WorldWideScience

Sample records for macrophage accumulation rates

  1. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation.

    Science.gov (United States)

    Petrick, Lauren; Rosenblat, Mira; Paland, Nicole; Aviram, Michael

    2016-06-01

    Nanoparticle research has focused on their toxicity in general, while increasing evidence points to additional specific adverse effects on atherosclerosis development. Arterial macrophage cholesterol and triglyceride (TG) accumulation and foam cell formation are the hallmark of early atherogenesis, leading to cardiovascular events. To investigate the in vitro atherogenic effects of silicon dioxide (SiO2 ), J774.1 cultured macrophages (murine cell line) were incubated with SiO2 nanoparticle (SP, d = 12 nm, 0-20 µg/mL), followed by cellular cytotoxicity, oxidative stress, TG and cholesterol metabolism analyses. A significant dose-dependent increase in oxidative stress (up to 164%), in cytotoxicity (up to 390% measured by lactate dehydrogenase (LDH) release), and in TG content (up to 63%) was observed in SiO2 exposed macrophages compared with control cells. A smaller increase in macrophage cholesterol mass (up to 22%) was noted. TG accumulation in macrophages was not due to a decrease in TG cell secretion or to an increased TG biosynthesis rate, but was the result of attenuated TG hydrolysis secondary to decreased lipase activity and both adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein expression (by 42 and 25%, respectively). Overall, SPs showed pro-atherogenic effects on macrophages as observed by cytotoxicity, increased oxidative stress and TG accumulation. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 713-723, 2016.

  2. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice.

    Science.gov (United States)

    Vida, Carmen; de Toda, Irene Martínez; Cruces, Julia; Garrido, Antonio; Gonzalez-Sanchez, Mónica; De la Fuente, Mónica

    2017-08-01

    The age-related changes in the immune functions (immunosenescence) may be mediated by an increase of oxidative stress and damage affecting leukocytes. Although the "oxidation-inflammation" theory of aging proposes that phagocytes are the main immune cells contributing to "oxi-inflamm-aging", this idea has not been corroborated. The aim of this work was to characterize the age-related changes in several parameters of oxidative stress and immune function, as well as in lipofuscin accumulation ("a hallmark of aging"), in both total peritoneal leukocyte population and isolated peritoneal macrophages. Adult, mature, old and long-lived mice (7, 13, 18 and 30 months of age, respectively) were used. The xanthine oxidase (XO) activity-expression, basal levels of superoxide anion and ROS, catalase activity, oxidized (GSSG) and reduced (GSH) glutathione content and lipofuscin levels, as well as both phagocytosis and digestion capacity were evaluated. The results showed an age-related increase of oxidative stress and lipofuscin accumulation in murine peritoneal leukocytes, but especially in macrophages. Macrophages from old mice showed lower antioxidant defenses (catalase activity and GSH levels), higher oxidizing compounds (XO activity/expression and superoxide, ROS and GSSG levels) and lipofuscin levels, together with an impaired macrophage functions, in comparison to adults. In contrast, long-lived mice showed in their peritoneal leukocytes, and especially in macrophages, a well-preserved redox state and maintenance of their immune functions, all which could account for their high longevity. Interestingly, macrophages showed higher XO activity and lipofuscin accumulation than lymphocytes in all the ages analyzed. Our results support that macrophages play a central role in the chronic oxidative stress associated with aging, and the fact that phagocytes are key cells contributing to immunosenescence and "oxi-inflamm-aging". Moreover, the determination of oxidative stress and

  3. Uptake of dexamethasone incorporated into liposomes by macrophages and foam cells and its inhibitory effect on cellular cholesterol ester accumulation.

    Science.gov (United States)

    Chono, Sumio; Morimoto, Kazuhiro

    2006-09-01

    addition, the relationship between the area under the uptake amount of dexamethasone-time curve (AUC) and the inhibition rate of cholesterol ester accumulation in macrophages and foam cells was evaluated. The inhibition rate of cholesterol ester accumulation (%) was related to the AUC in both types of cell. These results suggested that dexamethasone-liposomes would be a useful approach to the development of a novel drug delivery system for atherosclerotic therapy. Furthermore, the prediction of the inhibitory effect of dexamethasone on cellular cholesterol ester accumulation may become possible by using the results of this study.

  4. Loss of CD73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs.

    Science.gov (United States)

    de Leve, Simone; Wirsdörfer, Florian; Cappuccini, Federica; Schütze, Alexandra; Meyer, Alina V; Röck, Katharina; Thompson, Linda F; Fischer, Jens W; Stuschke, Martin; Jendrossek, Verena

    2017-07-01

    While radiotherapy is a mainstay for cancer therapy, pneumonitis and fibrosis constitute dose-limiting side effects of thorax and whole body irradiation. So far, the contribution of immune cells to disease progression is largely unknown. Here we studied the role of ecto-5'-nucelotidase (CD73)/adenosine-induced changes in the myeloid compartment in radiation-induced lung fibrosis. C57BL/6 wild-type or CD73(-/-) mice received a single dose of whole thorax irradiation (WTI, 15 Gy). Myeloid cells were characterized in flow cytometric, histologic, and immunohistochemical analyses as well as RNA analyses. WTI induced a pronounced reduction of alveolar macrophages in both strains that recovered within 6 wk. Fibrosis development in wild-type mice was associated with a time-dependent deposition of hyaluronic acid (HA) and increased expression of markers for alternative activation on alveolar macrophages. These include the antiinflammatory macrophage mannose receptor and arginase-1. Further, macrophages accumulated in organized clusters and expressed profibrotic mediators at ≥25 wk after irradiation (fibrotic phase). Irradiated CD73(-/-) mice showed an altered regulation of components of the HA system and no clusters of alternatively activated macrophages. We speculate that accumulation of alternatively activated macrophages in organized clusters represents the origins of fibrotic foci after WTI and is promoted by a cross-talk between HA, CD73/adenosine signaling, and other profibrotic mediators.-De Leve, S., Wirsdörfer, F., Cappuccini, F., Schütze, A., Meyer, A. V., Röck, K., Thompson, L. F., Fischer, J. W., Stuschke, M., Jendrossek, V. Loss of CD73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs. © FASEB.

  5. Recent accumulation rate at Dome A, Antarctica

    Institute of Scientific and Technical Information of China (English)

    HOU ShuGui; LI YuanSheng; XIAO CunDe; REN JiaWen

    2007-01-01

    Based on the horizon of β activity and the density profiles, recent accumulation rate at Dome A, Antarctica is calculated to be 0.023 m water equivalent per year. This value is comparative to the accumulation rates deduced from the other inland sites of Antarctica. Clear-sky precipitation (or diamond dust) dominates the total precipitation at Dome A region. We speculate Dome A as a potential site to discover the oldest ice in Antarctica due to its tremendous ice thickness (>3000 m), extremely low accumulation rate, and low ice velocity.

  6. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Science.gov (United States)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  7. miRNA-133a attenuates lipid accumulation via TR4-CD36 pathway in macrophages.

    Science.gov (United States)

    Peng, Xiao-Ping; Huang, Lei; Liu, Zhi-Hong

    2016-08-01

    lipid metabolism is the major causes of atherosclerosis. There is increasing evidence that miR-133a plays an important role in atherosclerosis. However, the regulatory mechanism of miR-133a in macrophages is still unclear. Several lines of evidence indicate that loss of TR4 leads to reduce lipid accumulation in liver and adipose tissues, etc, and lesional macrophages-derived TR4 can greatly increase the foam cell formation through increasing the CD36-mediated the uptake of ox-LDL. Interestingly, computational analysis suggests that TR4 may be a target gene of miR-133a. Here, we examined whether miR-133a regulates TR4 expression in ox-LDL-induced mouse RAW 264.7 macrophages, thereby affecting lipid accumulation. Using ox-LDL-treatment RAW 264.7 macrophages transfected with miR-133a mimics or inhibitors, we have showed that miR-133a can directly regulate the expression of TR4 in RAW 264.7 cells, thereby attenuates CD36-medide lipid accumulation. Furthermore, our studies suggest an additional explanation for the regulatory mechanism of miR-133a regulation to its functional target, TR4 in RAW 264.7 macrophages. Thus, our findings suggest that miR-133a may regulate lipid accumulation in ox-LDL-stimulated RAW 264.7 macrophages via TR4-CD36 pathway.

  8. Distinctive role of activated tumor-associated macrophages in photosensitizer accumulation

    Science.gov (United States)

    Korbelik, Mladen; Krosl, Gorazd

    1995-05-01

    Cells dissociated from tumors (carcinomas and sarcomas) growing subcutaneously in mice that have been administered Photofrin or other photosensitizers were analyzed by flow cytometry. Monoclonal antibodies were used for identification of major cellular populations contained in these tumors. The results demonstrate that a subpopulation of tumor-associated macrophages (TAMs) is unique among tumor cell populations in that it excels in the accumulation of very high levels of photosensitizers. These macrophages showed an increased expression of interleukin 2 receptor, which is indicative of their activated state. since macrophages were reported to concentrate in the periphery of human neoplasms, it is suggested that activates TAMs are the determinants of tumor-localized photosensitizer fluorescence.

  9. Arachidonic acid accumulates in the stromal macrophages during thymus involution in diabetes.

    Science.gov (United States)

    Gruia, Alexandra T; Barbu-Tudoran, Lucian; Mic, Ani A; Ordodi, Valentin L; Paunescu, Virgil; Mic, Felix A

    2011-07-01

    Diabetes is a debilitating disease with chronic evolution that affects many tissues and organs over its course. Thymus is an organ that is affected early after the onset of diabetes, gradually involuting until it loses most of its thymocyte populations. We show evidence of accumulating free fatty acids with generation of eicosanoids in the diabetic thymus and we present a possible mechanism for the involution of the organ during the disease. Young rats were injected with streptozotocin and their thymuses examined for cell death by flow cytometry and TUNEL reaction. Accumulation of lipids in the diabetic thymus was investigated by histology and electron microscopy. The identity and quantitation of accumulating lipids was done with gas chromatography-mass spectrometry and liquid chromatography. The expression and dynamics of the enzymes were monitored via immunohistochemistry. Diabetes causes thymus involution by elevating the thymocyte apoptosis. Exposure of thymocytes to elevated concentration of glucose causes apoptosis. After the onset of diabetes, there is a gradual accumulation of free fatty acids in the stromal macrophages including arachidonic acid, the substrate for eicosanoids. The eicosanoids do not cause thymocyte apoptosis but administration of a cyclooxygenase inhibitor reduces the staining for ED1, a macrophage marker whose intensity correlates with phagocytic activity. Diabetes causes thymus involution that is accompanied by accumulation of free fatty acids in the thymic macrophages. Excess glucose is able to induce thymocyte apoptosis but eicosanoids are involved in the chemoattraction of macrophage to remove the dead thymocytes.

  10. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  11. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

    Science.gov (United States)

    Kim, Ok-Hee; Kim, Hyojung; Kang, Jinku; Yang, Dongki; Kang, Yu-Hoi; Lee, Dae Ho; Cheon, Gi Jeong; Park, Sang Chul; Oh, Byung-Chul

    2017-01-01

    Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified age-dependent macrophage accumulation in the bone marrow, showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10. BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues. PMID:27866511

  12. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation.

    Science.gov (United States)

    Malandrino, Maria Ida; Fucho, Raquel; Weber, Minéia; Calderon-Dominguez, María; Mir, Joan Francesc; Valcarcel, Lorea; Escoté, Xavier; Gómez-Serrano, María; Peral, Belén; Salvadó, Laia; Fernández-Veledo, Sonia; Casals, Núria; Vázquez-Carrera, Manuel; Villarroya, Francesc; Vendrell, Joan J; Serra, Dolors; Herrero, Laura

    2015-05-01

    Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.

  13. Overexpressed PLTP in macrophage may promote cholesterol accumulation by prolonged endoplasmic reticulum stress.

    Science.gov (United States)

    Yang, Xinquan; Yu, Yang; Wang, Daxin; Qin, Shucun

    2017-01-01

    It is well known that phospholipid transfer protein (PLTP) is involved in the lipid metabolism and development of atherosclerosis (AS). Abundant PLTP is considered to be expressed on the foam cells derived from monocyte/macrophages in atherosclerotic plaques, suggesting that high level of active PLTP may promote the formation of foam cells. However, the exact role of PLTP on the process of macrophage derived foam cell formation remains unclear. The accumulation of free cholesterol (FC) in the cytoplasm may lead to the prolonged endoplasmic reticulum stress (ERs) and the imbalance of intracellular cholesterol homeostasis. Different PLTP level definitely alternates the phospholipids (PL) and cholesterol level in plasma, strongly suggesting that active PLTP may change the level of FC and PL intracellularly, which subsequently induced the ERs in macrophage. Thus, we hypothesize that high level of PLTP may promote the accumulation of cholesterol in macrophage via the alteration ratio of FC to PL. Therefore, validating this hypothesis may clarify the role of PLTP in macrophage ERs in AS and also raise a novel strategy in the regression of AS plaques via restoring intracellular membrane lipid homeostasis and attenuating ERs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Paraoxsonase2 (PON2) and oxidative stress involvement in pomegranate juice protection against cigarette smoke-induced macrophage cholesterol accumulation.

    Science.gov (United States)

    Rom, Oren; Aviram, Michael

    2016-11-25

    Exposure to cigarette smoke (CS) promotes various stages of atherosclerosis development. Macrophages are the predominant cells in early atherogenesis, and the polyphenolic-rich pomegranate juice (PJ) is known for its protective role against macrophage atherogenicity. The aim of the current study was to examine the atherogenic effects of CS on macrophages, and to evaluate the protective effects of PJ against CS-induced macrophage atherogenicity. Murine J774A.1 macrophages were treated with CS-exposed medium in the absence or presence of PJ. Parameters of lipid peroxidation in CS-exposed medium were measured by the lipid peroxides and thiobarbituric acid reactive substances (TBARS) assays. Atherogenicity of macrophages incubated with increasing concentrations of CS-exposed medium was assessed by cytotoxicity, oxidative stress determined by generation of reactive oxygen species (ROS) using DCFH-DA, activity of the cellular anti-oxidant paraoxonase2 (PON2), macrophage accumulation of cholesterol and triglycerides, as well as through high density lipoprotein (HDL)-mediated cholesterol efflux from the cells. CS exposure resulted in significant and dose-dependent increases in lipid peroxides and TBARS medium levels (up to 3 and 8-fold, respectively). Incubation of macrophages with CS-exposed medium resulted in dose-dependent increases in macrophage damage/injury (up to 6-fold), intracellular ROS levels (up to 31%), PON2 activity (up to 2-fold), and macrophage cholesterol content (up to 24%). The latter might be explained by reduced HDL-mediated cholesterol efflux from CS-exposed macrophages (by 21%). PJ protected macrophages from CS-induced increases in intracellular ROS levels and cholesterol accumulation, as well as the attenuated efflux of cholesterol. These data indicate that CS stimulates macrophage oxidation and activates PON2 as a possible compensatory response to the oxidative burden. CS impairs HDL-mediated cholesterol efflux from macrophages leading to cellular

  15. Effect of high glucose on the expression of CD36 and lipid accumulation in THP-1 macrophages

    Institute of Scientific and Technical Information of China (English)

    谭玉林

    2014-01-01

    Objective To investigate the effect of high glucose on regulating the expression of CD36 and lipid accumulation in THP-1 macrophages.Methods THP-1 macrophages were incubated with different concentrations of D-glucose(5.6,11,20,30 and 35 mmol/L),50 mg/L oxidized low density lipoprotein(ox-LDL),50 mg/L oxLDL+20 mmol/L D-glucose for 24 h.Total cholesterol content in THP-1 macrophages was determined by high performance liquid chromatography,the lipid accumulation was detected by oil red O stain.CD36 mRNA and

  16. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue

    Directory of Open Access Journals (Sweden)

    Jennifer L. Kaplan

    2015-11-01

    Conclusions: This study provides the first in vivo evidence, to our knowledge, that committed AdPCs in VAT are the initial source of obesity-induced MCP-1 and identifies the helix-loop-helix transcription factor Id3 as a critical regulator of p21Cip1 expression, AdPC proliferation, MCP-1 expression and M1 macrophage accumulation in VAT. Inhibition of Id3 and AdPC expansion, as well as CD44 expression in human AdPCs, may serve as unique therapeutic targets for the regulation of adipose tissue inflammation.

  17. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages.

    Science.gov (United States)

    Zhang, Yu; Ge, Cheng; Wang, Lin; Liu, Xinxin; Chen, Yifei; Li, Mengmeng; Zhang, Mei

    2015-01-01

    Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux.

  18. Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women.

    Science.gov (United States)

    Michaud, Andréanne; Drolet, Renée; Noël, Suzanne; Paris, Gaëtan; Tchernof, André

    2012-05-01

    We tested the hypothesis that visceral obesity is the best correlate of abdominal adipose tissue macrophage infiltration in women. Omental and subcutaneous fat samples were surgically obtained from 40 women (age, 47.0 ± 4.0 years; body mass index, 28.4 ± 5.8 kg/m(2)). CD68+ cells were identified using fluorescence immunohistochemistry. Expression of macrophage markers was measured by real-time reverse transcriptase polymerase chain reaction. Body composition and fat distribution were measured by dual-energy x-ray absorptiometry and computed tomography, respectively. Mean CD68+ cell percentage tended to be higher in subcutaneous (18.3%) compared with omental adipose tissue (15.5%, P = .07). Positive correlations were observed between CD68+ cell percentage as well as CD68 messenger RNA expression in a given depot vs the other (P ≤ .01). Visceral adipose tissue area and omental adipocyte diameter were positively related to CD68+ cell percentage in omental fat (r = 0.52 and r = 0.35, P ≤ .05). Total and visceral adipose tissue areas as well as subcutaneous adipocyte diameter were significantly correlated with CD68+ cell percentage in subcutaneous adipose tissue (0.32 ≤ r ≤ 0.40, P ≤ .05). Adipose tissue areas and subcutaneous adipocyte diameter were also significantly associated with expression of commonly used macrophage markers including CD68 in the subcutaneous fat compartment (0.32 ≤ r ≤ 0.57, P ≤ .05). Visceral adipose tissue area was the best correlate of CD68+ cell percentage in both omental and subcutaneous fat tissues, explaining, respectively, 20% and 12% of the variance in models also including subcutaneous adipose tissue area, adipocyte sizes, and total body fat mass. Visceral adipose tissue accumulation is the best correlate of macrophage infiltration in both the subcutaneous and omental fat compartments of lean to obese women.

  19. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  20. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy.

    Science.gov (United States)

    Gumucio, Jonathan P; Davis, Max E; Bradley, Joshua R; Stafford, Patrick L; Schiffman, Corey J; Lynch, Evan B; Claflin, Dennis R; Bedi, Asheesh; Mendias, Christopher L

    2012-12-01

    Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. Copyright © 2012 Orthopaedic Research Society.

  1. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available BACKGROUND: HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp. CONCLUSION AND SIGNIFICANCE: HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  2. Vascular lipid accumulation, lipoprotein oxidation and macrophage lipid uptake in hypercholesterolemic zebrafish

    Science.gov (United States)

    Stoletov, Konstantin; Fang, Longhou; Choi, Soo-Ho; Hartvigsen, Karsten; Hansen, Lotte F.; Hall, Chris; Pattison, Jennifer; Juliano, Joseph; Miller, Elizabeth R.; Almazan, Felicidad; Crosier, Phil; Witztum, Joseph L.; Klemke, Richard L.; Miller, Yury I.

    2010-01-01

    Lipid accumulation in arteries induces vascular inflammation and atherosclerosis, the major cause of heart attack and stroke in humans. Extreme hyperlipidemia induced in mice and rabbits enables modeling many aspects of human atherosclerosis, but microscopic examination of plaques is possible only postmortem. Here we report that feeding adult zebrafish (Danio rerio) a high-cholesterol diet (HCD) resulted in hypercholesterolemia, remarkable lipoprotein oxidation and fatty streak formation in the arteries. Feeding an HCD supplemented with a fluorescent cholesteryl ester to optically transparent fli1:EGFP zebrafish larvae in which endothelial cells (EC) express GFP, and using confocal microscopy enabled monitoring vascular lipid accumulation and the EC layer disorganization and thickening in a live animal. The HCD feeding also increased leakage of a fluorescent dextran from the blood vessels. Administering ezetimibe significantly diminished the HCD-induced EC layer thickening and improved its barrier function. Feeding HCD to lyz:DsRed2 larvae in which macrophages and granulocytes express DsRed, resulted in the accumulation of fluorescent myeloid cells in the vascular wall. Using a fluorogenic substrate for phospholipase A2 (PLA2), we observed an increased vascular PLA2 activity in live HCD-fed larvae compared to control larvae. Furthermore, by transplanting genetically modified murine cells into HCD-fed larvae, we demonstrated that toll-like receptor-4 (TLR4) was required for efficient in vivo lipid uptake by macrophages. These results suggest that the novel zebrafish model is suitable for studying temporal characteristics of certain inflammatory processes of early atherogenesis and the in vivo function of vascular cells. PMID:19265037

  3. Lipoprotein accumulation in macrophages via TLR4-dependent fluid phase uptake

    Science.gov (United States)

    Choi, Soo-Ho; Harkewicz, Richard; Lee, Jee Hyun; Boullier, Agnès; Almazan, Felicidad; Li, Andrew C.; Witztum, Joseph L.; Bae, Yun Soo; Miller, Yury I.

    2009-01-01

    Toll-like receptor-4 (TLR4) recognizes microbial pathogens, such as lipopolysaccharide (LPS), and mediates LPS-induced proinflammatory cytokine secretion, as well as microbial uptake by macrophages. In addition to exogenous pathogens, TLR4 recognizes modified self, such as minimally oxidized low-density lipoprotein (mmLDL). Here we report that mmLDL and its active components, cholesteryl ester (CE) hydroperoxides, induce TLR4-dependent fluid phase uptake typical of macropinocytosis. We show that mmLDL induced recruitment of spleen tyrosine kinase (Syk) to a TLR4 signaling complex, TLR4 phosphorylation, activation of a Vav1-Ras-Raf-MEK-ERK1/2 signaling cascade, phosphorylation of paxillin, and activation of Rac, Cdc42 and Rho. These mmLDL-induced and TLR4- and Syk-dependent signaling events and cytoskeletal rearrangements lead to enhanced uptake of small molecules, dextran and, most importantly, of both native and oxidized LDL, resulting in intracellular lipid accumulation. An intravenous injection of fluorescently labeled mmLDL in wild type mice resulted in its rapid accumulation in circulating monocytes, which was significantly attenuated in TLR4-deficient mice. These data describe a novel mechanism leading to enhanced lipoprotein uptake in macrophages that would contribute to foam cell formation and atherosclerosis. These data also suggest that CE hydroperoxides are an endogenous ligand for TLR4. As TLR4 is highly expressed on the surface of circulating monocytes in patients with chronic inflammatory conditions, and CE hydroperoxides are present in plasma, lipid uptake by monocytes in circulation may contribute to monocytes' pathological roles in chronic inflammatory diseases. PMID:19461045

  4. Differential impact of diabetes mellitus type II and arterial hypertension on collateral artery growth and concomitant macrophage accumulation.

    Science.gov (United States)

    Ito, Wulf D; Lund, Natalie; Sager, Hendrik; Becker, Wiebke; Wenzel, Ulrich

    2015-01-01

    Diabetes mellitus type II and arterial hypertension are major risk factors for peripheral arterial disease and have been considered to reduce collateral growth (arteriogenesis). Collateral growth proceeds through different stages. Vascular proliferation and macrophage accumulation are hallmarks of early collateral growth. We here compare the impact of arterial hypertension and diabetes mellitus type II on collateral proliferation (Brdu incorporation) and macrophage accumulation (ED 2 staining) as well as collateral vessel function (collateral conductance) in a rat model of peripheral vascular disease (femoral artery occlusion), diabetes mellitus type II (Zucker fatty diabetic rats and Zucker lean rat controls) and arterial hypertension (induced via clip placement around the right renal arteriy). We furthermore tested the impact of monocyte chemoattractant protein-1 (MCP‑1) on collateral proliferation and macrophage accumulation in these models Diabetic animals showed reduced vascular proliferation and macrophage accumulation, which however did not translate into a change of collateral conductance. Hypertensive animals on the contrary had reduced collateral conductances without altered macrophage accumulation and only a marginal reduction in collateral proliferation. Infusion of MCP‑1 only enhanced vascular proliferation in diabetic animals. These findings illustrate that impaired monocyte/macrophage recruitment is responsible for reduced collateral growth under diabetic conditions but not in arterial hypertension suggesting that diabetes mellitus in particular affects early stages of collateral growth whereas hypertension has its impact on later remodeling stages. Successful pro-arteriogenic treatment strategies in a patient population that presents with diabetes mellitus and arterial hypertension need to address different stages of collateral growth and thus different molecular and cellular targets simultaneously.

  5. β Common Receptor Mediates Erythropoietin-Conferred Protection on OxLDL-Induced Lipid Accumulation and Inflammation in Macrophages

    Directory of Open Access Journals (Sweden)

    Tzong-Shyuan Lee

    2015-01-01

    Full Text Available Erythropoietin (EPO, the key factor for erythropoiesis, also protects macrophage foam cells from lipid accumulation, yet the definitive mechanisms are not fully understood. β common receptor (βCR plays a crucial role in the nonhematopoietic effects of EPO. In the current study, we investigated the role of βCR in EPO-mediated protection in macrophages against oxidized low-density lipoprotein- (oxLDL- induced deregulation of lipid metabolism and inflammation. Here, we show that βCR expression was mainly in foamy macrophages of atherosclerotic aortas from apolipoprotein E-deficient mice. Results of confocal microscopy and immunoprecipitation analyses revealed that βCR was colocalized and interacted with EPO receptor (EPOR in macrophages. Inhibition of βCR activation by neutralizing antibody or small interfering RNA (siRNA abolished the EPO-conferred protection in oxLDL-induced lipid accumulation. Furthermore, EPO-promoted cholesterol efflux and upregulation of ATP-binding cassette (ABC transporters ABCA1 and ABCG1 were prevented by pretreatment with βCR neutralizing antibody or βCR siRNA. Additionally, blockage of βCR abrogated the EPO-conferred anti-inflammatory action on oxLDL-induced production of macrophage inflammatory protein-2. Collectively, our findings suggest that βCR may play an important role in the beneficial effects of EPO against oxLDL-elicited dysfunction of macrophage foam cells.

  6. Temporal patterns of blood flow and nitric oxide synthase expression affect macrophage accumulation and proliferation during collateral growth

    Directory of Open Access Journals (Sweden)

    Sager Hendrik B

    2010-09-01

    Full Text Available Abstract Background The involvement of collateral blood flow/fluid shear stress, nitric oxide (NO, and macrophages during collateral growth (arteriogenesis is established, but their interplay remains paradoxical. Methods In order to further elucidate the "fluid shear stress/NO/macrophage" paradox, we investigated the time course of collateral blood flow (using a Doppler flow probe and NOS expression (immunohistochemistry, Western blot in growing rat collateral vessels after femoral artery occlusion and their impact on macrophage recruitment and collateral proliferation (immunohistochemistry, angiographies. Results (values are given as mean ± standard error of mean Early after occlusion, collateral blood flow was significantly reduced (pre- 90.0 ± 4.5 vs. post-occlusion 62.5 ± 5.9 μl/min; p p p p Conclusions We propose the following resolution of the "fluid shear stress/NO/macrophage" paradox: Collateral blood flow and NOS expression are initially reduced during arteriogenesis allowing macrophages to accumulate and therewith enhancing collateral proliferation. After homing of macrophages (24 h after occlusion, collateral blood flow and NOS expression recover in order to join the effects of macrophages for restoring blood flow.

  7. Angiopoietin Like Protein 2 (ANGPTL2) Promotes Adipose Tissue Macrophage and T lymphocyte Accumulation and Leads to Insulin Resistance

    Science.gov (United States)

    Sasaki, Yusuke; Ohta, Masayuki; Desai, Dhruv; Figueiredo, Jose-Luiz; Whelan, Mary C.; Sugano, Tomohiro; Yamabi, Masaki; Yano, Wataru; Faits, Tyler; Yabusaki, Katsumi; Zhang, Hengmin; Mlynarchik, Andrew K.; Inoue, Keisuke; Mizuno, Ken; Aikawa, Masanori

    2015-01-01

    Objectives Angiopoietin-like protein 2 (ANGPTL2), a recently identified pro-inflammatory cytokine, is mainly secreted from the adipose tissue. This study aimed to explore the role of ANGPTL2 in adipose tissue inflammation and macrophage activation in a mouse model of diabetes. Methodology/Principal Findings Adenovirus mediated lacZ (Ad-LacZ) or human ANGPTL2 (Ad-ANGPTL2) was delivered via tail vein in diabetic db/db mice. Ad-ANGPTL2 treatment for 2 weeks impaired both glucose tolerance and insulin sensitivity as compared to Ad-LacZ treatment. Ad-ANGPTL2 treatment significantly induced pro-inflammatory gene expression in white adipose tissue. We also isolated stromal vascular fraction from epididymal fat pad and analyzed adipose tissue macrophage and T lymphocyte populations by flow cytometry. Ad-ANGPTL2 treated mice had more adipose tissue macrophages (F4/80+CD11b+) and a larger M1 macrophage subpopulation (F4/80+CD11b+CD11c+). Moreover, Ad-ANGPTL2 treatment increased a CD8-positive T cell population in adipose tissue, which preceded increased macrophage accumulation. Consistent with our in vivo results, recombinant human ANGPTL2 protein treatment increased mRNA levels of pro-inflammatory gene products and production of TNF-α protein in the human macrophage-like cell line THP-1. Furthermore, Ad-ANGPTL2 treatment induced lipid accumulation and increased fatty acid synthesis, lipid metabolism related gene expression in mouse liver. Conclusion ANGPTL2 treatment promotes macrophage accumulation and activation. These results suggest potential mechanisms for insulin resistance. PMID:26132105

  8. Epidermal growth factor treatment of the adult brain subventricular zone leads to focal microglia/macrophage accumulation and angiogenesis.

    Science.gov (United States)

    Lindberg, Olle R; Brederlau, Anke; Kuhn, H Georg

    2014-04-01

    One of the major components of the subventricular zone (SVZ) neurogenic niche is the specialized vasculature. The SVZ vasculature is thought to be important in regulating progenitor cell proliferation and migration. Epidermal growth factor (EGF) is a mitogen with a wide range of effects. When stem and progenitor cells in the rat SVZ are treated with EGF, using intracerebroventricular infusion, dysplastic polyps are formed. Upon extended infusion, blood vessels are recruited into the polyps. In the current study we demonstrate how polyps develop through distinct stages leading up to angiogenesis. As polyps progress, microglia/macrophages accumulate in the polyp core concurrent with increasing cell death. Both microglia/macrophage accumulation and cell death peak during angiogenesis and subsequently decline following polyp vascularization. This model of inducible angiogenesis in the SVZ neurogenic niche suggests involvement of microglia/macrophages in acquired angiogenesis and can be used in detail to study angiogenesis in the adult brain.

  9. Accumulation rates of airborne heavy metals in wetlands

    Science.gov (United States)

    Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria

    2002-01-01

    Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.

  10. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: a potential target for new drugs for leprosy treatment

    Science.gov (United States)

    Mattos, Katherine A; Oliveira, Viviane C G; Berrêdo-Pinho, Marcia; Amaral, Julio J; Antunes, Luis Caetano M; Melo, Rossana C N; Acosta, Chyntia C D; Moura, Danielle F; Olmo, Roberta; Han, Jun; Rosa, Patricia S; Almeida, Patrícia E; Finlay, B Brett; Borchers, Christoph H; Sarno, Euzenir N; Bozza, Patricia T; Atella, Georgia C; Pessolani, Maria Cristina V

    2014-01-01

    We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy. PMID:24552180

  11. Epidermal Growth Factor Treatment of the Adult Brain Subventricular Zone Leads to Focal Microglia/Macrophage Accumulation and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Olle R. Lindberg

    2014-04-01

    Full Text Available One of the major components of the subventricular zone (SVZ neurogenic niche is the specialized vasculature. The SVZ vasculature is thought to be important in regulating progenitor cell proliferation and migration. Epidermal growth factor (EGF is a mitogen with a wide range of effects. When stem and progenitor cells in the rat SVZ are treated with EGF, using intracerebroventricular infusion, dysplastic polyps are formed. Upon extended infusion, blood vessels are recruited into the polyps. In the current study we demonstrate how polyps develop through distinct stages leading up to angiogenesis. As polyps progress, microglia/macrophages accumulate in the polyp core concurrent with increasing cell death. Both microglia/macrophage accumulation and cell death peak during angiogenesis and subsequently decline following polyp vascularization. This model of inducible angiogenesis in the SVZ neurogenic niche suggests involvement of microglia/macrophages in acquired angiogenesis and can be used in detail to study angiogenesis in the adult brain.

  12. Suppression of nitric oxide production in mouse macrophages by soybean flavonoids accumulated in response to nitroprusside and fungal elicitation

    Directory of Open Access Journals (Sweden)

    Tamashiro Wirla MSC

    2004-04-01

    Full Text Available Abstract Background The anti-inflammatory properties of some flavonoids have been attributed to their ability to inhibit the production of NO by activated macrophages. Soybean cotyledons accumulate certain flavonoids following elicitation with an extract of the fungal pathogen Diaporthe phaseolorum f. sp. meridionalis (Dpm. Sodium nitroprusside (SNP, a nitric oxide donor, can substitute for Dpm in inducing flavonoid production. In this study, we investigated the effect of flavonoid-containing diffusates obtained from Dpm- and SNP-elicited soybean cotyledons on NO production by lipopolysaccharide (LPS- and LPS plus interferon-γ (IFNγ-activated murine macrophages. Results Significant inhibition of NO production, measured as nitrite formation, was observed when macrophages were activated in the presence of soybean diffusates from Dpm- or SNP-elicited cotyledons. This inhibition was dependent on the duration of exposure to the elicitor. Daidzein, genistein, luteolin and apigenin, the main flavonoids present in diffusates of elicited cotyledons, suppressed the NO production by LPS + IFNγ activated macrophages in a concentration-dependent manner, with IC50 values of 81.4 μM, 34.5 μM, 38.6 μM and 10.4 μM respectively. For macrophages activated with LPS alone, the IC50 values were 40.0 μM, 16.6 μM, 10.4 μM and 2.8 μM, respectively. Western blot analysis showed that iNOS expression was not affected by daidzein, was reduced by genistein, and was abolished by apigenin, luteolin and Dpm- and SNP-soybean diffusates at concentrations that significantly inhibited NO production by activated macrophages. Conclusions These results suggest that the suppressive effect of flavonoids on iNOS expression could account for the potent inhibitory effect of Dpm- and SNP-diffusates on NO production by activated macrophages. Since the physiological concentration of flavonoids in plants is normally low, the treatment of soybean tissues with SNP may provide a simple

  13. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages.

    Science.gov (United States)

    Daniel, Jaiyanth; Maamar, Hédia; Deb, Chirajyoti; Sirakova, Tatiana D; Kolattukudy, Pappachan E

    2011-06-01

    Two billion people are latently infected with Mycobacterium tuberculosis (Mtb). Mtb-infected macrophages are likely to be sequestered inside the hypoxic environments of the granuloma and differentiate into lipid-loaded macrophages that contain triacylglycerol (TAG)-filled lipid droplets which may provide a fatty acid-rich host environment for Mtb. We report here that human peripheral blood monocyte-derived macrophages and THP-1 derived macrophages incubated under hypoxia accumulate Oil Red O-staining lipid droplets containing TAG. Inside such hypoxic, lipid-loaded macrophages, nearly half the Mtb population developed phenotypic tolerance to isoniazid, lost acid-fast staining and accumulated intracellular lipid droplets. Dual-isotope labeling of macrophage TAG revealed that Mtb inside the lipid-loaded macrophages imports fatty acids derived from host TAG and incorporates them intact into Mtb TAG. The fatty acid composition of host and Mtb TAG were nearly identical suggesting that Mtb utilizes host TAG to accumulate intracellular TAG. Utilization of host TAG by Mtb for lipid droplet synthesis was confirmed when fluorescent fatty acid-labeled host TAG was utilized to accumulate fluorescent lipid droplets inside the pathogen. Deletion of the Mtb triacylglycerol synthase 1 (tgs1) gene resulted in a drastic decrease but not a complete loss in both radiolabeled and fluorescent TAG accumulation by Mtb suggesting that the TAG that accumulates within Mtb is generated mainly by the incorporation of fatty acids released from host TAG. We show direct evidence for the utilization of the fatty acids from host TAG for lipid metabolism inside Mtb. Taqman real-time PCR measurements revealed that the mycobacterial genes dosR, hspX, icl1, tgs1 and lipY were up-regulated in Mtb within hypoxic lipid loaded macrophages along with other Mtb genes known to be associated with dormancy and lipid metabolism.

  14. Pranlukast reduces neutrophil but not macrophage/microglial accumulation in brain after focal cerebral ischemia in mice

    Institute of Scientific and Technical Information of China (English)

    Li-sheng CHU; Er-qing WEI; Guo-liang YU; San-hua FANG; Yu ZHOU; Meng-ling WANG; Wei-ping ZHANG

    2006-01-01

    Aim:To determine whether pranlukast.a cysteinyl leukotriene receptor-1 antagonist,exerts an anti-inflammatory effect on focal cerebral ischemia in mice.Methods:Focal cerebral ischemia in mice was induced by permanent middle cerebral artery occlusion(MCAO).In addition to neurological deficits,infarct volume,degenerated neurons and endogenous IgG exudation,we detected accumulation of neutrophils and macrophage/microglia in the ischemic brain tissue 72 h after MCAO.Pranlukast was iP injected 30 min before and after MCAO.Results:Pranlukast significantly attenuated neurological deficits,infarct volume,neuron degeneration and IgG exudation.Importantly,pranlukast(0.01 and 0.1 mg/kg) inhibited myeloperoxidase-positive neutrophil,but not CDllb-positive macrophage/microglial accumulation in the ischemic cortical tissue.Conclusion:Pranlukast exerts an anti-inflammatory effect on focal cerebral ischemia in the subacute phase that is limited to neutrophil recruitment through the disrupted blood-brain barrier.

  15. Advanced Glycation in macrophages induces intracellular accumulation of 7-ketocholesterol and total sterols by decreasing the expression of ABCA-1 and ABCG-1

    Science.gov (United States)

    2011-01-01

    Background Advanced glycation end products (AGE) alter lipid metabolism and reduce the macrophage expression of ABCA-1 and ABCG-1 which impairs the reverse cholesterol transport, a system that drives cholesterol from arterial wall macrophages to the liver, allowing its excretion into the bile and feces. Oxysterols favors lipid homeostasis in macrophages and drive the reverse cholesterol transport, although the accumulation of 7-ketocholesterol, 7alpha- hydroxycholesterol and 7beta- hydroxycholesterol is related to atherogenesis and cell death. We evaluated the effect of glycolaldehyde treatment (GAD; oxoaldehyde that induces a fast formation of intracellular AGE) in macrophages overloaded with oxidized LDL and incubated with HDL alone or HDL plus LXR agonist (T0901317) in: 1) the intracellular content of oxysterols and total sterols and 2) the contents of ABCA-1 and ABCG-1. Methods Total cholesterol and oxysterol subspecies were determined by gas chromatography/mass spectrometry and HDL receptors content by immunoblot. Results In control macrophages (C), incubation with HDL or HDL + T0901317 reduced the intracellular content of total sterols (total cholesterol + oxysterols), cholesterol and 7-ketocholesterol, which was not observed in GAD macrophages. In all experimental conditions no changes were found in the intracellular content of other oxysterol subspecies comparing C and GAD macrophages. GAD macrophages presented a 45% reduction in ABCA-1 protein level as compared to C cells, even after the addition of HDL or HDL + T0901317. The content of ABCG-1 was 36.6% reduced in GAD macrophages in the presence of HDL as compared to C macrophages. Conclusion In macrophages overloaded with oxidized LDL, glycolaldehyde treatment reduces the HDL-mediated cholesterol and 7-ketocholesterol efflux which is ascribed to the reduction in ABCA-1 and ABCG-1 protein level. This may contribute to atherosclerosis in diabetes mellitus. PMID:21957962

  16. Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Marcia Nascimento

    2014-08-01

    Full Text Available Accumulation of M2 macrophages in the liver, within the context of a strong Th2 response, is a hallmark of infection with the parasitic helminth, Schistosoma mansoni, but the origin of these cells is unclear. To explore this, we examined the relatedness of macrophages to monocytes in this setting. Our data show that both monocyte-derived and resident macrophages are engaged in the response to infection. Infection caused CCR2-dependent increases in numbers of Ly6Chi monocytes in blood and liver and of CX3CR1+ macrophages in diseased liver. Ly6Chi monocytes recovered from liver had the potential to differentiate into macrophages when cultured with M-CSF. Using pulse chase BrdU labeling, we found that most hepatic macrophages in infected mice arose from monocytes. Consistent with this, deletion of monocytes led to the loss of a subpopulation of hepatic CD11chi macrophages that was present in infected but not naïve mice. This was accompanied by a reduction in the size of egg-associated granulomas and significantly exacerbated disease. In addition to the involvement of monocytes and monocyte-derived macrophages in hepatic inflammation due to infection, we observed increased incorporation of BrdU and expression of Ki67 and MHC II in resident macrophages, indicating that these cells are participating in the response. Expression of both M2 and M1 marker genes was increased in liver from infected vs. naive mice. The M2 fingerprint in the liver was not accounted for by a single cell type, but rather reflected expression of M2 genes by various cells including macrophages, neutrophils, eosinophils and monocytes. Our data point to monocyte recruitment as the dominant process for increasing macrophage cell numbers in the liver during schistosomiasis.

  17. Cholesterol-induced inflammation and macrophage accumulation in adipose tissue is reduced by a low carbohydrate diet in guinea pigs.

    Science.gov (United States)

    Aguilar, David; deOgburn, Ryan C; Volek, Jeff S; Fernandez, Maria Luz

    2014-12-01

    The main objective of this study was to evaluate the effects of a high cholesterol (HC) dietary challenge on cholesterol tissue accumulation, inflammation, adipocyte differentiation, and macrophage infiltration in guinea pigs. A second objective was to assess whether macronutrient manipulation would reverse these metabolic alterations. Male Hartley guinea pigs (10/group) were assigned to either low cholesterol (LC) (0.04g/100g) or high cholesterol (HC) (0.25g/100g) diets for six weeks. For the second experiment, 20 guinea pigs were fed the HC diet for six weeks and then assigned to either a low carbohydrate (CHO) diet (L-CHO) (10% energy from CHO) or a high CHO diet (H-CHO) (54% CHO) for an additional six weeks. Higher concentrations of total (P adipose tissue and aortas of guinea pigs fed the HC compared to those in the LC group. In addition, higher concentrations of pro-inflammatory cytokines in the adipose tissue (P adipocytes in the HC group were smaller in size (P adipose and aortas as well as lower concentrations of inflammatory cytokines in adipose tissue were observed in the L-CHO group (P adipose cells and lower macrophage infiltration compared to the H-CHO group. The results of this study strongly suggest that HC induces metabolic dysregulation associated with inflammation in adipose tissue and that L-CHO is more effective than H-CHO in attenuating these detrimental effects.

  18. Attenuated Pik3r1 Expression Prevents Insulin Resistance and Adipose Tissue Macrophage Accumulation in Diet-Induced Obese Mice

    Science.gov (United States)

    McCurdy, Carrie E.; Schenk, Simon; Holliday, Michael J.; Philp, Andrew; Houck, Julie A.; Patsouris, David; MacLean, Paul S.; Majka, Susan M.; Klemm, Dwight J.; Friedman, Jacob E.

    2012-01-01

    Obese white adipose tissue (AT) is characterized by large-scale infiltration of proinflammatory macrophages, in parallel with systemic insulin resistance; however, the cellular stimulus that initiates this signaling cascade and chemokine release is still unknown. The objective of this study was to determine the role of the phosphoinositide 3-kinase (PI3K) regulatory subunits on AT macrophage (ATM) infiltration in obesity. Here, we find that the Pik3r1 regulatory subunits (i.e., p85α/p55α/p50α) are highly induced in AT from high-fat diet–fed obese mice, concurrent with insulin resistance. Global heterozygous deletion of the Pik3r1 regulatory subunits (αHZ), but not knockout of Pik3r2 (p85β), preserves whole-body, AT, and skeletal muscle insulin sensitivity, despite severe obesity. Moreover, ATM accumulation, proinflammatory gene expression, and ex vivo chemokine secretion in obese αHZ mice are markedly reduced despite endoplasmic reticulum (ER) stress, hypoxia, adipocyte hypertrophy, and Jun NH2-terminal kinase activation. Furthermore, bone marrow transplant studies reveal that these improvements in obese αHZ mice are independent of reduced Pik3r1 expression in the hematopoietic compartment. Taken together, these studies demonstrate that Pik3r1 expression plays a critical role in mediating AT insulin sensitivity and, more so, suggest that reduced PI3K activity is a key step in the initiation and propagation of the inflammatory response in obese AT. PMID:22698915

  19. Rate of tree carbon accumulation increases continuously with tree size.

    Science.gov (United States)

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-06

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  20. Rate of tree carbon accumulation increases continuously with tree size

    Science.gov (United States)

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  1. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  2. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Danielsen, Pernille Høgh;

    2014-01-01

    Exposure to nanoparticles (NPs) may cause vascular effects including endothelial dysfunction and foam cell formation, with oxidative stress and inflammation as supposed central mechanisms. We investigated oxidative stress, endothelial dysfunction and lipid accumulation caused by nano-sized carbon...... and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular...

  3. Peritoneal macrophage infiltration is correlated with baseline peritoneal solute transport rate in peritoneal dialysis patients.

    Science.gov (United States)

    Sawai, Akiho; Ito, Yasuhiko; Mizuno, Masashi; Suzuki, Yasuhiro; Toda, Susumu; Ito, Isao; Hattori, Ryohei; Matsukawa, Yoshihisa; Gotoh, Momokazu; Takei, Yoshifumi; Yuzawa, Yukio; Matsuo, Seiichi

    2011-07-01

    High baseline peritoneal solute transport rate is reportedly associated with reduced patient and technique survival in continuous peritoneal dialysis (PD) patients. However, the determinants of baseline peritoneal solute transport rate remain uncertain. The aim of this study was to investigate the relationship between peritoneal local inflammation, angiogenesis and systemic inflammation and baseline peritoneal permeability. Peritoneal biopsy specimens from 42 pre-dialysis uraemic patients and 11 control individuals were investigated. Immunohistochemistry for CD68-positive macrophages, chymase- and tryptase-positive mast cells, interleukin-6 (IL-6)-positive cells, CD3-positive T cells, CD20-positive B cells, neutrophils and CD31- and pathologische anatomie Leiden-endothelium (PAL-E)-positive blood vessels in the peritoneum was performed. Baseline dialysate-to-plasma ratio for creatinine (D/P Cr) was determined within 6 months of PD induction. Clinical and laboratory parameters were measured at the time of peritoneal biopsy. Factors associated with peritoneal permeability were assessed by multiple linear regression analysis. Pre-dialysis uraemic peritoneum showed infiltration by CD68-positive macrophages, and mast cells, as compared with controls. Baseline D/P Cr was correlated with density of CD68-positive macrophages (P permeability was not correlated with infiltration by mast cells, B cells, T cells, neutrophils, serum C-reactive protein or other clinical factors. On multiple linear regression analysis, the number of CD68-positive macrophages in peritoneum was an independent predictor for baseline peritoneal permeability (P = 0.009). Peritoneal macrophage infiltration is predominant in uraemic patients and is an important factor in predicting baseline peritoneal permeability.

  4. Angiotensin II-Induced Endothelial Dysfunction is Temporally Linked with Increases in Intereukin-6 and Vascular Macrophage Accumulation

    Directory of Open Access Journals (Sweden)

    Sean P Didion

    2014-10-01

    Full Text Available Angiotensin II (Ang II is associated with vascular hypertrophy, endothelial dysfunction and activation of a number of inflammatory molecules, however the linear events involved in the development of hypertension and endothelial dysfunction produced in response to Ang II are not well defined. The goal of this study was to examine the dose- and temporal-dependent development of endothelial dysfunction in response to Ang II. Blood pressure and responses of carotid arteries were examined in control (C57Bl/6 mice and in mice infused with 50, 100, 200, 400, or 1000 ng/kg/min Ang II for either 14 or 28 Days. Infusion of Ang II was associated with graded and marked increases in systolic blood pressure and plasma Ang II concentrations. While low doses of Ang II (ie, 50 and 100 ng/kg/min had little to no effect on blood pressure or endothelial function, high doses of Ang II (e.g., 1000 ng/kg/min were associated with large increases in arterial pressure and marked impairment of endothelial function. In contrast, intermediate doses of Ang II (200 and 400 ng/kg/min while initially having no effect on systolic blood pressure were associated with significant increases in pressure over time. Despite increasing blood pressure, 200 ng/kg/min had no effect on endothelial function, whereas 400 ng/kg/min produced modest impairment on Day 14 and marked impairment of endothelial function on Day 28. The degree of endothelial dysfunction produced by 400 and 1000 ng/kg/min Ang II was reflective of parallel increases in plasma IL-6 levels and vascular macrophage content, suggesting that increases in arterial blood pressure precede the development of endothelial dysfunction. These findings are important as they demonstrate that along with increases in arterial pressure that increases in IL-6 and vascular macrophage accumulation correlate with the impairment of endothelial function produced by Ang II.

  5. Decreased Apoptotic Rate of Alveolar Macrophages of Patients with Idiopathic Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Fotios Drakopanagiotakis

    2012-01-01

    and control group. No difference was found between the respiratory function parameters of the two treatment groups after six months. A positive correlation was found between the number of bcl-2 positive stained macrophages and DLCO after treatment. Conclusions. The decreased apoptotic rate of AM of patients with IPF is not associated with decreased expression of apoptosis mediators involved in the external or internal apoptotic pathway.

  6. Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages.

    Directory of Open Access Journals (Sweden)

    Jaimie Hoh Kam

    Full Text Available BACKGROUND: Amyloid beta (Aβ accumulates in the ageing central nervous system and is associated with a number of age-related diseases, including age-related macular degeneration (AMD in the eye. AMD is characterised by accumulation of extracellular deposits called drusen in which Aβ is a key constituent. Aβ activates the complement cascade and its deposition is associated with activated macrophages. So far, little is known about the quantitative measurements of Aβ accumulation and definitions of its relative sites of ocular deposition in the normal ageing mouse. METHODOLOGY/PRINCIPAL FINDINGS: We have traced Aβ accumulation quantitatively in the ageing mouse retina using immunohistochemistry and Western blot analysis. We reveal that it is not only deposited at Bruch's membrane and along blood vessels, but unexpectedly, it also coats photoreceptor outer segments. While Aβ is present at all sites of deposition from 3 months of age, it increases markedly from 6 months onward. Progressive accumulation of deposits on outer segments was confirmed with scanning electron microscopy, revealing age-related changes in their morphology. Such progress of accumulation of Aβ on photoreceptor outer segments with age was also confirmed in human retinae using immunohistochemistry. We also chart the macrophage response to increases in Aβ showing up-regulation in their numbers using both confocal laser imaging of the eye in vivo followed by in vitro immunostaining. With age macrophages become bloated with cellular debris including Aβ, however, their increasing numbers fail to stop Aβ accumulation. CONCLUSIONS: Increasing Aβ deposition in blood vessels and Bruch's membrane will impact upon retinal perfusion and clearance of cellular waste products from the outer retina, a region of very high metabolic activity. This accumulation of Aβ may contribute to the 30% reduction of photoreceptors found throughout life and the shortening of those that remain. The

  7. Nickel accumulation by Streptanthus polygaloides (Brassicaceae) reduces floral visitation rate.

    Science.gov (United States)

    Meindl, George A; Ashman, Tia-Lynn

    2014-02-01

    Hyperaccumulation is the phenomenon whereby plants take up and sequester in high concentrations elements that generally are excluded from above-ground tissues. It largely is unknown whether the metals taken up by these plants are transferred to floral rewards (i.e., nectar and pollen) and, if so, whether floral visitation is affected. We grew Streptanthus polygaloides, a nickel (Ni) hyperaccumulator, in short-term Ni supplemented soils and control soils to determine whether Ni is accumulated in floral rewards and whether floral visitation is affected by growth in Ni-rich soils. We found that while supplementation of soils with Ni did not alter floral morphology or reward quantity (i.e., anther size or nectar volume), Ni did accumulate in the nectar and pollen-filled anthers-providing the first demonstration that Ni is accumulated in pollinator rewards. Further, S. polygaloides grown in Ni-supplemented soils received fewer visits per flower per hour from both bees and flies (both naïve to Ni-rich floral resources in the study area) relative to plants grown in control soils, although the probability a plant was visited initially was unaffected by Ni treatment. Our findings show that while Ni-rich floral rewards decrease floral visitation, floral visitors are not completely deterred, so some floral visitors may collect and ingest potentially toxic resources from metal-hyperaccumulating plants. In addition to broadening our understanding of the effects of metal accumulation on ecological interactions in natural populations, these results have implications for the use of insect-pollinated plants in phytoremediation.

  8. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    Science.gov (United States)

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL.

  9. Accumulation rates from central North Greenland during the past 700 year

    Science.gov (United States)

    Karlsson, Nanna B.; Eisen, Olaf; Nielsen, Lisbeth T.; Kipfstuhl, Sepp; Freitag, Johannes; Paden, John D.; Dahl-Jensen, Dorthe; Winter, Anna; Wilhelms, Frank

    2016-04-01

    A key variable when interpreting the evolution and mass loss from polar ice sheets is the input from the surface mass balance. While ice core records contain information on past accumulation rates, they always only provide information for a single location. Here, we present spatially distributed accumulation rates from central northern Greenland, specifically the area between the NEEM (North Greenland Eemian Drilling) and NGRIP (North Greenland Ice Core Project) ice core drill sites. The accumulation rates have been reconstructed using ice-penetrating radar, firn core measurements and inverse methods, and we are able to retrieve both spatial and temporal changes in the accumulation over an area spanning 300 km by 300 km. We investigate the stability of the accumulation pattern over the past several hundred years, and we address the question of how well the measured accumulation rates at the ice core sites capture the regional variations in accumulation. We find that while the accumulation rates at NEEM have been stable for the past 700 years, the NGRIP site has experienced fluctuations in accumulation rate. We interpret this as an indication of shifts in the dominating weather pattern over the ice divide in central North Greenland.

  10. Environmental impact of multi-wall carbon nanotubes in a novel model of exposure: systemic distribution, macrophage accumulation, and amyloid deposition.

