onset juvenile idiopathic arthritis with macrophage activation syndrome after ruling out all other differential diagnoses and responded well to intravenous steroids.

  11. In vivo macrophage activation in chickens with Acemannan, a complex carbohydrate extracted from Aloe vera.

    Science.gov (United States)

    Djeraba, A; Quere, P

    2000-05-01

    Acemannan (ACM 1), a beta-(1,4) -acetylated mannan isolated from Aloe vera, can be used as an effective adjuvant in vaccination against some avian viral diseases. Our results demonstrate a quick and lasting in vivo priming effect of ACM 1 on macrophage response after intramuscular inoculation in chickens (500 microg per 2-month-old bird). In response to IFN-gamma in vitro, monocytes from ACM 1-treated chickens exhibited a strong enhancement of NO production from 3 to 9 days p.i., but a weaker effect on MHC II cell surface antigen expression on day 3 p.i. A stimulating effect of ACM 1 treatment was also observed on spontaneous and inducible NO production for splenocytes only on day 3 p.i. By that time, splenocytes exhibited a strong higher capacity to proliferate in response to the T cell-mitogen PHA. At the same time, the in vivo capacity to produce NO, measured by the (NO(-)(2)+NO(-)(3)) serum level after intravenous LPS injection, increased greatly from 3 to 9 days p.i. In conclusion, ACM 1 was able efficiently and durably to increase the activation capacity of macrophages from the systemic immune compartment (in particular from the blood and spleen after an intramuscular injection) in chickens, especially for NO production. These findings provide a better understanding of the adjuvant activity of ACM 1 for viral and tumoral diseases.

  12. An update on renal involvement in hemophagocytic syndrome (macrophage activation syndrome).

    Science.gov (United States)

    Esmaili, Haydarali; Mostafidi, Elmira; Mehramuz, Bahareh; Ardalan, Mohammadreza; Mohajel-Shoja, Mohammadali

    2016-01-01

    Hemophagocytic syndrome (HPS) is mainly characterized by massive infiltration of bone marrow by activated macrophages and often presents with pancytopenia. Thrombotic microangiopathy (TMA) is also present with thrombocytopenia and renal involvement. Both conditions could coexist with each other and complicate the condition. Directory of Open Access Journals (DOAJ), EMBASE, Google Scholar, PubMed, EBSCO, and Web of Science with keywords relevant to; Hemophagocytic syndrome, macrophage activation syndrome, interferon-gamma and thrombotic microangiopathy, have been searched. Viral infection, rheumatologic disease and malignancies are the main underlying causes for secondary HPS. calcineurin inhibitors and viral infections are also the main underlying causes of TMA in transplant recipients. In this review, we discussed a 39-year-old male who presented with pancytopenia and renal allograft dysfunction. With the diagnosis of HPS induced TMA his renal condition and pancytopenia improved after receiving intravenous immunoglobulin (IVIG) and plasmapheresis therapy. HPS is an increasingly recognized disorder in the realm of different medical specialties. Renal involvement complicates the clinical picture of the disease, and this condition even is more complex in renal transplant recipients. We should consider the possibility of HPS in any renal transplant recipient with pancytopenia and allograft dysfunction. The combination of HPS with TMA future increases the complexity of the situation.

  13. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression.

    Science.gov (United States)

    Filipek, Agnieszka; Czerwińska, Monika E; Kiss, Anna K; Wrzosek, Małgorzata; Naruszewicz, Marek

    2015-12-15

    Oleacein (dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol; 3,4-DHPEA-EDA) have been proven to possess antioxidant and anti-inflammatory activity. In this study, we examined whether oleacein could increase CD163 and IL-10 receptor expression as well as HO-1 intracellular secretion in human macrophages. Effect of oleacein (10 and 20 μmol/l) or oleacein together with complexes of haemoglobin (Hb) and haptoglobin 1-1 (Hp11) or haptoglobin 2-2 (Hp22) on expression of IL-10 and CD163 receptor was determined by Flow Cytometry. Expression of CD163mRNA was measured by real-time quantitative RT-PCR. Heme oxygenase 1 (HO-1) intracellular secretion in macrophages was investigated by enzyme-linked immunosorbent assay (ELISA). Oleacein (OC) together with complexes HbHp11 or HbHp22 stimulated the expression of CD163 (30-100-fold), IL-10 (170-300-fold) and HO-1 secretion (60-130-fold) after 5 days of coincubation. The 2-fold (24 h), 4-fold (48 h) increase of CD163 mRNA level and its final (72 h) decrease was also observed. Our results suggested that oleacein enhances anti-inflammatory activity of complexes haemoglobin with haptoglobin 1-1 and 2-2 and could play a potential role in the prevention of inflammatory disease related to atherosclerosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Macrophage activation syndrome as the initial manifestation of severe juvenile onset systemic lupus erythematosus. Favorable response to cyclophosphamide.

    Science.gov (United States)

    Torres Jiménez, Alfonso; Solís Vallejo, Eunice; Zeferino Cruz, Maritza; Céspedes Cruz, Adriana; Sánchez Jara, Berenice

    2014-01-01

    The macrophage activation syndrome is a rare but potentially fatal complication of patients with autoimmune rheumatic diseases. This is a clinicopathological entity characterized by activation of histiocytes with prominent hemophagocytosis in the bone marrow and other reticuloendothelial systems. In patients with lupus it may mimic an exacerbation of the disease or infection. We report the case of a 7-year-old girl in whom the diagnosis of lupus erythematosus and macrophage activation syndrome was simultaneously made with response to the use of cyclophosphamide.

  15. Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms.

    Science.gov (United States)

    Jeong, Sang Chul; Koyyalamudi, Sundar Rao; Jeong, Yong Tae; Song, Chi Hyun; Pang, Gerald

    2012-01-01

    Agaricus bisporus white button mushroom (WBM) is widely consumed in most countries for its culinary properties. Recently, its dietary intake has been shown to protect against breast cancer. Mushroom polysaccharides are known for their immunomodulating and antitumor properties; however, little is known regarding the properties of A. bisporus polysaccharides. Using size-exclusion chromatography to fractionate the crude extract of A. bisporus, two polysaccharide fractions (designated as ABP-1 and ABP-2) were obtained. The estimated molecular masses of ABP-1 and ABP-2 were 2,000 kDa and 40-70 kDa, respectively, and their sugar compositions consisted mainly of glucose, mannose, xylose, and fructose. Analysis of the effects of the polysaccharides on murine macrophages demonstrated that both fractions stimulated the production of nitric oxide, interleukin-6, and tumor necrosis factor-α. Modulation of macrophage function by A. bisporus polysaccharides was mediated in part through activation of nuclear factor-κB with the production p50/105 heterodimers. Both ABP-1 and ABP-2 had the ability to inhibit the growth of human breast cancer MCF-7 cells but had little effect on the growth of human colon, prostate, gastric cancer, and murine Sarcoma 180 cells as assessed by a tetrazolium dye [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]-based assay. However, when murine Sarcoma 180 cells exposed to ABP-1 or ABP-2 were implanted subcutaneously into mice, a reduction in tumor growth was observed compared with that observed in control mice. Taken together, our data provide a molecular basis to explain in part the reported beneficial therapeutic effects of A. bisporus WBM intake and suggest that macrophages likely contribute to the antitumor effects of Agaricus polysaccharides.

  16. Macrophage activation marker soluble CD163 and non-alcoholic fatty liver disease in morbidly obese patients undergoing bariatric surgery.

    Science.gov (United States)

    Kazankov, Konstantin; Tordjman, Joan; Møller, Holger Jon; Vilstrup, Hendrik; Poitou, Christine; Bedossa, Pierre; Bouillot, Jean-Luc; Clement, Karine; Grønbaek, Henning

    2015-08-01

    Macrophages play an important role in non-alcoholic fatty liver disease (NAFLD). Soluble CD163 (sCD163) is a specific marker of macrophage activation. We aimed to measure sCD163 in morbidly obese patients with varying degrees of NAFLD before and after bariatric surgery (BS). Demographic, clinical, and biochemical data, and plasma sCD163 measured by enzyme-linked immunosorbent assay, of 196 patients were collected preoperatively and 3, 6, and 12 months after BS leading to significant weight loss. Peroperative liver biopsies were assessed for the NAFLD Activity Score (NAS), Kleiner fibrosis score, and the fatty liver inhibition of progression (FLIP) algorithm. In a subset, CD163 immunohistochemistry and real-time quantitative polymerase chain reaction for CD163 mRNA were performed. sCD163 was higher in patients with NAS ≥ 5 compared with those with NAS CD163-positive macrophages aligning fat-laden hepatocytes and forming microgranulomas in patients with NASH. CD163 mRNA expression did not vary with NAS. sCD163 increased in parallel with the severity of NAFLD in morbid obesity, indicating macrophage activation. BS reduced sCD163 even in patients with severe liver injury and fibrosis, suggesting full reversibility of macrophage activation associated with improved insulin sensitivity. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  17. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells.

