WorldWideScience

Sample records for macromolecular drug smancs

  1. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  2. Thiomers for oral delivery of hydrophilic macromolecular drugs.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Hoffer, Martin H; Kafedjiiski, Krum

    2004-11-01

    In recent years thiolated polymers (thiomers) have appeared as a promising new tool in oral drug delivery. Thiomers are obtained by the immobilisation of thio-bearing ligands to mucoadhesive polymeric excipients. By the formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of thiomers are up to 130-fold improved compared with the corresponding unmodified polymers. Owing to the formation of inter- and intramolecular disulfide bonds within the thiomer itself, matrix tablets and particulate delivery systems show strong cohesive properties, resulting in comparatively higher stability, prolonged disintegration times and a more controlled drug release. The permeation of hydrophilic macromolecular drugs through the gastrointestinal (GI) mucosa can be improved by the use of thiomers. Furthermore, some thiomers exhibit improved inhibitory properties towards GI peptidases. The efficacy of thiomers in oral drug delivery has been demonstrated by various in vivo studies. A pharmacological efficacy of 1%, for example, was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Furthermore, tablets comprising a thiomer and pegylated insulin resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Low-molecular-weight heparin embedded in thiolated polycarbophil led to an absolute bioavailability of > or = 20% after oral administration to rats. In these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. These results indicate drug carrier systems based on thiomers appear to be a promising tool for oral delivery of hydrophilic macromolecular drugs.

  3. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs

    Czech Academy of Sciences Publication Activity Database

    Angelov, Borislav; Garamus, V.M.; Drechsler, M.; Angelova, A.

    2017-01-01

    Roč. 235, Jun (2017), s. 83-89 ISSN 0167-7322 R&D Projects: GA MŠk EF15_003/0000447; GA MŠk EF15_008/0000162 Grant - others:OP VVV - ELIBIO(XE) CZ.02.1.01/0.0/0.0/15_003/0000447; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : self-assembled nanocarriers * liquid crystalline phase transitions * cationic lipids * macromolecular drugs Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.648, year: 2016

  4. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    International Nuclear Information System (INIS)

    Tsai, Yingssu; McPhillips, Scott E.; González, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-01-01

    New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully

  5. In Vitro and In Vivo Evaluation of Microparticulate Drug Delivery Systems Composed of Macromolecular Prodrugs

    Directory of Open Access Journals (Sweden)

    Yoshiharu Machida

    2008-08-01

    Full Text Available Macromolecular prodrugs are very useful systems for achieving controlled drug release and drug targeting. In particular, various macromolecule-antitumor drug conjugates enhance the effectiveness and improve the toxic side effects. Also, polymeric micro- and nanoparticles have been actively examined and their in vivo behaviors elucidated, and it has been realized that their particle characteristics are very useful to control drug behavior. Recently, researches based on the combination of the concepts of macromolecular prodrugs and micro- or nanoparticles have been reported, although they are limited. Macromolecular prodrugs enable drugs to be released at a certain controlled release rate based on the features of the macromolecule-drug linkage. Micro- and nanoparticles can control in vivo behavior based on their size, surface charge and surface structure. These merits are expected for systems produced by the combination of each concept. In this review, several micro- or nanoparticles composed of macromolecule-drug conjugates are described for their preparation, in vitro properties and/or in vivo behavior.

  6. Macromolecular therapeutics.

    Science.gov (United States)

    Yang, Jiyuan; Kopeček, Jindřich

    2014-09-28

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines - (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Olfactory nerve transport of macromolecular drugs to the brain. A problem in olfactory impaired patients

    International Nuclear Information System (INIS)

    Shiga, Hideaki; Yamamoto, Junpei; Miwa, Takaki

    2012-01-01

    Nasal administration of macromolecular drugs (including peptides and nanoparticles) has the potential to enable drug delivery system beyond the blood brain barrier (BBB) via olfactory nerve transport. Basic research on drug deliver systems to the brain via nasal administration has been well reported. Insulin-like growth factor-I (IGF-I) is associated with the development and growth of the central nervous system. Clinical application of IGF-I with nasal administration is intended to enable drug delivery to brain through the BBB. Uptake of IGF-I in the olfactory bulb and central nervous system increased according to the dosage of nasally administered IGF-I in normal ICR mice, however IGF-I uptake in the trigeminal nerve remained unchanged. Olfactory nerve transport is important for the delivery of nasally administered IGF-I to the brain in vivo. Because a safe olfactory nerve tracer has not been clinically available, olfactory nerve transport has not been well studied in humans. Nasal thallium-201 ( 201 Tl) administration has been safely used to assess the direct pathway to the brain via the nose in healthy volunteers with a normal olfactory threshold. 201 Tl olfactory nerve transport has recently been shown to decrease in patients with hyposmia. The olfactory nerve transport function in patients with olfactory disorders will be determined using 201 Tl olfacto-scintigraphy for the exclusion of candidates in a clinical trial to assess the usefulness of nasal administration of IGF-I. (author)

  8. Detection and cellular localisation of the synthetic soluble macromolecular drug carrier pHPMA

    Czech Academy of Sciences Publication Activity Database

    Kissel, M.; Peschke, P.; Šubr, Vladimír; Ulbrich, Karel; Strunz, A. M.; Kühnlein, R.; Debus, J.; Friedrich, E.

    2002-01-01

    Roč. 29, č. 8 (2002), s. 1055-1062 ISSN 1619-7070 R&D Projects: GA ČR GV307/96/K226 Institutional research plan: CEZ:AV0Z4050913 Keywords : EPR effect * Radiolabelled macromolecules * Pharmacokinetic Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.568, year: 2002

  9. Combined effect of radiation and YM-881 (SMANCS) on murine tumors and bone marrow

    International Nuclear Information System (INIS)

    Ono, K.; Wandl, E.; Sasai, K.; Tsutsui, K.; Shibamoto, Y.; Takahashi, M.; Abe, M.; Vienna Univ.

    1990-01-01

    The combined effect of radiation and YM-881 (SMANCS) was studied in vitro and in vivo. When 0.25 μg/ml of YM-881 was simultaneously combined with radiation, during and after irradiation for 30 min in total, D q decreased from 3.3 Gy to 1.4 Gy without changing D 0 in the dose-survival curve of exponentially growing SCC VII tumor cells. Five or ten times administrations of 0.1 mg/kg YM-881 at an interval of 24 h did not inhibit tumor growth. However, administration of 0.1 mg/kg YM-881 just before every irradiation which was repeated five times at an interval of 24 h yielded dose modifying factors (DMFs) of 1.8-1.2 when the tumor response to treatment was evaluated by the time for the tumors to regrow to three times the original volume. Administration of YM-881 ten times just before every irradiation yielded DMFs of 1.3-1.2. Adverse effects of the combination on bone marrow were examined by spleen colony assay. After five injections of 0.1 mg/kg YM-881, the mean number of CFU-S per femur decreased to 77% of the pretreatment level, but this was not significant statistically (0.1>p>0.05). The slope of radiation response curve for CFU-S per femur was not affected by the combination. (orig.)

  10. The In-Situ One-Step Synthesis of a PDC Macromolecular Pro-Drug and the Fabrication of a Novel Core-Shell Micell.

    Science.gov (United States)

    Yu, Cui-Yun; Yang, Sa; Li, Zhi-Ping; Huang, Can; Ning, Qian; Huang, Wen; Yang, Wen-Tong; He, Dongxiu; Sun, Lichun

    2016-01-01

    The development of slow release nano-sized carriers for efficient antineoplastic drug delivery with a biocompatible and biodegradable pectin-based macromolecular pro-drug for tumor therapy has been reported in this study. Pectin-doxorubicin conjugates (PDC), a macromolecular pro-drug, were prepared via an amide condensation reaction, and a novel amphiphilic core-shell micell based on a PDC macromolecular pro-drug (PDC-M) was self-assembled in situ, with pectin as the hydrophilic shell and doxorubicin (DOX) as the hydrophobic core. Then the chemical structure of the PDC macromolecular pro-drug was identified by both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ((1)H-NMR), and proved that doxorubicin combined well with the pectin and formed macromolecular pro-drug. The PDC-M were observed to have an unregularly spherical shape and were uniform in size by scanning electron microscopy (SEM). The average particle size of PDC-M, further measured by a Zetasizer nanoparticle analyzer (Nano ZS, Malvern Instruments), was about 140 nm. The encapsulation efficiency and drug loading were 57.82% ± 3.7% (n = 3) and 23.852% ±2.3% (n = 3), respectively. The in vitro drug release behaviors of the resulting PDC-M were studied in a simulated tumor environment (pH 5.0), blood (pH 7.4) and a lysosome media (pH 6.8), and showed a prolonged slow release profile. Assays for antiproliferative effects and flow cytometry of the resulting PDC-M in HepG2 cell lines demonstrated greater properties of delayed and slow release as compared to free DOX. A cell viability study against endothelial cells further revealed that the resulting PDC-M possesses excellent cell compatibilities and low cytotoxicities in comparison with that of the free DOX. Hemolysis activity was investigated in rabbits, and the results also demonstrated that the PDC-M has greater compatibility in comparison with free DOX. This shows that the resulting PDC-M can ameliorate the

  11. Computed tomography after administration of SMANCS-Lipiodol to liver cancers

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Shojiro; Konno, Toshimitsu; Iwai, Ken; Uchida, Mitsukuni; Tashiro, Seiki; Miyauchi, Yoshimasa; Maeda, Hiroshi [Kumamoto Univ. (Japan). School of Medicine

    1984-08-01

    Sixty-eight cases of liver cancer, 48 cases of hepatocellular carcinoma and 20 cases of metastatic liver cancer, were treated by injection of SMANCS-Lipiodol (S-L) via tumor feeding arteries. Abdominal CT was carried out on the 3 rd day, 1 week, 2 and 4 weeks after the administration. These CT images were compared with those before the administration. Both primary and metastatic liver cancers were visualized as high density area due to the selective stay of S-L. Thus, the method became useful as a diagnostic tool; several tumors were newly visualized after the administration. S-L stayed in primary tumors and metastatic tumors. There were three types of the remaining of S-L in metastatic tumors for a long period: Type A, in which S-L remained in entire tumors; Types B, in which it remained primarily in circumference of tumor and Mixed type of A and B. The anticancer effect of S-L paralleled with the extent of the remaining of S-L in tumors, which was classified from Grade 0 to Grade IV. Grade IV means that S-L was recognized in the entire areas of tumors in the every slice of CT, and in the Grade IV tumors size reduced effectively after several months period. The dosage which was necessary to attain Grade IV was 0.08 ml per square centimeters calculated by the largest slice of every tumor. From Grade 0 to III, they need additional administration of S-L until to attain Grade IV in the tumor for the effective tumor regression.

  12. Computed tomography after administration of SMANCS-Lipiodol to liver cancers

    International Nuclear Information System (INIS)

    Maki, Shojiro; Konno, Toshimitsu; Iwai, Ken; Uchida, Mitsukuni; Tashiro, Seiki; Miyauchi, Yoshimasa; Maeda, Hiroshi

    1984-01-01

    Sixty-eight cases of liver cancer, 48 cases of hepatocellular carcinoma and 20 cases of metastatic liver cancer, were treated by injection of SMANCS-Lipiodol (S-L) via tumor feeding arteries. Abdominal CT was carried out on the 3 rd day, 1 week, 2 and 4 weeks after the administration. These CT images were compared with those before the administration. Both primary and metastatic liver cancers were visualized as high density area due to the selective stay of S-L. Thus, the method became useful as a diagnostic tool; several tumors were newly visalized after the administration. S-L stayed in primary tumors and metastatic tumors. There were three types of the remaining of S-L in metastatic tumors for a long period: Type A, in which S-L remained in entire tumors; Types B, in which it remained primarily in circumference of tumor and Mixed type of A and B. The anticancer effect of S-L paralleled with the extent of the remaining of S-L in tumors, which was classified from Grade 0 to Grade IV. Grade IV means that S-L was recognized in the entire areas of tumors in the every slice of CT, and in the Grade IV tumors size reduced effectively after several months period. The dosage which was necessary to attain Grade IV was 0.08 ml per square centimeters calculated by the largest slice of every tumor. From Grade 0 to III, they need additional administration of S-L until to attain Grade IV in the tumor for the effective tumor regression. (author)

  13. Recent advances in macromolecular prodrugs

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Zelikin, Alexander N.

    2017-01-01

    Macromolecular prodrugs (MP) are high molar mass conjugates, typically carrying several copies of a drug or a drug combination, designed to optimize delivery of the drug, that is — its pharmacokinetics. From its advent several decades ago, design of MP has undergone significant development and es...

  14. Detection and cellular localisation of the synthetic soluble macromolecular drug carrier pHPMA

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, Maria; Peschke, Peter; Strunz, Anke M.; Kuehnlein, Rainer; Debus, Juergen [Department of Radiation Oncology, E0505, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Subr, Vladimir; Ulbrich, Karel [Institute of Macromolecular Chemistry, Prague (Czech Republic); Friedrich, Eckhard [Division of Biology, University of Koblenz-Landau, Landau (Germany)

    2002-08-01

    Synthetic macromolecules such as copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) are potential carriers for the delivery of drugs owing to their ability to passively accumulate in solid tumours [enhanced permeation and retention (EPR) effect]. To gain further knowledge about the biodistribution and the cellular localisation, poly(HPMA) was prepared for labelling by introducing biotin molecules. Biotinylated pHPMA (5 mol%) was intravenously injected into tumour-bearing rats and the accumulation of biotin-pHPMA was visualised using a streptavidin-alkaline phosphatase technique at day 7 post injection. In spite of the high solubility of pHPMA copolymers and the lack of attachment to cell structures, the biotinylated polymer could be easily detected in tissues fixed in 10% paraformaldehyde-phosphate buffer at 4 C for 48 h. While biotin-pHPMA could be detected intracytoplasmically in liver and spleen, a predominantly interstitial localisation was observed within the anaplastic prostate carcinoma (Dunning R3327-AT1). How biotin as a label influences the biodistribution of poly(HPMA) was assessed by scintigraphy, autoradiography and histology comparing homopolymer poly(HPMA) with biotin-pHPMA. The organ distribution patterns of the two polymers correlated well, except with respect to kidney. It is assumed that the accumulation of biotin-pHPMA in the distal tubuli is due to a biotin transporter in the brush border membrane. The technique presented is useful for a more comprehensive understanding of the biodistribution of soluble macromolecules. (orig.)

  15. Detection and cellular localisation of the synthetic soluble macromolecular drug carrier pHPMA

    International Nuclear Information System (INIS)

    Kissel, Maria; Peschke, Peter; Strunz, Anke M.; Kuehnlein, Rainer; Debus, Juergen; Subr, Vladimir; Ulbrich, Karel; Friedrich, Eckhard

    2002-01-01

    Synthetic macromolecules such as copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) are potential carriers for the delivery of drugs owing to their ability to passively accumulate in solid tumours [enhanced permeation and retention (EPR) effect]. To gain further knowledge about the biodistribution and the cellular localisation, poly(HPMA) was prepared for labelling by introducing biotin molecules. Biotinylated pHPMA (5 mol%) was intravenously injected into tumour-bearing rats and the accumulation of biotin-pHPMA was visualised using a streptavidin-alkaline phosphatase technique at day 7 post injection. In spite of the high solubility of pHPMA copolymers and the lack of attachment to cell structures, the biotinylated polymer could be easily detected in tissues fixed in 10% paraformaldehyde-phosphate buffer at 4 C for 48 h. While biotin-pHPMA could be detected intracytoplasmically in liver and spleen, a predominantly interstitial localisation was observed within the anaplastic prostate carcinoma (Dunning R3327-AT1). How biotin as a label influences the biodistribution of poly(HPMA) was assessed by scintigraphy, autoradiography and histology comparing homopolymer poly(HPMA) with biotin-pHPMA. The organ distribution patterns of the two polymers correlated well, except with respect to kidney. It is assumed that the accumulation of biotin-pHPMA in the distal tubuli is due to a biotin transporter in the brush border membrane. The technique presented is useful for a more comprehensive understanding of the biodistribution of soluble macromolecules. (orig.)

  16. Dynamic contrast-enhanced MRI using a macromolecular MR contrast agent (P792): Evaluation of antivascular drug effect in a rabbit VX2 liver tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Sun [Dept. of Radiology, Konkuk University School of Medicine, Seoul (Korea, Republic of); Han, Joon Koo; Lee, Jeong Min; Woo, Sung Min; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Young Il [Dept. of Radiology, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah (United Arab Emirates); Choi, Jin Young [Dept. of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-10-15

    To evaluate the utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using macromolecular contrast agent (P792) for assessment of vascular disrupting drug effect in rabbit VX2 liver tumor models. This study was approved by our Institutional Animal Care and Use Committee. DCE-MRI was performed with 3-T scanner in 13 VX2 liver tumor-bearing rabbits, before, 4 hours after, and 24 hours after administration of vascular disrupting agent (VDA), using gadomelitol (P792, n = 7) or low molecular weight contrast agent (gadoterate meglumine [Gd-DOTA], n = 6). P792 was injected at a of dose 0.05 mmol/kg, while that of Gd-DOTA was 0.2 mmol/kg. DCE-MRI parameters including volume transfer coefficient (Ktrans) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) of tumors were compared between the 2 groups at each time point. DCE-MRI parameters were correlated with tumor histopathology. Reproducibility in measurement of DCE-MRI parameters and image quality of source MR were compared between groups. P792 group showed a more prominent decrease in Ktrans and iAUC at 4 hours and 24 hours, as compared to the Gd-DOTA group. Changes in DCE-MRI parameters showed a weak correlation with histologic parameters (necrotic fraction and microvessel density) in both groups. Reproducibility of DCE-MRI parameters and overall image quality was not significantly better in the P792 group, as compared to the Gd-DOTA group. Dynamic contrast-enhanced magnetic resonance imaging using a macromolecular contrast agent shows changes of hepatic perfusion more clearly after administration of the VDA. Gadolinium was required at smaller doses than a low molecular contrast agent.

  17. Dynamic contrast-enhanced MRI using a macromolecular MR contrast agent (P792): Evaluation of antivascular drug effect in a rabbit VX2 liver tumor model

    International Nuclear Information System (INIS)

    Park, Hee Sun; Han, Joon Koo; Lee, Jeong Min; Woo, Sung Min; Choi, Byung Ihn; Kim, Young Il; Choi, Jin Young

    2015-01-01

    To evaluate the utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using macromolecular contrast agent (P792) for assessment of vascular disrupting drug effect in rabbit VX2 liver tumor models. This study was approved by our Institutional Animal Care and Use Committee. DCE-MRI was performed with 3-T scanner in 13 VX2 liver tumor-bearing rabbits, before, 4 hours after, and 24 hours after administration of vascular disrupting agent (VDA), using gadomelitol (P792, n = 7) or low molecular weight contrast agent (gadoterate meglumine [Gd-DOTA], n = 6). P792 was injected at a of dose 0.05 mmol/kg, while that of Gd-DOTA was 0.2 mmol/kg. DCE-MRI parameters including volume transfer coefficient (Ktrans) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) of tumors were compared between the 2 groups at each time point. DCE-MRI parameters were correlated with tumor histopathology. Reproducibility in measurement of DCE-MRI parameters and image quality of source MR were compared between groups. P792 group showed a more prominent decrease in Ktrans and iAUC at 4 hours and 24 hours, as compared to the Gd-DOTA group. Changes in DCE-MRI parameters showed a weak correlation with histologic parameters (necrotic fraction and microvessel density) in both groups. Reproducibility of DCE-MRI parameters and overall image quality was not significantly better in the P792 group, as compared to the Gd-DOTA group. Dynamic contrast-enhanced magnetic resonance imaging using a macromolecular contrast agent shows changes of hepatic perfusion more clearly after administration of the VDA. Gadolinium was required at smaller doses than a low molecular contrast agent

  18. Macromolecular bipill of gemcitabine and methotrexate facilitates tumor-specific dual drug therapy with higher benefit-to-risk ratio

    DEFF Research Database (Denmark)

    Das, Manasmita; Jain, Roopal; Agrawal, Ashish Kumar

    2014-01-01

    -PEG-MTX conjugate over all other pharmaceutical preparations including free drugs, physical mixture of GEM and MTX, and PEGylated GEM/MTX. Toxicity studies in tumor bearing rats as well as healthy mice corroborated that dual drug conjugation is an effective means to synergize the therapeutic indices of potential...

  19. Depolymerizable Poly(O-vinyl carbamate-alt-sulfones) as Customizable Macromolecular Scaffolds for Mucosal Drug Delivery.

    Science.gov (United States)

    Kumar, Kaushlendra; Castaño, Eduard Jimenez; Weidner, Andrew R; Yildirim, Adem; Goodwin, Andrew P

    2016-05-17

    Interest in stimulus responsive materials and polymers has grown over the years, having shown great promise in a diverse set of applications. For drug delivery, stimulus-responsive polymers have been shown to encapsulate therapeutic cargo such as small molecule drugs or proteins, deliver them to specific locations in the body, and release them so that they can induce a therapeutic effect in the patient. Most hydrolytically degradable polymers are synthesized via nucleophilic, anionic, or cationic polymerization, which generally requires protection of nucleophilic or protic side chains prior to polymerization. Here, we report the synthesis of novel, alternating copolymers of sulfur dioxide and O-vinyl carbamate monomers that boast excellent functional group tolerance and pH-dependent instability. Alternating copolymers were synthesized containing pendant functionalities such as alcohol, carboxylic acid, ester, and azide without deprotection or post-polymerization modification. The copolymers were then formulated via nanoprecipitation into polymer nanoparticles capable of encapsulating small molecule dyes. The polymer nanoparticles were found to degrade rapidly at pH > 6 and were stable even in highly acidic conditions. Based on this observation, a proof-of-concept study for mucosal delivery was performed in polymer nanoparticles entrapped in a mucus model. At pH 8 the diffusion of encapsulated dye was found to be similar to free dye, while at pH 5 the diffusion coefficient was an order of magnitude lower. Cell viability was retained at 200 µg/mL particles after 24 h incubation. These polymers thus show promise as highly customizable scaffolds for mucosal drug delivery.

  20. Macromolecular HPMA-based nanoparticles with cholesterol for solid-tumor targeting: detailed study of the inner structure of a highly efficient drug delivery system

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Chytil, Petr; Konarev, P. V.; Dyakonova, M.; Papadakis, C. M.; Zhigunov, Alexander; Pleštil, Josef; Štěpánek, Petr; Etrych, Tomáš; Ulbrich, Karel; Svergun, D. I.

    2012-01-01

    Roč. 13, č. 8 (2012), s. 2594-2604 ISSN 1525-7797 R&D Projects: GA MŠk ME09059; GA AV ČR IAAX00500803; GA ČR GAP108/12/0640 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : HPMA * cholesterol * SAXS Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.371, year: 2012

  1. Practical macromolecular cryocrystallography

    Energy Technology Data Exchange (ETDEWEB)

    Pflugrath, J. W., E-mail: jim.pflugrath@gmail.com [Rigaku Americas Corp., 9009 New Trails Drive, The Woodlands, TX 77381 (United States)

    2015-05-27

    Current methods, reagents and experimental hardware for successfully and reproducibly flash-cooling macromolecular crystals to cryogenic temperatures for X-ray diffraction data collection are reviewed. Cryocrystallography is an indispensable technique that is routinely used for single-crystal X-ray diffraction data collection at temperatures near 100 K, where radiation damage is mitigated. Modern procedures and tools to cryoprotect and rapidly cool macromolecular crystals with a significant solvent fraction to below the glass-transition phase of water are reviewed. Reagents and methods to help prevent the stresses that damage crystals when flash-cooling are described. A method of using isopentane to assess whether cryogenic temperatures have been preserved when dismounting screened crystals is also presented.

  2. Macromolecular crystallization in microgravity

    International Nuclear Information System (INIS)

    Snell, Edward H; Helliwell, John R

    2005-01-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  3. Macromolecular nanotheranostics for multimodal anticancer therapy

    Science.gov (United States)

    Huis in't Veld, Ruben; Storm, Gert; Hennink, Wim E.; Kiessling, Fabian; Lammers, Twan

    2011-10-01

    Macromolecular carrier materials based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized drug delivery systems that have been extensively evaluated in the past two decades, both at the preclinical and at the clinical level. Using several different imaging agents and techniques, HPMA copolymers have been shown to circulate for prolonged periods of time, and to accumulate in tumors both effectively and selectively by means of the Enhanced Permeability and Retention (EPR) effect. Because of this, HPMA-based macromolecular nanotheranostics, i.e. formulations containing both drug and imaging agents within a single formulation, have been shown to be highly effective in inducing tumor growth inhibition in animal models. In patients, however, as essentially all other tumor-targeted nanomedicines, they are generally only able to improve the therapeutic index of the attached active agent by lowering its toxicity, and they fail to improve the efficacy of the intervention. Bearing this in mind, we have recently reasoned that because of their biocompatibility and their beneficial biodistribution, nanomedicine formulations might be highly suitable systems for combination therapies. In the present manuscript, we briefly summarize several exemplary efforts undertaken in this regard in our labs in the past couple of years, and we show that long-circulating and passively tumor-targeted macromolecular nanotheranostics can be used to improve the efficacy of radiochemotherapy and of chemotherapy combinations.

  4. Sequential recovery of macromolecular components of the nucleolus.

    Science.gov (United States)

    Bai, Baoyan; Laiho, Marikki

    2015-01-01

    The nucleolus is involved in a number of cellular processes of importance to cell physiology and pathology, including cell stress responses and malignancies. Studies of macromolecular composition of the nucleolus depend critically on the efficient extraction and accurate quantification of all macromolecular components (e.g., DNA, RNA, and protein). We have developed a TRIzol-based method that efficiently and simultaneously isolates these three macromolecular constituents from the same sample of purified nucleoli. The recovered and solubilized protein can be accurately quantified by the bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis or by mass spectrometry. We have successfully applied this approach to extract and quantify the responses of all three macromolecular components in nucleoli after drug treatments of HeLa cells, and conducted RNA-Seq analysis of the nucleolar RNA.

  5. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  6. Structure studies of macromolecular systems

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Dohnálek, Jan; Skálová, Tereza; Dušková, Jarmila; Kolenko, Petr

    2006-01-01

    Roč. 13, č. 3 (2006), s. 136 ISSN 1211-5894. [Czech and Slovak Crystallographic Colloquium. 22.06.2006-24.06.2006, Grenoble] R&D Projects: GA AV ČR IAA4050811; GA MŠk 1K05008 Keywords : structure * X-ray diffraction * synchrotron Subject RIV: CD - Macromolecular Chemistry http://www. xray .cz/ms/default.htm

  7. Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport.