    Science.gov (United States)

    Albini, Adriana; Pagani, Arianna; Pulze, Laura; Bruno, Antonino; Principi, Elisa; Congiu, Terenzio; Gini, Elisabetta; Grimaldi, Annalisa; Bassani, Barbara; De Flora, Silvio; de Eguileor, Magda; Noonan, Douglas M

    2015-01-01

    Carbon nanotubes (CNTs) have been extensively investigated and employed for industrial use because of their peculiar physical properties, which make them ideal for many industrial applications. However, rapid growth of CNT employment raises concerns about the potential risks and toxicities for public health, environment, and workers associated with the manufacture and use of these new materials. Here we investigate the main routes of entry following environmental exposure to multi-wall CNTs (MWCNTs; currently the most widely used in industry). We developed a novel murine model that could represent a surrogate of a workplace exposure to MWCNTs. We traced the localization of MWCNTs and their possible role in inducing an innate immune response, inflammation, macrophage recruitment, and inflammatory conditions. Following environmental exposure of CD1 mice, we observed that MWCNTs rapidly enter and disseminate in the organism, initially accumulating in lungs and brain and later reaching the liver and kidney via the bloodstream. Since recent experimental studies show that CNTs are associated with the aggregation process of proteins associated with neurodegenerative diseases, we investigated whether MWCNTs are able to induce amyloid fibril production and accumulation. Amyloid deposits in spatial association with macrophages and MWCNT aggregates were found in the brain, liver, lungs, and kidneys of exposed animals. Our data suggest that accumulation of MWCNTs in different organs is associated with inflammation and amyloid accumulation. In the brain, where we observed rapid accumulation and amyloid fibril deposition, exposure to MWCNTs might enhance progression of neurodegenerative and other amyloid-related diseases. Our data highlight the conclusion that, in a novel rodent model of exposure, MWCNTs may induce macrophage recruitment, activation, and amyloid deposition, causing potential damage to several organs.

  11. {sup 18}F-FDG PET and intravascular ultrasonography (IVUS) images compared with histology of atherosclerotic plaques: {sup 18}F-FDG accumulates in foamy macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Seigo [Takeda Pharmaceutical Company Limited, Pharmaceutical Research Division, Fujisawa (Japan); Takeda Pharmaceutical Company Limited, Biomolecular Research Laboratories, Pharmaceutical Research Division, Fujisawa, Kanagawa (Japan); Ogawa, Mikako; Magata, Yasuhiro [Hamamatsu University School of Medicine, Medical Photonics Research Center, Hamamatsu (Japan); Mori, Ikuo; Nishimura, Satoshi; Ikeda, Shota; Sugita, Taku; Oikawa, Tatsuo; Horiguchi, Takashi [Takeda Pharmaceutical Company Limited, Pharmaceutical Research Division, Fujisawa (Japan)

    2014-04-15

    Intravascular ultrasonography (IVUS) and {sup 18}F-FDG PET have been used to evaluate the efficacy of antiatherosclerosis drugs. These two modalities image different characteristics of atherosclerotic plaques, and a comparison of IVUS and PET images with histology has not been performed. The aim of this study was to align IVUS and PET images using anatomic landmarks in Watanabe heritable hyperlipidaemic (WHHL) rabbits, enabling comparison of their depiction of aortic atherosclerosis. Cellular {sup 18}F-FDG localization was evaluated by {sup 3}H-FDG microautoradiography (micro-ARG). A total of 19 WHHL rabbits (7 months of age) were divided into three groups: baseline (n = 6), 3 months (n = 4), and 6 months (n = 9). PET, IVUS and histological images of the same aortic segments were analysed. Infiltration by foamy macrophages was scored from 0 to IV using haematoxylin and eosin (H and E) and antimacrophage immunohistochemical staining, and compared with {sup 3}H-FDG micro-ARG findings in two additional WHHL rabbits. IVUS images did not identify foamy macrophage deposition but revealed the area of intimal lesions (r = 0.87). {sup 18}F-FDG PET revealed foamy macrophage distribution in the plaques. The intensity of {sup 18}F-FDG uptake was correlated positively with the degree of foamy macrophage infiltration. Micro-ARG showed identical {sup 3}H-FDG accumulation in the foamy macrophages surrounding the lipid core of the plaques. F-FDG PET localized and quantified the degree of infiltration of foamy macrophages in atherosclerotic lesions. IVUS defined the size of lesions. {sup 18}F-FDG PET is a promising imaging technique for evaluating atherosclerosis and for monitoring changes in the composition of atherosclerotic plaques affecting their stability. (orig.)

  12. Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection.

    Science.gov (United States)

    Maloney, Jenny; Keselman, Aleksander; Li, Erqiu; Singer, Steven M

    2015-06-01

    Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.

  13. Annual Greenland accumulation rates (2009-2012) from airborne snow radar

    Science.gov (United States)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joesph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-08-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  14. Spatial variation in rates of carbon and nitrogen accumulation in a boreal bog

    Energy Technology Data Exchange (ETDEWEB)

    Ohlson, M. [Agricultural Univ. of Norway, Aas (Norway). Dept. of Biology and Nature Conservation; Oekland, R.H. [Univ. of Oslo (Norway)

    1998-12-01

    Although previous studies hint at the occurrence of substantial spatial variation in the accumulation rates of C and N in bogs, the extent to which rates may vary on high-resolution spatial and temporal scales is not known. A main reason for the lack of knowledge is that it is problematic to determine the precise age of peat at a given depth. The authors determined rates of carbon and nitrogen accumulation in the uppermost decimeters of a bog ecosystem using the pine method, which enables accurate dating of surface peat layers. They combined accumulation data with numerical and geostatistical analyses of the recent vegetation to establish the relationship between bog vegetation and rate of peat accumulation. Use of a laser technique for spatial positioning of 151 age-determined peat cores within a 20 x 20 m plot made it possible to give the first tine-scaled account of spatial and temporal variation in rates of mass, carbon, and nitrogen accumulation during the last century. Rates of C and N accumulation were highly variable at all spatial scales studied. For example, after {approximately}125 yr of peat growth, C and N accumulation varied by factors of five and four, respectively, from 25 to 125 g/dm{sup 2} for C, and from 0.7 to 2.6 g/dm{sup 2} for N. It takes 40 yr of peat accumulation before significant amounts of C are lost through decay. Hummocks built up by Sphagnum fuscum and S. rubellum were able to maintain average rates of C accumulation that exceed 2 g{center_dot}dm{sup {minus}2}{center_dot} yr{sup {minus}1} during 50 yr of growth. The authors argue that data on spatial variation in rates of C accumulation are necessary to understand the role of boreal peatlands in the greenhouse effect and global climate.

  15. Dermatan sulfate reduces monocyte chemoattractant protein 1 and TGF-β production, as well as macrophage recruitment and myofibroblast accumulation in mice with unilateral ureteral obstruction

    Directory of Open Access Journals (Sweden)

    C.L.R. Belmiro

    2011-07-01

    Full Text Available Selectins play an essential role in most inflammatory reactions, mediating the initial leukocyte-rolling event on activated endothelium. Heparin and dermatan sulfate (DS bind and block P- and L-selectin function in vitro. Recently, we reported that subcutaneous administration of DS inhibits colon inflammation in rats by reducing macrophage and T-cell recruitment and macrophage activation. In the present study, we examined the effect of porcine intestinal mucosa DS on renal inflammation and fibrosis in mice after unilateral ureteral obstruction (UUO. Twenty-four adult male Swiss mice weighing 20-25 g were divided into 4 groups: group C (N = 6 was not subjected to any surgical manipulation; group SH (N = 6 was subjected to surgical manipulation but without ureter ligation; group UUO (N = 6 was subjected to unilateral ureteral obstruction and received no treatment; group UUO plus DS (N = 6 was subjected to UUO and received DS (4 mg/kg subcutaneously daily for 14 days. An immunoblot study was also performed for TGF-β. Collagen (stained area ~3700 µm², MCP-1 (stained area ~1700 µm², TGF-β (stained area ~13% of total area, macrophage (number of cells ~40, and myofibroblast (stained area ~1900 µm² levels were significantly (P < 0.05 higher in the UUO group compared to control. DS treatment significantly (P < 0.05 reduced the content of collagen (stained area ~700 µm², MCP-1 (stained area ~160 µm² and TGF-β (stained area ~5% of total area, in addition to myofibroblast (stained area ~190 µm² and macrophage (number of cells ~32 accumulation in the obstructed kidney. Overall, these results indicate that DS attenuates kidney inflammation by reducing macrophage recruitment, myofibroblast population and fibrosis in mice submitted to UUO.

  16. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    Science.gov (United States)

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  17. Attenuated Pik3r1 Expression Prevents Insulin Resistance and Adipose Tissue Macrophage Accumulation in Diet-Induced Obese Mice

    OpenAIRE

    McCurdy, Carrie E.; Schenk, Simon; Holliday, Michael J.; Philp, Andrew; Houck, Julie A.; Patsouris, David; MacLean, Paul S.; Majka, Susan M.; Klemm, Dwight J.; Friedman, Jacob E. (Jed)

    2012-01-01

    Obese white adipose tissue (AT) is characterized by large-scale infiltration of proinflammatory macrophages, in parallel with systemic insulin resistance; however, the cellular stimulus that initiates this signaling cascade and chemokine release is still unknown. The objective of this study was to determine the role of the phosphoinositide 3-kinase (PI3K) regulatory subunits on AT macrophage (ATM) infiltration in obesity. Here, we find that the Pik3r1 regulatory subunits (i.e., p85α/p55α/p50α...

  18. Peat growth and carbon accumulation rates during the holocene in boreal mires

    Energy Technology Data Exchange (ETDEWEB)

    Klarqvist, M. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Ecology

    2001-07-01

    This thesis is based on accumulation processes in northern mires. In the first study, problems concerning carbon 14 dating of peat were examined by fractionation of bulk peat samples and {sup 14}C AMS dating of the separate fractions. In the following studies, peat cores from twelve Swedish mire sites were investigated. Macrofossil analysis was performed on the sampled cores to describe and classify the plant communities during mire development. Between 6 to 18 {sup 14}C AMS datings were performed on one core from each mire in order to estimate the peat growth and carbon accumulation rates for the identified plant communities. Different fractions within single peat bulk samples gave considerably differing {sup 14} C ages. The range in age differed between mire types and depth. For accurate {sup 14}C dating, moss-stems, preferably of Sphagnum spp. are recommended. Both autogenic and allogenic factors, e.g. climate and developmental stage, respectively, were identified as important influences on carbon accumulation. Both peat growth and carbon accumulation rates differed between plant communities. The major factors explaining the variations in accumulation rates of the different plant communities were the amount of Carex and Sphagnum remains and the geographical position of the mire. Carbon accumulation rates decrease along with development in most mires. The results indicate that some mires may have alternated between being carbon sinks and sources, at least over the last several hundred years. The inter-annual variation in carbon accumulation is probably explained by climatic variations.

  19. The Distribution of Macrophages and the Mechanism of Macrophages Accumulation in Atheroscle-rotic Plaques%动脉粥样硬化斑块中巨噬细胞的分布与蓄积机制

    Institute of Scientific and Technical Information of China (English)

    王林青; 李全忠; 钱宗杰

    2016-01-01

    动脉粥样硬化斑块破裂可导致严重的临床事件(如心肌梗死和脑卒中)。巨噬细胞是动脉粥样硬化斑块内最主要的炎性细胞,它可根据不同的微环境分化成不同表型的巨噬细胞。其中, M1型巨噬细胞主要位于斑块不稳定区,M2型巨噬细胞主要位于斑块的稳定区。随着动脉粥样硬化斑块的进展,斑块内积聚的巨噬细胞逐渐增多,而斑块内不断蓄积的巨噬细胞主要依赖于局部巨噬细胞的增殖,而不是血中单核细胞的分化。%The rupture of atherosclerotic plaque can lead to severe consequences, such as myocardial infraction and stroke.Macrophages are the predominant inflammatory cells within the plaques,which are very versatile and can polarize different phenotypes depending on the local microenvironment .M1 macrophages are exclusively found in unstable plaques and M2 macrophages being higher in stable plaques.The incremental accumulation of macrophages corresponded with plaque progression,are mainly derived from local prolifera-tion rather than from the influx of blood-borne monocytes.

  20. Exchange rate misalignment, capital accumulation and income distribution: Theory and evidence from the case of Brazil

    Directory of Open Access Journals (Sweden)

    Oreiro José Luis

    2013-01-01

    Full Text Available This article analyzes the relationship between economic growth, income distribution and real exchange rate within the neo-Kaleckian literature, through the construction of a nonlinear macrodynamic model for an open economy in which investment in fixed capital is assumed to be a quadratic function of the real exchange rate. The model demonstrates that the prevailing regime of accumulation in a given economy depends on the type of currency misalignment, so if the real exchange rate is overvalued, then the regime of accumulation will be profit-led, but if the exchange rate is undervalued, then the accumulation regime is wage-led. Subsequently, the adherence of the theoretical model to data is tested for Brazil in the period 1994/Q3-2008/Q4. The econometric results are consistent with the theoretical non-linear specification of the investment function used in the model, so that we can define the existence of a real exchange rate that maximizes the rate of capital accumulation for the Brazilian economy. From the estimate of this optimal rate we show that the real exchange rate is overvalued in 1994/Q3- 2001/Q1 and 2005/Q4-2008/Q4 and undervalued in the period 2001/Q2-2005/Q3. As a direct corollary of this result, it follows that the prevailing regime of accumulation in the Brazilian economy after the last quarter of 2005 is profit-led.

  1. Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice

    NARCIS (Netherlands)

    C.E. Bergmann; I.E. Hoefer; B. Meder; H. Roth; N. van Royen; S.M. Breit; M.M. Jost; S. Aharinejad; S. Hartmann; I.R. Buschmann

    2006-01-01

    It has been suggested that monocytes/macrophages represent the pivotal cell type during early adaptive growth of pre-existent arterial anastomoses toward functional collateral arteries (arteriogenesis) upon arterial occlusion. This hypothesis was supported by previous studies providing evidence that

  2. Using transplants to measure accumulation rates of epiphytic bryophytes in forests of western Oregon

    Science.gov (United States)

    Rosso, A.L.; Muir, Patricia S.; Rambo, T.

    2001-01-01

    We sought a simple and effective transplant method that could be used to measure biomass accumulation rates of epiphytic bryophytes. Trials were carried out in the Pseudotsuga menziesii-dominated forests of western Oregon. We tested multiple transplant methods over a 13-month period while comparing accumulation rates of Antitrichia curtipendula (Hedw.) Brid. and Isothecium myosuroides Brid. among an old-growth stand, a young stand, and a recent clearcut. In our study area, Antitrichia is considered to be an old-growth associate while Isothecium is a more ubiquitous species. Methods tested included containment in net bags, containment in hairnets, and directly tying mats to substrates. Three sizes of transplants were tested with both natural and inert artificial substrates. Transplants of approximately five g enclosed in plastic net bags and tied to either natural or artificial substrates worked well for our purposes. Only minor differences were found in mean accumulation rates between the old growth and young stand, though variation in accumulation rates was higher in the old growth. Neither species appeared capable of surviving in the clearcut. Antitrichia accumulated biomass 60% faster in the canopy than in the understory on average. Antitrichia also accumulated at a faster rate than Isothecium, with mean 13-month biomass increases of 11.8 and 3.7% respectively for 5 g transplants in the understory. Our results suggest that Antitrichia's association with old growth may be due more to dispersal or establishment limitations than to a decreased ability to grow in young stands.

  3. Tracking Monocyte Recruitment and Macrophage Accumulation in Atherosclerotic Plaque Progression Using a Novel hCD68GFP/ApoE−/− Reporter Mouse—Brief Report

    Science.gov (United States)

    Iqbal, Asif J.; Jones, Daniel; Patel, Jyoti; Coutinho, Patricia; Taylor, Lewis; Greaves, David R.; Channon, Keith M.

    2017-01-01

    Objective— To create a model of atherosclerosis using green fluorescent protein (GFP)–targeted monocytes/macrophages, allowing analysis of both endogenous GFP+ and adoptively transferred GFP+ myeloid cells in arterial inflammation. Approach and Results— hCD68GFP reporter mice were crossed with ApoE−/− mice. Expression of GFP was localized to macrophages in atherosclerotic plaques and in angiotensin II–induced aortic aneurysms and correlated with galectin 3 and mCD68 expression. Flow cytometry confirmed GFP+ expression in CD11b+/CD64+, CD11c+/MHC-IIHI, and CD11b+/F4/80+ myeloid cells. Adoptive transfer of GFP+ monocytes demonstrated monocyte recruitment to both adventitia and atherosclerotic plaque, throughout the aortic root, within 72 hours. We demonstrated the biological utility of hCD68GFP monocytes by comparing the recruitment of wild-type and CCR2−/− monocytes to sites of inflammation. Conclusions— hCD68GFP/ApoE−/− mice provide a new approach to study macrophage accumulation in atherosclerotic plaque progression and to identify cells recruited from adoptively transferred monocytes. PMID:27908893

  4. Annual Greenland accumulation rates (2009–2012 from airborne Snow Radar

    Directory of Open Access Journals (Sweden)

    L. S. Koenig

    2015-12-01

    Full Text Available Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet (GrIS through increasing surface melt, emphasizing the need to closely monitor surface mass balance (SMB in order to improve sea-level rise predictions. Here, we quantify accumulation rates, the largest component of GrIS SMB, at a higher spatial resolution than currently available, using Snow Radar stratigraphy. We use a semi-automated method to derive annual-net accumulation rates from airborne Snow Radar data collected by NASA's Operation IceBridge from 2009 to 2012. An initial comparison of the accumulation rates from the Snow Radar and the outputs of a regional climate model (MAR shows that, in general, the radar-derived accumulation matches closely with MAR in the interior of the ice sheet but MAR estimates are high over the southeast GrIS. Comparing the radar-derived accumulation with contemporaneous ice cores reveals that the radar captures the annual and long-term mean. The radar-derived accumulation rates resolve large-scale patterns across the GrIS with uncertainties of up to 11 %, attributed mostly to uncertainty in the snow/firn density profile.

  5. Annual Greenland accumulation rates (2009-2012) from airborne Snow Radar

    Science.gov (United States)

    Koenig, L. S.; Ivanoff, A.; Alexander, P. M.; MacGregor, J. A.; Fettweis, X.; Panzer, B.; Paden, J. D.; Forster, R. R.; Das, I.; McConnell, J.; Tedesco, M.; Leuschen, C.; Gogineni, P.

    2015-12-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet (GrIS) through increasing surface melt, emphasizing the need to closely monitor surface mass balance (SMB) in order to improve sea-level rise predictions. Here, we quantify accumulation rates, the largest component of GrIS SMB, at a higher spatial resolution than currently available, using Snow Radar stratigraphy. We use a semi-automated method to derive annual-net accumulation rates from airborne Snow Radar data collected by NASA's Operation IceBridge from 2009 to 2012. An initial comparison of the accumulation rates from the Snow Radar and the outputs of a regional climate model (MAR) shows that, in general, the radar-derived accumulation matches closely with MAR in the interior of the ice sheet but MAR estimates are high over the southeast GrIS. Comparing the radar-derived accumulation with contemporaneous ice cores reveals that the radar captures the annual and long-term mean. The radar-derived accumulation rates resolve large-scale patterns across the GrIS with uncertainties of up to 11 %, attributed mostly to uncertainty in the snow/firn density profile.

  6. Incorporation of radiometric tracers in peat and implications for estimating accumulation rates

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sophia V., E-mail: sophia.hansson@emg.umu.se [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden); Kaste, James M. [Geology Department, The College of William and Mary, Williamsburg, VA 23187 (United States); Olid, Carolina; Bindler, Richard [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden)

    2014-09-15

    Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides {sup 210}Pb, {sup 137}Cs, {sup 241}Am, and {sup 7}Be, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of {sup 7}Be down to 18–20 cm for some cores, and the broad vertical distribution of {sup 241}Am without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age–depth model leads to unrealistic peat mass accumulation rates (400–600 g m{sup −2} yr{sup −1}), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of {sup 210}Pb through the uppermost peat layers, recent peat accumulation rates (200–300 g m{sup −2} yr{sup −1}) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using {sup 7}Be, and if this information is incorporated into age–depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years. - Highlights: • {sup 210}Pb, {sup 137}Cs, {sup 241}Am and {sup 7}Be, and tot-Pb and tot Hg were measured in 5 peat cores. • Two age–depth models were applied resulting in different accumulation rates

  7. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, WA (United States); Rodriguez, C. A. [Pacific Northwest National Laboratory, Richland, WA (United States); Matyas, J. [Pacific Northwest National Laboratory, Richland, WA (United States); Owen, A. T. [Pacific Northwest National Laboratory, Richland, WA (United States); Jansik, D. P. [Pacific Northwest National Laboratory, Richland, WA (United States); Lang, J. B. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  8. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans.

    Directory of Open Access Journals (Sweden)

    David Patsouris

    Full Text Available Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D. However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.

  9. Energy Expenditure is Affected by Rate of Accumulation of Sleep Deficit in Rats

    Science.gov (United States)

    Caron, Aimee M.; Stephenson, Richard

    2010-01-01

    Study Objectives: Short sleep is a putative risk factor for obesity. However, prolonged total sleep deprivation (TSD) leads to negative energy balance and weight loss in rodents, whereas sleep-restricted humans tend to gain weight. We hypothesized that energy expenditure (V̇O2) is influenced by the rate of accumulation of sleep deficit in rats. Design and Intervention: Six Sprague-Dawley rats underwent chronic sleep-restriction (CSR, 6-h sleep opportunity at ZT0-6 for 10 days) and stimulus-control protocols (CON, 12-h sleep opportunity for 10 days, matched number of stimuli) in a balanced cross-over design. Four additional rats underwent TSD (4 days). Sleep was manipulated using a motor-driven walking wheel. Measurements and Results: Electroencephalography, electromyography, and body temperature were measured by telemetry, and V̇O2, by respirometry. Total sleep deficits of 55.1 ± 6.4 hours, 31.8 ± 6.8 hours, and 38.2 ± 2.3 hours accumulated over the CSR, CON, and TSD protocols, respectively. Responses to TSD confirmed previous reports of elevated V̇O2 and body temperature. These responses were attenuated in CSR, despite a greater cumulative sleep deficit. Rate of rise of O2 was strongly correlated with rate of accumulation of sleep deficit, above a threshold deficit of 3.6 h·day−1. Conclusion: The change in V̇O2 is affected by rate of accumulation of sleep deficit and not the total sleep loss accrued. Negative energy balance, observed during TSD, is strongly attenuated when brief daily sleep opportunities are available to rats (CSR), despite greater accumulated sleep deficit. Citation: Caron AM; Stephenson R. Energy expenditure is affected by rate of accumulation of sleep deficit in rats. SLEEP 2010;33(9):1226-1235. PMID:20857870

  10. Incorporation of radiometric tracers in peat and implications for estimating accumulation rates.

    Science.gov (United States)

    Hansson, Sophia V; Kaste, James M; Olid, Carolina; Bindler, Richard

    2014-09-15

    Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides (210)Pb, (137)Cs, (241)Am, and (7)Be, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of (7)Be down to 18-20 cm for some cores, and the broad vertical distribution of (241)Am without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age-depth model leads to unrealistic peat mass accumulation rates (400-600 g m(-2) yr(-1)), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of (210)Pb through the uppermost peat layers, recent peat accumulation rates (200-300 g m(-2) yr(-1)) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using (7)Be, and if this information is incorporated into age-depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years.

  11. Growth rate and calcium carbonate accumulation of Halimeda macrolobaDecaisne (Chlorophyta: Halimedaceae in Thai waters

    Directory of Open Access Journals (Sweden)

    Jaruwan Mayakun

    2014-08-01

    Full Text Available Halimeda macroloba Decaisne can utilize the CO2 used for carbon fixation in photosynthesis and use bicarbonate as the main carbon source for calcification. Although Halimeda has been recognized as a carbon sink species, the calcium accumulation of Halimeda species in Thai waters remain poorly understood. In this study, the highest density of H. macroloba was 26 thalli/m2 and Halimeda quickly produced 1-2 new segments/thallus/day or 20.1 mg dry weight/thallus/day. Its calcium carbonate accumulation rate was 16.6 mg CaCO3 /thallus/day, or 82.46 % per thallus. In Thailand, however, only three scientific papers of growth rate and CaCO3 accumulation rate of H. macroloba have been found and collected. Of these records, the mean density was 26-104 thalli/m2 . The growth rate of H. macroloba was around 1-2 mg dry weight/day and the CaCO3 accumulation rate varied around 41-91%. Thus, Halimeda has a great potential to decrease the carbon dioxide concentration in the ocean.

  12. Interest rate, debt, distribution and capital accumulation in a post-Kaleckian model

    OpenAIRE

    Hein, Eckhard

    2004-01-01

    "The introduction of monetary variables into post-Keynesian models of distribution and growth is an ongoing process. Lavoie (1995) has proposed a Kaleckian ‘Minsky-Steindl-model’ of distribution and growth, incorporating the effects debt and debt services have on short and long run capital accumulation. This attempt, however, can be extended because neither has the rate of capacity utilisation been endogenously determined, nor have the potential effects of interest rate variations on distribu...

  13. Chronic endocannabinoid system stimulation induces muscle macrophage and lipid accumulation in type 2 diabetic mice independently of metabolic endotoxaemia.

    Directory of Open Access Journals (Sweden)

    Lucie Geurts

    Full Text Available AIMS: Obesity and type 2 diabetes are characterised by low-grade inflammation, metabolic endotoxaemia (i.e., increased plasma lipopolysaccharides [LPS] levels and altered endocannabinoid (eCB-system tone. The aim of this study was to decipher the specific role of eCB-system stimulation or metabolic endotoxaemia in the onset of glucose intolerance, metabolic inflammation and altered lipid metabolism. METHODS: Mice were treated with either a cannabinoid (CB receptor agonist (HU210 or low-dose LPS using subcutaneous mini-pumps for 6 weeks. After 3 weeks of the treatment under control (CT diet, one-half of each group of mice were challenged with a high fat (HF diet for the following 3-week period. RESULTS: Under basal conditions (control diet, chronic CB receptor agonist treatment (i.e., 6 weeks induced glucose intolerance, stimulated metabolic endotoxaemia, and increased macrophage infiltration (CD11c and F4/80 expression in the muscles; this phenomenon was associated with an altered lipid metabolism (increased PGC-1α expression and decreased CPT-1b expression in this tissue. Chronic LPS treatment tended to increase the body weight and fat mass, with minor effects on the other metabolic parameters. Challenging mice with an HF diet following pre-treatment with the CB agonist exacerbated the HF diet-induced glucose intolerance, the muscle macrophage infiltration and the muscle's lipid content without affecting the body weight or the fat mass. CONCLUSION: Chronic CB receptor stimulation under basal conditions induces glucose intolerance, stimulates metabolic inflammation and alters lipid metabolism in the muscles. These effects worsen following the concomitant ingestion of an HF diet. Here, we highlight the central roles played by the eCB system and LPS in the pathophysiology of several hallmarks of obesity and type 2 diabetes.

  14. A two thousand year annual record of snow accumulation rates for Law Dome, East Antarctica

    Directory of Open Access Journals (Sweden)

    J. Roberts

    2014-11-01

    AD 663–704, AD 933–975 and AD 1429–1468 were below average. The calculated snow accumulation rates show good correlation with atmospheric reanalysis estimates, and significant spatial correlation over a wide expanse of East Antarctica, demonstrating that the Law Dome record captures larger scale variability across a large region of East Antarctica well beyond the immediate vicinity of the Law Dome summit. Spectral analysis reveals periodicities in the snow accumulation record which may be related to ENSO and Interdecadal Pacific Oscillation frequencies.

  15. Variations of snow accumulation rate in Central Antarctica over the last 250 years

    Directory of Open Access Journals (Sweden)

    A. A. Ekaykin

    2017-01-01

    Full Text Available The present-day global climate changes, very likely caused by anthropogenic activity, may potentially present a serious threat to the whole human civilization in a near future. In order to develop a plan of measures aimed at elimination of these threats and adaptation to these undesirable changes, one should deeply understand the mechanism of past and present (and thus, future climatic changes of our planet. In this study we compare the present-day data of instrumental observations of the air temperature and snow accumulation rate performed in Central Antarctica (the Vostok station with the reconstructed paleogeographic data on a variability of these parameters in the past. First of all, the Vostok station is shown to be differing from other East Antarctic stations due to relatively higher rate of warming (1.6 °C per 100 years since 1958. At the same time, according to paleogeographic data, from the late eighteenth century to early twenty-first one the total warming amounted to about 1 °C, which is consistent with data from other Antarctic regions. So, we can make a conclusion with high probability that the 30-year period of 1985–2015 was the warmest over the last 2.5 centuries. As for the snow accumulation rate, the paleogeographic data on this contain a certain part of noise that does not allow reliable concluding. However, we found a statistically significant relationship between the rate of snow accumulation and air temperature. This means that with further rise of temperature in Central Antarctica, the rate of solid precipitation accumulation will increase there, thus partially compensating increasing of the sea level.

  16. Comparison of Current and Historical Rates of Ecosystem Carbon Accumulation in a Northern Alberta Peatland

    Science.gov (United States)

    Syed, K. H.; Flanagan, L. B.; Carlson, P. J.; Glenn, A. J.; Ponton, S.

    2005-12-01

    As part of Fluxnet-Canada, we have been investigating the environmental controls on net ecosystem carbon dioxide exchange using the eddy covariance technique in a moderately rich (treed) fen in northern Alberta, Canada. In addition, integrated CO2 fluxes were compared to carbon stock measurements and rates of peat accumulation. The total ecosystem carbon stock was 52,669 g C m-2 with the vast majority (52,129) accumulated in peat over a 2 meter depth. The basal age for the peat was 2210 ± 50 years before present. The above-ground carbon stock in the two tree species was 226 g C m-2. The oldest Picea mariana trees were aged at 135 years, and they showed a rapid increase in basal area increment starting about 65 years ago that peaked at rates of 2 cm2 yr-1 about 40 years ago. The Larix laricina trees became established approximately 45 years ago and currently have a basal area increment of 3 to 4 cm2 yr-1, much higher than the current rates (0.5 cm2 yr-1) observed for Picea mariana. The rates of peat accumulation were determined on 210Pb-dated cores. Over the last 70 years the peat gained an average of 113 ± 12 g C m-2 yr-1. This was similar to net ecosystem production measured by eddy covariance (95 and 210 g C m-2 yr-1) over the last two years. Variation in annual net ecosystem production was associated with shifts in weather and growing season length. Current and recent historical rates of carbon accumulation were quite consistent despite significant variation in tree species growth and successional changes in this peatland over the last 70 years.

  17. Recent change of the ice core accumulation rates on the Qinghai-Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Three ice cores recovered from the Himalayas (i.e. the East Rongbuk Glacier and the Far East Rongbuk Glacier at Mt. Qomolangma (Everest), and the Dasuopu Glacier at Xixiabangma) show a sharp decline in the accumulation rates since the 1950s, which is consistent with the precipitation fluctuation over India and the low northern latitude zone (5°-35°N). Correspondingly, an increasing trend is observed for the ice core accumulations from the central and northern Qingh ai-Tibetan Plateau (i.e. the Xiao Dongkemadi Glacier in the central Tanggula Mountains, the Guliya Ice Cap in the western Kunlun Mountains, and the Dunde Ice Cap in the Qilian Mountains) since the 1950s, which is consistent with the precipi tation fluctuation over the middle-high northern latitude zone (35°-70°N). However, the variation magnitude of the high-elevation ice core accumulations is more significant than that of precipitation at the low-eleva- tion places, suggesti ng its extra sensitivity of high-elevation areas to climatic change. The inter-d ecadal abrupt change of the African-Asian summer monsoon in the1960s may attribute to the recent ice core accumulation change during the recent decades.

  18. Accumulation rate in a tropical Andean glacier as a proxy for northern Amazon precipitation

    Science.gov (United States)

    da Rocha Ribeiro, Rafael; Simões, Jefferson Cardia; Ramirez, Edson; Taupin, Jean-Denis; Assayag, Elias; Dani, Norberto

    2017-04-01

    Andean tropical glaciers have shown a clear shrinkage throughout the last few decades. However, it is unclear how this general retreat is associated with variations in rainfall patterns in the Amazon basin. To investigate this question, we compared the annual net accumulation variations in the Bolivian Cordillera Real (Andes), which is derived from an ice core from the Nevado Illimani (16° 37' S, 67° 46' W), covering the period 1960-1999 using the Amazonian Rainfall Index, Northern Atlantic Index (TNA), Multivariate ENSO Index (MEI), and Pacific Decadal Oscillation (PDO). The accumulation rate at the Nevado Illimani ice core decreased by almost 25% after 1980, from 1.02 w.eq. a-1 (water equivalent per year) in the 1961-1981 period to 0.76 w.eq. a-1 in the 1981-1999 period. The Northern Amazonian Rainfall (NAR) index best reflects changes in accumulation rates in the Bolivian ice core. Our proposal is based on two observations: (1) This area shows reduced rainfall associated with a more frequent and intense El Niño (during the positive phase of the MEI). The opposite (more rain) is true during La Niña phases. (2) Comparisons of the ice core record and NAR, PDO, and MEI indexes showed similar trends for the early 1980s, represented by a decrease in the accumulation rates and its standard deviations, probably indicating the same causality. The general changes observed by early 1980s coincided with the beginning of a PDO warm phase. This was followed by an increase in the Amazonian and tropical Andean precipitation from 1999, coinciding with a new PDO phase. However, this increase did not result in an expansion of the Zongo Glacier area.

  19. Calibrating a long-term meteoric 10Be accumulation rate in soil

    Science.gov (United States)

    Reusser, Lucas; Graly, Joseph; Bierman, Paul; Rood, Dylan

    2010-10-01

    Using 13 samples collected from a 4.1 meter profile in a well-dated and stable New Zealand fluvial terrace, we present the first long-term accumulation rate for meteoric 10Be in soil (1.68 to 1.72 × 106 at/(cm2·yr)) integrated over the past ˜18 ka. Site-specific accumulation data, such as these, are prerequisite to the application of meteoric 10Be in surface process studies. Our data begin the process of calibrating long-term meteoric 10Be delivery rates across latitude and precipitation gradients. Our integrated rate is lower than contemporary meteoric 10Be fluxes measured in New Zealand rainfall, suggesting that long-term average precipitation, dust flux, or both, at this site were less than modern values. With accurately calibrated long-term delivery rates, such as this, meteoric 10Be will be a powerful tool for studying rates of landscape change in environments where other cosmogenic nuclides, such as in situ 10Be, cannot be used.

  20. Rate of accumulation of thymidine analogue mutations in patients continuing to receive virologically failing regimens containing zidovudine or stavudine

    DEFF Research Database (Denmark)

    Cozzi-Lepri, Alessandro; Phillips, Andrew N; Martinez-Picado, Javier;

    2009-01-01

    BACKGROUND: Because changes in antiretroviral therapy in resource-limited settings (RLSs) are delayed until patients experience immunological or clinical failure, it is important to be able to estimate the consequences in terms of accumulation of thymidine analogue (TA) mutations (TAMs). METHODS...... (vs homosexual) contacts were associated with a faster rate of TAM accumulation. CONCLUSIONS: Although the estimated rate of TAM accumulation was lower than anticipated, all possible efforts should be continued to increase the availability of drug options in RLSs....

  1. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, ON, M5S 3G4 (Canada)

    2007-04-15

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials.

  2. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [University of California San Diego

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  3. Effects of N Forms and Rates on Vegetable Growth and Nitrate Accumulation

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Hui; LI Sheng-Xiu

    2003-01-01

    Experiments were carried out on a vegetable field with Peking cabbage (Brassica pekinensis (Lour.)Rupr.), cabbage (Brassica chinensis var. Oleifera Makino and nemoto), green cabbage (Brassica chinensis L.), spinach (Spinacia oleracea L.) and rape (Brassica campestris L.) to study the effects of N forms and N rates on their growth and nitrate accumulation. The results indicated that application of ammonium chloride,ammonium nitrate, sodium nitrate and urea significantly increased the yields and nitrate concentrations of Peking cabbage and spinach. Although no significant difference was found in the yields after application of the 4 N forms, nitrate N increased nitrate accumulation in vegetables much more than ammonium N. The vegetable yields were not increased continuously with N rate increase, and oversupply of N reduced the plant growth, leading to a yield decline. This trend was also true for nitrate concentrations in some vegetables and at some sampling times. However, as a whole, the nitrate concentrations in vegetables were positively correlated with N rates. Thus, addition of N fertilizer to soil was the major cause for increases in nitrate concentrations in vegetables. Nitrate concentrations were much higher in roots, stems and petioles than in blades at any N rate.

  4. High resolution record of carbon accumulation rates during boreal peatland initiation

    Directory of Open Access Journals (Sweden)

    I. Florin Pendea

    2012-01-01

    Full Text Available Boreal peatlands are a major global C sink, thus having important feedbacks to climate. A decreased concentration in atmospheric CO2 7000–10 000 years ago has been linked to variations in peatland C accumulation rates attributed to warm climate change and increased productivity. Yet, this period also corresponds to early stages of peatland development (as peatland was expanding following retreat of ice sheets and increases in C storage could be associated with wetland evolution via lake filling or following marine shoreline emergence. Unravelling past links amongst peatland dynamics, C storage, and climate will help us assess potential feedbacks from future changes in these systems, but most studies are hampered by low temporal resolution. Here we provide a decadal scale C accumulation record for a fen that has transformed from salt marsh within the last 70 yr on the isostatically rebounding coast of James Bay, Québec. We determined time frames for wetland stages using palynological analyses to reconstruct ecological change and 210Pb and 137Cs to date the deposit. The C accumulation rates during the tidal marsh and fen stage (87 and 182 g C m−2 yr−1, respectively, were as much as six times higher than the global average for northern peatlands. We suggest that the atmospheric CO2 flux during the early Holocene could be attributed, in part, to wetland evolution associated with isostatic rebound which makes land for new wetland formation. Future climate warming will increase eustatic sea level, decrease rates of land emergence and formation of new coastal wetlands, ultimately decreasing rates of C storage of wetlands on rebounding coastlines.

  5. Accumulation rates during 1311-2011 CE in North Central Greenland derived from air-borne radar data

    Science.gov (United States)

    Karlsson, Nanna; Eisen, Olaf; Dahl-Jensen, Dorthe; Freitag, Johannes; Kipfstuhl, Sepp; Lewis, Cameron; Nielsen, Lisbeth; Paden, John; Winter, Anna; Wilhelms, Frank

    2016-11-01

    Radar-detected internal layering contains information on past accumulation rates and patterns. In this study, we assume that the radar layers are isochrones, and use the layer stratigraphy in combination with ice-core measurements and numerical methods to retrieve accumulation information for the northern part of central Greenland. Measurements of the dielectric properties of an ice core from the NEEM (North Greenland Eemian Ice Drilling) site, allow for correlation of the radar layers with volcanic horizons to obtain an accurate age of the layers. We obtain accumulation patterns averaged over 100 a for the period 1311-2011. Our results show a clear trend of high accumulation rates west of the ice divide and low accumulation rates east of the ice divide. At the NEEM site the accumulation pattern is persistent during our study period and only small temporal variations occur in the accumulation rate. However, from approximately 200 km south of the NEEM drill site, the accumulation rate shows temporal variations based on our centennial averages. We attribute this variation to shifts in the location of the high-low accumulation boundary that usually is aligned with the ice divide, but appears to have moved across the divide in the past.

  6. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Mirko Lanuti

    Full Text Available The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  7. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    Science.gov (United States)

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  8. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia

    Science.gov (United States)

    Hapsari, Kartika Anggi; Biagioni, Siria; Jennerjahn, Tim C.; Reimer, Peter Meyer; Saad, Asmadi; Achnopha, Yudhi; Sabiham, Supiandi; Behling, Hermann

    2017-08-01

    Tropical peatlands are important for the global carbon cycle as they store 18% of the total global peat carbon. As they are vulnerable to changes in temperature and precipitation, a rapidly changing environment endangers peatlands and their carbon storage potential. Understanding the mechanisms of peatland carbon accumulation from studying past developments may, therefore, help to assess the future role of tropical peatlands. Using a multi-proxy palaeoecological approach, a peat core taken from the Sungai Buluh peatland in Central Sumatra has been analyzed for its pollen and spore, macro charcoal and biogeochemical composition. The result suggests that peat and C accumulation rates were driven mainly by sea level change, river water level, climatic variability and anthropogenic activities. It is also suggested that peat C accumulation in Sungai Buluh is correlated to the abundance of Freycinetia, Myrtaceae, Calophyllum, Stemonuraceae, Ficus and Euphorbiaceae. Sungai Buluh has reasonable potential for being a future global tropical peat C sinks. However, considering the impact of rapid global climate change in addition to land-use change following rapid economic growth in Indonesia, such potential may be lost. Taking advantage of available palaeoecological records and advances made in Quaternary studies, some considerations for management practice such as identification of priority taxa and conservation sites are suggested.

  9. Estimating time to steady state using the effective rate of drug accumulation.

    Science.gov (United States)

    Panebianco, Deborah L; Maes, Andrea

    2011-01-01

    Unless all of a drug is eliminated during each dosing interval, the plasma concentrations within a dosing interval will increase until the time course of change in plasma concentrations becomes invariant from one dosing interval to the next, resulting in steady state. A simple method for estimating drug concentration time to steady state based on multiple dose area under the plasma concentration-time curve and effective rate of drug accumulation is presented. Several point estimates and confidence intervals for time to 90% of steady state are compared, and a recommendation is made on how to summarize and present the results. Copyright © 2009 John Wiley & Sons, Ltd.

  10. Capital accumulation, structural change and real exchange rate in a Keynesian-Structuralist growth model

    Directory of Open Access Journals (Sweden)

    Oreiro José Luis

    2015-01-01

    Full Text Available The aim of this paper is to show at theoretical level that maintaining a competitive real exchange rate positively affects the economic growth of developing countries by means of a Keynesian-Structuralist model that combines elements of Kaleckian growth models with the balance of payments constrained growth models pioneered developed by Thirlwall. In this setting, the level of real exchange rate is capable, due to its effect over capital accumulation, to induce a structural change in the economy, making endogenous income elasticities of exports and imports. For reasonable parameter values it is shown that in steady-state growth there is two long-run equilibrium values for real exchange rate, one that corresponds to an under-valued currency and another that corresponds to an over-valued currency. If monetary authorities run exchange rate policy in order to target a competitive level for real exchange rate, than under-valued equilibrium is stable and the economy will show a high growth rate in the long-run.

  11. Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years.

    Science.gov (United States)

    Farmer, John G; Anderson, Peter; Cloy, Joanna M; Graham, Margaret C; MacKenzie, Angus B; Cook, Gordon T

    2009-10-15

    The historical accumulation rates of mercury resulting from atmospheric deposition to four Scottish ombrotrophic peat bogs, Turclossie Moss (northeast Scotland), Flanders Moss (west-central), Red Moss of Balerno (east-central) and Carsegowan Moss (southwest), were determined via analysis of (210)Pb- and (14)C-dated cores up to 2000 years old. Average pre-industrial rates of mercury accumulation of 4.5 and 3.7 microg m(-2) y(-1) were obtained for Flanders Moss (A.D. 1-1800) and Red Moss of Balerno (A.D. 800-1800), respectively. Thereafter, mercury accumulation rates increased to typical maximum values of 51, 61, 77 and 85 microg m(-2) y(-1), recorded at different times possibly reflecting local/regional influences during the first 70 years of the 20th century, at the four sites (TM, FM, RM, CM), before declining to a mean value of 27+/-15 microg m(-2) y(-1) during the late 1990s/early 2000s. Comparison of such trends for mercury with those for lead and arsenic in the cores and also with direct data for the declining UK emissions of these three elements since 1970 suggested that a substantial proportion of the mercury deposited at these sites over the past few decades originated from outwith the UK, with contributions to wet and dry deposition arising from long-range transport of mercury released by sources such as combustion of coal. Confidence in the chronological reliability of these core-derived trends in absolute and relative accumulation of mercury, at least since the 19th century, was provided by the excellent agreement between the corresponding detailed and characteristic temporal trends in the (206)Pb/(207)Pb isotopic ratio of lead in the (210)Pb-dated Turclossie Moss core and those in archival Scottish Sphagnum moss samples of known date of collection. The possibility of some longer-term loss of volatile mercury released from diagenetically altered older peat cannot, however, be excluded by the findings of this study.

  12. Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments.

    Science.gov (United States)

    Adhikari, Puspa L; Maiti, Kanchan; Overton, Edward B; Rosenheim, Brad E; Marx, Brian D

    2016-05-01

    Sediment samples collected from shelf, slope and interior basin of the northern Gulf of Mexico during 2011-2013, 1-3 years after the Deepwater Horizon (DWH) oil spill, were utilized to characterize PAH pollution history, in this region. Results indicate that the concentrations of surface ΣPAH43 and their accumulation rates vary between 44 and 160 ng g(-1) and 6-55 ng cm(-2) y(-1), respectively. ΣPAH43 concentration profiles, accumulation rates and Δ(14)C values are significantly altered only for the sediments in the immediate vicinity of the DWH wellhead. This shows that the impact of DWH oil input on deep-sea sediments was generally limited to the area close to the spill site. Further, the PAHs source diagnostic analyses suggest a noticeable change in PAHs composition from higher to lower molecular weight dominance which reflects a change in source of PAHs in the past three years, back to the background composition. Results indicate low to moderate levels of PAH pollution in this region at present, which are unlikely to cause adverse effects on benthic communities.

  13. PENGHAMBATAN OKSIDASI LDL DAN AKUMULASI KOLESTEROL PADA MAKROFAG OLEH EKSTRAK TEMULAWAK (Curcuma xanthorriza Roxb [The Inhibition of Low Density Lipoprotein Oxidation and Cholesterol Accumulation on the Macrophage by Temulawak Extract

    Directory of Open Access Journals (Sweden)

    Aisyah Tri Septiana1

    2006-12-01

    Full Text Available Coronary heart disease is caused among others by atherosclerosis, which is the result of oxidized low density lipoprotein (LDL and cholesterol accumulation on macrophage, and which is inhibited by temulawak (Curcuma xanthorriza Roxb extract. The objective of this study was to find out the kinds and consentration of temulawak extract which could inhibit LDL oxidation, and to find out the effect of temulawak extract on the accumulation of cholesterol on macrophage. Temulawak was extracted by water, ethanol, aceton and dichlorometane. Inhibition of LDL oxidation was found out by measuring the level of malonaldehyde content of oxidized LDL-CuSO4 which was supplemented with water extract, ethanol extract, aceton extract and dichlorometane extract. of temulawak at concentrations of 43 g, 430 g, and 4300 g per ml of LDL. The percentage of malonaldehyde reduction due to supplementation with water extract, ethanol extract, acetone extract and dichloromethane extract was 44.27; 47.68; 51.83 and 61.2 respectively. The inhibition of LDL oxidation by temulawak extract depends on its concentration. The percentage of malonaldehyde reduction due to supplementation with temulawak extract of 43 µg, 430 µg, and 4300 µg per ml of LDL was 43.63; 56.72; and 53.89.. Concentration of temulawak extract resulting in the highest inhibition of LDL oxidation was 430 µg/ml LDL. Temulawak extract tends to inhibit cholesterol accumulation on macrophage. There is a relationship between the inhibition of cholesterol accumulation on the macrophage and the inhibition of LDL oxidation by temulawak extract

  14. Complex Wind-Induced Variations of Surface Snow Accumulation Rates over East Antarctica

    Science.gov (United States)

    Das, I.; Scambos, T. A.; Koenig, L.; van den Broeke, M.; Lenaerts, J.

    2015-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. Using airborne radar, lidar and thresholds of surface slope, modeled surface mass balance (SMB) and wind fields, we have predicted continent-wide distribution of wind-scour zones over Antarctica. These zones are located over relatively steep ice surfaces formed by ice flow over bedrock topography. Near-surface winds accelerate over these steeper slopes and erode and sublimate the snow. This results in numerous localized regions (typically ≤ 200 km2) with reduced or negative surface accumulation. Although small zones of re-deposition occur at the base of the steeper slope areas, the redeposited mass is small relative to the ablation loss. Total losses from wind-scour and wind-glaze areas amounts to tens of gigatons annually. Near the coast, winds often blow significant amounts of surface snow from these zones into the ocean. Large uncertainties remain in SMB estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss or redistribution over the wind-scour zones. In this study, we also use Operation IceBridge's snow radar data to provide evidence for a gradual ablation of ~16-18 m of firn (~200 years of accumulation) from wind-scour zones over the upper Recovery Ice Stream catchment. The maximum ablation rates observed in this region are ~ -54 kg m-2 a-1 (-54 mm water equivalent a-1). Our airborne radio echo-sounding analysis show snow redeposition downslope of the wind-scour zones is <10% of the cumulative mass loss. Our study shows that the local mass loss is dominated by sublimation to water vapor rather than wind-transport of snow.

  15. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    Science.gov (United States)

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  16. Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis

    Science.gov (United States)

    Santucci, Pierre; Bouzid, Feriel; Smichi, Nabil; Poncin, Isabelle; Kremer, Laurent; De Chastellier, Chantal; Drancourt, Michel; Canaan, Stéphane

    2016-01-01

    Despite a slight decline since 2014, tuberculosis (TB) remains the major deadly infectious disease worldwide with about 1.5 million deaths each year and with about one-third of the population being latently infected with Mycobacterium tuberculosis, the etiologic agent of TB. During primo-infection, the recruitment of immune cells leads to the formation of highly organized granulomas. Among the different cells, one outstanding subpopulation is the foamy macrophage (FM), characterized by the abundance of triacylglycerol-rich lipid bodies (LB). M. tuberculosis can reside in FM, where it acquires, from host LB, the neutral lipids which are subsequently processed and stored by the bacilli in the form of intracytosolic lipid inclusions (ILI). Although host LB can be viewed as a reservoir of nutrients for the pathogen during latency, the molecular mechanisms whereby intraphagosomal mycobacteria interact with LB and assimilate the LB-derived lipids are only beginning to be understood. Past studies have emphasized that these physiological processes are critical to the M. tuberculosis infectious-life cycle, for propagation of the infection, establishment of the dormancy state and reactivation of the disease. In recent years, several animal and cellular models have been developed with the aim of dissecting these complex processes and of determining the nature and contribution of their key players. Herein, we review some of the in vitro and in vivo models which allowed to gain significant insight into lipid accumulation and consumption in M. tuberculosis, two important events that are directly linked to pathogenicity, granuloma formation/maintenance and survival of the tubercle bacillus under non-replicative conditions. We also discuss the advantages and limitations of each model, hoping that this will serve as a guide for future investigations dedicated to persistence and innovative therapeutic approaches against TB. PMID:27774438

  17. [Effects of drought stress and nitrogen fertilization rate on the accumulation of osmolytes in Jatropha curcas seedlings].

    Science.gov (United States)

    Yin, Li; Liu, Yong-An; Xie, Cai-Yong; Jiang, Xue; Wang, Yong-Jie; Li, Yin-Hua; Yan, Zhen; Hu, Ting-Xing

    2012-03-01

    A pot experiment with controlled water supply was conducted to study the effects of different drought stress degree (80% FC, 60% FC, 40% FC, and 20% FC) and nitrogen fertilization rate (0 g x pot(-1), 1.2 g x pot(-1), 3.6 g x pot(-1), and 6.0 g x pot(-1)) on the accumulation of osmolytes in different organs of Jatropha curcas seedlings. Under drought stress, the soluble protei and free proline in seedling shoots and roots and the soluble sugar in seedling shoots had a great accumulation, and the free proline content in seedling leaves had a great increase with increasing drought stress degree. Also under drought stress, the Na+, Ca2+, and Mg2+ all highly accumulated in seedling various organs, while K only accumulated greatly in shoots but slightly in leaves and roots. The effects of nitrogen fertilization on the accumulation of osmolytes in seedlings depended on drought stress degree and nitrogen fertilization rate. At 80% FC and 60% FC, increasing nitrogen fertilization rate could markedly promote the accumulation of osmolytes in the organs of J. curcas seedlings; at 40% FC, applying 6.0 g x pot(-1) weakened the promotion effect on the osmolytes accumulation; whereas at 20%, applying 1.2 g x pot(-1) made the plants have a higher capability in osmoregulation, but applying 3.6 g x pot(-1) and 6.0 g x pot(-1) had less promotion effect, and even, inhibited osmolytes accumulation.

  18. Dose-rate and temperature dependent statistical damage accumulation model for ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)]. E-mail: jesus.hernandez.mangas@tel.uva.es; Arias, J. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Marques, L.A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Ruiz-Bueno, A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Bailon, L. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)

    2005-01-01

    Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results.

  19. Recent accumulation rates of an Alpine glacier derived from repeated airborne GPR and firn cores

    Science.gov (United States)

    Sold, Leo; Huss, Matthias; Eichler, Anja; Schwikowski, Margit; Hoelzle, Martin

    2014-05-01

    The topmost areas of glaciers contain a valuable record of their past accumulation rates. The water equivalent of annual firn layers can be used to initiate or extend existing time series of local mass balance and, ultimately, to consolidate the knowledge on the response of glaciers to changing climatic conditions. Measurements of the thickness and density of firn layers typically involve drilling in remote areas and core analysis and are thus expensive in terms of time and effort. Here, we discuss measurements from 2012 on Findelengletscher, Switzerland, a large Alpine valley glacier, using two in-situ firn cores and airborne Ground-Penetrating Radar (GPR). The firn cores were analysed regarding their density, major ions and deuterium concentration. The ammonium (NH4+) concentration is known to show seasonality due to a higher source activity and pronounced vertical transportation in the atmosphere in summer. The deuterium concentration serves as a proxy for air temperature during precipitation formation. Together, they provide depth and dating of annual summer surfaces. GPR has previously been used for a non-destructive assessment of internal layers in snow, firn and ice. Signal reflections indicate changes in the dielectric properties of the material, e.g. density changes at former summer surfaces. Airborne surveys allow measurements to be taken in remote and inaccessible areas. However, to transfer information from the GPR pulse travel time to the depth domain, the dielectric permittivity of the material is required, that changes with density of the firn. We observed a good agreement of the GPR signal with pronounced changes in the density profile, ice layers and peak contents of major ions. This underlines the high potential of GPR for detecting firn layers. However, not all peak-densities and thick ice layers represent a former glacier summer surface but can also be due to melting and refreezing during winter. We show that up to four years of annual

  20. A Probabilistic Method of Assessing Carbon Accumulation Rate at Imnavait Creek Peatland, Arctic Long Term Ecological Research Station, Alaska

    Science.gov (United States)

    Nichols, Jonathan E.; Peteet, Dorothy M.; Frolking, Steve; Karavias, John

    2017-01-01

    Arctic peatlands are an important part of the global carbon cycle, accumulating atmospheric carbon as organic matter since the Late glacial. Current methods for understanding the changing efficiency of the peatland carbon sink rely on peatlands with an undisturbed stratigraphy. Here we present a method of estimating primary carbon accumulation rate from a site where permafrost processes have either vertically or horizontally translocated nearby carbon-rich sediment out of stratigraphic order. Briefly, our new algorithm estimates the probability of the age of deposition of a random increment of sediment in the core. The method assumes that if sediment age is measured at even depth increments, dates are more likely to occur during intervals of higher accumulation rate and vice versa. Multiplying estimated sedimentation rate by measured carbon density yields carbon accumulation rate. We perform this analysis at the Imnavait Creek Peatland, near the Arctic Long Term Ecological Research network site at Toolik Lake, Alaska. Using classical radiocarbon age modeling, we find unreasonably high rates of carbon accumulation at various Holocene intervals. With our new method, we find accumulation rate changes that are in improved agreement within the context of other sites throughout Alaska and the rest of the Circum-Arctic region.

  1. Accumulation Rates of Trace Elements in the Cariaco Basin-A 20-kyr History of Seawater Chemistry and Global Climate

    Science.gov (United States)

    Piper, D. Z.; Dean, W. E.