    Science.gov (United States)

    Bellora, Francesca; Castriconi, Roberta; Dondero, Alessandra; Pessino, Anna; Nencioni, Alessio; Liggieri, Giovanni; Moretta, Lorenzo; Mantovani, Alberto; Moretta, Alessandro; Bottino, Cristina

    2014-06-01

    We analyzed the functional outcome of the interaction between tumor-associated macrophages (TAMs) and natural killer (NK) cells. TAMs from ascites of ovarian cancer patients displayed an alternatively activated functional phenotype (M2) characterized by a remarkably high frequency and surface density of membrane-bound IL-18. Upon TLR engagement, TAMs acquired a classically activated functional phenotype (M1), released immunostimulatory cytokines (IL-12, soluble IL-18), and efficiently triggered the cytolytic activity of NK cells. TAMs also induced the release of IFN-γ from NK cells, which however was significantly lower compared with that induced by in vitro-polarized M2 cells. Most tumor-associated NK cells displayed a CD56(bright) , CD16(neg) or CD56(bright) , CD16(dim) phenotype, and very poor cytolytic activities, despite an increased expression of the activation marker CD69. They also showed downregulation of DNAM-1, 2B4, and NTB-A activating receptors, and an altered chemokine receptor repertoire. Importantly however, when appropriately stimulated, NK cells from the patients, including those cells isolated from ascites, efficiently killed autologous TAMs that expressed low, "nonprotective" levels of HLA class I molecules. Overall, our data show the existence of a complex tumor microenvironment in which poorly cytolytic/immature NK cells deal with immunosuppressive tumor-educated macrophages.

  18. The four mechanisms of dental resorption initiation

    Directory of Open Access Journals (Sweden)

    Alberto Consolaro

    2013-06-01

    Full Text Available The aim of this study is to present a classification with a clinical application for root resorption, so that diagnosis will be more objective and immediately linked to the source of the problem, leading the clinician to automatically develop the likely treatment plan with a precise prognosis. With this purpose, we suggest putting together all diagnosed dental resorptions into one of these four criteria: 1 Root resorption caused by cementoblast cell death, with preservation of the Malassez epithelial rests. 2 Root resorption by cementoblasts and Malassez epithelial rests death. 3 Dental resorption by odontoblasts cell death with preservation of pulp vitality. 4 Dental resorption by direct exposure of dentin to gingival connective tissue at the cementoenamel junction gaps.

  19. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  20. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    Science.gov (United States)

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor.

  1. Evaluation of macrophage activation syndrome associated with systemic juvenile idiopathic arthritis: single center experience over a one-year period

    Science.gov (United States)

    Barut, Kenan; Yücel, Gözde; Sinoplu, Ada Bulut; Şahin, Sezgin; Adroviç, Amra; Kasapçopur, Özgür

    2015-01-01

    Aim: This study aimed to evaluate the demographic, clinical, laboratory properties of patients with macrophage activation syndrome and treatment outcomes. Material and Methods: The data of the patients who were diagnosed with macrophage activation syndrome secondary to systemic juvenile idiopathic arthritis between June 2013–May 2014 were evaluated by screening patient records. Results: Ten patients with macrophage activation syndrome were followed up in one year. The mean age at the time of diagnosis was found to be 7.6±4.5 years. The most common clinical finding at presentation (80%) was increased body temperature. Hepatosplenomegaly was found in half of the patients. The most common hematological finding (90%) was anemia. The mean erythrocyte sedimentation rate was found to be 71.8±36.2 mm/h, whereas it was measured to be lower (31.2±25.2 mm/h) at the time of the diagnosis of macrophage activation syndrome. Increased ferritin level was found in all of our patients (the mean ferritin level was found to be 23 957±15 525 ng/mL). Hypertriglyceridemia was found in nine patients (90%). The mean triglyceride level was found to be 397±332 mg/dL. Systemic steroid treatment was administered to all patients. Cyclosporine A was given to eight patients (80%), canakinumab was given to four patients (40%) and anakinra was given to five patients (50%). Plasmapheresis was performed in two patients. Improvement was found in all patients except for one patient. The patient in whom no improvement was observed showed a chronic course. Conclusions: The diagnosis of macrophage activation syndrome should be considered in presence of sudden disturbance in general condition, resistant high fever and systemic inflammation findings in children with active rheumatic disease. Complete recovery can be provided with early and efficient treatment in macrophage activation syndrome which develops secondary to systemic juvenil idiopathic arthritis. PMID:26884689

  2. Operating protocols of external root cervical resorption

    OpenAIRE

    Luca Venuti

    2015-01-01

    Aim: Theme of this report is the external cervical root resorption and the sequence of clinical procedures to be implemented during the phases of treatment. The external cervical root resorption (ICR) presents particular pathological conditions such as to classify between resorption of inflammatory origin.1–3 It is generally presented as a complex clinical situation both in the diagnosis in a predictable prognosis.3–6 It's often associated with loss of calcified tissue: dentin, cementum, a...

  3. Operating protocols of external root cervical resorption

    OpenAIRE

    Venuti, Luca

    2015-01-01

    Aim: Theme of this report is the external cervical root resorption and the sequence of clinical procedures to be implemented during the phases of treatment. The external cervical root resorption (ICR) presents particular pathological conditions such as to classify between resorption of inflammatory origin.1–3 It is generally presented as a complex clinical situation both in the diagnosis in a predictable prognosis.3–6 It's often associated with loss of calcified tissue: dentin, cementum, a...

  4. Activation of PPARγ by a Natural Flavonoid Modulator, Apigenin Ameliorates Obesity-Related Inflammation Via Regulation of Macrophage Polarization.

    Science.gov (United States)

    Feng, Xiujing; Weng, Dan; Zhou, Feifei; Owen, Young D; Qin, Haohan; Zhao, Jingfa; WenYu; Huang, Yahong; Chen, Jiajia; Fu, Haijian; Yang, Nanfei; Chen, Dianhua; Li, Jianxin; Tan, Renxiang; Shen, Pingping

    2016-07-01

    PPARγ has emerged as a master regulator of macrophage polarization and is the molecular target of the thiazolidinedione drugs. Here we show that apigenin binds and activates PPARγ by acting as a modulator. Activation of PPARγ by apigenin blocks p65 translocation into nuclei through inhibition of p65/PPARγ complex translocation into nuclei, thereby decreasing NF-κB activation and favoringM2 macrophage polarization. In HFD and ob/ob mice, apigenin significantly reverses M1 macrophage into M2 and reduces the infiltration of inflammatory cells in liver and adipose tissues, as well as decreases the levels of pro-inflammatory cytokines, thereby alleviating inflammation. Strikingly, apigenin reduces liver and muscular steatosis, decreases the levels of ALT, AST, TC and TG, improving glucose resistance obviously. Unlike rosiglitazone, apigenin does not cause significant weight gain, osteoporosis et al. Our findings identify apigenin as a modulator of PPARγ and a potential lead compound for treatment of metabolic disorders.

  5. COMPUTED TOMOGRAPHY OF TOOTH RESORPTION IN CATS.

    Science.gov (United States)

    Lang, Linda G; Wilkinson, Thomas E; White, Tammy L; Farnsworth, Raelynn K; Potter, Kathleen A

    2016-09-01

    Tooth resorption is the most common dental disease in cats and can be a source of oral pain. The current clinical gold standard for diagnosis includes a combination of oral exam and dental radiography, however early lesions are not always detected. Computed tomography (CT) of the skull, including the dental arches, is a commonly performed diagnostic procedure, however the appearance of tooth resorption on CT and the diagnostic ability of CT to detect tooth resorption have not been evaluated. The purpose of this prospective, descriptive, diagnostic accuracy study was to characterize the CT appearance of tooth resorption in a sample of affected cats and to evaluate the sensitivity and specificity of CT for tooth resorption compared to the clinical gold standard of oral exam and intraoral dental radiography. Twenty-eight cat cadaver specimens were recruited for inclusion. Each specimen was evaluated using oral exam, intraoral dental radiography, and computed tomography (four different slice thicknesses). Each tooth was evaluated for the presence or absence of tooth resorption. Teeth with lesions and a subset of normal teeth were evaluated with histopathology. On CT, tooth resorption appeared as irregularly marginated hypoattenuating defects in the mineral attenuating tooth components, most commonly involving the root or cementoenamel junction. Sensitivity for CT detection of tooth resorption was fair to poor (42.2-57.7%) and specificity was good to excellent (92.8-96.3%). Findings from this study indicated that CT has high specificity but low sensitivity for detection of tooth resorption in cats.

  6. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    Science.gov (United States)

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  7. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  8. BZ-26, a novel GW9662 derivate, attenuated inflammation by inhibiting the differentiation and activation of inflammatory macrophages.

    Science.gov (United States)

    Bei, Yuncheng; Chen, Jiajia; Zhou, Feifei; Huang, Yahong; Jiang, Nan; Tan, Renxiang; Shen, Pingping

    2016-12-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is considered to be an important transcriptional factor in regulation of macrophages differentiation and activation. We have synthesized a series of novel structural molecules based on GW9662's structure (named BZ-24, BZ-25 and BZ-26), and interaction activity was calculated by computational docking. BZ-26 had shown stronger interaction with PPARγ and had higher transcriptional inhibitory activity of PPARγ with lower dosage compared with GW9662. BZ-26 was proved to inhibit inflammatory macrophage differentiation. LPS-induced acute inflammation mouse model was applied to demonstrate its anti-inflammatory activity. And the results showed that BZ-26 administration attenuated plasma tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) secretion, which are vital cytokines in acute inflammation. The anti-inflammatory activity was examined in THP-1 cell line, and TNF-α, IL-6 and MCP-1, were significantly inhibited. The results of Western blot and luciferase reporter assay indicated that BZ-26 not only inhibited NF-κB transcriptional activity, but also abolished LPS-induce nuclear translocation of P65. We also test BZ-26 action in tumor-bearing chronic inflammation mouse model, and BZ-26 was able to alter macrophages phenotype, resulting in antitumor effect. All our data revealed that BZ-26 modulated LPS-induced acute inflammation via inhibiting inflammatory macrophages differentiation and activation, potentially via inhibition of NF-κB signal pathway.