    Directory of Open Access Journals (Sweden)

    Samata M Kakkad

    Full Text Available Hypoxic tumor microenvironments result in an aggressive phenotype and resistance to therapy that lead to tumor progression, recurrence, and metastasis. While poor vascularization and the resultant inadequate drug delivery are known to contribute to drug resistance, the effect of hypoxia on molecular transport through the interstitium, and the role of the extracellular matrix (ECM in mediating this transport are unexplored. The dense mesh of fibers present in the ECM can especially influence the movement of macromolecules. Collagen 1 (Col1 fibers form a key component of the ECM in breast cancers. Here we characterized the influence of hypoxia on macromolecular transport in tumors, and the role of Col1 fibers in mediating this transport using an MDA-MB-231 breast cancer xenograft model engineered to express red fluorescent protein under hypoxia. Magnetic resonance imaging of macromolecular transport was combined with second harmonic generation microscopy of Col1 fibers. Hypoxic tumor regions displayed significantly decreased Col1 fiber density and volume, as well as significantly lower macromolecular draining and pooling rates, than normoxic regions. Regions adjacent to severely hypoxic areas revealed higher deposition of Col1 fibers and increased macromolecular transport. These data suggest that Col1 fibers may facilitate macromolecular transport in tumors, and their reduction in hypoxic regions may reduce this transport. Decreased macromolecular transport in hypoxic regions may also contribute to poor drug delivery and tumor recurrence in hypoxic regions. High Col1 fiber density observed around hypoxic regions may facilitate the escape of aggressive cancer cells from hypoxic regions.

  8. Macromolecular target prediction by self-organizing feature maps.

    Science.gov (United States)

    Schneider, Gisbert; Schneider, Petra

    2017-03-01

    Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.

  9. Macromolecular systems for vaccine delivery.

    Science.gov (United States)

    MuŽíková, G; Laga, R

    2016-10-20

    Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.

  10. Macromolecular crystallography research at Trombay

    International Nuclear Information System (INIS)

    Kannan, K.K.; Chidamrabam, R.

    1983-01-01

    Neutron diffraction studies of hydrogen positions in small molecules of biological interest at Trombay have provided valuable information that has been used in protein and enzyme structure model-building and in developing hydrogen bond potential functions. The new R-5 reactor is expected to provide higher neutron fluxes and also make possible small-angle neutron scattering studies of large biomolecules and bio-aggregates. In the last few years infrastructure facilities have also been established for macromolecular x-ray crystallography research. Meanwhile, the refinement of carbonic hydrases and lyysozyme structures have been carried out and interesting results obtained on protein dynamics and structure-function relationships. Some interesting presynaptic toxin phospholipases have also taken up for study. (author)

  11. Status and prospects of macromolecular crystallography

    Indian Academy of Sciences (India)

    technique that could be completely automated in most cases. ... major challenge in macromolecular crystallography today is ... tial characterization of crystals in the home source and make a ... opportunities for a generation of structural biolo-.

  12. Macromolecular synthesis in algal cells

    International Nuclear Information System (INIS)

    Ishida, M.R.; Kikuchi, Tadatoshi

    1980-01-01

    The present paper is a review of our experimental results obtained previously on the macromolecular biosyntheses in the cells of blue-green alga Anacystis nidulans as a representative species of prokaryote, and also in those of three species of eukaryotic algae, i.e. Euglena gracilis strain Z, Chlamydomonas reinhardi, and Cyanidium caldarium. In these algal cells, the combined methods consisting of pulse-labelling using 32 P, 3 H- and 14 C-labelled precursors for macromolecules, of their chasing and of the use of inhibitors which block specifically the syntheses of macromolecules such as proteins, RNA and DNA in living cells were very effectively applied for the analyses of the regulatory mechanism in biosyntheses of macromolecules and of the mode of their assembly into the cell structure, especially organelle constituents. Rased on the results obtained thus, the following conclusions are reached: (1) the metabolic pool for syntheses of macromolecules in the cells of prokaryotic blue-green alga is limited to the small extent and such activities couple largely with the photosynthetic mechanism; (2) 70 S ribosomes in the blue-green algal cells are assembled on the surface of thylakoid membranes widely distributed in their cytoplasm; and (3) the cells of eukaryotic unicellular algae used here have biochemical characters specific for already differentiated enzyme system involving in transcription and translation machineries as the same as in higher organisms, but the control mechanism concerning with such macromolecule syntheses are different among each species. (author)

  13. The design of macromolecular crystallography diffraction experiments

    International Nuclear Information System (INIS)

    Evans, Gwyndaf; Axford, Danny; Owen, Robin L.

    2011-01-01

    Thoughts about the decisions made in designing macromolecular X-ray crystallography experiments at synchrotron beamlines are presented. The measurement of X-ray diffraction data from macromolecular crystals for the purpose of structure determination is the convergence of two processes: the preparation of diffraction-quality crystal samples on the one hand and the construction and optimization of an X-ray beamline and end station on the other. Like sample preparation, a macromolecular crystallography beamline is geared to obtaining the best possible diffraction measurements from crystals provided by the synchrotron user. This paper describes the thoughts behind an experiment that fully exploits both the sample and the beamline and how these map into everyday decisions that users can and should make when visiting a beamline with their most precious crystals

  14. Automated data collection for macromolecular crystallography.

    Science.gov (United States)

    Winter, Graeme; McAuley, Katherine E

    2011-09-01

    An overview, together with some practical advice, is presented of the current status of the automation of macromolecular crystallography (MX) data collection, with a focus on MX beamlines at Diamond Light Source, UK. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Dendrimer-based Macromolecular MRI Contrast Agents: Characteristics and Application

    Directory of Open Access Journals (Sweden)

    Hisataka Kobayashi

    2003-01-01

    Full Text Available Numerous macromolecular MRI contrast agents prepared employing relatively simple chemistry may be readily available that can provide sufficient enhancement for multiple applications. These agents operate using a ~100-fold lower concentration of gadolinium ions in comparison to the necessary concentration of iodine employed in CT imaging. Herein, we describe some of the general potential directions of macromolecular MRI contrast agents using our recently reported families of dendrimer-based agents as examples. Changes in molecular size altered the route of excretion. Smaller-sized contrast agents less than 60 kDa molecular weight were excreted through the kidney resulting in these agents being potentially suitable as functional renal contrast agents. Hydrophilic and larger-sized contrast agents were found better suited for use as blood pool contrast agents. Hydrophobic variants formed with polypropylenimine diaminobutane dendrimer cores created liver contrast agents. Larger hydrophilic agents are useful for lymphatic imaging. Finally, contrast agents conjugated with either monoclonal antibodies or with avidin are able to function as tumor-specific contrast agents, which also might be employed as therapeutic drugs for either gadolinium neutron capture therapy or in conjunction with radioimmunotherapy.

  16. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams. © 2012 International Union of Crystallography

  17. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  18. Macromolecular contrast agents for MR mammography: current status

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Brasch, Robert C.

    2003-01-01

    Macromolecular contrast media (MMCM) encompass a new class of diagnostic drugs that can be applied with dynamic MRI to extract both physiologic and morphologic information in breast lesions. Kinetic analysis of dynamic MMCM-enhanced MR data in breast tumor patients provides useful estimates of tumor blood volume and microvascular permeability, typically increased in cancer. These tumor characteristics can be applied to differentiate benign from malignant lesions, to define the angiogenesis status of cancers, and to monitor tumor response to therapy. The most immediate challenge to the development of MMCM-enhanced mammography is the identification of those candidate compounds that demonstrate the requisite long intravascular distribution and have the high tolerance necessary for clinical use. Potential mammographic applications and limitations of various MMCM, defined by either experimental animal testing or clinical testing in patients, are reviewed in this article. (orig.)

  19. A public database of macromolecular diffraction experiments.

    Science.gov (United States)

    Grabowski, Marek; Langner, Karol M; Cymborowski, Marcin; Porebski, Przemyslaw J; Sroka, Piotr; Zheng, Heping; Cooper, David R; Zimmerman, Matthew D; Elsliger, Marc André; Burley, Stephen K; Minor, Wladek

    2016-11-01

    The low reproducibility of published experimental results in many scientific disciplines has recently garnered negative attention in scientific journals and the general media. Public transparency, including the availability of `raw' experimental data, will help to address growing concerns regarding scientific integrity. Macromolecular X-ray crystallography has led the way in requiring the public dissemination of atomic coordinates and a wealth of experimental data, making the field one of the most reproducible in the biological sciences. However, there remains no mandate for public disclosure of the original diffraction data. The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC) has been developed to archive raw data from diffraction experiments and, equally importantly, to provide related metadata. Currently, the database of our resource contains data from 2920 macromolecular diffraction experiments (5767 data sets), accounting for around 3% of all depositions in the Protein Data Bank (PDB), with their corresponding partially curated metadata. IRRMC utilizes distributed storage implemented using a federated architecture of many independent storage servers, which provides both scalability and sustainability. The resource, which is accessible via the web portal at http://www.proteindiffraction.org, can be searched using various criteria. All data are available for unrestricted access and download. The resource serves as a proof of concept and demonstrates the feasibility of archiving raw diffraction data and associated metadata from X-ray crystallographic studies of biological macromolecules. The goal is to expand this resource and include data sets that failed to yield X-ray structures in order to facilitate collaborative efforts that will improve protein structure-determination methods and to ensure the availability of `orphan' data left behind for various reasons by individual investigators and/or extinct structural genomics

  20. Celebrating macromolecular crystallography: A personal perspective

    Directory of Open Access Journals (Sweden)

    Abad-Zapatero, Celerino

    2015-04-01

    Full Text Available The twentieth century has seen an enormous advance in the knowledge of the atomic structures that surround us. The discovery of the first crystal structures of simple inorganic salts by the Braggs in 1914, using the diffraction of X-rays by crystals, provided the critical elements to unveil the atomic structure of matter. Subsequent developments in the field leading to macromolecular crystallography are presented with a personal perspective, related to the cultural milieu of Spain in the late 1950’s. The journey of discovery of the author, as he developed professionally, is interwoven with the expansion of macromolecular crystallography from the first proteins (myoglobin, hemoglobin to the ‘coming of age’ of the field in 1971 and the discoveries that followed, culminating in the determination of the structure of the ribosomes at the turn of the century. A perspective is presented exploring the future of the field and also a reflection about the future generations of Spanish scientists.El siglo XX ha sido testigo del increíble avance que ha experimentado el conocimiento de la estructura atómica de la materia que nos rodea. El descubrimiento de las primeras estructuras atómicas de sales inorgánicas por los Bragg en 1914, empleando difracción de rayos X con cristales, proporcionó los elementos clave para alcanzar tal conocimiento. Posteriores desarrollos en este campo, que condujeron a la cristalografía macromolecular, se presentan aquí desde una perspectiva personal, relacionada con el contexto cultural de la España de la década de los 50. La experiencia del descubrimiento científico, durante mi desarrollo profesional, se integra en el desarrollo de la cristalografía macromolecular, desde las primeras proteínas (míoglobina y hemoglobina, hasta su madurez en 1971 que, con los posteriores descubrimientos, culmina con la determinación del la estructura del ribosoma. Asimismo, se explora el futuro de esta disciplina y se

  1. In situ macromolecular crystallography using microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny; Owen, Robin L.; Aishima, Jun [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Morgan, Ann W.; Robinson, James I. [University of Leeds, Leeds LS9 7FT (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Research Complex at Harwell, Rutherford Appleton Laboratory R92, Didcot, Oxfordshire OX11 0DE (United Kingdom); Moraes, Isabel [Imperial College, London SW7 2AZ (United Kingdom); Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2012-04-17

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

  2. In situ macromolecular crystallography using microbeams

    International Nuclear Information System (INIS)

    Axford, Danny; Owen, Robin L.; Aishima, Jun; Foadi, James; Morgan, Ann W.; Robinson, James I.; Nettleship, Joanne E.; Owens, Raymond J.; Moraes, Isabel; Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S.; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams

  3. The role of macromolecular stability in desiccation tolerance

    NARCIS (Netherlands)

    Wolkers, W.F.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular

  4. Generalized Born Models of Macromolecular Solvation Effects

    Science.gov (United States)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  5. Thiolated nanocarriers for oral delivery of hydrophilic macromolecular drugs.

    Science.gov (United States)

    Dünnhaupt, S; Barthelmes, J; Köllner, S; Sakloetsakun, D; Shahnaz, G; Düregger, A; Bernkop-Schnürch, A

    2015-03-06

    It was the aim of this study to investigate the effect of unmodified as well as thiolated anionic poly(acrylic acid) (PAA) and cationic chitosan (CS) utilized in free-soluble form and as nanoparticulate system on the absorption of the hydrophilic compound FD4 across intestinal epithelial cell layer with and without a mucus layer. Modifications of these polymers were achieved by conjugation with cysteine to PAA (PAA-Cys) and thioglycolic acid to CS (CS-TGA). Particles were prepared via ionic gelation and characterized based on their amount of thiol groups, particle size and zeta potential. Effects on the cell layer concerning absorption enhancement, transepithelial electrical resistance (TEER) and cytotoxicity were investigated. Permeation enhancement was evaluated with respect to in vitro transport of FD4 across Caco-2 cells, while mucoadhesion was indirectly examined in terms of adsorption behaviour when cells were covered with a mucus layer. Lyophilized particles displayed around 1000 μmol/g of free thiol groups, particle sizes of less than 300 nm and a zeta potential of 18 mV (CS-TGA) and -14 mV (PAA-Cys). Cytotoxicity studies confirmed that all polymer samples were used at nontoxic concentrations (0.5% m/v). Permeation studies revealed that all thiolated formulations had pronounced effects on the paracellular permeability of mucus-free Caco-2 layers and enhanced the permeation of FD4 3.0- to 5.3-fold. Moreover, polymers administered as particles showed a higher permeation enhancement than their corresponding solutions. However, the absorption-enhancing effect of each thiolated formulation was significantly (pthiolated polymers as nanoparticulate delivery systems represent a promising tool for the oral administration of hydrophilic macromolecules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Science.gov (United States)

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  7. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Directory of Open Access Journals (Sweden)

    Preston Donovan

    Full Text Available The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  8. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    Science.gov (United States)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth

  9. Macromolecular Crystal Growth by Means of Microfluidics

    Science.gov (United States)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  10. Atomic force microscopy imaging of macromolecular complexes.

    Science.gov (United States)

    Santos, Sergio; Billingsley, Daniel; Thomson, Neil

    2013-01-01

    This chapter reviews amplitude modulation (AM) AFM in air and its applications to high-resolution imaging and interpretation of macromolecular complexes. We discuss single DNA molecular imaging and DNA-protein interactions, such as those with topoisomerases and RNA polymerase. We show how relative humidity can have a major influence on resolution and contrast and how it can also affect conformational switching of supercoiled DNA. Four regimes of AFM tip-sample interaction in air are defined and described, and relate to water perturbation and/or intermittent mechanical contact of the tip with either the molecular sample or the surface. Precise control and understanding of the AFM operational parameters is shown to allow the user to switch between these different regimes: an interpretation of the origins of topographical contrast is given for each regime. Perpetual water contact is shown to lead to a high-resolution mode of operation, which we term SASS (small amplitude small set-point) imaging, and which maximizes resolution while greatly decreasing tip and sample wear and any noise due to perturbation of the surface water. Thus, this chapter provides sufficient information to reliably control the AFM in the AM AFM mode of operation in order to image both heterogeneous samples and single macromolecules including complexes, with high resolution and with reproducibility. A brief introduction to AFM, its versatility and applications to biology is also given while providing references to key work and general reviews in the field.

  11. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  12. Macromolecular crystallography beamline X25 at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E., E-mail: berman@bnl.gov [Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000 (United States)

    2014-04-08

    A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented. Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  13. Macromolecular crystallography beamline X25 at the NSLS

    International Nuclear Information System (INIS)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented. Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community

  14. Control of Macromolecular Architectures for Renewable Polymers: Case Studies

    Science.gov (United States)

    Tang, Chuanbing

    The development of sustainable polymers from nature biomass is growing, but facing fierce competition from existing petrochemical-based counterparts. Controlling macromolecular architectures to maximize the properties of renewable polymers is a desirable approach to gain advantages. Given the complexity of biomass, there needs special consideration other than traditional design. In the presentation, I will talk about a few case studies on how macromolecular architectures could tune the properties of sustainable bioplastics and elastomers from renewable biomass such as resin acids (natural rosin) and plant oils.

  15. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  16. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  17. Crowding-facilitated macromolecular transport in attractive micropost arrays.

    Science.gov (United States)

    Chien, Fan-Tso; Lin, Po-Keng; Chien, Wei; Hung, Cheng-Hsiang; Yu, Ming-Hung; Chou, Chia-Fu; Chen, Yeng-Long

    2017-05-02

    Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.

  18. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  19. Stochastic reaction-diffusion algorithms for macromolecular crowding

    Science.gov (United States)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction-diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction-diffusion simulations is investigated. Reaction-diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35-53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  20. Diffusion accessibility as a method for visualizing macromolecular surface geometry.

    Science.gov (United States)

    Tsai, Yingssu; Holton, Thomas; Yeates, Todd O

    2015-10-01

    Important three-dimensional spatial features such as depth and surface concavity can be difficult to convey clearly in the context of two-dimensional images. In the area of macromolecular visualization, the computer graphics technique of ray-tracing can be helpful, but further techniques for emphasizing surface concavity can give clearer perceptions of depth. The notion of diffusion accessibility is well-suited for emphasizing such features of macromolecular surfaces, but a method for calculating diffusion accessibility has not been made widely available. Here we make available a web-based platform that performs the necessary calculation by solving the Laplace equation for steady state diffusion, and produces scripts for visualization that emphasize surface depth by coloring according to diffusion accessibility. The URL is http://services.mbi.ucla.edu/DiffAcc/. © 2015 The Protein Society.

  1. Modeling the multi-scale mechanisms of macromolecular resource allocation

    DEFF Research Database (Denmark)

    Yang, Laurence; Yurkovich, James T; King, Zachary A

    2018-01-01

    As microbes face changing environments, they dynamically allocate macromolecular resources to produce a particular phenotypic state. Broad 'omics' data sets have revealed several interesting phenomena regarding how the proteome is allocated under differing conditions, but the functional consequen...... and detail how mathematical models have aided in our understanding of these processes. Ultimately, such modeling efforts have helped elucidate the principles of proteome allocation and hold promise for further discovery....

  2. What Macromolecular Crowding Can Do to a Protein

    Science.gov (United States)

    Kuznetsova, Irina M.; Turoverov, Konstantin K.; Uversky, Vladimir N.

    2014-01-01

    The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area. PMID:25514413

  3. Design and application of a C++ macromolecular class library.

    Science.gov (United States)

    Chang, W; Shindyalov, I N; Pu, C; Bourne, P E

    1994-01-01

    PDBlib is an extensible object oriented class library written in C++ for representing the 3-dimensional structure of biological macromolecules. PDBlib forms the kernel of a larger software framework being developed for assiting in knowledge discovery from macromolecular structure data. The software design strategy used by PDBlib, how the library may be used and several prototype applications that use the library are summarized. PDBlib represents the structural features of proteins, DNA, RNA, and complexes thereof, at a level of detail on a par with that which can be parsed from a Protein Data Bank (PDB) entry. However, the memory resident representation of the macromolecule is independent of the PDB entry and can be obtained from other back-end data sources, for example, existing relational databases and our own object oriented database (OOPDB) built on top of the commercial object oriented database, ObjectStore. At the front-end are several prototype applications that use the library: Macromolecular Query Language (MMQL) is based on a separate class library (MMQLlib) for building complex queries pertaining to macromolecular structure; PDBtool is an interactive structure verification tool; and PDBview, is a structure rendering tool used either as a standalone tool or as part of another application. Each of these software components are described. All software is available via anonymous ftp from cuhhca.hhmi.columbia.edu.

  4. Workshop on algorithms for macromolecular modeling. Final project report, June 1, 1994--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Leimkuhler, B.; Hermans, J.; Skeel, R.D.

    1995-07-01

    A workshop was held on algorithms and parallel implementations for macromolecular dynamics, protein folding, and structural refinement. This document contains abstracts and brief reports from that workshop.

  5. The contrasting effect of macromolecular crowding on amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1 have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins.As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l.We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of proteins (amyloidogenic proteins and non-amyloidogenic proteins has been

  6. Bringing macromolecular machinery to life using 3D animation.

    Science.gov (United States)

    Iwasa, Janet H

    2015-04-01

    Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere. Copyright © 2015. Published by Elsevier Ltd.

  7. Protein crystal growth studies at the Center for Macromolecular Crystallography

    International Nuclear Information System (INIS)

    DeLucas, Lawrence J.; Long, Marianna M.; Moore, Karen M.; Harrington, Michael; McDonald, William T.; Smith, Craig D.; Bray, Terry; Lewis, Johanna; Crysel, William B.; Weise, Lance D.

    2000-01-01

    The Center for Macromolecular Crystallography (CMC) has been involved in fundamental studies of protein crystal growth (PCG) in microgravity and in our earth-based laboratories. A large group of co-investigators from academia and industry participated in these experiments by providing protein samples and by performing the x-ray crystallographic analysis. These studies have clearly demonstrated the usefulness of a microgravity environment for enhancing the quality and size of protein crystals. Review of the vapor diffusion (VDA) PCG results from nineteen space shuttle missions is given in this paper

  8. Outrunning free radicals in room-temperature macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Robinson, James I.; Morgan, Ann W. [University of Leeds, Leeds LS9 7FT (United Kingdom); Doré, Andrew S. [Heptares Therapeutics Ltd, BioPark, Welwyn Garden City AL7 3AX (United Kingdom); Lebon, Guillaume; Tate, Christopher G. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Fry, Elizabeth E.; Ren, Jingshan [The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2012-06-15

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A{sub 2A} adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.

  9. Outrunning free radicals in room-temperature macromolecular crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A 2A adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography

  10. Variable effects of soman on macromolecular secretion by ferret trachea

    International Nuclear Information System (INIS)

    McBride, R.K.; Zwierzynski, D.J.; Stone, K.K.; Culp, D.J.; Marin, M.G.

    1991-01-01

    The purpose of this study was to examine the effect of the anticholinesterase agent, soman, on macromolecular secretion by ferret trachea, in vitro. We mounted pieces of ferret trachea in Ussing-type chambers. Secreted sulfated macromolecules were radiolabeled by adding 500 microCi of 35 SO 4 to the submucosal medium and incubating for 17 hr. Soman added to the submucosal side produced a concentration-dependent increase in radiolabeled macromolecular release with a maximal secretory response (mean +/- SD) of 202 +/- 125% (n = 8) relative to the basal secretion rate at a concentration of 10 - 7 M. The addition of either 10 -6 M pralidoxime (acetylcholinesterase reactivator) or 10 -6 M atropine blocked the response to 10 -7 M soman. At soman concentrations greater than 10 -7 M, secretion rate decreased and was not significantly different from basal secretion. Additional experiments utilizing acetylcholine and the acetylcholinesterase inhibitor, physostigmine, suggest that inhibition of secretion by high concentrations of soman may be due to a secondary antagonistic effect of soman on muscarinic receptors

  11. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  12. Data Management System at the Photon Factory Macromolecular Crystallography Beamline

    International Nuclear Information System (INIS)

    Yamada, Y; Matsugaki, N; Chavas, L M G; Hiraki, M; Igarashi, N; Wakatsuki, S

    2013-01-01

    Macromolecular crystallography is a very powerful tool to investigate three-dimensional structures of macromolecules at the atomic level, and is widely spread among structural biology researchers. Due to recent upgrades of the macromolecular crystallography beamlines at the Photon Factory, beamline throughput has improved, allowing more experiments to be conducted during a user's beam time. Although the number of beamlines has increased, so has the number of beam time applications. Consequently, both the experimental data from users' experiments and data derived from beamline operations have dramatically increased, causing difficulties in organizing these diverse and large amounts of data for the beamline operation staff and users. To overcome this problem, we have developed a data management system by introducing commercial middleware, which consists of a controller, database, and web servers. We have prepared several database projects using this system. Each project is dedicated to a certain aspect such as experimental results, beam time applications, beam time schedule, or beamline operation reports. Then we designed a scheme to link all the database projects.

  13. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    Science.gov (United States)

    Shoda, Shin-ichiro; Uyama, Hiroshi; Kadokawa, Jun-ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

  14. Progress in rational methods of cryoprotection in macromolecular crystallography

    International Nuclear Information System (INIS)

    Alcorn, Thomas; Juers, Douglas H.

    2010-01-01

    Measurements of the average thermal contractions (294→72 K) of 26 different cryosolutions are presented and discussed in conjunction with other recent advances in the rational design of protocols for cryogenic cooling in macromolecular crystallography. Cryogenic cooling of macromolecular crystals is commonly used for X-ray data collection both to reduce crystal damage from radiation and to gather functional information by cryogenically trapping intermediates. However, the cooling process can damage the crystals. Limiting cooling-induced crystal damage often requires cryoprotection strategies, which can involve substantial screening of solution conditions and cooling protocols. Here, recent developments directed towards rational methods for cryoprotection are described. Crystal damage is described in the context of the temperature response of the crystal as a thermodynamic system. As such, the internal and external parts of the crystal typically have different cryoprotection requirements. A key physical parameter, the thermal contraction, of 26 different cryoprotective solutions was measured between 294 and 72 K. The range of contractions was 2–13%, with the more polar cryosolutions contracting less. The potential uses of these results in the development of cryocooling conditions, as well as recent developments in determining minimum cryosolution soaking times, are discussed

  15. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    Science.gov (United States)

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  16. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior.

    Directory of Open Access Journals (Sweden)

    Adam S Zeiger

    Full Text Available Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs via immunocytochemistry, atomic force microscopy (AFM, and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.

  17. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior.

    Science.gov (United States)

    Zeiger, Adam S; Loe, Felicia C; Li, Ran; Raghunath, Michael; Van Vliet, Krystyn J

    2012-01-01

    Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs) via immunocytochemistry, atomic force microscopy (AFM), and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.

  18. In-vacuum long-wavelength macromolecular crystallography.

    Science.gov (United States)

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-03-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.