    2002-12-01

    A sediment core from the Cariaco Basin on the Venezuelan continental shelf, which collected sediment as old as 20 kyr, was analyzed for its major-element-oxide and trace-element concen-trations. The elements can be partitioned between a siliciclastic, terrigenous-derived fraction and two seawater-derived fractions. The marine fractions are (1) a biogenic fraction represented by nutrient trace elements taken up mostly by phytoplankton in the photic zone, and (2) a hydroge-nous fraction derived from bottom water via adsorption and precipitation reactions. The present-day export of organic matter from the photic zone, redox conditions and advection of bottom water, and the flux of terrigenous debris into the basin are used to calculate current trace-element accu-mulation rates. The sums of calculated accumulation rates of Cd, Cu, Mo, Ni, V, and Zn show excellent agreement with their measured bulk rates of accumulation in the uppermost surface sediment. This agreement between current measured and calculated accumulation rates of trace elements supports a model of trace-element accumulation rates in the subsurface sediment that gives a 20-kyr history of upwelling into the photic zone, bottom-water advection, and sediment provenance. Extrema in the trace-element accumulation rates and interpreted hydrographic properties of the water column correspond to changes in eustatic sea level and global climate.

  2. Trace metal composition of and accumulation rates of sediments in the Upper Gulf of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Windom, H.L.; Silpipat, S.; Chanpongsang, A.; Smith, R.G. Jr.; Hungspreugs, M.

    1984-08-01

    Sediment cores and grab samples were collected in the Upper Gulf of Thailand to determine sedimentation rates and to determine if metal concentrations reflect anthropogenic inputs. Accumulation rates of sediments in the Upper Gulf measured using the Pb-210 method, appear to vary from about 4 to 11 mm/year. Sediment budgets suggest that little of the sediment delivered to the Upper Gulf by the major rivers is ultimately transported to the Lower Gulf. Sediment discharge by the Chao Phraya River, the largest of the four rivers emptying into the Upper Gulf, is about 3,400,000 metric tons per year. The Gulf annually receives about 7,000,000 metric tons. Sediment transported by the Chao Phraya, Mae Klong, Ta Chin and Bang Pakong Rivers are for the most part deposited in the northern part of the Upper Gulf of Thailand. Metal concentrations in Upper Gulf sediments appear to be dominantly controlled by natural inputs, except for iron and manganese. 7 references, 5 figures, 2 tables.

  3. Identification of an autophagy defect in smokers' alveolar macrophages.

    Science.gov (United States)

    Monick, Martha M; Powers, Linda S; Walters, Katherine; Lovan, Nina; Zhang, Michael; Gerke, Alicia; Hansdottir, Sif; Hunninghake, Gary W

    2010-11-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbe-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers' lungs, but they have a functional immune deficit. In this study, we identify an autophagy defect in smokers' alveolar macrophages. Smokers' alveolar macrophages accumulate both autophagosomes and p62, a marker of autophagic flux. The decrease in the process of autophagy leads to impaired protein aggregate clearance, dysfunctional mitochondria, and defective delivery of bacteria to lysosomes. This study identifies the autophagy pathway as a potential target for interventions designed to decrease infection rates in smokers and possibly in individuals with high environmental particulate exposure.

  4. Enhanced expression of hemoglobin scavenger receptor CD163 in accumulated macrophages within filtered debris between acute coronary syndromes and stable angina pectoris.

    Science.gov (United States)

    Sato, Takao; Kameyama, Tomoki; Noto, Takahisa; Ueno, Hiroshi; Inoue, Hiroshi

    2015-01-01

    Coronary intraplaque hemorrhage up-regulates hemoglobin scavenger receptor CD163 expression on macrophages, and has an association with vulnerable plaque development. During percutaneous coronary intervention, mechanical plaque disruption exposes potentially embolic atheromatous contents from culprit plaque.In 37 patients with stable angina pectoris (SAP, n = 20) or acute coronary syndrome (ACS, n = 17), atherothrombotic debris was collected using a filter-based distal embolic protection device. We immunohistochemically determined CD14-positive macrophages and CD163-positive macrophages in filtered debris. We also examined the relation of CD14- and CD163-positive macrophages with culprit plaque volume and components evaluated with ultrasonic tissue characterization (VH-IVUS).The only significant difference in clinical characteristics between the two groups was in hs-CRP. In ACS, the percentage of CD14- and CD163-positive macrophages to the whole cells (%CD14 and %CD163, respectively) was significantly higher than that in SAP (20.1 ± 8.2 versus 8.8 ± 6.8%, P CD163 had a significant positive correlation with %NC (%CD14: r = 0.40, P = 0.01 and %CD163: r = 0.45, P = 0.01), but only %CD163 was negatively correlated with %Fibrous (%CD163: r = -0.48, P = 0.01).These findings suggest that the presence of CD14- and CD163-positive macrophages may reflect plaque inflammation, NC expansion, and plaque vulnerability in patients with coronary heart disease.

  5. Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1.

    Science.gov (United States)

    Li, Xiu-Ying; Kong, Ling-Xi; Li, Juan; He, Hai-Xia; Zhou, Yuan-Da

    2013-02-01

    The accumulation of foam cells in atherosclerotic lesions is a hallmark of early-stage atherosclerosis. Kaempferol has been shown to inhibit oxidized low-density lipoprotein (oxLDL) uptake by macrophages; however, the underlying molecular mechanisms are not yet fully investigated. In this study, we shown that treatment with kaempferol markedly suppresses oxLDL-induced macrophage foam cell formation, which occurs due to a decrease in lipid accumulation and an increase in cholesterol efflux from THP-1-derived macrophages. Additionally, the kaempferol treatment of macrophages led to the downregulation of cluster of differentiation 36 (CD36) protein levels, the upregulation of ATP-binding cassette (ABC) transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI) and ABCG1 protein levels, while no effects on scavenger receptor A (SR-A) expression were observed. Kaempferol had similar effects on the mRNA and protein expression of ABCA1, SR-BI, SR-A, CD36 and ABCG1. The reduced CD36 expression following kaempferol treatment involved the inhibition of c-Jun-activator protein-1 (AP-1) nuclear translocation. The inhibition of AP-1 using the inhibitor, SP600125, confirmed this involvement, as the AP-1 inhibition significantly augmented the kaempferol-induced reduction in CD36 expression. Accordingly, the kaempferol-mediated suppression of lipid accumulation in macrophages was also augmented by SP600125. The increased expression of ABCA1, SR-BI and ABCG1 following kaempferol treatment was accompanied by the enhanced protein expression of heme oxygenase-1 (HO-1). This increase was reversed following the knockdown of the HO-1 gene using small hairpin RNA (shRNA). Moreover, the kaempferol-mediated attenuation of lipid accumulation and the promotion of cholesterol efflux was also inhibited by HO-1 shRNA. In conclusion, the c-Jun-AP‑1-dependent downregulation of CD36 and the HO-1-dependent upregulation of ABCG1, SR-BI and ABCA1 may mediate the beneficial effects of

  6. Sediment-Mass Accumulation Rate and Variability in the East China Sea Detected by GRACE

    Directory of Open Access Journals (Sweden)

    Ya-Chi Liu

    2016-09-01

    Full Text Available The East China Sea (ECS is a region with shallow continental shelves and a mixed oceanic circulation system allowing sediments to deposit on its inner shelf, particularly near the estuary of the Yangtze River. The seasonal northward-flowing Taiwan Warm Current and southward-flowing China Coastal Current trap sediments from the Yangtze River, which are accumulated over time at rates of up to a few mm/year in equivalent water height. Here, we use the Gravity Recovery and Climate Experiment (GRACE gravity products from three data centres to determine sediment mass accumulation rates (MARs and variability on the ECS inner shelf. We restore the atmospheric and oceanic effects to avoid model contaminations on gravity signals associated with sediment masses. We apply destriping and spatial filters to improve the gravity signals from GRACE and use the Global Land Data Assimilation System to reduce land leakage. The GRACE-derived MARs over April 2002–March 2015 on the ECS inner shelf are about 6 mm/year and have magnitudes and spatial patterns consistent with those from sediment-core measurements. The GRACE-derived monthly sediment depositions show variations at time scales ranging from six months to more than two years. Typically, a positive mass balance of sediment deposition occurs in late fall to early winter when the southward coastal currents prevail. A negative mass balance happens in summer when the coastal currents are northward. We identify quasi-biennial sediment variations, which are likely to be caused by quasi-biennial variations in rain and erosion in the Yangtze River basin. We briefly explain the mechanisms of such frequency-dependent variations in the GRACE-derived ECS sediment deposition. There is no clear perturbation on sediment deposition over the ECS inner shelf induced by the Three Gorges Dam. The limitations of GRACE in resolving sediment deposition are its low spatial resolution (about 250 km and possible contaminations by

  7. Nickel accumulation and its effects on the survival rate of Spodoptera litura Fabricius under continuous nickel stress

    Institute of Scientific and Technical Information of China (English)

    SUN HongXia; SHU YingHua; TANG WenCheng; WANG Qi; ZHOU Qiang; ZHANG GuRen

    2007-01-01

    The artificial diets mixed with various concentrations of nickel were offered to the larvae of the phytophagous insect Spodoptera litura Fabricius for 3 generations. Nickel accumulations in the 6th instar larvae, pupae and newly emerged adults of the corresponding generations of S. litura were investigated by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and the effects of nickel accumulations on the survival rate of S. litura were also evaluated by individual rearing. The results showed that nickel accumulated in the 6th instar larvae, pupae and adults of S. litura, and the accumulated nickel in all the tested developmental stages within a generation increased with the increase of the nickel doses in the treated diets and showed significant dose-dependent relationship with the nickel doses in the artificial diets. The results also indicated that the nickel accumulations in the 6th instar larvae, pupae, and newly emerged adults from the 3rd generation were higher than those from the 2nd generation, which were also higher than those from the 1st generation. Nickel concentrations in pupae and adults were significantly lower than those in larvae, which indicated that the excessive nickel might be excreted during metamorphosis. Furthermore, larval survival rate, pupation rate and eclosion rate of S. litura in the tested three generations all decreased with the increase of the nickel doses in the treated diets.

  8. Imaging of macrophage-related lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Marten, Katharina; Hansell, David M. [Royal Brompton Hospital, Department of Radiology, London (United Kingdom)

    2005-04-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  9. Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand

    Science.gov (United States)

    Srisuksawad, Kanitha; Porntepkasemsan, Boonsom; Nouchpramool, Sunun; Yamkate, Pathom; Carpenter, Roy; Peterson, Michael L.; Hamilton, Terry

    1997-07-01

    Downcore concentration profiles of 210Pb, U, and Th isotopes, Al, Fe, Ti, Mn and Sc were measured in sediment box cores collected at 22 stations (16-70 m water depth) covering most of the Thai zone of the Gulf of Thailand. Distributions of excess 210Pb and the detrital elements were used to study spatial variations in sedimentary processes, mineralogy, and geochemistry between different regions of the gulf. Steady-state depositional concentrations and fluxes of excess 210Pb are 3-10 times lower in Gulf of Thailand sediments than in sediments from mid-latitudes in the northern hemisphere, reflecting lower 210Pb inputs from atmospheric fallout at 6-13°N latitude and from lower production of 210Pb from 226Ra in the shallower waters of the Gulf. U and Th concentrations are approximately 2-3 times higher than those in shelf sediments from mid-latitudes of North America, consistent with a higher proportion of granitic source rocks in the Thai environment. Downcore variations in 228Th/ 232Th activity ratios and in U activities reveal that exchange of interstitial and overlying waters and their dissolved chemicals occurs down to 20 cm in 8 of 10 cores. This benthic exchange may be important in budgets of fluxes of other soluble chemicals in this shallow shelf sea. A net flux of U isotopes from overlying water into Gulf of Thailand sediments occurs, in contrast to their release from sediments of the tropical Amazon shelf. Detectable levels of 137Cs were found only in sediments near the mouth of the largest river, the Chao Phraya. The detrital elements 232Th, 230Th, Al, Ti, and Sc all show relatively uniform downcore concentration profiles. This supports a key assumption in calculations of sediment accumulation rates from downcore profiles of 210Pb activity, that steady-state depositional conditions exist and that basic sediment mineralogy and grain size does not change. 210Pb model derived mass accumulation rates vary between 270 and 490 mg/cm 2 per year in the upper Gulf

  10. 210Pb mass accumulation rates in the depositional area of the Magra River (Mediterranean Sea, Italy)

    Science.gov (United States)

    Delbono, I.; Barsanti, M.; Schirone, A.; Conte, F.; Delfanti, R.

    2016-08-01

    Nine sediment cores were collected between 2009 and 2012 in the inner continental shelf (Mediterranean Sea, Italy) mainly influenced by the Magra River, at water depths ranging from 11 to 64 m. Mass Accumulation Rates (MARs) were calculated through 210Pb analysed by Gamma spectrometry. Three different dating models (single and two-layer CF-CS, CRS) were applied to clay normalised 210Pbxs profiles and 137Cs was used to validate the 210Pb geochronology. The maximum MAR values (>2 g cm-2 yr-1) were found in the region adjacent to the Magra River mouth and outside the Gulf of La Spezia (0.9±0.1 g cm-2 yr-1 at St. 3-C6 and 4-C4). Results from 137Cs/210Pbxs ratios calculated in Surface Mixed Layers (SMLs) evidenced the coastal boundaries of the Magra River depositional area, which is very limited towards south. Differently, in the north-west sector, fine sediments are generally driven by the Ligurian Current and move towards north-west: at the deepest and most distant station from the River mouth, the MAR value is the lowest one in the study area. Few major Magra River floods occurred during the sediment core sampling period. By using the short-lived radioisotope 7Be as a tracer of river floods, a clear 7Be signature of 2009 flood is present at St. 1-SA1C. Finally, by analyzing the clay normalised 210Pbxs profiles, a decrease of its activity dating the years 1999 and 2000 is observed in four cores, corresponding to two major Magra River floods occurring in those years.

  11. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  12. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    Science.gov (United States)

    J.A. Hribljan; D.J. Cooper; J. Sueltenfuss; E.C. Wolf; K.A. Heckman; Erik Lilleskov; R.A. Chimner

    2015-01-01

    The high-altitude (4,500+ m) Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia:...

  13. Clay sediment accumulation rates on the monsoon-dominated western continental shelf and slope region of India

    Digital Repository Service at National Institute of Oceanography (India)

    Borole, D.V.

    Clay accumulation rates shown in sediment cores from the nearshore to outer continental shelf and slope regions in water depths of 10-1246 m on the western continental margins of India were determined by the 210Pb dating technique. The 210Pb excess...

  14. Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard

    NARCIS (Netherlands)

    Pohjola, V.; Martma, T.; Meijer, H.A.J.; Moore, J.; Isaksson, E.; Vaikmae, R.; van de Wal, R.S.W.

    2002-01-01

    We use the upper 81 in of the record of stable isotopes of water from a 122 in long ice core from Lomonosovfonna, central Spitsbergen, Svalbard, to construct an ice-core chronology and the annual accumulation rates over the icefield. The isotope cycles are counted in the ice-core record using a mode

  15. Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Srisuksawad, K.; Porntepkasemsan, B.; Nouchpramool, S.; Yamkate, P. [Office of Atomic Energy for Peace, Bangkok (Thailand); Carpenter, R.; Peterson, M.L. [University of Washington, Seattle (United States). School of Oceanography; Hamilton, T. [International Atomic Energy Agency (Monaco). Marine Environment Laboratory

    1997-12-01

    Downcore concentration profiles of {sup 210}Pb , U, and Th isotopes, Al, Fe, Ti, Mn and Sc were measured in sediment box cores collected at 22 stations (16-70 m water depth) covering most of the Thai zone of the Gulf of Thailand. Distributions of excess {sup 210}Pb and the detrital elements were used to study spatial variations in sedimentary processes, mineralogy, and geochemistry between different regions of the gulf. Steady-state depositional concentrations and fluxes of excess {sup 210}Pb are 3-10 times lower in Gulf of Thailand sediments than in sediments from mid-latitudes in the northern hemisphere, reflecting lower {sup 210}Pb inputs from atmospheric fallout at 6-13{sup o}N latitude and from lower production of {sup 210}Pb from {sup 226}Ra in the shallower waters of the Gulf. U and Th concentrations are approximately 2-3 times higher than those in shelf sediments from mid-latitudes of North America, consistent with a higher proportion of granitic source rocks in the Thai environment. Downcore variations in {sup 228}Th/{sup 232}Th activity ratios and in U activities reveal that exchange of interstitial and overlying waters and their dissolved chemicals occurs down to 20 cm in 8 of 10 cores. This benthic exchange may be important in budgets of fluxes of other soluble chemicals in this shallow shelf sea. A net flux of U isotopes from overlying water into Gulf of Thailand sediments occurs in contrast to their release from sediments of the tropical Amazon shelf. Detectable levels of {sup 137}Cs were found only in sediments near the mouth of the largest river, the Chao Phraya. The detrital elements {sup 232}Th, {sup 230}Th, Al, Ti, and Sc all show relatively uniform downcore concentration profiles. This supports a key assumption in calculations of sediment accumulation rates from downcore profiles of {sup 210}Pb activity, that steady-state depositional conditions exist and that basic sediment mineralogy and grain size does not change. (Abstract Truncated)

  16. Recent rates of carbon accumulation in montane fens ofYosemite National Park, California, U.S.A.

    Science.gov (United States)

    Drexler, Judith; Fuller, Christopher C.; Orlando, James; Moore, Peggy E.

    2016-01-01

    Little is known about recent rates of carbon storage in montane peatlands, particularly in the western United States. Here we report on recent rates of carbon accumulation (past 50 to 100 years) in montane groundwater-fed peatlands (fens) of Yosemite National Park in central California, U.S.A. Peat cores were collected at three sites ranging in elevation from 2070 to 2500 m. Core sections were analyzed for bulk density, % organic carbon, and 210Pb activities for dating purposes. Organic carbon densities ranged from 0.026 to 0.065 g C cm-3. Mean vertical accretion rates estimated using210Pb over the 50-year period from ∼1960 to 2011 and the 100-year period from ∼1910 to 2011 were 0.28 (standard deviation = ±0.09) and 0.18 (±-0.04) cm yr-1, respectively. Mean carbon accumulation rates over the 50- and 100-year periods were 95.4 (±25.4) and 74.7 (±17.2) g C m-2 yr-1, respectively. Such rates are similar to recent rates of carbon accumulation in rich fens in western Canada, but more studies are needed to definitively establish both the similarities and differences in peat formation between boreal and temperate montane fens.

  17. Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy.

    Science.gov (United States)

    Zaccone, Claudio; Lobianco, Daniela; Shotyk, William; Ciavatta, Claudio; Appleby, Peter G; Brugiapaglia, Elisabetta; Casella, Laura; Miano, Teodoro M; D'Orazio, Valeria

    2017-02-23

    Floating islands mysteriously moving around on lakes were described by several Latin authors almost two millennia ago. These fascinating ecosystems, known as free-floating mires, have been extensively investigated from ecological, hydrological and management points of view, but there have been no detailed studies of their rates of accumulation of organic matter (OM), organic carbon (OC) and total nitrogen (TN). We have collected a peat core 4 m long from the free-floating island of Posta Fibreno, a relic mire in Central Italy. This is the thickest accumulation of peat ever found in a free-floating mire, yet it has formed during the past seven centuries and represents the greatest accumulation rates, at both decadal and centennial timescale, of OM (0.63 vs. 0.37 kg/m(2)/yr), OC (0.28 vs. 0.18 kg/m(2)/yr) and TN (3.7 vs. 6.1 g/m(2)/yr) ever reported for coeval peatlands. The anomalously high accretion rates, obtained using (14)C age dating, were confirmed using (210)Pb and (137)Cs: these show that the top 2 m of Sphagnum-peat has accumulated in only ~100 years. As an environmental archive, Posta Fibreno offers a temporal resolution which is 10x greater than any terrestrial peat bog, and promises to provide new insight into environmental changes occurring during the Anthropocene.

  18. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages

    OpenAIRE

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacologi...

  19. Glutamine Modulates Macrophage Lipotoxicity

    Directory of Open Access Journals (Sweden)

    Li He

    2016-04-01

    Full Text Available Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs, activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli.

  20. Physical parameters and accumulation rates in peat in relation to the climate during the last 150 years

    Energy Technology Data Exchange (ETDEWEB)

    Borgmark, Anders [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ. (Sweden)

    2006-12-15

    The safety assessment made by SKB (SR 97) states that radionuclides can be accumulated in higher amounts in peatlands than in other recipients. Therefore is knowledge about the nature and properties of peat very important. Here is the decay of peat and the accumulation rate of the most important elements of peat examined further. Two ombrotrophic peat bogs located in Uppland have been investigated in order to evaluate the influences of climate on the accumulation of carbon and nitrogen. Peat humification, content of carbon and nitrogen has been used for interpretation of peat forming processes. The long temperature and precipitation records from Uppsala have been used to compare the results to known climate variations. Various models and equations assess the contribution of peatlands to the global carbon economy and the role that peat accumulation plays in global climate due to global carbon cycling and the concern of increasing levels of greenhouse gases. The importance of peatlands in the global carbon economy is stressed by that it is approximately the same amount of carbon in peatlands as in the atmosphere. Estimations of the total amount of carbon stored in Boreal and Arctic peatlands are in the magnitude of 400-500 Pg. The peat accumulation rate varies by at least a magnitude in peatlands with different conditions in internal and external hydrology, length in growth season, effective precipitation, temperature etc. Accumulation rates have been reported from a variety of temperate and boreal bogs ranging between 0.2-2.0 mm/year and a Boreal and northern Sub-arctic region average of carbon accumulated in the catotelm has been calculated to ca 21 g C/m{sup 2}/year. The proportion of nitrogen in the dry mass is usually in the order of 0.5-5%. The mean accumulation rate of carbon and nitrogen during the last 157 years at Aeltabergsmossen are 7 g C/m{sup 2}/year and 1 g N/m{sup 2}/year, these levels are similar to the ones found in other investigations as well as

  1. Quantitative assessment of an increase of myocardial {sup 99m}Tc-MIBI accumulation during exercise. Usefulness of response rate

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuei; Takeishi, Yasuchika; Fujiwara, Satomi; Atsumi, Hiroyuki; Akutsu, Toru; Komatani, Akio; Yamaguchi, Koichi [Yamagata Univ. (Japan). School of Medicine

    1996-07-01

    The increase of myocardial {sup 99m}Tc-MIBI accumulation during exercise was evaluated quantitatively, and the feasibility of response rate as a noninvasive marker of coronary stenosis was tested. Myocardial perfusion imaging with {sup 99m}Tc-MIBI during exercise and at rest was performed in patients with suspected coronary artery disease. A dose of 296 MBq {sup 99m}Tc-MIBI was injected intravenously at maximal treadmill exercise, and myocardial image was obtained 90 min later (1st image). Then, 740 MBq of {sup 99m}Tc-MIBI was administered at rest, and myocardial image was repeated (2nd image). These images were corrected for a decay and injected dose, and the 1st image was subtracted from the 2nd image to obtain the rest image. An increase of myocardial accumulation of {sup 99m}Tc-MIBI during exercise was defined as (exercise image-rest image) x 100/rest image (response rate). A response rate of a patient with normal coronary artery was 102%, whereas a response rate in the area of severe coronary stenosis was 21% in a patients with angina pectoris. After successful PTCA to a stenosed coronary artery, a response rate increased to 75% in this patient. Coronary perfusion reserve during exercise can be assessed noninvasively by {sup 99M}Tc-MIBI. Response rate of {sup 99m}Tc-MIBI provides additional information to conventional perfusion imaging and may be a new marker of severity of coronary artery disease. (author)

  2. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    Directory of Open Access Journals (Sweden)

    J.A. Hribljan

    2015-11-01

    Full Text Available (1 The high-altitude (4,500+ m Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia: near the village of Manasaya in the Sajama National Park (Cordillera Occidentale, and in the Tuni Condoriri National Park (Cordillera Real. (2 We cored to 5 m depth in the Manasaya peatland, whose age at 5 m was ca. 3,675 yr. BP with a LARCA of 47 g m-2 yr-1. However, probing indicated that the maximum depth was 7–10 m with a total estimated (by extrapolation carbon stock of 1,040 Mg ha-1. The Tuni peat body was 5.5 m thick and initiated ca. 2,560 cal. yr. BP. The peatland carbon stock was 572 Mg ha-1 with a long-term rate of carbon accumulation (LARCA of 37 g m-2 yr-1. (3 Despite the dry environment of the Bolivian puna, the region contains numerous peatlands with high carbon stocks and rapid carbon accumulation rates. These peatlands are heavily used for llama and alpaca grazing.

  3. Use of Tephrochronology in the Evaluation of Accumulation Rates on Nelson Ice Cap,South Shetland Isands,Antarctica

    Institute of Scientific and Technical Information of China (English)

    秦大河; G A.Zielinski; M.S.Germain; 任贾文; 王晓香; 王文悌

    1994-01-01

    A volcanic ash layer was observed in the 3 ice cores on the Nelson Ice Cap,Antarctica.Acomparison of major elemental composition of glass shards from the 3 tephra layers with average whole-rockcompositions of 1967-1970 eruptions on the Deception Island and of glass shards from other suspected De-ception Island eruptions collected from Antarctic ice and firn indicate that the most reasonable source for thetephra in the Nelson Ice Cap cores is the 1970 eruption on the Deception Island.From the depth of the vol-canic ash layer and measured density profile of the cores,the net accumulation rate at the summit,CoreGW,is 1200 g·cm-2·a-1 during the past 20 years,and the net accumulation rates are 700 g·cm-2·a-1and 6 g·cm-2·a-1 at sites N30 and N50,respectively.In the eastern part of the Nelson Ice Cap,the accu-mulation rate may be higher than that in the northern part,because no volcanic ash in ice cores was observedat similar depths collected from this region.

  4. Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea

    Directory of Open Access Journals (Sweden)

    Mateusz Damrat

    2013-11-01

    Full Text Available The River Vistula is one of the largest suppliers of fresh water and terrigenous matter to the Baltic Sea. The impact of this river on the Baltic coastal system and the fate of the sediment delivered to the Gulf of Gdańsk are not well understood. Spatial transport patterns, as well as the settling, deposition and accumulation of the sediments were studied at the Vistula prodelta in different seasons from January 2012 to January 2013. The concentration of suspended matter in the water column was measured with optical methods, the sedimentation rate was determined with sediment traps, and the sediment accumulation rate was estimated using 210Pb dating. Our data shows that the annual supply of sediment to the sediment-water interface exceeds the annual rate of sediment accumulation in the outer Vistula prodelta by a factor of three. Sediment trapping during rough weather showed that significant sediment redeposition was taking place, even at depths of 55 m. The dynamic sedimentary processes occurring in the Vistula prodelta mean that that more than two-thirds of the sediment mass can be remobilized and then redeposited in deeper parts of the Gdańsk Basin.

  5. Accumulation of Dry Matter and Nitrogen in Durum Wheat During Grain Filling as Affected by Temperature and Nitrogen Rate

    Directory of Open Access Journals (Sweden)

    Laura Ercoli

    2009-03-01

    Full Text Available Durum wheat (Triticum durum Desf. is commonly grown in mediterranean conditions, where temperature stress during grain filling can limit productivity. This study was conducted to assess the effect of optimal and too high temperature during grain filling on the patterns of accumulation of dry matter and N of durum wheat plants grown at different levels of N fertilization. Two durum wheat varieties, Appio and Creso, were grown in controlled environment conditions and in pots with three rates of nitrogen fertilizer (not applied, normal amount, and high amount and two air temperature regimes during grain filling (20/15 °C and 28/23 °C day/night. Results showed that the duration of the intervals between the main maturity stages within grain filling were both genotype-specific and temperature- dependent, while N rate did not modify the timing of grain development. The two genotypes responded to temperature by increasing the rate of development, but the thermal timing of development was unchanged with the two temperature regimes. The higher temperature reduced grain growth and increased N accumulation in grain. However, these effects were recorded only in fertilized plants. Nitrogen availability modified the growth of the plant during the whole cycle, in that increased N fertilizer at seeding resulted in a greater plant size at anthesis and in a greater accumulation rate of dry matter and N in grain during grain filling. Grain yield and kernel weight were better expressed at 20/15 °C, while grain protein concentration was favoured under the 28/23 °C temperature regime. Nitrogen fertilization increased the sensitivity of plants to high temperature. Thus, the role of N fertilization under heat stress may be more important than under optimal temperatures.

  6. Accumulation of Dry Matter and Nitrogen in Durum Wheat During Grain Filling as Affected by Temperature and Nitrogen Rate

    Directory of Open Access Journals (Sweden)

    Marco Mariotti

    2011-02-01

    Full Text Available Durum wheat (Triticum durum Desf. is commonly grown in mediterranean conditions, where temperature stress during grain filling can limit productivity. This study was conducted to assess the effect of optimal and too high temperature during grain filling on the patterns of accumulation of dry matter and N of durum wheat plants grown at different levels of N fertilization. Two durum wheat varieties, Appio and Creso, were grown in controlled environment conditions and in pots with three rates of nitrogen fertilizer (not applied, normal amount, and high amount and two air temperature regimes during grain filling (20/15 °C and 28/23 °C day/night. Results showed that the duration of the intervals between the main maturity stages within grain filling were both genotype-specific and temperature- dependent, while N rate did not modify the timing of grain development. The two genotypes responded to temperature by increasing the rate of development, but the thermal timing of development was unchanged with the two temperature regimes. The higher temperature reduced grain growth and increased N accumulation in grain. However, these effects were recorded only in fertilized plants. Nitrogen availability modified the growth of the plant during the whole cycle, in that increased N fertilizer at seeding resulted in a greater plant size at anthesis and in a greater accumulation rate of dry matter and N in grain during grain filling. Grain yield and kernel weight were better expressed at 20/15 °C, while grain protein concentration was favoured under the 28/23 °C temperature regime. Nitrogen fertilization increased the sensitivity of plants to high temperature. Thus, the role of N fertilization under heat stress may be more important than under optimal temperatures.

  7. Mercury accumulation in caged Corbicula: rate of uptake and seasonal variation.

    Science.gov (United States)

    Neufeld, Douglas S G

    2010-09-01

    The uptake and seasonal fluctuations of total mercury were followed in caged and uncaged Asiatic clams, Corbicula fluminea, over a 1-year period in South River, Virginia. Mercury was rapidly accumulated in clams transplanted from a nominally uncontaminated site into cages on the contaminated South River, reaching 0.99 microg g(-1) dry mass within the first month. Resident clams moved to cages had higher mercury contents after the first month (2.04 microg g(-1) dry mass) and at all subsequent times in the study. Large monthly fluctuations in mercury were noted for both resident caged and transplant caged clams with a notable peak occurring in early spring (4.31 microg g(-1) dry mass in resident caged clams). Tissue mass of caged clams steadily increased through the winter and early spring. Adjustment of mercury concentrations for tissue mass changes indicated that the changes in mercury contents were primarily due to uptake/release rather than changes in tissue mass (concentration/dilution). The present study demonstrates the utility of using caged Corbicula as mercury biomonitors and illustrates the importance of accounting for large, short-term changes of mercury content in Corbicula when designing long-term biomonitoring studies.

  8. A closer look at the Neogene erosion and accumulation rate increase

    Science.gov (United States)

    Willenbring, J.; von Blanckenburg, F.

    2008-12-01

    Glacial erosion and Quaternary cold-stage warm-stage climate cycling have been cited as mechanisms to explain observations of increased Neogene marine sedimentation rates. Quantification of long-term glacial erosion rates from cosmogenic radionuclides from large areas mostly covered by cold-based ice during the Quaternary show very low erosion rates over several glacial cycles. In addition, isotope ratio proxies of dissolved metals in seawater, measured in chemical ocean sediments, lack clear evidence for an increase in terrigenous denudation. In particular, the stable isotope 9Be, derived from continental erosion, shows no change in its ratio to meteoric cosmogenic nuclide 10Be, derived from rain over the past 10 My. Radiogenic Pb and Nd isotopes, mainly show a change in the style of denudation from more chemical to more physical processes in the Quaternary. These data are at odds with a suggested increase in marine sedimentation rates during the late Cenozoic. In order to resolve this contradiction we have scrutinized these sedimentation rate calculations from ocean cores to identify whether they might show only apparent increases in the Neogene sections. Potential explanations are that in some cases, measured sediment thicknesses for different time intervals lack corrections for sediment compaction. Compaction of the lower portions of the cores drastically increases the apparent thickness of the more recent (Quaternary) sediment. In addition, sedimentation rates often only appear higher for recent sections in cores due to an artifact of an averaging timescale that decreases up-core. Such an averaging time scale decrease arises from better chronological resolution in recent times (Sadler et al., 1999). Cannibalization of older sediment might add to this effect. Together, these data question a clear, global-scale Quaternary climate-erosion connection that would be unique in Earth's history.

  9. Norway and adjacent sedimentary basins during Cenozoic times - sediment fluxes, accumulation rates and mass balance

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    2011-01-01

    is in agreement with the so-called ICE hypothesis (Nielsen et al., 2009) which suggests the longevity of the Scandinavian mountains and do not impose tectonic rejuvenation of topography in Cenozoic times. Such episodes of tectonic uplift have been previously suggested as the controlling factors of erosion rates...

  10. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    Science.gov (United States)

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2017-09-22

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone marrow derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2(-/-) BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2(-/-) BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very long chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2(-/-) macrophages led to decreased inflammatory activation of Mfp2(-/-) BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2(-/-) macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, likely by influencing the dynamic lipid profile during macrophage polarization. This article is protected by copyright. All rights reserved

  11. Comparative growth, dry matter accumulation and photosynthetic rate of seven species of Eucalypt in response to phosphorus supply

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Wu; Xiang-qing Ma; Mulualem Tigabu; Yong Huang; Li-li Zhou; Liping Cai; Xiao-long Hou; Per Christer Oden

    2014-01-01

    Plantations of eucalypts as short-rotation tree crops are rapidly expanding in tropical and sub-tropical regions, including southern China, where the soils are acidic and available phosphorus (P) is limited. We investigated seedling growth, dry matter accumulation, and the dynamics of photosynthetic rate and chlorophyll content of seven Eucalyptus spe-cies/hybrids (E. dunnii, E. grandis, E. grandis × E. camaldulensis, E. urophylla × E. camaldulensis, E. urophylla × E. tereticornis, E. grandis × E. tereticornis, E. urophylla × E. grandis) in response to different levels of P supply (0, 6, 12 and 18 mg⋅kg-1 KH2PO4). The photosynthetic rate and the chlorophyll content significantly declined as the P supply declined in almost a linear fashion for all species as the P stress period extended. In the absence of P supply, height growth of seedlings of all species was significantly impaired, while root collar diameter growth and whole plant dry matter accumulation was not affected by the level of P supply in most of the species. Significant inter-species variations in growth, dry matter accumulation and photosynthetic rate in response to P supply were detected. Eucalyptus dunnii had the lowest growth perform-ance across all levels of P supply while E. urophylla × E. tereticornis showed superior growth performance. From a practical point of view, E. urophylla × E. tereticornis is suggested as a candidate hybrid for planting on slightly P-deficient sites in southern China while E. dunnii, being a slow-growing species, is not suitable for short-rotation plantation. On plantation sites where severe P deficiency exists, P fertilization needs to be considered to boost rapid growth of seedlings so as to meet the man-agement objectives of short-rotation plantation.

  12. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz

    2014-01-01

    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  13. Recent accumulation rates of an alpine glacier derived from firn cores and repeated helicopter-borne GPR

    Directory of Open Access Journals (Sweden)

    L. Sold

    2014-08-01

    Full Text Available The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a new method for estimating annual accumulation rates on a temperate alpine glacier based on the interpretation of internal reflection horizons (IRH in helicopter-borne ground-penetrating radar (GPR data. For each individual GPR measurement, the signal traveltime is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR profiles intersect in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRH correspond to density maxima, but not exclusively to former summer glacier surfaces. From GPR profiles across the accumulation area, we obtain spatial distributions of water equivalent for at least four annual firn layers, reaching a mean density of 0.74 g cm−3. Refreezing accounts for 9% of the density increase over time and depth. The strongest limitation to our method is the dependence on layer chronology assumptions. The uncertainties inherent to the modelling approach itself are in the same order of conventional point measurements in snow pits. We show that GPR can be used to complement existing mass balance monitoring programs on temperate alpine glaciers, but also to retrospectively extend newly initiated time series.

  14. [Effects of nitrogen fertilization rate and planting density on cotton biomass and nitrogen accumulation in extremely early mature cotton region of Northeast China].

    Science.gov (United States)

    Wang, Zi-Sheng; Xu, Min; Zhang, Guo-Wei; Jin, Lu-Lu; Shan, Ying; Wu, Xiao-Dong; Zhou, Zhi-Guo

    2011-12-01

    Taking two cotton cultivars Liaomian 19 and NuCOTN 33B with different growth periods as test materials, a field experiment was conducted to study the effects of different nitrogen fertilization rates (0, 240 and 480 kg N x hm(-2)) and different planting densities (75000, 97500 and 120000 plants x hm(-2)) on the cotton biomass, nitrogen accumulation, and accumulative nitrogen utilization in the planting region of extremely early mature cotton in Northeast China. The dynamics of cotton biomass and nitrogen accumulation of the two cultivars with their growth process followed Logistic model. Both nitrogen fertilization rate and planting density had significant effects on the cotton nitrogen accumulation dynamics and the cotton yield and quality. In all treatments, the beginning time of rapid accumulation of nitrogen was about 13 d earlier than that of biomass. In treatment plant density 97500 plants x hm(-2) and nitrogen fertilization rate 240 kg x hm(-2), the eigenvalues of the dynamic accumulation models of nitrogen and biomass for the two cultivars were most harmonious, lint yield was the highest, fiber quality was the best, and accumulative nitrogen utilization efficiency was the highest. In the study region, the earlier beginning time of rapid accumulation of nitrogen and biomass and their higher accumulation rates were benefit to the formation of higher cotton yield.

  15. Rates of cultural change and patterns of cultural accumulation in stochastic models of social transmission.

    Science.gov (United States)

    Aoki, Kenichi; Lehmann, Laurent; Feldman, Marcus W

    2011-06-01

    Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call "fixation of the innovation." Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution-for example, of handaxe measurements-is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.

  16. Relationships between salinity and short-term soil carbon accumulation rates form marsh types across a landscape in the Mississippi River Delta

    Science.gov (United States)

    Baustian, Melissa M.; Stagg, Camille L.; Perry, Carey L; Moss, Leland C; Carruthers, Tim J.B.; Allison, Mead

    2017-01-01

    Salinity alterations will likely change the plant and environmental characteristics in coastal marshes thereby influencing soil carbon accumulation rates. Coastal Louisiana marshes have been historically classified as fresh, intermediate, brackish, or saline based on resident plant community and position along a salinity gradient. Short-term total carbon accumulation rates were assessed by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient. Bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation rates. Despite some significant differences in soil properties among marsh types, the mean total carbon accumulation rates among marsh types were not significantly different (mean ± std. err. of 190 ± 27 g TC m−2 year−1). However, regression analysis indicated that mean annual surface salinity had a significant negative relationship with total carbon accumulation rates. Based on both analyses, the coastal Louisiana total marsh area (1,433,700 ha) accumulates about 2.7 to 3.3 Tg C year−1. Changing salinities due to increasing relative sea level or resulting from restoration activities may alter carbon accumulation rates in the short term and significantly influence the global carbon cycle.

  17. Whole genome sequencing of mutation accumulation lines reveals a low mutation rate in the social amoeba Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Gerda Saxer

    Full Text Available Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10(-9, with a Poisson confidence interval of 4.1×10(-9 - 9.5×10(-9, per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10(-11, with a Poisson confidence interval ranging from 7.4×10(-13 to 1.6×10(-10, is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes.

  18. Identification of an Autophagy Defect in Smokers’ Alveolar Macrophages1

    OpenAIRE

    2010-01-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbial-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers’ lungs but they have a functional immune deficit. In this study, we identify for the first time an autophagy defect in smokers’ alveolar macrophages. Smokers’ alveolar macrophages accumulate both autophagosomes and p6...

  19. Effect of Different Application Rate of Nitrogen Fertilizer Under Straw Return on Maize Yield and Inorganic Nitrogen Accumulation

    Directory of Open Access Journals (Sweden)

    ZHANG Xin

    2014-06-01

    Full Text Available We investigated the influences of different nitrogen fertilizer rate on maize production, nitrogen use efficiency and soil nitrate nitrogen at straw return farmland for two years. The results showed that maize production increased with the increment of nitrogen fertilizer. The maize production was the highest at 216 kg·hm -2(N216of nitrogen use and began to decrease when the amount of nitrogen use was beyond 216 kg· hm -2. There were significant interannual differences on maize production in the same treatment. The maize production in 2010 increased 0.69%~4.75% compared with that in 2009. Nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen harvest index improved with the year of straw return. The highest nitrate nitrogen accumulation was found in the treatment of 240 kg· hm -2(N240in 0~100 cm soil layer. Soil nitrate content increased with the depth of soil. This may potentially increased the risk of nitrate pollution on shallow groundwater. Compared with N240, the nitrate nitrogen accumulation of N168(168 kg·hm -2 , N192(192 kg·hm -2 and N216(216 kg·hm -2 were equally reduced by respectively 39.87%, 35.84% and 29.38% in 0~100 cm soil layer. Considering the maize production, nitrogen use efficiency and ecological environmental benefits, the optimum amount of nitrogen use should be 200 kg·hm -2.

  20. Using beryllium-10 to test the validity of past accumulation rate reconstruction from water isotope records in East Antarctic ice cores

    Directory of Open Access Journals (Sweden)

    A. Cauquoin

    2014-08-01

    Full Text Available Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 ka in Antarctica. Inferring the variations of past accumulation rate in polar regions is essential both for documenting past climate and for ice core chronology. On the East Antarctic plateau, the accumulation rate is so small that annual layers cannot be identified and accumulation rate is mainly deduced from the water isotopic composition assuming constant temporal relationships between temperature, water isotopic composition and accumulation rate. Such assumption leads to large uncertainties on the reconstructed past accumulation rate. Here, we use high resolution beryllium-10 (10Be as an alternative tool for inferring past accumulation rate for the EPICA Dome C ice core, in East Antarctica. We present a high resolution 10Be record covering a full climatic cycle over the period 269 to 355 kyr BP from MIS 9 to MIS 10 (Marine Isotope Stages. After correcting 10Be for the estimated effect of the paleomagnetic field, we deduce that the classical estimation of accumulation rate variations from records of water isotopes agrees, with a possible underestimation of 16%, with the uncertainty on the temperature reconstruction from water isotopes in Antarctic ice cores. This is within their uncertainty of −10 to +30%. Finally, we show that the relationship between temperature and accumulation rate is comparable when using ice core data and results from several AGCM simulations run on glacial–interglacial conditions despite a larger spread in model outputs. These results indicate that the thermodynamic law linking moisture content in the air and temperature, as implemented in the different models, leads to realistic results even in polar regions, at the end of the water distillation trajectory.

  1. Sediment geochemistry and accumulation rates on the northeastern shelf of the Gulf of Cádiz (SW Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Roberta Guerra

    2010-11-01

    Full Text Available Geochemistry, total organic carbon and total nitrogen of three sediment cores collected in the Gulf of Cádiz and the Guadalquivir prodelta areas in Spain were investigated. The C/N ratio, mostly around 10, seems to indicate a predominantly marine origin for the sedimentary organic matter. Major and minor elements (Si, Ti, Al, Fe, Mg, Ca, K, Na, P, S and trace elements (Mn, Sc, V, Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Ba, Ce, Pb, Hg showed significant differences in bulk chemical composition between the two areas. Despite the effects of bioturbation, vertical changes in downcore profiles of heavy metals occur only in the cores of the Cádiz area, although the concentrations keep to low levels. The relatively high concentrations of Zr and Y, elements commonly associated with the heavy minerals fraction, at the top of cores from the Cádiz area are attributed to an enrichment of heavy minerals related to selective transport that concentrates this fraction. 137Cs and 210Pb activities in one of the two sediment cores collected in the Gulf of Cádiz were also measured. The distribution of excess 210Pb was used to determine the modern (last 100 yr mass accumulation rate and the depth of sediment mixing on the continental shelf of the gulf. Estimated sediment accumulation rate was 0.1 g cm-2 yr-1. The uppermost 4 cm had uniform excess 210Pb activity profiles above a region of steadily decreasing 210Pb activity, and this phenomenon was attributed to sediment mixing (bioturbation. 137Cs activity was lower than 3 Bq kg-1 and the profile does not show evidence of fallout peaks.

  2. Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica 1. Annually resolved accumulation rates

    Science.gov (United States)

    Sommer, S.; Appenzeller, C.; Röthlisberger, R.; Hutterli, M. A.; Stauffer, B.; Wagenbach, D.; Oerter, H.; Wilhelms, F.; Miller, H.; Mulvaney, R.

    2000-12-01

    For the first time, annually resolved accumulation rates have been determined in central Antarctica by means of counting seasonal signals of ammonium, calcium, and sodium. All records, obtained from three intermediate depth ice cores from Dronning Maud Land, East Antarctica, show rather constant accumulation rates throughout the last 9 centuries with mean values of 63, 61, and 44 mm H2Oyr-1 and a typical year-to-year variation of about 30%. For the last few decades, no trend was detected accounting for the high natural variability of all records. A significant weak intersite correlation is apparent only between two cores when the high-frequency part with periods less than 30 years is removed. By analyzing the records in the frequency domain, no persistent periods were found. This suggests that the snow accumulation in this area is mainly influenced by local deposition patterns and may be additionally masked by redistribution of snow due to wind. By comparing accumulation rates over the last 2 millennia a distinct change in the layer thickness in one of the three cores was found, which might be attributed either to an area upstream of the drilling site with lower accumulation rates, or to deposition processes influenced by surface undulations. The missing of a clear correlation between the accumulation rate histories at the three locations is also important for the interpretation of small, short time variations of past precipitation records obtained from deep ice cores.

  3. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA

    Science.gov (United States)

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  4. Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes

    Science.gov (United States)

    Steinsberger, Thomas; Schmid, Martin; Wüest, Alfred; Schwefel, Robert; Wehrli, Bernhard; Müller, Beat

    2017-07-01

    The flux of reduced substances, such as methane and ammonium, from the sediment to the bottom water (Fred) is one of the major factors contributing to the consumption of oxygen in the hypolimnia of lakes and thus crucial for lake oxygen management. This study presents fluxes based on sediment porewater measurements from different water depths of five deep lakes of differing trophic states. In meso- to eutrophic lakes Fred was directly proportional to the total organic carbon mass accumulation rate (TOC-MAR) of the sediments. TOC-MAR and thus Fred in eutrophic lakes decreased systematically with increasing mean hypolimnion depth (zH), suggesting that high oxygen concentrations in the deep waters of lakes were essential for the extent of organic matter mineralization leaving a smaller fraction for anaerobic degradation and thus formation of reduced compounds. Consequently, Fred was low in the 310 m deep meso-eutrophic Lake Geneva, with high O2 concentrations in the hypolimnion. By contrast, seasonal anoxic conditions enhanced Fred in the deep basin of oligotrophic Lake Aegeri. As TOC-MAR and zH are based on more readily available data, these relationships allow estimating the areal O2 consumption rate by reduced compounds from the sediments where no direct flux measurements are available.

  5. Predicting the indicators of development of the Emba deposits with high visocity oils based on models of the flow rate and accumulated extraction

    Energy Technology Data Exchange (ETDEWEB)

    Dzhakiyev, K.T.

    1983-01-01

    Two types of curves of flow rate and accumulated extraction are identified on the basis of processing and analysis of actual data from the operation of the Emba deposits with increased and high viscosity oils. This made it possible to acquire two models of flow rate and accumulated extraction for deposits being developed in a water and pressure mode of mean activity and close to hard activity. An expression is acquired of the evaluation coefficient of extraction which is used in rating the annual (maximal) extraction and in designing a model of the flow rate and the accumulated extraction. A comparison of the actual curves of flow rate and accumulated extraction is given with models which are built based on an assigned volume of the extractable reserves and the parameters of the stratum and the fluids. A good convergence is noted between the calculated and factual curves of flow rate and accumulated extraction. The acquired models are recommended in rating the volumes of oil extraction by deposits which have left the stage of commercial exploration and by deposits which are entering the latter stage of development.

  6. Comparing past accumulation rate reconstructions in East Antarctic ice cores using 10Be, water isotopes and CMIP5-PMIP3 models

    Directory of Open Access Journals (Sweden)

    A. Cauquoin

    2015-03-01

    Full Text Available Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 kyr in Antarctica. Inferring the variations in past accumulation rate in polar regions is essential both for documenting past climate and for ice core chronology. On the East Antarctic Plateau, the accumulation rate is so small that annual layers cannot be identified and accumulation rate is mainly deduced from the water isotopic composition assuming constant temporal relationships between temperature, water isotopic composition and accumulation rate. Such an assumption leads to large uncertainties on the reconstructed past accumulation rate. Here, we use high-resolution beryllium-10 (10Be as an alternative tool for inferring past accumulation rate for the EPICA Dome C ice core, in East Antarctica. We present a high-resolution 10Be record covering a full climatic cycle over the period 269 to 355 ka from Marine Isotope Stage (MIS 9 to 10, including a period warmer than pre-industrial (MIS 9.3 optimum. After correcting 10Be for the estimated effect of the palaeomagnetic field, we deduce that the 10Be reconstruction is in reasonably good agreement with EDC3 values for the full cycle except for the period warmer than present. For the latter, the accumulation is up to 13% larger (4.46 cm ie yr−1 instead of 3.95. This result is in agreement with the studies suggesting an underestimation of the deuterium-based accumulation for the optimum of the Holocene (Parrenin et al. 2007a. Using the relationship between accumulation rate and surface temperature from the saturation vapour relationship, the 10Be-based accumulation rate reconstruction suggests that the temperature increase between the MIS 9.3 optimum and present day may be 2.4 K warmer than estimated by the water isotopes reconstruction. We compare these reconstructions to the available model results from CMIP5-PMIP3 for a glacial and an

  7. Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques.

    Science.gov (United States)

    Ali, Adam A; Ghaleb, Bassam; Garneau, Michelle; Asnong, Hans; Loisel, Julie

    2008-10-01

    (210)Pb and (137)Cs dating techniques are used to characterise recent peat accumulation rates of two minerotrophic peatlands located in the La Grande Rivière hydrological watershed, in the James Bay region (Canada). Several cores were collected during the summer 2005 in different parts of the two selected peatlands. These minerotrophic patterned peatlands are presently affected by erosion processes, expressed by progressive mechanical destruction of their pools borders. This erosion process is related to a water table rise induced by a regional increase of humidity since the last century. The main objective of the present paper is to (1) evaluate if (210)Pb and (137)Cs dating techniques can be applied to build accurate chronologies in these environments and (2) detect changes in the peat accumulation rates in regard to this amplification of humidity. In both sites, unsupported (210)Pb shows an exponential decreasing according to the depth. Chronologies inferred from (210)Pb allow to reconstruct peat accumulation rates since ca. 1855 AD. The (137)Cs data displayed evident mobility and diffusion, preventing the establishment of any sustained chronology based on these measurements. In the two sites, peat accumulation rates inferred from (210)Pb chronologies fluctuate between 0.005 and 0.038 g cm(-2) yr(-1). As a result, the rise of the water table during the last decade has not yet affected peat accumulation rates.

  8. Mercury accumulation rates in Caço Lake, NE Brazil during the past 20.000 years

    Science.gov (United States)

    de Lacerda, Luiz Drude; Turcq, Bruno; Sifeddine, Abdel; Cordeiro, Renato Campello

    2017-08-01

    Total Hg, TC, TN, goethite and siderite distributions in sediment cores from two locations across Caçó Lake (Brazil) identified paleoclimate factors that had affected the Hg deposition in this shallow tropical lake and its relationship with past climate and basin processes. Concentrations and fluxes of Hg were maximum in the Last Glacial Maximum (LGM), with averages of 397 ng g-1 and 24.3 μg m-2 yr-1, respectively, decreasing during the Heinrich Stadial 1 (H1) and further during the Meltwater pulse 1A (MWP-1A). The higher values during LGM and H1 were strongly associated with dust deposition as observed in Greenland ice cores. After a period of lower values, there was a significant increase of concentrations and fluxes during the Younger Dryas (193 ng g-1 and 4.1 μg m-2 yr-1), still associated in part with dust deposition but also being influenced by the high volcanic activity of this period. Concentrations and fluxes decreased again to the lowest values during the Holocene from about 9500 to 2000 cal yr BP (114 ng g-1 and 1.25 μg m-2 yr-1). Analyses of 210Pb dated shorter cores shows increasing Hg accumulation rates during the past century, larger than in other period in the past but could not evidence the influence of colonial gold mining as suggested by earlier studies.

  9. New dating method: Groundwater residence time estimated from the 4He accumulation rate calibrated by using cosmogenic and subsurface-produced 36Cl

    Directory of Open Access Journals (Sweden)

    Habermehl M. A.

    2012-04-01

    Full Text Available Groundwater contains dissolved He, and its concentration increases with the residence time of the groundwater. Thus, if the 4He accumulation rate is constant, the dissolved 4He concentration in ground-water is equivalent to the residence time. Since accumulation mechanisms are not easily separated in the field, we estimate the total He accumulation rate during the half-life of 36Cl (3.01 × 105 years. We estimated the 4He accumulation rate, calibrated using both cosmogenic and subsurface-produced 36Cl, in the Great Artesian Basin (GAB, Australia, and the subsurface-produced 36Cl increase at the Äspö Hard Rock Laboratory, Sweden. 4He accumulation rates range from (1.9±0.3 × 10−11 to (15±6 × 10−11 ccSTP·cm−3·y−1 in GAB and (1.8 ±0.7 × 10−8 ccSTP·cm−3·y−1 at Äspö. We confirmed a ground-water flow with a residence time of 0.7-1.06 Ma in GAB and stagnant groundwater with the long residence time of 4.5 Ma at Äspö. Therefore, the groundwater residence time can be deduced from the dissolved 4He concentration and the 4He accumulation rate calibrated by 36Cl, provided that 4He accumulation, groundwater flow, and other geo-environmental conditions have remained unchanged for the required amount of geological time.

  10. Effects of band placement and nitrogen rate on dry matter accumulation, yield and nitrogen uptake of cabbage, carrot and onion

    Directory of Open Access Journals (Sweden)

    T. SALO

    2008-12-01

    Full Text Available Adequate nitrogen (N nutrition is essential for producing high vegetable yields of good quality. Fertilizer N not taken up by the plants is, however, economically wasteful and can be lost to the environment. Therefore the efficient use of N fertilizer, involving accurate estimation of crop N demand, choice of application method and timing of N fertilization, is an important research area. The effects of band placement and rate of N fertilization on inorganic N in the soil and the dry matter accumulation, yield and N uptake of cabbage, carrot and onion were studied in a three-year field experiment between 1993 and 1995. The plants were sampled during the growing season to determine the dry matter accumulation and plant N concentration. The inorganic N in the soil was determined during the growing period and after harvest. The N uptake was 3.8 kg, 1.6 kg and 2.5 kg per ton of edible yield of cabbage, carrot and onion, respectively. At the highest yield levels the N uptake including crop residues was 300 kg ha-1, 150 kg ha-1 and 120 kg ha-1 in cabbage, carrot and onion, respectively. In cabbage, almost 50% of N was in crop residues, whereas in carrot and onion only about 30% of N was in crop residues. Nitrogen uptake from non-fertilized soil varied from 29 to 160 kg ha-1, depending on the growing season and the crop. Cabbage and carrot utilised soil N efficiently, usually taking up more than 100 kg ha-1 from non-fertilized soil. Onion, on the contrary, utilised soil N relatively poorly, usually less than 50 kg ha-1 from non-fertilized soil. The rate of N uptake was low with all crops in early summer. After one month, N uptake increased in cabbage and onion. This uptake continued until harvest, i.e. mid-August for onion and early September for cabbage. Nitrogen uptake by carrot started rapidly only two months after sowing and continued until harvest at the end of September. High N rates often resulted in high N concentrations and N uptakes, but

  11. Variation of Accumulation Rates Over the Last Eight Centuries on the East Antarctic Plateau Derived from Volcanic Signals in Ice Cores

    Science.gov (United States)

    Anschuetz, H.; Sinisalo, A.; Isaksson, E.; McConnell, J. R.; Hamran, S.-E.; Bisiaux, M. M.; Pasteris, D.; Neumann, T. A.; Winther, J.-G.