  9. Identification of S-(2,3-dihydroxypropyl)cystein in a macrophage-activating lipopeptide from Mycoplasma fermentans.

    Science.gov (United States)

    Mühlradt, P F; Meyer, H; Jansen, R

    1996-06-18

    Mycoplasmas are capable of stimulating monocytes and macrophages to release cytokines, prostaglandins, and nitric oxide. The aim of this study was to characterize the chemical nature of the previously isolated [Mühlradt, P. F., & Frisch, M. (1994) Infect. Immun. 62, 3801-3807] macrophage-stimulating material "MDHM" from Mycoplasma fermentans. Mycoplasmas were delipidated, and MDHM activity was extracted with octyl glucoside and further purified by reversed-phase HPLC. Macrophage-stimulating activity was monitored by nitric oxide release from peritoneal macrophages from C3H/HeJ endotoxin low responder mice. HPLC-purified MDHM was rechromatographed on an analytic scale RP 18 column before and after proteinase K treatment. Proteinase treatment did not diminish biological activity but shifted MDHM elution toward higher lipophilicity, suggesting that the macrophage-stimulating activity might reside in the lipopeptide moiety of a lipoprotein. Proteinase K-treated MDHM was hydrolyzed, amino groups were dansylated, and the dansylated material was isolated by HPLC. Dansylated S-(2,3-dihydroxypropyl)cystein (glycerylcystein thioether), typical for Braun's murein lipoprotein, and Dns-Gly and Dns-Thr were identified by tandem mass spectrometry. These amino acids were isolated from biologically active but not from the neighboring inactive HPLC fractions. IR spectra from proteinase K-treated, HPLC-purified MDHM and those from the synthetic lipopeptide [2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-CysSerSer AsnAla were very similar. The data, taken together, indicate that lipoproteins of a nature previously detected in eubacteria are expressed in M. fermentans and that at least one of these lipoproteins and a lipopeptide derived from it constitute the macrophage-activating principle MDHM from these mycoplasmas.

  10. Differential Regulation of Proinflammatory Cytokine Expression by Mitogen-Activated Protein Kinases in Macrophages in Response to Intestinal Parasite Infection

    Science.gov (United States)

    Lim, Mei Xing; Png, Chin Wen; Tay, Crispina Yan Bing; Teo, Joshua Ding Wei; Jiao, Huipeng; Lehming, Norbert

    2014-01-01

    Blastocystis is a common enteric protistan parasite that can cause acute, as well as chronic, infection and is associated with irritable bowel syndrome (IBS). However, the pathogenic status of Blastocystis infection remains unclear. In this study, we found that Blastocystis antigens induced abundant expression of proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), in mouse intestinal explants, in mouse colitis colon, and in macrophages. Further investigation utilizing RAW264.7 murine macrophages showed that Blastocystis treatment in RAW264.7 macrophages induced the activation of ERK, JNK, and p38, the three major groups of mammalian mitogen-activated protein (MAP) kinases that play essential roles in the expression of proinflammatory cytokines. ERK inhibition in macrophages significantly suppressed both mRNA and protein expression of IL-6 and TNF-α and mRNA expression of IL-1β. On the other hand, JNK inhibition resulted in reductions in both c-Jun and ERK activation and significant suppression of all three proinflammatory cytokines at both the mRNA and protein levels. Inhibition of p38 suppressed only IL-6 protein expression with no effect on the expression of IL-1β and TNF-α. Furthermore, we found that serine proteases produced by Blastocystis play an important role in the induction of ERK activation and proinflammatory cytokine expression by macrophages. Our study thus demonstrated for the first time that Blastocystis could induce the expression of various proinflammatory cytokines via the activation of MAP kinases and that infection with Blastocystis may contribute to the pathogenesis of inflammatory intestinal diseases through the activation of inflammatory pathways in host immune cells, such as macrophages. PMID:25156742

  11. A very rare cause of dyspnea with a unique presentation on a computed tomography scan of the chest: macrophage activation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Brandao-Neto, Rodrigo Antonio [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Clinical Emergency Dept.; Santana, Alfredo Nicodemos Cruz; Danilovic, Debora Lucia Seguro; Mendonca, Berenice Bilharinho de [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina]. E-mail: alfredonicodemos@hotmail.com; Bernardi, Fabiola Del Carlo [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. of Pathology; Barbas, Carmen Silvia Valente [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. of Pulmonology

    2008-02-15

    Macrophage activation syndrome is a rare and potentially life-threatening disease. It occurs due to immune dysregulation manifested as excessive macrophage proliferation, typically causing hepatosplenomegaly, pancytopenia and hepatic dysfunction. Here, we report an unusual case of macrophage activation syndrome presenting as dyspnea, as well as (reported here for the first time) high resolution computed tomography findings of an excavated nodule, diffuse ground glass opacities and consolidations (mimicking severe pneumonia or alveolar hemorrhage). The patient was successfully treated with human immunoglobulin. We recommend that macrophage activation syndrome be considered in the differential diagnosis of respiratory failure. Rapid diagnosis and treatment are essential to achieving favorable outcomes in patients with this syndrome. (author)

  12. Condylar resorption during active orthodontic treatment and subsequent therapy: report of a special case dealing with iatrogenic TMD possibly related to orthodontic treatment.

    Science.gov (United States)

    Shen, Y H; Chen, Y K; Chuang, S Y

    2005-05-01

    A 28-year-old female underwent orthodontic treatment for approximately 22 months. During the later stages of this treatment, the patient reported right shoulder and neck-muscle pain. In addition, temporomandibular joint disorder (TMD) with a 'clicking' sound during mastication commenced 5 months prior to treatment completion. Specific medication to deal with these symptoms was suggested by medical specialists, as were some stress-relief methods, although the pain still progressed, and subsequent clinical and radiographical examinations were undertaken by another orthodontist. Right mandibular condylar resorption was observed from both the panorex and temporomandibular joint (TMJ) radiographs. No clinical signs of rheumatic disease were observed, although bruxism was noted. Following the termination of the orthodontic treatment by the second practitioner, the patient was treated with splint therapy 1 month subsequent to which, the previous symptoms of pain in the shoulder and neck, and the clicking sound during mastication had subsided. During the 14-month period of splint therapy and follow-up, new bone growth in the right condyle was observed from radiographs.

  13. The glycosylation and characterization of the candidate Gc macrophage activating factor.

    Science.gov (United States)

    Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich; Christiansen, Maja; Houen, Gunnar; Højrup, Peter

    2010-04-01

    The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF candidate was tested for its effect on cytokine release from macrophages in human whole blood.

  14. Active principles of Grindelia robusta exert antiinflammatory properties in a macrophage model.

    Science.gov (United States)

    La, Vu Dang; Lazzarin, Francesco; Ricci, Donata; Fraternale, Daniele; Genovese, Salvatore; Epifano, Francesco; Grenier, Daniel

    2010-11-01

    Plant extracts and/or secondary metabolites are receiving considerable attention as therapeutic agents for treating inflammatory diseases such as periodontitis, which affects the tooth supporting tissues. The aim of this study was to investigate the effect of a Grindelia robusta extract enriched in saponins and polyphenols on Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS)-induced inflammatory mediator (IL-6, TNF-a, RANTES, MCP-1, PGE(2) ) and matrix metalloproteinase (MMP-1, -3, -7, -8, -9, -13) secretion by macrophages. LPS induced a marked increase in the secretion of all inflammatory mediators and MMPs tested by macrophages, as determined by enzyme-linked immunosorbent assays. At non-cytotoxic concentrations, the G. robusta extract inhibited dose-dependently the secretion of IL-6, RANTES, MCP-1 and, to a lesser extent, PGE(2) and TNF-a. Such inhibition was also observed for MMP-1, -3, -7, -8, -9 and -13 secretion. This ability of G. robusta extract to reduce the LPS-induced secretion of inflammatory mediators and MMPs was associated with a reduction of nuclear factor-kappa B (NF-kB) p65 activation. The results suggest that G. robusta extract possesses an antiinflammatory therapeutic potential through its capacity to reduce the accumulation of inflammatory mediators and MMPs.

  15. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells.

    Science.gov (United States)

    Sarkar, Susobhan; Döring, Axinia; Zemp, Franz J; Silva, Claudia; Lun, Xueqing; Wang, Xiuling; Kelly, John; Hader, Walter; Hamilton, Mark; Mercier, Philippe; Dunn, Jeff F; Kinniburgh, Dave; van Rooijen, Nico; Robbins, Stephen; Forsyth, Peter; Cairncross, Gregory; Weiss, Samuel; Yong, V Wee

    2014-01-01

    Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.

  16. [A study on the activity of nitric oxide in alveolar macrophages from patients with lung cancer].

    Science.gov (United States)

    Hu, C; Li, G; Wu, E

    1998-01-01

    Nitrite and nitrate (NO2-/NO2-) in the bronchus alveolar lavage fluid (BALF) and the supernatants of incubated alveolar macrophages (AMs) from patients with primary lung cancer were measured by copper-coated cadmium reduction and Griess method. Mrna expression of AM induced nitric oxide synthase (iNOS) were analyzed by RT-PCR. There was NO2-/NO2- in BALF either from lung cancer patients or from control subjects. When compared with control group and the nontumor-bearing lung, the level of NO2-/NO2-was lower in BALF from the tumor-bearing lung [5.18+/-1.1 vs 2.47+/-0.67nmol x mg protein-1 (P65+/- 2.46 vs 2.47+/- 0.67nmol x mg protein-1(Pcancer patients than from control and nontumor-bearing lung [95.03+/- 21.76 vs 63.37+/- 17.58nmol (Pcancer patients (69%) and that of control subjects (91%). After the AMs were stimulated with granulocyte-macrophage colony stimulating factor (GM-CSF), the level of NO2-/NO2- in the supernatants was significantly increased (Pcancer resulted in an increase of 16.85+/- 7.58% vs 33.38+/- 8.21% of control group (P< 0.05). These observation suggest that some defects of antitumor function occur in the AMs at the tumor region. GM-CSF can stimulate AMs and thus potentiate their NO activity.