  19. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data

    International Nuclear Information System (INIS)

    Dosset, Patrice; Hus, Jean-Christophe; Blackledge, Martin; Marion, Dominique

    2000-01-01

    A novel program has been developed for the interpretation of 15 N relaxation rates in terms of macromolecular anisotropic rotational diffusion. The program is based on a highly efficient simulated annealing/minimization algorithm, designed specifically to search the parametric space described by the isotropic, axially symmetric and fully anisotropic rotational diffusion tensor models. The high efficiency of this algorithm allows extensive noise-based Monte Carlo error analysis. Relevant statistical tests are systematically applied to provide confidence limits for the proposed tensorial models. The program is illustrated here using the example of the cytochrome c' from Rhodobacter capsulatus, a four-helix bundle heme protein, for which data at three different field strengths were independently analysed and compared

  20. Macromolecular Crystallization in Microfluidics for the International Space Station

    Science.gov (United States)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  1. Macromolecular and dendrimer-based magnetic resonance contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Bumb, Ambika; Brechbiel, Martin W. (Radiation Oncology Branch, National Cancer Inst., National Inst. of Health, Bethesda, MD (United States)), e-mail: pchoyke@mail.nih.gov; Choyke, Peter (Molecular Imaging Program, National Cancer Inst., National Inst. of Health, Bethesda, MD (United States))

    2010-09-15

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20-25 years, a number of gadolinium-based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution, and targeting of dendrimer-based MR contrast agents are also discussed

  2. The monitoring system for macromolecular crystallography beamlines at BSRF

    International Nuclear Information System (INIS)

    Guo Xian; Chang Guangcai; Gan Quan; Shi Hong; Liu Peng; Sun Gongxing

    2012-01-01

    The monitoring system for macromolecular crystallography beamlines at BSRF (Beijing Synchrotron Radiation Facility) based on LabVIEW is introduced. In order to guarantee a safe, stable, and reliable running for the beamline devices, the system monitors the state of vacuum, cooling-water, optical components, beam, Liquid nitrogen in the beamlines in real time, detects faults and gives the alarm timely. System underlying uses the driver developed for the field devices for data acquisition, Data of collection is uploaded to the data-sharing platform makes it accessible via a network share. The upper system divides modules according to the actual function, and establishes the main interface of the monitoring system of beamline. To Facilitate data storage, management and inquiry, the system use LabSQL toolkit to achieve the interconnection with MySQL database which data of collection is sent to. (authors)

  3. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Muller D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Dao, Phuong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Jeong, Keunhong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Slack, Clancy C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Vassiliou, Christophoros C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Finbloom, Joel A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Francis, Matthew B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Wemmer, David E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Pines, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of a biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T2 is reduced by a factor of 4.

  4. E-MSD: the European Bioinformatics Institute Macromolecular Structure Database.

    Science.gov (United States)

    Boutselakis, H; Dimitropoulos, D; Fillon, J; Golovin, A; Henrick, K; Hussain, A; Ionides, J; John, M; Keller, P A; Krissinel, E; McNeil, P; Naim, A; Newman, R; Oldfield, T; Pineda, J; Rachedi, A; Copeland, J; Sitnov, A; Sobhany, S; Suarez-Uruena, A; Swaminathan, J; Tagari, M; Tate, J; Tromm, S; Velankar, S; Vranken, W

    2003-01-01

    The E-MSD macromolecular structure relational database (http://www.ebi.ac.uk/msd) is designed to be a single access point for protein and nucleic acid structures and related information. The database is derived from Protein Data Bank (PDB) entries. Relational database technologies are used in a comprehensive cleaning procedure to ensure data uniformity across the whole archive. The search database contains an extensive set of derived properties, goodness-of-fit indicators, and links to other EBI databases including InterPro, GO, and SWISS-PROT, together with links to SCOP, CATH, PFAM and PROSITE. A generic search interface is available, coupled with a fast secondary structure domain search tool.

  5. NATO Advanced Study Institute on Evolving Methods for Macromolecular Gystallography

    CERN Document Server

    Read, Randy J

    2007-01-01

    X-ray crystallography is the pre-eminent technique for visualizing the structures of macromolecules at atomic resolution. These structures are central to understanding the detailed mechanisms of biological processes, and to discovering novel therapeutics using a structure-based approach. As yet, structures are known for only a small fraction of the proteins encoded by human and pathogenic genomes. To counter the myriad modern threats of disease, there is an urgent need to determine the structures of the thousands of proteins whose structure and function remain unknown. This volume draws on the expertise of leaders in the field of macromolecular crystallography to illuminate the dramatic developments that are accelerating progress in structural biology. Their contributions span the range of techniques from crystallization through data collection, structure solution and analysis, and show how modern high-throughput methods are contributing to a deeper understanding of medical problems.

  6. MR lymphography with macromolecular Gd-DTPA compounds

    International Nuclear Information System (INIS)

    Hamm, B.; Wagner, S.; Branding, G.; Taupitz, M.; Wolf, K.J.

    1990-01-01

    This paper investigates the suitability of macromolecular Gd-DTPA compounds as signal-enhancing lymphographic agents in MR imaging. Two Gd-DTPA polylysin compounds and Gd-DTPA albumin, with molecular weights of 48,000,170,000, and 87,000 daltons, respectively, were tested in rabbits at gadolinium doses of 5 and 15 μmol per animal. Three animals were examined at each dose with T1-weighted sequences. The iliac lymph nodes were imaged prior to and during unilateral endolymphatic infusion into a femoral lymph vessel as well as over a period of 2 hours thereafter. All contrast media showed a homogeneous and pronounced signal enhancement in the lymph nodes during infusion at both doses

  7. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.

    Science.gov (United States)

    Theobald, Douglas L; Wuttke, Deborah S

    2006-09-01

    THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.

  8. Extracting trends from two decades of microgravity macromolecular crystallization history.

    Science.gov (United States)

    Judge, Russell A; Snell, Edward H; van der Woerd, Mark J

    2005-06-01

    Since the 1980s hundreds of macromolecular crystal growth experiments have been performed in the reduced acceleration environment of an orbiting spacecraft. Significant enhancements in structural knowledge have resulted from X-ray diffraction of the crystals grown. Similarly, many samples have shown no improvement or degradation in comparison to those grown on the ground. A complex series of interrelated factors affect these experiments and by building a comprehensive archive of the results it was aimed to identify factors that result in success and those that result in failure. Specifically, it was found that dedicated microgravity missions increase the chance of success when compared with those where crystallization took place as a parasitic aspect of the mission. It was also found that the chance of success could not be predicted based on any discernible property of the macromolecule available to us.

  9. Macromolecular organization of xyloglucan and cellulose in pea epicotyls

    International Nuclear Information System (INIS)

    Hayashi, T.; Maclachlan, G.

    1984-01-01

    Xyloglucan is known to occur widely in the primary cell walls of higher plants. This polysaccharide in most dicots possesses a cellulose-like main chain with three of every four consecutive residues substituted with xylose and minor addition of other sugars. Xyloglucan and cellulose metabolism is regulated by different processes; since different enzyme systems are probably required for the synthesis of their 1,4-β-linkages. A macromolecular complex composed of xyloglucan and cellulose only was obtained from elongating regions of etiolated pea stems. It was examined by light microscopy using iodine staining, by radioautography after labeling with [ 3 H]fructose, by fluorescence microscopy using a fluorescein-lectin (fructose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall ghosts, in which xyloglucan was localized both on and between the cellulose microfibrils

  10. Probing the hydration water diffusion of macromolecular surfaces and interfaces

    International Nuclear Information System (INIS)

    Ortony, Julia H; Cheng, Chi-Yuan; Franck, John M; Pavlova, Anna; Hunt, Jasmine; Han, Songi; Kausik, Ravinath

    2011-01-01

    We probe the translational dynamics of the hydration water surrounding the macromolecular surfaces of selected polyelectrolytes, lipid vesicles and intrinsically disordered proteins with site specificity in aqueous solutions. These measurements are made possible by the recent development of a new instrumental and methodological approach based on Overhauser dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. This technique selectively amplifies 1 H NMR signals of hydration water around a spin label that is attached to a molecular site of interest. The selective 1 H NMR amplification within molecular length scales of a spin label is achieved by utilizing short-distance range (∼r -3 ) magnetic dipolar interactions between the 1 H spin of water and the electron spin of a nitroxide radical-based label. Key features include the fact that only minute quantities (<10 μl) and dilute (≥100 μM) sample concentrations are needed. There is no size limit on the macromolecule or molecular assembly to be analyzed. Hydration water with translational correlation times between 10 and 800 ps is measured within ∼10 A distance of the spin label, encompassing the typical thickness of a hydration layer with three water molecules across. The hydration water moving within this time scale has significant implications, as this is what is modulated whenever macromolecules or molecular assemblies undergo interactions, binding or conformational changes. We demonstrate, with the examples of polymer complexation, protein aggregation and lipid-polymer interaction, that the measurements of interfacial hydration dynamics can sensitively and site specifically probe macromolecular interactions.

  11. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    International Nuclear Information System (INIS)

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; Ravelli, Raimond B. G.; Carmichael, Ian; Kneale, Geoff; McGeehan, John E.

    2015-01-01

    Quantitative X-ray induced radiation damage studies employing a model protein–DNA complex revealed a striking partition of damage sites. The DNA component was observed to be far more resistant to specific damage compared with the protein. Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1 —C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses

  12. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-03-01

    Full Text Available Yi Liu,1 Hongyu Piao,1 Ying Gao,1 Caihong Xu,2 Ye Tian,1 Lihong Wang,1 Jinwen Liu,1 Bo Tang,1 Meijuan Zou,1 Gang Cheng1 1Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People’s Republic of China; 2Department of Food Science, Shenyang Normal University, Shenyang, Liaoning Province, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN38, an active metabolite of irinotecan (CPT-11, is a remarkably potent antitumor agent. The clinical application of SN38 has been extremely restricted by its insolubility in water. In this study, we successfully synthesized two macromolecular prodrugs of SN38 with different conjugate positions (chitosan-(C10-OHSN38 and chitosan-(C20-OHSN38 to improve the water solubility and antitumor activity of SN38. These prodrugs can self-assemble into micelles in aqueous medium. The particle size, morphology, zeta potential, and in vitro drug release of SN38 and its derivatives, as well as their cytotoxicity, pharmacokinetics, and in vivo antitumor activity in a xenograft BALB/c mouse model were studied. In vitro, chitosan-(C10-OHSN38 (CS-(10sSN38 and chitosan-(C20-OHSN38 (CS-(20sSN38 were 13.3- and 25.9-fold more potent than CPT-11 in the murine colon adenocarcinoma cell line CT26, respectively. The area under the curve (AUC0–24 of SN38 after intravenously administering CS-(10sSN38 and CS-(20sSN38 to Sprague Dawley rats was greatly improved when compared with CPT-11 (both P<0.01. A larger AUC0–24 of CS-(20sSN38 was observed when compared to CS-(10sSN38 (P<0.05. Both of the novel self-assembled chitosan-SN38 prodrugs demonstrated superior anticancer activity to CPT-11 in the CT26 xenograft BALB/c mouse model. We have also investigated the differences between these macromolecular prodrug micelles with regards to enhancing the antitumor activity of SN38. CS-(20sSN38 exhibited better in vivo antitumor activity than CS-(10sSN38 at a dose of 2.5 mg/kg (P<0

  13. AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory

    International Nuclear Information System (INIS)

    Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi; Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi

    2010-01-01

    Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.

  14. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina.

    Directory of Open Access Journals (Sweden)

    Sachin S Thakur

    Full Text Available Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM. The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.

  15. Methyl-β-cyclodextrin quaternary ammonium chitosan conjugate: nanoparticles vs macromolecular soluble complex

    Science.gov (United States)

    Piras, Anna Maria; Fabiano, Angela; Chiellini, Federica; Zambito, Ylenia

    2018-01-01

    Purpose The present study aimed to compare a novel cyclodextrin–polymer–drug complex in solution with a dispersed supramolecular nanosize system, made of the same complex, for ability to carry dexamethasone (DEX) across excised rat intestine. Results Methyl-β-cyclodextrin-quaternary ammonium chitosan conjugate (QA-Ch-MCD) was obtained by covalent grafting through a 10-atom spacer. The conjugate was characterized by 1H-NMR, resulting in 24.4% w/w of MCD content. Phase solubility profile analysis of the QA-Ch-MCD/DEX complex yielded an association constant of 14037 M−1, vs 4428 M−1 for the plain MCD/DEX complex. Nanoparticle (NP) dispersions resulted from ionotropic gelation of the QA-Ch-MCD/DEX complex by sodium tripolyphosphate, leading to 9.9%±1.4% drug loading efficiency. The mean diameter and zeta potential for NP were 299±32 nm (polydispersity index [PI] 0.049) and 11.5±1.1 mV, respectively. Those for QA-Ch-MCD/DEX were 2.7±0.4 nm (PI 0.048) and 6.7±0.6 mV. QA-Ch-MCD/DEX solutions and corresponding NP dispersions were compared in vitro for water-assisted transport through mucus, DEX permeation through excised rat intestine, and ex vivo mucoadhesivity. The complex showed higher mucoadhesion and lower transport rate through mucus; also, it provided faster drug permeation across excised rat intestine. Conclusion Carrier adhesion to mucus surface has played a most important role in favoring transepithelial permeation. Then, within the concerns of the present study, the use of NP seems not to provide any determinant advantage over using the simpler macromolecular complex. PMID:29731628

  16. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate.

    Science.gov (United States)

    Wang, Julie T-W; Giuntini, Francesca; Eggleston, Ian M; Bown, Stephen G; MacRobert, Alexander J

    2012-01-30

    Photochemical internalisation (PCI) is a site-specific technique for improving cellular delivery of macromolecular drugs. In this study, a cell penetrating peptide, containing the core HIV-1 Tat 48-57 sequence, conjugated with a porphyrin photosensitiser has been shown to be effective for PCI. Herein we report an investigation of the photophysical and photobiological properties of a water soluble bioconjugate of the cationic Tat peptide with a hydrophobic tetraphenylporphyrin derivative. The cellular uptake and localisation of the amphiphilic bioconjugate was examined in the HN5 human head and neck squamous cell carcinoma cell line. Efficient cellular uptake and localisation in endo/lysosomal vesicles was found using fluorescence detection, and light-induced, rupture of the vesicles resulting in a more diffuse intracellular fluorescence distribution was observed. Conjugation of the Tat sequence with a hydrophobic porphyrin thus enables cellular delivery of an amphiphilic photosensitiser which can then localise in endo/lysosomal membranes, as required for effective PCI treatment. PCI efficacy was tested in combination with a protein toxin, saporin, and a significant reduction in cell viability was measured versus saporin or photosensitiser treatment alone. This study demonstrates that the cell penetrating peptide-photosensitiser bioconjugation strategy is a promising and versatile approach for enhancing the therapeutic potential of bioactive agents through photochemical internalisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The structural biology center at the APS: an integrated user facility for macromolecular crystallography

    International Nuclear Information System (INIS)

    Rosenbaum, G.; Westbrook, E.M.

    1997-01-01

    The Structural Biology Center (SBC) has developed and operates a sector (undulator and bending magnet) of the APS as a user facility for macromolecular crystallography. Crystallographically determined structures of proteins, nucleic acids and their complexes with proteins, viruses, and complexes between macromolecules and small ligands have become of central importance in molecular and cellular biology. Major design goals were to make the extremely high brilliance of the APS available for brilliance limited studies, and to achieve a high throughput of less demanding studies, as well as optimization for MAS-phasing. Crystal samples will include extremely small crystals, crystals with large unit cells (viruses, ribosomes, etc.) and ensembles of closely similar crystal structures for drug design, protein engineering, etc. Data are recorded on a 3000x3000 pixel CCD-area detector (optionally on image plates). The x-ray optics of both beamlines has been designed to produce a highly demagnified image of the source in order to match the focal size with the sizes of the sample and the resolution element of the detector. Vertical focusing is achieved by a flat, cylindrically bent mirror. Horizontal focusing is achieved by sagitally bending the second crystal of the double crystal monochromator. Monochromatic fluxes of 1.3 * 10 13 ph/s into focal sizes of 0.08 mm (horizontal)x0.04 mm (vertical) FWHM (flux density 3.5 * 10 15 ph/s/mm 2 ) have been recorded.copyright 1997 American Institute of Physics

  18. Functionalization of Planet-Satellite Nanostructures Revealed by Nanoscopic Localization of Distinct Macromolecular Species

    KAUST Repository

    Rossner, Christian; Roddatis, Vladimir; Lopatin, Sergei; Vana, Philipp

    2016-01-01

    The development of a straightforward method is reported to form hybrid polymer/gold planet-satellite nanostructures (PlSNs) with functional polymer. Polyacrylate type polymer with benzyl chloride in its backbone as a macromolecular tracer

  19. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles

    Science.gov (United States)

    Aléon, Jérôme; Robert, François; Chaussidon, Marc; Marty, Bernard

    2003-10-01

    Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ 15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ 15N = +208‰). The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10 -3 and δ 15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ 15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed

  20. Timely deposition of macromolecular structures is necessary for peer review

    International Nuclear Information System (INIS)

    Joosten, Robbie P.; Soueidan, Hayssam; Wessels, Lodewyk F. A.; Perrakis, Anastassis

    2013-01-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature

  1. Timely deposition of macromolecular structures is necessary for peer review

    Energy Technology Data Exchange (ETDEWEB)

    Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Soueidan, Hayssam; Wessels, Lodewyk F. A. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam (Netherlands); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2013-12-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature.

  2. JBluIce-EPICS control system for macromolecular crystallography

    International Nuclear Information System (INIS)

    Stepanov, S.; Makarov, O.; Hilgart, M.; Pothineni, S.; Urakhchin, A.; Devarapalli, S.; Yoder, D.; Becker, M.; Ogata, C.; Sanishvili, R.; Nagarajan, V.; Smith, J.L.; Fischetti, R.F.

    2011-01-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.

  3. Structural changes in the ordering processes of macromolecular compounds

    International Nuclear Information System (INIS)

    Kobayashi, M.; Tashiro, K.

    1998-01-01

    In order to clarify the microscopically-viewed relationship between the conformational ordering process and the aggregation process of the macromolecular chains in the phase transitions from melt to solid or from solution to gel, the time-resolved Fourier-transform infrared spectra and small-angle X-ray or neutron scattering data have been analyzed in an organized manner. Two concrete examples were presented. (1) In the gelation phenomenon of syndiotactic polystyrene-organic solvent system, the ordered TTGG conformation is formed and develops with time. This conformational ordering is accelerated by the aggregation of these chain segments, resulting in the formation of macroscopic gel network. (2) In the isothermal crystallization process from the melt of polyethylene, the following ordering mechanism was revealed. The conformationally-disordered short trans conformers appear at first in the random coils of the melt. These disordered trans sequences grow to longer and more regular trans sequences of the orthorhombic-type crystal and then the isolated lamellae are formed. Afterwards, the stacked lamellar structure is developed without change of lamellar thickness but with small decrease in the long period, indicating an insertion of new lamellae between the already produced lamellar layers

  4. On macromolecular refinement at subatomic resolution with interatomic scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Lunin, Vladimir Y. [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino 142290 (Russian Federation); Urzhumtsev, Alexandre [IGMBC, 1 Rue L. Fries, 67404 Illkirch and IBMC, 15 Rue R. Descartes, 67084 Strasbourg (France); Faculty of Sciences, Nancy University, 54506 Vandoeuvre-lès-Nancy (France); Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States)

    2007-11-01

    Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  5. Polycapillary x-ray optics for macromolecular crystallography

    International Nuclear Information System (INIS)

    Owens, S.M.; Gibson, W.M.; Carter, D.C.; Sisk, R.C.; Ho, J.X.

    1996-01-01

    Polycapillary x-ray optics have found potential application in many different fields, including antiscatter and magnification in mammography, radiography, x-ray fluorescence, x-ray lithography, and x-ray diffraction techniques. In x-ray diffraction, an optic is used to collect divergent x-rays from a point source and redirect them into a quasi-parallel, or slightly focused beam. Monolithic polycapillary optics have been developed recently for macromolecular crystallography and have already shown considerable gains in diffracted beam intensity over pinhole collimation. Development is being pursued through a series of simulations and prototype optics. Many improvements have been made over the stage 1 prototype reported previously, which include better control over the manufacturing process, reducing the diameter of the output beam, and addition of a slight focusing at the output of the optic to further increase x-ray flux at the sample. The authors report the characteristics and performance of the stage 1 and stage 2 optics

  6. A beamline for macromolecular crystallography at the Advanced Light Source

    International Nuclear Information System (INIS)

    Padmore, H.A.; Earnest, T.; Kim, S.H.; Thompson, A.C.; Robinson, A.L.

    1994-08-01

    A beamline for macromolecular crystallography has been designed for the ALS. The source will be a 37-pole wiggler with a, 2-T on-axis peak field. The wiggler will illuminate three beamlines, each accepting 3 mrad of horizontal aperture. The central beamline will primarily be used for multiple-wavelength anomalous dispersion measurements in the wavelength range from 4 to 0.9 angstrom. The beamline optics will comprise a double-crystal monochromator with a collimating pre-mirror and a double-focusing mirror after the monochromator. The two side stations will be used for fixed-wavelength experiments within the wavelength range from 1.5 to 0.95 angstrom. The optics will consist of a conventional vertically focusing cylindrical mirror followed by an asymmetrically cut curved-crystal monochromator. This paper presents details of the optimization of the wiggler source for crystallography, gives a description of the beamline configuration, and discusses the reasons for the choices made

  7. Macromolecular crystallization in microgravity generated by a superconducting magnet.

    Science.gov (United States)

    Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y

    2006-09-01

    About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.

  8. Macromolecular crystallography with a large format CMOS detector

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Jay C., E-mail: jcnix@lbl.gov [Molecular Biology Consortium 12003 S. Pulaski Rd. #166 Alsip, IL 60803 U.S.A (United States)

    2016-07-27

    Recent advances in CMOS technology have allowed the production of large surface area detectors suitable for macromolecular crystallography experiments [1]. The Molecular Biology Consortium (MBC) Beamline 4.2.2 at the Advanced Light Source in Berkeley, CA, has installed a 2952 x 2820 mm RDI CMOS-8M detector with funds from NIH grant S10OD012073. The detector has a 20nsec dead pixel time and performs well with shutterless data collection strategies. The sensor obtains sharp point response and minimal optical distortion by use of a thin fiber-optic plate between the phosphor and sensor module. Shutterless data collections produce high-quality redundant datasets that can be obtained in minutes. The fine-sliced data are suitable for processing in standard crystallographic software packages (XDS, HKL2000, D*TREK, MOSFLM). Faster collection times relative to the previous CCD detector have resulted in a record number of datasets collected in a calendar year and de novo phasing experiments have resulted in publications in both Science and Nature [2,3]. The faster collections are due to a combination of the decreased overhead requirements of shutterless collections combined with exposure times that have decreased by over a factor of 2 for images with comparable signal to noise of the NOIR-1 detector. The overall increased productivity has allowed the development of new beamline capabilities and data collection strategies.

  9. Macromolecular refinement by model morphing using non-atomic parameterizations.

    Science.gov (United States)

    Cowtan, Kevin; Agirre, Jon

    2018-02-01

    Refinement is a critical step in the determination of a model which explains the crystallographic observations and thus best accounts for the missing phase components. The scattering density is usually described in terms of atomic parameters; however, in macromolecular crystallography the resolution of the data is generally insufficient to determine the values of these parameters for individual atoms. Stereochemical and geometric restraints are used to provide additional information, but produce interrelationships between parameters which slow convergence, resulting in longer refinement times. An alternative approach is proposed in which parameters are not attached to atoms, but to regions of the electron-density map. These parameters can move the density or change the local temperature factor to better explain the structure factors. Varying the size of the region which determines the parameters at a particular position in the map allows the method to be applied at different resolutions without the use of restraints. Potential applications include initial refinement of molecular-replacement models with domain motions, and potentially the use of electron density from other sources such as electron cryo-microscopy (cryo-EM) as the refinement model.

  10. Design of cellulose ether-based macromolecular prodrugs of ciprofloxacin for extended release and enhanced bioavailability.

    Science.gov (United States)

    Amin, Muhammad; Abbas, Nazia Shahana; Hussain, Muhammad Ajaz; Sher, Muhammad; Edgar, Kevin J

    2018-07-01

    The present study reveals the syntheses of hydroxypropylcellulose‑(HPC) and hydroxyethylcellulose‑(HEC) based macromolecular prodrugs (MPDs) of ciprofloxacin (CIP) using homogeneous reaction methodology. Covalently loaded drug content (DC) of each prodrug was quantified using UV-Vis spectrophotometry to determine degree of substitution (DS). HPC-ciprofloxacin (HPC-CIP) conjugates showed DS of CIP in the range 0.87-1.15 whereas HEC-ciprofloxacin (HEC-CIP) conjugates showed DS range 0.51-0.75. Transmission electron microscopy revealed that HPC-CIP conjugate 2 and HEC-CIP conjugate 6 self-assembled into nanoparticles of 150-300 and 180-250nm, respectively. Size exclusion chromatography revealed HPC-CIP conjugate 2 and HEC-CIP conjugate 6 as monodisperse systems. In vitro drug release studies indicated 15 and 43% CIP release from HPC-CIP conjugate 2 after 6h in simulated gastric and simulated intestinal fluids (SGF and SIF), respectively. HEC-CIP conjugate 6 showed 16% and 46% release after 6h in SGF and SIF, respectively. HPC-CIP conjugate 2 and HEC-CIP conjugate 6 exhibited half-lives of 10.87 and 11.71h, respectively with area under the curve values of 164 and 175hμgmL -1 , respectively, indicating enhanced bioavailability and improved pharmacokinetic profiles in animal model. Equal antibacterial activities to that of unmodified CIP confirmed their competitive efficacies. Cytotoxicity studies supported their non-toxic nature and biocompatibility. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Fluorescence optical imaging in anticancer drug delivery

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Lucas, H.; Janoušková, Olga; Chytil, Petr; Mueller, T.; Mäder, K.