    2011-01-01

    Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963- 2007/08 being up to 25 % different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20 % over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.

  12. [Effects of nitrogen fertilization rate and planting density on cotton boll biomass and nitrogen accumulation in extremely early maturing cotton region of Northeast China].

    Science.gov (United States)

    Wang, Zi-Sheng; Wu, Xiao-Dong; Gao, Xiang-Bin; Xu, Min; Shen, Dan; Jin, Lu-Lu; Zhou, Zhi-Guo

    2012-02-01

    Taking cotton cultivars Liaomian 19 and NuCoTN 33B as test materials, a field experiment was conducted to study the effects of nitrogen fertilization rate (0, 240 and 480 kg x hm(-2)) and planting density (75000, 97500 and 120000 plants x hm(-2)) on the boll biomass and nitrogen accumulation in the extremely early maturing cotton region of Northeast China. With the growth and development of cotton, the biomass and nitrogen accumulation of cotton boll, cotton seed, and cotton fiber varied in 'S' shape. Both nitrogen fertilization rate and planting density had significant effects on the dynamic characteristics of boll biomass and nitrogen accumulation, and on the fiber yield and quality. In treatment 240 kg x hm(-2) and 97500 plants x hm(-2), the biomass of single boll, cotton seed and cotton fiber was the maximum, the starting time and ending time of the rapid accumulation period of the biomass and nitrogen were earlier but the duration of the accumulation was shorter, the rapid accumulation speed of the biomass was the maximum, and the distribution indices of the biomass and nitrogen were the lowest in boll shell but the highest in cotton seed and cotton fiber.

  13. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation.

    Science.gov (United States)

    Van der Meeren, Anne; Gremy, Olivier; Renault, Daniel; Miroux, Amandine; Bruel, Sylvie; Griffiths, Nina; Tourdes, Françoise

    2012-01-01

    The physico-chemical form in which plutonium enters the body influences the lung distribution and the transfer rate from lungs to blood. In the present study, we evaluated the early lung damage and macrophage activation after pulmonary contamination of plutonium of various preparation modes which produce different solubility and distribution patterns. Whatever the solubility properties of the contaminant, macrophages represent a major retention compartment in lungs, with 42 to 67% of the activity from broncho-alveolar lavages being associated with macrophages 14 days post-contamination. Lung changes were observed 2 and 6 weeks post-contamination, showing inflammatory lesions and accumulation of activated macrophages (CD68 positive) in plutonium-contaminated rats, although no increased proliferation of pneumocytes II (TTF-1 positive cells) was found. In addition, acid phosphatase activity in macrophages from contaminated rats was enhanced 2 weeks post-contamination as compared to sham groups, as well as inflammatory mediator levels (TNF-α, MCP-1, MIP-2 and CINC-1) in macrophage culture supernatants. Correlating with the decrease in activity remaining in macrophages after plutonium contamination, inflammatory mediator production returned to basal levels 6 weeks post-exposure. The production of chemokines by macrophages was evaluated after contamination with Pu of increasing solubility. No correlation was found between the solubility properties of Pu and the activation level of macrophages. In summary, our data indicate that, despite the higher solubility of plutonium citrate or nitrate as compared to preformed colloids or oxides, macrophages remain the main lung target after plutonium contamination and may participate in the early pulmonary damage.

  14. Plio-Pleistocene planktonic foraminiferal biostratigraphy, paleo-oceanography, and sediment accumulation rates, northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.E.; Johnson, G.W.; Spotz, B.

    1987-05-01

    The planktonic foraminiferal biostratigraphy has been analyzed for Ocean Drilling Program's hole 625B (Leg 100), drilled to a total subbottom depth of 235 m south of De Soto Canyon in the northeast Gulf of Mexico. The hole penetrated to at least early Pliocene (zone N19), as indicated by the Globigerina nepenthes LAD (approx. 3.7 Ma) at 182 m. Preliminary seismic section of the Plio-Pleistocene sediments of the continental slope in the northeast Gulf suggested a relatively continuous depositional record. However, sediment accumulation rates have fluctuated in parallel with paleo-oceanographic changes. Percent coarse (approx. 63 ..mu..m) carbonate fraction (mainly planktonic foraminiferal tests) in hole 625 B shows high-frequency, low-amplitude fluctuations from the Pliocene to the Jaramillo paleomagnetic event (approx. 900,000 y.B.P.), whereupon low-frequency, high-amplitude fluctuations occur to the Holocene. Low-frequency, high-amplitude fluctuations correspond primarily to increased amplitude of sea level fluctuations and terrigenous dilution during low sea level stands. Percent abundance of Globorotalia menardii and percent coarse carbonate fraction in the uppermost 18 m reflects oxygen isotope stages 1-5 and therefore, primarily, ice volume and, secondarily, water temperature. However, the lack of a strict correspondence between G. menardii abundance, percent coarse carbonate fraction, and planktonic-benthic ratios (presumed dissolution indicator) lower in the hole indicates that G. menardii abundance peaks reflect not only eustatic sea level changes and water temperature but possibly also productivity (upwelling) and/or differential dissolution. Preliminary results of factor analysis of foraminiferal assemblages are also presented.

  15. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures.

    Science.gov (United States)

    Ding, ZuFeng; Fan, YuBo; Deng, XiaoYan

    2009-11-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Phi); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Phi mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Phi mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  16. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Φ); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Φ mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Φ mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  17. Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in "rapid fermentation".

    Science.gov (United States)

    Nagodawithana, T W; Steinkraus, K H

    1976-02-01

    Whereas "rapid fermentation" of diluted clover honey (25 degrees Brix) fortified with yeast nutrients using 8 X 10(8) brewers' yeast cells per ml resulted in an ethanol content of 9.5% (wt/vol; 12% vol/vol) in 3 h at 30 C, death rate of the yeast cells during this period was essentially logarithmic. Whereas 6 h was required to reach the same ethanol content at 15 C, the yeast cells retained their viability. Using a lower cell population (6 X 10(7) cells/ml), a level at which the fermentation was no longer "rapid," the yeast cells also retained their viability at 30 C. Ethanol added to the medium was much less lethal than the same or less quantities of ethanol produced by the cell in "rapid fermentation." It was considered possible that ethanol was produced so rapidly at 30 C that it could not diffuse out of the cell as rapidly as it was formed. The hypothesis was postulated that ethanol accumulating in the cell was contributing to the high death rate at 30 C. It was found that the intracellular ethanol concentration reached a level of approximately 2 X 10(11) ethanol molecules/cell in the first 30 min of fermentation at 30 C. At 15 C, with the same cell count, intracellular ethanol concentration reached a level of approximately 4 X 10(10) ethanol molecules/cell and viability remained high. Also, at 30 C with a lower cell population (6 X 10(7) cells/ml), under which conditions fermentation was no longer "rapid," intracellular ethanol concentration reached a similar level (4 X 10(10) molecules ethanol/cell) and the cells retained their viability. Alcohol dehydrogenase (ADH) lost its activity in brewers' yeast under conditions of "rapid fermentation" at 30 C but retained its activity in cells under similar conditions at 15 C. ADH activity was also retained in fermentations at 30 C with cell populations of 6 X 10(7)/ml. It would appear that an intracellular level of about 5 X 10(10) ethanol molecules/cell is normal and that this level does not damage either cell

  18. Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in "rapid fermentation".

    Science.gov (United States)

    Nagodawithana, T W; Steinkraus, K H

    1976-01-01

    Whereas "rapid fermentation" of diluted clover honey (25 degrees Brix) fortified with yeast nutrients using 8 X 10(8) brewers' yeast cells per ml resulted in an ethanol content of 9.5% (wt/vol; 12% vol/vol) in 3 h at 30 C, death rate of the yeast cells during this period was essentially logarithmic. Whereas 6 h was required to reach the same ethanol content at 15 C, the yeast cells retained their viability. Using a lower cell population (6 X 10(7) cells/ml), a level at which the fermentation was no longer "rapid," the yeast cells also retained their viability at 30 C. Ethanol added to the medium was much less lethal than the same or less quantities of ethanol produced by the cell in "rapid fermentation." It was considered possible that ethanol was produced so rapidly at 30 C that it could not diffuse out of the cell as rapidly as it was formed. The hypothesis was postulated that ethanol accumulating in the cell was contributing to the high death rate at 30 C. It was found that the intracellular ethanol concentration reached a level of approximately 2 X 10(11) ethanol molecules/cell in the first 30 min of fermentation at 30 C. At 15 C, with the same cell count, intracellular ethanol concentration reached a level of approximately 4 X 10(10) ethanol molecules/cell and viability remained high. Also, at 30 C with a lower cell population (6 X 10(7) cells/ml), under which conditions fermentation was no longer "rapid," intracellular ethanol concentration reached a similar level (4 X 10(10) molecules ethanol/cell) and the cells retained their viability. Alcohol dehydrogenase (ADH) lost its activity in brewers' yeast under conditions of "rapid fermentation" at 30 C but retained its activity in cells under similar conditions at 15 C. ADH activity was also retained in fermentations at 30 C with cell populations of 6 X 10(7)/ml. It would appear that an intracellular level of about 5 X 10(10) ethanol molecules/cell is normal and that this level does not damage either cell

  19. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    Science.gov (United States)

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  20. Three hen strains fed photoisomerized trans,trans CLA-rich soy oil exhibit different yolk accumulation rates and source-specific isomer deposition.

    Science.gov (United States)

    Shinn, Sara E; Gilley, Alex D; Proctor, Andrew; Anthony, Nicholas B

    2015-04-01

    Most CLA chicken feeding trials used cis,trans (c,t) and trans,cis (t,c) CLA isomers to produce CLA-rich eggs, while reports of trans,trans (t,t) CLA enrichment in egg yolks are limited. The CLA yolk fatty acid profile changes and the 10-12 days of feeding needed for maximum CLA are well documented, but there is no information describing CLA accumulation during initial feed administration. In addition, no information on CLA accumulation rates in different hen strains is available. The aim of this study was to determine a mathematical model that described yolk CLA accumulation and depletion in three hen strains by using t,t CLA-rich soybean oil produced by photoisomerization. Diets of 30-week Leghorns, broilers, and jungle fowl were supplemented with 15% CLA-rich soy oil for 16 days, and eggs were collected for 32 days. Yolk fatty acid profiles were measured by GC-FID. CLA accumulation and depletion was modeled by both quadratic and piecewise regression analysis. A strong quadratic model was proposed, but it was not as effective as piecewise regression in describing CLA accumulation and depletion. Broiler hen eggs contained the greatest concentration of CLA at 3.2 mol/100 g egg yolk, then jungle fowl at 2.9 mol CLA, and Leghorns at 2.3 mol CLA. The t,t CLA isomer levels remained at 55% of total yolk CLA during CLA feeding. However, t-10,c-12 (t,c) CLA concentration increased slightly during CLA accumulation and was significantly greater than c-9,t-11 CLA. Jungle fowl had the smallest increase in yolk saturated fat with CLA yolk accumulation.

  1. Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes.

    Science.gov (United States)

    Urban, Milan Oldřich; Klíma, Miroslav; Vítámvás, Pavel; Vašek, Jakub; Hilgert-Delgado, Alois Albert; Kučera, Vratislav

    2013-12-15

    Five winter oilseed rape cultivars (Benefit, Californium, Cortes, Ladoga, Navajo) were subjected to 30 days of cold treatment (4 °C) to examine the effect of cold on acquired frost tolerance (FT), dehydrin (DHN) content, and photosynthesis-related parameters. The main aim of this study was to determine whether there are relationships between FT (expressed as LT50 values) and the other parameters measured in the cultivars. While the cultivar Benefit accumulated two types of DHNs (D45 and D35), the other cultivars accumulated three additional DHNs (D97, D47, and D37). The similar-sized DHNs (D45 and D47) were the most abundant; the others exhibited significantly lower accumulations. The highest correlations were detected between LT50 and DHN accumulation (r=-0.815), intrinsic water use efficiency (WUEi; r=-0.643), net photosynthetic rate (r=-0.628), stomatal conductance (r=0.511), and intracellular/intercellular CO2 concentration (r=0.505). Those cultivars that exhibited higher Pn rate in cold (and further a significant increase in WUEi) had higher levels of DHNs and also higher FT. No significant correlation was observed between LT50 and E, PRI, or NDVI. Overall, we have shown the selected physiological parameters to be able to distinguish different FT cultivars of winter oilseed rape. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Maintenance of Macrophage Redox Status by ChREBP Limits Inflammation and Apoptosis and Protects against Advanced Atherosclerotic Lesion Formation

    Directory of Open Access Journals (Sweden)

    Vincent Sarrazy

    2015-10-01

    Full Text Available Enhanced glucose utilization can be visualized in atherosclerotic lesions and may reflect a high glycolytic rate in lesional macrophages, but its causative role in plaque progression remains unclear. We observe that the activity of the carbohydrate-responsive element binding protein ChREBP is rapidly downregulated upon TLR4 activation in macrophages. ChREBP inactivation refocuses cellular metabolism to a high redox state favoring enhanced inflammatory responses after TLR4 activation and increased cell death after TLR4 activation or oxidized LDL loading. Targeted deletion of ChREBP in bone marrow cells resulted in accelerated atherosclerosis progression in Ldlr−/− mice with increased monocytosis, lesional macrophage accumulation, and plaque necrosis. Thus, ChREBP-dependent macrophage metabolic reprogramming hinders plaque progression and establishes a causative role for leukocyte glucose metabolism in atherosclerosis.

  3. Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors.

    Science.gov (United States)

    Concas, Alessandro; Steriti, Alberto; Pisu, Massimo; Cao, Giacomo

    2014-02-01

    Recent works have shown that specific strains of microalgae are capable to simultaneously increase their growth rate and lipid content when cultured under suitable concentrations of iron. While these results are promising in view of the exploitation of microalgae for producing biofuels, to the best of our knowledge, no mathematical model capable to describe the effect of iron on lipid accumulation in microalgae, has been so far proposed. A comprehensive mathematical model describing the effect of iron on chlorophyll synthesis, nitrogen assimilation, growth rate and lipid accumulation in a freshwater strain of Chlorella vulgaris is then proposed in this work. Model results are successfully compared with experimental data which confirm the positive effect of growing iron concentrations on lipid productivity of C. vulgaris. Thus, the proposed model might represent a useful tool to optimize iron-based strategies to improve the lipid productivity of microalgal cultures.

  4. Increasing sediment accumulation rates in La Fonera (Palamós) submarine canyon axis and their relationship with bottom trawling activities

    Science.gov (United States)

    Puig, P.; Martín, J.; Masqué, P.; Palanques, A.

    2015-10-01

    Previous studies conducted in La Fonera (Palamós) submarine canyon (NW Mediterranean) found that trawling activities along the canyon flanks cause resuspension and transport of sediments toward the canyon axis. 210Pb chronology supported by 137Cs dating applied to a sediment core collected at 1750 m in 2002 suggested a doubling of the sediment accumulation rate since the 1970s, coincident with the rapid industrialization of the local trawling fleet. The same canyon area has been revisited a decade later, and new data are consistent with a sedimentary regime shift during the 1970s and also suggest that the accumulation rate during the last decade could be greater than expected, approaching ~2.4 cm yr-1 (compared to ~0.25 cm yr-1 pre-1970s). These results support the hypothesis that commercial bottom trawling can substantially affect sediment dynamics and budgets on continental margins, eventually initiating the formation of anthropogenic depocenters in submarine canyon environments.

  5. Preferential accumulation of sex and Bs chromosomes in biarmed karyotypes by meiotic drive and rates of chromosomal changes in fishes.

    Science.gov (United States)

    Molina, Wagner F; Martinez, Pablo A; Bertollo, Luiz A C; Bidau, Claudio J

    2014-12-01

    Mechanisms of accumulation based on typical centromeric drive or of chromosomes carrying pericentric inversions are adjusted to the general karyotype differentiation in the principal Actinopterygii orders. Here, we show that meiotic drive in fish is also supported by preferential establishment of sex chromosome systems and B chromosomes in orders with predominantly bi-brachial chromosomes. The mosaic of trends acting at an infra-familiar level in fish could be explained as the interaction of the directional process of meiotic drive as background, modulated on a smaller scale by adaptive factors or specific karyotypic properties of each group, as proposed for the orthoselection model.

  6. Post bubble-closeoff fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure

    Science.gov (United States)

    Kobashi, T.; Ikeda-Fukazawa, T.; Suwa, M.; Schwander, J.; Kameda, T.; Lundin, J.; Hori, A.; Döring, M.; Leuenberger, M.

    2015-06-01

    Gases in ice cores are invaluable archives of past environmental changes (e.g., the past atmosphere). However, gas fractionation processes after bubble closure in the firn are poorly understood, although increasing evidence indicates preferential leakages of smaller molecules (e.g., neon, oxygen, and argon) from the closed bubbles through ice crystals. These fractionation processes are believed to be responsible for the observed millennial δO2/N2 variations in ice cores, linking ice core chronologies with orbital parameters. Herein, we found that δAr/N2 at decadal resolution on the gas age scale in the GISP2 ice core has a significant negative correlation with accumulation rate over the past 6000 years. Furthermore, the precise temperature and accumulation rate records over the past 4000 years are found to have nearly equal effects on δAr/N2 with sensitivities of 0.72 ± 0.1 ‰ °C-1 and -0.58 ± 0.09 ‰ (0.01 m ice yr-1)-1, respectively. To understand the fractionation processes, we applied a permeation model to "microbubbles (firn. The model indicates that δAr/N2 in the microbubbles is negatively correlated with the accumulation rate as found in the observation, due to changes in overloading pressure. Colder (warmer) temperatures in the firn induce more (less) depletions in δAr/N2. The microbubbles are so depleted in δAr/N2 at the bubble closeoff depth that they dominate the total δAr/N2 changes in spite of their smaller volumes. The model also indicates that δAr/N2 of GISP2 and NGRIP should have experienced several permil of depletion during the storage 14 years after coring. Further understanding of the δAr/N2 and δO2/N2 fractionation processes in the firn may lead to a new proxy for the past temperature and accumulation rate.

  7. Post bubble-closeoff fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure

    Directory of Open Access Journals (Sweden)

    T. Kobashi

    2015-06-01

    Full Text Available Gases in ice cores are invaluable archives of past environmental changes (e.g., the past atmosphere. However, gas fractionation processes after bubble closure in the firn are poorly understood, although increasing evidence indicates preferential leakages of smaller molecules (e.g., neon, oxygen, and argon from the closed bubbles through ice crystals. These fractionation processes are believed to be responsible for the observed millennial δO2/N2 variations in ice cores, linking ice core chronologies with orbital parameters. Herein, we found that δAr/N2 at decadal resolution on the gas age scale in the GISP2 ice core has a significant negative correlation with accumulation rate over the past 6000 years. Furthermore, the precise temperature and accumulation rate records over the past 4000 years are found to have nearly equal effects on δAr/N2 with sensitivities of 0.72 ± 0.1 ‰ °C−1 and −0.58 ± 0.09 ‰ (0.01 m ice yr−1−1, respectively. To understand the fractionation processes, we applied a permeation model to "microbubbles (2 in the microbubbles is negatively correlated with the accumulation rate as found in the observation, due to changes in overloading pressure. Colder (warmer temperatures in the firn induce more (less depletions in δAr/N2. The microbubbles are so depleted in δAr/N2 at the bubble closeoff depth that they dominate the total δAr/N2 changes in spite of their smaller volumes. The model also indicates that δAr/N2 of GISP2 and NGRIP should have experienced several permil of depletion during the storage 14 years after coring. Further understanding of the δAr/N2 and δO2/N2 fractionation processes in the firn may lead to a new proxy for the past temperature and accumulation rate.

  8. Combined effects of water flow and copper concentration on the feeding behavior, growth rate, and accumulation of copper in tissue of the infaunal polychaete Polydora cornuta.

    Science.gov (United States)

    Colvin, Marienne A; Hentschel, Brian T; Deheyn, Dimitri D

    2016-12-01

    We performed an experiment in a laboratory flume to test the effects of water flow speed and the concentration of aqueaous copper on the feeding behavior, growth rate, and accumulation of copper in the tissues of juvenile polychaetes Polydora cornuta. The experiment included two flow speeds (6 or 15 cm/s) and two concentrations of added copper (0 or 85 μg/L). Worms grew significantly faster in the faster flow and in the lower copper concentration. In the slower flow, the total time worms spent feeding decreased significantly as copper concentration increased, but copper did not significantly affect the time worms spent feeding in the faster flow. Across all treatments, there was a significant, positive relationship between the time individuals spent feeding and their relative growth rate. Worms were observed suspension feeding significantly more often in the faster flow and deposit feeding significantly more often in the slower flow, but copper concentration did not affect the proportion of time spent in either feeding mode. The addition of 85 μg/L copper significantly increased copper accumulation in P. cornuta tissue, but the accumulation did not differ significantly due to flow speed. There was a significant interaction between copper and flow; the magnitude of the difference in copper accumulation between the 0 and 85 μg/L treatments was greater in the faster flow than in the slower flow. In slow flows that favor deposit feeding, worms grow slowly and accumulate less copper in their tissue than in faster flows that favor suspension feeding and faster growth.

  9. How Integrated Management Strategies Promote Protein Quality of Cotton Embryos: High Levels of Soil Available N, N Assimilation and Protein Accumulation Rate.

    Science.gov (United States)

    Yang, HongKun; Meng, YaLi; Chen, BingLin; Zhang, XingYue; Wang, YouHua; Zhao, WenQing; Zhou, ZhiGuo

    2016-01-01

    Cottonseed is widely used as a source of ruminant feed and for industrial purposes. Therefore, there is a tremendous need to improve the nutritional value of cotton embryos. In this study, a conventional management (CM) and two integrated cotton management strategies (IMS1, IMS2) were performed at two soil fertility levels to study the relationships among soil N, N assimilation, embryonic protein accumulation and protein quality. The levels of proteins, essential amino acids, and semi-essential amino acids, especially those of glutamate, lysine, and methionine, were higher in IMS1 and IMS2 embryos than in CM embryos. These changes were significantly positively correlated with the soil-available N content, glutamine synthetase activity and peak value of protein accumulation rate and were negatively correlated with the free amino acid level. These results illustrated that integrated management strategies, especially the rates and timing of N application, raise the level of soil available N, which is beneficial for N assimilation in developing cotton embryos. The protein content was limited by the rate of protein accumulation rather than by the free amino acid content. The combination of target yield fertilization, a growth-driven N application schedule, a high plant density and the seedling raising with bio-organic fertilizer can substantially improve protein quality in cotton embryos, especially at a soil with low soil organic matter and total nitrogen.

  10. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    Science.gov (United States)

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  11. Measuring water accumulation rates using GRACE data in areas experiencing glacial isostatic adjustment: The Nelson River basin

    Science.gov (United States)

    Lambert, A.; Huang, J.; Kamp, G.; Henton, J.; Mazzotti, S.; James, T. S.; Courtier, N.; Barr, A. G.

    2013-12-01

    Recovery and Climate Experiment (GRACE) satellite-derived total water storage can be obscured by glacial isostatic adjustment. In order to solve this problem for the Nelson River drainage basin in Canada, a gravity rate map from 110 months (June 2002 to October 2011) of GRACE gravity data was corrected for glacial isostatic adjustment using an independent gravity rate map derived from updated GPS vertical velocities. The GPS-based map was converted to equivalent gravity rate using a transfer function developed from GPS and absolute-g data at colocated sites. The corrected GRACE gravity rate map revealed a major positive anomaly within the drainage basin, which was independently shown by hydrological data to be due to changes in water storage. The anomaly represents a cumulative increase at its center of about 340 mm of water, reflecting a progression from extreme drought to extremely wet conditions.

  12. A new method to predict fatigue crack growth rate of materials based on average cyclic plasticity strain damage accumulation

    Institute of Scientific and Technical Information of China (English)

    Chen Long; Cai Lixun; Yao Di

    2013-01-01

    By introducing a fatigue blunting factor,the cyclic elasto-plastic Hutchinson-RiceRosengren (HRR) field near the crack tip under the cyclic loading is modified.And,an average damage per loading-cycle in the cyclic plastic deformation region is defined due to Manson-Coffin law.Then,according to the linear damage accumulation theory-Miner law,a new model for predicting the fatigue crack growth (FCG) of the opening mode crack based on the low cycle fatigue (LCF) damage is set up.The step length of crack propagation is assumed to be the size of cyclic plastic zone.It is clear that every parameter of the new model has clearly physical meaning which does not need any human debugging.Based on the LCF test data,the FCG predictions given by the new model are consistent with the FCG test results of Cr2Ni2MoV and X12CrMoWVNbN 10-1-1.What's more,referring to the relative researches,the good predictability of the new model is also proved on six kinds of materials.

  13. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    Science.gov (United States)

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  14. Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down our Understanding of Macrophage Function?

    Directory of Open Access Journals (Sweden)

    Michael James Kraakman

    2014-09-01

    Full Text Available Obesity and type 2 diabetes are now recognized as chronic pro-inflammatory diseases. In the last decade, the role of the macrophage in particular has become increasingly implicated in their pathogenesis. Abundant literature now establishes that monocytes get recruited to peripheral tissues (ie pancreas, liver and adipose tissue to become resident macrophages and contribute to local inflammation, development of insulin resistance or even pancreatic dysfunction. Furthermore, an accumulation of evidence has established an important role for macrophage polarisation in the development of metabolic diseases. The general view in obesity is that there is an imbalance in the ratio of M1/M2 macrophages, with M1 pro-inflammatory macrophages being enhanced compared with M2 anti-inflammatory macrophages being down-regulated, leading to chronic inflammation and the propagation of metabolic dysfunction. However, there is emerging evidence revealing a more complex scenario with the spectrum of macrophage states exceeding well beyond the M1/M2 binary classification and confused further by human and animal models exhibiting different macrophage profiles. In this review we will discuss the recent findings regarding macrophage polarization in obesity and type 2 diabetes.

  15. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation.

    Science.gov (United States)

    Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O

    2015-02-15

    Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement.

  16. Post-bubble close-off fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure

    Science.gov (United States)

    Kobashi, T.; Ikeda-Fukazawa, T.; Suwa, M.; Schwander, J.; Kameda, T.; Lundin, J.; Hori, A.; Motoyama, H.; Döring, M.; Leuenberger, M.

    2015-12-01

    Gases in ice cores are invaluable archives of past environmental changes (e.g., the past atmosphere). However, gas fractionation processes after bubble closure in the firn are poorly understood, although increasing evidence indicates preferential leakages of smaller molecules (e.g., neon, oxygen, and argon) from the closed bubbles through the ice matrix. These fractionation processes are believed to be responsible for the observed millennial δO2/N2 variations in ice cores, linking ice core chronologies with orbital parameters. In this study, we investigated high-resolution δAr/N2 of the GISP2 (Greenland Ice Sheet Project 2), NGRIP (North Greenland Ice Core Project), and Dome Fuji ice cores for the past few thousand years. We find that δAr/N2 at multidecadal resolution on the "gas-age scale" in the GISP2 ice core has a significant negative correlation with accumulation rate and a positive correlation with air contents over the past 6000 years, indicating that changes in overloading pressure induced δAr/N2 fractionation in the firn. Furthermore, the GISP2 temperature and accumulation rate for the last 4000 years have nearly equal effects on δAr/N2 with sensitivities of 0.72 ± 0.1 ‰ °C-1 and -0.58 ± 0.09 ‰ (0.01 m ice year-1)-1, respectively. To understand the fractionation processes, we applied a permeation model for two different processes of bubble pressure build-up in the firn, "pressure sensitive process" (e.g., microbubbles: 0.3-3 % of air contents) with a greater sensitivity to overloading pressures and "normal bubble process". The model indicates that δAr/N2 in the bubbles under the pressure sensitive process are negatively correlated with the accumulation rate due to changes in overloading pressure. On the other hand, the normal bubbles experience only limited depletion (firn. Colder temperatures in the firn induce more depletion in δAr/N2 through thicker firn. The pressure sensitive bubbles are so depleted in δAr/N2 at the bubble close

  17. Effect of rate and time of nitrogen application on fruit yield and accumulation of nutrient elements in Momordica charantia

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2012-06-01

    Full Text Available Cucurbitaceae is one of the largest families in vegetable kingdom consisting of largest number of edible type species. Momordica charantia is one such important vegetable that belongs to the family of Cucurbitaceae. In order to evaluate the effect of rate and time of nitrogen application on M. charantia, a field experiment was conducted at the University of Zabol in Iran during 2011 growing season. The experiment was laid out as split plot based on randomized complete block design with three replications. Three levels of nitrogen rates consisting of: N1 = 75, N2 = 150 and N3 = 225 kg N ha−1 as main plot and three time application including: T1 = 1/2 at 3 and 4 leaves and 1/2 before flowering, T2 = 1/2 at 3 and 4 leaves and 1/2 after fruit to start, and T3 = 1/3 at 3 and 4 leaves, 1/3 before flowering, and 1/3 after fruit to start were used as sub plot. The results revealed that both rate and time of nitrogen application had a significant effect on fruit yield. The highest fruit yield was recorded at the rate of N3 and time of nitrogen application in T3 treatment. In this study, by increasing nitrogen levels from 75 to 225 kg N ha−1, the values of nitrogen, phosphorus and potassium content in fruit increased. The time of nitrogen application and interaction between rate and time of nitrogen treatments had no significant effect on the amounts of these three elements. Nitrogen level had a significant effect on the amounts of calcium, manganese and zinc elements. The highest values of calcium and zinc were obtained at N2 and manganese at N3 nitrogen level. Time of nitrogen application treatment in this experiment had only significant effect on the amounts of calcium and zinc elements and had no significant effect on the other elements.

  18. Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico

    Science.gov (United States)

    Brown, Erik Thorson; Stallard, Robert F.; Larsen, Matthew C.; Raisbeck, Grant M.; Yiou, Francoise

    1995-01-01

    We present a simple method for estimation of long-term mean denudation rates using in situ-produced cosmogenic 10Be in fluvial sediments. Procedures are discussed to account for the effects of soil bioturbation, mass wasting and attenuation of cosmic rays by biomass and by local topography. Our analyses of 10Be in quartz from bedrock outcrops, soils, mass-wasting sites and riverine sediment from the Icacos River basin in the Luquillo Experimental Forest, Puerto Rico, are used to characterize denudation for major landform elements in that basin. The 10Be concentration of a discharge-weighted average of size classes of river sediment corresponds to a long-term average denudation of ≈ 43 m Ma −1, consistent with mass balance results. 

  19. SIV Encephalitis Lesions Are Composed of CD163+ Macrophages Present in the Central Nervous System during Early SIV Infection and SIV-Positive Macrophages Recruited Terminally with AIDS

    Science.gov (United States)

    Nowlin, Brian T.; Burdo, Tricia H.; Midkiff, Cecily C.; Salemi, Marco; Alvarez, Xavier; Williams, Kenneth C.

    2016-01-01

    Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163+) and inflammatory (MAC387+) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2′-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387+ macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163+ macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU+ cells were MAC387+; however, CD163+BrdU+ macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28+ macrophages entering the CNS late compared with those entering early (P CD163+ macrophage recruitment to the CNS inversely correlated with time to death (P CD163 correlated with CD163+ macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS. PMID:25963554

  20. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS.

    Science.gov (United States)

    Nowlin, Brian T; Burdo, Tricia H; Midkiff, Cecily C; Salemi, Marco; Alvarez, Xavier; Williams, Kenneth C

    2015-06-01

    Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163(+)) and inflammatory (MAC387(+)) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2'-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387(+) macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163(+) macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU(+) cells were MAC387(+); however, CD163(+)BrdU(+) macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28(+) macrophages entering the CNS late compared with those entering early (P CD163(+) macrophage recruitment to the CNS inversely correlated with time to death (P CD163 correlated with CD163(+) macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Nanomedicine engulfed by macrophages for targeted tumor therapy

    Science.gov (United States)

    Li, Siwen; Feng, Song; Ding, Li; Liu, Yuxi; Zhu, Qiuyun; Qian, Zhiyu; Gu, Yueqing

    2016-01-01

    Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N′-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation for tumor-targeted therapy. PMID:27601898

  2. Autophagy regulation in macrophages and neutrophils.

    Science.gov (United States)

    Mihalache, Cristina C; Simon, Hans-Uwe

    2012-07-01

    Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Accumulating evidence exists that autophagy also plays a major role in immunity and inflammation. Specifically, it appears that autophagy protects against infections and inflammation. Here, we review recent work performed in macrophages and neutrophils, which both represent critical phagocytes in mammalians. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Carbonic anhydrase activity and photosynthetic rate in the tree species Paulownia tomentosa Steud. Effect of dimethylsulfoxide treatment and zinc accumulation in leaves.

    Science.gov (United States)

    Lazova, Galia N; Naidenova, Tsveta; Velinova, Katya

    2004-03-01

    The enzyme carbonic anhydrase (CA) (EC 4.2.1.1) catalyzes the reversible conversion of CO2 to HCO3- and has been shown to be involved in photosynthesis. The enzyme has been shown in animals, plants, eubacteria and viruses, but similar reports on the evidence for CA activity in tree plants does not be appear to be available. In the preliminary analyses of the work, the CA activity in leaf extracts from the tree species Paulownia tomentosa Steud. (introduced in Bulgaria) is described. A connection between CA activity and the rate of photosynthetic CO2 fixation is shown. In the second portion of the work, the effect of 10(-4) mol/L and 10(-2) mol/L dimethylsulfoxide (DMSO) on the zinc accumulation in leaves is demonstrated. It is suggested that CA activity is an indicator of the level of physiologically active zinc in leaves of P. tomentosa Steud. A connection between the process of zinc accumulation in leaves and the activity of the enzymes CA and glycolate oxidase (GO) (EC 1.1.3.1) is established.

  4. Macrophage CD74 contributes to MIF-induced pulmonary inflammation

    Directory of Open Access Journals (Sweden)

    Al-Abed Yousef

    2009-05-01

    Full Text Available Abstract Background MIF is a critical mediator of the host defense, and is involved in both acute and chronic responses in the lung. Neutralization of MIF reduces neutrophil accumulation into the lung in animal models. We hypothesized that MIF, in the alveolar space, promotes neutrophil accumulation via activation of the CD74 receptor on macrophages. Methods To determine whether macrophage CD74 surface expression contributes MIF-induced neutrophil accumulation, we instilled recombinant MIF (r-MIF into the trachea of mice in the presence or absence of anti-CD74 antibody or the MIF specific inhibitor, ISO-1. Using macrophage culture, we examined the downstream pathways of MIF-induced activation that lead to neutrophil accumulation. Results Intratracheal instillation of r-MIF increased the number of neutrophils as well as the concentration of macrophage inflammatory protein 2 (MIP-2 and keratinocyte-derived chemokine (KC in BAL fluids. CD74 was found to be expressed on the surface of alveolar macrophages, and MIF-induced MIP-2 accumulation was dependent on p44/p42 MAPK in macrophages. Anti-CD74 antibody inhibited MIF-induced p44/p42 MAPK phosphorylation and MIP-2 release by macrophages. Furthermore, we show that anti-CD74 antibody inhibits MIF-induced alveolar accumulation of MIP-2 (control IgG vs. CD74 Ab; 477.1 ± 136.7 vs. 242.2 ± 102.2 pg/ml, p 4 vs. 1.90 ± 0.61 × 104, p Conclusion MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.

  5. Denitrification Rates and Controlling Factors for Accumulated Nitrate in the 0-12 m Intensive Farmlands: a Case Study in the North China Plain

    DEFF Research Database (Denmark)

    Yuan, H; Qin, S; Dong, W

    2017-01-01

    significantly correlated with DOC. Combining with the multiple regression analysis, it was indicated that DOC rather than DEA was the key factor regulating denitrification beneath the root zone. Additional research is required to determine if the carbon addition into the subsoil can be a promising approach......Subsoil denitrification is an important mechanism to reduce nitrate leaching into groundwater. However, regulating mechanisms of soil denitrification, especially those in the subsoil beneath the crop root zone, have not been well documented. In the current study, soil columns of 0-12 m depth were...... organic carbon (SOC), pH, denitrifying enzyme activity (DEA), and anaerobic denitrification rate (ADR) were determined. Statistical comparisons among treatments were performed. The results showed that nitrate was heavily accumulated in the entire soil profile of the N600 treatment, compared to the N0...

  6. Formation and metamorphism of stratified firn at sites located under spatial variations of accumulation rate and wind speed on the East Antarctic ice divide near Dome Fuji

    Directory of Open Access Journals (Sweden)

    S. Fujita

    2012-03-01

    Full Text Available The initial stage of postdepositional metamorphism in polar firn was investigated at sites located under spatial variations of accumulation rate and wind speed along the East Antarctic ice divide near Dome Fuji. A better understanding of this process is important for interpreting local insolation proxies used for astronomical dating of deep ice cores. Three 2–4 m deep pits were excavated and physical properties, including density ρ, grain size D, reflectance R of near infrared light and microwave dielectric anisotropy Δε, were investigated at high spatial resolution. We found that Δε ranges between 0.028 and 0.067 and that such high values occur in the surface ~0.1 m. In addition, short scale variations of ρ are correlated with those of Δε, and inversely correlated with those of D, confirming contrasting development of initially higher density layers and initially lower density layers. Moreover, postdepositional metamorphism makes these contrasts more distinct with increasing depths. Both the contrasts and Δε for given values of ρ are higher under lower accumulation rate conditions and under less windy conditions. Insolation efficiently causes evolution of strata of firn at the ice sheet surface under such conditions. Under more windy conditions, the strata contain more wind-driven hard layers with higher ρ and Δε and thus have larger fluctuations of ρ and Δε. We suggest that the initial variability of ρ at the surface and the duration of exposure to diurnal and seasonal temperature gradients play sequential roles in determining the physical/mechanical properties of firn, which is retained throughout the densification process.

  7. Effects of Sediment Characteristics on the Accumulation and Transfer Rate of Heavy Metals in Mangrove Trees (Case Study: Nayband Bay and Qeshm Island

    Directory of Open Access Journals (Sweden)

    H. Moradi

    2014-09-01

    Full Text Available In this paper, the accumulation of heavy metals of Nickel (Ni and Vanadium (V was measured in habitat sediments, mangrove roots and leaves (Avicennia marina. Besides, the transfer of Ni and V from the sediment to root and to the leaves in Nayband Bay and Qeshm Island were studied. The samples were gathered by Systematic-random Sampling using selective transects at 16 stations at the end of mangrove cover in both sides of land and sea in two habitats with three replicates of sediment, root and leave samples. The bed characteristics including sediment texture, pH, EC and organic matters were determined. The concentration of Ni and V was measured by atomic absorption spectroscopy (AAS, and then the metal transfer factor from sediment to root and root to leave was calculated. The correlation of the metal transfer factor and sediment characteristics was analyzed using the SPSS software (version 19. In the sample of sediments, roots and leaves respectively, the most concentrations of nickel and vanadium were measured. About transfer of Ni and V, transfer rate from sediment to root was much higher than from root to leave. In addition, the highest transfer factor from sediment to root and from root to leave was obtained for V in Qeshm habitat (0.502 and for Ni (0.749 in Nayband Bay. It seems that the difference between sediment textures in the two habitats and widespread oil and gas activities in Nayband Bay might be the notable reasons for the difference in transfer rates in two the habitats. Therefore, we conclude that the finer texture of Qeshm habitat increased transfer of V from sediment to root, and the coarser texture associated with increasing air pollution in Nayband Bay caused more Ni to accumulate in the leaves.

  8. Heavy Metal Contents of Municipal and Rural Dumpsite Soils and Rate of Accumulation by Carica papaya and Talinum triangulare in Uyo, Nigeria

    Directory of Open Access Journals (Sweden)

    G. A. Ebong

    2008-01-01

    Full Text Available Dumpsites in Uyo and most cities in Nigeria are used nutrients rich soils for cultivating fruits and vegetables without regards to the risk of toxic metal pollution by the wastes. This development necessitated the research on the assessment of the impact of municipal and rural dumpsites on the metal levels of the underlying soils, the relationship between the dumpsite- soil metal content and the rate of bio-accumulation by plants, the effect of plant specie and plant part on the rate of metal uptake. Atomic absorption spectrophotometer was employed for the analysis of the samples and results obtained from municipal dumpsite soil indicated the following mean concentrations: Fe, 1711.20 μg/g; Pb, 43.28 ug/g; Zn, 88.34 ug/g; Ni, 12.18 ug/g; Cd, 14.10 ug/g and Cu, 56.33 ug/g. These concentrations were relatively higher than the following concentrations: Fe, 1016.98 ug/g; Pb, 18.57 ug/g; Zn, 57.90 ug/g; Ni, 7.98 ug/g; Cd, 9.25 ug/g and Cu, 33.70 ug/g recorded for the rural dumpsite soil. Consequently, plants grown on municipal dumpsites soil accumulated higher concentrations of the metals than those on rural dumpsites. Results obtained from this study also revealed that plants grown on dumpsite soils bio-accumulated higher metal concentrations than their counterparts obtained from normal agricultural soils. The ability of plants to bioaccumulate these metals were also observed as being different from one plant to the other and from one plant parts to the other. And apart from Fe and Zn which recorded higher concentrations in the leaves of the plants studied, other metals recorded higher concentrations in the roots. The general results obtained revealed that the levels of Cd in dumpsite-soil were above the standard while the levels of Cd and Pb in plants were also above the recommended levels in plants. The implications of these high concentrations of these metals in soil and plants have been discussed. Some useful recommendations on the proper

  9. ACAT1 deficiency increases cholesterol synthesis in mouse peritoneal macrophages.

    Science.gov (United States)

    Dove, Dwayne E; Su, Yan Ru; Swift, Larry L; Linton, MacRae F; Fazio, Sergio

    2006-06-01

    Acyl-coenzyme A:cholesterol acyltransferase (ACAT) esterifies free cholesterol and stores cholesteryl esters in lipid droplets. Macrophage ACAT1 deficiency results in increased atherosclerotic lesion area in hyperlipidemic mice via disrupted cholesterol efflux, increased lipoprotein uptake, accumulation of intracellular vesicles, and accelerated apoptosis. The objective of this study was to determine whether lipid synthesis is affected by ACAT1. The synthesis, esterification, and efflux of new cholesterol were measured in peritoneal macrophages from ACAT1(-/-) mice. Cholesterol synthesis was increased by 134% (p=0.001) in ACAT1(-/-) macrophages compared to wildtype macrophages. Increased synthesis resulted in a proportional increase in the efflux of newly synthesized cholesterol. Although the esterification of new cholesterol was reduced by 93% (pSREBP1a mRNA was increased 6-fold in ACAT1(-/-) macrophages compared to wildtype macrophages, suggesting an up-regulation of cholesterol and fatty acid synthesis in ACAT1(-/-) macrophages. Increased cholesterol synthesis and up-regulation of SREBP in ACAT1(-/-) macrophages suggests that ACAT1 affects the regulation of lipid metabolism in macrophages. This change in cholesterol homeostasis may contribute to the atherogenic potential of ACAT1(-/-) macrophages.

  10. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    Science.gov (United States)

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  11. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    Science.gov (United States)

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  12. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017.

  13. Toxicity of mercury in macrophages. Structure and function of macrophages after experimental mercury exposure

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M.M.

    1995-12-31

    Mercury is recognized as an environmental heavy metal pollutant with a toxic effect on living organisms. The toxicity of this heavy metal at cellular level is described for many types of cells. Macrophages are ubiquitous in the organism and play a central role in the non-specific defence barrier against intruding micro-organisms. As a first line of defence, macrophages are crucial for the course of generalized infection, for instance with herpes simplex virus. Functions such as phagocytosis, migration, activation during infection and cytokine production are important in this context. Mercury, detectable by auto metallography, is found in the lysosomes of macrophages and this accumulation is dependent upon dose and length of time of mercury exposure. But higher concentrations cause auto interference, which indicates that mercury accumulation is dependent on lysosome functional integrity and that mercury inhibits lysosome functions. In mice intraperitoneally exposed to mercury chloride, mercury is found localized in the lysosomes of macrophages in the spleen, thymus, lymph nodes and liver as well as in peritoneal macrophages. The effect of mercury on a virus infection was examined in studies of the course of infection in mice treated with mercury and infected with herpes simplex virus type 2 (HSV-2) under further exposure to mercury. To further elucidate aspects of interactions between heavy metals and macrophages and their eventual significance for the antiviral effect of macrophages, the effect of mercury on cell respiratory burst capacity and the influence of mercury on cell production of and reaction to cytokines was examined. This thesis shows that mercury is immunotoxic in that it affects macrophages both with regard to the viability and function of the cells. This is also valid for mercury concentrations that do not result in apparent pathological changes. (EG) 98 refs.

  14. Seasonal variation of meteorological variables and recent surface ablation / accumulation rates on Davies Dome and Whisky Glacier, James Ross Island, Antarctica

    Science.gov (United States)

    Láska, K.; Nývlt, D.; Engel, Z.; Budík, L.

    2012-04-01

    In this study, surface mass balance data of two glaciers on James Ross Island, Antarctica, and its spatial and temporal variations are evaluated using snow ablation stakes, ground-penetrating radar, and dGPS measurements. The investigated glaciers are located on the Ulu Peninsula, northern part of James Ross Island. Davies Dome is an ice dome, which originates on the surface of a flat volcanic mesa at elevations >400 m a.s.l. and terminates with a single 700 m wide outlet in the Whisky Bay. Davies Dome has an area of ~6.5 km2 and lies in the altitude range of 0-514 m a.s.l. Whisky Glacier is a cold-based land-terminating valley glacier surrounded by an extensive moraine ridges made of debris-covered ice. The glacier has an area of ~2.4 km2 and lies in the altitude range of 215-520 m a.s.l. Within several summer austral summers, extensive field programme were carried out on both glaciers including the operation of two automatic weather stations, field mapping and mass balance measurements. Each station was equipped with albedometer CM7B (Kipp-Zonen, Netherlands), air temperature and humidity sensor EMS33 (EMS, Czech Republic), propeller anemometer 05103 (Young, USA), and snow depth sensors (Judd, USA). In the period 2009-2011, high seasonal and interdiurnal variability of incoming solar radiation and near-surface air temperature was found as a result of changes in the circulation patterns and synoptic-scale weather systems moving in the Circumpolar Trough. High ablation and accumulation rates were recorded mainly in the spring and summer seasons (October-February), while negligible changes were found in winter (May-September). The effects of positive degree-day temperatures on the surface ablation rates were examined using a linear regression model. In this approach, near-surface air temperature maps on the glacier surfaces were derived from digital elevation model according to actual temperature lapse rates. Mass balance investigations started in 2006 on Davies

  15. The rate of accumulation of nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance in patients kept on a virologically failing regimen containing an NNRTI*

    DEFF Research Database (Denmark)

    Cozzi-Lepri, A; Paredes, R; Phillips, A N

    2012-01-01

    Virological failure of first-generation nonnucleoside reverse transcriptase inhibitors (NNRTIs) can compromise the efficacy of etravirine as a result of the accumulation of NNRTI resistance mutations. How quickly NNRTI resistance accumulates in patients with a delayed switch from nevirapine or ef...

  16. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  17. Temporal variation of accumulation rates on a natural salt marsh in the 20th century determined by 137Cs chronologies – the impact of sea level rise and increased inundation frequency

    DEFF Research Database (Denmark)

    Andersen, Thorbjørn Joest; Svinth, Steffen; Pejrup, Morten

    2011-01-01

    Salt marshes are potentially threatened by sea level rise if sediment supply is unable to balance the rising sea. A rapid sea level rise is one of the pronounced effects of global warming and global sea level is at present rising at an elevated rate of about 3.4 mm y-1 on average. This increasing...... rate of sea level rise should make it possible to study the effect of rapidly rising sea level on salt marsh accumulation. However, such an understanding is generally hampered by lack of available data with sufficient precision. Here we present a high-precision dataset based on detailed radiometric...... accretion has generally kept pace with sea level rise since 1963 but comparison of the accumulation rates of minerogenic material in the period 1963–1986 and 1986–2003 revealed a slight decrease in accumulation with time in spite of an observed increase in inundation frequency. The observed decrease...

  18. Nanomedicine engulfed by macrophages for targeted tumor therapy

    Directory of Open Access Journals (Sweden)

    Li S

    2016-08-01

    Full Text Available Siwen Li,1,* Song Feng,1,* Li Ding,1 Yuxi Liu,1 Qiuyun Zhu,1 Zhiyu Qian,2 Yueqing Gu1 1Department of Biomedical Engineering, China Pharmaceutical University, 2Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N'-octyl chitosan (SOC DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation

  19. J774 macrophages secrete antibiotics via organic anion transporters.

    Science.gov (United States)

    Cao, C X; Silverstein, S C; Neu, H C; Steinberg, T H

    1992-02-01

    Mouse macrophages and J774 macrophage-like cells express probenecid-inhibitable organic anion transporters that remove anionic dyes from the cells' cytoplasmic matrix and secrete these dyes into the extracellular medium. The present studies show that these transporters also secrete antibiotics from J774 macrophages. Penicillin G permeates J774 cells poorly, but after it was introduced into the cell cytoplasm, it was secreted in a probenecid-inhibitable fashion. The quinolone norfloxacin enters macrophages readily. Probenecid retarded the secretion of intracellular norfloxacin by J774 cells and enhanced norfloxacin accumulation three- to fourfold. Thus the intracellular accumulation of norfloxacin is regulated in part by organic anion transporters that secrete norfloxacin (and penicillin G) from J774 cells. This transport process may have clinical significance, as fluoroquinolones inhibit growth of intracellular pathogens such as mycobacteria and Brucella organisms in vitro but fail to arrest infections with these organisms in vivo.

  20. IL-17A and serum amyloid A are elevated in a cigarette smoke cessation model associated with the persistence of pigmented macrophages, neutrophils and activated NK cells.

    Directory of Open Access Journals (Sweden)

    Michelle J Hansen

    Full Text Available While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA. Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation.

  1. Sesamin Enhances Cholesterol Efflux in RAW264.7 Macrophages

    OpenAIRE

    Nan Liu; Chongming Wu; Lizhong Sun; Jun Zheng; Peng Guo

    2014-01-01

    Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicit...

  2. A record of barite accumulation rate for marine export productivity changes in the tropical Indian Ocean during the Mid-Pliocene--Early-Pleistocene transition

    Science.gov (United States)

    Zhou, Liping; Ma, Zhongwu; Ding, Xuan

    2016-04-01

    One of the most interesting features in the marine oxygen isotope records is the gradual shift towards heavier 18O from the Mid-Pliocene, which ends with the initiation of Northern Hemisphere glaciation (NHG) around 2.7 Ma. The lack of significant change in sea surface temperature in the tropical Indian Ocean as revealed in the previous studies does not rule out their possible contributions to this dramatic climate change during the Mid-Pliocene transition. Changing circulation systems in the region will control the supply of nutrients for the water masses which in turn determine the marine productivity. In the areas of high productivity, ocean export productivity may potentially provide a mechanism of CO2 draw-down into the deep ocean, through which contributing to the lowering of the global temperature. In this study, we present a record of barite accumulation rate (BAR) for DSDP Site 214 drilled on the Ninetyeast Ridge. Here we use the marine barite, which is formed during the decay of organism in the twilight zone, as a proxy for ocean export productivity. Our results show that the BAR of Site 214 varies between 0.25 and 1.25 mg/cm2/kyr during the period between 4 Ma and 2 Ma. Five intervals of increased BAR from 3.6 Ma to 2.4 Ma are identified with the most distinct peak centred around 3 Ma. The overall pattern does not follow either the oxygen isotope record for the Site or the sea surface temperature and subsurface temperature reconstructed with the Mg/Ca of foraminifera. This suggests that regional changes in ocean circulation and water masses may have played more important role than temperature in controlling the productivity change in the tropical Indian Ocean. The relative higher productivity around 3 Ma may imply a biogenetic process towards the intensification of NHGs.

  3. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice.

    Science.gov (United States)

    Rom, Oren; Korach-Rechtman, Hila; Hayek, Tony; Danin-Poleg, Yael; Bar, Haim; Kashi, Yechezkel; Aviram, Michael

    2016-09-30

    The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE(-/-)) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.

  4. New Paleoclimate Records from the Russian Far East: Carbon Accumulation Rates and Ecological Change Over the Last 13,000 Years from Western and Central Kamchatka

    Science.gov (United States)

    Bochicchio, C. J.; Loisel, J.; Yu, Z.; Beilman, D.; Dirksen, V.; Dirksen, O.; Nichols, J. E.

    2014-12-01

    The Kamchatka peninsula lies along the confluence of the Pacific Ocean, and the Bering and Okhotsk Seas (OS). Its location is ideal to record shifts in regional ocean and atmospheric circulation and contains vast stores of carbon-rich peatlands, yet paleoclimate records from this area are scarce. This research aims to provide new paleo-proxy records that document carbon dynamics, precipitation, and temperature over the Holocene. We focus on site C4 (54.02 N, 156.13 E) located 18 km from OS coast at 91 m elevation and draw comparisons with site C1 (54.91 N, 156.60 E) which is 62 km from the coast at 256 m elevation, both in the Western Lowland (WL) region. Cores C1 and C4 are 450 and 375 cm in length, respectively. C4 and C1 were analyzed for organic matter (OM) content; while C4 received additional δ-deuterium (δD), plant macrofossil, and fossil pollen analysis. Both cores cover the last 13,000 years from the Western Lowlands (WL); prior to this study no such records existed from the WL or the eastern OS coastline. Chronologies are based on radiocarbon dating of fine fraction bulk peat and Sphagnum plant macrofossils. At both sites, peat accumulation began 11 ka (1 ka = 1000 calibrated years before present), is continuous to the surface, interlayered with tephra, and overlays a clay unit with 20% OM. OM density measured at 1 cm intervals show similar means of 0.1 g cm-3 over the last 11 ka and, despite the close proximity of the sites (103 km), they show two opposing OM trends: Period 1) From 5.8 to 3.5 ka, C1 OM density decreased ~0.10 to 0.06 g cm-3 while C4 increased from ~0.10 to 0.19 g cm-3, and Period 2) from 3.5 to 0.9 ka, C1 OM density increased to ~0.18 g cm-3 while C4 decreased to ~0.11 cm-3. Peat carbon accumulation rate (PCAR) is similar for both periods in C1 and C4 at 20.1 and 14.1 g m-2 yr-1, respectively. Prior to 5.8 ka PCAR in C1 and C4 is ~30 g m-2 yr-1 in the early Holocene, decreasing to 19 g m-2 yr-1 in the Mid- Late Holocene. C4 shows large

  5. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  6. [Macrophages in asthma].