  17. Macrophage activation marker soluble CD163 may predict disease progression in hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Kazankov, Konstantin; Rode, Anthony; Simonsen, Kira Schreiner

    2016-01-01

    BACKGROUND: Tumor associated macrophages are present in hepatocellular carcinoma (HCC) and associated with a poor prognosis. The aim of the present study was to investigate the levels and dynamics of soluble (s)CD163, a specific macrophage activation marker, in patients with HCC. METHODS......: In a cohort from Australia, we studied 109 HCC patients, 116 patients with chronic liver disease (CLD), and 52 healthy controls. We examined associations between baseline sCD163 and parameters of HCC severity as well as overall and progression-free survival. In a cohort of 42 Danish HCC patients, we measured...... sCD163 at baseline and 1, 4 and 12 weeks after ablative treatment. RESULTS: In the Australian cohort, median sCD163 was similarly increased in HCC (5.6[interquartile range 3.5-8.0] mg/L) and CLD (6.1[3.6-9.6] mg/L) patients as compared to controls (2.0[1.5-2.7] mg/L, p CD163 correlated...

  18. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages

    Science.gov (United States)

    Rosati, Alessandra; Basile, Anna; D'Auria, Raffaella; d'Avenia, Morena; De Marco, Margot; Falco, Antonia; Festa, Michelina; Guerriero, Luana; Iorio, Vittoria; Parente, Roberto; Pascale, Maria; Marzullo, Liberato; Franco, Renato; Arra, Claudio; Barbieri, Antonio; Rea, Domenica; Menichini, Giulio; Hahne, Michael; Bijlsma, Maarten; Barcaroli, Daniela; Sala, Gianluca; di Mola, Fabio Francesco; di Sebastiano, Pierluigi; Todoric, Jelena; Antonucci, Laura; Corvest, Vincent; Jawhari, Anass; Firpo, Matthew A; Tuveson, David A; Capunzo, Mario; Karin, Michael; De Laurenzi, Vincenzo; Turco, Maria Caterina

    2015-01-01

    The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, inducing their activation and the secretion of PDAC supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3 antibody results in reduced tumour growth and prevents metastasis formation in three different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential. PMID:26522614

  19. Fatal human anaplasmosis associated with macrophage activation syndrome in Greece and the Public Health response.

    Science.gov (United States)

    Tsiodras, Sotirios; Spanakis, Nikos; Spanakos, Gregory; Pervanidou, Danai; Georgakopoulou, Theano; Campos, Elsa; Petra, Theofania; Kanellopoulos, Petros; Georgiadis, George; Antalis, Emmanouil; Kontos, Vassileios; Giannopoulos, Lambros A; Tselentis, Yiannis; Papa, Anna; Tsakris, Athanassios; Saroglou, George

    2017-02-08

    Human granulocytic anaplasmosis (HGA) is a tick-borne disease caused by Anaplasma phagocytophilum that has the potential to spread in new geographical areas. The first fatal case of HGA in Greece is presented. Fever of unknown origin, renal and respiratory insufficiency and development of macrophage activation syndrome characterized the clinical presentation. Amplification and sequencing of a fragment of the groEL gene revealed the presence of A. phagocytophilum. The epidemiological and clinical features were collected during an epidemiological investigation. Public health measures were instituted by the Hellenic Centre for Disease Control and Prevention. The Public Health intervention required the collaboration of epidemiologists, veterinarians and microbiologists. Emphasis was given to communication activities and misconceptions concerning canines and their role in the disease. The emergence of human anaplasmosis in a new geographical area highlights the importance of disease awareness and of the need for continued support for tick and tick-borne disease surveillance networks.

  20. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail;

    2013-01-01

    Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here......, we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... MPs inhibited MPC fusion while anti-inflammatory MPs strongly promoted MPC differentiation by increasing their commitment into differentiated myocytes and the formation of mature myotubes. Furthermore, the in vivo time course of expression of myogenic and MP markers was studied in regenerating human...

  1. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma.

    Science.gov (United States)

    De Stefano, Daniela; Maiuri, Maria Chiara; Simeon, Vittorio; Grassia, Gianluca; Soscia, Antonio; Cinelli, Maria Pia; Carnuccio, Rosa

    2007-07-02

    Oxidative stress plays an important role in inflammatory process of celiac disease. We have studied the effect of the lycopene, quercetin and tyrosol natural antioxidants on the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expression in RAW 264.7 macrophages stimulated by gliadin in association with IFN-gamma. The IFN-gamma plus gliadin combination treatment was capable of enhancing iNOS and COX-2 gene expression and nuclear factor-kappaB (NF-kappaB), interferon regulatory factor-1 (IRF-1) and signal transducer and activator of transcription-1alpha (STAT-1alpha) activation induced by reactive oxygen species generation at 24 h. Lycopene, quercetin and tyrosol inhibited all these effects. The results here reported suggest that these compounds may represent non toxic agents for the control of pro-inflammatory genes involved in celiac disease.

  2. Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption.

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Ren

    Full Text Available The cysteine protease cathepsin K (CatK, abundantly expressed in osteoclasts, is responsible for the degradation of bone matrix proteins, including collagen type 1. Thus, CatK is an attractive target for new anti-resorptive osteoporosis therapies, but the wider effects of CatK inhibitors on bone cells also need to be evaluated to assess their effects on bone. Therefore, we selected, among a series of synthetized isothiosemicarbazides, two molecules which are highly selective CatK inhibitors (CKIs to test their effects on osteoblasts and osteoclasts.Cell viability upon treatment of CKIs were was assayed on human osteoblast-like Saos-2, mouse monocyte cell line RAW 264.7 and mature mouse osteoclasts differentiated from bone marrow. Osteoblast-induced mineralization in Saos-2 cells and in mouse primary osteoblasts from calvaria, with or without CKIs,; were was monitored by Alizarin Red staining and alkaline phosphatase activity, while osteoclast-induced bone resorption was performed on bovine slices.Treatments with two CKIs, CKI-8 and CKI-13 in human osteoblast-like Saos-2, murine RAW 264.7 macrophages stimulated with RANKL and mouse osteoclasts differentiated from bone marrow stimulated with RANKL and MCSF were found not to be toxic at doses of up to 100 nM. As probed by Alizarin Red staining, CKI-8 did not inhibit osteoblast-induced mineralization in mouse primary osteoblasts as well as in osteoblast-like Saos-2 cells. However, CKI-13 led to a reduction in mineralization of around 40% at 10-100 nM concentrations in osteoblast-like Saos-2 cells while it did not in primary cells. After a 48-hour incubation, both CKI-8 and CKI-13 decreased bone resorption on bovine bone slices. CKI-13 was more efficient than the commercial inhibitor E-64 in inhibiting bone resorption induced by osteoclasts on bovine bone slices. Both CKI-8 and CKI-13 created smaller bone resorption pits on bovine bone slices, suggesting that the mobility of osteoclasts was slowed

  3. The effect of activated alveolar macrophages on experimental lung emphysema development. III. Morphological analysis of the lung tissue and alveolar macrophages in situ.

    Science.gov (United States)

    Sulkowski, S; Nowak, H F; Sulkowska, M; Sobaniec-Lotowska, M; Andrzejewska, A; Sulik, M; Dziecioł, J; Famulski, W; Poczopko, B

    1995-01-01

    Morphological (in light and transmission electron microscope) as well as morphometrical analysis of the lungs was performed on experimental, papain-induced lung emphysema. Development of emphysematous changes was studied seven days after a single intratracheal instillation of papain solution. The effect of alveolar macrophages (AM) activation by BCG-vaccine on changes in pulmonary tissue was analyzed. In the rats given BCG the number of AM increased and demonstrated enhanced activity. Increase in reticulin fibre density in places of AM cumulation, particularly in BCG+papain-treated rats was observed. The lungs of animals treated with BCG+papain showed enhancing of emphysema comparing with the papain-treated rats. Development of emphysematous changes, especially in BCG+papain-treated rats coexisted with cumulation of activated alveolar macrophages and collagen fibres as well as type II alveolar epithelial cells proliferation. Our data support the inflammatory-repair hypothesis of emphysema pathogenesis and indicate that AM regulate collagen production in the lung. Type II alveolar epithelial cells seem be important in lung injury and repair.

  4. Monarch-1 Activation in Murine Macrophage Cell Line (J774 A.1 Infected with Iranian Strain of Leishmania Major

    Directory of Open Access Journals (Sweden)

    A Fata

    2013-06-01

    Full Text Available Background: Leishmania major is an intracellular parasite transmitted through the bite of the female phlebotomine sand flies. Leishmania major is able to escape the host immune defense and survive within macrophages. Modulation of the NF-κB (Nuclear Factor-Kappa B activation and suppression of the pro-inflammatory cytokines by L. major are the main evasion mechanisms that remain to be explored. This study aims to examine the expression level of the Monarch-1 in L. major-infected macrophages, as a negative regulator of the NF-κB activation.Methods: Murine macrophage cell line (J774 A.1 was infected by metacyclic form of Leishmania promasti­gotes at macrophage/parasite ratio of 1:10. After harvesting infected cells at different times, total RNA was extracted and converted to cDNA. Semi-quantitative RT-PCR was performed for Monarch-1 by specific primers. Hypoxanthine Phospho-Ribosyl Transferase (HPRT was used as an internal control to adjust the amount of mRNA in each sample.Results: Semiquantitive analysis of Monarch-1 mRNA expression level showed a significant expres­sion increase within 6 to 30 hours after L. major infection of macrophages when compared to the con­trol macrophages.Conclusion: Monarch-1 expression level reveals a significant increase in the early phase of macro­phage infection with L. major, which in turn may suppress IL-12 production in Leishmania infected macrophages and deeply influence the relationship between host and parasite.