    2016-01-01

    Roč. 226, 28 March (2016), s. 168-181 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : fluorescence imaging * drug delivery * theranostics Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.786, year: 2016

  12. Macromolecular query language (MMQL): prototype data model and implementation.

    Science.gov (United States)

    Shindyalov, I N; Chang, W; Pu, C; Bourne, P E

    1994-11-01

    Macromolecular query language (MMQL) is an extensible interpretive language in which to pose questions concerning the experimental or derived features of the 3-D structure of biological macromolecules. MMQL portends to be intuitive with a simple syntax, so that from a user's perspective complex queries are easily written. A number of basic queries and a more complex query--determination of structures containing a five-strand Greek key motif--are presented to illustrate the strengths and weaknesses of the language. The predominant features of MMQL are a filter and pattern grammar which are combined to express a wide range of interesting biological queries. Filters permit the selection of object attributes, for example, compound name and resolution, whereas the patterns currently implemented query primary sequence, close contacts, hydrogen bonding, secondary structure, conformation and amino acid properties (volume, polarity, isoelectric point, hydrophobicity and different forms of exposure). MMQL queries are processed by MMQLlib; a C++ class library, to which new query methods and pattern types are easily added. The prototype implementation described uses PDBlib, another C(++)-based class library from representing the features of biological macromolecules at the level of detail parsable from a PDB file. Since PDBlib can represent data stored in relational and object-oriented databases, as well as PDB files, once these data are loaded they too can be queried by MMQL. Performance metrics are given for queries of PDB files for which all derived data are calculated at run time and compared to a preliminary version of OOPDB, a prototype object-oriented database with a schema based on a persistent version of PDBlib which offers more efficient data access and the potential to maintain derived information. MMQLlib, PDBlib and associated software are available via anonymous ftp from cuhhca.hhmi.columbia.edu.

  13. Macromolecular weight specificity in covalent binding of bromobenzene

    International Nuclear Information System (INIS)

    Sun, J.D.; Dent, J.G.

    1984-01-01

    Bromobenzene is a hepatotoxicant that causes centrilobular necrosis. Pretreatment of animals with 3-methylcholanthrene decreases and phenobarbital pretreatment enhances the hepatotoxic action of this compound. We have investigated the macromolecular weight specificity of the covalent interactions of bromobenzene with liver macromolecules following incubation of [ 14 C]bromobenzene in isolated hepatocytes. Hepatocytes were prepared from Fischer-344 rats treated for 3 days with 3-methylcholanthrene, phenobarbital, or normal saline. After a 1-hr incubation, total covalent binding, as measured by sodium dodecyl sulfate-equilibrium dialysis, was twofold less in hepatocytes from 3-methylcholanthrene-treated rats and sixfold greater in hepatocytes from phenobarbital-treated rats, as compared to hepatocytes from control animals. Analysis of the arylated macromolecules by electrophoresis on 15% sodium dodecyl sulfate-polyacrylamide disc gels indicated that in the first 1 to 3 min of incubation substantial amounts of covalently bound radiolabel were associated with macromolecules of between 20,000 and 40,000. The amount of radioactivity associated with these macromolecules rapidly diminished in hepatocytes from control and 3-methylcholanthrene-treated animals. In hepatocytes from phenobarbital-treated animals, the amount of radioactivity associated with macromolecules, 20,000, increased throughout the incubation. The amount of radiolabel associated with macromolecules, 20,000, increased in all incubations. When nontoxic doses of phenylmethylsulfonyl fluoride, a specific inhibitor of serine proteases, were added to control hepatocytes incubated with [ 14 C]-bromobenzene, the decrease in radioactivity associated with larger (greater than 20,000) macromolecules was inhibited and a corresponding lack of increase in radioactivity associated with smaller macromolecules was observed

  14. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  15. Towards a compact and precise sample holder for macromolecular crystallography.

    Science.gov (United States)

    Papp, Gergely; Rossi, Christopher; Janocha, Robert; Sorez, Clement; Lopez-Marrero, Marcos; Astruc, Anthony; McCarthy, Andrew; Belrhali, Hassan; Bowler, Matthew W; Cipriani, Florent

    2017-10-01

    Most of the sample holders currently used in macromolecular crystallography offer limited storage density and poor initial crystal-positioning precision upon mounting on a goniometer. This has now become a limiting factor at high-throughput beamlines, where data collection can be performed in a matter of seconds. Furthermore, this lack of precision limits the potential benefits emerging from automated harvesting systems that could provide crystal-position information which would further enhance alignment at beamlines. This situation provided the motivation for the development of a compact and precise sample holder with corresponding pucks, handling tools and robotic transfer protocols. The development process included four main phases: design, prototype manufacture, testing with a robotic sample changer and validation under real conditions on a beamline. Two sample-holder designs are proposed: NewPin and miniSPINE. They share the same robot gripper and allow the storage of 36 sample holders in uni-puck footprint-style pucks, which represents 252 samples in a dry-shipping dewar commonly used in the field. The pucks are identified with human- and machine-readable codes, as well as with radio-frequency identification (RFID) tags. NewPin offers a crystal-repositioning precision of up to 10 µm but requires a specific goniometer socket. The storage density could reach 64 samples using a special puck designed for fully robotic handling. miniSPINE is less precise but uses a goniometer mount compatible with the current SPINE standard. miniSPINE is proposed for the first implementation of the new standard, since it is easier to integrate at beamlines. An upgraded version of the SPINE sample holder with a corresponding puck named SPINEplus is also proposed in order to offer a homogenous and interoperable system. The project involved several European synchrotrons and industrial companies in the fields of consumables and sample-changer robotics. Manual handling of mini

  16. Effects of macromolecular crowding on protein conformational changes.

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2010-07-01

    Full Text Available Many protein functions can be directly linked to conformational changes. Inside cells, the equilibria and transition rates between different conformations may be affected by macromolecular crowding. We have recently developed a new approach for modeling crowding effects, which enables an atomistic representation of "test" proteins. Here this approach is applied to study how crowding affects the equilibria and transition rates between open and closed conformations of seven proteins: yeast protein disulfide isomerase (yPDI, adenylate kinase (AdK, orotidine phosphate decarboxylase (ODCase, Trp repressor (TrpR, hemoglobin, DNA beta-glucosyltransferase, and Ap(4A hydrolase. For each protein, molecular dynamics simulations of the open and closed states are separately run. Representative open and closed conformations are then used to calculate the crowding-induced changes in chemical potential for the two states. The difference in chemical-potential change between the two states finally predicts the effects of crowding on the population ratio of the two states. Crowding is found to reduce the open population to various extents. In the presence of crowders with a 15 A radius and occupying 35% of volume, the open-to-closed population ratios of yPDI, AdK, ODCase and TrpR are reduced by 79%, 78%, 62% and 55%, respectively. The reductions for the remaining three proteins are 20-44%. As expected, the four proteins experiencing the stronger crowding effects are those with larger conformational changes between open and closed states (e.g., as measured by the change in radius of gyration. Larger proteins also tend to experience stronger crowding effects than smaller ones [e.g., comparing yPDI (480 residues and TrpR (98 residues]. The potentials of mean force along the open-closed reaction coordinate of apo and ligand-bound ODCase are altered by crowding, suggesting that transition rates are also affected. These quantitative results and qualitative trends will

  17. Macromolecular peroxo complexes of Vanadium(V) and ...

    Indian Academy of Sciences (India)

    Molybdenum(VI): Catalytic activities and biochemical relevance. NASHREEN S ISLAM∗ and ... already been identified as an important pathway for the action of inorganic drugs and .... chain or network. Physical incorporation of metals or.

  18. New Paradigm for Macromolecular Crystallography Experiments at SSRL: Automated Crystal Screening And Remote Data Collection

    International Nuclear Information System (INIS)

    Soltis, S.M.; Cohen, A.E.; Deacon, A.; Eriksson, T.; Gonzalez, A.; McPhillips, S.; Chui, H.; Dunten, P.; Hollenbeck, M.; Mathews, I.; Miller, M.; Moorhead, P.; Phizackerley, R.P.; Smith, C.; Song, J.; Bedem, H. van dem; Ellis, P.; Kuhn, P.; McPhillips, T.; Sauter, N.; Sharp, K.

    2009-01-01

    Complete automation of the macromolecular crystallography experiment has been achieved at Stanford Synchrotron Radiation Lightsource (SSRL) through the combination of robust mechanized experimental hardware and a flexible control system with an intuitive user interface. These highly reliable systems have enabled crystallography experiments to be carried out from the researchers' home institutions and other remote locations while retaining complete control over even the most challenging systems. A breakthrough component of the system, the Stanford Auto-Mounter (SAM), has enabled the efficient mounting of cryocooled samples without human intervention. Taking advantage of this automation, researchers have successfully screened more than 200 000 samples to select the crystals with the best diffraction quality for data collection as well as to determine optimal crystallization and cryocooling conditions. These systems, which have been deployed on all SSRL macromolecular crystallography beamlines and several beamlines worldwide, are used by more than 80 research groups in remote locations, establishing a new paradigm for macromolecular crystallography experimentation.

  19. Dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux in vivo.

    Science.gov (United States)

    Akhter, S R; Ikezaki, H; Gao, X P; Rubinstein, I

    1999-05-01

    The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.

  20. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    Science.gov (United States)

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  1. The Joint Structural Biology Group beam lines at the ESRF: Modern macromolecular crystallography

    CERN Document Server

    Mitchell, E P

    2001-01-01

    Macromolecular crystallography has evolved considerably over the last decade. Data sets in under an hour are now possible on high throughput beam lines leading to electron density and, possibly, initial models calculated on-site. There are five beam lines currently dedicated to macromolecular crystallography: the ID14 complex and BM-14 (soon to be superseded by ID-29). These lines handle over five hundred projects every six months and demand is increasing. Automated sample handling, alignment and data management protocols will be required to work efficiently with this demanding load. Projects developing these themes are underway within the JSBG.

  2. Aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes as revealed by microscopic radioautography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuji [Shinshu University, Matsumoto (Japan). Dept. of Anatomy and Cell Biology

    2007-07-01

    This mini-review reports aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes. We have observed the macromolecular synthesis, such as DNA, RNA and proteins, in the mitochondria of various mammalian cells by means of electron microscopic radioautography technique developed in our laboratory. The number of mitochondria per cell, number of labeled mitochondria per cell with 3H-thymidine, 3H-uridine and 3H-leucine, precursors for DNA, RNA and proteins, respectively, were counted and the labeling indices at various ages, from fetal to postnatal early days and several months to 1 and 2 years in senescence, were calculated, which showed variations due to aging. (author)

  3. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jon M. Kaguni

    2018-03-01

    Full Text Available DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.

  4. Immunogenicity of coiled-coil based drug-free macromolecular therapeutics

    Czech Academy of Sciences Publication Activity Database

    Kverka, Miloslav; Hartley, J.M.; Chu, T.W.; Yang, J.; Heidchen, R.; Kopeček, J.

    2014-01-01

    Roč. 35, č. 2 (2014), s. 5886-5896 ISSN 1616-0177 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Grant - others:NIH(US) GM095606 Institutional support: RVO:61388971 Keywords : coiled-coil * enantiomers * HPMA copolymer Subject RIV: EC - Immunology

  5. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980

    Directory of Open Access Journals (Sweden)

    Kunst, B.

    2008-07-01

    Full Text Available The postgraduate study of macromolecular sciences (PSMS was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study comprised basic fields of macromolecular sciences: organic chemistry of synthetic macromolecules, physical chemistry of macromolecules, physics of macromolecules, biological macromolecules and polymer engineering with polymer application and processing, and teaching was performed in 29 lecture courses lead by 30 professors with their collaborators. PSMS ceased to exist with the change of legislation in Croatia in 1980, when the attitude prevailed to render back postgraduate studies to the university schools. During 9 years of existence of PSMS the MSci grade was awarded to 37 macromolecular experts. It was assessed that the PSMS some thirty years ago was an important example of modern postgraduate education as compared with the international postgraduate development. In concordance with the recent introduction of similar interdisciplinary studies in macromolecular sciences elsewhere in the world, the establishment of a modern interdisciplinary study in the field would be of importance for further development of these sciences in Croatia.

  6. MMTF-An efficient file format for the transmission, visualization, and analysis of macromolecular structures.

    Directory of Open Access Journals (Sweden)

    Anthony R Bradley

    2017-06-01

    Full Text Available Recent advances in experimental techniques have led to a rapid growth in complexity, size, and number of macromolecular structures that are made available through the Protein Data Bank. This creates a challenge for macromolecular visualization and analysis. Macromolecular structure files, such as PDB or PDBx/mmCIF files can be slow to transfer, parse, and hard to incorporate into third-party software tools. Here, we present a new binary and compressed data representation, the MacroMolecular Transmission Format, MMTF, as well as software implementations in several languages that have been developed around it, which address these issues. We describe the new format and its APIs and demonstrate that it is several times faster to parse, and about a quarter of the file size of the current standard format, PDBx/mmCIF. As a consequence of the new data representation, it is now possible to visualize structures with millions of atoms in a web browser, keep the whole PDB archive in memory or parse it within few minutes on average computers, which opens up a new way of thinking how to design and implement efficient algorithms in structural bioinformatics. The PDB archive is available in MMTF file format through web services and data that are updated on a weekly basis.

  7. Synthesis and characterization of macromolecular rhodamine tethers and their interactions with P-glycoprotein.

    Science.gov (United States)

    Crawford, Lindsey; Putnam, David

    2014-08-20

    Rhodamine dyes are well-known P-glycoprotein (P-gp) substrates that have played an important role in the detection of inhibitors and other substrates of P-gp, as well as in the understanding of P-gp function. Macromolecular conjugates of rhodamines could prove useful as tethers for further probing of P-gp structure and function. Two macromolecular derivatives of rhodamine, methoxypolyethylene glycol-rhodamine6G and methoxypolyethylene glycol-rhodamine123, were synthesized through the 2'-position of rhodamine6G and rhodamine123, thoroughly characterized, and then evaluated by inhibition with verapamil for their ability to interact with P-gp and to act as efflux substrates. To put the results into context, the P-gp interactions of the new conjugates were compared to the commercially available methoxypolyethylene glycol-rhodamineB. FACS analysis confirmed that macromolecular tethers of rhodamine6G, rhodamine123, and rhodamineB were accumulated in P-gp expressing cells 5.2 ± 0.3%, 26.2 ± 4%, and 64.2 ± 6%, respectively, compared to a sensitive cell line that does not overexpress P-gp. Along with confocal imaging, the efflux analysis confirmed that the macromolecular rhodamine tethers remain P-gp substrates. These results open potential avenues for new ways to probe the function of P-gp both in vitro and in vivo.

  8. Interplay between the bacterial nucleoid protein H-NS and macromolecular crowding in compacting DNA

    NARCIS (Netherlands)

    Wintraecken, C.H.J.M.

    2012-01-01

    In this dissertation we discuss H-NS and its connection to nucleoid compaction and organization. Nucleoid formation involves a dramatic reduction in coil volume of the genomic DNA. Four factors are thought to influence coil volume: supercoiling, DNA charge neutralization, macromolecular

  9. Effect of macromolecular crowding on the rate of diffusion-limited ...

    Indian Academy of Sciences (India)

    The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model qualitatively explains some ...

  10. Atomic Scale Structural Studies of Macromolecular Assemblies by Solid-state Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit

    2017-09-17

    Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.

  11. Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.

    Science.gov (United States)

    Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji

    2016-11-23

    The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.

  12. Hyperbranched Polyethylenebased Macromolecular Architectures: Synthesis, Characterization, and Selfassembly

    KAUST Repository

    Al-Sulami, Ahlam

    2018-05-01

    "Chain walking” catalytic polymerization CWCP is a powerful tool for the one-pot synthesis of a unique class of hyperbranched polyethylene HBPE-based macromolecules with a controllable molecular weight, topology, and composition. This dissertation focuses on new synthetic routes to prepare HBPE-based macromolecular architectures by combining the CWCP technique with ring opening polymerization ROP, atom–transfer radical polymerization ATRP, and “click” chemistry. Taking advantage of end-functionalized HBPE, and a new ethynyl-soketal star-shape agent, we were able to synthesize different types of the HBPE-based architectures including hyperbranched-on-hyperbranched core-shell nanostructure, and miktoarm-star-HBPE-based block copolymers. The first part of the dissertation provides a general introduction to the synthesis of polyethylene types with controllable structures. Well-defined polyethylene with different macromolecule architectures were synthesized either for academic or industrial purposes. In the second part, the HBPE with different topologies was synthesized by CWCP, using a α-diimine Pd (II) catalyst. The effect of the temperature and pressure on the catalyst activity and polymer properties, including branch content, molecular weight, distribution, and thermal properties were studied. Two series of samples were synthesized: a) serial samples (A) under pressures of 1, 5, and 27 atm at 5˚C, and b) serial samples (B) at temperatures of 5, 15, and 35 ˚C under 5 atm. Proton nuclear magnetic resonance spectroscopy, 1H NMR, and gel permeation chromatography, GPC, analysis were used to calculate the branching content, molecular weight, and distribution, whereas differential scanning calorimetry, DSC, was used to record the melting and glass transition temperatures as well as the degree of the crystallinity. Well-defined HBPE-based core diblock copolymers with predictable amphiphilic properties are studied in the third part of the project. Hyperbranched

  13. TRANSDERMAL DRUG DELIVERY AND METHODS TO ENHANCE IT

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available The paper presents the common methods employed in recent years for enhancing transdermal delivery of drug substances when applying transdermal therapeutic delivery systems. The chemical, physical and mechanical methods to enhance the transport of macromolecular compounds through the skin are considered in details. 

  14. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  15. Polymer therapeutics and the EPR effect.

    Science.gov (United States)

    Maeda, Hiroshi

    History of the EPR (enhanced permeability and retention) effect is discussed, which goes back to the analyses of molecular pathology in bacterial infection and edema (extravasation) formation. The first mediator we found for extravasation was bradykinin. Later on, were found nitric oxide and superoxide, then formation of peroxynitrite, that activates procollagenase. In this inflammatory setting many other vascular mediators are involved that are also common to cancer vasculature. Obviously cancer vasculature is defective architechtally, and this makes macromolecular drugs more permeable through the vascular wall. The importance of this pathophysiological event of EPR effect can be applied to macromolecular drug-delivery, or tumor selective delivery, which takes hours to achieve in the primary as well as metastatic tumors, not to mention of the inflamed tissues. The retention of the EPR means that such drugs will be retained in tumor tissues more than days to weeks. This was demonstrated initially, and most dramatically, using SMANCS, a protein-polymer conjugated-drug dissolved in lipid contrast medium (Lipiodol) by administering intraarterially. For disseminating the EPR concept globally, or in the scientific community, Professor Ruth Duncan played a key role at the early stage, as she worked extensively on polymer- therapeutics, and knew its importance.

  16. Synthesis and evaluation of water-soluble poly(vinyl alcohol)-paclitaxel conjugate as a macromolecular prodrug

    International Nuclear Information System (INIS)

    Kakinoki, Atsufumi; Kaneo, Yoshiharu; Tanaka, Tetsuro; Hosokawa, Yoshitsugu

    2008-01-01

    Paclitaxel (PTX) is an antitumor agent for the treatment of various human cancers. Cremophor EL and ethanol are used to formulate PTX in commercial injection solutions, because of its poor solubility in water. However, these agents cause severe allergic reaction upon intravenous administration. The aim of this study is to synthesize water-soluble macromolecular prodrugs of PTX for enhancing the therapeutic efficacy. Poly (vinyl alcohol) (PVA, 80 kDa), water-soluble synthetic polymer, was used as a drug carrier which is safe and stable in the body. The 2'-hydroxyl group of PTX was reacted with succinic anhydride and then carboxylic group of the succinyl spacer was coupled to PVA via ethylene diamine spacer, resulting the water-soluble prodrug of poly (vinyl alcohol)-paclitaxel conjugate (PVA-SPTX). The solubility of PTX was greatly enhanced by the conjugation to PVA. The release of PTX from the conjugate was accelerated at the neutral to basic conditions in in vitro release experiment. [ 125 I]-labeled PVA-SPTX was retained in the blood circulation for several days and was gradually distributed into the tumorous tissue after intravenous injection to the tumor-bearing mice. PVA-SPTX inhibited the growth of sarcoma 180 cells subcutaneously inoculated in mice. It was suggested that the water-solubility of PTX was markedly enhanced by the conjugation to PVA, and PVA-SPTX effectively delivered PTX to the tumorous tissue due to the enhanced permeability and retention (EPR) effect. (author)

  17. Coevolutionary constraints in the sequence-space of macromolecular complexes reflect their self-assembly pathways.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2017-07-01

    Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    International Nuclear Information System (INIS)

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf

    2013-01-01

    A systematic approach to the scaling and merging of data from multiple crystals in macromolecular crystallography is introduced and explained. The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein

  19. Variationally optimal selection of slow coordinates and reaction coordinates in macromolecular systems

    Science.gov (United States)

    Noe, Frank

    To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.

  20. Local analysis of strains and rotations for macromolecular electron microscopy maps

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Ramos, A.; Prieto, F.; Melero, R.; Martin-Benito, J.; Jonic, S.; Navas-Calvente, J.; Vargas, J.; Oton, J.; Abrishami, V.; Rosa-Trevin, J.L. de la; Gomez-Blanco, J.; Vilas, J.L.; Marabini, R.; Carazo, R.; Sorzano, C.O.S.

    2016-07-01

    Macromolecular complexes can be considered as molecular nano-machines that must have mobile parts in order to perform their physiological functions. The reordering of their parts is essential to execute their task. These rearrangements induce local strains and rotations which, after analyzing them, may provide relevant information about how the proteins perform their function. In this project these deformations of the macromolecular complexes are characterized, translating into a “mathematical language” the conformational changes of the complexes when they perform their function. Electron Microscopy (EM) volumes are analyzed using a method that uses B-splines as its basis functions. It is shown that the results obtained are consistent with the conformational changes described in their corresponding reference publications. (Author)

  1. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    Science.gov (United States)

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-03-04

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.

  2. Atomic force microscopy applied to study macromolecular content of embedded biological material

    Energy Technology Data Exchange (ETDEWEB)

    Matsko, Nadejda B. [Electron Microscopy Centre, Institute of Applied Physics, HPM C 15.1, ETH-Hoenggerberg, CH-8093, Zurich (Switzerland)]. E-mail: matsko@iap.phys.ethz.ch

    2007-02-15

    We demonstrate that atomic force microscopy represents a powerful tool for the estimation of structural preservation of biological samples embedded in epoxy resin, in terms of their macromolecular distribution and architecture. The comparison of atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of a biosample (Caenorhabditis elegans) prepared following to different types of freeze-substitution protocols (conventional OsO{sub 4} fixation, epoxy fixation) led to the conclusion that high TEM stainability of the sample results from a low macromolecular density of the cellular matrix. We propose a novel procedure aimed to obtain AFM and TEM images of the same particular organelle, which strongly facilitates AFM image interpretation and reveals new ultrastructural aspects (mainly protein arrangement) of a biosample in addition to TEM data.

  3. Extraction of cobalt ion from textile using a complexing macromolecular surfactant in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Chirat, Mathieu; Ribaut, Tiphaine; Clerc, Sebastien; Lacroix-Desmazes, Patrick; Charton, Frederic; Fournel, Bruno

    2013-01-01

    Cobalt ion under the form of cobalt nitrate is removed from a textile lab coat using supercritical carbon dioxide extraction. The process involves a macromolecular additive of well-defined architecture, acting both as a surfactant and a complexing agent. The extraction efficiency of cobalt reaches 66% when using a poly(1,1,2,2-tetrahydroperfluoro-decyl-acrylate-co-vinyl-benzylphosphonic diacid) gradient copolymer in the presence of water at 160 bar and 40 C. The synergy of the two additives, namely the copolymer and water which are useless if used separately, is pointed out. The potential of the supercritical carbon dioxide process using complexing macromolecular surfactant lies in the ability to modulate the complexing unit as a function of the metal as well as the architecture of the surface-active agent for applications ranging for instance from nuclear decontamination to the recovery of strategic metals. (authors)

  4. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Aller, Pierre [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz; Cameron, Alex [Imperial College, London SW7 2AZ (United Kingdom); Axford, Danny; Owen, Robin L. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Armour, Wes [Oxford e-Research Centre (OeRC), Keble Road, Oxford OX1 3QG (United Kingdom); Waterman, David G. [Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2013-08-01

    A systematic approach to the scaling and merging of data from multiple crystals in macromolecular crystallography is introduced and explained. The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  5. Pi sampling: a methodical and flexible approach to initial macromolecular crystallization screening

    International Nuclear Information System (INIS)

    Gorrec, Fabrice; Palmer, Colin M.; Lebon, Guillaume; Warne, Tony

    2011-01-01

    Pi sampling, derived from the incomplete factorial approach, is an effort to maximize the diversity of macromolecular crystallization conditions and to facilitate the preparation of 96-condition initial screens. The Pi sampling method is derived from the incomplete factorial approach to macromolecular crystallization screen design. The resulting ‘Pi screens’ have a modular distribution of a given set of up to 36 stock solutions. Maximally diverse conditions can be produced by taking into account the properties of the chemicals used in the formulation and the concentrations of the corresponding solutions. The Pi sampling method has been implemented in a web-based application that generates screen formulations and recipes. It is particularly adapted to screens consisting of 96 different conditions. The flexibility and efficiency of Pi sampling is demonstrated by the crystallization of soluble proteins and of an integral membrane-protein sample

  6. Macromolecular Engineering: New Routes Towards the Synthesis of Well-??Defined Polyethers/Polyesters Co/Terpolymers with Different Architectures

    KAUST Repository

    Alamri, Haleema

    2016-01-01

    Macromolecular engineering (as discussed in the first chapter) of homo/copolymers refers to the specific tailoring of these materials for achieving an easy and reproducible synthesis that results in precise molecular

  7. Macromolecular mechanisms of sputum inhibition of tobramycin activity.

    Science.gov (United States)

    Hunt, B E; Weber, A; Berger, A; Ramsey, B; Smith, A L

    1995-01-01

    Tobramycin, an aminoglycoside antibiotic, is used in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis patients. Tobramycin bioactivity, however, is antagonized by sputum. Glycoproteins (mucins) and high-molecular-weight DNA make up 2 to 3% (P. L. Masson and J. F. Heremans, p. 412-475, In M. J. Dulfano, ed., Sputum: Fundamentals and Clinical Pathology, 1973) and 3 to 10% (W. S. Chernick and G. J. Barbero, Pediatrics 24:739-745, 1959, and R. Picot, I. Das, and L. Reid, Thorax 33:235-242, 1978) of the dry weight of sputum, respectively. tobramycin binds to both mucins and DNA obtained from sputum (R. Ramphal, M. Lhermitte, M. Filliat, and P. Roussel, J. Antimicrob. Chemother. 22:483-490, 1988). In vitro, recombinant human DNase (rhDNase) hydrolyzes high-molecular-weight DNA of > 50 kb within sputum to fragments of 2 to 4 kb. Studying dialyzable tobramycin, we examined drug binding to whole sputum and to "mock sputum," which consisted of porcine gastric mucin and calf thymus DNA. We also studied the effects of rhDNase treatments of sputum, mock sputum, and calf thymus DNA on tobramycin binding. We found that treatments of sputum, mock sputum, and calf thymus DNA with rhDNase did not significantly increase the tobramycin bioactivity within the dialysates; surprisingly, sputum binding of tobramycin was increased by rhDNase. We conclude that rhDNase does not increase the bioactivity of tobramycin in sputum.