    Science.gov (United States)

    Medina Avalos, M A; Orea Solano, M

    1997-01-01

    Every time they exist more demonstrations of the paper than performs the line monocytes-macrophage in the patogenesis of the bronchial asthma. The mononuclear phagocytes cells, as the alveolar macrophages, also they can be activated during allergic methods. The monocytes macrophages are possible efficient inductors of the inflammation; this due to the fact that they can secrete inflammatory mediators, between those which are counted the pre-forming granules of peptides, metabolites of oxidation activation, activator of platelets activator and metabolites of the arachidonic acid. The identification of IL-1 in the liquidate of the bronchial ablution of sick asthmatic, as well as the identification of IL-1 in the I bronchioalveolar washing of places of allergens cutaneous prick, supports the activation concept mononuclear of phagocytic cells in allergic sufferings.

  7. Macrophages and Iron Metabolism.

    Science.gov (United States)

    Soares, Miguel P; Hamza, Iqbal

    2016-03-15

    Iron is a transition metal that due to its inherent ability to exchange electrons with a variety of molecules is essential to support life. In mammals, iron exists mostly in the form of heme, enclosed within an organic protoporphyrin ring and functioning primarily as a prosthetic group in proteins. Paradoxically, free iron also has the potential to become cytotoxic when electron exchange with oxygen is unrestricted and catalyzes the production of reactive oxygen species. These biological properties demand that iron metabolism is tightly regulated such that iron is available for core biological functions while preventing its cytotoxic effects. Macrophages play a central role in establishing this delicate balance. Here, we review the impact of macrophages on heme-iron metabolism and, reciprocally, how heme-iron modulates macrophage function.

  8. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  9. Dynamics of Salmonella infection of macrophages at the single cell level.

    Science.gov (United States)

    Gog, Julia R; Murcia, Alicia; Osterman, Natan; Restif, Olivier; McKinley, Trevelyan J; Sheppard, Mark; Achouri, Sarra; Wei, Bin; Mastroeni, Pietro; Wood, James L N; Maskell, Duncan J; Cicuta, Pietro; Bryant, Clare E

    2012-10-07

    Salmonella enterica causes a range of diseases. Salmonellae are intracellular parasites of macrophages, and the control of bacteria within these cells is critical to surviving an infection. The dynamics of the bacteria invading, surviving, proliferating in and killing macrophages are central to disease pathogenesis. Fundamentally important parameters, however, such as the cellular infection rate, have not previously been calculated. We used two independent approaches to calculate the macrophage infection rate: mathematical modelling of Salmonella infection experiments, and analysis of real-time video microscopy of infection events. Cells repeatedly encounter salmonellae, with the bacteria often remain associated with the macrophage for more than ten seconds. Once Salmonella encounters a macrophage, the probability of that bacterium infecting the cell is remarkably low: less than 5%. The macrophage population is heterogeneous in terms of its susceptibility to the first infection event. Once infected, a macrophage can undergo further infection events, but these reinfection events occur at a lower rate than that of the primary infection.

  10. Selective and specific macrophage ablation is detrimental to wound healing in mice.

    Science.gov (United States)

    Mirza, Rita; DiPietro, Luisa A; Koh, Timothy J

    2009-12-01

    Macrophages are thought to play important roles during wound healing, but definition of these roles has been hampered by our technical inability to specifically eliminate macrophages during wound repair. The purpose of this study was to test the hypothesis that specific depletion of macrophages after excisional skin wounding would detrimentally affect healing by reducing the production of growth factors important in the repair process. We used transgenic mice that express the human diphtheria toxin (DT) receptor under the control of the CD11b promoter (DTR mice) to specifically ablate macrophages during wound healing. Mice without the transgene are relatively insensitive to DT, and administration of DT to wild-type mice does not alter macrophage or other inflammatory cell accumulation after injury and does not influence wound healing. In contrast, treatment of DTR mice with DT prevented macrophage accumulation in healing wounds but did not affect the accumulation of neutrophils or monocytes. Such macrophage depletion resulted in delayed re-epithelialization, reduced collagen deposition, impaired angiogenesis, and decreased cell proliferation in the healing wounds. These adverse changes were associated with increased levels of tumor necrosis factor-alpha and reduced levels of transforming growth factor-beta1 and vascular endothelial growth factor in the wound. In summary, macrophages seem to promote both wound closure and dermal healing, in part by regulating the cytokine environment of the healing wound.

  11. A defective TLR4 signaling for IFN-β expression is responsible for the innately lower ability of BALB/c macrophages to produce NO in response to LPS as compared to C57BL/6.

    Directory of Open Access Journals (Sweden)

    Luciana S Oliveira

    Full Text Available C57BL/6 mice macrophages innately produce higher levels of NO than BALB/c cells when stimulated with LPS. Here, we investigated the molecular events that account for this intrinsic differential production of NO. We found that the lower production of NO in BALB/c is not due to a subtraction of L-arginine by arginase, and correlates with a lower iNOS accumulation, which is independent of its degradation rate. Instead, the lower accumulation of iNOS is due to the lower levels of iNOS mRNA, previously shown to be also independent of its stability, suggesting that iNOS transcription is less efficient in BALB/c than in C57BL/6 macrophages. Activation of NFκB is more efficient in BALB/c, thus not correlating with iNOS expression. Conversely, activation of STAT-1 does correlate with iNOS expression, being more prominent in C57BL/6 than in BALB/c macrophages. IFN-β and IL-10 are more highly expressed in C57BL/6 than in BALB/c macrophages, and the opposite is true for TNF-α. Whereas IL-10 and TNF-α do not seem to participate in their differential production of NO, IFN-β has a determinant role since 1 anti-IFN-β neutralizing antibodies abolish STAT-1 activation reducing NO production in C57BL/6 macrophages to levels as low as in BALB/c cells and 2 exogenous rIFN-β confers to LPS-stimulated BALB/c macrophages the ability to phosphorylate STAT-1 and to produce NO as efficiently as C57BL/6 cells. We demonstrate, for the first time, that BALB/c macrophages are innately lower NO producers than C57BL/6 cells because they are defective in the TLR-4-induced IFN-β-mediated STAT-1 activation pathway.

  12. Bladder accumulated dose in image-guided high-dose-rate brachytherapy for locally advanced cervical cancer and its relation to urinary toxicity

    Science.gov (United States)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Gaudet, Marc; Aquino-Parsons, Christina; Spadinger, Ingrid

    2016-12-01

    The purpose of this study was to estimate locally accumulated dose to the bladder in multi-fraction high-dose-date (HDR) image-guided intracavitary brachytherapy (IG-ICBT) for cervical cancer, and study the locally-accumulated dose parameters as predictors of late urinary toxicity. A retrospective study of 60 cervical cancer patients who received five HDR IG-ICBT sessions was performed. The bladder outer and inner surfaces were segmented for all sessions and a bladder-wall contour point-set was created in MATLAB. The bladder-wall point-sets for each patient were registered using a deformable point-set registration toolbox called coherent point drift (CPD), and the fraction doses were accumulated. Various dosimetric and volumetric parameters were calculated using the registered doses, including r{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} (minimum dose to the most exposed n-cm3 volume of bladder wall), r V n Gy (wall volume receiving at least m Gy), and r\\text{EQD}{{2}n \\text{c{{\\text{m}}\\text{3}}}} (minimum equivalent biologically weighted dose to the most exposed n-cm3 of bladder wall), where n  =  1/2/5/10 and m  =  3/5/10. Minimum dose to contiguous 1 and 2 cm3 hot-spot volumes was also calculated. The unregistered dose volume histogram (DVH)-summed equivalent of r{{\\text{D}}n \\text{c{{\\text{m}}3}}} and r\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} parameters (i.e. s{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} and s\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} ) were determined for comparison. Late urinary toxicity was assessed using the LENT-SOMA scale, with toxicity Grade 0-1 categorized as Controls and Grade 2-4 as Cases. A two-sample t-test was used to identify the differences between the means of Control and Case groups for all parameters. A binomial logistic regression was also performed between the registered dose parameters and toxicity grouping. Seventeen patients were in the Case and 43 patients in the Control group. Contiguous

  13. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment[S

    Science.gov (United States)

    Hu, Xiaoqian; Cifarelli, Vincenza; Sun, Shishuo; Kuda, Ondrej; Abumrad, Nada A.; Su, Xiong

    2016-01-01

    Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2), reflecting cytosolic phospholipase A2 α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2 potently induced macrophage migration while different FFAs and PGD2 had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2 levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2 with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis. PMID:26912395

  14. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype.

    Directory of Open Access Journals (Sweden)

    Yi Rang Na

    Full Text Available Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor, NS-398 (COX-2 inhibitor or indomethacin (COX-1/2 inhibitor for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.

  15. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    OpenAIRE

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production aft...

  16. Quantification and localization of M2 macrophages in human kidneys with acute tubular injury

    Directory of Open Access Journals (Sweden)

    Palmer MB

    2014-11-01

    Full Text Available Matthew B Palmer,1 Alfred A Vichot,2 Lloyd G Cantley,2 Gilbert W Moeckel1 1Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; 2Department of Medicine, Yale University School of Medicine, New Haven, CT, USA Abstract: This study addresses for the first time the question whether there is significant macrophage population in human kidney sections from patients with acute tubular injury (ATI. We examined therefore the interstitial macrophage population in human kidney tissue with biopsy-proven diagnosis of ATI, minimal change disease (MCD, and MCD with ATI. Kidney biopsies from patients with the above diagnoses were stained with antibodies directed against CD68 (general macrophage marker, CD163 (M2 marker, and HLA-DR (M1 marker and their respective electron microscopy samples were evaluated for the presence of interstitial macrophages. Our study shows that patients with ATI have significantly increased numbers of interstitial CD68+ macrophages, with an increase in both HLA-DR+ M1 macrophages and CD163+ M2 macrophages as compared to patients with MCD alone. Approximately 75% of macrophages were M2 (CD163+ whereas only 25% were M1 (HLA-DR+. M2 macrophages, which are believed to be critical for wound healing, were found to localize close to the tubular basement membrane of injured proximal tubule cells. Ultra structural examination showed close adherence of macrophages to the basement membrane of injured tubular epithelial cells. We conclude that macrophages accumulate around injured tubules following ATI and exhibit predominantly an M2 phenotype. We further speculate that macrophage-mediated repair may involve physical contact between the M2 macrophage and the injured tubular epithelial cell. Keywords: macrophages, acute kidney injury, CD163, HLA-DR, CD68, electron microscopy

  17. 榛子果仁干物质与脂肪增长速率及积累规律的研究%Study of Dry Matter and Fat Increasing Rate and Accumulation Regularity of Hazelnut Kernel

    Institute of Scientific and Technical Information of China (English)

    魏丽红; 翟秋喜

    2011-01-01

    Hazelnut crossbreds were selected as the tested samples. Ambulatory monitoring method was utilized to study the content variation and increasing rate of kernel dry matter and fat. The results showed that for the three cultivars, dry matter and fat accumulation occurred mainly during the initial and middle stage of kernel development and dry matter and fat accumulation was simultaneous.%以杂种榛优良品系为试材,采用动态监测的方法,研究果仁发育过程中干物质和脂肪的含量变化及增长速率.结果表明,3种榛子品系果仁干物质及脂肪的累积主要在果仁发育的前期和中期,果仁干物质及脂肪的积累基本是同步进行的.

  18. Transcriptional Regulation and Macrophage Differentiation.

    Science.gov (United States)

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  19. The macrophages in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Laria A

    2016-02-01

    Full Text Available Antonella Laria, Alfredomaria Lurati , Mariagrazia Marrazza , Daniela Mazzocchi, Katia Angela Re, Magda Scarpellini Rheumatology Unit, Fornaroli Hospital, Magenta, Italy Abstract: Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated and M2 (alternatively activated. M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. Keywords: macrophage, rheumatic diseases

  20. ROCK-Isoform-Specific Polarization of Macrophages Associated with Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Souska Zandi

    2015-02-01

    Full Text Available Age is a major risk factor in age-related macular degeneration (AMD, but the underlying cause is unknown. We find increased Rho-associated kinase (ROCK signaling and M2 characteristics in eyes of aged mice, revealing immune changes in aging. ROCK isoforms determine macrophage polarization into M1 and M2 subtypes. M2-like macrophages accumulated in AMD, but not in normal eyes, suggesting that these macrophages may be linked to macular degeneration. M2 macrophages injected into the mouse eye exacerbated choroidal neovascular lesions, while M1 macrophages ameliorated them, supporting a causal role for macrophage subtypes in AMD. Selective ROCK2 inhibition with a small molecule decreased M2-like macrophages and choroidal neovascularization. ROCK2 inhibition upregulated M1 markers without affecting macrophage recruitment, underlining the plasticity of these macrophages. These results reveal age-induced innate immune imbalance as underlying AMD pathogenesis. Targeting macrophage plasticity opens up new possibilities for more effective AMD treatment.

  1. Intravascular ultrasound predictors of CD163 positive macrophage infiltration.

    Science.gov (United States)

    Sato, Takao; Kameyama, Tomoki; Ueno, Hiroshi; Inoue, Hiroshi

    2014-06-01

    The present study aimed to determine characteristics of macrophage accumulation and predictors of CD163 positive macrophages by ultrasonic tissue characterization. Intraplaque hemorrhage is associated with plaque instability and induces macrophage accumulation with a scavenger receptor, CD163. These CD163 positive macrophages have anti-atherogenic property. In 50 patients with acute coronary syndrome, lumen, vessel and plaque area, and plaque components (% fibrous, % fibro fatty, % dense calcium, and % necrotic core) of the culprit lesion were determined by virtual histology (VH) intravascular ultrasound (IVUS). Remodeling index (RI) was also determined. Atherothrombotic debris of the culprit lesion was collected during percutaneous coronary intervention using a distal protection device. CD163 positive macrophages and glycophorin A (a protein specific to erythrocytes) were determined immunohistochemically. Percentage of CD163 positive macrophages to the whole cells (% CD163) correlated positively with lumen, vessel and plaque area, and RI. Further, % CD163 had significant positive correlation with % necrotic core and negative correlation with % dense calcium. Immunopositive areas of glycophorin A (% glycophorin A), expressed as the ratio of positively stained areas per total tissue, had a significant positive correlation with % CD163. On multivariate analysis, % necrotic core, % dense calcium, and RI were independent determinants of % CD163. Positive remodeling and large necrotic core without calcification on VH-IVUS were likely to indicate coronary intraplaque hemorrhage with CD163 positive macrophages infiltration. © 2014, Wiley Periodicals, Inc.

  2. Modulation of macrophage antitumor potential by apoptotic lymphoma cells.

    Science.gov (United States)

    Voss, Jorine J L P; Ford, Catriona A; Petrova, Sofia; Melville, Lynsey; Paterson, Margaret; Pound, John D; Holland, Pam; Giotti, Bruno; Freeman, Tom C; Gregory, Christopher D

    2017-06-01

    In aggressive non-Hodgkin's lymphoma (NHL), constitutive apoptosis of a proportion of the tumor cell population can promote net tumor growth. This is associated with the accumulation of tumor-associated macrophages (TAMs) that clear apoptotic cells and exhibit pro-oncogenic transcriptional activation profiles characteristic of reparatory, anti-inflammatory and angiogenic programs. Here we consider further the activation status of these TAMs. We compare their transcriptomic profile with that of a range of other macrophage types from various tissues noting especially their expression of classically activated (IFN-γ and LPS) gene clusters - typically antitumor - in addition to their previously described protumor phenotype. To understand the impact of apoptotic cells on the macrophage activation state, we cocultured apoptotic lymphoma cells with classically activated macrophages (M(IFN-γ/LPS), also known as M1, macrophages). Although untreated and M(IFN-γ/LPS) macrophages were able to bind apoptotic lymphoma cells equally well, M(IFN-γ/LPS) macrophages displayed enhanced ability to phagocytose them. We found that direct exposure of M(IFN-γ/LPS) macrophages to apoptotic lymphoma cells caused switching towards a protumor activation state (often referred to as M2-like) with concomitant inhibition of antitumor activity that was a characteristic feature of M(IFN-γ/LPS) macrophages. Indeed, M(IFN-γ/LPS) macrophages exposed to apoptotic lymphoma cells displayed increased lymphoma growth-promoting activities. Antilymphoma activity by M(IFN-γ/LPS) macrophages was mediated, in part, by galectin-3, a pleiotropic glycoprotein involved in apoptotic cell clearance that is strongly expressed by lymphoma TAMs but not lymphoma cells. Intriguingly, aggressive lymphoma growth was markedly impaired in mice deficient in galectin-3, suggesting either that host galectin-3-mediated antilymphoma activity is required to sustain net tumor growth or that additional functions of galectin-3

  3. Trafficking of Estrella lausannensis in human macrophages.

    Science.gov (United States)

    Rusconi, Brigida; Kebbi-Beghdadi, Carole; Greub, Gilbert

    2015-07-01

    Estrella lausannensis is a new member of the Chlamydiales order. Like other Chlamydia-related bacteria, it is able to replicate in amoebae and in fish cell lines. A preliminary study investigating the pathogenic potential of Chlamydia-related bacteria found a correlation between antibody response to E. lausannensis and pneumonia in children. To further investigate the pathogenic potential of E. lausannensis, we determined its ability to grow in human macrophages and its intracellular trafficking. The replication in macrophages resulted in viable E. lausannensis; however, it caused a significant cytopathic effect. The intracellular trafficking of E. lausannensis was analyzed by determining the interaction of the Estrella-containing inclusions with various endocytic markers as well as host organelles. The E. lausannensis inclusion escaped the endocytic pathway rapidly avoiding maturation into phagolysosomes by preventing both EEA-1 and LAMP-1 accumulation. Compared to Waddlia chondrophila, another Chlamydia-related bacteria, the recruitment of mitochondria and endoplasmic reticulum was minimal for E. lausannensis inclusions. Estrella lausannensis appears to use a distinct source of nutrients and energy compared to other members of the Chlamydiales order. In conclusion, we hypothesize that E. lausannensis has a restricted growth in human macrophages, due to its reduced capacity to control programmed cell death.

  4. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Scholberg, J.M.S.; Dukes, M.D.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation schedu

  5. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Scholberg, J.M.S.; Dukes, M.D.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation

  6. Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages.

    Science.gov (United States)

    Rinne, Petteri; Rami, Martina; Nuutinen, Salla; Santovito, Donato; van der Vorst, Emiel P C; Guillamat-Prats, Raquel; Lyytikäinen, Leo-Pekka; Raitoharju, Emma; Oksala, Niku; Ring, Larisa; Cai, Minying; Hruby, Victor J; Lehtimäki, Terho; Weber, Christian; Steffens, Sabine

    2017-07-04

    The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse

  7. Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats.

    NARCIS (Netherlands)

    Omer, A; Keegan, M; Czismadia, E; Vos, P De; Rooijen, van N.; Bonner-Weir, S; Weir, GC

    2003-01-01

    BACKGROUND: Macrophages can accumulate on the surface of empty and islet-containing alginate capsules, leading to loss of functional tissue. In this study, the effect of peritoneal macrophage depletion on the biocompatibility of alginate macrocapsules and function of macroencapsulated porcine neonat

  8. Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats

    NARCIS (Netherlands)

    Omer, A; Keegan, M; Czismadia, E; De Vos, P; Van Rooijen, N; Bonner-Weir, S; Weir, GC

    2003-01-01

    Background: Macrophages can accumulate on the surface of empty and islet-containing alginate capsules, leading to loss of functional tissue. In this study, the effect of peritoneal macrophage depletion on the biocompatibility of alginate macrocapsules and function of macroencapsulated porcine neonat

  9. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  10. Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury.

    NARCIS (Netherlands)

    Naidu, BV; Krishnadasan, B; Farivar, AS; Woolley, SM; Thomas, R; Rooijen, van N.; Verrier, ED; Mulligan, MS

    2003-01-01

    .006) and marked reductions in bronchoalveolar lavage fluid leukocyte accumulation. Alveolar macrophage-depleted animals also demonstrated marked reductions of the elaboration of multiple proinflammatory chemokines and cytokines in the lavage effluent and nuclear transcription factors in lung homoge

  11. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype

    Science.gov (United States)

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  12. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    Science.gov (United States)

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  13. Bacillus cereus immune escape: a journey within macrophages.

    Science.gov (United States)

    Tran, Seav-Ly; Ramarao, Nalini

    2013-10-01

    During bacterial infection, professional phagocytes are attracted to the site of infection, where they constitute a first line of host cell defense. Their function is to engulf and destroy the pathogens. Thus, bacteria must withstand the bactericidal activity of professional phagocytes, including macrophages to counteract the host immune system. Bacillus cereus infections are characterized by bacteremia despite the accumulation of inflammatory cells at the site of infection. This implies that the bacteria have developed means of resisting the host immune system. Bacillus cereus spores survive, germinate, and multiply in contact with macrophages, eventually producing toxins that kill these cells. However, the exact mechanism by which B. cereus evades immune attack remains unclear. This review addresses the interaction between B. cereus and macrophages, highlighting, in particular, the ways in which the bacteria escape the microbicidal activities of professional phagocytes.

  14. The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Clausen, Carol. A.

    2006-01-01

    The dry rot fungus, Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated...... for 12 strains of S. lacrymans and compared to five brown-rot fungi. This was done by treating copper citrate (CC)-treated Southern yellow pine (SYP) wood with a CaCl2 solution and estimating the decay rate and amount of soluble oxalic acid in an ASTM soil block test. Decay by S. lacrymans was found....... In summary, a marked decrease was observed in the decay capacity of S. lacrymans in pine treated with CC+CaCl2. The amount of soluble oxalic acid was measured in CC-treated blocks and blocks also treated with CaCl2. Of the comparative brown-rot fungi, both Antrodia vaillantii (TFFH 294) and Postia placenta...

  15. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.

    Science.gov (United States)

    Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-06-11

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development.

  16. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.

  17. Minimally oxidized LDL offsets the apoptotic effects of extensively oxidized LDL and free cholesterol in macrophages.

    Science.gov (United States)

    Boullier, Agnès; Li, Yankun; Quehenberger, Oswald; Palinski, Wulf; Tabas, Ira; Witztum, Joseph L; Miller, Yury I

    2006-05-01

    Lipid-loaded macrophage-derived foam cells populate atherosclerotic lesions and produce many pro-inflammatory and plaque-destabilizing factors. An excessive accumulation of extensively oxidized low-density lipoprotein (OxLDL) or free cholesterol (FC), both of which are believed to be major lipid components of macrophages in advanced lesions, rapidly induces apoptosis in macrophages. Indeed, there is evidence of macrophage death in lesions, but how the surviving macrophages avoid death induced by OxLDL, FC, and other factors is not known. Minimally oxidized LDL (mmLDL), which is an early product of progressive LDL oxidation in atherosclerotic lesions, countered OxLDL-induced or FC-induced apoptosis and stimulated macrophage survival both in cell culture and in vivo. DNA fragmentation and caspase-3 activity in OxLDL-treated peritoneal macrophages were significantly reduced by coincubation with mmLDL. In a separate set of experiments, mmLDL significantly reduced annexin V binding to macrophages in which apoptosis was induced by FC loading. In both cellular models, mmLDL activated a pro-survival PI3K/Akt signaling pathway, and PI3K inhibitors, wortmannin and LY294002, eliminated the pro-survival effect of mmLDL. Immunohistochemical examination demonstrated phospho-Akt in murine atherosclerotic lesions. Minimally oxidized LDL, an early form of oxidized LDL in atherosclerotic lesions, may contribute to prolonged survival of macrophage foam cells in lesions via a PI3K/Akt-dependent mechanism.

  18. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  19. Changes in growth rate and macroelement and trace element accumulation in Hydrocharis morsus-ranae L. during the growing season in relation to environmental contamination.

    Science.gov (United States)

    Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra; Dambiec, Małgorzata

    2017-02-01

    The temporal variations in plant chemistry connected with its life cycle may affect the cycling of elements in an ecosystem as well as determine the usefulness of the species in phytoremediation and bioindication. In this context, there is a gap in knowledge on the role of floating plants for elements cycling in aquatic reservoirs. The aim of the study was to determine if there are variations in Hydrocharis morsus-ranae (European frog-bit) bioaccumulation capacity and the growth rate of its population during the growing season and to test the impact of environmental pollution on these features. The content of macroelements (Ca, K, Mg, N, Na, P, S) and trace metals (Cd, Co, Cu, Cr, Hg, Fe, Mn, Ni, Pb, Zn) was determined in H. morsus-ranae collected monthly from June to October from habitats differing in environmental contamination. The results showed that the highest content of most trace metals (Co, Cr, Cu, Hg, Mn, Ni, Zn) and some nutrients (N, P) in plants as well as the greatest bioaccumulation efficiency occurred simultaneously in the beginning of the growing season. In the following months, a dilution effect (manifested by a decrease in content) related to the rapid growth was observed. Co, Mn, and Ni content in plant tissues reflected the level of environmental contamination throughout the growing season which makes H. morsus-ranae a potential biomonitor of pollution for these metals. Considering the great bioaccumulation ability, high sensitivity to contamination, and low biomass of European frog-bit in polluted systems, further investigation is required to assess the real phytoremediation capability of the species.

  20. Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars.

    Science.gov (United States)

    Naeem, Asif; Saifullah; Ghafoor, Abdul; Farooq, Muhammad

    2015-09-01

    Cadmium concentration in food grains could be minimised through application of beneficial plant nutrients such as silicon. Therefore, the impact of silicon application on immobilisation of Cd in soil and its concentration in low and high shoot-Cd (LSCd and HSCd, respectively) cultivars of wheat were evaluated in a pot experiment. Selected LSCd cultivars (Iqbal-2000 and Lasani-2008) and HSCd cultivars (Inqlab-91 and Sehar-2006) were grown on artificially Cd contaminated soil at 10 mg Cd kg(-1) . Three levels of Si (50, 100 and 150 mg kg(-1) soil), applied as calcium silicate (CaSiO3 ), were tested. None of the wheat cultivars showed any symptoms of toxicity or growth retardation against applied Cd stress. Silicon applied to Cd-treated plants did not improve root and shoot dry matter; however, it increased grain yield significantly at the highest rate of application (150 mg kg(-1) soil). Similarly, Si application at 150 mg kg(-1) decreased plant available soil Cd without affecting soil pH. Silicon application not only caused a linear decrease in Cd contents of shoots and grains but also decreased its translocation from roots to shoots and grains. Decrease in shoot Cd concentration was higher in HSCd than LSCd cultivars whereas the reverse was true for Cd concentration in grains. Si addition decreased Cd concentration in wheat cultivars by causing a decrease in both plant-available soil Cd and its translocation from roots to shoots. Application of Si at 150 mg kg(-1) proved to be an effective level of Si that could significantly lower Cd concentration in wheat grains. © 2014 Society of Chemical Industry.

  1. Macrophage Infiltration and Alternative Activation during Wound Healing Promote MEK1-Induced Skin Carcinogenesis.

    Science.gov (United States)

    Weber, Christine; Telerman, Stephanie B; Reimer, Andreas S; Sequeira, Ines; Liakath-Ali, Kifayathullah; Arwert, Esther N; Watt, Fiona M

    2016-02-15

    Macrophages are essential for the progression and maintenance of many cancers, but their role during the earliest stages of tumor formation is unclear. To test this, we used a previously described transgenic mouse model of wound-induced skin tumorigenesis, in which expression of constitutively active MEK1 in differentiating epidermal cells results in chronic inflammation (InvEE mice). Upon wounding, the number of epidermal and dermal monocytes and macrophages increased in wild-type and InvEE skin, but the increase was greater, more rapid, and more sustained in InvEE skin. Macrophage ablation reduced tumor incidence. Furthermore, bioluminescent imaging in live mice to monitor macrophage flux at wound sites revealed that macrophage accumulation was predictive of tumor formation; wounds with the greatest number of macrophages at day 5 went on to develop tumors. Gene expression profiling of flow-sorted monocytes, macrophages, and T cells from InvEE and wild-type skin showed that as wound healing progressed, InvEE macrophages altered their phenotype. Throughout wound healing and after wound closure, InvEE macrophages demonstrated sustained upregulation of several markers implicated in alternative macrophage activation including arginase-1 (ARG1) and mannose receptor (CD206). Notably, inhibition of ARG1 activity significantly reduced tumor formation and epidermal proliferation in vivo, whereas addition of L-arginase to cultured keratinocytes stimulated proliferation. We conclude that macrophages play a key role in early, inflammation-mediated skin tumorigenesis, with mechanistic evidence suggesting that ARG1 secretion drives tumor development by stimulating epidermal cell proliferation. These findings highlight the importance of cancer immunotherapies aiming to polarize tumor-associated macrophages toward an antitumor phenotype.

  2. [Significance of macrophage and cytokines in expression of stone matrix].

    Science.gov (United States)

    Ito, T

    1996-05-01

    (BACKGROUND). Urinary calculus consists of inorganic substances as a major component and organic substances as a minor component. In this study, the organic substances playing an important role in the formation of calculus, such as osteopontin, calprotectin, macrophage and cytokines, are investigated for their significance in the calculus formation mechanism. (METHODS). Using renal tissues of rats having intraperitoneal glyoxylic acid-induced calculus, mode of the expression of osteopontin was examined by in situ hybridization method, immunohistological staining and northern blot method. Then human renal tissues obtained from the nephrectomy specimen conducted for a renal calculus were subjected to immunohistological staining by an enzyme antibody method using antibodies against osteopontin, calprotectin, macrophage and cytokines. (RESULTS). In rats, while the expression of osteopontin mRNA was observed in renal distal tubular cells, no expression was observed in glomerulus or renal interstitial tissues. The level of osteopontin mRNA expression in calculus forming rats was higher than in control rats by northern blot method. In human tissues, all of osteopontin, calprotectin, macrophage exhibited positive results in the renal distal tubular cells and in the calculus nucleus in the renal distal tubular cavity. Calprotectin and macrophage exhibited positive result also in the renal interstitial tissues. Cytokines exhibited positive results for interleukin-1,6, tumor necrosis factor alpha and transforming growth factor beta. Cytokines exhibited positive results in the distal tubular cells. Negative results were observed for interleukin-2,4 and 5. (CONCLUSION). Based on the findings described above, it is concluded that accumulation of macrophage in the renal interstitial tissues takes place and then one type of cytokines sensitive to macrophage is secreted. Subsequently, in the renal distal tubular cells stimulated with macrophage and cytokines, the expression of

  3. Gene expression in IFN-g-activated murine macrophages

    Directory of Open Access Journals (Sweden)

    Pereira C.A.

    2004-01-01

    Full Text Available Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated or BALB/c (297 and 58 genes, respectively, up- and down-regulated mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.

  4. SIV Infection of Lung Macrophages.

    Directory of Open Access Journals (Sweden)

    Yue Li

    Full Text Available HIV-1 depletes CD4+ T cells in the blood, lymphatic tissues, gut and lungs. Here we investigated the relationship between depletion and infection of CD4+ T cells in the lung parenchyma. The lungs of 38 Indian rhesus macaques in early to later stages of SIVmac251 infection were examined, and the numbers of CD4+ T cells and macrophages plus the frequency of SIV RNA+ cells were quantified. We showed that SIV infected macrophages in the lung parenchyma, but only in small numbers except in the setting of interstitial inflammation where large numbers of SIV RNA+ macrophages were detected. However, even in this setting, the number of macrophages was not decreased. By contrast, there were few infected CD4+ T cells in lung parenchyma, but CD4+ T cells were nonetheless depleted by unknown mechanisms. The CD4+ T cells in lung parenchyma were depleted even though they were not productively infected, whereas SIV can infect large numbers of macrophages in the setting of interstitial inflammation without depleting them. These observations point to the need for future investigations into mechanisms of CD4+ T cell depletion at this mucosal site, and into mechanisms by which macrophage populations are maintained despite high levels of infection. The large numbers of SIV RNA+ macrophages in lungs in the setting of interstitial inflammation indicates that lung macrophages can be an important source for SIV persistent infection.

  5. Topographical cues regulate the crosstalk between MSCs and macrophages

    Science.gov (United States)

    Vallés, Gema; Bensiamar, Fátima; Crespo, Lara; Arruebo, Manuel; Vilaboa, Nuria; Saldaña, Laura

    2015-01-01

    Implantation of scaffolds may elicit a host foreign body response triggered by monocyte/macrophage lineage cells. Growing evidence suggests that topographical cues of scaffolds play an important role in MSC functionality. In this work, we examined whether surface topographical features can regulate paracrine interactions that MSCs establish with macrophages. Three-dimensional (3D) topography sensing drives MSCs into a spatial arrangement that stimulates the production of the anti-inflammatory proteins PGE2 and TSG-6. Compared to two-dimensional (2D) settings, 3D arrangement of MSCs co-cultured with macrophages leads to an important decrease in the secretion of soluble factors related with inflammation and chemotaxis including IL-6 and MCP-1. Attenuation of MCP-1 secretion in 3D co-cultures correlates with a decrease in the accumulation of its mRNA levels in MSCs and macrophages. Using neutralizing antibodies, we identified that the interplay between PGE2, IL-6, TSG-6 and MCP-1 in the co-cultures is strongly influenced by the micro-architecture that supports MSCs. Local inflammatory milieu provided by 3D-arranged MSCs in co-cultures induces a decrease in monocyte migration as compared to monolayer cells. This effect is partially mediated by reduced levels of IL-6 and MCP-1, proteins that up-regulate each other's secretion. Our findings highlight the importance of topographical cues in the soluble factor-guided communication between MSCs and macrophages. PMID:25453943

  6. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice.

    Science.gov (United States)

    Hirase, Tetsuaki; Hara, Hiromitsu; Miyazaki, Yoshiyuki; Ide, Noriko; Nishimoto-Hazuku, Ai; Fujimoto, Hirokazu; Saris, Christiaan J M; Yoshida, Hiroki; Node, Koichi

    2013-08-01

    Chronic inflammation in arterial wall that is driven by immune cells and cytokines plays pivotal roles in the development of atherosclerosis. Interleukin 27 (IL-27) is a member of the IL-12 family of cytokines that consists of IL-27p28 and Epstein-Barr virus induced gene 3 (EBI3) and has anti-inflammatory properties that regulate T cell polarization and cytokine production. IL-27-deficient (Ldlr-/-Ebi3-/-) and IL-27 receptor-deficient (Ldlr-/-WSX-1-/-) Ldlr-/- mice were generated and fed with a high-cholesterol diet to induce atherosclerosis. Roles of bone marrow-derived cells in vivo and macrophages in vitro were studied using bone marrow reconstitution by transplantation and cultured peritoneal macrophages, respectively. We demonstrate that mice lacking IL-27 or IL-27 receptor are more susceptible to atherosclerosis compared with wild type due to enhanced accumulation and activation of macrophages in arterial walls. The number of circulating proinflammatory Ly6C(hi) monocytes showed no significant difference between wild-type mice and mice lacking IL-27 or IL-27 receptor. Administration of IL-27 suppressed the development of atherosclerosis in vivo and macrophage activation in vitro that was indicated by increased uptake of modified low-density lipoprotein and augmented production of proinflammatory cytokines. These findings define a novel inhibitory role for IL-27 in atherosclerosis that regulates macrophage activation in mice.

  7. Macrophage-mediated response to hypoxia in disease

    Directory of Open Access Journals (Sweden)

    Tazzyman S

    2014-11-01

    Full Text Available Simon Tazzyman,1 Craig Murdoch,2 James Yeomans,1 Jack Harrison,1 Munitta Muthana3 1Department of Oncology, 2School of Clinical Dentistry, 3Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment. Keywords: macrophage, hypoxia, inflammation, cytokine

  8. Stimulation of alveolar macrophages by BCG vaccine enhances the process of lung fibrosis induced by bleomycin.

    Science.gov (United States)

    Chyczewska, E; Chyczewski, L; Bańkowski, E; Sułkowski, S; Nikliński, J

    1993-01-01

    It was found that the BCG vaccine injected subcutaneously to the rats enhances the process of lung fibrosis induced by bleomycin. Pretreatment of rats with this vaccine results in accumulation of activated macrophages in lung interstitium and in the bronchoalveolar spaces. It may be suggested that the activated macrophages release various cytokines which may stimulate the proliferation of fibroblasts and biosynthesis of extracellular matrix components.

  9. Phospholipase A2-modified low-density lipoprotein activates macrophage peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Namgaladze, Dmitry; Morbitzer, Daniel; von Knethen, Andreas; Brüne, Bernhard

    2010-02-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors modulating metabolic and inflammatory responses of phagocytes to stimuli such as fatty acids and their metabolites. We studied the role of PPARs in macrophages exposed to low-density lipoprotein (LDL) modified by secretory phospholipase A(2) (PLA). By analyzing PPAR ligand-binding domain luciferase reporter activation, we observed that PLA-LDL transactivates PPARalpha and PPARdelta, but not PPARgamma. We confirmed that PLA-LDL induced PPAR response element reporter activation by endogenous PPARalpha and PPARdelta in human THP-1 macrophages. By using THP-1 cells with a stable knockdown of PPARalpha and PPARdelta, we showed that PLA-LDL-activated PPARdelta altered macrophage gene expression related to lipid metabolism and lipid droplet formation. Although PPARalpha/delta silencing did not affect cholesterol and triglyceride accumulation in PLA-LDL-treated macrophages, PPARdelta activation by PLA-LDL attenuated macrophage inflammatory gene expression induced by interferon gamma and lipopolysaccharide. PPARdelta activation by PLA-LDL does not influence lipid accumulation in PLA-LDL-treated macrophages. However, it attenuates macrophage inflammatory responses, thus contributing to an anti-inflammatory cell phenotype.

  10. Regulation of numbers of macrophages in the endometrium of the sheep by systemic effects of pregnancy, local presence of the conceptus, and progesterone.

    Science.gov (United States)

    Tekin, Saban; Hansen, Peter J

    2004-01-01

    Many species exhibiting hemochorial placentation experience an accumulation of macrophages in the endometrium during pregnancy. For the present study, it was tested whether macrophages also accumulate in the endometrium of the sheep, which is a species undergoing an epitheliochorial placentation. An additional objective was to determine whether regulation of endometrial macrophage number occurs via systemic or local signals and whether progesterone is one of these signals. The approach was to evaluate presence of macrophages immunohistochemically using antibodies to CD68 and CD14. Tissues examined were from cyclic ewes in the luteal phase of the estrous cycle, unilaterally-pregnant ewes at day 140 of pregnancy in which pregnancy was surgically confined to one uterine horn, ovariectomized ewes, and ovariectomized ewes treated with progesterone for 44 days. Macrophages were localized predominately to the stromal compartment of the stratum compactum region of the endometrium. In non-pregnant ewes, macrophages were not abundant regardless of physiological status. Increased numbers of endometrial macrophages were seen for both the pregnant and non-pregnant uterine horns of unilaterally pregnant ewes. Numbers of macrophages were higher in the endometrium from the pregnant uterine horn than from endometrium from the non-pregnant uterine horn. Results indicate that macrophages accumulate in the endometrium by day 140 of pregnancy in the sheep and that this induction is because of both systemic and local signals. Progesterone appears not to be an important regulator of numbers of endometrial macrophages.

  11. Reduction in the rates of protein and amino acid catabolism to slow down the accumulation of endogenous ammonia: a strategy potentially adopted by mudskippers (Periophthalmodon schlosseri snd Boleophthalmus boddaerti) during aerial exposure in constant darkness.

    Science.gov (United States)

    Lim, C B; Chew, S F; Anderson, P M; Ip, Y K

    2001-05-01

    This study was designed to elucidate the strategies adopted by mudskippers to handle endogenous ammonia during aerial exposure in constant darkness. Under these conditions, specimens exhibited minimal locomotory activity, and the ammonia and urea excretion rates in both Periophthalmodon schlosseri and Boleophthalmus boddaerti decreased significantly. As a consequence, ammonia accumulation occurred in the tissues of both species of mudskipper. A significant increase in urea levels was found in the liver of P. schlosseri after 24h of aerial exposure, but no similar increase was seen in the tissues of B. boddaerti. It is unlikely that these two species of mudskipper detoxified ammonia to urea during aerial exposure since B. boddaerti does not possess a complete ornithine-urea cycle (OUC) and, although all the OUC enzymes were present in P. schlosseri, the activity of carbamoyl phosphate synthetase present in the liver mitochondria was too low to render the OUC functional for ammonia detoxification. Peritoneal injection of 15NH4Cl into P. schlosseri showed that this mudskipper was capable of incorporating some of the labelled ammonia into urea in its liver. However, aerial exposure did not affect this capability and did not induce detoxification of the accumulated ammonia to urea. Mudskippers exposed to terrestrial conditions and constant darkness did, however, show significant decreases in the total free amino acid content in the liver and blood, in the case of P. schlosseri and in the muscle of B. boddaerti. No changes in the alanine or glutamine content of the muscle were found in either species. Analyses of the balance between the reduction in nitrogenous excretion and the increase in nitrogenous accumulation further revealed that these two species of mudskipper were capable of reducing their protein and amino acid catabolic rates. Such adaptations constitute the most efficient way to avoid the build-up of internal ammonia, and would render unnecessary the

  12. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimulatin

  13. Altered macrophage differentiation and immune dysfunction in tumor development.

    Science.gov (United States)

    Sica, Antonio; Bronte, Vincenzo

    2007-05-01

    Tumors require a constant influx of myelomonocytic cells to support the angiogenesis and stroma remodeling needed for their growth. This is mediated by tumor-derived factors, which cause sustained myelopoiesis and the accumulation and functional differentiation of myelomonocytic cells, most of which are macrophages, at the tumor site. An important side effect of the accumulation and functional differentiation of these cells is that they can induce lymphocyte dysfunction. A complete understanding of the complex interplay between neoplastic and myelomonocytic cells might offer novel targets for therapeutic intervention aimed at depriving tumor cells of important growth support and enhancing the antitumor immune response.

  14. Induction of ER stress in macrophages of tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    Full Text Available BACKGROUND: The endoplasmic reticulum (ER stress pathway known as the Unfolded Protein Response (UPR is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection. PRINCIPAL FINDINGS: Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153, phosphorylated inositol-requiring enzyme 1 alpha (Ire1α and eukaryotic initiation factor 2 alpha (eIF2α, and activating transcription factor 3 (ATF3 are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb. These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation. CONCLUSIONS: In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb

  15. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors.

    Science.gov (United States)

    Posokhova, E N; Khoshchenko, O M; Chasovskikh, M I; Pivovarova, E N; Dushkin, M I

    2008-03-01

    The effects of peroxisome proliferator activated receptors alpha and gamma (PPAR-alpha and PPAR-gamma) and retinoid X receptor (RXR) agonists upon synthesis and accumulation of lipids in murine C57Bl macrophages during inflammation induced by injection of zymosan and Escherichia coli lipopolysaccharide (LPS) have been studied. It is significant that intraperitoneal injection of zymosan (50 mg/kg) or LPS (0.1 mg/kg) in mice led to a dramatic increase of [14C]oleate incorporation into cholesteryl esters and triglycerides and [14C]acetate incorporation into cholesterol and fatty acids in peritoneal macrophages. Lipid synthesis reached its maximum rate 18-24 h after injection and was decreased 5-7 days later to control level after LPS injection or was still heightened after zymosan injection. In macrophages obtained in acute phase of inflammation (24 h), degradation of 125I-labeled native low density lipoprotein (NLDL) was 4-fold increased and degradation of 125I-labeled acetylated LDL (AcLDL) was 2-3-fold decreased. Addition of NLDL (50 microg/ml) or AcLDL (25 microg/ml) into the incubation medium of activated macrophages induced 9-14- and 1.25-fold increase of cholesteryl ester synthesis, respectively, compared with control. Addition of NLDL and AcLDL into the incubation medium completely inhibited cholesterol synthesis in control macrophages but had only slightly effect on cholesterol synthesis in activated macrophages. Injection of RXR, PPAR-alpha, or PPAR-gamma agonists--9-cis-retinoic acid (5 mg/kg), bezafibrate (10 mg/kg), or rosiglitazone (10 mg/kg), respectively--30 min before zymosan or LPS injection led to significant decrease of lipid synthesis. Ten hour preincubation of activated in vivo macrophages with the abovementioned agonists (5 microM) decreased cholesteryl ester synthesis induced by NLDL and AcLDL addition into the cell cultivation medium. The data suggest that RXR, PPAR-alpha, or PPAR-gamma agonists inhibited lipid synthesis and induction of

  16. Effects of Nitrogen Fertilizer Rate on Nitrogen and Dry Matter Accumulation in Summer Peanut%施氮水平对夏播花生氮素及干物质积累的影响

    Institute of Scientific and Technical Information of China (English)

    王小龙; 孟强; 谢永乐; 赵晓娜; 王巧平

    2015-01-01

    Summer peanut nitrogen accumulation dynamics and its relationship with peanut pro-ductivity were studied through plot nitrogen fertilizer rate experiment with 2 summer peanut varieties (YH15 and BS101 6) in the Yellow River Basin in China.The results showed: nitrogen accumulation of peanut was found as the “S” type curve.While nitrogen fertilizer application amount was less than 120 kg /ha, the peanut plant nitrogen accumulation, leaf area index, dry matter and the leaf nitrogen concentration increased with the increase of nitrogen fertilizer rate, but they showed stagflationary when the nitrogen rate reached over 120 kg /ha.At each level of nitrogen application, the leaf nitrogen concentration decreased with the increasing of the growth process, but decreased gradually with the increase of nitrogen application rate.The LAID dynamic curve could distinguish the peanut growth differences under different nitrogen fertilizer rate.The curves showed that the LAID complied with exponential curve when RGDD≤0.5 and linear growth when RGDD>0.5.%基于黄河流域夏播花生种植区两个类型花生品种(豫花15和白沙1016)不同施氮水平进行田间试验,研究夏播花生氮素积累动态,及与花生生产力的关系。结果表明,各施氮水平下,氮素积累动态呈近“S”型曲线;施氮量在120 kg /hm2以下,花生植株氮积累量、叶面积指数、叶面积指数持续期、干物质积累量和各生育时期叶片氮浓度均随着施氮量增加而增加,但当施氮量达到和超过120 kg /hm2时均出现滞涨;每个施氮水平下,整个叶层平均氮浓度随着生育进程推进均呈下降趋势,但随着施氮量增加氮浓度下降速度趋缓。本研究用叶面积指数持续期拟合的动态曲线较好地区分了不同施氮水平间的差异,该曲线显示,在苗后10℃以上积温归一化值 RGDD≤0.5时,夏播花生的叶面积指数持续期呈指数曲线增长;当 RGDD>0.5时,呈线性增长。

  17. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  18. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Chanmee, Theerawut [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Ontong, Pawared [Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Konno, Kenjiro [Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Itano, Naoki, E-mail: itanon@cc.kyoto-su.ac.jp [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan)

    2014-08-13

    During tumor progression, circulating monocytes and macrophages are actively recruited into tumors where they alter the tumor microenvironment to accelerate tumor progression. Macrophages shift their functional phenotypes in response to various microenvironmental signals generated from tumor and stromal cells. Based on their function, macrophages are divided broadly into two categories: classical M1 and alternative M2 macrophages. The M1 macrophage is involved in the inflammatory response, pathogen clearance, and antitumor immunity. In contrast, the M2 macrophage influences an anti-inflammatory response, wound healing, and pro-tumorigenic properties. Tumor-associated macrophages (TAMs) closely resemble the M2-polarized macrophages and are critical modulators of the tumor microenvironment. Clinicopathological studies have suggested that TAM accumulation in tumors correlates with a poor clinical outcome. Consistent with that evidence, experimental and animal studies have supported the notion that TAMs can provide a favorable microenvironment to promote tumor development and progression. In this review article, we present an overview of mechanisms responsible for TAM recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy.

  19. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis.

    Science.gov (United States)

    Klei, Thomas R L; Meinderts, Sanne M; van den Berg, Timo K; van Bruggen, Robin

    2017-01-01

    Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.

  20. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture.

    Science.gov (United States)

    Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu; Liu, Liangliang; Cao, Yi

    2017-03-01

    It was recently shown that exposure to ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress both in vivo and in vitro, but the role of ER stress in ZnO NP induced toxicity remains unclear. Because macrophages are sensitive to ER stress, we hypothesized that stressing macrophages with ER stress inducer could enhance the toxicity of ZnO NPs. In this study, the effects of ER stress inducer thapsigargin (TG) on the toxicity of ZnO NPs to THP-1 macrophages were investigated. The results showed that TG enhanced ZnO NP induced cytotoxicity as revealed by water soluble tetrazolium-1 (WST-1) and neutral red uptake assays, but not lactate dehydrogenase (LDH) assay. ZnO NPs dose-dependently enhanced the accumulation of intracellular Zn ions without the induction of reactive oxygen species (ROS), and the presence of TG did not significantly affect these effects. In the co-culture, exposure of THP-1 macrophages in the upper chamber to ZnO NPs and TG significantly reduced the viability of human umbilical vein endothelial cells (HUVECs) in the lower chamber, but the release of tumor necrosis factor α (TNFα) was not induced. In summary, our data showed that stressing THP-1 macrophages with TG enhanced the cytotoxicity of ZnO NPs to macrophages and macrophage-endothelial co-cultures.

  1. The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases

    Directory of Open Access Journals (Sweden)

    Hor-Yue Tan

    2016-01-01

    Full Text Available High heterogeneity of macrophage is associated with its functions in polarization to different functional phenotypes depending on environmental cues. Macrophages remain in balanced state in healthy subject and thus macrophage polarization may be crucial in determining the tissue fate. The two distinct populations, classically M1 and alternatively M2 activated, representing the opposing ends of the full activation spectrum, have been extensively studied for their associations with several disease progressions. Accumulating evidences have postulated that the redox signalling has implication in macrophage polarization and the key roles of M1 and M2 macrophages in tissue environment have provided the clue for the reasons of ROS abundance in certain phenotype. M1 macrophages majorly clearing the pathogens and ROS may be crucial for the regulation of M1 phenotype, whereas M2 macrophages resolve inflammation which favours oxidative metabolism. Therefore how ROS play its role in maintaining the homeostatic functions of macrophage and in particular macrophage polarization will be reviewed here. We also review the biology of macrophage polarization and the disturbance of M1/M2 balance in human diseases. The potential therapeutic opportunities targeting ROS will also be discussed, hoping to provide insights for development of target-specific delivery system or immunomodulatory antioxidant for the treatment of ROS-related diseases.

  2. Sexual selection and maintenance of sex: evidence from comparisons of rates of genomic accumulation of mutations and divergence of sex-related genes in sexual and hermaphroditic species of Caenorhabditis.

    Science.gov (United States)

    Artieri, Carlo G; Haerty, Wilfried; Gupta, Bhagwati P; Singh, Rama S

    2008-05-01

    Several hypotheses have been proposed to explain the persistence of dioecy despite the reproductive advantages conferred to hermaphrodites, including greater efficiency at purging deleterious mutations in the former. Dioecy can benefit from both mutation purging and accelerated evolution by bringing together beneficial mutations in the same individual via recombination and shuffling of genotypes. In addition, mathematical treatment has shown that sexual selection is also capable of mitigating the cost of maintaining separate sexes by increasing the overall fitness of sexual populations, and genomic comparisons have shown that sexual selection can lead to accelerated evolution. Here, we examine the advantages of dioecy versus hermaphroditism by comparing the rate of evolution in sex-related genes and the rate of accumulation of deleterious mutations using a large number of orthologs (11,493) in the dioecious Caenorhabditis remanei and the hermaphroditic Caenorhabditis briggsae. We have used this data set to estimate the deleterious mutation rate per generation, U, in both species and find that although it is significantly higher in hermaphrodites, both species are at least 2 orders of magnitude lower than the value required to explain the persistence of sex by efficiency at purging deleterious mutations alone. We also find that genes expressed in sperm are evolving rapidly in both species; however, they show a greater increase in their rate of evolution relative to genes expressed in other tissues in C. remanei, suggesting stronger sexual selection pressure acting on these genes in dioecious species. Interestingly, the persistence of a signal of rapid evolution of sperm genes in C. briggsae suggests a recent evolutionary origin of hermaphrodism in this lineage. Our results provide empirical evidence of increased sexual selection pressure in dioecious animals, supporting the possibility that sexual selection may play an important role in the maintenance of sexual

  3. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Trebst, C; Sørensen, Torben Lykke; Kivisäkk, P

    2001-01-01

    Mononuclear phagocytes (monocytes, macrophages, and microglia) are considered central to multiple sclerosis (MS) pathogenesis. Molecular cues that mediate mononuclear phagocyte accumulation and activation in the central nervous system (CNS) of MS patients may include chemokines RANTES/CCL5...

  4. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages

    Directory of Open Access Journals (Sweden)

    Sapir Bechor

    2016-07-01

    Full Text Available Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc is a precursor for 9-cis-retinoic-acid (9-cis-RA, which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.

  5. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yujun [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States); Li, Jian-Dong [Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States)

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  6. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Show Monocyte/macrophage traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage traffic

  7. Forkhead Box O1 Regulates Macrophage Polarization Following Staphylococcus aureus Infection: Experimental Murine Data and Review of the Literature.

    Science.gov (United States)

    Wang, Yu-Chen; Ma, Hong-Di; Yin, Xue-Ying; Wang, Yin-Hu; Liu, Qing-Zhi; Yang, Jing-Bo; Shi, Qing-Hua; Sun, Baolin; Gershwin, M Eric; Lian, Zhe-Xiong

    2016-12-01

    The functions of macrophages that lead to effective host responses are critical for protection against Staphylococcus aureus. Deep tissue-invading S. aureus initially countered by macrophages trigger macrophage accumulation and induce inflammatory responses through surface receptors, especially toll-like receptor 2 (TLR2). Here, we found that macrophages formed sporadic aggregates in the liver during infection. Within those aggregates, macrophages co-localized with T cells and were indispensable for their infiltration. In addition, we have focused on the mechanisms underlying the polarization of macrophages in Forkhead box transcription factor O1 (FoxO1) conditional knockout Lys (Cre/+) FoxO1 (fl/fl) mice following S. aureus infection and report herein that macrophage M1-M2 polarization via TLR2 is intrinsically regulated by FoxO1. Indeed, for effective FoxO1 activity, stimulation of TLR2 is essential. However, following S. aureus challenge, there was a decrease in macrophage FoxO1, with increased phosphorylation of FoxO1 because of TLR2-mediated activation of PI3K/Akt and c-Raf/MEK/ERK pathway. Following infection in Lys (Cre/+) FoxO1 (fl/fl) mice, mice became more susceptible to S. aureus with reduced macrophage aggregation in the liver and attenuated Th1 and Th17 responses. FoxO1 abrogation reduced M1 pro-inflammatory responses triggered by S. aureus and enhanced M2 polarization in macrophages. In contrast, overexpression of FoxO1 in macrophages increased pro-inflammatory mediators and functional surface molecule expression. In conclusion, macrophage FoxO1 is critical to promote M1 polarization and maintain a competent T cell immune response against S. aureus infection in the liver. FoxO1 regulates macrophage M1-M2 polarization downstream of TLR2 dynamically through phosphorylation.

  8. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    Science.gov (United States)

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  9. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo.