  5. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro.

    Science.gov (United States)

    Bancos, Simona; Stevens, David L; Tyner, Katherine M

    2015-01-01

    The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity.

  6. Idiopathic Pulmonary Hemosiderosis in a Child with Recurrent Macrophage Activation Syndrome Secondary to Systemic Juvenile Idiopathic Arthritis

    Science.gov (United States)

    Barut, Kenan; Sahin, Sezgin; Adrovic, Amra

    2017-01-01

    Macrophage activation syndrome, a severe complication of systemic juvenile idiopathic arthritis and other inflammatory diseases, represents one of the most important rheumatological emergencies. Delayed diagnosis could lead to life-threatening complications. Pulmonary hemosiderosis has been classically characterized by a triad of anemia, hemoptysis, and lung infiltrates on chest radiogram. Although the majority of patients of pulmonary hemosiderosis are considered idiopathic, secondary hemosiderosis associated with known diseases could be seen. In this case report, we aimed to present gradually increased pulmonary manifestations due to pulmonary hemosiderosis with recurrent macrophage activation syndrome attacks in a child with systemic juvenile idiopathic arthritis.

  7. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD

    Directory of Open Access Journals (Sweden)

    Van Nostrand William E

    2006-09-01

    Full Text Available Abstract Background Microglia are associated with neuritic plaques in Alzheimer disease (AD and serve as a primary component of the innate immune response in the brain. Neuritic plaques are fibrous deposits composed of the amyloid beta-peptide fragments (Abeta of the amyloid precursor protein (APP. Numerous studies have shown that the immune cells in the vicinity of amyloid deposits in AD express mRNA and proteins for pro-inflammatory cytokines, leading to the hypothesis that microglia demonstrate classical (Th-1 immune activation in AD. Nonetheless, the complex role of microglial activation has yet to be fully explored since recent studies show that peripheral macrophages enter an "alternative" activation state. Methods To study alternative activation of microglia, we used quantitative RT-PCR to identify genes associated with alternative activation in microglia, including arginase I (AGI, mannose receptor (MRC1, found in inflammatory zone 1 (FIZZ1, and chitinase 3-like 3 (YM1. Results Our findings confirmed that treatment of microglia with anti-inflammatory cytokines such as IL-4 and IL-13 induces a gene profile typical of alternative activation similar to that previously observed in peripheral macrophages. We then used this gene expression profile to examine two mouse models of AD, the APPsw (Tg-2576 and Tg-SwDI, models for amyloid deposition and for cerebral amyloid angiopathy (CAA respectively. AGI, MRC1 and YM1 mRNA levels were significantly increased in the Tg-2576 mouse brains compared to age-matched controls while TNFα and NOS2 mRNA levels, genes commonly associated with classical activation, increased or did not change, respectively. Only TNFα mRNA increased in the Tg-SwDI mouse brain. Alternative activation genes were also identified in brain samples from individuals with AD and were compared to age-matched control individuals. In AD brain, mRNAs for TNFα, AGI, MRC1 and the chitinase-3 like 1 and 2 genes (CHI3L1; CHI3L2 were

  8. Interleukin-4 ameliorates the functional recovery of intracerebral hemorrhage through the alternative activation of microglia/macrophage

    Directory of Open Access Journals (Sweden)

    Jianjing eYang

    2016-03-01

    Full Text Available Neuro-inflammation plays an important role in the recovery of brain injury after stroke. Microglia/macrophage is the major executor in the neuro-inflammation, which can be polarized into two distinct phenotypes: injurious/toxic classical activation (M1 phenotype and protective alternative activation (M2 phenotype. Here, we investigated whether intracerebral administration of interleukin-4 (IL-4 at an early stage could affect the activation of microglia/macrophage and the corresponding outcome after intracerebral hemorrhage (ICH. The neuro-behavior was recorded between different groups in the rat ICH model. The M1 and M2 markers were then determined by qRT-PCR, western blotting, ELISA and immunofluorescence, respectively. We observed aberrant activation of microglia/macrophage after ICH. After intracerebral injection of IL-4, M1 activation was greatly inhibited while M2 activation was enhanced, along with improving neurobehavioral recovery from deficits after ICH. Our study showed that early intracerebral injection of IL-4 potentially promotes neuro-functional recovery, probably through enhancing the alternative activation of microglia/macrophage.

  9. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients.

  10. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  11. Macrophage activation syndrome associated with hepatitis a virus in a child with systemic onset juvenile idiopathic arthritis: A case report

    Directory of Open Access Journals (Sweden)

    Mohammad Imnul Islam

    2016-07-01

    Full Text Available Macrophage Activation Syndrome (MAS is a rare but a grave complication of systemic onset juvenile idiopathic arthritis (SOJIA. It occurs as a result of immune dysfunction of macrophages and T lymphocyte. A twelve-year old boy diagnosed case of SOJIA presented with high grade fever, diffuse abdominal pain, vomiting and jaundice. He had high ALT, abnormal coagulation profile and Anti HA V IgM was positive. He had also high ferritin and triglyceride level which were very much suggestive for MAS. Infection especially Epstein Barr Virus, Herpes viruses and drugs are the common triggers for the development of MAS in association with SOJIA patients. MAS associated with hepatitis A virus are very rare. Only a few case reports are available in the literature. Considering its rarity and grave prognosis we are reporting a case of hepatitis A associated Macrophages Activation Syndrome in a systemic onset juvenile idiopathic arthritis.

  12. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  13. The Impact of Membrane Lipid Composition on Macrophage Activation in the Immune Defense against Rhodococcus equi and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Julia Schumann

    2011-11-01

    Full Text Available Nutritional fatty acids are known to have an impact on membrane lipid composition of body cells, including cells of the immune system, thus providing a link between dietary fatty acid uptake, inflammation and immunity. In this study we reveal the significance of macrophage membrane lipid composition on gene expression and cytokine synthesis thereby highlighting signal transduction processes, macrophage activation as well as macrophage defense mechanisms. Using RAW264.7 macrophages as a model system, we identified polyunsaturated fatty acids (PUFA of both the n-3 and the n-6 family to down-regulate the synthesis of: (i the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; (ii the co-stimulatory molecule CD86; as well as (iii the antimicrobial polypeptide lysozyme. The action of the fatty acids partially depended on the activation status of the macrophages. It is particularly important to note that the anti-inflammatory action of the PUFA could also be seen in case of infection of RAW264.7 with viable microorganisms of the genera R. equi and P. aeruginosa. In summary, our data provide strong evidence that PUFA from both the n-3 and the n-6 family down-regulate inflammation processes in context of chronic infections caused by persistent pathogens.

  14. East Coast Fever Caused by Theileria parva Is Characterized by Macrophage Activation Associated with Vasculitis and Respiratory Failure.

    Directory of Open Access Journals (Sweden)

    Lindsay M Fry

    Full Text Available Respiratory failure and death in East Coast Fever (ECF, a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infected cattle revealed large numbers of CD3- and CD20-negative intralesional mononuclear cells. Due to this finding, we hypothesized that macrophages play an important role in Theileria parva disease pathogenesis. Data presented here demonstrates that terminal ECF in both Holstein and Boran cattle is largely due to multisystemic histiocytic responses and resultant tissue damage. Furthermore, the combination of these histologic changes with the clinical findings, including lymphadenopathy, prolonged pyrexia, multi-lineage leukopenia, and thrombocytopenia is consistent with macrophage activation syndrome. All animals that succumbed to infection exhibited lymphohistiocytic vasculitis of small to medium caliber blood and lymphatic vessels. In pulmonary, lymphoid, splenic and hepatic tissues from Holstein cattle, the majority of intralesional macrophages were positive for CD163, and often expressed large amounts of IL-17. These data define a terminal ECF pathogenesis in which parasite-driven lymphoproliferation leads to secondary systemic macrophage activation syndrome, mononuclear vasculitis, pulmonary edema, respiratory failure and death. The accompanying macrophage phenotype defined by CD163 and IL-17 is presented in the context of this pathogenesis.