  8. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980)

    OpenAIRE

    Kunst, B.; Dezelic, D.; Veksli, Z.

    2008-01-01

    The postgraduate study of macromolecular sciences (PSMS) was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study...

  9. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971– 1980)

    OpenAIRE

    Deželić, D.; Kunst, B.; Veksli, Zorica

    2008-01-01

    The postgraduate study of macromolecular sciences (PSMS) was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technological disciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The s...

  10. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Michael E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-16

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  11. Fully automated data collection and processing system on macromolecular crystallography beamlines at the PF

    International Nuclear Information System (INIS)

    Yamada, Yusuke; Hiraki, Masahiko; Matsugaki, Naohiro; Chavas, Leonard M.G.; Igarashi, Noriyuki; Wakatsuki, Soichi

    2012-01-01

    Fully automated data collection and processing system has been developed on macromolecular crystallography beamlines at the Photon Factory. In this system, the sample exchange, centering and data collection are sequentially performed for all samples stored in the sample exchange system at a beamline without any manual operations. Data processing of collected data sets is also performed automatically. These results are stored into the database system, and users can monitor the progress and results of automated experiment via a Web browser. (author)

  12. Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores.

    Science.gov (United States)

    Lazzara, Thomas D; Lau, K H Aaron; Knoll, Wolfgang; Janshoff, Andreas; Steinem, Claudia

    2012-01-01

    Layer-by-layer (LbL) deposition of polyelectrolytes and proteins within the cylindrical nanopores of anodic aluminum oxide (AAO) membranes was studied by optical waveguide spectroscopy (OWS). AAO has aligned cylindrical, nonintersecting pores with a defined pore diameter d(0) and functions as a planar optical waveguide so as to monitor, in situ, the LbL process by OWS. The LbL deposition of globular proteins, i.e., avidin and biotinylated bovine serum albumin was compared with that of linear polyelectrolytes (linear-PEs), both species being of similar molecular weight. LbL deposition within the cylindrical AAO geometry for different pore diameters (d(0) = 25-80 nm) for the various macromolecular species, showed that the multilayer film growth was inhibited at different maximum numbers of LbL steps (n(max)). The value of n(max) was greatest for linear-PEs, while proteins had a lower value. The cylindrical pore geometry imposes a physical limit to LbL growth such that n(max) is strongly dependent on the overall internal structure of the LbL film. For all macromolecular species, deposition was inhibited in native AAO, having pores of d(0) = 25-30 nm. Both, OWS and scanning electron microscopy showed that LbL growth in larger AAO pores (d(0) > 25-30 nm) became inhibited when approaching a pore diameter of d(eff,n_max) = 25-35 nm, a similar size to that of native AAO pores, with d(0) = 25-30 nm. For a reasonable estimation of d(eff,n_max), the actual volume occupied by a macromolecular assembly must be taken into consideration. The results clearly show that electrostatic LbL allowed for compact macromolecular layers, whereas proteins formed loosely packed multilayers.

  13. Tuning the properties of an anthracene-based PPE-PPV copolymer by fine variation of its macromolecular parameters

    Czech Academy of Sciences Publication Activity Database

    Tinti, F.; Sabir, F. K.; Gazzano, M.; Righi, S.; Ulbricht, C.; Usluer, Ö.; Pokorná, Veronika; Cimrová, Věra; Yohannes, T.; Egbe, D. A. M.; Camaioni, N.

    2013-01-01

    Roč. 3, č. 19 (2013), s. 6972-6980 ISSN 2046-2069 R&D Projects: GA ČR GAP106/12/0827; GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : anthracene-containing PPE-PPV copolymer * macromolecular parameters * structural and transport properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.708, year: 2013

  14. Macromolecular diffusion in crowded media beyond the hard-sphere model.

    Science.gov (United States)

    Blanco, Pablo M; Garcés, Josep Lluís; Madurga, Sergio; Mas, Francesc

    2018-04-25

    The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.

  15. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.

    Science.gov (United States)

    Maximova, Tatiana; Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda

    2016-04-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.

  16. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments

    International Nuclear Information System (INIS)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren

    2010-01-01

    MxCuBE is a beamline control environment optimized for the needs of macromolecular crystallography. This paper describes the design of the software and the features that MxCuBE currently provides. The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1

  17. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, T. D. [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Schnieders, M. J. [Department of Chemistry, Stanford, California (United States); Brunger, A. T., E-mail: brunger@stanford.edu [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford, California (United States)

    2010-09-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R{sub free} and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography.

  18. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    International Nuclear Information System (INIS)

    Fenn, T. D.; Schnieders, M. J.; Brunger, A. T.

    2010-01-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R free and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography

  19. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  20. Structural and chemical aspects of HPMA copolymers as drug carriers

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Šubr, Vladimír

    2010-01-01

    Roč. 62, č. 17 (2010), s. 150-166 ISSN 0169-409X R&D Projects: GA AV ČR KAN200200651; GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505 Keywords : drug-delivery systems * N-(2-hydroxypropyl)methacrylamide * polymer drug conjugates Subject RIV: CD - Macromolecular Chemistry Impact factor: 13.577, year: 2010

  1. Allosteric cross-talk in chromatin can mediate drug-drug synergy

    Science.gov (United States)

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2017-03-01

    Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions.

  2. Bioerodible drug/eluting stent coating with highly controllable drug release rate and excellent vascular biocompatibility

    Czech Academy of Sciences Publication Activity Database

    Rypáček, František; Mulinková, Katarína; Bernátková, Markéta; Machová, Luďka; Lapčíková, Monika; Otsuka, Y.; Robinson, K. A.; Mulkey, S. P.; Baranowski, C.; Zablocki, J.; Blackburn, B. K.; Chronos, N.

    2005-01-01

    Roč. 96, 7A (2005), 209H-210H ISSN 0002-9149. [Annual Conference of Transcathetral Cardiovascular Therapeutics /17./. Washington, 16.10.2005-21.10.2005] R&D Projects: GA AV ČR IAA4050202 Institutional research plan: CEZ:AV0Z40500505 Keywords : drug delivery * polymer coating * stent Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.059, year: 2005

  3. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Coquel

    2013-04-01

    Full Text Available Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian. Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on

  4. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Shane Ó Conchúir

    Full Text Available The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.

  5. [Macromolecular aromatic network characteristics of Chinese power coal analyzed by synchronous fluorescence and X-ray diffraction].

    Science.gov (United States)

    Ye, Cui-Ping; Feng, Jie; Li, Wen-Ying

    2012-07-01

    Coal structure, especially the macromolecular aromatic skeleton structure, has a strong influence on coke reactivity and coal gasification, so it is the key to grasp the macromolecular aromatic skeleton coal structure for getting the reasonable high efficiency utilization of coal. However, it is difficult to acquire their information due to the complex compositions and structure of coal. It has been found that the macromolecular aromatic network coal structure would be most isolated if small molecular of coal was first extracted. Then the macromolecular aromatic skeleton coal structure would be clearly analyzed by instruments, such as X-ray diffraction (XRD), fluorescence spectroscopy with synchronous mode (Syn-F), Gel permeation chromatography (GPC) etc. Based on the previous results, according to the stepwise fractional liquid extraction, two Chinese typical power coals, PS and HDG, were extracted by silica gel as stationary phase and acetonitrile, tetrahydrofuran (THF), pyridine and 1-methyl-2-pyrollidinone (NMP) as a solvent group for sequential elution. GPC, Syn-F and XRD were applied to investigate molecular mass distribution, condensed aromatic structure and crystal characteristics. The results showed that the size of aromatic layers (La) is small (3-3.95 nm) and the stacking heights (Lc) are 0.8-1.2 nm. The molecular mass distribution of the macromolecular aromatic network structure is between 400 and 1 130 amu, with condensed aromatic numbers of 3-7 in the structure units.

  6. Grain sorghum dust increases macromolecular efflux from the in situ nasal mucosa.

    Science.gov (United States)

    Gao, X P

    1998-04-01

    The purpose of this study was to determine whether an aqueous extract of grain sorghum dust increases macromolecular efflux from the nasal mucosa in vivo and, if so, whether this response is mediated, in part, by substance P. Suffusion of grain sorghum dust extract on the in situ nasal mucosa of anesthetized hamsters elicits a significant increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass, 70 kDa; P grain sorghum dust elicits neurogenic plasma exudation from the in situ nasal mucosa.

  7. Evaluation of quantum-chemical methods of radiolysis stability for macromolecular structures

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2005-01-01

    The behavior of macromolecular structures in ionising fields was analyzed by quantum-chemical methods. In this study the primary radiolytic effect was analyzed using a two-step radiolytic mechanism: a) ionisation of molecule and spatial redistribution of atoms in order to reach a minimum value of energy, characteristic to the quantum state; b) neutralisation of the molecule by electron capture and its rapid dissociation into free radicals. Chemical bonds suspected to break are located in the distribution region of LUMO orbital and have minimal homolytic dissociation energies. Representative polymer structures (polyethylene, polypropylene, polystyrene, poly α and β polystyrene, polyisobutylene, polytetrafluoroethylene, poly methylsiloxanes) were analyzed. (authors)

  8. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    Science.gov (United States)

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf

    2013-01-01

    The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein. PMID:23897484

  9. Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    A Soares; D Schneider; J Skinner; M Cowan; R Buono; H Robinson; A Heroux; M Carlucci-Dayton; A Saxena; R Sweet

    2011-12-31

    The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.

  10. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography.

    Science.gov (United States)

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L; Armour, Wes; Waterman, David G; Iwata, So; Evans, Gwyndaf

    2013-08-01

    The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  11. Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS

    International Nuclear Information System (INIS)

    Soares, A.; Schneider, D.; Skinner, J.; Cowan, M.; Buono, R.; Robinson, H.; Heroux, A.; Carlucci-Dayton, M.; Saxena, A.; Sweet, R.

    2008-01-01

    The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.

  12. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits.

    Science.gov (United States)

    Jaskolski, Mariusz; Dauter, Zbigniew; Wlodawer, Alexander

    2014-09-01

    As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  13. Long-wavelength macromolecular crystallography - First successful native SAD experiment close to the sulfur edge

    Science.gov (United States)

    Aurelius, O.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.

    2017-11-01

    Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge. This has been made possible by the in-vacuum setup and the long-wavelength optimised experimental setup at the I23 beamline at Diamond Light Source. In these early commissioning experiments only standard data collection and processing procedures have been applied, in particular no dedicated absorption correction has been used. Nevertheless the success of the experiment demonstrates that the capability to extract phase information can be even further improved once data collection protocols and data processing have been optimised.

  14. Organ specific acute toxicity of the carcinogen trans-4-acetylaminostilbene is not correlated with macromolecular binding.

    Science.gov (United States)

    Pfeifer, A; Neumann, H G

    1986-09-01

    trans-4-Acetylaminostilbene (trans-AAS) is acutely toxic in rats and lesions are produced specifically in the glandular stomach. Toxicity is slightly increased by pretreating the animals with phenobarbital (PB) and is completely prevented by pretreatment with methylcholanthrene (MC). The prostaglandin inhibitors, indomethacin and acetyl salicylic acid, do not reduce toxicity. The high efficiency of MC suggested that toxicity is caused by reactive metabolites. trans-[3H]-AAS was administered orally to untreated and to PB- or MC-pretreated female Wistar rats and target doses in different tissues were measured by means of covalent binding to proteins, RNA and DNA. Macromolecular binding in the target tissue of poisoned animals was significantly lower than in liver and kidney and comparable to other non-target tissues. Pretreatment with MC lowered macromolecular binding in all extrahepatic tissues but not in liver. These findings are not in line with tissue specific metabolic activation. The only unique property of the target tissue, glandular stomach, that we observed was a particular affinity for the systemically available parent compound. In the early phase of poisoning, tissue concentrations were exceedingly high and the stomach function was impaired.

  15. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    Directory of Open Access Journals (Sweden)

    Iborra Francisco J

    2007-04-01

    Full Text Available Abstract Background The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. Results The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin scattered within domains rich in fast components (protein/RNA. Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. Conclusion I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

  16. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  17. ISPyB: an information management system for synchrotron macromolecular crystallography.

    Science.gov (United States)

    Delagenière, Solange; Brenchereau, Patrice; Launer, Ludovic; Ashton, Alun W; Leal, Ricardo; Veyrier, Stéphanie; Gabadinho, José; Gordon, Elspeth J; Jones, Samuel D; Levik, Karl Erik; McSweeney, Seán M; Monaco, Stéphanie; Nanao, Max; Spruce, Darren; Svensson, Olof; Walsh, Martin A; Leonard, Gordon A

    2011-11-15

    Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.

  18. A new paradigm for macromolecular crystallography beamlines derived from high-pressure methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Fourme, Roger, E-mail: roger.fourme@synchrotron-soleil.fr [Synchrotron SOLEIL, BP 48, Saint Aubin, 91192 Gif-sur-Yvette (France); Girard, Eric [IBS (UMR 5075 CEA-CNRS-UJF-PSB), 41 rue Jules Horowitz, 38027 Grenoble Cedex (France); Dhaussy, Anne-Claire [CRISMAT, ENSICAEN, 6 Boulevard du Maréchal Juin, 14000 Caen (France); Medjoubi, Kadda [Synchrotron SOLEIL, BP 48, Saint Aubin, 91192 Gif-sur-Yvette (France); Prangé, Thierry [LCRB (UMR 8015 CNRS), Université Paris Descartes, Faculté de Pharmacie, 4 avenue de l’Observatoire, 75270 Paris (France); Ascone, Isabella [ENSCP (UMR CNRS 7223), 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mezouar, Mohamed [ESRF, BP 220, 38043 Grenoble (France); Kahn, Richard [IBS (UMR 5075 CEA-CNRS-UJF-PSB), 41 rue Jules Horowitz, 38027 Grenoble Cedex (France)

    2011-01-01

    Macromolecular crystallography at high pressure (HPMX) is a mature technique. Shorter X-ray wavelengths increase data collection efficiency on cryocooled crystals. Extending applications and exploiting spin-off of HPMX will require dedicated synchrotron radiation beamlines based on a new paradigm. Biological structures can now be investigated at high resolution by high-pressure X-ray macromolecular crystallography (HPMX). The number of HPMX studies is growing, with applications to polynucleotides, monomeric and multimeric proteins, complex assemblies and even a virus capsid. Investigations of the effects of pressure perturbation have encompassed elastic compression of the native state, study of proteins from extremophiles and trapping of higher-energy conformers that are often of biological interest; measurements of the compressibility of crystals and macromolecules were also performed. HPMX results were an incentive to investigate short and ultra-short wavelengths for standard biocrystallography. On cryocooled lysozyme crystals it was found that the data collection efficiency using 33 keV photons is increased with respect to 18 keV photons. This conclusion was extended from 33 keV down to 6.5 keV by exploiting previously published data. To be fully exploited, the potential of higher-energy photons requires detectors with a good efficiency. Accordingly, a new paradigm for MX beamlines was suggested, using conventional short and ultra-short wavelengths, aiming at the collection of very high accuracy data on crystals under standard conditions or under high pressure. The main elements of such beamlines are outlined.

  19. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    Science.gov (United States)

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  20. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron

    International Nuclear Information System (INIS)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J.; Gee, Christine; Harrop, Stephen J.; Mudie, Nathan; Panjikar, Santosh; Price, Jason R.; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom

    2015-01-01

    The macromolecular crystallography beamline MX1 at the Australian Synchrotron is described. MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented

  1. Ampicillin-Ester Bonded Branched Polymers: Characterization, Cyto-, Genotoxicity and Controlled Drug-Release Behaviour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2014-06-01

    Full Text Available The development and characterization of novel macromolecular conjugates of ampicillin using branched biodegradable polymers has been described in this study. The conjugates have been prepared coupling the β-lactam antibiotic with branched polymer matrices based on the natural oligopeptide core. The cyto- and genotoxicity of the synthesized polymers were evaluated with a bacterial luminescence test, two protozoan assays and Salmonella typhimurium TA1535. The presence of a newly formed covalent bond between the drug and the polymer matrices was confirmed by 1H-NMR and FTIR studies. A drug content (15.6 and 10.2 mole % in the macromolecular conjugates has been determined. The obtained macromolecular products have been subjected to further in vitro release studies. The total percentage of ampicillin released after 21 days of incubation was nearly 60% and 14% and this resulted from the different physicochemical properties of the polymeric matrices. This is the first report on the application of branched biodegradable polymeric matrices for the covalent conjugation of ampicillin. The obtained results showed that the synthesized macromolecular drug-conjugates might slowly release the active drug molecule and improve the pharmacokinetics of ampicillin.

  2. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging

    Czech Academy of Sciences Publication Activity Database

    Theek, B.; Gremse, F.; Kunjachan, S.; Fokong, S.; Pola, Robert; Pechar, Michal; Deckers, R.; Storm, G.; Ehling, J.; Kiessling, F.; Lammers, T.

    2014-01-01

    Roč. 182, 28 May (2014), s. 83-89 ISSN 0168-3659 R&D Projects: GA ČR GCP207/12/J030 Institutional support: RVO:61389013 Keywords : drug targeting * nanomedicine * theranostics Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.705, year: 2014

  3. HPMA copolymer-drug conjugates with controlled tumor-specific drug release

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Roč. 18, č. 1 (2018), s. 1-15, č. článku 1700209. ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA17-13283S; GA ČR(CZ) GA17-08084S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : biodegradable spacer * controlled drug release * drug delivery systems Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.238, year: 2016

  4. Proceedings of a one-week course on exploiting anomalous scattering in macromolecular structure determination (EMBO'07)

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.S.; Shepard, W.; Dauter, Z.; Leslie, A.; Diederichs, K.; Evans, G.; Svensson, O.; Schneider, T.; Bricogne, G.; Dauter, Z.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Leslie, A.; Kabsch, W.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Read, R.; Panjikar, S.; Pannu, N.S.; Dauter, Z.; Weiss, M.S.; McSweeney, S

    2007-07-01

    This course, which was directed to young scientists, illustrated both theoretical and practical aspects of macromolecular crystal structure solution using synchrotron radiation. Some software dedicated to data collection, processing and analysis were presented. This document gathers only the slides of the presentations.

  5. Macromolecular crowding compacts unfolded apoflavodoxin and causes severe aggregation of the off-pathway intermediate during apoflavodoxin folding

    NARCIS (Netherlands)

    Engel, R.; Westphal, A.H.; Huberts, D.; Nabuurs, S.M.; Lindhoud, S.; Visser, A.J.W.G.; Mierlo, van C.P.M.

    2008-01-01

    To understand how proteins fold in vivo, it is important to investigate the effects of macromolecular crowding on protein folding. Here, the influence of crowding on in vitro apoflavodoxin folding, which involves a relatively stable off-pathway intermediate with molten globule characteristics, is

  6. Proceedings of a one-week course on exploiting anomalous scattering in macromolecular structure determination (EMBO'07)

    International Nuclear Information System (INIS)

    Weiss, M.S.; Shepard, W.; Dauter, Z.; Leslie, A.; Diederichs, K.; Evans, G.; Svensson, O.; Schneider, T.; Bricogne, G.; Dauter, Z.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Leslie, A.; Kabsch, W.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Read, R.; Panjikar, S.; Pannu, N.S.; Dauter, Z.; Weiss, M.S.; McSweeney, S.

    2007-01-01

    This course, which was directed to young scientists, illustrated both theoretical and practical aspects of macromolecular crystal structure solution using synchrotron radiation. Some software dedicated to data collection, processing and analysis were presented. This document gathers only the slides of the presentations

  7. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    Science.gov (United States)

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  8. Proceedings of a one-week course on exploiting anomalous scattering in macromolecular structure determination (EMBO'07)

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M S; Shepard, W; Dauter, Z; Leslie, A; Diederichs, K; Evans, G; Svensson, O; Schneider, T; Bricogne, G; Dauter, Z; Flensburg, C; Terwilliger, T; Lamzin, V; Leslie, A; Kabsch, W; Flensburg, C; Terwilliger, T; Lamzin, V; Read, R; Panjikar, S; Pannu, N S; Dauter, Z; Weiss, M S; McSweeney, S

    2007-07-01

    This course, which was directed to young scientists, illustrated both theoretical and practical aspects of macromolecular crystal structure solution using synchrotron radiation. Some software dedicated to data collection, processing and analysis were presented. This document gathers only the slides of the presentations.

  9. A Test of Macromolecular Crystallization in Microgravity: Large, Well-Ordered Insulin Crystals

    Science.gov (United States)

    Borgstahl, Gloria E. O.; Vahedi-Faridi, Ardeschir; Lovelace, Jeff; Bellamy, Henry D.; Snell, Edward H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Crystals of insulin grown in microgravity on space shuttle mission STS-95 were extremely well-ordered and unusually large (many > 2 mm). The physical characteristics of six microgravity and six earth-grown crystals were examined by X-ray analysis employing superfine f slicing and unfocused synchrotron radiation. This experimental setup allowed hundreds of reflections to be precisely examined for each crystal in a short period of time. The microgravity crystals were on average 34 times larger, had 7 times lower mosaicity, had 54 times higher reflection peak heights and diffracted to significantly higher resolution than their earth grown counterparts. A single mosaic domain model could account for reflections in microgravity crystals whereas reflections from earth crystals required a model with multiple mosaic domains. This statistically significant and unbiased characterization indicates that the microgravity environment was useful for the improvement of crystal growth and resultant diffraction quality in insulin crystals and may be similarly useful for macromolecular crystals in general.

  10. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    Science.gov (United States)

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  11. Proteome-wide dataset supporting the study of ancient metazoan macromolecular complexes

    Directory of Open Access Journals (Sweden)

    Sadhna Phanse

    2016-03-01

    Full Text Available Our analysis examines the conservation of multiprotein complexes among metazoa through use of high resolution biochemical fractionation and precision mass spectrometry applied to soluble cell extracts from 5 representative model organisms Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Strongylocentrotus purpuratus, and Homo sapiens. The interaction network obtained from the data was validated globally in 4 distant species (Xenopus laevis, Nematostella vectensis, Dictyostelium discoideum, Saccharomyces cerevisiae and locally by targeted affinity-purification experiments. Here we provide details of our massive set of supporting biochemical fractionation data available via ProteomeXchange (http://www.ebi.ac.uk/pride/archive/projects/PXD002319-http://www.ebi.ac.uk/pride/archive/projects/PXD002328, PPIs via BioGRID (185267; and interaction network projections via (http://metazoa.med.utoronto.ca made fully accessible to allow further exploration. The datasets here are related to the research article on metazoan macromolecular complexes in Nature [1]. Keywords: Proteomics, Metazoa, Protein complexes, Biochemical, Fractionation

  12. Functionalization of Planet-Satellite Nanostructures Revealed by Nanoscopic Localization of Distinct Macromolecular Species

    KAUST Repository

    Rossner, Christian

    2016-09-26

    The development of a straightforward method is reported to form hybrid polymer/gold planet-satellite nanostructures (PlSNs) with functional polymer. Polyacrylate type polymer with benzyl chloride in its backbone as a macromolecular tracer is synthesized to study its localization within PlSNs by analyzing the elemental distribution of chlorine. The functionalized nanohybrid structures are analyzed by scanning transmission electron microscopy, electron energy loss spectroscopy, and spectrum imaging. The results show that the RAFT (reversible addition-fragmentation chain transfer) polymers\\' sulfur containing end groups are colocalized at the gold cores, both within nanohybrids of simple core-shell morphology and within higher order PlSNs, providing microscopic evidence for the affinity of the RAFT group toward gold surfaces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA., Weinheim.

  13. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.

    Science.gov (United States)

    Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter

    2016-05-01

    Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.

  14. Recent Major Improvements to the ALS Sector 5 Macromolecular Crystallography Beamlines

    International Nuclear Information System (INIS)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis; McKean, John P.; Trame, Christine; Dickert, Jeff; Rozales, Anthony; Dauz, Azer; Taylor, John; Zwart, Petrus; Duarte, Robert; Padmore, Howard; McDermott, Gerry; Adams, Paul

    2007-01-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which together formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller

  15. Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Marius Schmidt

    2013-01-01

    Full Text Available Time-resolved macromolecular crystallography unifies structure determination with chemical kinetics, since the structures of transient states and chemical and kinetic mechanisms can be determined simultaneously from the same data. To start a reaction in an enzyme, typically, an initially inactive substrate present in the crystal is activated. This has particular disadvantages that are circumvented when active substrate is directly provided by diffusion. However, then it is prohibitive to use macroscopic crystals because diffusion times become too long. With small micro- and nanocrystals diffusion times are adequately short for most enzymes and the reaction can be swiftly initiated. We demonstrate here that a time-resolved crystallographic experiment becomes feasible by mixing substrate with enzyme nanocrystals which are subsequently injected into the X-ray beam of a pulsed X-ray source.

  16. OCTOPUS: an innovative multimodal diffractometer for neutron macromolecular crystallography across the length scales

    International Nuclear Information System (INIS)

    Blakeley, M.P.; Andersen, K.; Kreuz, M.; Giroud, B.; McSweeney, S.; Mitchell, E.; Teixeira, S.C.M.; Forsyth, V.T.