    Directory of Open Access Journals (Sweden)

    Michael Zhang

    Full Text Available Tumor-associated macrophages (TAMs represent an important cellular subset within the glioblastoma (WHO grade IV microenvironment and are a potential therapeutic target. TAMs display a continuum of different polarization states between antitumorigenic M1 and protumorigenic M2 phenotypes, with a lower M1/M2 ratio correlating with worse prognosis. Here, we investigated the effect of macrophage polarization on anti-CD47 antibody-mediated phagocytosis of human glioblastoma cells in vitro, as well as the effect of anti-CD47 on the distribution of M1 versus M2 macrophages within human glioblastoma cells grown in mouse xenografts. Bone marrow-derived mouse macrophages and peripheral blood-derived human macrophages were polarized in vitro toward M1 or M2 phenotypes and verified by flow cytometry. Primary human glioblastoma cell lines were offered as targets to mouse and human M1 or M2 polarized macrophages in vitro. The addition of an anti-CD47 monoclonal antibody led to enhanced tumor-cell phagocytosis by mouse and human M1 and M2 macrophages. In both cases, the anti-CD47-induced phagocytosis by M1 was more prominent than that for M2. Dissected tumors from human glioblastoma xenografted within NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice and treated with anti-CD47 showed a significant increase of M1 macrophages within the tumor. These data show that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. Furthermore, these data demonstrate that anti-CD47 treatment alone can shift the phenotype of macrophages toward the M1 subtype in vivo.

  10. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo

    Science.gov (United States)

    Kahn, Suzana A.; Azad, Tej D.; Gholamin, Sharareh; Xu, Chelsea Y.; Liu, Jie; Achrol, Achal S.; Richard, Chase; Sommerkamp, Pia; Schoen, Matthew Kenneth; McCracken, Melissa N.; Majeti, Ravi; Weissman, Irving; Mitra, Siddhartha S.; Cheshier, Samuel H.

    2016-01-01

    Tumor-associated macrophages (TAMs) represent an important cellular subset within the glioblastoma (WHO grade IV) microenvironment and are a potential therapeutic target. TAMs display a continuum of different polarization states between antitumorigenic M1 and protumorigenic M2 phenotypes, with a lower M1/M2 ratio correlating with worse prognosis. Here, we investigated the effect of macrophage polarization on anti-CD47 antibody-mediated phagocytosis of human glioblastoma cells in vitro, as well as the effect of anti-CD47 on the distribution of M1 versus M2 macrophages within human glioblastoma cells grown in mouse xenografts. Bone marrow-derived mouse macrophages and peripheral blood-derived human macrophages were polarized in vitro toward M1 or M2 phenotypes and verified by flow cytometry. Primary human glioblastoma cell lines were offered as targets to mouse and human M1 or M2 polarized macrophages in vitro. The addition of an anti-CD47 monoclonal antibody led to enhanced tumor-cell phagocytosis by mouse and human M1 and M2 macrophages. In both cases, the anti-CD47-induced phagocytosis by M1 was more prominent than that for M2. Dissected tumors from human glioblastoma xenografted within NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice and treated with anti-CD47 showed a significant increase of M1 macrophages within the tumor. These data show that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. Furthermore, these data demonstrate that anti-CD47 treatment alone can shift the phenotype of macrophages toward the M1 subtype in vivo. PMID:27092773

  11. The effect of low oxygen with and without steady-state hydrogen peroxide on cytokine gene and protein expression of monocyte-derived macrophages - biomed 2011

    NARCIS (Netherlands)

    Owegi, H.; Bouwens, M.; Egot-Lemaire, S.; Mueller, S.; Geib, R.W.; Waite, G.N.

    2011-01-01

    An early event during inflammation and infection is the migration of monocytes into tissues where they differentiate into macrophages. Such monocyte-derived macrophages face an unfavorable environment characterized by extremely low oxygen tension and accumulation of reactive oxygen species such as h

  12. Folate receptor-β imaging using 99mTc-folate to explore distribution of polarized macrophage populations in human atherosclerotic plaque

    NARCIS (Netherlands)

    Jager, Nynke A.; Westra, Johanna; Golestani, Reza; van Dam, Gooitzen M.; Low, Philip S.; Tio, Rene A.; Slart, Riemer H. J. A.; Boersma, Hendrikus; Bijl, Marc; Zeebregts, Clark J.

    2014-01-01

    UNLABELLED: In atherosclerotic plaques, the risk of rupture is increased at sites of macrophage accumulation. Activated macrophages express folate receptor-β (FR-β), which can be targeted by folate coupled to radioactive ligands to visualize vulnerability. The aim of this study was to explore the pr

  13. Role of alveolar macrophages in chronic obstructive pulmonary disease (COPD

    Directory of Open Access Journals (Sweden)

    Ross eVlahos

    2014-09-01

    Full Text Available Alveolar macrophages (AMs represent a unique leukocyte population that responds to airborne irritants and microbes. This distinct microenvironment coordinates the maturation of long-lived AMs, which originate from fetal blood monocytes and self-renew through mechanisms dependent on GM-CSF and CSF-1 signaling. Peripheral blood monocytes can also replenish lung macrophages; however this appears to occur in a stimuli specific manner. In addition to mounting an appropriate immune response during infection and injury, AMs actively coordinate the resolution of inflammation through efferocytosis of apoptotic cells. Any perturbation of this process can lead to deleterious responses. In chronic obstructive pulmonary disease (COPD, there is an accumulation of airway macrophages that do not conform to the classic M1/M2 paradigm. There is a skewed transciptome profile that favors expression of wound healing M2 markers, which is reflective of a deficiency to resolve inflammation. Endogenous mediators that promote distinct macrophage phenotypes are discussed, as are the plausible mechanisms underlying why AMs fail to effectively resolve inflammation and restore normal lung homeostasis in COPD.

  14. Concentration-Dependent Diversifcation Effects of Free Cholesterol Loading on Macrophage Viability and Polarization

    Directory of Open Access Journals (Sweden)

    Xiaoyang Xu

    2015-08-01

    Full Text Available Background/Aims: The accumulation of free cholesterol in atherosclerotic lesions has been well documented in both animals and humans. In studying the relevance of free cholesterol buildup in atherosclerosis, contradictory results have been generated, indicating that free cholesterol produces both pro- and anti-atherosclerosis effects in macrophages. This inconsistency might stem from the examination of only select concentrations of free cholesterol. In the present study, we sought to investigate the implication of excess free cholesterol loading in the pathophysiology of atherosclerosis across a broad concentration range from (in µg/ml 0 to 60. Methods: Macrophage viability was determined by measuring formazan formation and flow cytometry viable cell counting. The polarization of M1 and M2 macrophages was differentiated by FACS (Fluorescence-Activated Cell Sorting assay. The secretion of IL-1β in macrophage culture medium was measured by ELISA kit. Macrophage apoptosis was detected by flow cytometry using a TUNEL kit. Results: Macrophage viability was increased at the treatment of lower concentrations of free cholesterol from (in µg/ml 0 to 20, but gradually decreased at higher concentrations from 20 to 60. Lower free cholesterol loading induced anti-inflammatory M2 macrophage polarization. The activation of the PPARγ (Peroxisome Proliferator-Activated Receptor gamma nuclear factor underscored the stimulation of this M2 phenotype. Nevertheless, higher levels of free cholesterol resulted in pro-inflammatory M1 activation. Moreover, with the application of higher free cholesterol concentrations, macrophage apoptosis and secretion of the inflammatory cytokine IL-1β increased significantly. Conclusion: These results for the first time demonstrate that free cholesterol could render concentration-dependent diversification effects on macrophage viability, polarization, apoptosis and inflammatory cytokine secretions, thereby reconciling the pros

  15. M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway.

    Science.gov (United States)

    Zhu, Liangying; Fu, Xiao; Chen, Xiang; Han, Xiaodong; Dong, Ping

    2017-09-01

    IPF is characterized by fibroblast accumulation, collagen deposition, and ECM remodeling, with myofibroblasts believed to be the effector cell type. Myofibroblasts develop due to EMT of lung alveolar epithelial cells, which can be induced by TGF-β. M2 macrophages, a macrophage subpopulation, secrete large amounts of TGF-β. To clarify the relationship between IPF, EMT, TGF-β, and M2 macrophages, a bleomycin-induced pulmonary fibrosis mouse model was used. Seventeen days after mice were treated with bleomycin, the successful establishment of a pulmonary fibrosis model was confirmed by HE stain and Masson's trichrome stain. We found evidence in support of EMT, such as elevated protein levels of α-SMA in lung tissue and decreased levels of E-cadherin and CK-18. Additionally, increased TGF-β levels and TGF-β/Smad2 signaling activation was observed. Macrophages were recruited to pulmonary alveoli. Alveolar macrophages were phenotyped and identified as M2 macrophages, with up-regulated CD206 on the cell surfaces. For in vitro studies, we treated RAW 264.7 cells with IL-4 for 24 h, and the cells were then utilized as M2 macrophages. TGF-β levels increased significantly in the culture supernatant. Forty-eight hours after lung epithelial cells (MLE-12) were co-cultured with the M2 macrophages, the expression of α-SMA increased, and E-cadherin and CK-18 decreased. When a TGF-β receptor inhibitor, LY2109761 was used, the EMT induced by M2 macrophages was blocked. In conclusion, we demonstrated that M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway. © 2017 International Federation for Cell Biology.

  16. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis.

    Science.gov (United States)

    Tanaka, Miyako; Ikeda, Kenji; Suganami, Takayoshi; Komiya, Chikara; Ochi, Kozue; Shirakawa, Ibuki; Hamaguchi, Miho; Nishimura, Satoshi; Manabe, Ichiro; Matsuda, Takahisa; Kimura, Kumi; Inoue, Hiroshi; Inagaki, Yutaka; Aoe, Seiichiro; Yamasaki, Sho; Ogawa, Yoshihiro

    2014-09-19

    In obesity, a paracrine loop between adipocytes and macrophages augments chronic inflammation of adipose tissue, thereby inducing systemic insulin resistance and ectopic lipid accumulation. Obese adipose tissue contains a unique histological structure termed crown-like structure (CLS), where adipocyte-macrophage crosstalk is known to occur in close proximity. Here we show that Macrophage-inducible C-type lectin (Mincle), a pathogen sensor for Mycobacterium tuberculosis, is localized to macrophages in CLS, the number of which correlates with the extent of interstitial fibrosis. Mincle induces obesity-induced adipose tissue fibrosis, thereby leading to steatosis and insulin resistance in liver. We further show that Mincle in macrophages is crucial for CLS formation, expression of fibrosis-related genes and myofibroblast activation. This study indicates that Mincle, when activated by an endogenous ligand released from dying adipocytes, is involved in adipose tissue remodelling, thereby suggesting that sustained interactions between adipocytes and macrophages within CLS could be a therapeutic target for obesity-induced ectopic lipid accumulation.

  17. Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Jason M. Fritz

    2014-11-01

    Full Text Available Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2 had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  18. Yeast-mediated mRNA delivery polarizes immuno-suppressive macrophages towards an immuno-stimulatory phenotype.

    Science.gov (United States)

    Seif, Michelle; Hoppstädter, Jessica; Breinig, Frank; Kiemer, Alexandra K

    2017-08-01

    Macrophages have increasingly gained interest as a therapeutic target since they represent an integral component of the tumor microenvironment. In fact, M2 macrophage accumulation in solid tumors is associated with poor prognosis and therapy failure. Therefore, reprogramming M2 macrophages towards an M1 phenotype with anti-tumor activity by gene therapy represents a promising therapeutic approach. Herein, we describe recombinant Saccharomyces cerevisiae as a novel gene delivery vehicle for primary human macrophages. Opsonized S. cerevisiae was taken up efficiently by M2 macrophages and initiated the expression of pro-inflammatory cytokines. Recombinant yeast delivered functional nucleic acids to macrophages, especially when constitutively biosynthesized mRNA was used as cargo. Interestingly, expression of the protein encoded for by the delivered nucleic acid was higher in M2 cells when compared to M1 macrophages. Finally, the delivery of mRNA coding for the pro-inflammatory regulators MYD88 and TNF to M2 macrophages induced a prolonged upregulation of pro-inflammatory and cytotoxic cytokines in these cells, suggesting their successful re-education towards an anti-tumor M1 phenotype. Our results suggest the use of yeast-based gene delivery as a promising approach for the treatment of pathologic conditions that may benefit from the presence of M1-polarized macrophages, such as cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Involvement of β-defensin 130 (DEFB130) in the macrophage microbicidal mechanisms for killing Plasmodium falciparum

    Science.gov (United States)

    Terkawi, Mohamad Alaa; Takano, Ryo; Furukawa, Atsushi; Murakoshi, Fumi; Kato, Kentaro

    2017-01-01

    Understanding the molecular defense mechanism of macrophages and identifying their effector molecules against malarial parasites may provide important clues for the discovery of new therapies. To analyze the immunological responses of malarial parasite-induced macrophages, we used DNA microarray technology to examine the gene profile of differentiated macrophages phagocytizing Plasmodium falciparum-parasitized erythrocytes (iRBC). The transcriptional gene profile of macrophages in response to iRBCs represented 168 down-regulated genes, which were mainly involved in the cellular immune response, and 216 upregulated genes, which were involved in cellular proteolysis, growth, and adhesion. Importantly, the specific upregulation of β-defensin 130 (DEFB130) in these macrophages suggested a possible role for DEFB130 in malarial parasite elimination. Differentiated macrophages phagocytizing iRBCs exhibited an increase in intracellular DEFB130 levels and DEFB130 appeared to accumulate at the site of iRBC engulfment. Transfection of esiRNA-mediated knockdown of DEFB130 into macrophages resulted in a remarkable reduction in their antiplasmodial activity in vitro. Furthermore, DEFB130 synthetic peptide exhibited a modest toxic effect on P. falciparum in vitro and P. yoelii in vivo, unlike scrambled DEFB130 peptide, which showed no antiplasmodial activity. Together, these results suggest that DEFB130 might be one of the macrophage effector molecules for eliminating malarial parasites. Our data broaden our knowledge of the immunological response of macrophages to iRBCs and shed light on a new target for therapeutic intervention. PMID:28181499

  20. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  1. Low Dose BCG Infection as a Model for Macrophage Activation Maintaining Cell Viability

    Directory of Open Access Journals (Sweden)

    Leslie Chávez-Galán

    2016-01-01

    Full Text Available Mycobacterium bovis BCG, the current vaccine against tuberculosis, is ingested by macrophages promoting the development of effector functions including cell death and microbicidal mechanisms. Despite accumulating reports on M. tuberculosis, mechanisms of BCG/macrophage interaction remain relatively undefined. In vivo, few bacilli are sufficient to establish a mycobacterial infection; however, in vitro studies systematically use high mycobacterium doses. In this study, we analyze macrophage/BCG interactions and microenvironment upon infection with low BCG doses and propose an in vitro model to study cell activation without affecting viability. We show that RAW macrophages infected with BCG at MOI 1 activated higher and sustained levels of proinflammatory cytokines and transcription factors while MOI 0.1 was more efficient for early stimulation of IL-1β, MCP-1, and KC. Both BCG infection doses induced iNOS and NO in a dose-dependent manner and maintained nuclear and mitochondrial structures. Microenvironment generated by MOI 1 induced macrophage proliferation but not MOI 0.1 infection. In conclusion, BCG infection at low dose is an efficient in vitro model to study macrophage/BCG interactions that maintains macrophage viability and mitochondrial structures. This represents a novel model that can be applied to BCG research fields including mycobacterial infections, cancer immunotherapy, and prevention of autoimmunity and allergies.

  2. Atheroprotection through SYK inhibition fails in established disease when local macrophage proliferation dominates lesion progression.

    Science.gov (United States)

    Lindau, Alexandra; Härdtner, Carmen; Hergeth, Sonja P; Blanz, Kelly Daryll; Dufner, Bianca; Hoppe, Natalie; Anto-Michel, Nathaly; Kornemann, Jan; Zou, Jiadai; Gerhardt, Louisa M S; Heidt, Timo; Willecke, Florian; Geis, Serjosha; Stachon, Peter; Wolf, Dennis; Libby, Peter; Swirski, Filip K; Robbins, Clinton S; McPheat, William; Hawley, Shaun; Braddock, Martin; Gilsbach, Ralf; Hein, Lutz; von zur Mühlen, Constantin; Bode, Christoph; Zirlik, Andreas; Hilgendorf, Ingo

    2016-03-01

    Macrophages in the arterial intima sustain chronic inflammation during atherogenesis. Under hypercholesterolemic conditions murine Ly6C(high) monocytes surge in the blood and spleen, infiltrate nascent atherosclerotic plaques, and differentiate into macrophages that proliferate locally as disease progresses. Spleen tyrosine kinase (SYK) may participate in downstream signaling of various receptors that mediate these processes. We tested the effect of the SYK inhibitor fostamatinib on hypercholesterolemia-associated myelopoiesis and plaque formation in Apoe(-/-) mice during early and established atherosclerosis. Mice consuming a high cholesterol diet supplemented with fostamatinib for 8 weeks developed less atherosclerosis. Histologic and flow cytometric analysis of aortic tissue showed that fostamatinib reduced the content of Ly6C(high) monocytes and macrophages. SYK inhibition limited Ly6C(high) monocytosis through interference with GM-CSF/IL-3 stimulated myelopoiesis, attenuated cell adhesion to the intimal surface, and blocked M-CSF stimulated monocyte to macrophage differentiation. In Apoe(-/-) mice with established atherosclerosis, however, fostamatinib treatment did not limit macrophage accumulation or lesion progression despite a significant reduction in blood monocyte counts, as lesional macrophages continued to proliferate. Thus, inhibition of hypercholesterolemia-associated monocytosis, monocyte infiltration, and differentiation by SYK antagonism attenuates early atherogenesis but not established disease when local macrophage proliferation dominates lesion progression.

  3. Oxysterol mixture and, in particular, 27-hydroxycholesterol drive M2 polarization of human macrophages.

    Science.gov (United States)

    Marengo, Barbara; Bellora, Francesca; Ricciarelli, Roberta; De Ciucis, Chiara; Furfaro, AnnaLisa; Leardi, Riccardo; Colla, Renata; Pacini, Davide; Traverso, Nicola; Moretta, Alessandro; Pronzato, Maria Adelaide; Bottino, Cristina; Domenicotti, Cinzia

    2016-01-01

    Macrophages play a crucial role in atherosclerosis progression. Classically activated M1 macrophages have been found in rupture-prone atherosclerotic plaques whereas alternatively activated macrophages, M2, localize in stable plaque. Macrophage accumulation of cholesterol and of its oxidized derivatives (oxysterols) leads to the formation of foam cells, a hallmark of atherosclerotic lesions. In this study, the effects of oxysterols in determining the functional polarization of human macrophages were investigated. Monocytes, purified from peripheral blood mononuclear cells of healthy donors, were differentiated into macrophages (M0) and treated with an oxysterol mixture, cholesterol, or ethanol, every 4 H for a total of 4, 8, and 12 H. The administration of the compounds was repeated in order to maintain the levels of oxysterols constant throughout the treatment. Compared with ethanol treatment, the oxysterol mixture decreased the surface expression of CD36 and CD204 scavenger receptors and reduced the amount of reactive oxygen species whereas it did not affect either cell viability or matrix metalloprotease-9 activity. Moreover, the oxysterol mixture increased the expression of both liver X receptor α and ATP-binding cassette transporter 1. An enhanced secretion of the immunoregulatory cytokine IL-10 accompanied these events. The results supported the hypothesis that the constant levels of oxysterols and, in particular, of 27-hydroxycholesterol stimulate macrophage polarization toward the M2 immunomodulatory functional phenotype, contributing to the stabilization of atherosclerotic plaques.

  4. Organic-Carbon Sequestration in Soil/Sediment of the Mississippi River Deltaic Plain - Data; Landscape Distribution, Storage, and Inventory; Accumulation Rates; and Recent Loss, Including a Post-Katrina Preliminary Analysis (Chapter B)

    Science.gov (United States)

    Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.

    2007-01-01

    Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most

  5. Effects of macrophages In Resistance to Murine Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    M. Aminzedeh

    1978-01-01

    Full Text Available In a preliminary experiment. the protective effects of ' peritoneal macrophages was shown by transferring macroph. ages fr-om adult mice to newborn and to 7 and 14 days old mice. It suckling mice from intraperitoneal infection with MCMV by reducing the mortality rate from 100% to 27%.was demontrated that such transplentatton protect

  6. Effects of macrophages In Resistance to Murine Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    M. Aminzedeh

    1978-06-01

    Full Text Available In a preliminary experiment. the protective effects of ' peritoneal macrophages was shown by transferring macroph. ages fr-om adult mice to newborn and to 7 and 14 days old mice. It suckling mice from intraperitoneal infection with MCMV by reducing the mortality rate from 100% to 27%.was demontrated that such transplentatton protect

  7. Phagocytic uptake of oxidized heme polymer is highly cytotoxic to macrophages.

    Directory of Open Access Journals (Sweden)

    Rohitas Deshmukh

    Full Text Available Apoptosis in macrophages is responsible for immune-depression and pathological effects during malaria. Phagocytosis of PRBC causes induction of apoptosis in macrophages through release of cytosolic factors from infected cells. Heme polymer or β-hematin causes dose-dependent death of macrophages with LC50 of 132 µg/ml and 182 µg/ml respectively. The toxicity of hemin or heme polymer was amplified several folds in the presence of non-toxic concentration of methemoglobin. β-hematin uptake in macrophage through phagocytosis is crucial for enhanced toxicological effects in the presence of methemoglobin. Higher accumulation of β-hematin is observed in macrophages treated with β-hematin along with methemoglobin. Light and scanning electron microscopic observations further confirm accumulation of β-hematin with cellular toxicity. Toxicological potentiation of pro-oxidant molecules toward macrophages depends on generation of H2O2 and independent to release of free iron from pro-oxidant molecules. Methemoglobin oxidizes β-hematin to form oxidized β-hematin (βH* through single electron transfer mechanism. Pre-treatment of reaction mixture with spin-trap Phenyl-N-t-butyl-nitrone dose-dependently reverses the β-hematin toxicity, indicates crucial role of βH* generation with the toxicological potentiation. Acridine orange/ethidium bromide staining and DNA fragmentation analysis indicate that macrophage follows an oxidative stress dependent apoptotic pathway to cause death. In summary, current work highlights mutual co-operation between methemoglobin and different pro-oxidant molecules to enhance toxicity towards macrophages. Hence, methemoglobin peroxidase activity can be probed for subduing cellular toxicity of pro-oxidant molecules and it may in-turn make up for host immune response against the malaria parasite.

  8. Isolation and culture of murine macrophages.

    Science.gov (United States)

    Davies, John Q; Gordon, Siamon

    2005-01-01

    The two most convenient sources of primary murine macrophages are the bone marrow and the peritoneal cavity. Resident peritoneal macrophages can readily be harvested from mice and purified by adherence to tissue culture plastic. The injection of Bio-Gel polyacrylamide beads or thioglycollate broth into the peritoneal cavity produces an inflammatory response allowing the purification of large numbers of elicited macrophages. The production of an activated macrophage population can be achieved by using Bacillus-Calmette-Guerin as the inflammatory stimulus. Resident bone marrow macrophages can be isolated following enzymatic separation of cells from bone marrow plugs and enrichment on 30% fetal calf serum containing medium or Ficoll-Hypaque gradients. Bone marrow-derived macrophages can be produced by differentiating nonadherent macrophage precursors with medium containing macrophage colony-stimulating factor.

  9. HIV-1 assembly in macrophages

    Directory of Open Access Journals (Sweden)

    Benaroch Philippe

    2010-04-01

    Full Text Available Abstract The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective

  10. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Rubio-Navarro, Alfonso; Amaro Villalobos, Juan Manuel; Lindholt, Jes S

    2015-01-01

    BACKGROUND: Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards C...

  11. p47phox Directs Murine Macrophage Cell Fate Decisions

    Science.gov (United States)

    Yi, Liang; Liu, Qi; Orandle, Marlene S.; Sadiq-Ali, Sara; Koontz, Sherry M.; Choi, Uimook; Torres-Velez, Fernando J.; Jackson, Sharon H.

    2012-01-01

    Macrophage differentiation and function are pivotal for cell survival from infection and involve the processing of microenvironmental signals that determine macrophage cell fate decisions to establish appropriate inflammatory balance. NADPH oxidase 2 (Nox2)–deficient chronic granulomatous disease (CGD) mice that lack the gp91phox (gp91phox−/−) catalytic subunit show high mortality rates compared with wild-type mice when challenged by infection with Listeria monocytogenes (Lm), whereas p47phox-deficient (p47phox−/−) CGD mice show survival rates that are similar to those of wild-type mice. We demonstrate that such survival results from a skewed macrophage differentiation program in p47phox−/− mice that favors the production of higher levels of alternatively activated macrophages (AAMacs) compared with levels of either wild-type or gp91phox−/− mice. Furthermore, the adoptive transfer of AAMacs from p47phox−/− mice can rescue gp91phox−/− mice during primary Lm infection. Key features of the protective function provided by p47phox−/− AAMacs against Lm infection are enhanced production of IL-1α and killing of Lm. Molecular analysis of this process indicates that p47phox−/− macrophages are hyperresponsive to IL-4 and show higher Stat6 phosphorylation levels and signaling coupled to downstream activation of AAMac transcripts in response to IL-4 stimulation. Notably, restoring p47phox protein expression levels reverts the p47phox-dependent AAMac phenotype. Our results indicate that p47phox is a previously unrecognized regulator for IL-4 signaling pathways that are important for macrophage cell fate choice. PMID:22222227

  12. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    Science.gov (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  13. ITER helium ash accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. (Oak Ridge National Lab., TN (USA)); Dippel, K.H.; Finken, K.H. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  14. Neuroimmunological communication via CGRP promotes the development of a regulatory phenotype in TLR4-stimulated macrophages.

    Science.gov (United States)

    Baliu-Piqué, Mariona; Jusek, Gabriela; Holzmann, Bernhard

    2014-12-01

    Environmental signals shape the phenotype and function of activated macrophages. Here, we show that the neuropeptide calcitonin gene-related peptide (CGRP), which is released from sensory nerves, modulates the phenotype of TLR4-activated murine macrophages by enhancing expression of the regulatory macrophage markers IL-10, sphingosine kinase 1 (SPHK1), and LIGHT (lymphotoxin-like, exhibits inducible expression and competes with HSV glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes). In contrast, CGRP inhibits production of cytokines characteristic of inflammatory macrophages and does not affect expression of wound-healing macrophage markers upon TLR4 engagement. In IL-4-stimulated macrophages, CGRP increased LIGHT expression, but failed to induce IL-10 and SPHK1. The stimulatory effect of CGRP on IL-10 production required activation of protein kinase A and was linked to prolonged phosphorylation of CREB and sustained nuclear accumulation of CRTC2 and CRTC3 (where CRTC is CREB-regulated transcriptional cofactor). CGRP enhanced expression of regulatory macrophage markers during the early, but not late, phase of LPS-stimulation and this effect was independent of autocrine type-I IFN activity. In contrast, autocrine type-I IFN activity and treatment of macrophages with IFN-β promoted late-phase IL-10 production, but had only minor influence on LIGHT and SPHK1 expression. Together, the results identify neuroimmunological communication through CGRP as a novel costimulatory pathway promoting the development of a regulatory phenotype of TLR4-stimulated macrophages. CGRP appears to act through a mechanism that involves sustained activation of CREB-dependent gene transcription.

  15. Macrophagic enhancement in optical coherence tomography imaging by means of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Gutiérrez-Chico, Juan Luis; Jaguszewski, Milosz; Comesaña-Hermo, Miguel; Correa-Duarte, Miguel Ángel; Mariñas-Pardo, Luis; Hermida-Prieto, Manuel

    2017-05-12

    The ability of optical coherence tomography (OCT) to visualise macrophages in vivo in coronary arteries is still controversial. We hypothesise that imaging of macrophages in OCT could be enhanced by means of superparamagnetic nanoparticles. We compared the optical backscattering and attenuation of cell pellets containing RAW 264.7 macrophages with those of macrophagic cell pellets labelled with very small superparamagnetic oxydised nanoparticles (VSOP) by means of light intensity analysis in OCT. The labelled macrophages were incubated with VSOP at a concentration of 1 mM Fe, corresponding to intracellular iron concentrations of 8.8 pg/cell. To study the effect of intracellular accumulation on the backscattering, VSOP dilutions without cells were also compared. OCT pullbacks of the PCR tubes containing the cell pellets were obtained and light intensity analysis was performed on raw OCT images in polar view, after normalisation by the backscattering of the PCR tube. The backscattering was estimated by the peak normalised intensity, whilst the attenuation was estimated by the number of pixels between the peak and the normalised intensity 1 (peak-to-one). VSOP-loaded macrophages have higher backscattering than the corresponding unlabelled macrophages (peak normalised intensity 6.30 vs. 3.15) with also slightly higher attenuation (peak-to-one 61 vs. 66 pixels). The backscattering of the nanoparticles in suspension was negligible in the light intensity analysis. VSOP increase significantly the optical backscattering of macrophages in the near-infrared region, with minimal increase in signal attenuation. This finding enables the enhancement of macrophages in conventional OCT imaging with an easily implementable methodology.

  16. Spatiotemporal Cadence of Macrophage Polarisation in a Model of Light-Induced Retinal Degeneration.

    Directory of Open Access Journals (Sweden)

    Haihan Jiao

    Full Text Available The recruitment of macrophages accompanies almost every pathogenic state of the retina, and their excessive activation in the subretinal space is thought to contribute to the progression of diseases including age-related macular degeneration. Previously, we have shown that macrophages aggregate in the outer retina following damage elicited by photo-oxidative stress, and that inhibition of their recruitment reduces photoreceptor death. Here, we look for functional insight into macrophage activity in this model through the spatiotemporal interplay of macrophage polarisation over the course of degeneration.Rats were exposed to 1000 lux light damage (LD for 24 hrs, with some left to recover for 3 and 7 days post-exposure. Expression and localisation of M1- and M2- macrophage markers was investigated in light-damaged retinas using qPCR, ELISA, flow cytometry, and immunohistochemistry.Expression of M1- (Ccl3, Il-6, Il-12, Il-1β, TNFα and M2- (CD206, Arg1, Igf1, Lyve1, Clec7a related markers followed discrete profiles following light damage; up-regulation of M1 genes peaked at the early phase of cell death, while M2 genes generally exhibited more prolonged increases during the chronic phase. Moreover, Il-1β and CD206 labelled accumulations of microglia/macrophages which differed in their morphological, temporal, and spatial characteristics following light damage.The data illustrate a dynamic shift in macrophage polarisation following light damage through a broad swathe of M1 and M2 markers. Pro-inflammatory M1 activation appears to dominate the early phase of degeneration while M2 responses appear to more heavily mark the chronic post-exposure period. While M1/M2 polarisation represents two extremes amongst a spectrum of macrophage activity, knowledge of their predominance offers insight into functional consequences of macrophage activity over the course of damage, which may inform the spatiotemporal employment of therapeutics in retinal disease.

  17. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  18. Macrophage responsiveness to light therapy

    Energy Technology Data Exchange (ETDEWEB)

    Young, S.; Bolton, P.; Dyson, M.; Harvey, W.; Diamantopoulos, C. (United Medical School, London (England))

    1989-01-01

    Macrophages are a source of many important mediators of wound repair. It was the purpose of this study to see if light could stimulate the release of these mediators. In this study an established macrophage-like cell line (U-937) was used. The cells were exposed in culture to the following wavelengths of light: 660 nm, 820 nm, 870 nm, and 880 nm. The 820-nm source was coherent and polarised, and the others were non-coherent. Twelve hours after exposure the macrophage supernatant was removed and placed on 3T3 fibroblast cultures. Fibroblast proliferation was assessed over a 5-day period. The results showed that 660-nm, 820-nm, and 870-nm wavelengths encouraged the macrophages to release factors that stimulated fibroblast proliferation above the control levels, whereas the 880-nm wavelength either inhibited the release of these factors or encouraged the release of some inhibitory factors of fibroblast proliferation. These results suggest that light at certain wavelengths may be a useful therapeutic agent by providing a means of either stimulating or inhibiting fibroblast proliferation where necessary. At certain wavelengths coherence is not essential.

  19. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism.

    Science.gov (United States)

    Zhou, Xiaoye; He, Wei; Huang, Zhiping; Gotto, Antonio M; Hajjar, David P; Han, Jihong

    2008-01-25

    Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.

  20. Identification of polarized macrophage subsets in zebrafish.

    Science.gov (United States)

    Nguyen-Chi, Mai; Laplace-Builhe, Béryl; Travnickova, Jana; Luz-Crawford, Patricia; Tejedor, Gautier; Phan, Quang Tien; Duroux-Richard, Isabelle; Levraud, Jean-Pierre; Kissa, Karima; Lutfalla, Georges; Jorgensen, Christian; Djouad, Farida

    2015-07-08

    While the mammalian macrophage phenotypes have been intensively studied in vitro, the dynamic of their phenotypic polarization has never been investigated in live vertebrates. We used the zebrafish as a live model to identify and trail macrophage subtypes. We generated a transgenic line whose macrophages expressing tumour necrosis factor alpha (tnfa), a key feature of classically activated (M1) macrophages, express fluorescent proteins Tg(mpeg1:mCherryF/tnfa:eGFP-F). Using 4D-confocal microscopy, we showed that both aseptic wounding and Escherichia coli inoculation triggered macrophage recruitment, some of which started to express tnfa. RT-qPCR on Fluorescence Activated Cell Sorting (FACS)-sorted tnfa(+) and tnfa(-) macrophages showed that they, respectively, expressed M1 and alternatively activated (M2) mammalian markers. Fate tracing of tnfa(+) macrophages during the time-course of inflammation demonstrated that pro-inflammatory macrophages converted into M2-like phenotype during the resolution step. Our results reveal the diversity and plasticity of zebrafish macrophage subsets and underline the similarities with mammalian macrophages proposing a new system to study macrophage functional dynamic.

  1. Macrophage Infiltration in Tumor Stroma is Related to Tumor Cell Expression of CD163 in Colorectal Cancer.

    Science.gov (United States)

    Shabo, Ivan; Olsson, Hans; Elkarim, Rihab; Sun, Xiao-Feng; Svanvik, Joar

    2014-08-01

    The scavenger receptor, CD163, is a macrophage-specific marker. Recent studies have shown that CD163 expression in breast and rectal cancer cells is associated with poor prognosis. This study was conducted to evaluate the relationship between CD163 expression as a macrophage trait in cancer cells, and macrophage infiltration and its clinical significance in colorectal cancer. Immunostaining of CD163 and macrophage infiltration were evaluated in paraffin-embedded specimens, earlier analyzed for CD31, D2-40 and S-phase fraction, from primary tumors and normal colorectal mucosa of 75 patients with colorectal carcinoma. The outcomes were analyzed in relation to clinical-pathological data. CD163 expression was positive in cancer cells in 20 % of colorectal cancer patients and was related to advanced tumor stages (P = 0.008) and unfavorable prognosis (p = 0.001). High macrophage infiltration was related to shorter survival and positive CD163 expression in tumor cells. The prognostic impact of macrophage infiltration was independent of tumor stage and CD163 expression in cancer cells (p = 0.034). The expression of macrophage phenotype in colorectal cancer cells is associated with macrophage density in tumor stroma and lower survival rates. Macrophage infiltration has an independent prognostic impact on mortality in colorectal cancer. In accordance with previous experimental studies, these findings provide new insights into the role of macrophages in colorectal cancer.

  2. The Role of Macrophages in Tumor Development

    Directory of Open Access Journals (Sweden)

    Gerben J. van der Bij

    2005-01-01

    Full Text Available Macrophages constitute a large proportion of the immune cell infiltrate, which is present in many tumors. Activation state of macrophages is greatly influenced by their environment, leading to different macrophage subsets with diverse functions. Although previously regarded as potent immune cells that are capable of destroying tumor cells, recent literature focuses on the ability of macrophages to promote tumor development due to secretion of mediators, like growth and angiogenic factors. It is now becoming increasingly clear that a complicated synergistic relationship exists between macrophages and malignant cells whereby tumor cells can affect macrophage phenotype, and vice versa. As such, macrophages and their contribution in cancer development are currently subject of debate.

  3. Macrophages in Tissue Repair, Regeneration, and Fibrosis.

    Science.gov (United States)

    Wynn, Thomas A; Vannella, Kevin M

    2016-03-15

    Inflammatory monocytes and tissue-resident macrophages are key regulators of tissue repair, regeneration, and fibrosis. After tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, such that uncontrolled production of inflammatory mediators and growth factors, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contribute to a state of persistent injury, and this could lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating phenotypes after injury, and we highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically.

  4. Alveolar Macrophage Polarisation in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Saleh A. Almatroodi

    2014-01-01

    Full Text Available The role of alveolar macrophages in lung cancer is multifaceted and conflicting. Alveolar macrophage secretion of proinflammatory cytokines has been found to enhance antitumour functions, cytostasis (inhibition of tumour growth, and cytotoxicity (macrophage-mediated killing. In contrast, protumour functions of alveolar macrophages in lung cancer have also been indicated. Inhibition of antitumour function via secretion of the anti-inflammatory cytokine IL-10 as well as reduced secretion of proinflammatory cytokines and reduction of mannose receptor expression on alveolar macrophages may contribute to lung cancer progression and metastasis. Alveolar macrophages have also been found to contribute to angiogenesis and tumour growth via the secretion of IL-8 and VEGF. This paper reviews the evidence for a dual role of alveolar macrophages in lung cancer progression.

  5. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice

    Directory of Open Access Journals (Sweden)

    Jongkil Kim

    2016-01-01

    Full Text Available Adipose tissue macrophage (ATM-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1, which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.

  6. Macrophage metalloelastase (MMP12) regulates adipose tissue expansion, insulin sensitivity, and expression of inducible nitric oxide synthase.

    Science.gov (United States)

    Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun; Kirk, Elizabeth A; Averill, Michelle M; Becker, Lev; Larson, Ilona; Hagman, Derek K; Foster-Schubert, Karen E; van Yserloo, Brian; Bornfeldt, Karin E; LeBoeuf, Renee C; Kratz, Mario; Heinecke, Jay W

    2014-09-01

    Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14(+)CD206(+) macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b(+)F4/80(+)CD11c(-) macrophages accumulated to a greater extent in MMP12-deficient (Mmp12(-/-)) mice than in wild-type mice (Mmp12(+/+)). Despite being markedly more obese, fat-fed Mmp12(-/-) mice were more insulin sensitive than fat-fed Mmp12(+/+) mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12(-/-) macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion.

  7. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy

    Science.gov (United States)

    Gao, Sha; Li, Changwei; Zhu, Yanji; Wang, Yanuo; Sui, Ailing; Zhong, Yisheng; Xie, Bing; Shen, Xi

    2017-01-01

    Macrophages have been demonstrated to play a proangiogenic role in retinal pathological vascular growth. Pigment epithelium-derived factor (PEDF) works as a powerful endogenous angiogenesis inhibitor, but its role in macrophage recruitment and polarization is largely unknown. To explore the underlying mechanisms, we first evaluated macrophage polarization in the retinas of the oxygen-induced retinopathy (OIR) mouse model. Compared to that in normal controls, M1- and M2-like macrophages were all abundantly increased in the retinas of OIR mice. In addition, both M1 and M2 subtypes significantly promoted neovascularization in vitro and in vivo. In addition, we found that PEDF inhibited retinal neovascularization by dampening macrophage recruitment and polarization. Furthermore, PEDF inhibited macrophage polarization through adipose triglyceride lipase (ATGL) by regulating the activation of MAPKs and the Notch1 pathway, as we found that the phosphorylation of MAPKs, including p38MAPK, JNK and ERK, as well as the accumulation of Notch1 were essential for hypoxia-induced macrophage polarization, while PEDF significantly dampened M1 subtype-related iNOS and M2 subtype-related Arg-1 expression by inhibiting hypoxia-induced activation of Notch1 and MAPKs through ATGL. These findings reveal a protective role of PEDF against retinal neovascularization by regulating macrophage recruitment and polarization. PMID:28211523

  8. Polyoxygenated Cholesterol Ester Hydroperoxide Activates TLR4 and SYK Dependent Signaling in Macrophages

    Science.gov (United States)

    Choi, Soo-Ho; Yin, Huiyong; Ravandi, Amir; Armando, Aaron; Dumlao, Darren; Kim, Jungsu; Almazan, Felicidad; Taylor, Angela M.; McNamara, Coleen A.; Tsimikas, Sotirios; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography – tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis. PMID:24376657

  9. Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis.

    Science.gov (United States)

    Sergin, Ismail; Bhattacharya, Somashubhra; Emanuel, Roy; Esen, Emel; Stokes, Carl J; Evans, Trent D; Arif, Batool; Curci, John A; Razani, Babak

    2016-01-05

    Autophagy is a catabolic cellular mechanism that degrades dysfunctional proteins and organelles. Atherosclerotic plaque formation is enhanced in mice with macrophages deficient for the critical autophagy protein ATG5. We showed that exposure of macrophages to lipids that promote atherosclerosis increased the abundance of the autophagy chaperone p62 and that p62 colocalized with polyubiquitinated proteins in cytoplasmic inclusions, which are characterized by insoluble protein aggregates. ATG5-null macrophages developed further p62 accumulation at the sites of large cytoplasmic ubiquitin-positive inclusion bodies. Aortas from atherosclerotic mice and plaques from human endarterectomy samples showed increased abundance of p62 and polyubiquitinated proteins that colocalized with plaque macrophages, suggesting that p62-enriched protein aggregates were characteristic of atherosclerosis. The formation of the cytoplasmic inclusions depended on p62 because lipid-loaded p62-null macrophages accumulated polyubiquitinated proteins in a diffuse cytoplasmic pattern. Lipid-loaded p62-null macrophages also exhibited increased secretion of interleukin-1β (IL-1β) and had an increased tendency to undergo apoptosis, which depended on the p62 ubiquitin-binding domain and at least partly involved p62-mediated clearance of NLRP3 inflammasomes. Consistent with our in vitro observations, p62-deficient mice formed greater numbers of more complex atherosclerotic plaques, and p62 deficiency further increased atherosclerotic plaque burden in mice with a macrophage-specific ablation of ATG5. Together, these data suggested that sequestration of cytotoxic ubiquitinated proteins by p62 protects against atherogenesis, a condition in which the clearance of protein aggregates is disrupted.

  10. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages.

    Directory of Open Access Journals (Sweden)

    Soo-Ho Choi

    Full Text Available Oxidation of low-density lipoprotein (LDL is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography - tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis.

  11. Critical role of neutral cholesteryl ester hydrolase 1 in cholesteryl ester hydrolysis in murine macrophages[S

    Science.gov (United States)

    Sakai, Kent; Igarashi, Masaki; Yamamuro, Daisuke; Ohshiro, Taichi; Nagashima, Shuichi; Takahashi, Manabu; Enkhtuvshin, Bolormaa; Sekiya, Motohiro; Okazaki, Hiroaki; Osuga, Jun-ichi; Ishibashi, Shun

    2014-01-01

    Hydrolysis of intracellular cholesteryl ester (CE) is the rate-limiting step in the efflux of cholesterol from macrophage foam cells. In mouse peritoneal macrophages (MPMs), this process is thought to involve several enzymes: hormone-sensitive lipase (Lipe), carboxylesterase 3 (Ces3), neutral CE hydrolase 1 (Nceh1). However, there is some disagreement over the relative contributions of these enzymes. To solve this problem, we first compared the abilities of several compounds to inhibit the hydrolysis of CE in cells overexpressing Lipe, Ces3, or Nceh1. Cells overexpressing Ces3 had negligible neutral CE hydrolase activity. We next examined the effects of these inhibitors on the hydrolysis of CE and subsequent cholesterol trafficking in MPMs. CE accumulation was increased by a selective inhibitor of Nceh1, paraoxon, and two nonselective inhibitors of Nceh1, (+)-AS115 and (−)-AS115, but not by two Lipe-selective inhibitors, orlistat and 76-0079. Paraoxon inhibited cholesterol efflux to apoA-I or HDL, while 76-0079 did not. These results suggest that Nceh1 plays a dominant role over Lipe in the hydrolysis of CE and subsequent cholesterol efflux in MPMs. PMID:24868095

  12. Ubiquitination by SAG regulates macrophage survival/death and immune response during infection.

    Science.gov (United States)

    Chang, S C; Ding, J L

    2014-09-01

    The checkpoint between the life and death of macrophages is crucial for the host's frontline immune defense during acute phase infection. However, the mechanism as to how the immune cell equilibrates between apoptosis and immune response is unclear. Using in vitro and ex vivo approaches, we showed that macrophage survival is synchronized by SAG (sensitive to apoptosis gene), which is a key member of the ubiquitin-proteasome system (UPS). When challenged by pathogen-associated molecular patterns (PAMPs), we observed a reciprocal expression profile of pro- and antiapoptotic factors in macrophages. However, SAG knockdown disrupted this balance. Further analysis revealed that ubiquitination of Bax and SARM (sterile α- and HEAT/armadillo-motif-containing protein) by SAG-UPS confers survival advantage to infected macrophages. SAG knockdown caused the accumulation of proapoptotic Bax and SARM, imbalance of Bcl-2/Bax in the mitochondria, induction of cytosolic cytochrome c and activation of caspase-9 and -3, all of which led to disequilibrium between life and death of macrophages. In contrast, SAG-overexpressing macrophages challenged with PAMPs exhibited upregulation of protumorigenic cytokines (IL-1β, IL-6 and TNF-α), and downregulation of antitumorigenic cytokine (IL-12p40) and anti-inflammatory cytokine (IL-10). This suggests that SAG-dependent UPS is a key switch between immune defense and apoptosis or immune overactivation and tumorigenesis. Altogether, our results indicate that SAG-UPS facilitates a timely and appropriate level of immune response, prompting future development of potential immunomodulators of SAG-UPS.

  13. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection

    Science.gov (United States)

    Wu, Kangyun; Byers, Derek E.; Jin, Xiaohua; Agapov, Eugene; Alexander-Brett, Jennifer; Patel, Anand C.; Cella, Marina; Gilfilan, Susan; Colonna, Marco; Kober, Daniel L.; Brett, Tom J.

    2015-01-01

    Viral infections and type 2 immune responses are thought to be critical for the development of chronic respiratory disease, but the link between these events needs to be better defined. Here, we study a mouse model in which infection with a mouse parainfluenza virus known as Sendai virus (SeV) leads to long-term activation of innate immune cells that drive IL-13–dependent lung disease. We find that chronic postviral disease (signified by formation of excess airway mucus and accumulation of M2-differentiating lung macrophages) requires macrophage expression of triggering receptor expressed on myeloid cells-2 (TREM-2). Analysis of mechanism shows that viral replication increases lung macrophage levels of intracellular and cell surface TREM-2, and this action prevents macrophage apoptosis that would otherwise occur during the acute illness (5–12 d after inoculation). However, the largest increases in TREM-2 levels are found as the soluble form (sTREM-2) long after clearance of infection (49 d after inoculation). At this time, IL-13 and the adapter protein DAP12 promote TREM-2 cleavage to sTREM-2 that is unexpectedly active in preventing macrophage apoptosis. The results thereby define an unprecedented mechanism for a feed-forward expansion of lung macrophages (with IL-13 production and consequent M2 differentiation) that further explains how acute infection leads to chronic inflammatory disease. PMID:25897174

  14. Copper induces the expression of cholesterogenic genes in human macrophages.

    Science.gov (United States)

    Svensson, Per Arne; Englund, Mikael C O; Markström, Emilia; Ohlsson, Bertil G; Jernås, Margareta; Billig, Håkan; Torgerson, Jarl S; Wiklund, Olov; Carlsson, Lena M S; Carlsson, Björn

    2003-07-01

    Accumulation of lipids and cholesterol by macrophages and subsequent transformation into foam cells are key features in development of atherosclerosis. Serum copper concentrations have been shown to be associated with cardiovascular disease. However, the mechanism behind the proatherogenic effect of copper is not clear. We used DNA microarrays to define the changes in gene expression profile in response to copper exposure of human macrophages. Expression monitoring by DNA microarray revealed 91 genes that were regulated. Copper increased the expression of seven cholesterogenic genes (3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase, IPP isomerase, squalene synthase, squalene epoxidase, methyl sterol oxidase, H105e3 mRNA and sterol-C5-desaturase) and low-density lipoprotein receptor (LDL-R), and decreased the expression of CD36 and lipid binding proteins. The expression of LDL-R and HMG CoA reductase was also investigated using real time PCR. The expression of both of these genes was increased after copper treatment of macrophages (Pmechanism for the association between copper and atherosclerosis. The effect of copper on cholesterogenic genes may also have implications for liver steatosis in early stages of Wilson's disease.

  15. Interaction of glucocorticoids with macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Werb, Z.; Foley, R.; Munck, A.

    1978-01-01

    The mononuclear phagocyte system plays a central role in mediating host responses in inflammation. Glucocorticoids have anti-inflammatory actions that may be of considerable importance in the therapeutic effects of these agents in chronic inflammation; it is possible that some of these effects are mediated through direct hormonal action on macrophages. Although the site of action of the glucocorticoids on macrophages has not been established, it has been shown that in many other glucocorticoid target systems the effects of glucocorticoids are mediated by specific macromolecular binding proteins, referred to as receptors. In this study we have established that monocytes and macophages contain saturable glucocorticoid-binding proteins, with specificity of binding for cortisol, corticosterone, and related synthetic steroids such as dexamethasone, and that they have dissociation constants for binding within physiological ranges.

  16. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis.

    Directory of Open Access Journals (Sweden)

    John T Pesce

    2009-04-01

    Full Text Available Macrophage-specific expression of Arginase-1 is commonly believed to promote inflammation, fibrosis, and wound healing by enhancing L-proline, polyamine, and Th2 cytokine production. Here, however, we show that macrophage-specific Arg1 functions as an inhibitor of inflammation and fibrosis following infection with the Th2-inducing pathogen Schistosoma mansoni. Although susceptibility to infection was not affected by the conditional deletion of Arg1 in macrophages, Arg1(-/flox;LysMcre mice died at an accelerated rate. The mortality was not due to acute Th1/NOS2-mediated hepatotoxicity or endotoxemia. Instead, granulomatous inflammation, liver fibrosis, and portal hypertension increased in infected Arg1(-/flox;LysMcre mice. Similar findings were obtained with Arg1(flox/flox;Tie2cre mice, which delete Arg1 in all macrophage populations. Production of Th2 cytokines increased in the infected Arg1(-/flox;LysMcre mice, and unlike alternatively activated wild-type macrophages, Arg1(-/flox;LysMcre macrophages failed to inhibit T cell proliferation in vitro, providing an underlying mechanism for the exacerbated Th2 pathology. The suppressive activity of Arg1-expressing macrophages was independent of IL-10 and TGF-beta1. However, when exogenous L-arginine was provided, T cell proliferation was restored, suggesting that Arg1-expressing macrophages deplete arginine, which is required to sustain CD4(+ T cell responses. These data identify Arg1 as the essential suppressive mediator of alternatively activated macrophages (AAM and demonstrate that Arg1-expressing macrophages function as suppressors rather than inducers of Th2-dependent inflammation and fibrosis.

  17. Sustained nitric oxide delivery delays nitric oxide-dependent apoptosis in macrophages: contribution to the physiological function of activated macrophages.

    Science.gov (United States)

    Hortelano, Sonsoles; Través, Paqui G; Zeini, Miriam; Alvarez, Alberto M; Boscá, Lisardo

    2003-12-01

    Treatment of the macrophage cell line RAW 264.7 with the short-lived NO donor S-nitrosoglutathione triggers apoptosis through the release of mitochondrial mediators. However, continuous supply of NO by long-lived NO donors protected cells from apoptosis through mechanisms that involved the maintenance or an increase in the levels of the inhibitor of apoptosis proteins (IAPs) cIAP-1, cIAP-2, and xIAP and decreases in the accumulation of p53 and in the levels and targeting of Bax to the mitochondria. As a result of these changes, the activation of caspases 9 and 3 was notably delayed, expanding the time of viability of the macrophages. Moreover, inhibition of NO synthase 2 activity after 8 h of stimulation of RAW 264.7 cells with LPS and IFN-gamma accelerated apoptosis via an increase in the processing and activation of caspases. These data suggest that NO exerts an important role in the autoregulation of apoptosis in macrophages.

  18. Effects of ischemia on lung macrophages.

    Directory of Open Access Journals (Sweden)

    Aigul Moldobaeva

    Full Text Available Angiogenesis after pulmonary ischemia is initiated by reactive O(2 species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int, CD11C+, alveolar macrophages (MHCII(int, CD11C+, CD11B- and mature lung macrophages (MHCII(int, CD11C+, CD11B+ in left lungs from mice immediately (0 h or 24 h after left pulmonary artery ligation (LPAL. In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05. No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs. When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01 compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA. These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.

  19. Immunolocalization of acyl-coenzyme A:cholesterol O-acyltransferase in macrophages.

    Science.gov (United States)

    Khelef, N; Buton, X; Beatini, N; Wang, H; Meiner, V; Chang, T Y; Farese, R V; Maxfield, F R; Tabas, I

    1998-05-01

    Macrophages in atherosclerotic lesions accumulate large amounts of cholesteryl-fatty acyl esters ("foam cell" formation) through the intracellular esterification of cholesterol by acyl-coenzyme A:cholesterol O-acyltransferase (ACAT). In this study, we sought to determine the subcellular localization of ACAT in macrophages. Using mouse peritoneal macrophages and immunofluorescence microscopy, we found that a major portion of ACAT was in a dense reticular cytoplasmic network and in the nuclear membrane that colocalized with the luminal endoplasmic reticulum marker protein-disulfide isomerase (PDI) and that was in a similar distribution as the membrane-bound endoplasmic reticulum marker ribophorin. Remarkably, another portion of the macrophage ACAT pattern did not overlap with PDI or ribophorin, but was found in as yet unidentified cytoplasmic structures that were juxtaposed to the nucleus. Compartments containing labeled beta-very low density lipoprotein, an atherogenic lipoprotein, did not overlap with the ACAT label, but rather were embedded in the dense reticular network of ACAT. Furthermore, cell-surface biotinylation experiments revealed that freshly harvested, non-attached macrophages, but not those attached to tissue culture dishes, contained approximately 10-15% of ACAT on the cell surface. In summary, ACAT was found in several sites in macrophages: a cytoplasmic reticular/nuclear membrane site that overlaps with PDI and ribophorin and has the characteristics of the endoplasmic reticulum, a perinuclear cytoplasmic site that does not overlap with PDI or ribophorin and may be another cytoplasmic structure or possibly a unique subcompartment of the endoplasmic reticulum, and a cell-surface site in non-attached macrophages. Understanding possible physiological differences of ACAT in these locations may reveal an important component of ACAT regulation and macrophage foam cell formation.

  20. Dual Use of Amphiphilic Macromolecules As Cholesterol Efflux Triggers and Inhibitors of Macrophage Athero-inflammation

    Science.gov (United States)

    Iverson, Nicole; Plourde, Nicole M.; Sparks, Sarah M.; Wang, Jinzhong; Patel, Ekta; Shah, Pratik; Lewis, Daniel R.; Zablocki, Kyle; Nackman, Gary B.; Uhrich, Kathryn E.; Moghe, Prabhas V.