  15. Chromofungin Ameliorates the Progression of Colitis by Regulating Alternatively Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Nour Eissa

    2017-09-01

    Full Text Available Ulcerative colitis (UC is characterized by a functional dysregulation of alternatively activated macrophage (AAM and intestinal epithelial cells (IECs homeostasis. Chromogranin-A (CHGA secreted by neuroendocrine cells is implicated in intestinal inflammation and immune dysregulation. CHGA undergoes proteolytic processing to generate CHGA-derived peptides. Chromofungin (CHR: CHGA47–66 is a short CHGA-derived peptide encoded by CHGA Exon-IV and is involved in innate immune regulation, but the basis is poorly investigated. We investigated the expression of CHR in colonic tissue of patients with active UC and assessed the effects of the CHR in dextran sulfate sodium (DSS colitis in mice and on macrophages and human colonic epithelial cells. We found that mRNA expression of CHR correlated positively with mRNA levels of AAM markers and gene expression of tight junction (TJ proteins and negatively with mRNA levels of interleukin (IL-8, IL-18, and collagen in patients with active UC. Moreover, AAM markers correlated positively with gene expression of TJ proteins and negatively with IL-8, IL-18, and collagen gene expression. Experimentally, intracolonic administration of CHR protected against DSS-induced colitis by priming macrophages into AAM, reducing colonic collagen deposition, and maintaining IECs homeostasis. This effect was associated with a significant increase of AAM markers, reduction of colonic IL-18 release and conservation of gene expression of TJ proteins. In vitro, CHR enhanced AAM polarization and increased the production of anti-inflammatory mediators. CHR-treated AAM conditioned medium increased Caco-2 cell migration, viability, proliferation, and mRNA levels of TJ proteins, and decreased oxidative stress-induced apoptosis and proinflammatory cytokines release. Direct CHR treatments had the same effect. In conclusion, CHR treatment reduces the severity of colitis and the inflammatory process via enhancing AAM functions and maintaining

  16. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    Science.gov (United States)

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  17. Mechanisms of in Vivo Degradation and Resorption of Calcium Phosphate Based Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-11-01

    Full Text Available Calcium phosphate ceramic materials are extensively used for bone replacement and regeneration in orthopedic, dental, and maxillofacial surgical applications. In order for these biomaterials to work effectively it is imperative that they undergo the process of degradation and resorption in vivo. This allows for the space to be created for the new bone tissue to form and infiltrate within the implanted graft material. Several factors affect the biodegradation and resorption of calcium phosphate materials after implantation. Various cell types are involved in the degradation process by phagocytic mechanisms (monocytes/macrophages, fibroblasts, osteoblasts or via an acidic mechanism to reduce the micro-environmental pH which results in demineralization of the cement matrix and resorption via osteoclasts. These cells exert their degradation effects directly or indirectly through the cytokine growth factor secretion and their sensitivity and response to these biomolecules. This article discusses the mechanisms of calcium phosphate material degradation in vivo.

  18. Activity of pulmonary intravascular macrophages in cats and dogs with and without adult Dirofilaria immitis.

    Science.gov (United States)

    Dillon, A R; Warner, A E; Brawner, W; Hudson, J; Tillson, M

    2008-12-10

    Pulmonary intravascular macrophages (PIMs), large (20-80 microm diameter) monocytes are present in sheep, pigs, and horses, but not in dogs, rats, rabbits, or primates. The present study evaluated the phagocytic activity of various organs in cats and dogs and determined the influence of Dirofilaria immitis infections on PIM activity. Live or dead adult heartworm (HW) was transplanted via jugular venotomy into cats and dogs. Cats (four per group) were allocated to five groups: surgical controls--no HW, dead HW for 1 week, live HW for 1 week, dead HW for 3 weeks, or live HW for 3 weeks. Radioactive technetium (Tc-99m, 1.2mCi in 0.3ml) sulfa-colloid was injected intravenously. All cats with HW were clinically asymptomatic and developed radiographic pulmonary parenchymal changes. No gross changes were visible at necropsy for cats with HW; inflammatory changes were less severe in cats with live HW. In cats with dead HW for 3 weeks, worms were present but folded, flattened, and located in distal pulmonary arteries. Uninfected control dogs and those with dead HW did not demonstrate any PIM activity. In control cats, lungs were the primary phagocytic organ after systemic IV colloid injection (72.5% of the total recovered radioactive dose). The lung and liver together represented over 95% of the recovered Tc-99m colloid in all cats. In each group of cats with HW, phagocytic activity of the lung was significantly less (p < 0.001) than the PIM activity of controls. Cats with dead HW at 1 week (50.1%) had a significant (p < 0.019) decrease in PIM activity compared with cats with dead HW at 3 weeks (59.5%). The PIM activity in cats with live HW was significantly decreased (p < 0.001) from that in groups with dead HW, but there was no significant difference between the two groups infected with live worms. There were no significant differences in recovery between any groups in pairwise analysis of the spleen, heart, skeletal muscle, kidney, bone marrow, or blood. Significant

  19. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1) in Human Macrophages

    Science.gov (United States)

    Copin, C.; Derudas, B.; Marx, N.

    2016-01-01

    Tissue factor (TF) is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa). Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1). Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway. PMID:28115923

  20. Fatty acids from fat cell lipolysis do not activate an inflammatory response but are stored as triacylglycerols in adipose tissue macrophages.

    Science.gov (United States)

    Caspar-Bauguil, Sylvie; Kolditz, Catherine-Ines; Lefort, Corinne; Vila, Isabelle; Mouisel, Etienne; Beuzelin, Diane; Tavernier, Geneviève; Marques, Marie-Adeline; Zakaroff-Girard, Alexia; Pecher, Christiane; Houssier, Marianne; Mir, Lucile; Nicolas, Sarah; Moro, Cédric; Langin, Dominique

    2015-11-01

    Activation of macrophages by fatty acids (FAs) is a potential mechanism linking obesity to adipose tissue (AT) inflammation and insulin resistance. Here, we investigated the effects of FAs released during adipocyte lipolysis on AT macrophages (ATMs). Human THP-1 macrophages were treated with media from human multipotent adipose-derived stem (hMADS) adipocytes stimulated with lipolytic drugs. Macrophages were also treated with mixtures of FAs and an inhibitor of Toll-like receptor 4, since this receptor is activated by saturated FAs. Levels of mRNA and the secretion of inflammation-related molecules were measured in macrophages. FA composition was determined in adipocytes, conditioned media and macrophages. The effect of chronic inhibition or acute activation of fat cell lipolysis on ATM response was investigated in vivo in mice. Whereas palmitic acid alone activates THP-1, conditioned media from hMADS adipocyte lipolysis had no effect on IL, chemokine and cytokine gene expression, and secretion by macrophages. Mixtures of FAs representing de novo lipogenesis or habitual dietary conditions also had no effect. FAs derived from adipocyte lipolysis were taken up by macrophages and stored as triacylglycerol droplets. In vivo, chronic treatment with an antilipolytic drug did not modify gene expression and number of ATMs in mice with intact or defective Tlr4. Stimulation of adipocyte lipolysis increased storage of neutral lipids by macrophages without change in number and phenotype. Our data suggest that adipocyte lipolysis does not activate inflammatory pathways in ATMs, which instead may act as scavengers of FAs.

  1. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice.

    Science.gov (United States)

    Mirza, Rita E; Fang, Milie M; Weinheimer-Haus, Eileen M; Ennis, William J; Koh, Timothy J

    2014-03-01

    The hypothesis of this study was that sustained activity of the Nod-like receptor protein (NLRP)-3 inflammasome in wounds of diabetic humans and mice contributes to the persistent inflammatory response and impaired healing characteristic of these wounds. Macrophages (Mp) isolated from wounds on diabetic humans and db/db mice exhibited sustained inflammasome activity associated with low level of expression of endogenous inflammasome inhibitors. Soluble factors in the biochemical milieu of these wounds are sufficient to activate the inflammasome, as wound-conditioned medium activates caspase-1 and induces release of interleukin (IL)-1β and IL-18 in cultured Mp via a reactive oxygen species-mediated pathway. Importantly, inhibiting inflammasome activity in wounds of db/db mice using topical application of pharmacological inhibitors improved healing of these wounds, induced a switch from proinflammatory to healing-associated Mp phenotypes, and increased levels of prohealing growth factors. Furthermore, data generated from bone marrow-transfer experiments from NLRP-3 or caspase-1 knockout to db/db mice indicated that blocking inflammasome activity in bone marrow cells is sufficient to improve healing. Our findings indicate that sustained inflammasome activity in wound Mp contributes to impaired early healing responses of diabetic wounds and that the inflammasome may represent a new therapeutic target for improving healing in diabetic individuals.

  2. The inhibition of macrophage foam cell formation by 9-cis β-carotene is driven by BCMO1 activity.

    Directory of Open Access Journals (Sweden)

    Noa Zolberg Relevy

    Full Text Available Atherosclerosis is a major cause of morbidity and mortality in developed societies, and begins when activated endothelial cells recruit monocytes and T-cells from the bloodstream into the arterial wall. Macrophages that accumulate cholesterol and other fatty materials are transformed into foam cells. Several epidemiological studies have demonstrated that a diet rich in carotenoids is associated with a reduced risk of heart disease; while previous work in our laboratory has shown that the 9-cis β-carotene rich alga Dunaliella inhibits atherogenesis in mice. The effect of 9-cis β-carotene on macrophage foam cell formation has not yet been investigated. In the present work, we sought to study whether the 9-cis β-carotene isomer, isolated from the alga Dunaliella, can inhibit macrophage foam cell formation upon its conversion to retinoids. The 9-cis β-carotene and Dunaliella lipid extract inhibited foam cell formation in the RAW264.7 cell line, similar to 9-cis retinoic acid. Furthermore, dietary enrichment with the algal powder in mice resulted in carotenoid accumulation in the peritoneal macrophages and in the inhibition of foam cell formation ex-vivo and in-vivo. We also found that the β-carotene cleavage enzyme β-carotene 15,15'-monooxygenase (BCMO1 is expressed and active in macrophages. Finally, 9-cis β-carotene, as well as the Dunaliella extract, activated the nuclear receptor RXR in hepa1-6 cells. These results indicate that dietary carotenoids, such as 9-cis β-carotene, accumulate in macrophages and can be locally cleaved by endogenous BCMO1 to form 9-cis retinoic acid and other retinoids. Subsequently, these retinoids activate the nuclear receptor RXR that, along with additional nuclear receptors, can affect various metabolic pathways, including those involved in foam cell formation and atherosclerosis.