    2011-01-01

    We propose to construct a novel protein diffractometer at position H112B. The new instrument will deliver major efficiency gains, as well as offering greatly extended flexibility through the option of several easily interchangeable modes of operation. This proposal builds on the demonstrable need to extend ILL's capacity for high resolution structural studies of protein systems, as well as a need to widen the scope of biological crystallography - in particular for monochromatic studies at both high and low resolution. The development will be carried out in close collaboration with structural biologists at the ESRF, and engineered in such a way that the user interface of the instrument (from sample to software) will be transparently identifiable to a large, dynamic, and driven community of European synchrotron X-ray macromolecular crystallographers. (authors)

  17. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De

    2017-05-09

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  18. Control and data acquisition system for the macromolecular crystallography beamline of SSRF

    International Nuclear Information System (INIS)

    Wang Qisheng; Huang Sheng; Sun Bo; Tang Lin; He Jianhua

    2012-01-01

    The macromolecular crystallography beamline BL17U1 of Shanghai Synchrotron Radiation Facility (SSRF) is an important platform for structure biological science. High performance of the beamline would benefit the users greatly in their experiment and data acquisition. To take full advantage of the state-of-the-art mechanical and physical design of the beamline, we have made a series of efforts to develop a robust control and data acquisition system, with user-friendly GUI. These were done by adopting EPICS and Blu-Ice systems on the BL17U1 beamline, with considerations on easy accommodation of new beeline components. In this paper, we report the integration of EPICS and Blu-Ice systems. By using the EPICS gateway interface and several new DHS, Blu-Ice was successfully established for the BL17U1 beamline. As a result, the experiment control and data acquisition system is reliable and functional for users. (authors)

  19. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DEFF Research Database (Denmark)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.

    2017-01-01

    orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME......Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many...... models have 70,000 constraints and variables and will grow larger). We have developed a quadrupleprecision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging...

  20. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  1. Structure, function and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding.

    Science.gov (United States)

    Samiotakis, Antonios; Dhar, Apratim; Ebbinghaus, Simon; Nienhaus, Lea; Homouz, Dirar; Gruebele, Martin; Cheung, Margaret

    2010-10-01

    We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal) and Sph (spherical compact). With an adjustment for viscosity, crowded wild type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a new solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates.

  2. Macromolecular contrast media. A new approach for characterising breast tumors with MR-mammography

    International Nuclear Information System (INIS)

    Daldrup, H.E.; Gossmann, A.; Koeln Univ.; Wendland, M.; Brasch, R.C.; Rosenau, W.

    1997-01-01

    The value of macromolecular contrast agents (MMCM) for the characterization of benign and malignant breast tumors will be demonstrated in this review. Animal studies suggest a high potential of MMCM to increase the specificity of MR-mammography. The concept of tumor differentiation is based on the pathological hyperpermeability of microvessels in malignant tumors. MMCM show a leak into the interstitium of carcinomas, whereas they are confined to the intravascular space in benign tumors. Capabilities and limitations of the MMCM-prototype. Albumin-Gd-DTPA, for breast tumor characterization will be summarized and compared to the standard low molecular weight contrast agent Gd-DTPA. Initial experience with new MMCM, such as Dendrimers, Gd-DTPA-Polylysine and MS-325 will be outlined. The potential of 'blood-pool'-iron oxides, such as AMI-227 for the evaluation of tumor microvascular permeabilities will be discussed. (orig.) [de

  3. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines.

    Science.gov (United States)

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

  4. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De; Zhang, Zhen; Hadjichristidis, Nikolaos

    2017-01-01

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  5. A 3D Image Filter for Parameter-Free Segmentation of Macromolecular Structures from Electron Tomograms

    Science.gov (United States)

    Ali, Rubbiya A.; Landsberg, Michael J.; Knauth, Emily; Morgan, Garry P.; Marsh, Brad J.; Hankamer, Ben

    2012-01-01

    3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms. PMID:22479430

  6. Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain.

    Science.gov (United States)

    Dortch, Richard D; Bagnato, Francesca; Gochberg, Daniel F; Gore, John C; Smith, Seth A

    2018-03-24

    To optimize a selective inversion recovery (SIR) sequence for macromolecular content mapping in the human brain at 3.0T. SIR is a quantitative method for measuring magnetization transfer (qMT) that uses a low-power, on-resonance inversion pulse. This results in a biexponential recovery of free water signal that can be sampled at various inversion/predelay times (t I/ t D ) to estimate a subset of qMT parameters, including the macromolecular-to-free pool-size-ratio (PSR), the R 1 of free water (R 1f ), and the rate of MT exchange (k mf ). The adoption of SIR has been limited by long acquisition times (≈4 min/slice). Here, we use Cramér-Rao lower bound theory and data reduction strategies to select optimal t I /t D combinations to reduce imaging times. The schemes were experimentally validated in phantoms, and tested in healthy volunteers (N = 4) and a multiple sclerosis patient. Two optimal sampling schemes were determined: (i) a 5-point scheme (k mf estimated) and (ii) a 4-point scheme (k mf assumed). In phantoms, the 5/4-point schemes yielded parameter estimates with similar SNRs as our previous 16-point scheme, but with 4.1/6.1-fold shorter scan times. Pair-wise comparisons between schemes did not detect significant differences for any scheme/parameter. In humans, parameter values were consistent with published values, and similar levels of precision were obtained from all schemes. Furthermore, fixing k mf reduced the sensitivity of PSR to partial-volume averaging, yielding more consistent estimates throughout the brain. qMT parameters can be robustly estimated in ≤1 min/slice (without independent measures of ΔB 0 , B1+, and T 1 ) when optimized t I -t D combinations are selected. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Macromolecular composition of terrestrial and marine organic matter in sediments across the East Siberian Arctic Shelf

    Science.gov (United States)

    Sparkes, Robert B.; Doğrul Selver, Ayça; Gustafsson, Örjan; Semiletov, Igor P.; Haghipour, Negar; Wacker, Lukas; Eglinton, Timothy I.; Talbot, Helen M.; van Dongen, Bart E.

    2016-10-01

    Mobilisation of terrestrial organic carbon (terrOC) from permafrost environments in eastern Siberia has the potential to deliver significant amounts of carbon to the Arctic Ocean, via both fluvial and coastal erosion. Eroded terrOC can be degraded during offshore transport or deposited across the wide East Siberian Arctic Shelf (ESAS). Most studies of terrOC on the ESAS have concentrated on solvent-extractable organic matter, but this represents only a small proportion of the total terrOC load. In this study we have used pyrolysis-gas chromatography-mass spectrometry (py-GCMS) to study all major groups of macromolecular components of the terrOC; this is the first time that this technique has been applied to the ESAS. This has shown that there is a strong offshore trend from terrestrial phenols, aromatics and cyclopentenones to marine pyridines. There is good agreement between proportion phenols measured using py-GCMS and independent quantification of lignin phenol concentrations (r2 = 0.67, p radiocarbon data for bulk OC (14COC) which, when coupled with previous measurements, allows us to produce the most comprehensive 14COC map of the ESAS to date. Combining the 14COC and py-GCMS data suggests that the aromatics group of compounds is likely sourced from old, aged terrOC, in contrast to the phenols group, which is likely sourced from modern woody material. We propose that an index of the relative proportions of phenols and pyridines can be used as a novel terrestrial vs. marine proxy measurement for macromolecular organic matter. Principal component analysis found that various terrestrial vs. marine proxies show different patterns across the ESAS, and it shows that multiple river-ocean transects of surface sediments transition from river-dominated to coastal-erosion-dominated to marine-dominated signatures.

  8. Development of an online UV–visible microspectrophotometer for a macromolecular crystallography beamline

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Nobutaka, E-mail: nobutaka.shimizu@kek.jp [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimizu, Tetsuya [RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Baba, Seiki; Hasegawa, Kazuya [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yamamoto, Masaki [RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kumasaka, Takashi [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2013-11-01

    An online UV–visible microspectrophotometer has been developed for the macromolecular crystallography beamline at SPring-8. Details of this spectrophotometer are reported. Measurement of the UV–visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV–visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury–xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

  9. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties

    Science.gov (United States)

    Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian

    2018-05-01

    Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.

  10. Drug Facts

    Medline Plus

    Full Text Available ... Why Is It So Hard to Quit Drugs? Effects of Drugs Drug Use and Other People Drug ... Unborn Children Drug Use and Your Health Other Effects on the Body Drug Use Hurts Brains Drug ...

  11. Polymeric drugs: Advances in the development of pharmacologically active polymers

    Science.gov (United States)

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  12. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2010-02-01

    Full Text Available Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  13. Albumin–Polymer–Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford; Zuwala, Kaja; Pilgram, Oliver

    2016-01-01

    Albumin is an exquisite tool of nature used in biomedicine to achieve long blood residence time for drugs, but the payload it can carry is typically limited to one molecule per protein. In contrast, synthetic macromolecular prodrugs contain multiple copies of drugs per polymer chain but offer only...... a marginal increase in the circulation lifetime of the drugs. We combine the benefits of the two platforms and at the same time overcome their respective limitations. Specifically, we develop the synthesis of albumin–polymer–drug conjugates to obtain long circulating, high payload drug delivery vehicles....... In vivo data validate that albumin endows the conjugate with a blood residence time similar to that of the protein and well exceeding that of the polymer. Therapeutic activity of the conjugates is validated using prodrugs of panobinostat, an HIV latency reversal agent, in which case the conjugates matched...

  14. Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Lammers, T.; Peschke, P.; Kühnlein, R.; Šubr, Vladimír; Ulbrich, Karel; Debus, J.; Huber, P. E.; Hennink, W. E.; Storm, G.

    2007-01-01

    Roč. 117, č. 3 (2007), s. 333-341 ISSN 0168-3659 R&D Projects: GA ČR GA204/05/2255 Institutional research plan: CEZ:AV0Z40500505 Keywords : HPMA * drug delivery * tumor targeting Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.756, year: 2007

  15. Drug Facts

    Medline Plus

    Full Text Available ... Get Addicted to Drugs? Does Addiction Run in Families? Why Is It So Hard to Quit Drugs? ... Drug Use and Other People Drug Use and Families Drug Use and Kids Drug Use and Unborn ...

  16. Drug Facts

    Medline Plus

    Full Text Available ... Facts Search form Search Menu Home Drugs That People Abuse Alcohol Facts Bath Salts Facts Cocaine (Coke, ... Drugs? Effects of Drugs Drug Use and Other People Drug Use and Families Drug Use and Kids ...

  17. Drug Facts

    Medline Plus

    Full Text Available ... People Drug Use and Families Drug Use and Kids Drug Use and Unborn Children Drug Use and ... Children and Teens Stay Drug-Free Talking to Kids About Drugs: What to Say if You Used ...

  18. Macromolecular composition of terrestrial and marine organic matter in sediments across the East Siberian Arctic Shelf

    Directory of Open Access Journals (Sweden)

    R. B. Sparkes

    2016-10-01

    Full Text Available Mobilisation of terrestrial organic carbon (terrOC from permafrost environments in eastern Siberia has the potential to deliver significant amounts of carbon to the Arctic Ocean, via both fluvial and coastal erosion. Eroded terrOC can be degraded during offshore transport or deposited across the wide East Siberian Arctic Shelf (ESAS. Most studies of terrOC on the ESAS have concentrated on solvent-extractable organic matter, but this represents only a small proportion of the total terrOC load. In this study we have used pyrolysis–gas chromatography–mass spectrometry (py-GCMS to study all major groups of macromolecular components of the terrOC; this is the first time that this technique has been applied to the ESAS. This has shown that there is a strong offshore trend from terrestrial phenols, aromatics and cyclopentenones to marine pyridines. There is good agreement between proportion phenols measured using py-GCMS and independent quantification of lignin phenol concentrations (r2 = 0.67, p < 0.01, n = 24. Furfurals, thought to represent carbohydrates, show no offshore trend and are likely found in both marine and terrestrial organic matter. We have also collected new radiocarbon data for bulk OC (14COC which, when coupled with previous measurements, allows us to produce the most comprehensive 14COC map of the ESAS to date. Combining the 14COC and py-GCMS data suggests that the aromatics group of compounds is likely sourced from old, aged terrOC, in contrast to the phenols group, which is likely sourced from modern woody material. We propose that an index of the relative proportions of phenols and pyridines can be used as a novel terrestrial vs. marine proxy measurement for macromolecular organic matter. Principal component analysis found that various terrestrial vs. marine proxies show different patterns across the ESAS, and it shows that multiple river–ocean transects of surface sediments transition from river-dominated to

  19. Nasal Delivery of High Molecular Weight Drugs

    Directory of Open Access Journals (Sweden)

    Erdal Cevher

    2009-09-01

    Full Text Available Nasal drug delivery may be used for either local or systemic effects. Low molecular weight drugs with are rapidly absorbed through nasal mucosa. The main reasons for this are the high permeability, fairly wide absorption area, porous and thin endothelial basement membrane of the nasal epithelium. Despite the many advantages of the nasal route, limitations such as the high molecular weight (HMW of drugs may impede drug absorption through the nasal mucosa. Recent studies have focused particularly on the nasal application of HMW therapeutic agents such as peptide-protein drugs and vaccines intended for systemic effects. Due to their hydrophilic structure, the nasal bioavailability of peptide and protein drugs is normally less than 1%. Besides their weak mucosal membrane permeability and enzymatic degradation in nasal mucosa, these drugs are rapidly cleared from the nasal cavity after administration because of mucociliary clearance. There are many approaches for increasing the residence time of drug formulations in the nasal cavity resulting in enhanced drug absorption. In this review article, nasal route and transport mechanisms across the nasal mucosa will be briefly presented. In the second part, current studies regarding the nasal application of macromolecular drugs and vaccines with nanoand micro-particulate carrier systems will be summarised.

  20. Synthesis of branched polymers under continuous-flow microprocess: an improvement of the control of macromolecular architectures.

    Science.gov (United States)

    Bally, Florence; Serra, Christophe A; Brochon, Cyril; Hadziioannou, Georges

    2011-11-15

    Polymerization reactions can benefit from continuous-flow microprocess in terms of kinetics control, reactants mixing or simply efficiency when high-throughput screening experiments are carried out. In this work, we perform for the first time the synthesis of branched macromolecular architecture through a controlled/'living' polymerization technique, in tubular microreactor. Just by tuning process parameters, such as flow rates of the reactants, we manage to generate a library of polymers with various macromolecular characteristics. Compared to conventional batch process, polymerization kinetics shows a faster initiation step and more interestingly an improved branching efficiency. Due to reduced diffusion pathway, a characteristic of microsystems, it is thus possible to reach branched polymers exhibiting a denser architecture, and potentially a higher functionality for later applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of far-ultraviolet radiation and oxygen on macromolecular synthesis and protein induction in Bacteroides fragilis BF-2

    International Nuclear Information System (INIS)

    Schumann, J.P.

    1983-11-01

    The study deals with the effects of far-UV radiation, oxygen and hydrogen peroxide on macromolecular synthesis and viability in the obligate anaerobe, Bacteroides fragilis, as well as the specific proteins induced in this organism by these different DNA damaging agents. Irradiation of Bacteroides fragilis cells with far-UV light (254 nm) under anaerobic conditions resulted in the immediate, rapid and extensive degradation of DNA which continued for 40 to 60 min after irradiation. DNA degradation after irradiation was inhibited by chloramphenicol and caffeine. RNA and protein synthesis were decreased by UV irradiation and the degree of inhibition was proportional to the UV dose. Colony formation was not affected immediately by UV irradiation and continued for a dose-dependent period prior to inhibition. The relationship between the DNA damage-induced proteins, macromolecular synthesis in damaged B. fragilis cells and the observed physiological responses and inducible repair phenomena after the different DNA damaging treatments in this anaerobe are discussed

  2. The 2D Structure of the T. brucei Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding

    Directory of Open Access Journals (Sweden)

    W.-Matthias Leeder

    2017-01-01

    Full Text Available Mitochondrial transcript maturation in African trypanosomes requires RNA editing to convert sequence-deficient pre-mRNAs into translatable mRNAs. The different pre-mRNAs have been shown to adopt highly stable 2D folds; however, it is not known whether these structures resemble the in vivo folds given the extreme “crowding” conditions within the mitochondrion. Here, we analyze the effects of macromolecular crowding on the structure of the mitochondrial RPS12 pre-mRNA. We use high molecular mass polyethylene glycol as a macromolecular cosolute and monitor the structure of the RNA globally and with nucleotide resolution. We demonstrate that crowding has no impact on the 2D fold and we conclude that the MFE structure in dilute solvent conditions represents a good proxy for the folding of the pre-mRNA in its mitochondrial solvent context.

  3. Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach

    Science.gov (United States)

    Podgórska, B.; Mudryk, Z. J.

    2003-03-01

    The potential capability to decompose macromolecular compounds, and the level of extracellular enzyme activities were determined in heterotrophic bacteria isolated from a sandy beach in Sopot on the Southern Baltic Sea coast. Individual isolates were capable of hydrolysing a wide spectrum of organic macromolecular compounds. Lipids, gelatine, and DNA were hydrolyzed most efficiently. Only a very small percentage of strains were able to decompose cellulose, and no pectinolytic bacteria were found. Except for starch-hydrolysis, no significant differences in the intensity of organic compound decomposition were recorded between horizontal and vertical profiles of the studied beach. Of all the studied extracellular enzymes, alkaline phosphatase, esterase lipase, and leucine acrylaminidase were most active; in contrast, the activity α-fucosidase, α-galactosidase and β-glucouronidase was the weakest. The level of extracellular enzyme activity was similar in both sand layers.

  4. A facile metal-free "grafting-from" route from acrylamide-based substrate toward complex macromolecular combs

    KAUST Repository

    Zhao, Junpeng

    2013-01-01

    High-molecular-weight poly(N,N-dimethylacrylamide-co-acrylamide) was used as a model functional substrate to investigate phosphazene base (t-BuP 4)-promoted metal-free anionic graft polymerization utilizing primary amide moieties as initiating sites. The (co)polymerization of epoxides was proven to be effective, leading to macromolecular combs with side chains being single- or double-graft homopolymer, block copolymer and statistical copolymer. © 2013 The Royal Society of Chemistry.

  5. Macromolecular pHPMA-based nanoparticles with cholesterol for solid tumor targeting: behavior in HSA protein environment

    Czech Academy of Sciences Publication Activity Database

    Zhang, X.; Niebuur, B.-J.; Chytil, Petr; Etrych, Tomáš; Filippov, Sergey K.; Kikhney, A.; Wieland, D. C. F.; Svergun, D. I.; Papadakis, C. M.

    2018-01-01

    Roč. 19, č. 2 (2018), s. 470-480 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GC15-10527J; GA MZd(CZ) NV16-28594A; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer carriers * N-(2-hydroxypropyl)methacrylamide * tumor targeting Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.246, year: 2016

  6. C,N-2-[(Dimethylamino)methyl]phenylplatinum Complexes Functionalized with C60 as Macromolecular Building Blocks

    NARCIS (Netherlands)

    Koten, G. van; Meijer, M.D.; Wolf, E. de; Lutz, M.H.; Spek, A.L.; Klink, G.P.M. van

    2001-01-01

    The application of platinum(II) complexes based on the N,N-dimethylbenzylamine ligand (abbreviated as H-C,N) in macromolecular synthesis was demonstrated. Two cationic C,N-platinum moieties were linked with a 4,4'-bipyridine bridge, giving [{C6H4(CH2NMe2)-2-Pt(PPh3)}2(4,4'-bpy)](BF4)2 (2), the

  7. UQlust: combining profile hashing with linear-time ranking for efficient clustering and analysis of big macromolecular data.

    Science.gov (United States)

    Adamczak, Rafal; Meller, Jarek

    2016-12-28

    Advances in computing have enabled current protein and RNA structure prediction and molecular simulation methods to dramatically increase their sampling of conformational spaces. The quickly growing number of experimentally resolved structures, and databases such as the Protein Data Bank, also implies large scale structural similarity analyses to retrieve and classify macromolecular data. Consequently, the computational cost of structure comparison and clustering for large sets of macromolecular structures has become a bottleneck that necessitates further algorithmic improvements and development of efficient software solutions. uQlust is a versatile and easy-to-use tool for ultrafast ranking and clustering of macromolecular structures. uQlust makes use of structural profiles of proteins and nucleic acids, while combining a linear-time algorithm for implicit comparison of all pairs of models with profile hashing to enable efficient clustering of large data sets with a low memory footprint. In addition to ranking and clustering of large sets of models of the same protein or RNA molecule, uQlust can also be used in conjunction with fragment-based profiles in order to cluster structures of arbitrary length. For example, hierarchical clustering of the entire PDB using profile hashing can be performed on a typical laptop, thus opening an avenue for structural explorations previously limited to dedicated resources. The uQlust package is freely available under the GNU General Public License at https://github.com/uQlust . uQlust represents a drastic reduction in the computational complexity and memory requirements with respect to existing clustering and model quality assessment methods for macromolecular structure analysis, while yielding results on par with traditional approaches for both proteins and RNAs.

  8. Macromolecular basis for homocystein-induced changes in proteoglycan structure in growth and arteriosclerosis.

    Science.gov (United States)

    McCully, K S

    1972-01-01

    Cell culture monolayers deficient in cystathionine synthetase bound more inorganic sulfate than normal cell monolayers during growth to confluence; this was correlated with the production of granular proteoglycan by the abnormal cells and fibrillar proteoglycan by normal cells. Homocysteine was demonstrated to be an active precursor of esterified sulfate, confirming our previous finding of this sulfation pathway in liver. The cell cultures deficient in cystathionine synthetase were found to assume an abnormal cellular distribution on the surface of the culture dish, resembling the distribution assumed by neoplastic cells with loss of contact inhibition; the degree of abnormality of the cellular distribution was correlated with the amount of granular proteoglycan produced by the cells and the amount of inorganic sulfate binding by the cell monolayers. Pyridoxine was found to increase the growth rate of cell cultures from a patient with pyridoxineresponsive homocystinuria and to increase the production of fibrillar proteoglycan by the cells; no effect of pyridoxine was observed in the cell cultures from a patient who failed to respond to pyridoxine therapy. The findings suggest that the change in macromolecular conformation of cellular proteoglycans from fibrillar to granular is due to increased sulfation of the carbohydrate envelope of the molecule. The significance of the findings is related to the pathogenesis of homocystinuria, the phenomenon of contact inhibition, the action of growth hormone and initiation of arteriosclerotic plaques.

  9. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.

    Science.gov (United States)

    Ulvatne, Hilde; Samuelsen, Ørjan; Haukland, Hanne H; Krämer, Manuela; Vorland, Lars H

    2004-08-15

    Most antimicrobial peptides have an amphipathic, cationic structure, and an effect on the cytoplasmic membrane of susceptible bacteria has been postulated as the main mode of action. Other mechanisms have been reported, including inhibition of cellular functions by binding to DNA, RNA and proteins, and the inhibition of DNA and/or protein synthesis. Lactoferricin B (Lfcin B), a cationic peptide derived from bovine lactoferrin, exerts slow inhibitory and bactericidal activity and does not lyse susceptible bacteria, indicating a possible intracellular target. In the present study incorporation of radioactive precursors into DNA, RNA and proteins was used to demonstrate effects of Lfcin B on macromolecular synthesis in bacteria. In Escherichia coli UC 6782, Lfcin B induces an initial increase in protein and RNA synthesis and a decrease in DNA synthesis. After 10 min, the DNA-synthesis increases while protein and RNA-synthesis decreases significantly. In Bacillus subtilis, however, all synthesis of macromolecules is inhibited for at least 20 min. After 20 min RNA-synthesis increases. The results presented here show that Lfcin B at concentrations not sufficient to kill bacterial cells inhibits incorporation of radioactive precursors into macromolecules in both Gram-positive and Gram-negative bacteria.

  10. About Small Streams and Shiny Rocks: Macromolecular Crystal Growth in Microfluidics

    Science.gov (United States)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We are developing a novel technique with which we have grown diffraction quality protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. With this technology volumes smaller than achievable with any laboratory pipette can be dispensed with high accuracy. We have performed a feasibility study in which we crystallized several proteins with the aid of a LabChip device. The protein crystals are of excellent quality as shown by X-ray diffraction. The advantages of this new technology include improved accuracy of dispensing for small volumes, complete mixing of solution constituents without bubble formation, highly repeatable recipe and growth condition replication, and easy automation of the method. We have designed a first LabChip device specifically for protein crystallization in batch mode and can reliably dispense and mix from a range of solution constituents. We are currently testing this design. Upon completion additional crystallization techniques, such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility aboard the International Space Station.

  11. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting.

    Science.gov (United States)

    Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H

    2014-08-01

    In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection.

  12. A vibrating membrane bioreactor (VMBR): Macromolecular transmission-influence of extracellular polymeric substances

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2009-01-01

    The vibrating membrane bioreactor (VMBR) system facilitates the possibility of conducting a separation of macromolecules (BSA) from larger biological components (yeast cells) with a relatively high and stable macromolecular transmission at sub-critical flux. This is not possible to achieve...... for a static non-vibrating membrane module. A BSA transmission of 74% has been measured in the separation of 4g/L BSA from 8 g/L dry weight yeast cells in suspension at sub-critical flux (20L/(m(2) h)). However, this transmission is lower than the 85% BSA transmission measured for at pure 4g/L BSA solution....... This can be ascribed to the presence of extracellular polymeric substances (EPS) from the yeast cells. The initial fouling rate for constant sub-critical flux filtration of unwashed yeast cells is 3-4 times larger than for washed yeast cells (18(mbar/h)/5(mbar/h)). At sub-critical flux, an EPS transmission...

  13. Synthesis and Self-Assembly of Amphiphilic Triblock Terpolymers with Complex Macromolecular Architecture

    KAUST Repository

    Polymeropoulos, George; Zapsas, George; Hadjichristidis, Nikolaos; Avgeropoulos, Apostolos

    2015-01-01

    Two star triblock terpolymers (PS-b-P2VP-b-PEO)3 and one dendritic-like terpolymer [PS-b-P2VP-b-(PEO)2]3 of PS (polystyrene), P2VP (poly(2-vinylpyridine)), and PEO (poly(ethylene oxide)), never reported before, were synthesized by combining atom transfer radical and anionic polymerizations. The synthesis involves the transformation of the -Br groups of the previously reported Br-terminated 3-arm star diblock copolymers to one or two -OH groups, followed by anionic polymerization of ethylene oxide to afford the star or dendritic structure, respectively. The well-defined structure of the terpolymers was confirmed by static light scattering, size exclusion chromatography, and NMR spectroscopy. The self-assembly in solution and the morphology in bulk of the terpolymers, studied by dynamic light scattering and transmission electron microscopy, respectively, reveal new insights in the phase separation of these materials with complex macromolecular architecture. © 2015 American Chemical Society.