    2011-01-01

    Activated vascular wall macrophages can rapidly internalize modified lipoproteins and escalate the growth of atherosclerotic plaques. This article proposes a biomaterials-based therapeutic intervention for depletion of non-regulated cholesterol accumulation and inhibition of inflammation of macrophages. Macromolecules with high scavenger receptor (SR)-binding activity were investigated for SR-mediated delivery of agonists to cholesterol-trafficking nuclear liver-X receptors. From a diverse feature space of a family of amphiphilic macromolecules of linear and aromatic mucic acid backbones modified with varied aliphatic chains and conjugated with differentially branched poly(ethylene glycol), a key molecule (carboxyl-terminated, C12-derivatized, linear mucic acid backbone) was selected for its ability to preferentially bind scavenger receptor A (SR-A) as the key target. At a basal level, this macromolecule suppressed the pro-inflammatory signaling of activated THP-1 macrophages while competitively lowering oxLDL uptake in vitro through scavenger receptor SRA-1 targeting. To further deplete intracellular cholesterol, the core macromolecule structure was exploited to solubilize a hydrophobic small molecule agonist for nuclear Liver-X Receptors, which regulate the efflux of intracellular cholesterol. The macromolecule-encapsulated agonist system was found to reduce oxLDL accumulation by 88% in vitro in comparison to controls. In vivo studies were designed to release the macromolecules (with or without encapsulated agonist) to injured carotid arteries within Sprague Dawley rats fed a high fat diet, conditions that yield enhanced cholesterol accumulation and macrophage recruitment. The macromolecules lowered intimal levels of accumulated cholesterol (50% for macromolecule alone; 70% for macromolecule-encapsulated agonist) and inhibited macrophage retention (92% for macromolecule; 96% for macromolecule-encapsulated agonist; 4 days) relative to non-treated controls. Thus

  1. Unexpected macrophage-independent dyserythropoiesis in Gaucher disease.

    Science.gov (United States)

    Reihani, Nelly; Arlet, Jean-Benoit; Dussiot, Michael; de Villemeur, Thierry Billette; Belmatoug, Nadia; Rose, Christian; Colin-Aronovicz, Yves; Hermine, Olivier; Le Van Kim, Caroline; Franco, Melanie

    2016-12-01

    Gaucher disease is a rare inherited disease caused by a deficiency in glucocerebrosidase leading to lipid accumulation in cells of mononuclear-macrophage lineage known as Gaucher cells. Visceral enlargement, bone involvement, mild anemia and thrombocytopenia are the major manifestations of Gaucher disease. We have previously demonstrated that the red blood cells from patients exhibit abnormal properties, which indicates a new role in Gaucher disease pathophysiology. To investigate whether erythroid progenitors are affected, we examined the in vitro erythropoiesis from the peripheral CD34(+) cells of patients and controls. CD34- cells were differentiated into macrophages and co-cultivated with erythroblasts. We showed an accelerated differentiation of erythroid progenitors without maturation arrest from patients compared to controls. This abnormal differentiation persisted in the patients when the same experiments were performed without macrophages, which strongly suggested that dyserythropoiesis in Gaucher disease is secondary to an inherent defect in the erythroid progenitors. The accelerated differentiation was associated with reduced cell proliferation. As a result, less mature erythroid cells were generated in vitro in the Gaucher disease cultures compared to the control. We then compared the biological characteristics of untreated patients according to their anemic status. Compared to the non-anemic group, the anemic patients exhibit higher plasma levels of growth differentiation factor-15, a marker of ineffective erythropoiesis, but they had no indicators of hemolysis and similar reticulocyte counts. Taken together, these results demonstrated an unsuspected dyserythropoiesis that was independent of the macrophages and could participate, at least in part, to the basis of anemia in Gaucher disease.

  2. Phagocytosis of cholesteryl ester is amplified in diabetic mouse macrophages and is largely mediated by CD36 and SR-A.

    Directory of Open Access Journals (Sweden)

    Christopher B Guest

    Full Text Available Type 2 diabetes (T2D is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetes-related deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db mice are given cholesteryl ester intraperitoneally (IP, peritoneal macrophages (PerMPhis recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMPhis from heterozygote control (db/+ mice. Notably, PerMPhi fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMPhi. Finally, in order to determine if these scavenger receptors (SRs were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMPhis showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression.

  3. ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin - reversal by a chemical chaperone.

    Science.gov (United States)

    Castilho, Gabriela; Okuda, Ligia S; Pinto, Raphael S; Iborra, Rodgiro T; Nakandakare, Edna R; Santos, Celio X; Laurindo, Francisco R; Passarelli, Marisa

    2012-07-01

    ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes.

  4. The uptake of tocopherols by RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Papas Andreas M

    2002-10-01

    Full Text Available Abstract Background Alpha-Tocopherol and gamma-tocopherol are the two major forms of vitamin E in human plasma and the primary lipid soluble antioxidants. The dietary intake of gamma-tocopherol is generally higher than that of alpha-tocopherol. However, alpha-tocopherol plasma levels are about four fold higher than those of gamma-tocopherol. Among other factors, a preferential cellular uptake of gamma-tocopherol over alpha-tocopherol could contribute to the observed higher plasma alpha-tocopherol levels. In this investigation, we studied the uptake and depletion of both alpha-tocopherol and gamma-tocopherol (separately and together in cultured RAW 264.7 macrophages. Similar studies were performed with alpha-tocopheryl quinone and gamma-tocopheryl quinone, which are oxidation products of tocopherols. Results RAW 264.7 macrophages showed a greater uptake of gamma-tocopherol compared to alpha-tocopherol (with uptake being defined as the net difference between tocopherol transported into the cells and loss due to catabolism and/or in vitro oxidation. Surprisingly, we also found that the presence of gamma-tocopherol promoted the cellular uptake of alpha-tocopherol. Mass balance considerations suggest that products other than quinone were formed during the incubation of tocopherols with macrophages. Conclusion Our data suggests that gamma-tocopherol could play a significant role in modulating intracellular antioxidant defence mechanisms. Moreover, we found the presence of gamma-tocopherol dramatically influenced the cellular accumulation of alpha-tocopherol, i.e., gamma-tocopherol promoted the accumulation of alpha-tocopherol. If these results could be extrapolated to in vivo conditions they suggest that gamma-tocopherol is selectively taken up by cells and removed from plasma more rapidly than alpha-tocopherol. This could, in part, contribute to the selective maintenance of alpha-tocopherol in plasma compared to gamma-tocopherol.

  5. Determination of the Optimal Sampling Interval for Cyclostratigraphic Analysis by Using Sampling Theorem and Accumulation Rates%利用采样定理与沉积速率确定旋回分析最佳采样间隔

    Institute of Scientific and Technical Information of China (English)

    赵庆乐; 吴怀春; 李海燕; 张世红

    2011-01-01

    equals to half of a precession cycle is the optimal sampling interval for cyclostratigraphic analysis. All Milankovitch signals can be identified and at the same time the workload is the least by using this optimal sampling interval This interval should be determined according to the mean accumulation rate of the target successions during field sampling.

  6. Bone Marrow-Derived Macrophages (BMM)

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Porse, Bo

    2008-01-01

    INTRODUCTIONBone marrow-derived macrophages (BMM) are primary macrophage cells, derived from bone marrow cells in vitro in the presence of growth factors. Macrophage colony-stimulating factor (M-CSF) is a lineage-specific growth factor that is responsible for the proliferation and differentiation...... of committed myeloid progenitors into cells of the macrophage/monocyte lineage. Mice lacking functional M-CSF are deficient in macrophages and osteoclasts and suffer from osteopetrosis. In this protocol, bone marrow cells are grown in culture dishes in the presence of M-CSF, which is secreted by L929 cells...... and is used in the form of L929-conditioned medium. Under these conditions, the bone marrow monocyte/macrophage progenitors will proliferate and differentiate into a homogenous population of mature BMMs. The efficiency of the differentiation is assessed using fluorescence-activated cell sorting (FACS...

  7. Effects of spraying PBO on flowering rate and carbohydrate accumulation of ‘ Fuji' apple trees%PBO喷施对矮化富士幼树成花及碳水化合物积累的影响

    Institute of Scientific and Technical Information of China (English)

    邢利博; 张晓云; 宋晓敏; 宋春晖; 韩明玉; 赵彩平; 李高潮

    2013-01-01

    In attempt to investigate the effects of spraying PBO on flowering rate and carbohydrate accumulation of ‘ Fuji' apple trees,different concentrations of PBP were sprayed on young apple (Malus domestica Borth.) cultivar ‘ Fuji' Nagafu No.2.The flowering rate,shoot growth and carbohydrate content changes of leaf and bud in apple trees were studied also.The results showed that:(1)spraying PBO treatment could,to certain extent,improve flowering rate and restrain shoot growth in upper,middle and basal part of ‘Fuji' young apple trees.The spraying PBO with different concentrations had different effects on carbohydrate content changes of leaf and bud of in upper,middle and basal part of ‘ Fuji' young apple trees.Compared with control,spraying PBO with higher concentrations (4000 mg· L-1 and 6667 mg · L-1) could increase the content of the sucrose,glucose,sorbitol,total soluble sugar in leaf in upper,middle and basal part of ‘Fuji' young apple tree in the early growth stage (from May to July),but significantly reduced starch content in leaf during this period.Similarly,spraying PBO with higher concentration significantly increased content of sorbitol and total soluble sugar in bud in June and significantly reduced starch content in bud in July.(2)Flower bud formation was closely correlated to translocation or conversion of carbohydrate between leaf and bud.Spraying PBO of highest concentration (6667 mg· L-1) leaded to a significant positive correlation between sorbitol and total soluble sugar content and leaf and bud; however,corresponding correlation between starch content and leaf and bud was not significant.According to experinent results of this study and taking production investment into consideration,we proposed that spraying PBO treatment with 4000 mg· L-1 is effective in promoting flower bud formation of ‘ Fuji' apple trees in the period from May to July (the critical period for physiological differentiation of apple flower buds).%以‘长富2号'

  8. Accumulation of Norfloxacin by Bacteroides fragilis

    OpenAIRE

    Ricci, Vito; Piddock, Laura J. V.

    2000-01-01

    The accumulation of norfloxacin by Bacteroides fragilis NCTC 9343 was determined by the modified fluorescence method. The time required to achieve a steady-state concentration (SSC) after allowing B. fragilis to accumulate norfloxacin in an aerobic or an anaerobic environment was ∼2 min; the SSC achieved in air was 90.28 ± 9.32 ng of norfloxacin/mg (dry weight) of cells, and that achieved anaerobically was 98.45 ± 3.7 ng of norfloxacin/mg (dry weight) of cells. Initial rates of accumulation w...

  9. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Directory of Open Access Journals (Sweden)

    Satoshi Nishiwaki

    Full Text Available Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP, a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  10. Macrophage-mediated tumor cytotoxicity: role of macrophage surface sialic acid.

    Science.gov (United States)

    Cameron, D J

    1983-02-01

    Cell surface sialic acid levels were compared for monocytes and macrophages obtained from normal volunteers and breast cancer patients. Equal quantities of sialic acid were found on the monocytes obtained from normal volunteers and breast cancer patients. Approximately 60% more cell surface sialic acid was found on the macrophages from breast cancer patients than was found on the macrophages from normal volunteers. In order to determine whether cell surface sialic acid had any effect on macrophage-mediated cytotoxicity, macrophages were pretreated with neuraminidase (NANAse) prior to co-cultivation with tumor cells. The normal macrophages, after neuraminidase treatment, no longer retained their ability to kill tumor cells. However, when macrophages from breast cancer patients were treated with NANAse, no difference was observed in the ability of untreated and NANAse treated macrophages to kill tumor cells.

  11. DMPD: Silica binding and toxicity in alveolar macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18226603 Silica binding and toxicity in alveolar macrophages. Hamilton RF Jr, Thaku...l) Show Silica binding and toxicity in alveolar macrophages. PubmedID 18226603 Title Silica binding and toxicity in alveolar

  12. Macrophages.com: an on-line community resource for innate immunity research.

    Science.gov (United States)

    Robert, Christelle; Lu, Xiang; Law, Andrew; Freeman, Tom C; Hume, David A

    2011-11-01

    Macrophages play a major role in tissue remodelling during development, wound healing and tissue homeostasis, and are central to innate immunity and to the pathology of tissue injury and inflammation. Given this fundamental role in many aspects of biological function, an enormous wealth of information has accumulated on these fascinating cells in the literature and other public repositories. With the escalation of genome-scale data derived from macrophages and related haematopoietic cell types, there is a growing need for an integrated resource that seeks to compile, organise and analyse our collective knowledge of macrophage biology. Here we describe a community-driven web-based resource, macrophages.com that aims to provide a portal onto various types of Omics data to facilitate comparative genomic studies, promoter and transcriptional network analyses, models of macrophage pathways together with other information on these cells. To this end, the website combines public and in-house analyses of expression data with pre-analysed views of co-expressed genes as supported by the network analysis tool BioLayout Express(3D), as well as providing access to maps of pathways active in macrophages. Macrophages.com also provides access to an extensive image library of macrophages in adult/embryonic tissue sections prepared from normal and transgenic mice. In addition, the site links to the Human Protein Atlas database so as to provide direct access to protein expression patterns in human macrophages. Finally, an integrated gene-centric portal provides the tools for rapid promoter analysis studies based on a comprehensive set of CAGE-derived transcription start site (TSS) sequences in human and mouse genomes as generated by the Functional Annotation of Mammalian genomes (FANTOM) projects initiated by the RIKEN Omics Science Center. Our aim is to continue to grow the macrophages.com resource using publicly available data, as well as in-house generated knowledge. In so doing

  13. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  14. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  15. Liver macrophages in healthy and diseased liver.

    Science.gov (United States)

    Abdullah, Zeinab; Knolle, Percy A

    2017-04-01

    Kupffer cells, the largest tissue resident macrophage population, are key for the maintenance of liver integrity and its restoration after injury and infections, as well as the local initiation and resolution of innate and adaptive immunity. These important roles of Kupffer cells were recently identified in healthy and diseased liver revealing diverse functions and phenotypes of hepatic macrophages. High-level phenotypic and genomic analysis revealed that Kupffer cells are not a homogenous population and that the hepatic microenvironment actively shapes both phenotype and function of liver macrophages. Compared to macrophages from other organs, hepatic macrophages bear unique properties that are instrumental for their diverse roles in local immunity as well as liver regeneration. The diverse and, in part, contradictory roles of hepatic macrophages in anti-tumor and inflammatory immune responses as well as regulatory and regenerative processes have been obscured by the lack of appropriate technologies to specifically target or ablate Kupffer cells or monocyte-derived hepatic macrophages. Future studies will need to dissect the exact role of the hepatic macrophages with distinct functional properties linked to their differentiation status and thereby provide insight into the functional plasticity of hepatic macrophages.

  16. Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Gopinath S Palanisamy

    Full Text Available The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence.

  17. Suppression of lymphocyte proliferation by parainfluenza virus type 3-infected bovine alveolar macrophages.

    Science.gov (United States)

    Basaraba, R J; Brown, P R; Laegreid, W W; Silflow, R M; Evermann, J F; Leid, R W

    1993-06-01

    Lymphocytes stimulated with concanavalin A (Con A) or antigen in the presence of bovine parainfluenza virus type 3 (PIV-3) infected bovine alveolar macrophages (BAM) or monocytes, had depressed [3H]thymidine incorporation. This failure of lymphocytes to incorporate radiolabel required live virus, was time dependent and was most pronounced when BAM were infected for 48 hr prior to the addition of lymphocytes. The rate of infection of alveolar macrophages and the release of infectious virus into culture supernatants paralleled suppression of lymphocyte mitogenesis by PIV-3. However, the peak titre of exogenous, live or inactivated virus was not suppressive when added to lymphocyte macrophage cultures just prior to Con A stimulation. Neither the loss of viable alveolar macrophages nor a shift in antigen or mitogen dose response in virally infected cultures could account for the deficit in [3H]thymidine incorporation by lymphocytes. Despite the presence of lymphocyte-associated virus antigen detected by direct immunofluorescence, no increase in PIV-3 titre above baseline was seen from infected lymphocytes, irrespective of mitogen stimulation. Likewise, lymphocytes did not contribute to the extracellular virus pool in lymphocyte-macrophage cultures as the increases in viral titre above basal levels in supernatants were equal to levels released by macrophages alone. The expression of viral antigen on lymphocytes stimulated in the presence of PIV-3-infected BAM suggests a non-productive or abortive infection of lymphocytes mediated through contact with infected macrophages.

  18. Differential Macrophage Response to Slow- and Fast-Growing Pathogenic Mycobacteria

    Directory of Open Access Journals (Sweden)

    A. Cecilia Helguera-Repetto

    2014-01-01

    Full Text Available Nontuberculous mycobacteria (NTM have recently been recognized as important species that cause disease even in immunocompetent individuals. The mechanisms that these species use to infect and persist inside macrophages are not well characterised. To gain insight concerning this process we used THP-1 macrophages infected with M. abscessus, M. fortuitum, M. celatum, and M. tuberculosis. Our results showed that slow-growing mycobacteria gained entrance into these cells with more efficiency than fast-growing mycobacteria. We have also demonstrated that viable slow-growing M. celatum persisted inside macrophages without causing cell damage and without inducing reactive oxygen species (ROS, as M. tuberculosis caused. In contrast, fast-growing mycobacteria destroyed the cells and induced high levels of ROS. Additionally, the macrophage cytokine pattern induced by M. celatum was different from the one induced by either M. tuberculosis or fast-growing mycobacteria. Our results also suggest that, in some cases, the intracellular survival of mycobacteria and the immune response that they induce in macrophages could be related to their growth rate. In addition, the modulation of macrophage cytokine production, caused by M. celatum, might be a novel immune-evasion strategy used to survive inside macrophages that is different from the one reported for M. tuberculosis.

  19. DMPD: Nuclear receptor signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14698033 Nuclear receptor signaling in macrophages. Valledor AF, Ricote M. Biochem ...Pharmacol. 2004 Jan 15;67(2):201-12. (.png) (.svg) (.html) (.csml) Show Nuclear receptor signaling in macrop...hages. PubmedID 14698033 Title Nuclear receptor signaling in macrophages. Authors Valledor AF, Ricote M. Pub

  20. DMPD: Cellular signaling in macrophage migration and chemotaxis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11073096 Cellular signaling in macrophage migration and chemotaxis. Jones GE. J Leu...koc Biol. 2000 Nov;68(5):593-602. (.png) (.svg) (.html) (.csml) Show Cellular signaling in macrophage migration... and chemotaxis. PubmedID 11073096 Title Cellular signaling in macrophage migration and chemotaxis. Autho

  1. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  2. DMPD: Macrophage differentiation and function in health and disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18251777 Macrophage differentiation and function in health and disease. Naito M. Pa...thol Int. 2008 Mar;58(3):143-55. (.png) (.svg) (.html) (.csml) Show Macrophage differentiation and function in health... and disease. PubmedID 18251777 Title Macrophage differentiation and function in health and disease

  3. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  4. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title ...Receptor tyrosine kinases and the regulation of macrophage activation. Authors Co

  5. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  6. DMPD: Regulation of endogenous apolipoprotein E secretion by macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18388328 Regulation of endogenous apolipoprotein E secretion by macrophages. Kockx ...svg) (.html) (.csml) Show Regulation of endogenous apolipoprotein E secretion by macrophages. PubmedID 18388...328 Title Regulation of endogenous apolipoprotein E secretion by macrophages. Aut

  7. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic macrophage TNFalpha expres...sion. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha express

  8. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages.

    Science.gov (United States)

    Yoshida, Keisuke; Renard-Guillet, Claire; Inoue, Kentaro; Shirahige, Katsuhiko; Okada-Hatakeyama, Mariko; Ishii, Shunsuke

    2016-03-01

    Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO) under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR) ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages.

  9. Data on sulforaphane treatment mediated suppression of autoreactive, inflammatory M1 macrophages

    Directory of Open Access Journals (Sweden)

    Sanjima Pal

    2016-06-01

    Full Text Available Any chronic, inflammatory, autoimmune disease (e.g. arthritis associated pathogenesis directs uncontrolled accumulation of both soluble forms of collagens in the synovial fluids and M1 macrophages around inflamed tissues. Despite of few studies demonstrating efficiency of Sulforaphane (SFN in suppressing arthritis associated collagen restricted T cells or fibroblasts, its effects on macrophage polarity and plasticity are less understood. Recently, we reported regulation of phenotypic and functional switching by SFN in induced and spontaneously differentiating human monocytes [1]. Here, flow cytometry, western blot and ELISA derived data demonstrated that SFN inhibited in vitro inflammatory responses developed by soluble human collagens (I–IV induced auto-reactive M1 type monocyte/macrophage model.

  10. The macrophage scavenger receptor (CD163): a double-edged sword in treatment of malignant disease

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan

    2009-01-01

    by the exposition to the toxic effects of high levels of plasma hemoglobin occurring after treatment with CD33-directed therapy with the immunotoxin gemtuzumab ozogamicin (GO). The syndrome is characterized by excessive accumulation of plasma hemoglobin despite high haptoglobin levels and was shown to arise due...... in pathophysiological conditions involving the monocyte/macrophage system, as emphasized by the lineage-specific CD163 expression on monocytes, macrophages, and dendritic cells. The CD163 expression on tumor-promoting macrophages and malignant cells depicted the hemoglobin scavenger receptor CD163 as a double-edged...... cytotoxic drug delivery may lead to impaired CD163-mediated hemoglobin-scavenging causing MaDS, our data imply that the expected adverse effect profile using CD163 as a target may potentially be clinically insignificant compared with comparable treatments currently available....

  11. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages.

  12. Accumulation by Conservation

    NARCIS (Netherlands)

    Büscher, Bram; Fletcher, Robert

    2014-01-01

    Following the financial crisis and its aftermath, it is clear that the inherent contradictions of capitalist accumulation have become even more intense and plunged the global economy into unprecedented turmoil and urgency. Governments, business leaders and other elite agents are frantically searchin

  13. A randomized clinical trial to evaluate the effect of granulocyte- macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization

    DEFF Research Database (Denmark)

    Ziebe, Søren; Loft, Anne; Povlsen, Betina B.;

    2013-01-01

    To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR).......To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR)....

  14. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    Directory of Open Access Journals (Sweden)

    Karl J Staples

    Full Text Available Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  15. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy.

    Science.gov (United States)

    McLaren, James E; Michael, Daryn R; Ashlin, Tim G; Ramji, Dipak P

    2011-10-01

    Cardiovascular disease is the biggest killer globally and the principal contributing factor to the pathology is atherosclerosis; a chronic, inflammatory disorder characterized by lipid and cholesterol accumulation and the development of fibrotic plaques within the walls of large and medium arteries. Macrophages are fundamental to the immune response directed to the site of inflammation and their normal, protective function is harnessed, detrimentally, in atherosclerosis. Macrophages contribute to plaque development by internalizing native and modified lipoproteins to convert them into cholesterol-rich foam cells. Foam cells not only help to bridge the innate and adaptive immune response to atherosclerosis but also accumulate to create fatty streaks, which help shape the architecture of advanced plaques. Foam cell formation involves the disruption of normal macrophage cholesterol metabolism, which is governed by a homeostatic mechanism that controls the uptake, intracellular metabolism, and efflux of cholesterol. It has emerged over the last 20 years that an array of cytokines, including interferon-γ, transforming growth factor-β1, interleukin-1β, and interleukin-10, are able to manipulate these processes. Foam cell targeting, anti-inflammatory therapies, such as agonists of nuclear receptors and statins, are known to regulate the actions of pro- and anti-atherogenic cytokines indirectly of their primary pharmacological function. A clear understanding of macrophage foam cell biology will hopefully enable novel foam cell targeting therapies to be developed for use in the clinical intervention of atherosclerosis.

  16. Macrophage diversity in renal injury and repair

    NARCIS (Netherlands)

    Ricardo, Sharon D.; van Goor, Harry; Eddy, Allison A.

    2008-01-01

    Monocyte-derived macrophages can determine the outcome of the immune response and whether this response contributes to tissue repair or mediates tissue destruction. In addition to their important role in immune-mediated renal disease and host defense, macrophages play a fundamental role in tissue re

  17. Mycobacterium tuberculosis replicates within necrotic human macrophages

    Science.gov (United States)

    Lerner, Thomas R.; Repnik, Urska; Herbst, Susanne; Collinson, Lucy M.; Griffiths, Gareth

    2017-01-01

    Mycobacterium tuberculosis modulation of macrophage cell death is a well-documented phenomenon, but its role during bacterial replication is less characterized. In this study, we investigate the impact of plasma membrane (PM) integrity on bacterial replication in different functional populations of human primary macrophages. We discovered that IFN-γ enhanced bacterial replication in macrophage colony-stimulating factor–differentiated macrophages more than in granulocyte–macrophage colony-stimulating factor–differentiated macrophages. We show that permissiveness in the different populations of macrophages to bacterial growth is the result of a differential ability to preserve PM integrity. By combining live-cell imaging, correlative light electron microscopy, and single-cell analysis, we found that after infection, a population of macrophages became necrotic, providing a niche for M. tuberculosis replication before escaping into the extracellular milieu. Thus, in addition to bacterial dissemination, necrotic cells provide first a niche for bacterial replication. Our results are relevant to understanding the environment of M. tuberculosis replication in the host. PMID:28242744

  18. A broken krebs cycle in macrophages.

    Science.gov (United States)

    O'Neill, Luke A J

    2015-03-17

    Macrophages undergo metabolic rewiring during polarization but details of this process are unclear. In this issue of Immunity, Jha et al. (2015) report a systems approach for unbiased analysis of cellular metabolism that reveals key metabolites and metabolic pathways required for distinct macrophage polarization states.

  19. The Alternative Faces of Macrophage Generate Osteoclasts

    Directory of Open Access Journals (Sweden)

    N. Lampiasi

    2016-01-01

    Full Text Available The understanding of how osteoclasts are generated and whether they can be altered by inflammatory stimuli is a topic of particular interest for osteoclastogenesis. It is known that the monocyte/macrophage lineage gives rise to osteoclasts (OCs by the action of macrophage colony stimulating factor (M-CSF and receptor activator of nuclear factor-kB ligand (RANKL, which induce cell differentiation through their receptors, c-fms and RANK, respectively. The multinucleated giant cells (MGCs generated by the engagement of RANK/RANKL are typical OCs. Nevertheless, very few studies have addressed the question of which subset of macrophages generates OCs. Indeed, two main subsets of macrophages are postulated, the inflammatory or classically activated type (M1 and the anti-inflammatory or alternatively activated type (M2. It has been proposed that macrophages can be polarized in vitro towards a predominantly M1 or M2 phenotype with the addition of granulocyte macrophage- (GM- CSF or M-CSF, respectively. Various inflammatory stimuli known to induce macrophage polarization, such as LPS or TNF-α, can alter the type of MGC obtained from RANKL-induced differentiation. This review aims to highlight the role of immune-related stimuli and factors in inducing macrophages towards the osteoclastogenesis choice.

  20. Mycobacteria, metals, and the macrophage.

    Science.gov (United States)

    Neyrolles, Olivier; Wolschendorf, Frank; Mitra, Avishek; Niederweis, Michael

    2015-03-01

    Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here, we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies.

  1. Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia

    Science.gov (United States)

    Fang, Hsin-Yu; Hughes, Russell; Murdoch, Craig; Coffelt, Seth; Biswas, Subhra K.; Harris, Adrian L.; Johnson, Randall S.; Imityaz, Hongxia Z.; Simon, M. Celeste; Fredlund, Erik; Greten, Florian; Rius, Jordi; Lewis, Claire E.

    2010-01-01

    Ischemia exists in many diseased tissues including arthritic joints, atherosclerotic plaques and malignant tumors. Macrophages accumulate in these sites and upregulate hypoxia-inducible transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene expression profile in primary human and murine macrophages changes markedly when they are exposed to hypoxia for 18h. For example, they were seen to upregulate the cell surface receptors, CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, VEGFA, interleukins 1β and 8, adrenomedullin, CXCR4 and angiopoietin-2. Hypoxia also stimulated their expression and/or phosphorylation of various proteins in the NF-κB signalling pathway. We then used both genetic and pharmacological methods to manipulate the levels of HIFs 1α and 2α or NF-κB in primary macrophages in order to elucidate their role in the hypoxic induction of many of these key genes. These studies showed that both HIFs 1 and 2, but not NF-κB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia. Further studies using experimental mouse models are now warranted to investigate the role of such macrophage responses in the progression of various diseased tissues like malignant tumors. PMID:19454749

  2. Critical role of macrophages and their activation via MyD88-NFκB signaling in lung innate immunity to Mycoplasma pneumoniae.

    Directory of Open Access Journals (Sweden)

    Jen-Feng Lai

    Full Text Available Mycoplasma pneumoniae (Mp, a common cause of pneumonia, is associated with asthma; however, the mechanisms underlying this association remain unclear. We investigated the cellular immune response to Mp in mice. Intranasal inoculation with Mp elicited infiltration of the lungs with neutrophils, monocytes and macrophages. Systemic depletion of macrophages, but not neutrophils, resulted in impaired clearance of Mp from the lungs. Accumulation and activation of macrophages were decreased in the lungs of MyD88(-/- mice and clearance of Mp was impaired, indicating that MyD88 is a key signaling protein in the anti-Mp response. MyD88-dependent signaling was also required for the Mp-induced activation of NFκB, which was essential for macrophages to eliminate the microbe in vitro. Thus, MyD88-NFκB signaling in macrophages is essential for clearance of Mp from the lungs.

  3. Mycobacterium tuberculosis expressing phospholipase C subverts PGE2 synthesis and induces necrosis in alveolar macrophages.

    Science.gov (United States)

    Assis, Patricia A; Espíndola, Milena S; Paula-Silva, Francisco W G; Rios, Wendy M; Pereira, Priscilla A T; Leão, Sylvia C; Silva, Célio L; Faccioli, Lúcia H

    2014-05-19

    Phospholipases C (PLCs) are virulence factors found in several bacteria. In Mycobacterium tuberculosis (Mtb) they exhibit cytotoxic effects on macrophages, but the mechanisms involved in PLC-induced cell death are not fully understood. It has been reported that induction of cell necrosis by virulent Mtb is coordinated by subversion of PGE2, an essential factor in cell membrane protection. Using two Mtb clinical isolates carrying genetic variations in PLC genes, we show that the isolate 97-1505, which bears plcA and plcB genes, is more resistant to alveolar macrophage microbicidal activity than the isolate 97-1200, which has all PLC genes deleted. The isolate 97-1505 also induced higher rates of alveolar macrophage necrosis, and likewise inhibited COX-2 expression and PGE2 production. To address the direct effect of mycobacterial PLC on cell necrosis and PGE2 inhibition, both isolates were treated with PLC inhibitors prior to macrophage infection. Interestingly, inhibition of PLCs affected the ability of the isolate 97-1505 to induce necrosis, leading to cell death rates similar to those induced by the isolate 97-1200. Finally, PGE2 production by Mtb 97-1505-infected macrophages was restored to levels similar to those produced by 97-1200-infected cells. Mycobacterium tuberculosis bearing PLCs genes induces alveolar macrophage necrosis, which is associated to subversion of PGE2 production.

  4. Antiproton Accumulator (AA)

    CERN Multimedia

    Photographic Service

    1980-01-01

    The AA in its final stage of construction, before it disappeared from view under concrete shielding. Antiprotons were first injected, stochastically cooled and accumulated in July 1980. From 1981 on, the AA provided antiprotons for collisions with protons, first in the ISR, then in the SPS Collider. From 1983 on, it also sent antiprotons, via the PS, to the Low-Energy Antiproton Ring (LEAR). The AA was dismantled in 1997 and shipped to Japan.

  5. [Molecular mechanisms regulating the activity of macrophages].

    Science.gov (United States)

    Onoprienko, L V

    2011-01-01

    This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.

  6. Macrophage serum markers in pneumococcal bacteremia

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Moestrup, Søren K; Weis, Nina

    2006-01-01

    OBJECTIVE: Soluble CD163 (sCD163) is a new macrophage-specific serum marker. This study investigated sCD163 and other markers of macrophage activation (neopterin, ferritin, transcobalamin, and soluble urokinase plasminogen activator receptor [suPAR]) as prognostic factors in patients with pneumoc......OBJECTIVE: Soluble CD163 (sCD163) is a new macrophage-specific serum marker. This study investigated sCD163 and other markers of macrophage activation (neopterin, ferritin, transcobalamin, and soluble urokinase plasminogen activator receptor [suPAR]) as prognostic factors in patients...... on the probability of survival when sCD163 and CRP were known (p = .25). CONCLUSIONS: Macrophage marker response in pneumococcal bacteremia was compromised in old age. In patients disease outcome....

  7. Macrophage Polarization in Health and Disease

    Directory of Open Access Journals (Sweden)

    Luca Cassetta

    2011-01-01

    Full Text Available Macrophages are terminally differentiated cells of the mononuclear phagocyte system that also encompasses dendritic cells, circulating blood monocytes, and committed myeloid progenitor cells in the bone marrow. Both macrophages and their monocytic precursors can change their functional state in response to microenvironmental cues exhibiting a marked heterogeneity. However, there are still uncertainties regarding distinct expression patterns of surface markers that clearly define macrophage subsets, particularly in the case of human macrophages. In addition to their tissue distribution, macrophages can be functionally polarized into M1 (proinflammatory and M2 (alternatively activated as well as regulatory cells in response to both exogenous infections and solid tumors as well as by systems biology approaches.

  8. Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway.

    Science.gov (United States)

    Vidal, Berta; Serrano, Antonio L; Tjwa, Marc; Suelves, Mònica; Ardite, Esther; De Mori, Roberta; Baeza-Raja, Bernat; Martínez de Lagrán, María; Lafuste, Peggy; Ruiz-Bonilla, Vanessa; Jardí, Mercè; Gherardi, Romain; Christov, Christo; Dierssen, Mara; Carmeliet, Peter; Degen, Jay L; Dewerchin, Mieke; Muñoz-Cánoves, Pura

    2008-07-01

    In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen-Mac-1 receptor binding, through induction of IL-1beta, drives the synthesis of transforming growth factor-beta (TGFbeta) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGFbeta further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its alphavbeta3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy.

  9. Bis(Monoacylglycero)Phosphate, oxysterols and ORP11 : a threesome regulating intracellular cholesterol traffic in macrophages

    OpenAIRE

    Arnal, Maud

    2015-01-01

    Atherosclerosis is a major cardiovascular complication in increased oxidative stress-related diseases such as type 2 diabetes and metabolic syndrome. In these situations, the low density lipoproteins (LDL) undergo oxidation and their high uptake induces cholesterol accumulation in subendothelial macrophages. On the other hand, oxidized LDL are enriched in cholesterol oxidation products called oxysterols, some of them are involved in the ability of oxidized LDL to induce cellular oxidative str...

  10. CD21-positive follicular dendritic cells: A possible source of PrPSc in lymph node macrophages of scrapie-infected sheep.

    Science.gov (United States)

    Herrmann, Lynn M; Cheevers, William P; Davis, William C; Knowles, Donald P; O'Rourke, Katherine I

    2003-04-01

    Natural sheep scrapie is a prion disease characterized by the accumulation of PrP(Sc) in brain and lymphoid tissues. Previous studies suggested that lymph node macrophages and follicular dendritic cells (FDC) accumulate PrP(Sc). In this study, lymph nodes were analyzed for the presence of PrP(Sc) and macrophage or FDC markers using dual immunohistochemistry. A monoclonal antibody (mAb) to the C-terminus of PrP reacted with CD172a+ macrophages and CD21+ FDC processes in secondary follicles. However, a PrP N-terminus-specific mAb reacted with CD21+ FDC processes but not CD172a+ macrophages in secondary follicles. Neither the PrP N-terminus nor C-terminus-specific mAb reacted with CD172a+ macrophages in the medulla. These results indicate that lymph node follicular macrophages acquire PrP(Sc) by phagocytosis of CD21+ FDC processes. The results also suggest that follicular macrophages have proteases that process full-length PrP(Sc) to N-terminally truncated PrP(Sc).

  11. Changing pattern of the subcellular distribution of erythroblast macrophage protein (Emp) during macrophage differentiation.

    Science.gov (United States)

    Soni, Shivani; Bala, Shashi; Kumar, Ajay; Hanspal, Manjit

    2007-01-01

    Erythroblast macrophage protein (Emp) mediates the attachment of erythroid cells to macrophages and is required for normal differentiation of both cell lineages. In erythroid cells, Emp is believed to be involved in nuclear extrusion, however, its role in macrophage differentiation is unknown. Information on the changes in the expression level and subcellular distribution of Emp in differentiating macrophages is essential for understanding the function of Emp. Macrophages of varying maturity were examined by immunofluorescence microscopy and biochemical methods. Our data show that Emp is expressed in all stages of maturation, but its localization pattern changes dramatically during maturation: in immature macrophages, a substantial fraction of Emp is associated with the nuclear matrix, whereas in more mature cells, Emp is expressed largely at cell surface. Pulse-chase experiments show that nascent Emp migrates intracellularly from the cytoplasm to the plasma membrane more efficiently in mature macrophages than in immature cells. Incubation of erythroid cells with macrophages in culture shows that erythroid cells attach to mature macrophages but not to immature macrophage precursors. Together, our data show that the temporal and spatial expression of Emp correlates with its role in erythroblastic island formation and suggest that Emp may be involved in multiple cellular functions.

  12. Macrophage Activation Syndrome in Paediatric Rheumatic Diseases.

    Science.gov (United States)

    Islam, M I; Talukder, M K; Islam, M M; Laila, K; Rahman, S A

    2017-04-01

    Macrophage activation syndrome (MAS) is a potentially fatal complication of rheumatic disorders, which commonly occurs in systemic juvenile idiopathic arthritis (sJIA).This study was carried out with the aims of describing the clinical features, laboratory findings and outcomes of MAS associated with paediatric rheumatic diseases in the Department of Paediatrics, Bangabandhu Sheikh Mujib Medical University (BSMMU) and compare these results with previous studies on MAS. This retrospective study was conducted in the paediatric rheumatology wing of the Department of Paediatrics, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. Clinical and laboratory profile of all the diagnosed cases of MAS were analyzed from the medical records from January 2010 to July 2015. Among 10 MAS patients, 6 were female and 4 were male. Seven patients of systemic JIA, two patients of SLE and one patient with Kawasaki Disease developed MAS in their course of primary disease. Mean duration of primary disease prior to development of MAS was 2.9 years and mean age of onset was 9.1 years. High continued fever and new onset hepatosplenomegaly were the hallmark of the clinical presentation. White blood cell count and platelet count came down from the mean of 16.2 to 10.2×10⁹/L and 254 to 90×10⁹/L. Mean erythrocyte sedimentation rate was dropped from 56 to 29 mm/hr. Six patients had abnormal liver enzyme level (ALT) and 5 had evidence of coagulopathy (prolonged prothrombin time and APTT) at the onset of disease. Hyperferritinnemia were found in all the patients. Bone marrow study was done in 5 patients but features of hamophagocytosis were found only in 2 patients. All patients received intravenous steroid and 3 patients who did not respond to steroid received additional cyclosporine. Mortality rate was 30% in this series. Macrophage activation syndrome is a fatal complication of paediatric rheumatic diseases among which s-JIA was predominant. Early diagnosis and

  13. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  14. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  15. The Many Alternative Faces of Macrophage Activation.

    Directory of Open Access Journals (Sweden)

    David A. Hume

    2015-07-01

    Full Text Available Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. In large gene expression datasets from multiple cells and tissues, it is possible to identify sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, they include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and those associated with endocytosis. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile or pathogenic inflammatory stimuli. These stimuli alter gene expression to produce activated macrophages that are better equipped to eliminate the cause of their influx, and to restore homeostasis. Activation or polarization states of macrophages have been classified as classical and alternative or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide (LPS. This response is reviewed herein. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals and in other species such as pigs. The data and publication deluge related to macrophage activation requires the development of new analytical tools, and ways of presenting information in an

  16. Markov models for accumulating mutations

    CERN Document Server

    Beerenwinkel, Niko

    2007-01-01

    We introduce and analyze a waiting time model for the accumulation of genetic changes. The continuous time conjunctive Bayesian network is defined by a partially ordered set of mutations and by the rate of fixation of each mutation. The partial order encodes constraints on the order in which mutations can fixate in the population, shedding light on the mutational pathways underlying the evolutionary process. We study a censored version of the model and derive equations for an EM algorithm to perform maximum likelihood estimation of the model parameters. We also show how to select the maximum likelihood poset. The model is applied to genetic data from different cancers and from drug resistant HIV samples, indicating implications for diagnosis and treatment.

  17. Sucrose induces vesicle accumulation and autophagy.

    Science.gov (United States)

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko

    2015-04-01

    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes.

  18. Ice slurry accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  19. Pharmacologic or Genetic Targeting of Glutamine Synthetase Skews Macrophages toward an M1-like Phenotype and Inhibits Tumor Metastasis

    Directory of Open Access Journals (Sweden)

    Erika M. Palmieri

    2017-08-01

    Full Text Available Glutamine-synthetase (GS, the glutamine-synthesizing enzyme from glutamate, controls important events, including the release of inflammatory mediators, mammalian target of rapamycin (mTOR activation, and autophagy. However, its role in macrophages remains elusive. We report that pharmacologic inhibition of GS skews M2-polarized macrophages toward the M1-like phenotype, characterized by reduced intracellular glutamine and increased succinate with enhanced glucose flux through glycolysis, which could be partly related to HIF1α activation. As a result of these metabolic changes and HIF1α accumulation, GS-inhibited macrophages display an increased capacity to induce T cell recruitment, reduced T cell suppressive potential, and an impaired ability to foster endothelial cell branching or cancer cell motility. Genetic deletion of macrophagic GS in tumor-bearing mice promotes tumor vessel pruning, vascular normalization, accumulation of cytotoxic T cells, and metastasis inhibition. These data identify GS activity as mediator of the proangiogenic, immunosuppressive, and pro-metastatic function of M2-like macrophages and highlight the possibility of targeting this enzyme in the treatment of cancer metastasis.

  20. Macrophages and Uveitis in Experimental Animal Models

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    2015-01-01

    Full Text Available Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution.

  1. The killing of macrophages by Corynebacterium ulcerans.

    Science.gov (United States)

    Hacker, Elena; Ott, Lisa; Schulze-Luehrmann, Jan; Lührmann, Anja; Wiesmann, Veit; Wittenberg, Thomas; Burkovski, Andreas

    2016-01-01

    Corynebacterium ulcerans is an emerging pathogen transmitted by a zoonotic pathway with a very broad host spectrum to humans. Despite rising numbers of infections and potentially fatal outcomes, data on the molecular basis of pathogenicity are scarce. In this study, the interaction of 2 C. ulcerans isolates - one from an asymptomatic dog, one from a fatal case of human infection - with human macrophages was investigated. C. ulcerans strains were able to survive in macrophages for at least 20 hours. Uptake led to delay of phagolysosome maturation and detrimental effects on the macrophages as deduced from cytotoxicity measurements and FACS analyses. The data presented here indicate a high infectious potential of this emerging pathogen.

  2. An extra-ribosomal function of ribosomal protein L13a in macrophage resolves inflammation

    Science.gov (United States)

    Poddar, Darshana; Basu, Abhijit; Baldwin, William; Kondratov, Roman V; Barik, Sailen; Mazumder, Barsanjit

    2013-01-01

    Inflammation is an obligatory attempt of the immune system to protect the host from infections. However, unregulated synthesis of pro-inflammatory products can have detrimental effects. Although mechanisms that lead to inflammation are well appreciated, those that restrain it are not adequately understood. Creating macrophage-specific L13a-knockout (KO) mice here we report that depletion of ribosomal protein L13a abrogates the endogenous translation control of several chemokines in macrophages. Upon LPS-induced endotoxemia these animals displayed symptoms of severe inflammation caused by widespread infiltration of macrophages in major organs causing tissue injury and reduced survival rates. Macrophages from these KO animals show unregulated expression of several chemokines e.g. CXCL13, CCL22, CCL8 and CCR3. These macrophages failed to show L13a-dependent RNA binding complex formation on target mRNAs. In addition, increased polyribosomal abundance of these mRNAs shows a defect in translation control in the macrophages. Thus, our studies provide the first evidence of an essential extra-ribosomal function of ribosomal protein L13a in resolving physiological inflammation in a mammalian host. PMID:23460747

  3. Sesamin Enhances Cholesterol Efflux in RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Nan Liu

    2014-06-01

    Full Text Available Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicited by oxidized low-density lipoprotein cholesterol (oxLDL in RAW264.7 cells. Treatment with sesamin (10 μM significantly enhanced cholesterol efflux mediated by high-density lipoprotein (HDL. Realtime quantitative PCR and luciferase assays showed that sesamin significantly increased the mRNA levels of PPARγ, LXRα, and ABCG1, and increased the transcriptional activity of PPARγ. The stimulating effect of sesamin on cholesterol efflux was substantially inhibited by the co-treatment with GW9662, a potent inhibitor of PPARγ. These results suggest that sesamin is a new inhibitor of foam cell formation that may stimulate cholesterol efflux through upregulation of the PPARγ-LXRα-ABCG1 pathway.

  4. Sesamin enhances cholesterol efflux in RAW264.7 macrophages.

    Science.gov (United States)

    Liu, Nan; Wu, Chongming; Sun, Lizhong; Zheng, Jun; Guo, Peng

    2014-06-06

    Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicited by oxidized low-density lipoprotein cholesterol (oxLDL) in RAW264.7 cells. Treatment with sesamin (10 μM) significantly enhanced cholesterol efflux mediated by high-density lipoprotein (HDL). Realtime quantitative PCR and luciferase assays showed that sesamin significantly increased the mRNA levels of PPARγ, LXRα, and ABCG1, and increased the transcriptional activity of PPARγ. The stimulating effect of sesamin on cholesterol efflux was substantially inhibited by the co-treatment with GW9662, a potent inhibitor of PPARγ. These results suggest that sesamin is a new inhibitor of foam cell formation that may stimulate cholesterol efflux through upregulation of the PPARγ-LXRα-ABCG1 pathway.

  5. Treatment with selectin blocking antibodies after lengthening contractions of mouse muscle blunts neutrophil accumulation but does not reduce damage.

    Science.gov (United States)

    Sloboda, Darcée D; Brooks, Susan V

    2016-01-01

    P- and E-selectins are expressed on the surface of endothelial cells and may contribute to neutrophil recruitment following injurious lengthening contractions of skeletal muscle. Blunting neutrophil, but not macrophage, accumulation after lengthening contractions may provide a therapeutic benefit as neutrophils exacerbate damage to muscle fibers, while macrophages promote repair. In this study, we tested the hypothesis that P- and E-selectins contribute to neutrophil, but not macrophage, accumulation in muscles after contraction-induced injury, and that reducing neutrophil accumulation by blocking the selectins would be sufficient to reduce damage to muscle fibers. To test our hypothesis, we treated mice with antibodies to block P- and E-selectin function and assessed leukocyte accumulation and damage in muscles 2 days after lengthening contractions. Treatment with P/E-selectin blocking antibodies reduced neutrophil content by about half in muscles subjected to lengthening contractions. In spite of the reduction in neutrophil accumulation, we did not detect a decrease in damage 2 days after lengthening contractions. We conclude that P- and/or E-selectin contribute to the neutrophil accumulation associated with contraction-induced muscle damage and that only a portion of the neutrophils that typically accumulate following injurious lengthening contractions is sufficient to induce muscle fiber damage and force deficits. Thus, therapeutic interventions based on blocking the selectins or other adhesion proteins will have to reduce neutrophil numbers by more than 50% in order to provide a benefit.

  6. Immune reaction and survivability of salmonella typhimurium and salmonella infantis after infection of primary avian macrophages.

    Science.gov (United States)

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages.

  7. Immune reaction and survivability of salmonella typhimurium and salmonella infantis after infection of primary avian macrophages.

    Directory of Open Access Journals (Sweden)

    Maria Braukmann

    Full Text Available Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2 for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S. Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS, interleukin (IL-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages.

  8. Phagocytic receptors on macrophages distinguish between different Sporothrix schenckii morphotypes.

    Science.gov (United States)

    Guzman-Beltran, Silvia; Perez-Torres, Armando; Coronel-Cruz, Cristina; Torres-Guerrero, Haydee

    2012-10-01

    Sporothrix schenckii is a human pathogen that causes sporotrichosis, a cutaneous subacute or chronic mycosis. Little is known about the innate immune response and the receptors involved in host recognition and phagocytosis of S. schenckii. Here, we demonstrate that optimal phagocytosis of conidia and yeast is dependent on preimmune human serum opsonisation. THP-1 macrophages efficiently ingested opsonised conidia. Competition with D-mannose, methyl α-D-mannopyranoside, D-fucose, and N-acetyl glucosamine blocked this process, suggesting the involvement of the mannose receptor in binding and phagocytosis of opsonised conidia. Release of TNF-α was not stimulated by opsonised or non-opsonised conidia, although reactive oxygen species (ROS) were produced, resulting in the killing of conidia by THP-1 macrophages. Heat inactivation of the serum did not affect conidia internalization, which was markedly decreased for yeast cells, suggesting the role of complement components in yeast uptake. Conversely, release of TNF-α and production of ROS were induced by opsonised and non-opsonised yeast. These data demonstrate that THP-1 macrophages respond to opsonised conidia and yeast through different phagocytic receptors, inducing a differential cellular response. Conidia induces a poor pro-inflammatory response and lower rate of ROS-induced cell death, thereby enhancing the pathogen's survival.

  9. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    Science.gov (United States)

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-07-07

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  10. M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis

    Directory of Open Access Journals (Sweden)

    Monica De Gaetano

    2016-07-01

    Full Text Available Atherosclerosis is an inflammatory disease caused by endothelial injury, lipid deposition and oxidative stress. This progressive disease can be converted into an acute clinical event by plaque rupture and thrombosis. In the context of atherosclerosis, the underlying cause of myocardial infarction and stroke, macrophages uniquely possess a dual functionality, regulating lipid accumulation and metabolism and sustaining the chronic inflammatory response, two of the most well documented pathways associated with the pathogenesis of the disease. Macrophages are heterogeneous cell populations and it is hypothesized that, during the pathogenesis of atherosclerosis, macrophages in the developing plaque can switch from a pro-inflammatory (MΦ1 to an anti-inflammatory (MΦ2 phenotype and vice versa, depending on the microenvironment. The aim of this study was to identify changes in macrophage subpopulations in the progression of human atherosclerotic disease. Established atherosclerotic plaques from symptomatic and asymptomatic patients with existing coronary artery disease undergoing carotid endarterectomy were recruited to the study. Comprehensive histological and immunohistochemical analyses were performed to quantify the cellular content and macrophage subsets of atherosclerotic lesion. In parallel, expression of MΦ1 and MΦ2 macrophage markers were analysed by real time-PCR and Western blot analysis.Gross analysis and histological staining demonstrated that symptomatic plaques presented greater haemorrhagic activity and the internal carotid was the most diseased segment, based on the predominant prevalence of fibrotic and necrotic tissue, calcifications and haemorrhagic events. Immunohistochemical analysis showed that both MΦ1 and MΦ2 macrophages are present in human plaques. However, MΦ2 macrophages are localised to more stable locations within the lesion. Importantly, gene and protein expression analysis of MΦ1/ MΦ2 markers evidenced that MΦ1

  11. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro.

    Science.gov (United States)

    Bancos, Simona; Stevens, David L; Tyner, Katherine M

    2015-01-01

    The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity.

  12. Metabolism of glycosylated human salivary amylase: in vivo plasma clearance by rat hepatic endothelial cells and in vitro receptor mediated pinocytosis by rat macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Niesen, T.E.; Alpers, D.H.; Stahl, P.D.; Rosenblum, J.L.

    1984-09-01

    Salivary-type amylase normally comprises about 60% of the amylase activity in human serum, but only a small fraction is a glycosylated isoenzyme (amylase A). In contrast, 1/3 of amylase in human saliva is glycosylated. Since glycosylation can affect circulatory clearance, we studied the clearance of amylase A in rats and its uptake by rat alveolar macrophages. Following intravenous injection, /sup 125/I-labeled amylase A disappeared rapidly from plasma (t 1/2 . 9 min) and accumulated in the liver. Simultaneous injection of mannose-albumin slowed its clearance to a rate comparable to that of /sup 125/I-labeled nonglycosylated salivary amylase (t 1/2 . 45 min). In contrast, galactose-albumin had no effect. Electron microscope autoradiography of the liver following injection of /sup 125/I-labeled amylase A revealed a localization of grains over the hepatic endothelial cells. In vitro studies indicated that amylase A is taken up by alveolar macrophages via receptor-mediated pinocytosis. Uptake was linear over time, saturable, and inhibited by mannan and mannose-albumin, but not by galactose-albumin. We conclude that amylase A, which is a naturally occurring human glycoprotein with at most three terminal L-fucose residues per molecule, is recognized in rats by a mannose receptor located on hepatic endothelial cells. We speculate that this receptor, by rapidly clearing circulating amylase A, may be responsible for the low level of amylase A in human serum.

  13. Macrophage response to cross-linked and conventional UHMWPE.

    Science.gov (United States)

    Sethi, Rajiv K; Neavyn, Mark J; Rubash, Harry E; Shanbhag, Arun S

    2003-07-01

    To prevent wear debris-induced osteolysis and aseptic loosening, cross-linked ultra-high molecular weight polyethylene's (UHMWPE) with improved wear resistance have been developed. Hip simulator studies have demonstrated very low wear rates with these new materials leading to their widespread clinical use. However, the biocompatibility of this material is not known. We studied the macrophage response to cross-linked UHMWPE (XLPE) and compared it to conventional UHMWPE (CPE) as well as other clinically used orthopaedic materials such as titanium-alloy (TiAlV) and cobalt-chrome alloy (CoCr). Human peripheral blood monocytes and murine macrophages, as surrogates for cells mediating peri-implant inflammation, were cultured onto custom designed lipped disks fabricated from the test materials to isolate cells. Culture supernatants were collected at 24 and 48h and analyzed for cytokines such as IL-1alpha, IL-1beta, TNF-alpha and IL-6. Total RNA was extracted from adherent cells and gene expression was analyzed using qualitative RT-PCR. In both in vitro models, macrophages cultured on cross-linked and conventional polyethylene released similar levels of cytokines, which were also similar to levels on control tissue culture dishes. Macrophages cultured on TiAlV and CoCr-alloy released significantly higher levels of cytokines. Human monocytes from all donors varied in the magnitude of cytokines released when cultured on identical surfaces. The variability in individual donor responses to TiAlV and CoCr surfaces may reflect how individuals respond differently to similar stimuli and perhaps reveal a predisposed sensitivity to particular materials.

  14. Free cholesterol-induced cytotoxicity a possible contributing factor to macrophage foam cell necrosis in advanced atherosclerotic lesions.