  3. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

    Science.gov (United States)

    Ke, Ping; Shao, Bo-Zong; Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.

  4. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  5. Asian dust particles induce macrophage inflammatory responses via mitogen-activated protein kinase activation and reactive oxygen species production.

    Science.gov (United States)

    Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor- α (TNF- α ) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10  μ m in diameter provoked a greater inflammatory response than soil dust samples containing particles >10  μ m. In addition, Asian dust particles-induced TNF- α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor- κ B and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  6. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Kazuma Higashisaka

    2014-01-01

    Full Text Available Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  7. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease.

    Science.gov (United States)

    Bacci, Monica; Capobianco, Annalisa; Monno, Antonella; Cottone, Lucia; Di Puppo, Francesca; Camisa, Barbara; Mariani, Margherita; Brignole, Chiara; Ponzoni, Mirco; Ferrari, Stefano; Panina-Bordignon, Paola; Manfredi, Angelo A; Rovere-Querini, Patrizia

    2009-08-01

    The mechanisms that sustain endometrial tissues at ectopic sites in patients with endometriosis are poorly understood. Various leukocytes, including macrophages, infiltrate endometriotic lesions. In this study, we depleted mouse macrophages by means of either clodronate liposomes or monoclonal antibodies before the injection of syngeneic endometrial tissue. In the absence of macrophages, tissue fragments adhered and implanted into the peritoneal wall, but endometriotic lesions failed to organize and develop. When we depleted macrophages after the establishment of endometriotic lesions, blood vessels failed to reach the inner layers of the lesions, which stopped growing. Macrophages from patients with endometriosis and experimental mice, but not nonendometriotic patients who underwent surgery for uterine leiomyomas or control mice, expressed markers of alternative activation. These markers included high levels of scavenger receptors, CD163 and CD206, which are involved in both the scavenging of hemoglobin with iron transfer into macrophages and the silent clearance of inflammatory molecules. Macrophages in both inflammatory liquid and ectopic lesions were equally polarized, suggesting a critical role of environmental cues in the peritoneal cavity. Adoptively transferred, alternatively activated macrophages dramatically enhanced endometriotic lesion growth in mice. Inflammatory macrophages effectively protected mice from endometriosis. Therefore, endogenous macrophages involved in tissue remodeling appear as players in the natural history of endometriosis, required for effective vascularization and ectopic lesion growth.

  8. Variation in nutrient resorption by desert shrubs

    Science.gov (United States)

    Plant nutrient resorption prior to leaf senescence is an important nutrient conservation mechanism for aridland plant species. However, little is known regarding the phylogenetic and environmental factors influencing this trait. Our objective was to compare nitrogen and phosphorus resorption in a ...

  9. The glycosylation and characterization of the candidate Gc macrophage activating factor

    DEFF Research Database (Denmark)

    Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich;

    2010-01-01

    The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common...... isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc...... globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF...

  10. The LRP1-independent mechanism of PAI-1-induced migration in CpG-ODN activated macrophages.

    Science.gov (United States)

    Thapa, Bikash; Kim, Yeon Hyang; Kwon, Hyung-Joo; Kim, Doo-Sik

    2014-04-01

    CpG-oligodeoxynucleotides (CpG-ODNs) induces plasminogen activator inhibitor type-1 (PAI-1) expression in macrophages, leading to enhanced migration through vitronectin. However, the precise role of low-density lipoprotein receptor-related protein 1 (LRP1) in PAI-1 induced migration of macrophages in the inflammatory environment is not known. In this study, we elucidated a novel mechanism describing the altered role of LRP1 in macrophage migration depending on the activation state of the cells. Experimental evidence clearly shows that the blocking of LRP1 function inhibited the PAI-induced migration of resting RAW 264.7 cells through vitronectin but exerted a pro-migratory effect on CpG-ODN-activated cells. We also demonstrate that CpG-ODN downregulates the protein and mRNA levels of LRP1 both in vivo and in vitro, a function that depends on the NF-κB signaling pathway, resulting in reduced internalization of PAI-1. This work illustrates the distinct mechanism that PAI-1-induced migration of CpG-ODN-activated cells through vitronectin depends on the interaction of PAI-1 with vitronectin but not LRP1 unlike in the resting cells, where the migration is LRP1 dependent and vitronectin independent. In conclusion, our experimental results demonstrate the altered function of LRP1 in the migration of resting and activated macrophages in the context of microenvironmental extracellular matrix components.

  11. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.

  12. Assessing Anti-fungal Activity of Isolated Alveolar Macrophages by Confocal Microscopy

    Science.gov (United States)

    Grimm, Melissa J.; D'Auria, Anthony C.; Segal, Brahm H.

    2014-01-01

    The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy. PMID:25045941

  13. The Impact of Myeloperoxidase and Activated Macrophages on Metaphase II Mouse Oocyte Quality.

    Directory of Open Access Journals (Sweden)

    Faten Shaeib

    Full Text Available Myeloperoxidase (MPO, an abundant heme-containing enzyme present in neutrophils, monocytes, and macrophages, is produced in high levels during inflammation, and associated with poor reproductive outcomes. MPO is known to generate hypochlorous acid (HOCl, a damaging reactive oxygen species (ROS utilizing hydrogen peroxide (H2O2 and chloride (Cl-. Here we investigate the effect of activated immune cells and MPO on oocyte quality. Mouse metaphase II oocytes were divided into the following groups: 1 Incubation with a catalytic amount of MPO (40 nM for different incubation periods in the presence of 100 mM Cl- with and without H2O2 and with and without melatonin (100 μM, at 37°C (n = 648/648 total number of oocytes in each group for oocytes with and without cumulus cells; 2 Co-cultured with activated mouse peritoneal macrophage and neutrophils cells (1.0 x 106 cells/ml in the absence and presence of melatonin (200 μM, an MPO inhibitor/ROS scavenger, for different incubation periods in HTF media, at 37°C (n = 200/200; 3 Untreated oocytes incubated for 4 hrs as controls (n = 73/64. Oocytes were then fixed, stained and scored based on the microtubule morphology and chromosomal alignment. All treatments were found to negatively affect oocyte quality in a time dependent fashion as compared to controls. In all cases the presence of cumulus cells offered no protection; however significant protection was offered by melatonin. Similar results were obtained with oocytes treated with neutrophils. This work provides a direct link between MPO and decreased oocyte quality. Therefore, strategies to decrease MPO mediated inflammation may influence reproductive outcomes.

  14. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens.

    Science.gov (United States)

    Quinteiro-Filho, W M; Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Sakai, M; Sá, L R M; Ferreira, A J P; Palermo-Neto, J

    2010-09-01

    Studies on environmental consequences of stress on animal production have grown substantially in the last few years for economic and animal welfare reasons. Physiological, hormonal, and immunological deficits as well as increases in animals' susceptibility to diseases have been reported after different stressors in broiler chickens. The aim of the current experiment is to describe the effects of 2 different heat stressors (31 +/- 1 and 36 +/- 1 degrees C/10 h per d) applied to broiler chickens from d 35 to 42 of life on the corticosterone serum levels, performance parameters, intestinal histology, and peritoneal macrophage activity, correlating and discussing the obtained data under a neuroimmune perspective. In our study, we demonstrated that heat stress (31 +/- 1 and 36 +/- 1 degrees C) increased the corticosterone serum levels and decreased BW gain and food intake. Only chickens submitted to 36 +/- 1 degrees C, however, presented a decrease in feed conversion and increased mortality. We also showed a decrease of bursa of Fabricius (31 +/- 1 and 36 +/- 1 degrees C), thymus (36 +/- 1 degrees C), and spleen (36 +/- 1 degrees C) relative weights and of macrophage basal (31 +/- 1 and 36 +/- 1 degrees C) and Staphylococcus aureus-induced oxidative burst (31 +/- 1 degrees C). Finally, mild multifocal acute enteritis characterized by an increased presence of lymphocytes and plasmocytes within the jejunum's lamina propria was also observed. The stress-induced hypothalamic-pituitary-adrenal axis activation was taken as responsible for the negative effects observed on the chickens' performance and immune function and also the changes of the intestinal mucosa. The present obtained data corroborate with others in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.