  14. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Morshed, Nader [University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Echols, Nathaniel, E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Adams, Paul D., E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley, CA 94720 (United States)

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  15. A technique for determining the deuterium/hydrogen contrast map in neutron macromolecular crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki; Fujiwara, Satoru

    2016-01-01

    A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.

  16. In Vitro and In Vivo Biocompatibility Evaluation of Polyallylamine and Macromolecular Heparin Conjugates Modified Alginate Microbeads.

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Steinkjer, Bjørg; Ryan, Liv; Larsson, Rolf; Tuch, Bernard Edward; Oberholzer, Jose; Rokstad, Anne Mari

    2017-09-15

    Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.

  17. The Effect of Attractive Interactions and Macromolecular Crowding on Crystallins Association.

    Directory of Open Access Journals (Sweden)

    Jiachen Wei

    Full Text Available In living systems proteins are typically found in crowded environments where their effective interactions strongly depend on the surrounding medium. Yet, their association and dissociation needs to be robustly controlled in order to enable biological function. Uncontrolled protein aggregation often causes disease. For instance, cataract is caused by the clustering of lens proteins, i.e., crystallins, resulting in enhanced light scattering and impaired vision or blindness. To investigate the molecular origins of cataract formation and to design efficient treatments, a better understanding of crystallin association in macromolecular crowded environment is needed. Here we present a theoretical study of simple coarse grained colloidal models to characterize the general features of how the association equilibrium of proteins depends on the magnitude of intermolecular attraction. By comparing the analytic results to the available experimental data on the osmotic pressure in crystallin solutions, we identify the effective parameters regimes applicable to crystallins. Moreover, the combination of two models allows us to predict that the number of binding sites on crystallin is small, i.e. one to three per protein, which is different from previous estimates. We further observe that the crowding factor is sensitive to the size asymmetry between the reactants and crowding agents, the shape of the protein clusters, and to small variations of intermolecular attraction. Our work may provide general guidelines on how to steer the protein interactions in order to control their association.

  18. FitEM2EM--tools for low resolution study of macromolecular assembly and dynamics.

    Directory of Open Access Journals (Sweden)

    Ziv Frankenstein

    Full Text Available Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top.

  19. Macromolecular crowding-assisted fabrication of liquid-crystalline imprinted polymers.

    Science.gov (United States)

    Zhang, Chen; Zhang, Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-04-01

    A macromolecular crowding-assisted liquid-crystalline molecularly imprinted monolith (LC-MIM) was prepared successfully for the first time. The imprinted stationary phase was synthesized with polymethyl methacrylate (PMMA) or polystyrene (PS) as the crowding agent, 4-cyanophenyl dicyclohexyl propylene (CPCE) as the liquid-crystal monomer, and hydroquinidine as the pseudo-template for the chiral separation of cinchona alkaloids in HPLC. A low level of cross-linker (26%) has been found to be sufficient to achieve molecular recognition on the crowding-assisted LC-MIM due to the physical cross-linking of mesogenic groups in place of chemical cross-linking, and baseline separation of quinidine and quinine could be achieved with good resolution (R(s) = 2.96), selectivity factor (α = 2.16), and column efficiency (N = 2650 plates/m). In contrast, the LC-MIM prepared without crowding agents displayed the smallest diastereoselectivity (α = 1.90), while the crowding-assisted MIM with high level of cross-linker (80%) obtained the greatest selectivity factor (α = 7.65), but the lowest column efficiency (N = 177 plates/m).

  20. Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments

    International Nuclear Information System (INIS)

    Cipriani, Florent; Felisaz, Franck; Lavault, Bernard; Brockhauser, Sandor; Ravelli, Raimond; Launer, Ludovic; Leonard, Gordon; Renier, Michel

    2007-01-01

    While routine Macromolecular x-ray (MX) crystallography has relied on well established techniques for some years all the synchrotrons around the world are improving the throughput of their MX beamlines. Third generation synchrotrons provide small intense beams that make data collection of 5-10 microns sized crystals possible. The EMBL/ESRF MX Group in Grenoble has developed a new generation of instruments to easily collect data on 10 μm size crystals in an automated environment. This work is part of the Grenoble automation program that enables FedEx like crystallography using fully automated data collection and web monitored experiments. Seven ESRF beamlines and the MRC BM14 ESRF/CRG beamline are currently equipped with these latest instruments. We describe here the main features of the MD2x diffractometer family and the SC3 sample changer robot. Although the SC3 was primarily designed to increase the throughput of MX beamlines, it has also been shown to be efficient in improving the quality of the data collected. Strategies in screening a large number of crystals, selecting the best, and collecting a full data set from several re-oriented micro-crystals can now be run with minimum time and effort. The MD2x and SC3 instruments are now commercialised by the company ACCEL GmbH

  1. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics.

    Science.gov (United States)

    Palermo, Vincenzo; Schwartz, Erik; Finlayson, Chris E; Liscio, Andrea; Otten, Matthijs B J; Trapani, Sara; Müllen, Klaus; Beljonne, David; Friend, Richard H; Nolte, Roeland J M; Rowan, Alan E; Samorì, Paolo

    2010-02-23

    The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine-tuning of their self-assembly properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre-programmed noncovalent forces. The control and fine-tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it possible to unravel the physical and chemical properties of this system across multiple length scales. The (opto)electronic properties of the new functional architectures have been explored by constructing prototypes of field-effect transistors and solar cells, thereby providing direct insight into the relationship between architecture and function.

  2. Rapid automated superposition of shapes and macromolecular models using spherical harmonics.

    Science.gov (United States)

    Konarev, Petr V; Petoukhov, Maxim V; Svergun, Dmitri I

    2016-06-01

    A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented ( SUPALM ). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models ( e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [ J. Appl. Cryst. (2001 ▸), 34 , 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB . The spherical harmonics algorithm is best suited for low-resolution shape models, e.g . those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.

  3. Synthesis and Self-Assembly of Amphiphilic Triblock Terpolymers with Complex Macromolecular Architecture

    KAUST Repository

    Polymeropoulos, George

    2015-11-25

    Two star triblock terpolymers (PS-b-P2VP-b-PEO)3 and one dendritic-like terpolymer [PS-b-P2VP-b-(PEO)2]3 of PS (polystyrene), P2VP (poly(2-vinylpyridine)), and PEO (poly(ethylene oxide)), never reported before, were synthesized by combining atom transfer radical and anionic polymerizations. The synthesis involves the transformation of the -Br groups of the previously reported Br-terminated 3-arm star diblock copolymers to one or two -OH groups, followed by anionic polymerization of ethylene oxide to afford the star or dendritic structure, respectively. The well-defined structure of the terpolymers was confirmed by static light scattering, size exclusion chromatography, and NMR spectroscopy. The self-assembly in solution and the morphology in bulk of the terpolymers, studied by dynamic light scattering and transmission electron microscopy, respectively, reveal new insights in the phase separation of these materials with complex macromolecular architecture. © 2015 American Chemical Society.

  4. A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF

    International Nuclear Information System (INIS)

    McCarthy, Andrew A.; Brockhauser, Sandor; Nurizzo, Didier; Theveneau, Pascal; Mairs, Trevor; Spruce, Darren; Guijarro, Matias; Lesourd, Marc; Ravelli, Raimond B. G.; McSweeney, Sean

    2009-01-01

    The improvement of the X-ray beam quality achieved on ID14-4 by the installation of new X-ray optical elements is described. ID14-4 at the ESRF is the first tunable undulator-based macromolecular crystallography beamline that can celebrate a decade of user service. During this time ID14-4 has not only been instrumental in the determination of the structures of biologically important molecules but has also contributed significantly to the development of various instruments, novel data collection schemes and pioneering radiation damage studies on biological samples. Here, the evolution of ID14-4 over the last decade is presented, and some of the major improvements that were carried out in order to maintain its status as one of the most productive macromolecular crystallography beamlines are highlighted. The experimental hutch has been upgraded to accommodate a high-precision diffractometer, a sample changer and a large CCD detector. More recently, the optical hutch has been refurbished in order to improve the X-ray beam quality on ID14-4 and to incorporate the most modern and robust optical elements used at other ESRF beamlines. These new optical elements will be described and their effect on beam stability discussed. These studies may be useful in the design, construction and maintenance of future X-ray beamlines for macromolecular crystallography and indeed other applications, such as those planned for the ESRF upgrade

  5. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    Science.gov (United States)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  6. Drug Facts

    Medline Plus

    Full Text Available ... Treatment and Recovery Resources? Prevention Help Children and Teens Stay Drug-Free Talking to Kids About Drugs: What to Say if You Used Drugs in the Past Drug Use ... Videos Information About Drugs Alcohol ...

  7. Drug Allergy

    Science.gov (United States)

    ... Loss of consciousness Other conditions resulting from drug allergy Less common drug allergy reactions occur days or ... you take the drug. Drugs commonly linked to allergies Although any drug can cause an allergic reaction, ...

  8. Macromolecular crystallographic results obtained using a 2048x2048 CCD detector at CHESS

    International Nuclear Information System (INIS)

    Thiel, D.J.; Ealick, S.E.; Tate, M.W.; Gruner, S.M.; Eikenberry, E.F.

    1996-01-01

    We present results of macromolecular crystallographic experiments performed at the Cornell High Energy Synchrotron Source (CHESS) with a new CCD-based detector. This detector, installed in January 1995, complements a 1024x1024 CCD detector that has been in continuous operation at CHESS since December 1993. The new detector is based on a 4-port, 2048x2048 pixel CCD that is directly coupled to a Gd 2 O 2 S:Tb phosphor by a 3:1 tapered fiber optic. The active area of the phosphor is a square 82 mm on an edge. The readout time is 7 seconds. In the standard mode of operation, the pixel size at the active area is 41 μm on the edge leading to the capability of resolving approximately 200 orders of diffraction across the detector face. The detector also operates in a 1024x1024 mode in which the pixel size is electronically increased by a factor of 4 in area resulting in smaller data files and faster detector readout but at the expense of spatial resolution. Most of the data that has been collected by this detector has been collected in this mode. Dozens of data sets have been collected by many experimenters using this detector at CHESS during the four month period from its installation until the start of the six-month down period of the storage ring. The capabilities of the detector will be illustrated with results from various crystallographic measurements including experiments in which the recorded diffraction patterns extend in resolution as far as 1 A. The results demonstrate that this detector is capable of collecting data of quality at least equal to that of imaging plates but, in many circumstances, with much greater beamline efficiency. copyright 1996 American Institute of Physics

  9. Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Adams, Paul D.; Moriarty, Nigel W.; Zwart, Peter; Read, Randy J.; Turk, Dusan; Hung, Li-Wei

    2007-01-01

    Heterogeneity in ensembles generated by independent model rebuilding principally reflects the limitations of the data and of the model-building process rather than the diversity of structures in the crystal. Automation of iterative model building, density modification and refinement in macromolecular crystallography has made it feasible to carry out this entire process multiple times. By using different random seeds in the process, a number of different models compatible with experimental data can be created. Sets of models were generated in this way using real data for ten protein structures from the Protein Data Bank and using synthetic data generated at various resolutions. Most of the heterogeneity among models produced in this way is in the side chains and loops on the protein surface. Possible interpretations of the variation among models created by repetitive rebuilding were investigated. Synthetic data were created in which a crystal structure was modelled as the average of a set of ‘perfect’ structures and the range of models obtained by rebuilding a single starting model was examined. The standard deviations of coordinates in models obtained by repetitive rebuilding at high resolution are small, while those obtained for the same synthetic crystal structure at low resolution are large, so that the diversity within a group of models cannot generally be a quantitative reflection of the actual structures in a crystal. Instead, the group of structures obtained by repetitive rebuilding reflects the precision of the models, and the standard deviation of coordinates of these structures is a lower bound estimate of the uncertainty in coordinates of the individual models

  10. a Study of the Concentration Dependence of Macromolecular Diffusion Using Photon Correlation Spectroscopy.

    Science.gov (United States)

    Marlowe, Robert Lloyd

    The dynamic light scattering technique of photon correlation spectroscopy has been used to investigate the dependence of the mutual diffusion coefficient of a macromolecular system upon concentration. The first part of the research was devoted to the design and construction of a single-clipping autocorrelator based on newly-developed integrated circuits. The resulting 128 channel instrument can perform real time autocorrelation for sample time intervals >(, )10 (mu)s, and batch processed autocorrelation for intervals down to 3 (mu)s. An improved design for a newer, all-digital autocorrelator is given. Homodyne light scattering experiments were then undertaken on monodisperse solutions of polystyrene spheres. The single-mode TEM(,oo) beam of an argon-ion laser ((lamda) = 5145 (ANGSTROM)) was used as the light source; all solutions were studied at room temperature. The scattering angle was varied from 30(DEGREES) to 110(DEGREES). Excellent agreement with the manufacturer's specification for the particle size was obtained from the photon correlation studies. Finally, aqueous solutions of the globular protein ovalbumin, ranging in concentration from 18.9 to 244.3 mg/ml, were illuminated under the same conditions of temperature and wavelength as before; the homodyne scattered light was detected at a fixed scattering angle of 30(DEGREES). The single-clipped photocount autocorrelation function was analyzed using the homodyne exponential integral method of Meneely et al. The resulting diffusion coefficients showed a general linear dependence upon concentration, as predicted by the generalized Stokes-Einstein equation. However, a clear peak in the data was evident at c (TURNEQ) 100 mg/ml, which could not be explained on the basis of a non -interacting particle theory. A semi-quantitative approach based on the Debye-Huckel theory of electrostatic interactions is suggested as the probable cause for the peak's rise, and an excluded volume effect for its decline.

  11. Novel use for polyvinylpyrrolidone as a macromolecular crowder for enhanced extracellular matrix deposition and cell proliferation.

    Science.gov (United States)

    Rashid, Rafi; Lim, Natalie Sheng Jie; Chee, Stella Min Ling; Png, Si Ning; Wohland, Thorsten; Raghunath, Michael

    2014-12-01

    Macromolecular crowding (MMC) is a biophysical effect that governs biochemical processes inside and outside of cells. Since standard cell culture media lack this effect, the physiological performance of differentiated and progenitor cells, including extracellular matrix (ECM) deposition, is impaired in vitro. To bring back physiological crowdedness to in vitro systems, we have previously introduced carbohydrate-based macromolecules to culture media and have achieved marked improvements with mixed MMC in terms of ECM deposition and differentiation of mesenchymal stem cells (MSCs). We show here that although this system is successful, it is limited, due to viscosity, to only 33% of the fractional volume occupancy (FVO) of full serum, which we calculated to have an FVO of approximately 54% v/v. We show here that full-serum FVO can be achieved using polyvinylpyrrolidone (PVP) 360 kDa. Under these conditions, ECM deposition in human fibroblasts and MSCs is on par, if not stronger than, with original MMC protocols using carbohydrates, but with a viscosity that is not significantly changed. In addition, we have found that the proliferation rate for bone marrow-derived MSCs and fibroblasts increases slightly in the presence of PVP360, similar to that observed with carbohydrate-based crowders. A palette of MMC compounds is now emerging that enables us to tune the crowdedness of culture media seamlessly from interstitial fluid (9% FVO), in which the majority of tissue cells might be based, to serum environments mimicking intravascular conditions. Despite identical FVO's, individual crowder size effects play a role and different cell types appear to have preferences in terms of FVO and the crowder that this is achieved with. However, in the quest of crowders that we have predicted to have a smoother regulatory approval path, PVP is a highly interesting compound, as it has been widely used in the medical and food industries and shows a novel promising use in cell culture and

  12. Improving 2D and 3D Skin In Vitro Models Using Macromolecular Crowding.

    Science.gov (United States)

    Benny, Paula; Badowski, Cedric; Lane, E Birgitte; Raghunath, Michael

    2016-08-22

    The glycoprotein family of collagens represents the main structural proteins in the human body, and are key components of biomaterials used in modern tissue engineering. A technical bottleneck is the deposition of collagen in vitro, as it is notoriously slow, resulting in sub-optimal formation of connective tissue and subsequent tissue cohesion, particularly in skin models. Here, we describe a method which involves the addition of differentially-sized sucrose co-polymers to skin cultures to generate macromolecular crowding (MMC), which results in a dramatic enhancement of collagen deposition. Particularly, dermal fibroblasts deposited a significant amount of collagen I/IV/VII and fibronectin under MMC in comparison to controls. The protocol also describes a method to decellularize crowded cell layers, exposing significant amounts of extracellular matrix (ECM) which were retained on the culture surface as evidenced by immunocytochemistry. Total matrix mass and distribution pattern was studied using interference reflection microscopy. Interestingly, fibroblasts, keratinocytes and co-cultures produced cell-derived matrices (CDM) of varying composition and morphology. CDM could be used as "bio-scaffolds" for secondary cell seeding, where the current use of coatings or scaffolds, typically from xenogenic animal sources, can be avoided, thus moving towards more clinically relevant applications. In addition, this protocol describes the application of MMC during the submerged phase of a 3D-organotypic skin co-culture model which was sufficient to enhance ECM deposition in the dermo-epidermal junction (DEJ), in particular, collagen VII, the major component of anchoring fibrils. Electron microscopy confirmed the presence of anchoring fibrils in cultures developed with MMC, as compared to controls. This is significant as anchoring fibrils tether the dermis to the epidermis, hence, having a pre-formed mature DEJ may benefit skin graft recipients in terms of graft stability and

  13. Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.

    Science.gov (United States)

    Shimizu, Nobutaka; Shimizu, Tetsuya; Baba, Seiki; Hasegawa, Kazuya; Yamamoto, Masaki; Kumasaka, Takashi

    2013-11-01

    Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

  14. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    International Nuclear Information System (INIS)

    Stimson, Lorna M.

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a single dendrimer molecule in the gas phase at the atomistic level, semi-atomistic molecular dynamics of a single molecule in liquid crystalline solvents and a coarse-grained molecular dynamics study of the dendrimer in the bulk. The coarse-grained model has been developed and parameterized using the results of the atomistic and semi-atomistic work. The single molecule studies showed that the liquid crystalline dendrimer was able to change its structure by conformational changes in the flexible chains that link the mesogenic groups to the core. Structural change was seen under the application of a mean field ordering potential in the gas phase, and in the presence of liquid crystalline solvents. No liquid crystalline phases were observed for the bulk phase studies of the coarse-grained model. However, when the length of the mesogenic units was increased there was some evidence for microphase separation in these systems. (author)

  15. Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures.

    Science.gov (United States)

    Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter; Sali, Andrej

    2017-12-05

    Modeling of macromolecular structures involves structural sampling guided by a scoring function, resulting in an ensemble of good-scoring models. By necessity, the sampling is often stochastic, and must be exhaustive at a precision sufficient for accurate modeling and assessment of model uncertainty. Therefore, the very first step in analyzing the ensemble is an estimation of the highest precision at which the sampling is exhaustive. Here, we present an objective and automated method for this task. As a proxy for sampling exhaustiveness, we evaluate whether two independently and stochastically generated sets of models are sufficiently similar. The protocol includes testing 1) convergence of the model score, 2) whether model scores for the two samples were drawn from the same parent distribution, 3) whether each structural cluster includes models from each sample proportionally to its size, and 4) whether there is sufficient structural similarity between the two model samples in each cluster. The evaluation also provides the sampling precision, defined as the smallest clustering threshold that satisfies the third, most stringent test. We validate the protocol with the aid of enumerated good-scoring models for five illustrative cases of binary protein complexes. Passing the proposed four tests is necessary, but not sufficient for thorough sampling. The protocol is general in nature and can be applied to the stochastic sampling of any set of models, not just structural models. In addition, the tests can be used to stop stochastic sampling as soon as exhaustiveness at desired precision is reached, thereby improving sampling efficiency; they may also help in selecting a model representation that is sufficiently detailed to be informative, yet also sufficiently coarse for sampling to be exhaustive. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. The use of workflows in the design and implementation of complex experiments in macromolecular crystallography

    International Nuclear Information System (INIS)

    Brockhauser, Sandor; Svensson, Olof; Bowler, Matthew W.; Nanao, Max; Gordon, Elspeth; Leal, Ricardo M. F.; Popov, Alexander; Gerring, Matthew; McCarthy, Andrew A.; Gotz, Andy

    2012-01-01

    A powerful and easy-to-use workflow environment has been developed at the ESRF for combining experiment control with online data analysis on synchrotron beamlines. This tool provides the possibility of automating complex experiments without the need for expertise in instrumentation control and programming, but rather by accessing defined beamline services. The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE

  17. MolProbity: all-atom structure validation for macromolecular crystallography

    International Nuclear Information System (INIS)

    Chen, Vincent B.; Arendall, W. Bryan III; Headd, Jeffrey J.; Keedy, Daniel A.; Immormino, Robert M.; Kapral, Gary J.; Murray, Laura W.; Richardson, Jane S.; Richardson, David C.

    2010-01-01

    MolProbity structure validation will diagnose most local errors in macromolecular crystal structures and help to guide their correction. MolProbity is a structure-validation web service that provides broad-spectrum solidly based evaluation of model quality at both the global and local levels for both proteins and nucleic acids. It relies heavily on the power and sensitivity provided by optimized hydrogen placement and all-atom contact analysis, complemented by updated versions of covalent-geometry and torsion-angle criteria. Some of the local corrections can be performed automatically in MolProbity and all of the diagnostics are presented in chart and graphical forms that help guide manual rebuilding. X-ray crystallography provides a wealth of biologically important molecular data in the form of atomic three-dimensional structures of proteins, nucleic acids and increasingly large complexes in multiple forms and states. Advances in automation, in everything from crystallization to data collection to phasing to model building to refinement, have made solving a structure using crystallography easier than ever. However, despite these improvements, local errors that can affect biological interpretation are widespread at low resolution and even high-resolution structures nearly all contain at least a few local errors such as Ramachandran outliers, flipped branched protein side chains and incorrect sugar puckers. It is critical both for the crystallographer and for the end user that there are easy and reliable methods to diagnose and correct these sorts of errors in structures. MolProbity is the authors’ contribution to helping solve this problem and this article reviews its general capabilities, reports on recent enhancements and usage, and presents evidence that the resulting improvements are now beneficially affecting the global database

  18. Prospects for simulating macromolecular surfactant chemistry at the ocean–atmosphere boundary

    International Nuclear Information System (INIS)

    Elliott, S; Burrows, S M; Liu, X; Deal, C; Long, M; Ogunro, O; Wingenter, O; Russell, L M

    2014-01-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water–air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea–air interface into aerosol–cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification. (papers)

  19. Phase-Separated Liposomes Enhance the Efficiency of Macromolecular Delivery to the Cellular Cytoplasm.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Ashby, Grant; Nagib, Fatema; Mendicino, Morgan; Zhao, Chi; Gadok, Avinash K; Stachowiak, Jeanne C

    2017-10-01

    From viruses to organelles, fusion of biological membranes is used by diverse biological systems to deliver macromolecules across membrane barriers. Membrane fusion is also a potentially efficient mechanism for the delivery of macromolecular therapeutics to the cellular cytoplasm. However, a key shortcoming of existing fusogenic liposomal systems is that they are inefficient, requiring a high concentration of fusion-promoting lipids in order to cross cellular membrane barriers. Toward addressing this limitation, our experiments explore the extent to which membrane fusion can be amplified by using the process of lipid membrane phase separation to concentrate fusion-promoting lipids within distinct regions of the membrane surface. We used confocal fluorescence microscopy to investigate the integration of fusion-promoting lipids into a ternary lipid membrane system that separated into liquid-ordered and liquid-disordered membrane phases. Additionally, we quantified the impact of membrane phase separation on the efficiency with which liposomes transferred lipids and encapsulated macromolecules to cells, using a combination of confocal fluorescence imaging and flow cytometry. Here we report that concentrating fusion-promoting lipids within phase-separated lipid domains on the surfaces of liposomes significantly increases the efficiency of liposome fusion with model membranes and cells. In particular, membrane phase separation enhanced the delivery of lipids and model macromolecules to the cytoplasm of tumor cells by at least 4-fold in comparison to homogenous liposomes. Our findings demonstrate that phase separation can enhance membrane fusion by locally concentrating fusion-promoting lipids on the surface of liposomes. This work represents the first application of lipid membrane phase separation in the design of biomaterials-based delivery systems. Additionally, these results lay the ground work for developing fusogenic liposomes that are triggered by physical and

  20. Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent.

    Science.gov (United States)

    Jenjob, Ratchapol; Kun, Na; Ghee, Jung Yeon; Shen, Zheyu; Wu, Xiaoxia; Cho, Steve K; Lee, Don Haeng; Yang, Su-Geun

    2016-04-01

    In this study, we prepared macromolecular MR T1 contrast agent: pullulan-conjugated Gd diethylene triamine pentaacetate (Gd-DTPA-Pullulan) and estimated residual free Gd(3+), chelation stability in competition with metal ions, plasma and tissue pharmacokinetics, and abdominal MR contrast on rats. Residual free Gd(3+) in Gd-DTPA-Pullulan was measured using colorimetric spectroscopy. The transmetalation of Gd(3+) incubated with Ca(2+) was performed by using a dialysis membrane (MWCO 100-500 Da) and investigated by ICP-OES. The plasma concentration profiles of Gd-DTPA-Pullulan were estimated after intravenous injection at a dose 0.1 mmol/kg of Gd. The coronal-plane abdominal images of normal rats were observed by MR imaging. The content of free Gd(3+), the toxic residual form, was less than 0.01%. Chelation stability of Gd-DTPA-Pullulan was estimated, and only 0.2% and 0.00045% of Gd(3+) were released from Gd-DTPA-Pullulan after 2h incubation with Ca(2+) and Fe(2+), respectively. Gd-DTPA-Pullulan displayed the extended plasma half-life (t1/2,α=0.43 h, t1/2,β=2.32 h), much longer than 0.11h and 0.79 h of Gd-EOB-DTPA. Abdominal MR imaging showed Gd-DTPA-Pullulan maintained initial MR contrast for 30 min. The extended plasma half-life of Gd-DTPA-Pullulan probably allows the prolonged MR acquisition time in clinic with enhanced MR contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Exploring the molecular-level architecture of the active compounds in liquisolid drug delivery systems based on mesoporous silica particles: old tricks for new challenges

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Albrecht, W.; Lehmann, F.; Geier, J.; Czernek, Jiří; Urbanová, Martina; Kobera, Libor; Jegorov, A.