    Science.gov (United States)

    Tabas, I

    1997-10-01

    A major characteristic of advanced atherosclerotic lesions is the necrotic, or lipid, core, which likely plays an important role in the clinical progression of these lesions. Recent data suggest that the necrotic core forms primarily as a consequence of macrophage foam cell necrosis. Lesional macrophages initially accumulate mostly cholesteryl esters, but macrophages in advanced lesions contain large amounts of unesterified, or free, cholesterol (FC). Although there are many theories as to why macrophage foam cells die in advanced lesions, the fact that a high FC:phospholipid (PL) ratio in cellular membranes can be toxic to cells suggests that FC-induced cytotoxicity may contribute to foam cell necrosis. The mechanism of FC cytotoxicity can be explained by disturbances in membrane protein function as a result of "stiffening" of the bilayer and by formation of intracellular FC crystals that can cause physical damage to cellular organelles. Macrophages appear to respond to FC loading by a fascinating adaptive response, namely the induction of PL biosynthesis, which initially keeps the cellular FC:PL ratio below toxic levels. Studies with cultured macrophages have demonstrated that a failure of this adaptive response leads to FC-induced foam cell cytotoxicity and necrosis, and thus a similar series of events in advanced atherosclerotic lesions could provide an explanation for the development of the necrotic core. (Trends Cardiovasc Med 1997;7: 256-263). © 1997, Elsevier Science Inc.

  15. Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles.

    Science.gov (United States)

    Schremmer, I; Brik, A; Weber, D G; Rosenkranz, N; Rostek, A; Loza, K; Brüning, T; Johnen, G; Epple, M; Bünger, J; Westphal, G A

    2016-11-30

    Accumulation of macrophages and neutrophil granulocytes in the lung are key events in the inflammatory response to inhaled particles. The present study aims at the time course of chemotaxis in vitro in response to the challenge of various biopersistent particles and its functional relation to the transcription of inflammatory mediators. NR8383 rat alveolar macrophages were challenged with particles of coarse quartz, barium sulfate, and nanosized silica for one, four, and 16h and with coarse and nanosized titanium dioxide particles (rutile and anatase) for 16h only. The cell supernatants were used to investigate the chemotaxis of unexposed NR8383 macrophages. The transcription of inflammatory mediators in cells exposed to quartz, silica, and barium sulfate was analyzed by quantitative real-time PCR. Challenge with quartz, silica, and rutile particles induced significant chemotaxis of unexposed NR8383 macrophages. Chemotaxis caused by quartz and silica was accompanied by an elevated transcription of CCL3, CCL4, CXCL1, CXCL3, and TNFα. Quartz exposure showed an earlier onset of both effects compared to the nanosized silica. The strength of this response roughly paralleled the cytotoxic effects. Barium sulfate and anatase did not induce chemotaxis and barium sulfate as well caused no elevated transcription. In conclusion, NR8383 macrophages respond to the challenge with inflammatory particles with the release of chemotactic compounds that act on unexposed macrophages. The kinetics of the response differs between the various particles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Chronic insulin therapy reduces adipose tissue macrophage content in LDL-receptor-deficient mice.

    Science.gov (United States)

    Yoon, J; Subramanian, S; Ding, Y; Wang, S; Goodspeed, L; Sullivan, B; Kim, J; O'Brien, K D; Chait, A

    2011-05-01

    Insulin has anti-inflammatory effects in short-term experiments. However, the effects of chronic insulin administration on inflammation are unknown. We hypothesised that chronic insulin administration would beneficially alter adipose tissue inflammation and several circulating inflammatory markers. We administered two forms of long-acting insulin, insulin glargine (A21Gly,B31Arg,B32Arg human insulin) and insulin detemir (B29Lys[ε-tetradecanoyl],desB30 human insulin), to LDL-receptor-deficient mice. After 8 weeks on a diet that causes obesity, hyperglycaemia, adipose tissue macrophage accumulation and atherosclerosis, the mice received subcutaneous glargine, detemir or NaCl (control) for 12 weeks. Serum amyloid A (SAA) and serum amyloid P (SAP), metabolic variables, adipose tissue macrophages and aortic atherosclerosis were evaluated. Weight gain was equivalent in all groups. The glycated haemoglobin level fell equivalently in both insulin-treated groups. Plasma cholesterol and triacylglycerol levels, and hepatic triacylglycerol level significantly improved in the glargine compared with the detemir or control groups. Levels of mRNA expression for monocyte chemotactic protein-1 and F4/80, a macrophage marker, in adipose tissue were decreased only in the glargine group (p adipose tissue macrophage content decreased in both insulin groups (p insulin-treated group, but IL-6 levels fell in the glargine-treated mice. While chronic insulin administration did not decrease SAA and SAP, administration of glargine but not detemir insulin improved dyslipidaemia, IL-6 levels and atherosclerosis, and both insulins reduced macrophage accumulation in visceral adipose tissue. Thus, chronic insulin therapy has beneficial tissue effects independent of circulating inflammatory markers in this murine model of diet-induced obesity and diabetes.

  17. The inhibition of macrophage foam cell formation by 9-cis β-carotene is driven by BCMO1 activity.

    Directory of Open Access Journals (Sweden)

    Noa Zolberg Relevy

    Full Text Available Atherosclerosis is a major cause of morbidity and mortality in developed societies, and begins when activated endothelial cells recruit monocytes and T-cells from the bloodstream into the arterial wall. Macrophages that accumulate cholesterol and other fatty materials are transformed into foam cells. Several epidemiological studies have demonstrated that a diet rich in carotenoids is associated with a reduced risk of heart disease; while previous work in our laboratory has shown that the 9-cis β-carotene rich alga Dunaliella inhibits atherogenesis in mice. The effect of 9-cis β-carotene on macrophage foam cell formation has not yet been investigated. In the present work, we sought to study whether the 9-cis β-carotene isomer, isolated from the alga Dunaliella, can inhibit macrophage foam cell formation upon its conversion to retinoids. The 9-cis β-carotene and Dunaliella lipid extract inhibited foam cell formation in the RAW264.7 cell line, similar to 9-cis retinoic acid. Furthermore, dietary enrichment with the algal powder in mice resulted in carotenoid accumulation in the peritoneal macrophages and in the inhibition of foam cell formation ex-vivo and in-vivo. We also found that the β-carotene cleavage enzyme β-carotene 15,15'-monooxygenase (BCMO1 is expressed and active in macrophages. Finally, 9-cis β-carotene, as well as the Dunaliella extract, activated the nuclear receptor RXR in hepa1-6 cells. These results indicate that dietary carotenoids, such as 9-cis β-carotene, accumulate in macrophages and can be locally cleaved by endogenous BCMO1 to form 9-cis retinoic acid and other retinoids. Subsequently, these retinoids activate the nuclear receptor RXR that, along with additional nuclear receptors, can affect various metabolic pathways, including those involved in foam cell formation and atherosclerosis.

  18. Doses de nitrogênio no acúmulo de nitrato e na produção da alface em hidroponia Nitrogen rates on nitrate accumulation and lettuce production in hydroponic system

    Directory of Open Access Journals (Sweden)

    Mônica LA Pôrto

    2012-09-01

    Full Text Available A produção da alface em hidroponia apresenta crescente expansão no Brasil, mas ainda ocorrem problemas de qualidade e risco de acúmulo de nitrato. O objetivo desse trabalho foi avaliar a produção da alface (cv. Elba e acúmulo de nitrato em hidroponia em função de níveis crescentes de N na solução nutritiva. Plantas de alface foram cultivadas em estufa telada da UFPB em Areia (PB, em solução nutritiva que continha níveis crescentes de N (11, 13, 15, 17, 19 e 21 mmol L-1 por 25 dias. O delineamento utilizado foi inteiramente casualizado com quatro repetições. Foram avaliadas a produção total (PTT, produção comercial (PCM e os teores de nitrato na matéria fresca da raiz, caule e folhas da alface. Não foram verificados efeitos significativos do incremento dos níveis de N na solução sobre a PTT e PCM, sendo obtidos valores médios de 357,3 e 352,5 g/planta, respectivamente. A elevação dos níveis de N em solução resultou em incrementos nos teores de nitrato em todas as partes da alface, obtendo-se na dose máxima teores de 659, 623 e 615 mg kg-1 de matéria fresca, para raiz, caule e folhas, respectivamente. Os máximos teores foliares de nitrato obtidos se encontraram abaixo do limite de risco para saúde humana.Lettuce production in hydroponic system presents growing expansion in Brazil, but still there are problems of quality and risk of nitrate accumulation. This work was carried out to evaluate the lettuce production and nitrate accumulation in hydroponic system depending on the increasing levels of nitrogen in the nutrient solution. The experiment was conducted in greenhouse of the Universidade Federal da Paraíba, Brazil. The lettuce plants were grown in nutrient solution containing increasing levels of N (11, 13, 15, 17, 19 and 21 mmol L-1 during a 25-day period. An entirely randomized design with four replications was used. Plant total yield (PTT, plant commercial yield (PCM and nitrate contents in the fresh

  19. Global Dynamics of HIV Infection of CD4+ T Cells and Macrophages

    OpenAIRE

    A. M. Elaiw; A. S. Alsheri

    2013-01-01

    We study the global dynamics of an HIV infection model describing the interaction of the HIV with CD4+ T cells and macrophages. The incidence rate of virus infection and the growth rate of the uninfected CD4+ T cells and macrophages are given by general functions. We have incorporated two types of distributed delays into the model to account for the time delay between the time the uninfected cells are contacted by the virus particle and the time for the emission of infectious (matures) virus ...

  20. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    Section 06 - 08*) of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A vacuum-tank, two bending magnets (BST06 and BST07 in blue) with a quadrupole (QDN07, in red) in between, another vacuum-tank, a wide quadrupole (QFW08) and a further tank . The tanks are covered with heating tape for bake-out. The tank left of BST06 contained the stack core pickup for stochastic cooling (see 7906193, 7906190, 8005051), the two other tanks served mainly as vacuum chambers in the region where the beam was large. Peter Zettwoch works on BST06. *) see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984)

  1. Solids Accumulation Scouting Studies

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  2. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio.

  3. The Many Alternative Faces of Macrophage Activation

    Science.gov (United States)

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases

  4. Dakin Solution Alters Macrophage Viability and Function

    Science.gov (United States)

    2014-07-18

    crobial for wound care. DS has been shown to be toxic to host cells, but effects on immune cells are not well documented. Materials and methods: DS at 0.5...characterize the impact of DS on macrophage viability and function in vitro. 2. Materials and methods 2.1. Cell lines and reagents Murine macrophages...strainer to separate conidia from mycelium , and stored in DMEM at 4C. 2.3. Cellular viability assays Effect of DS on cellular viability was

  5. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  6. The Many Alternative Faces of Macrophage Activation

    OpenAIRE

    Hume, David A

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and g...

  7. Macrophage subsets and microglia in multiple sclerosis

    OpenAIRE

    2014-01-01

    Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In...

  8. Macrophage Efferocytosis and Prostate Cancer Bone Metastasis

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0408 TITLE: Macrophage Efferocytosis and Prostate Cancer Bone Metastasis PRINCIPAL INVESTIGATOR: Jacqueline D. Jones...0408 Macrophage Efferocytosis and Prostate Cancer Bone Metastasis 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...efferocytosis. The translation of this functional role during pathophysiological states such as tumor metastasis to the skeleton is unknown. The purpose of this

  9. Macrophage Polarization in Metabolism and Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-08-01

    Full Text Available BACKGROUND: Obesity is now recognized as the main cause of the worldwide epidemic of type 2 diabetes. Obesity-associated chronic inflammation is a contributing key factor for type 2 diabetes and cardiovascular disease. Numbers of studies have clearly demonstrated that the immune system and metabolism are highly integrated. CONTENT: Macrophages are an essential component of innate immunity and play a central role in inflammation and host defense. Moreover, these cells have homeostatic functions beyond defense, including tissue remodeling in ontogenesis and orchestration of metabolic functions. Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to interferons (IFNs, toll-like receptor (TLR, or interleukin (IL-4/IL-13 signals, macrophages undergo M1 (classical or M2 (alternative activation. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1, M2 or M2-like polarized activation. SUMMARY: In response to various signals, macrophages may undergo classical M1 activation (stimulated by TLR ligands and IFN-γ or alternative M2 activation (stimulated by IL-4/IL-13; these states mirror the T helper (Th1–Th2 polarization of T cells. Pathology is frequently associated with dynamic changes in macrophage activation, with classically activated M1 cells implicate in initiating and sustaining inflammation, meanwhile M2 or M2-like activated cells associated with resolution or smoldering chronic inflammation. Identification of the mechanisms and molecules that are associated with macrophage plasticity and polarized activation provides a basis for macrophage centered diagnostic and therapeutic strategies. KEYWORDS: obesity, adipose tissue, inflammation, macrophage polarization.

  10. Persistence of avian oncoviruses in chicken macrophages.

    Science.gov (United States)

    Gazzolo, L; Moscovici, C; Moscovici, M G

    1979-01-01

    Inoculation of avian oncoviruses into 1- to 2-month old chickens led to a rapid production of antiviral humoral antibodies. Under these conditions it was found that avian leukosis viruses are sequestered in macrophages of peripheral blood, in which they can persist for a long period of time (up to about 3 years). In contrast, avian sarcoma viruses were never found in macrophages from chickens during the progression of sarcomas or after regression of the tumors. PMID:217827

  11. Bifunctional effect of E2 on macrophage

    Institute of Scientific and Technical Information of China (English)

    MinHONG; QuanZHU

    2004-01-01

    AIM: Our previous study showed that the effect of 1713-estradiol(E2) on macrophage does not strengthen when concentrationincreased. So the effect of E2 on cytokines, intracellular free Ca2+([Ca2+]i) and morphological change of macrophages at differentconcentrations were studied. METHODS: TNF-α was measured by MTT via L929 cell. Nitrate and nitrite level(NO) wasmeasured by the method of Griess. [Ca2+]i was examined by laser scanning confocal microscopy(LSCM). Fluorescent microscopy

  12. Guanylyl cyclase C and guanylin reduce fat droplet accumulation in cattle mesenteric adipose tissue.

    Science.gov (United States)

    Yasuda, Masahiro; Kawabata, Jyunya; Akieda-Asai, Sayaka; Nasu, Tetsuo; Date, Yukari

    2017-09-30

    Guanylyl cyclase C (GC-C) is a member of a family of enzymes that metabolize GTP to cGMP and was first identified as a receptor for heat-stable enterotoxin. Guanylin (GNY) has since been identified as an endogenous ligand for GC-C in the intestine of several mammalian species. The GNY/GC-C system regulates ion transportation and pH in the mucosa. Recently, it was reported that GC-C and GNY are involved in lipid metabolism in rat mesenteric adipose tissue macrophages. To examine the role of GC-C and GNY in lipid metabolism in cattle, we used a bovine mesenteric adipocyte primary culture system and a coculture system for bovine adipocytes and GNY-/GC-C-expressing macrophages. Fat droplets were observed to accumulate in bovine mesenteric adipocytes cultured alone, whereas few fat droplets accumulated in adipocytes indirectly cocultured with macrophages. We also observed that GC-C was present in bovine mesenteric adipose tissue, and that fat droplet accumulation decreased after in vitro GNY administration. Expressions of mRNAs encoding lipogenic factors decreased significantly in adipocytes after either coculture or GNY administration. These results suggest that the GNY/GC-C system is part of the control system for lipid accumulation in bovine mesenteric adipose tissue.

  13. Production of Fibronectin by the Human Alveolar Macrophage: Mechanism for the Recruitment of Fibroblasts to Sites of Tissue Injury in Interstitial Lung Diseases

    Science.gov (United States)

    Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.

    1981-11-01

    Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.

  14. Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection.

    Directory of Open Access Journals (Sweden)

    Sameh Rabhi

    Full Text Available Leishmania, the causative agent of vector-borne diseases, known as leishmaniases, is an obligate intracellular parasite within mammalian hosts. The outcome of infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. Understanding the strategies developed by the parasite to circumvent macrophage defense mechanisms and to survive within those cells help defining novel therapeutic approaches for leishmaniasis. We previously showed the formation of lipid droplets (LDs in L. major infected macrophages. Here, we provide novel insights on the origin of the formed LDs by determining their cellular distribution and to what extent these high-energy sources are directed to the proximity of Leishmania parasites. We show that the ability of L. major to trigger macrophage LD accumulation is independent of parasite viability and uptake and can also be observed in non-infected cells through paracrine stimuli suggesting that LD formation is from cellular origin. The accumulation of LDs is demonstrated using confocal microscopy and live-cell imagin in parasite-free cytoplasmic region of the host cell, but also promptly recruited to the proximity of Leishmania parasites. Indeed LDs are observed inside parasitophorous vacuole and in parasite cytoplasm suggesting that Leishmania parasites besides producing their own LDs, may take advantage of these high energy sources. Otherwise, these LDs may help cells defending against parasitic infection. These metabolic changes, rising as common features during the last years, occur in host cells infected by a large number of pathogens and seem to play an important role in pathogenesis. Understanding how Leishmania parasites and different pathogens exploit this LD accumulation will help us define the common mechanism used by these different pathogens to manipulate and/or take advantage of this high-energy source.

  15. Macrophages - silent enemies in juvenile idiopathic arthritis.

    Science.gov (United States)

    Świdrowska-Jaros, Joanna; Orczyk, Krzysztof; Smolewska, Elżbieta

    2016-07-06

    The inflammatory response by secretion of cytokines and other mediators is postulated as one of the most significant factors in the pathophysiology of juvenile idiopathic arthritis (JIA). The effect of macrophage action depends on the type of their activation. Classically activated macrophages (M1) are responsible for release of molecules crucial for joint inflammation. Alternatively activated macrophages (M2) may recognize self antigens by scavenger receptors and induce the immunological reaction leading to autoimmune diseases such as JIA. Molecules essential for JIA pathophysiology include: TNF-α, the production of which precedes synovial inflammation in rheumatoid arthritis; IL-1 as a key mediator of synovial damage; chemotactic factors for macrophages IL-8 and MCP-1; IL6, the level of which correlates with the radiological joint damage; MIF, promoting the secretion of TNF-α and IL-6; CCL20 and HIF, significant for the hypoxic synovial environment in JIA; GM-CSF, stimulating the production of macrophages; and IL-18, crucial for NK cell functions. Recognition of the role of macrophages creates the potential for a new therapeutic approach.

  16. Modulation of Macrophage Efferocytosis in Inflammation

    Directory of Open Access Journals (Sweden)

    Darlynn R Korns

    2011-11-01

    Full Text Available A critical function of macrophages within the inflammatory milieu is the removal of dying cells by a specialized phagocytic process called efferocytosis (to carry to the grave. Through specific receptor engagement and induction of downstream signaling, efferocytosing macrophages promote resolution of inflammation by i efficiently engulfing dying cells, thus avoiding cellular disruption and release of inflammatory contents, and ii producing anti-inflammatory mediators such as IL-10 and TGF-β that dampen pro-inflammatory responses. Evidence suggests that plasticity in macrophage programming, in response to changing environmental cues, modulates efferocytic capability. Essential to programming for enhanced efferocytosis is activation of the nuclear receptors PPARγ, PPARδ, LXR and possibly RXRα. Additionally, a number of signals in the inflammatory milieu, including those from dying cells themselves, can influence efferocytic efficacy either by acting as immediate inhibitors/enhancers or by altering macrophage programming for longer-term effects. Importantly, sustained inflammatory programming of macrophages can lead to defective apoptotic cell clearance and is associated with development of autoimmunity and other chronic inflammatory disorders. This review summarizes the current knowledge of the multiple factors that modulate macrophage efferocytic ability and highlights emerging therapeutic targets with significant potential for limiting chronic inflammation.

  17. Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina M; Hartono, Stella P; Boyilla, Rajendra; Knudsen, Bruce E; Zubair, Adeel S; Lien, Karen; Nath, Karl A; Textor, Stephen C; Lerman, Lilach O; Grande, Joseph P

    2016-03-01

    Renovascular hypertension (RVH) is a common cause of both cardiovascular and renal morbidity and mortality. In renal artery stenosis (RAS), atrophy in the stenotic kidney is associated with an influx of macrophages and other mononuclear cells. We tested the hypothesis that chemokine receptor 2 (CCR2) inhibition would reduce chronic renal injury by reducing macrophage influx in the stenotic kidney of mice with RAS. We employed a well-established murine model of RVH to define the relationship between macrophage infiltration and development of renal atrophy in the stenotic kidney. To determine the role of chemokine ligand 2 (CCL2)/CCR2 signaling in the development of renal atrophy, mice were treated with the CCR2 inhibitor RS-102895 at the time of RAS surgery and followed for 4 wk. Renal tubular epithelial cells expressed CCL2 by 3 days following surgery, a time at which no significant light microscopic alterations, including interstitial inflammation, were identified. Macrophage influx increased with time following surgery. At 4 wk, the development of severe renal atrophy was accompanied by an influx of inducible nitric oxide synthase (iNOS)+ and CD206+ macrophages that coexpressed F4/80, with a modest increase in macrophages coexpressing arginase 1 and F4/80. The CCR2 inhibitor RS-102895 attenuated renal atrophy and significantly reduced the number of dual-stained F4/80+ iNOS+ and F4/80+ CD206+ but not F4/80+ arginase 1+ macrophages. CCR2 inhibition reduces iNOS+ and CD206+ macrophage accumulation that coexpress F4/80 and renal atrophy in experimental renal artery stenosis. CCR2 blockade may provide a novel therapeutic approach to humans with RVH.

  18. Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun; Kirk, Elizabeth A.; Averill, Michelle M.; Becker, Lev; Larson, Ilona; Hagman, Derek K.; Foster-Schubert, Karen E.; van Yserloo, Brian; Bornfeldt, Karin E.; LeBoeuf, Renee C.; Kratz, Mario

    2014-01-01

    Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14+CD206+ macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b+F4/80+CD11c−macrophages accumulated to a greater extent in MMP12-deficient (Mmp12−/−) mice than in wild-type mice (Mmp12+/+). Despite being markedly more obese, fat-fed Mmp12−/− mice were more insulin sensitive than fat-fed Mmp12+/+ mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12−/− macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion. PMID:24914938

  19. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone

    Institute of Scientific and Technical Information of China (English)

    Li YANG; Ta Yuan CHANG; Bo Liang LI; Jin Bo YANG; Jia CHEN; Guang Yao YU; Pei ZHOU; Lei LEI; Zhen Zhen WANG; Catherine CY CHANG; XinYing YANG

    2004-01-01

    In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study,with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP- 1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-l-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP- 1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner.Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex,which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.

  20. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain

    Institute of Scientific and Technical Information of China (English)

    HUANG Ping; ZHANG Jia-bao; XIN Xiu-li; ZHU An-ning; ZHANG Cong-zhi; MA Dong-hao; ZHU Qiang-gen; YANG Shan; WU Sheng-jun

    2015-01-01

    Cropland productivity has been signiifcantly impacted by soil acidiifcation resulted from nitrogen (N) fertilization, especialy as a result of excess ammoniacal N input. With decades’ intensive agricultural cultivation and heavy chemical N input in the Huang-Huai-Hai Plain, the impact extent of induced proton input on soil pH in the long term was not yet clear. In this study, acidiifcation rates of different soil layers in the soil proifle (0–120 cm) were calculated by pH buffer capacity (pHBC) and net input of protons due to chemical N incorporation. Topsoil (0–20 cm) pH changes of a long-term fertilization ifeld (from 1989) were determined to validate the predicted values. The results showed that the acid and alkali buffer capacities varied signiifcantly in the soil proifle, averaged 692 and 39.8 mmolc kg–1 pH–1, respectively. A signiifcant (P<0.05) correlation was found between pHBC and the content of calcium carbonate. Based on the commonly used application rate of urea (500 kg N ha–1 yr–1), the induced proton input in this region was predicted to be 16.1 kmol ha–1 yr–1, and nitriifcation and plant uptake of nitrate were the most important mechanisms for proton producing and consuming, respectively. The acidiifcation rate of topsoil (0–20 cm) was estimated to be 0.01 unit pH yr–1 at the assumed N fertilization level. From 1989 to 2009, topsoil pH (0–20 cm) of the long-term fertilization ifeld decreased from 8.65 to 8.50 for the PK (phosphorus, 150 kg P2O5 ha–1 yr–1;potassium, 300 kg K2O ha–1 yr–1; without N fertilization), and 8.30 for NPK (nitrogen, 300 kg N ha–1 yr–1; phosphorus, 150 kg P2O5 ha–1 yr–1; potassium, 300 kg K2O ha–1 yr–1), respectively. Therefore, the apparent soil acidiifcation rate induced by N fertilization equaled to 0.01 unit pH yr–1, which can be a reference to the estimated result, considering the effect of atmospheric N deposition, crop biomass, ifeld management and plant uptake of other

  1. Nicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling

    Science.gov (United States)

    Chadipiralla, Kiranmai; Mendez, Armando J.; Jaimes, Edgar A.; Silverstein, Roy L.; Webster, Keith; Raij, Leopoldo

    2013-01-01

    Cigarette smoking is a major risk factor for atherosclerosis and cardiovascular disease. CD36 mediates oxidized LDL (oxLDL) uptake and contributes to macrophage foam cell formation. We investigated a role for the CD36 pathway in nicotine-induced activation of macrophages and foam cell formation in vitro and in vivo. Nicotine in the same plasma concentration range found in smokers increased the CD36+/CD14+ cell population in human peripheral blood mononuclear cells, increased CD36 expression of human THP1 macrophages, and increased macrophage production of reactive oxygen species, PKCδ phosphorylation, and peroxisome proliferator-activated receptor-γ (PPARγ) expression. Nicotine-induced CD36 expression was suppressed by antioxidants and by specific PKCδ and PPARγ inhibitors, implicating mechanistic roles for these intermediates. Nicotine synergized with oxLDL to increase macrophage expression of CD36 and cytokines TNF-α, monocyte chemoattractant protein-1, IL-6, and CXCL9, all of which were prevented by CD36 small interfering (si)RNA. Incubation with oxLDL (50 μg/ml) for 72 h resulted in lipid deposition in macrophages and foam cell formation. Preincubation with nicotine further increased oxLDL-induced lipid accumulation and foam cell formation, which was also prevented by CD36 siRNA. Treatment of apoE−/− mice with nicotine markedly exacerbated inflammatory monocyte levels and atherosclerotic plaque accumulation, effects that were not seen in CD36−/− apoE−/− mice. Our results show that physiological levels of nicotine increase CD36 expression in macrophages, a pathway that may account at least in part for the known proinflammatory and proatherogenic properties of nicotine. These results identify such enhanced CD36 expression as a novel nicotine-mediated pathway that may constitute an independent risk factor for atherosclerosis in smokers. The results also suggest that exacerbated atherogenesis by this pathway may be an adverse side effect of

  2. Landscape Evolution and Carbon Accumulation: Uniformitarianism Revisited

    Science.gov (United States)

    Rosenbloom, N. A.; Harden, J. W.; Neff, J. C.; Schimel, D. S.

    2003-12-01

    What is the role of hillslope transport in long-term carbon accumulation in soils? How do parent material, climate, and landform interact to produce the landscapes we observe today and to what extent can we use present day conditions to infer the dominant processes of the past? We use the CREEP [Rosenbloom, N.A. et al., 2001] process-response model to ask these questions, exploring the time-evolution of landscape form, soil distribution, and carbon accumulation in an undisturbed prairie site in western Iowa [Harden, J.W. et al., 2002]. The CREEP model simulates differential transport of soil particles, blanket deposition of atmospheric 10Be with eolian dust, and passive advection of soil carbon and 10Be, enabling the preferential enrichment and burial of rapidly moving soil constituents. By comparing landscape-wide average accumulations of 10Be to borehole observations at three hillslope positions, we conclude that the distribution of clay-adsorbed 10Be cannot be explained by co-transport with clay particles alone. Rather, 10Be appears to behave as a more complex tracer than originally assumed, requiring an explicit, independent parameterization of wet deposition and transport. By comparison, model carbon accumulation strongly reflects patterns of clay redistribution indicating that in situ carbon turnover is faster than redistribution. Observed vertical distributions of soil properties, including 10Be, could only be explained by assuming variations in deposition and erosion rates, specifically periods of accumulation, followed by periods of transport. This effect might not be apparent if only landform shape, geometry, and soil depth were considered and vertical distributions of soil properties were not explicitly simulated. The current landscape reflects a history of strong shifts in erosion and accumulation rates that cannot be simulated using a uniform parameterization of long-term landscape-evolution processes.

  3. Macrophages in protective immunity to Hymenolepis nana in mice.

    Science.gov (United States)

    Asano, K; Muramatsu, K; Ito, A; Okamoto, K

    1992-12-01

    When mice were treated with carrageenan just before infection with eggs of Hymenolepis nana, they failed to exhibit sterile immunity to the egg challenge, with evidence of a decrease in the number of peripheral macrophages (Mø) and the rate of carbon clearance. Although there were high levels of interleukin-1 (IL-1) released into the intestinal tracts of the parasitized mice at challenge infection, there was almost no release of IL-1 in those treated with carrageenan just before challenge. These results strongly suggest that Mø have an important role in protective immunity to H. nana in mice.

  4. Effects of sowing density and N rate on biomass accumulation and yield of winter wheat in furrow and ridge film mulching%密度与氮肥配合对垄沟覆膜栽培冬小麦干物质累积及产量的影响

    Institute of Scientific and Technical Information of China (English)

    师日鹏; 上官宇先; 马巧荣; 王林权

    2011-01-01

    The aim of this study was to harmonize the relationship between individual and population,and establish a suitable community structure,and fully apply the advantages of furrow and ridge cultivation in rainfed land areas.The successive two year field experiments were conducted to investigate the effects of sowing density and N rate on yield,and dry matter accumulation of individual and population of winter wheat in the furrow and ridge film mulching planting system.The central composite rotatable design with two factors of seeding density and N rate was used in the experiments.There were five levels of sowing density,75,85.95,112.5,139.04 and 150 kg/ha,and five N levels of N rates,120,137.57,180,222.43 and 240 kg/ha.The tested cultivar was Xiaoyan 22.The results show that the dry matter accumulation of individual winter wheat is significantly affected by sowing density,and the accumulation is decreased when the sowing density is increased.There are significant different dynamics of the dry matter accumulation of population in the two year experiments owing to difference weather.The dry matter accumulation of population is decreased as the sowing density is increases in 2009,while that is increased in 2010.Although there are no effects of nitrogen application on individual biomass at the anthesis stage,there are significant effects of N on biomass at the maturity stage.The nitrogen fertilization could increase the dry matter accumulation of population remarkably at the two stages.These results indicate that there are some effects of the sowing density and nitrogen rate on the dynamics of plant individual and population,the winter wheat has capacity to regulate their population according to environmental condition.Therefore,it could not to increase the population with higher sowing density blindly.The efficient nitrogen application is benefit to the individual and population growth.Under this experiment condition,the medium sowing density(112 kg/ha) and the higher

  5. Atmospheric mercury accumulation and washoff processes on impervious urban surfaces

    Science.gov (United States)

    Eckley, C.S.; Branfireun, B.; Diamond, M.; Van Metre, P.C.; Heitmuller, F.

    2008-01-01

    The deposition and transport of mercury (Hg) has been studied extensively in rural environments but is less understood in urbanized catchments, where elevated atmospheric Hg concentrations and impervious surfaces may efficiently deliver Hg to waterways in stormwater runoff. We determined the rate at which atmospheric Hg accumulates on windows, identified the importance of washoff in removing accumulated Hg, and measured atmospheric Hg concentrations to help understand the relationship between deposition and surface accumulation. The main study location was Toronto, Ontario. Similar samples were also collected from Austin, Texas for comparison of Hg accumulation between cities. Windows provided a good sampling surface because they are ubiquitous in urban environments and are easy to clean/blank allowing the assessment of contemporary Hg accumulation. Hg Accumulation rates were spatially variable ranging from 0.82 to 2.7 ng m-2 d-1 in Toronto and showed similar variability in Austin. The highest accumulation rate in Toronto was at the city center and was 5?? higher than the rural comparison site (0.58 ng m-2 d-1). The atmospheric total gaseous mercury (TGM) concentrations were less than 2?? higher between the rural and urban locations (1.7 ?? 0.3 and 2.7 ?? 1.1 ng m-3, respectively). The atmospheric particulate bound fraction (HgP), however, was more than 3?? higher between the rural and urban sites, which may have contributed to the higher urban Hg accumulation rates. Windows exposed to precipitation had 73 ?? 9% lower accumulation rates than windows sheltered from precipitation. Runoff collected from simulated rain events confirmed that most Hg accumulated on windows was easily removed and that most of the Hg in washoff was HgP. Our results indicate that the Hg flux from urban catchments will respond rapidly to changes in atmospheric concentrations due to the mobilization of the majority of the surface accumulated Hg during precipitation events. ?? 2008 Elsevier

  6. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    A section of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A large vacuum-tank, a quadrupole (QDN09*), a bending magnet (BST08), another vacuum-tank, a wide quadrupole (QFW08) and (in the background) a further bending magnet (BST08). The tanks are covered with heating tape for bake-out. The tank left of QDN09 contained the kickers for stochastic pre-cooling (see 790621, 8002234, 8002637X), the other one served mainly as vacuum chamber in the region where the beam was large. Peter Zettwoch works on QFW08. * see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984) See under 7911303, 7911597X, 8004261 and 8202324. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  7. Dynamic Changes of Microglia/Macrophage M1 and M2 Polarization in Theiler's Murine Encephalomyelitis.

    Science.gov (United States)

    Herder, Vanessa; Iskandar, Cut Dahlia; Kegler, Kristel; Hansmann, Florian; Elmarabet, Suliman Ahmed; Khan, Muhammad Akram; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner; Beineke, Andreas

    2015-11-01

    Microglia and macrophages play a central role for demyelination in Theiler's murine encephalomyelitis (TME) virus infection, a commonly used infectious model for chronic-progressive multiple sclerosis. In order to determine the dynamic changes of microglia/macrophage polarization in TME, the spinal cord of Swiss Jim Lambert (SJL) mice was investigated by gene expression profiling and immunofluorescence. Virus persistence and demyelinating leukomyelitis were confirmed by immunohistochemistry and histology. Electron microscopy revealed continuous myelin loss together with abortive myelin repair during the late chronic infection phase indicative of incomplete remyelination. A total of 59 genes out of 151 M1- and M2-related genes were differentially expressed in TME virus-infected mice over the study period. The onset of virus-induced demyelination was associated with a dominating M1 polarization, while mounting M2 polarization of macrophages/microglia together with sustained prominent M1-related gene expression was present during the chronic-progressive phase. Molecular results were confirmed by immunofluorescence, showing an increased spinal cord accumulation of CD16/32(+) M1-, arginase-1(+) M2- and Ym1(+) M2-type cells associated with progressive demyelination. The present study provides a comprehensive database of M1-/M2-related gene expression involved in the initiation and progression of demyelination supporting the hypothesis that perpetuating interaction between virus and macrophages/microglia induces a vicious circle with persistent inflammation and impaired myelin repair in TME.

  8. Inhibition of Cholesterol Esterification Influences Cytokine Exspression in Lypopolisaccharide-activated P388D1 Macrophages

    Directory of Open Access Journals (Sweden)

    Rosa Rita Bonatesta

    2007-01-01

    Full Text Available Several in vivo and in vitro studies have demonstrated the involvement of infectious agents in the development of atherosclerosis. However, the mechanisms by which micro-organisms induce and/or aggravate atherosclerosis, are so far unclear. Accumulation of cholesterol esters and lipid laden cell formation are hallmark of the atherogenesis, however, the possible relationship between cholesterol esterification and the signal-transducing component of LPS recognition complex inducing cytokine secretion has not been yet investigated. In the present study, we investigated the effect of mevinolin, the ACAT inhibitor, Sandoz 58035, and plasma from statin-treated hypercholesterolemic patients on cholesterol metabolism and cytokine expression in LPS activated P388D1 macrophages. In P388D1 macrophages cholesterol synthesis and uptake, as well as cholesterol ester synthesis, were unchanged following LPS-activation. When cells were grown in presence of serum from patients under statin therapy, cholesterol esterification was lower compared to cells grown with plasma from healthy subjects, independently from the type of statin used. This effect was accompanied by inhibition of IL-1β expression in LPS activated cells. The ACAT inhibitor, Sandoz 58035, which completely blocked cholesterol esterification in normal and LPS-activated macrophages, prevented IL-1β and IL-6 over-expression in LPS activated cells. Although preliminary, these data point to a possible relationship between cholesterol esterification and cytokine production in macrophages, prospecting new possible mechanisms by which microbial or inflammatory agents may induce and/or accelerate the atherosclerotic process.

  9. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    Science.gov (United States)

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking.

  10. miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis.

    Science.gov (United States)

    Sonda, Nada; Simonato, Francesca; Peranzoni, Elisa; Calì, Bianca; Bortoluzzi, Stefania; Bisognin, Andrea; Wang, Ena; Marincola, Francesco M; Naldini, Luigi; Gentner, Bernhard; Trautwein, Christian; Sackett, Sara Dutton; Zanovello, Paola; Molon, Barbara; Bronte, Vincenzo

    2013-06-27

    Tumor progression is accompanied by an altered myelopoiesis causing the accumulation of immunosuppressive cells. Here, we showed that miR-142-3p downregulation promoted macrophage differentiation and determined the acquisition of their immunosuppressive function in tumor. Tumor-released cytokines signaling through gp130, the common subunit of the interleukin-6 cytokine receptor family, induced the LAP∗ isoform of C/EBPβ transcription factor, promoting macrophage generation. miR-142-3p downregulated gp130 by canonical binding to its messenger RNA (mRNA) 3' UTR and repressed C/EBPβ LAP∗ by noncanonical binding to its 5' mRNA coding sequence. Enforced miR expression impaired macrophage differentiation both in vitro and in vivo. Mice constitutively expressing miR-142-3p in the bone marrow showed a marked increase in survival following immunotherapy with tumor-specific T lymphocytes. By modulating a specific miR in bone marrow precursors, we thus demonstrated the feasibility of altering tumor-induced macrophage differentiation as a potent tool to improve the efficacy of cancer immunotherapy.

  11. Macropinocytosis contributes to the macrophage foam cell formation in RAW264.7 cells

    Institute of Scientific and Technical Information of China (English)

    Wenqi Yao; Ke Li; Kan Liao

    2009-01-01

    The key event in the atherosclerosis development is the lipids uptake by macrophage and the formation of foam cell in subendothelial arterial space. Besides the uptake of modified low-density lipoprotein (LDL) by scavenger receptor-mediated endocytosis, macrophages possess constitutive macropinocytosis, which is capable of taking up a large quantity of solute. Macrophage foam cell formation could be induced in RAW264.7 cells by increasing the serum concentration in the culture medium. Foam cell formation induced by serum could be blocked by phosphoinositide 3-kinase inhibi-tor, LY294002 or wortmannin, which inhibited macro-pinocytosis but not receptor-mediated endocytosis. Further analysis indicated that macropinocytosis took place at the gangliosides-enriched membrane area. Cholesterol depletion by β-methylcyclodextrin-blocked macropinocytosis without affecting scavenger receptor-mediated endocytosis of modified LDLs. These results suggested that macropinocytosis might be one of the important mechanisms for lipid uptake in macrophage. And it made significant contribution to the lipid accumulation and foam cell formation.

  12. New macrophage models of Gaucher disease offer new tools for drug development.

    Science.gov (United States)

    Borger, Daniel K; Sidransky, Ellen; Aflaki, Elma

    Gaucher disease is an inherited enzyme deficiency resulting in the lysosomal accumulation of specific glycolipids in macrophages and, in some cases, neurons. While current treatments are effective at reducing this glycolipid storage in macrophages, they are expensive and ineffective in treating neurological manifestations of the disease, driving the search for novel therapeutics. Moreover, mutations in GBA1, the gene implicated in Gaucher disease, are an important risk factor for the development of Parkinson disease and related disorders, an association that has further heightened interest in Gaucher disease research. However, the development of therapeutic strategies has been hampered by a shortage of appropriate cellular models of Gaucher disease. We have generated two novel macrophage models of Gaucher disease, one through the differentiation of peripheral blood monocytes from patients with Gaucher disease and the other through the differentiation of induced pluripotent stem cells derived from patient fibroblasts. Both disease models demonstrate similar cellular phenotypes and exhibit extensive glycolipid storage when exposed to exogenous lipid sources such as erythrocyte membranes. Furthermore, we have used these models to confirm the efficacy of a novel small molecule in clearing glycolipid storage and restoring normal macrophage function. These results demonstrate the usefulness of these models in exploring new therapeutics for Gaucher disease and related disorders.

  13. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati...on. Szanto A, Roszer T. FEBS Lett. 2008 Jan 9;582(1):106-16. Epub 2007 Nov 20. (.png) (.svg) (.html) (.csml) Show Nuclear... receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title Nuclear

  14. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    Science.gov (United States)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  15. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ...Sweet MJ, Beasley SJ, Cronau SL, Hume DA. J Leukoc Biol. 1999 Oct;66(4):542-8. (.png) (.svg) (.html) (.csml) Show The... actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial D

  16. Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar

    Science.gov (United States)

    Lewis, Gabriel; Osterberg, Erich; Hawley, Robert; Whitmore, Brian; Marshall, Hans Peter; Box, Jason

    2017-03-01

    The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. An improved understanding of temporal and spatial variability of snow accumulation will reduce uncertainties in GrIS mass balance models and improve projections of Greenland's contribution to sea-level rise, currently estimated at 0.089 ± 0.03 m by 2100. Here we analyze 25 NASA Operation IceBridge accumulation radar flights totaling > 17 700 km from 2013 to 2014 to determine snow accumulation in the GrIS dry snow and percolation zones over the past 100-300 years. IceBridge accumulation rates are calculated and used to validate accumulation rates from three regional climate models. Averaged over all 25 flights, the RMS difference between the models and IceBridge accumulation is between 0.023 ± 0.019 and 0.043 ± 0.029 m w.e. a-1, although each model shows significantly larger differences from IceBridge accumulation on a regional basis. In the southeast region, for example, the Modèle Atmosphérique Régional (MARv3.5.2) overestimates by an average of 20.89 ± 6.75 % across the drainage basin. Our results indicate that these regional differences between model and IceBridge accumulation are large enough to significantly alter GrIS surface mass balance estimates. Empirical orthogonal function analysis suggests that the first two principal components account for 33 and 19 % of the variance, and correlate with the Atlantic Multidecadal Oscillation (AMO) and wintertime North Atlantic Oscillation (NAO), respectively. Regions that disagree strongest with climate models are those in which we have the fewest IceBridge data points, requiring additional in situ measurements to verify model uncertainties.

  17. MAP kinase phosphatase 2 regulates macrophage-adipocyte interaction.

    Directory of Open Access Journals (Sweden)

    Huipeng Jiao

    Full Text Available Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2 in inflammation during macrophage-adipocyte interaction.White adipose tissues (WAT from mice either on a high-fat diet (HFD or normal chow (NC were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction.HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs. MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction.MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.

  18. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Mário Henrique M Barros

    Full Text Available Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a

  19. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  20. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...... M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation...... frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation...

  1. In vitro model of atherosclerosis using coculture of arterial wall cells and macrophage.

    Science.gov (United States)

    Wada, Y; Sugiyama, A; Kohro, T; Kobayashi, M; Takeya, M; Naito, M; Kodama, T

    2000-12-01

    In order to determine the precise mechanism of the interactions between different types of cells, which are common phenomena in tissues and organs, the importance of coculture techniques are becoming increasingly important. In the area of cardiology, artificial arteries have been developed, based on the understanding of physiological communication of the arterial smooth muscle cells (SMC), endothelial cells (EC), and the extracellular matrix (ECM). In the study of atherosclerosis, the modification of low-density lipoprotein (LDL), which result in the recruitment and accumulation of white blood cells, especially, monocytes/macrophages, and foam cell formation, are hypothesized. Although there are well known animal models, an in vitro model of atherogenesis with a precisely known atherogenesis mechanism has not yet been developed. In this paper, an arterial wall reconstruction model using rabbit primary cultivated aortic SMCs and ECs, was shown. In addition, human peripheral monocytes were used and the transmigration of monocytes was observed by scanning electron and laser confocal microscopy. Monocyte differentiation into macrophages was shown by immunohistochemistry and comprehensive gene expression analysis. With the modified form of LDL, the macrophages were observed to accumulate lipids with a foamy appearance and differentiate into the foam cells in the ECM between the ECs and SMCs in the area of our coculture model.

  2. Evaluating water deficit and glyphosate treatment on the accumulation of phenolic compounds and photosynthesis rate in transgenic Codonopsis lanceolata (Siebold & Zucc.) Trautv. over-expressing γ-tocopherol methyltransferase (γ-tmt) gene.

    Science.gov (United States)

    Ghimire, Bimal Kumar; Son, Na-Young; Kim, Seung-Hyun; Yu, Chang Yeon; Chung, Ill-Min

    2017-07-01

    The effect of water stress and herbicide treatment on the phenolic compound concentration and photosynthesis rate in transgenic Codonopsis lanceolata plants over-expressing the γ-tmt gene was investigated and compared to that in control non-transgenic C. lanceolata plants. The total phenolic compound content was investigated using high-performance liquid chromatography combined with diode array detection in C. lanceolata seedlings 3 weeks after water stress and treatment with glyphosate. Changes in the composition of phenolic compounds were observed in leaf and root extracts from transformed C. lanceolata plants following water stress and treatment with glyphosate. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after water stress ranged from 3455.13 ± 40.48 to 8695.00 ± 45.44 µg g(-1) dry weight (DW), whereas the total concentration phenolic compound in the leaf extracts of non-transgenic control samples was 5630.83 ± 45.91 µg g(-1) DW. The predominant phenolic compounds that increased after the water stress in the transgenic leaf were (+) catechin, benzoic acid, chlorogenic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veratric acid. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after glyphosate treatment ranged from 4744.37 ± 81.81 to 12,051.02 ± 75.00 µg g(-1) DW, whereas the total concentration of the leaf extracts of non-transgenic control samples after glyphosate treatment was 3778.28 ± 59.73 µg g(-1) DW. Major phenolic compounds that increased in the transgenic C. lanceolata plants after glyphosate treatment included kaempherol, gallic acid, myricetin, p-hydroxybenzjoic acid, quercetin, salicylic acid, t-cinnamic acid, catechin, benzoicacid, ferulic acid, protocatechuic acid, veratric acid, and vanillic acid. Among these, vanillic acid showed the greatest increase in both leaf and root extracts from transgenic plants relative to

  3. Macrophage plasticity in experimental atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Jamila Khallou-Laschet

    Full Text Available As in human disease, macrophages (MØ are central players in the development and progression of experimental atherosclerosis. In this study we have evaluated the phenotype of MØ associated with progression of atherosclerosis in the apolipoprotein E (ApoE knockout (KO mouse model.We found that bone marrow-derived MØ submitted to M1 and M2 polarization specifically expressed arginase (Arg II and Arg I, respectively. This distinct arginase expression was used to evaluate the frequency and distribution of M1 and M2 MØ in cross-sections of atherosclerotic plaques of ApoE KO mice. Early lesions were infiltrated by Arg I(+ (M2 MØ. This type of MØ favored the proliferation of smooth muscle cells, in vitro. Arg II(+ (M1 MØ appeared and prevailed in lesions of aged ApoE KO mice and lesion progression was correlated with the dominance of M1 over the M2 MØ phenotype. In order to address whether the M2->M1 switch could be due to a phenotypic switch of the infiltrated cells, we performed in vitro repolarization experiments. We found that fully polarized MØ retained their plasticity since they could revert their phenotype. The analysis of the distribution of Arg I- and Arg II-expressing MØ also argued against a recent recruitment of M1 MØ in the lesion. The combined data therefore suggest that the M2->M1 switch observed in vivo is due to a conversion of cells already present in the lesion. Our study suggests that interventional tools able to revert the MØ infiltrate towards the M2 phenotype may exert an atheroprotective action.

  4. Legionella pneumophila Strain 130b Evades Macrophage Cell Death Independent of the Effector SidF in the Absence of Flagellin

    Science.gov (United States)

    Speir, Mary; Vogrin, Adam; Seidi, Azadeh; Abraham, Gilu; Hunot, Stéphane; Han, Qingqing; Dorn, Gerald W.; Masters, Seth L.; Flavell, Richard A.; Vince, James E.; Naderer, Thomas

    2017-01-01

    The human pathogen Legionella pneumophila must evade host cell death signaling to enable replication in lung macrophages and to cause disease. After bacterial growth, however, L. pneumophila is thought to induce apoptosis during egress from macrophages. The bacterial effector protein, SidF, has been shown to control host cell survival and death by inhibiting pro-apoptotic BNIP3 and BCL-RAMBO signaling. Using live-cell imaging to follow the L. pneumophila-macrophage interaction, we now demonstrate that L. pneumophila evades host cell apoptosis independent of SidF. In the absence of SidF, L. pneumophila was able to replicate, cause loss of mitochondria membrane potential, kill macrophages, and establish infections in lungs of mice. Consistent with this, deletion of BNIP3 and BCL-RAMBO did not affect intracellular L. pneumophila replication, macrophage death rates, and in vivo bacterial virulence. Abrogating mitochondrial cell death by genetic deletion of the effectors of intrinsic apoptosis, BAX, and BAK, or the regulator of mitochondrial permeability transition pore formation, cyclophilin-D, did not affect bacterial growth or the initial killing of macrophages. Loss of BAX and BAK only marginally limited the ability of L. pneumophila to efficiently kill all macrophages over extended periods. L. pneumophila induced killing of macrophages was delayed in the absence of capsase-11 mediated pyroptosis. Together, our data demonstrate that L. pneumophila evades host cell death responses independently of SidF during replication and can induce pyroptosis to kill macrophages in a timely manner. PMID:28261564

  5. Inhibitory effects of Zanthoxylum rhoifolium Lam. (Rutaceae against the infection and infectivity of macrophages by Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    BERNARDO MELO NETO

    2016-01-01

    Full Text Available ABSTRACT Zanthoxylum rhoifolium Lam. (Rutaceae has been traditionally used in the treatment of microbial infections and parasitic diseases. In the present study, the antileishmanial effect induced by the ethanol extract of stem barks from Z. rhoifolium (ZR-EEtOH and its n-hexane fraction (ZR-FHEX on infection and infectivity of murine macrophages by promastigote forms of Leishmania amazonensis were investigated. In different set of experiments, macrophages or promastigotes were pretreated with ZR-EEtOH or ZR-FHEX at non-lethal concentrations for 24 hours, and then macrophages were submitted to infection by promastigotes. Moreover, their effects on activation of macrophages, as well as on the DNA content, size and number of promastigotes by flow cytometry were also evaluated. The infection rate and the number of internalized amastigote forms were markedly decreased after pretreatment of macrophages or promastigotes when compared with non-treated cells. The increase in phagocytic capability and nitrite content was also observed. Furthermore, the decrease of DNA content, size and number of promastigotes was also observed. In conclusion, ZR-EEtOH and ZR-FHEX promoted a markedly significant antileishmanial effect and reduction of infection of macrophages, probably underlying defense mechanisms activation in macrophages. These findings reinforce the potential application of Z. rhoifolium in the treatment of leishmaniasis.

  6. Inhibitory effects of Zanthoxylum rhoifolium Lam. (Rutaceae) against the infection and infectivity of macrophages by Leishmania amazonensis.

    Science.gov (United States)

    Melo, Bernardo; Leitão, Joseana M S R; Oliveira, Luciano G C; Santos, Sérgio E M; Carneiro, Sabrina M P; Rodrigues, Klinger A F; Chaves, Mariana H; Arcanjo, Daniel D R; Carvalho, Fernando A A

    2016-01-01

    Zanthoxylum rhoifolium Lam. (Rutaceae) has been traditionally used in the treatment of microbial infections and parasitic diseases. In the present study, the antileishmanial effect induced by the ethanol extract of stem barks from Z. rhoifolium (ZR-EEtOH) and its n-hexane fraction (ZR-FHEX) on infection and infectivity of murine macrophages by promastigote forms of Leishmania amazonensis were investigated. In different set of experiments, macrophages or promastigotes were pretreated with ZR-EEtOH or ZR-FHEX at non-lethal concentrations for 24 hours, and then macrophages were submitted to infection by promastigotes. Moreover, their effects on activation of macrophages, as well as on the DNA content, size and number of promastigotes by flow cytometry were also evaluated. The infection rate and the number of internalized amastigote forms were markedly decreased after pretreatment of macrophages or promastigotes when compared with non-treated cells. The increase in phagocytic capability and nitrite content was also observed. Furthermore, the decrease of DNA content, size and number of promastigotes was also observed. In conclusion, ZR-EEtOH and ZR-FHEX promoted a markedly significant antileishmanial effect and reduction of infection of macrophages, probably underlying defense mechanisms activation in macrophages. These findings reinforce the potential application of Z. rhoifolium in the treatment of leishmaniasis.

  7. Integrated optical fiber lattice accumulators

    OpenAIRE

    Atherton, Adam F

    1997-01-01

    Approved for public release; distribution is unlimited. Sigma-delta modulators track a signal by accumulating the error between an input signal and a feedback signal. The accumulated energy is amplitude analyzed by a comparator. The comparator output signal is fed back and subtracted from the input signal. This thesis is primarily concerned with designing accumulators for inclusion in an optical sigma-delta modulator. Fiber lattice structures with optical amplifiers are used to perform the...

  8. Significance of CD163-Positive Macrophages in Proliferative Glomerulonephritis.

    Science.gov (United States)

    Li, Jun; Liu, Chang-Hua; Xu, Dao-Liang; Gao, Bo

    2015-11-01

    CD163, a marker of M2 macrophages, possesses anti-inflammatory properties. This study aims to investigate the clinicopathological significance of CD163-positive macrophages in proliferative glomerulonephritis. Renal tissue samples from patients with lupus nephritis (LN, n = 22), antineutrophil cytoplasmic autoantibody (ANCA)-associated pauci-immune necrotizing glomerulonephritis (PNGN, n = 10), type 1 membranoproliferative glomerulonephritis (n = 5), minimal change disease (n = 8) and normal control kidneys (n = 3) were included in this study. The expression of CD163, CD68, CD20 and CD3 in renal tissues was detected by immunohistochemistry or immunofluorescence. The level of urinary neutrophil gelatinase-associated lipocalin (NGAL) was determined by enzyme-linked immunosorbent assay. CD163 was mainly expressed in active crescentic glomerulonephritis, proliferative glomerular lesions and areas of tubulointerstitial injury. Patients with LN-IV and PNGN had numerous CD163-positive cells in glomerular and acute tubulointerstitial lesions. CD163-positive cells in glomeruli positively correlated to proteinuria yet negatively correlated to estimated glomerular filtration rate. There was a positive correlation between the number of CD163 cells in acute tubulointerstitial lesions and NGAL levels, whereas a negative correlation between CD163 numbers and estimated glomerular filtration rate. The number of CD163-positive cells in crescentic glomerulonephritis was more than other groups. In LN, the number of CD163 cells in the tubulointerstitial and glomerular lesions had a positive correlation with activity index. Dual staining showed that CD163-positive cells also expressed CD68, although they did not show any staining for CD20 or CD3. CD163-positive macrophages were involved in the pathogenesis of proliferative glomerular lesions, active crescentic glomerulonephritis and acute tubular injury of patients with PNGN and active LN.

  9. Accumulation of Norfloxacin by Bacteroides fragilis

    Science.gov (United States)

    Ricci, Vito; Piddock, Laura J. V.

    2000-01-01

    The accumulation of norfloxacin by Bacteroides fragilis NCTC 9343 was determined by the modified fluorescence method. The time required to achieve a steady-state concentration (SSC) after allowing B. fragilis to accumulate norfloxacin in an aerobic or an anaerobic environment was ∼2 min; the SSC achieved in air was 90.28 ± 9.32 ng of norfloxacin/mg (dry weight) of cells, and that achieved anaerobically was 98.45 ± 3.7 ng of norfloxacin/mg (dry weight) of cells. Initial