  15. A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages.

    Directory of Open Access Journals (Sweden)

    Ying Zheng

    2011-04-01

    Full Text Available A type III secretion system (T3SS in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJ(KIM has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJ(KIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJ(KIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJ(KIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJ(CO92, YopJ(KIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJ(KIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJ(CO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro

  16. Electroacupuncture at the ST36 acupoint increases interleukin-4 responsiveness in macrophages, generation of alternatively activated macrophages and susceptibility to Leishmania major infection

    Directory of Open Access Journals (Sweden)

    Aguiar Danillo N

    2012-07-01

    Full Text Available Abstract Background Electroacupuncture (EA has been used to treat inflammatory diseases. Alternatively activated macrophages (AAMo stimulated by cytokines such as interleukin (IL-4, IL-10 and IL-13 are anti-inflammatory and mildly microbicidal. This study aimed to evaluate whether EA at the Zusanli acupoint (ST36 would change the profile of healthy murine macrophages, particularly the generation of AAMo and susceptibility to Leishmania major infection. Methods BALB/c mice were treated with EA (15/30 Hz at the ST36 acupoint for 20 min/d for 5 d. After the final EA session, the mice were euthanized and their peritoneal cells were harvested and counted for determination of arginase activity, nitric oxide (NO production and microbicidal activity after culture in the presence or absence of IL-4, interferon-γ (IFNγ or lipopolysaccharide (LPS or both IFNγ and LPS. Twelve mice were infected with L. major promastigotes into the footpads after the final EA session and the infection course was monitored. Results Peritoneal cells freshly obtained from EA-treated mice had similar arginase and microbicidal activities to cells from sham-treated mice. After culture with IL-4, cells from EA-treated mice exhibited significant increases in the arginase activity (sham: 58 ± 11.3 vs. EA: 80.7 ± 4.6%, P = 0.025 and number of parasites/infected cell (sham: 2.5 ± 0.4 vs. EA: 4.3 ± 0.8 cells, P = 0.007. The NO production was lower in cells from EA-treated mice cultured in the presence of a combination of IFNγ and LPS (sham: 31.6 ± 6.5 vs. EA: 22.3 ± 2.1 μM, P = 0.025. The lesion size in mice infected with L. major promastigotes was larger in EA-treated mice (sham: 3.26 ± 0.29 vs. EA: 2.23 ± 0.4 mm, P = 0.039. Conclusion EA at the ST36 acupoint increases IL-4 responsiveness in macrophages, Generation of AAMo and susceptibility to L. major infection

  17. Change in Performance of BALB/c Mouse Pulmonary Macrophage Surface Receptor after Exercise and its Influence on Phagocytic Activity

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2015-09-01

    Full Text Available Objective: To study the effect of exercise on phagocytosis by pulmonary bronchoalveolar macrophages (BAMs. Methods: A total of 120 seven- to nine-week-old male BALB/c mice were randomly assigned into the following groups based on exercise intensity on a treadmill: control exercise (CE group, acute moderate exercise (ME group, and strenuous exercise group. Lung lavage was conducted to collect BAMs from the mice. Phagocytic behavior and surface receptor expression on BALB/c mouse BAMs were analyzed through fluorescence microscopy and flow cytometry. Results: In the SE group, expression levels of macrophage scavenger receptors (surface receptor [SR-A] type I/II and macrophage receptor [MARCO], complement receptor3 (CR3, and intercellular adhesion molecule 1 (ICAM-1 were upregulated; by contrast, expression level of extensive G-type immune globulin receptor (Fc Rs was not upregulated. The promoting percentage of phagocytosis in the CE group was 100%; the highest promoting percentage of phagocytosis was 161% observed in MARCO, followed by 116% detected in CR3; the promoting percentage of phagocytosis found in SR-A type I/II and ICAM-1 increased by approximately 65%. Indeed, these scavenger receptors were involved in phagocytosis induced by macrophages. MARCO was also necessary to elicit a stimulatory effect on macrophage phagocytic activity. Conclusions: The phagocytosis of unopsonized particles was possibly mediated by MARCO expression.

  18. Chamomile Flower, Myrrh, and Coffee Charcoal, Components of a Traditional Herbal Medicinal Product, Diminish Proinflammatory Activation in Human Macrophages.

    Science.gov (United States)

    Vissiennon, Cica; Hammoud, Dima; Rodewald, Steffen; Fester, Karin; Goos, Karl-Heinz; Nieber, Karen; Arnhold, Jürgen

    2017-07-01

    A traditional herbal medicinal product, containing myrrh, chamomile flower, and coffee charcoal, has been used in Germany for the relief of gastrointestinal complaints for decades. Clinical studies suggest its use in the maintenance therapy of inflammatory bowel disease. However, the pharmacological mechanisms underlying the clinical effects are not yet fully understood.The present study aims to elucidate immunopharmacological activities of myrrh, chamomile flower, and coffee charcoal by studying the influence of each plant extract on gene expression and protein release of activated human macrophages.The plant extracts effect on gene and protein expression of activated human monocyte-derived macrophages was investigated by microarray gene expression analysis and assessment of the release of pro- and anti-inflammatory mediators (TNFα, chemokine CXCL13, and interleukin-10) using an ELISA test system.The extracts of myrrh, chamomile flower, and coffee charcoal influenced gene expression of activated human macrophages within the cytokine/chemokine signaling pathway. Particularly, chemokine gene expression was suppressed. Subsequently, the production of CXCL13 and, to a minor extent, cytokine TNFα was inhibited by all herbal extracts. Chamomile flower and coffee charcoal extracts enhanced interleukin-10 release from activated macrophages. The observed effects on protein release were comparable to the effect of budesonide, which decreased TNFα and CXCL13 and enhanced interleukin-10 release.The components of the herbal medicinal product influence the activity of activated human macrophages on both gene and protein level. The induced alterations within chemokine/cytokine signaling could contribute to a positive effect on the immunological homeostasis, which is disturbed in patients with chronic intestinal inflammation. Georg Thieme Verlag KG Stuttgart · New York.

  19. Monocyte-macrophage membrane possesses free radicals scavenging activity: stimulation by polyphenols or by paraoxonase 1 (PON1).

    Science.gov (United States)

    Rosenblat, M; Elias, A; Volkova, N; Aviram, M

    2013-04-01

    In the current study, we analysed free radicals scavenging activity of monocytes-macrophages in the absence or presence of antioxidants such as polyphenols or paraoxonase 1 (PON1). THP-1 human monocytic cell line, murine J774A.1 macrophages, as well as human primary monocytes have the capability to scavenge free radicals, as measured by the 1-diphenyl-2-picryl-hydrazyl (DPPH) assay. This effect (which could be attributed to the cell's membrane) was cell number and incubation time dependent. Upon incubation of J774A.1 macrophages with acetylated LDL (Ac-LDL), with VLDL, or with the radical generator, AAPH, the cells' lipid peroxides content, and paraoxonase 2 (PON2) activity were significantly increased. While non-treated cells decreased DPPH absorbance by 65%, the Ac-LDL-, VLDL- or AAPH-treated cells, decreased it by only 33%, 30%, or 45%, respectively. We next analysed the effect of J774A.1 macrophage enrichment with antioxidants, such as polyphenols or PON1 on the cells' free radicals scavenging activity. Non-treated cells decreased DPPH absorbance by 50%, whereas vitamin E-, punicalagin- or PJ-treated cells significantly further decreased it, by 75%. Similarly, in PON1-treated cells DPPH absorbance was further decreased by 63%, in association with 23% increment in PON1 catalytic activity. In cells under oxidative stress [treated with AAPH-, or with oxidized LDL], PON1 activity was decreased by 31% or 40%, as compared to the activity observed in PON1 incubated with non-treated cells. We conclude that monocytes-macrophages possess free radicals scavenging activity, which is decreased under atherogenic conditions, and increased upon cell enrichment with potent antioxidants such as nutritional polyphenols, or PON1.

  20. Dysregulated TLR3-Dependent Signaling and Innate Immune Activation in Superoxide-Deficient Macrophages From Non-Obese Diabetic Mice

    OpenAIRE

    Seleme, Maria C.; Lei, Weiqi; Burg, Ashley R.; Goh, Kah Yong; Metz, Allison; Steele, Chad; Tse, Hubert M.

    2012-01-01

    In Type 1 diabetes (T1D), reactive oxygen species (ROS) and pro-inflammatory cytokines produced by macrophages and other innate immune cells destroy pancreatic β-cells while promoting autoreactive T cell maturation. Superoxide-deficient Non-Obese Diabetic mice (NOD.Ncf1m1J) are resistant to spontaneous diabetes, revealing the integral role of ROS-signaling in T1D. Here, we evaluate the innate immune activation state of bone marrow-derived macrophages (BM-Mϕ) from NOD and NOD.Ncf1m1J mice afte...

  1. P2X7R activation drives distinct IL-1 responses in dendritic cells compared to macrophages

    OpenAIRE

    Englezou, Pavlos C.; Rothwell, Simon W.; Ainscough, Joseph S.; Brough, David; Landsiedel, Robert; Verkhratsky, Alexei; Kimber, Ian; Dearman, Rebecca J

    2015-01-01

    The P2X7R is a functionally distinct member of the P2X family of non-selective cation channels associated with rapid activation of the inflammasome complex and signalling interleukin (IL)-1β release in macrophages. The main focus of this investigation was to compare P2X7R-driven IL-1 production by primary murine bone marrow derived dendritic cells (BMDC) and macrophages (BMM). P2X7R expression in murine BMDC and BMM at both transcriptional (P2X7A variant) and protein levels was demonstrated....

  2. Angiopoietin-like 4 is over-expressed in rheumatoid arthritis patients: association with pathological bone resorption.

    Directory of Open Access Journals (Sweden)

    Catherine Swales

    Full Text Available Osteoclasts are responsible for the bone loss associated with rheumatoid arthritis (RA. The secreted adipokine angiopoietin-like 4 (ANGPTL4 specifically increases osteoclast-mediated bone resorption. We have investigated expression of ANGPTL4 and its regulatory transcription factor, hypoxia-inducible factor-1 alpha (HIF-1α, in osteoclasts and other cells within rheumatoid synovium. We have also examined whether circulating levels of ANGPTL4 differ in RA patients compared with that in normal controls or patients with osteoarthritis (OA.Immunohistochemical analysis revealed that bone-apposing osteoclasts within the rheumatoid synovium express both ANGPTL4 and HIF-1α. ANGPTL4 was also strongly expressed in synovial lining cells, endothelial cells, stromal cells, CD68+ macrophages and plasma cells within RA synovium. Little ANGPTL4 was evident in normal synovial tissue. This reflected the over-expression of HIF-1α in rheumatoid versus normal synovial tissue. The concentration of ANGPTL4 was higher in both the serum and the synovial fluid of RA pati