    2017-01-01

    Roč. 14, č. 6 (2017), s. 2070-2078 ISSN 1543-8384 R&D Projects: GA ČR(CZ) GA16-04109S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : drug-delivery * liquisolid systems * organogels Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.440, year: 2016

  2. Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Cyran, Clemens C.; Sennino, Barbara; Fu, Yanjun; Rogut, Victor; Shames, David M.; Chaopathomkul, Bundit; Wendland, Michael F.; McDonald, Donald M.; Brasch, Robert C.; Raatschen, Hans-Juergen

    2012-01-01

    Purpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area–density measurements of vascular endothelial growth factor (VEGF) in tumors. Methods and material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n = 5), and MDA-MB-435 (n = 8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35. Quantitative estimates of tumor microvascular permeability (K PS ; μl/min × 100 cm 3 ), obtained using a two-compartment kinetic model, were correlated with immunohistochemical measurements of VEGF in each tumor. Results: Mean K PS was 2.4 times greater in MDA-MB-231 tumors (K PS = 58 ± 30.9 μl/min × 100 cm 3 ) than in MDA-MB-435 tumors (K PS = 24 ± 8.4 μl/min × 100 cm 3 ) (p < 0.05). Correspondingly, the area–density of VEGF in MDA-MB-231 tumors was 2.6 times greater (27.3 ± 2.2%, p < 0.05) than in MDA-MB-435 cancers (10.5 ± 0.5%, p < 0.05). Considering all tumors without regard to cell type, a significant positive correlation (r = 0.67, p < 0.05) was observed between MRI-estimated endothelial permeability and VEGF immunoreactivity. Conclusion: Correlation of MRI assays of endothelial permeability to a MMCM and VEGF immunoreactivity of tumors support the hypothesis that VEGF is a major contributor to increased macromolecular permeability in cancers. When applied clinically, the MMCM-enhanced MRI approach could help to optimize the appropriate application of VEGF-inhibiting therapy on an individual patient basis.

  3. Nitrogen limitation in natural populations of cyanobacteria (Spirulina and Oscillatoria spp.) and its effect on macromolecular synthesis

    International Nuclear Information System (INIS)

    van Rijn, J.; Shilo, M.

    1986-01-01

    Natural populations of the cyanobacteria Spirulina species and Oscillatoria species obtained from Israeli fish ponds were limited in growth by nitrogen availability in summer. Physiological indicators for nitrogen limitation, such as phycocyanin, chlorophyll a, and carbohydrate content, did not show clear evidence for nitrogen limited growth, since these organisms are capable of vertical migration from and to the nitrogen-rich bottom. By means of 14 C labeling of the cells under simulated pond conditions followed by cell fractionation into macromolecular compounds, it was found that carbohydrates synthesized at the lighted surface were partially utilized for dark protein synthesis at the bottom of these ponds

  4. Glycogen-graft-poly(2-alkyl-2-oxazolines) - the new versatile biopolymer-based thermoresponsive macromolecular toolbox

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, Aneta; Filippov, Sergey K.; Bogomolova, Anna; Turner, S.; Sedláček, Ondřej; Matushkin, Nikolai; Černochová, Zulfiya; Štěpánek, Petr; Hrubý, Martin

    2014-01-01

    Roč. 4, č. 106 (2014), s. 61580-61588 ISSN 2046-2069 R&D Projects: GA ČR GA13-08336S; GA MŠk(CZ) LH14079 Grant - others:AV ČR(CZ) M200501201; AV ČR(CZ) ASCR/CONICET 2012CZ006 Program:M Institutional support: RVO:61389013 Keywords : glycogen * poly(2-alkyl-2-oxazoline) * hybrid copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.840, year: 2014

  5. Structure analysis of molecular systems in the Institute of Macromolecular Chemistry of the Czech Academy of Sciences

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2010-01-01

    Roč. 17, 2a (2010), k32-k34 ISSN 1211-5894. [Struktura 2010. Soláň, 14.06.2010-17.06.2010] R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : Academy of Sciences of the Czech Republic * X-ray structure analysis * crystallography Subject RIV: CD - Macromolecular Chemistry http:// xray .cz/ms/bul2010-2a/hasek.pdf

  6. Drug Safety

    Science.gov (United States)

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  7. Drug Abuse

    Science.gov (United States)

    ... Cocaine Heroin Inhalants Marijuana Prescription drugs, including opioids Drug abuse also plays a role in many major social problems, such as drugged driving, violence, stress, and child abuse. Drug abuse can lead to ...

  8. Drug Facts

    Medline Plus

    Full Text Available ... Use and Unborn Children Drug Use and Your Health Other Effects on the Body Drug Use Hurts Brains Drug Use and Mental Health Problems Often Happen Together The Link Between Drug ...

  9. Drug Facts

    Medline Plus

    Full Text Available ... Drug Use and Kids Drug Use and Unborn Children Drug Use and Your Health Other Effects on ... Someone Find Treatment and Recovery Resources? Prevention Help Children and Teens Stay Drug-Free Talking to Kids ...

  10. Club Drugs

    Science.gov (United States)

    ... uses. Other uses of these drugs are abuse. Club drugs are also sometimes used as "date rape" drugs, to make someone unable to say no to or fight back against sexual assault. Abusing these drugs can ...

  11. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization.

    Science.gov (United States)

    Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten

    2015-04-30

    Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting

  12. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization

    Science.gov (United States)

    Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten

    2015-05-01

    Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting

  13. Leaching of organic acids from macromolecular organic matter by non-supercritical CO2

    Science.gov (United States)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-04-01

    The storage of CO2 in underground reservoirs is discussed controversly in the scientific literature. The worldwide search for suitable storage formations also considers coal-bearing strata. CO2 is already injected into seams for enhanced recovery of coal bed methane. However, the effects of increased CO2 concentration, especially on organic matter rich formations, are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Huge amounts of low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced by the acidic porewater. Recent investigations outlined the importance of LMWOAs as a feedstock for microbial life in the subsurface [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effect of high concentrations of dissolved CO2 on the release of LMWOAs from coal we developed an inexpensive high-pressure high temperature system that allows manipulating the partial pressure of dissolved gases at pressures and temperatures up to 60 MPa and 120° C, respectively. In a reservoir vessel, gases are added to saturate the extraction medium to the desired level. Inside the extraction vessel hangs a flexible and inert PVDF sleeve (polyvinylidene fluoride, almost impermeable for gases), holding the sample and separating it from the pressure fluid. The flexibility of the sleeve allows for subsampling without loss of pressure. Coal samples from the DEBITS-1 well, Waikato Basin, NZ (R0 = 0.29, TOC = 30%). were extracted at 90° C and 5 MPa, either with pure or CO2-saturated water. Subsamples were taken at different time points during the extraction. The extracted LMWOAs such as formate, acetate and oxalate were analysed by ion chromatography. Yields of LMWOAs were higher with pure water than with CO2

  14. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  15. Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Jenjob, Ratchapol [Department of New Drug Development, School of Medicine, Inha University, 2F A-dong, Jeongseok Bldg., Sinheung-dong 3-ga, Jung-gu, Incheon 400-712 (Korea, Republic of); Kun, Na [Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743 (Korea, Republic of); Ghee, Jung Yeon [Utah-Inha DDS and Advanced Therapeutics, B-403 Meet-You-All Tower, SongdoTechnopark, 7–50, Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Shen, Zheyu; Wu, Xiaoxia [Division of Functional Materials and Nano-Devices, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, 519 Zhuangshi Street, Zhenhai District, Ningbo, Zhejiang 315201 (China); Cho, Steve K., E-mail: scho@gist.ac.kr [Division of Liberal Arts and Science, GIST College, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Don Haeng [Utah-Inha DDS and Advanced Therapeutics, B-403 Meet-You-All Tower, SongdoTechnopark, 7–50, Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Department of Internal Medicine, School of Medicine, Inha University Hospital, Incheon 420-751 (Korea, Republic of); Yang, Su-Geun, E-mail: Sugeun.Yang@Inha.ac.kr [Department of New Drug Development, School of Medicine, Inha University, 2F A-dong, Jeongseok Bldg., Sinheung-dong 3-ga, Jung-gu, Incheon 400-712 (Korea, Republic of)

    2016-04-01

    In this study, we prepared macromolecular MR T1 contrast agent: pullulan-conjugated Gd diethylene triamine pentaacetate (Gd-DTPA-Pullulan) and estimated residual free Gd{sup 3+}, chelation stability in competition with metal ions, plasma and tissue pharmacokinetics, and abdominal MR contrast on rats. Residual free Gd{sup 3+} in Gd-DTPA-Pullulan was measured using colorimetric spectroscopy. The transmetalation of Gd{sup 3+} incubated with Ca{sup 2+} was performed by using a dialysis membrane (MWCO 100–500 Da) and investigated by ICP-OES. The plasma concentration profiles of Gd-DTPA-Pullulan were estimated after intravenous injection at a dose 0.1 mmol/kg of Gd. The coronal-plane abdominal images of normal rats were observed by MR imaging. The content of free Gd{sup 3+}, the toxic residual form, was less than 0.01%. Chelation stability of Gd-DTPA-Pullulan was estimated, and only 0.2% and 0.00045% of Gd{sup 3+} were released from Gd-DTPA-Pullulan after 2 h incubation with Ca{sup 2+} and Fe{sup 2+}, respectively. Gd-DTPA-Pullulan displayed the extended plasma half-life (t{sub 1/2,α} = 0.43 h, t{sub 1/2,β} = 2.32 h), much longer than 0.11 h and 0.79 h of Gd-EOB-DTPA. Abdominal MR imaging showed Gd-DTPA-Pullulan maintained initial MR contrast for 30 min. The extended plasma half-life of Gd-DTPA-Pullulan probably allows the prolonged MR acquisition time in clinic with enhanced MR contrast. - Highlights: • Macromolecule (pullulan) conjugated Gd contrast agent (Gd-DTPA-Pullulan) showed the extended plasma half-life (t{sub 1/2,α} = 0.43 h, t{sub 1/2,β} = 2.32 h) in comparison with Gd-EOB-DTPA • Gd-DTPA-pullulan T1 contrast agent exhibited strong chelation stability against Gd. • The extended blood circulation attributed the enhanced and prolonged MR contrast on abdominal region of rats. • The extended blood circulation may provide prolonged MR acquisition time window in clinics.

  16. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    International Nuclear Information System (INIS)

    Laurence, Ted Alfred

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  17. Mineral Grains, Dimples, and Hot Volcanic Organic Streams: Dynamic Geological Backstage of Macromolecular Evolution.

    Science.gov (United States)

    Skoblikow, Nikolai E; Zimin, Andrei A

    2018-04-01

    , polycondensation, and formation of proto-cellular structures) are combined within a common dynamic geological process. We suppose macromolecular evolution had an extremely fast, "flash" start: the period from volcanic eruption to formation of lithocyte "populations" took not million years but just several tens of minutes. The scenario proposed can be verified experimentally with a three-module setup working with principles of dynamic (flow) chemistry in its core element.

  18. Polymer conjugates of acridine-type anticancer drugs with pH-controlled activation

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Ondřej; Hrubý, Martin; Studenovský, Martin; Větvička, D.; Svoboda, Jan; Kaňková, Dana; Kovář, J.; Ulbrich, Karel

    2012-01-01

    Roč. 20, č. 13 (2012), s. 4056-4063 ISSN 0968-0896 R&D Projects: GA ČR GPP207/10/P054; GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : drug delivery systems * cancer therapy * controlled release Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.903, year: 2012

  19. Biodegradable micellar HPMA-based polymer-drug conjugates with betulinic acid for passive tumor targeting

    Czech Academy of Sciences Publication Activity Database

    Lomkova, Ekaterina A.; Chytil, Petr; Janoušková, Olga; Mueller, T.; Lucas, H.; Filippov, Sergey K.; Trhlíková, Olga; Aleshunin, P. A.; Skorik, Y. A.; Ulbrich, Karel; Etrych, Tomáš

    2016-01-01

    Roč. 17, č. 11 (2016), s. 3493-3507 ISSN 1525-7797 R&D Projects: GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA ČR(CZ) GA15-02986S Institutional support: RVO:61389013 Keywords : N-(2-hydroxypropyl)methacrylamide (HPMA) * polymeric micelles * drug delivery Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.246, year: 2016

  20. Novel "soft" biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system

    Czech Academy of Sciences Publication Activity Database

    Jäger, Alessandro; Gromadzki, Daniel; Jäger, Eliezer; Giacomelli, F. C.; Kozlowska, A.; Kobera, Libor; Brus, Jiří; Říhová, Blanka; El Fray, M.; Ulbrich, Karel; Štěpánek, Petr

    2012-01-01

    Roč. 8, č. 16 (2012), s. 4343-4354 ISSN 1744-683X R&D Projects: GA AV ČR IAAX00500803; GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : biodegradable nanoparticles * light scattering from polymer nanoparticles * drug release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.909, year: 2012

  1. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Kovář, Lubomír; Strohalm, Jiří; Chytil, Petr; Říhová, Blanka; Ulbrich, Karel

    2011-01-01

    Roč. 154, č. 3 (2011), s. 241-248 ISSN 0168-3659 R&D Projects: GA AV ČR IAA400500806; GA AV ČR IAAX00500803; GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : star polymer * HPMA copolymers * drug release Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.732, year: 2011

  2. Iterative photoinduced chain functionalization as a generic platform for advanced polymeric drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Al Samad, A.; Bethry, A.; Janoušková, Olga; Ciccione, J.; Wenk, C.; Coll, J.-L.; Subra, G.; Etrych, Tomáš; El Omar, F.; Bakkour, Y.; Coudane, J.; Nottelet, B.

    2018-01-01

    Roč. 39, č. 3 (2018), s. 1-5, č. článku 1700502. ISSN 1022-1336 R&D Projects: GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 Keywords : drug delivery systems * functionalization of polymers * photochemistry Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.265, year: 2016

  3. Polymer-drug conjugates: origins, progress to date and future directions.

    Science.gov (United States)

    Kopeček, Jindřich

    2013-01-01

    This overview focuses on bioconjugates of water-soluble polymers with low molecular weight drugs and proteins. After a short discussion of the origins of the field, the state-of-the-art is reviewed. Then research directions needed for the acceleration of the translation of nanomedicines into the clinic are outlined. Two most important directions, synthesis of backbone degradable polymer carriers and drug-free macromolecular therapeutics, a new paradigm in drug delivery, are discussed in detail. Finally, the future perspectives of the field are briefly discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point.

    Science.gov (United States)

    Rodrigues, Tiago

    2017-11-15

    Natural products (NPs) present a privileged source of inspiration for chemical probe and drug design. Despite the biological pre-validation of the underlying molecular architectures and their relevance in drug discovery, the poor accessibility to NPs, complexity of the synthetic routes and scarce knowledge of their macromolecular counterparts in phenotypic screens still hinder their broader exploration. Cheminformatics algorithms now provide a powerful means of circumventing the abovementioned challenges and unlocking the full potential of NPs in a drug discovery context. Herein, I discuss recent advances in the computer-assisted design of NP mimics and how artificial intelligence may accelerate future NP-inspired molecular medicine.

  5. Identification of transcriptional macromolecular associations in human bone using browser based in silico analysis in a giant correlation matrix.

    Science.gov (United States)

    Reppe, Sjur; Sachse, Daniel; Olstad, Ole K; Gautvik, Vigdis T; Sanderson, Paul; Datta, Harish K; Berg, Jens P; Gautvik, Kaare M

    2013-03-01

    Intracellular signaling is critically dependent on gene regulatory networks comprising physical molecular interactions. Presently, there is a lack of comprehensive databases for most human tissue types to verify such macromolecular interactions. We present a user friendly browser which helps to identify functional macromolecular interactions in human bone as significant correlations at the transcriptional level. The molecular skeletal phenotype has been characterized by transcriptome analysis of iliac crest bone biopsies from 84 postmenopausal women through quantifications of ~23,000 mRNA species. When the signal levels were inter-correlated, an array containing >260 million correlations was generated, thus recognizing the human bone interactome at the RNA level. The matrix correlation and p values were made easily accessible by a freely available online browser. We show that significant correlations within the giant matrix are reproduced in a replica set of 13 male vertebral biopsies. The identified correlations differ somewhat from transcriptional interactions identified in cell culture experiments and transgenic mice, thus demonstrating that care should be taken in extrapolating such results to the in vivo situation in human bone. The current giant matrix and web browser are a valuable tool for easy access to the human bone transcriptome and molecular interactions represented as significant correlations at the RNA-level. The browser and matrix should be a valuable hypothesis generating tool for identification of regulatory mechanisms and serve as a library of transcript relationships in human bone, a relatively inaccessible tissue. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Implementation of fast macromolecular proton fraction mapping on 1.5 and 3 Tesla clinical MRI scanners: preliminary experience

    Science.gov (United States)

    Yarnykh, V.; Korostyshevskaya, A.

    2017-08-01

    Macromolecular proton fraction (MPF) is a biophysical parameter describing the amount of macromolecular protons involved into magnetization exchange with water protons in tissues. MPF represents a significant interest as a magnetic resonance imaging (MRI) biomarker of myelin for clinical applications. A recent fast MPF mapping method enabled clinical translation of MPF measurements due to time-efficient acquisition based on the single-point constrained fit algorithm. However, previous MPF mapping applications utilized only 3 Tesla MRI scanners and modified pulse sequences, which are not commonly available. This study aimed to test the feasibility of MPF mapping implementation on a 1.5 Tesla clinical scanner using standard manufacturer’s sequences and compare the performance of this method between 1.5 and 3 Tesla scanners. MPF mapping was implemented on 1.5 and 3 Tesla MRI units of one manufacturer with either optimized custom-written or standard product pulse sequences. Whole-brain three-dimensional MPF maps obtained from a single volunteer were compared between field strengths and implementation options. MPF maps demonstrated similar quality at both field strengths. MPF values in segmented brain tissues and specific anatomic regions appeared in close agreement. This experiment demonstrates the feasibility of fast MPF mapping using standard sequences on 1.5 T and 3 T clinical scanners.

  7. Evaluation of macromolecular electron-density map quality using the correlation of local r.m.s. density

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    The correlation of local r.m.s. density is shown to be a good measure of the presence of distinct solvent and macromolecule regions in macromolecular electron-density maps. It has recently been shown that the standard deviation of local r.m.s. electron density is a good indicator of the presence of distinct regions of solvent and protein in macromolecular electron-density maps [Terwilliger & Berendzen (1999 ▶). Acta Cryst. D55, 501–505]. Here, it is demonstrated that a complementary measure, the correlation of local r.m.s. density in adjacent regions on the unit cell, is also a good measure of the presence of distinct solvent and protein regions. The correlation of local r.m.s. density is essentially a measure of how contiguous the solvent (and protein) regions are in the electron-density map. This statistic can be calculated in real space or in reciprocal space and has potential uses in evaluation of heavy-atom solutions in the MIR and MAD methods as well as for evaluation of trial phase sets in ab initio phasing procedures

  8. SASSIE: A program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints

    Science.gov (United States)

    Curtis, Joseph E.; Raghunandan, Sindhu; Nanda, Hirsh; Krueger, Susan

    2012-02-01

    A program to construct ensembles of biomolecular structures that are consistent with experimental scattering data are described. Specifically, we generate an ensemble of biomolecular structures by varying sets of backbone dihedral angles that are then filtered using experimentally determined restraints to rapidly determine structures that have scattering profiles that are consistent with scattering data. We discuss an application of these tools to predict a set of structures for the HIV-1 Gag protein, an intrinsically disordered protein, that are consistent with small-angle neutron scattering experimental data. We have assembled these algorithms into a program called SASSIE for structure generation, visualization, and analysis of intrinsically disordered proteins and other macromolecular ensembles using neutron and X-ray scattering restraints. Program summaryProgram title: SASSIE Catalogue identifier: AEKL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 3 991 624 No. of bytes in distributed program, including test data, etc.: 826 Distribution format: tar.gz Programming language: Python, C/C++, Fortran Computer: PC/Mac Operating system: 32- and 64-bit Linux (Ubuntu 10.04, Centos 5.6) and Mac OS X (10.6.6) RAM: 1 GB Classification: 3 External routines: Python 2.6.5, numpy 1.4.0, swig 1.3.40, scipy 0.8.0, Gnuplot-py-1.8, Tcl 8.5, Tk 8.5, Mac installation requires aquaterm 1.0 (or X window system) and Xcode 3 development tools. Nature of problem: Open source software to generate structures of disordered biological molecules that subsequently allow for the comparison of computational and experimental results is limiting the use of scattering resources. Solution method: Starting with an all atom model of a protein, for example, users can input

  9. Liberation of microbial substrates from macromolecular organic matter by non-supercritical CO2

    Science.gov (United States)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-12-01

    The worldwide search for suitable underground storage formations for CO2 also considers coal-bearing strata. CO2 is already injected into coal seams for enhanced recovery of coal bed methane. However, the geochemical and microbiological effects of increased CO2 concentrations on organic matter rich formations are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced under acidic conditions. Recent investigations outlined the importance of LMWOAs as a feedstock for subsurface microbial life [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effects of highly CO2-saturated waters on the release of LMWOAs from coal, we developed an inexpensive high-pressure-high-temperature system that allows manipulating the concentration of dissolved gases up to 60 MPa and 120°C, respectively. The sample is placed in a flexible, gas-tight and inert PVDF sleeve, separating it from the pressure fluid and allowing for subsampling without loss of pressure. Lignite samples from the DEBITS-1 well, Waikato Basin, NZ and the Welzow-Süd open-cast mine, Niederlausitz, Germany, were extracted at 90° C and 5 MPa, with either pure water, CO2-saturated water, CO2/NO2 or CO2/SO2-saturated water. Subsamples were taken at different time points during the 72 hrs. long extraction. Extraction of LMWOAs from coal samples with our pressurised system resulted in yields that were up to four times higher than those reported for Soxhlet extraction [2]. These higher yields may be explained by the fact that during Soxhlet extraction the sample only gets into contact with freshly distilled water, whereas in our system the extraction fluid is circulated, resulting in

  10. HPMA copolymer conjugates with reduced anti-CD20 antibody for cell-specific drug targeting. I. Synthesis and in vitro evaluation of binding efficacy and cytostatic activity

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Strohalm, Jiří; Kovář, Lubomír; Kabešová, Martina; Říhová, Blanka; Ulbrich, Karel

    2009-01-01

    Roč. 140, č. 1 (2009), s. 18-26 ISSN 0168-3659 R&D Projects: GA MŠk 1M0505; GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : HPMA copolymers * drug delivery systems * doxorubicin * monoclonal anti-CD20 antibody * drug targeting Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.949, year: 2009

  11. Structural changes on polymeric nanoparticles induced by hydrophobic drug entrapment

    Czech Academy of Sciences Publication Activity Database

    Jäger, Alessandro; Jäger, Eliezer; Giacomelli, F. C.; Nallet, F.; Steinhart, Miloš; Putaux, J.-L.; Konefal, Rafal; Spěváček, Jiří; Ulbrich, Karel; Štěpánek, Petr

    2018-01-01

    Roč. 538, 5 February (2018), s. 238-249 ISSN 0927-7757 R&D Projects: GA ČR(CZ) GA17-09998S; GA ČR(CZ) GA15-13853S Grant - others:AV ČR(CZ) MSM200501606 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:61389013 Keywords : polymer nanoparticles * drug delivery * paclitaxel Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.714, year: 2016

  12. From molecular structure to macromolecular organization : keys to design supramolecular biomaterials

    NARCIS (Netherlands)

    Hutin, M.C.; Burakowska-Meise, E.A.; Appel, W.P.J.; Dankers, P.Y.W.; Meijer, E.W.

    2013-01-01

    In the past decade, significant progress has been made in the field of biomaterials, for potential applications in tissue engineering or drug delivery. We have recently developed a new class of thermoplastic elastomers, based on ureidopyrimidinone (UPy) quadruple hydrogen bonding motifs. These

  13. Drug allergies

    Science.gov (United States)

    Allergic reaction - drug (medication); Drug hypersensitivity; Medication hypersensitivity ... A drug allergy involves an immune response in the body that produces an allergic reaction to a medicine. The first time ...

  14. Study Drugs

    Science.gov (United States)

    ... to quit, they may have withdrawal symptoms like depression, thoughts of suicide, intense drug cravings, sleep problems, and fatigue. The health risks aren't the only downside to study drugs. Students caught with illegal prescription drugs may get suspended ...

  15. Drug Facts

    Medline Plus

    Full Text Available ... symptoms of someone with a drug use problem? How Does Drug Use Become an Addiction? What Makes Someone More Likely to Get Addicted to Drugs? Does Addiction Run in Families? Why Is It So Hard to ...

  16. Drug Facts

    Medline Plus

    Full Text Available ... Other Effects on the Body Drug Use Hurts Brains Drug Use and Mental Health Problems Often Happen ... to prescription drugs. The addiction slowly took over his life. I need different people around me. To ...

  17. Drug Reactions

    Science.gov (United States)

    ... problem is interactions, which may occur between Two drugs, such as aspirin and blood thinners Drugs and food, such as statins and grapefruit Drugs and supplements, such as ginkgo and blood thinners ...

  18. Drug Facts

    Science.gov (United States)

    ... Makes Someone More Likely to Get Addicted to Drugs? Does Addiction Run in Families? Why Is It So Hard ... the text to you. This website talks about drug abuse, addiction, and treatment. Watch Videos Information About Drugs Alcohol ...

  19. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.

    Science.gov (United States)

    Zhang, Qing; Beard, Daniel A; Schlick, Tamar

    2003-12-01

    Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK

  20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012)

    Science.gov (United States)

    Foffi, G.; Pastore, A.; Piazza, F.; Temussi, P. A.

    2013-08-01

    More than 60 years of biochemical and biophysical studies have accustomed us to think of proteins as highly purified entities that act in isolation, more or less freely diffusing until they find their cognate partner to bind to. While in vitro experiments that reproduce these conditions largely remain the only way to investigate the intrinsic properties of molecules, this approach ignores an important factor: in their natural milieu , proteins are surrounded by several other molecules of different chemical nature, and this crowded environment can considerably modify their behaviour. About 40% of the cellular volume on average is occupied by all sorts of molecules. Furthermore, biological macromolecules live and operate in an extremely structured and complex environment within the cell (endoplasmic reticulum, Golgi apparatus, cytoskeletal structures, etc). Hence, to further complicate the picture, the interior of the cell is by no means a simply crowded medium, rather, a most crowded and confining one. In recent times, several approaches have been developed in the attempt to take into account important factors such as the ones mentioned above, at both theoretical and experimental levels, so that this field of research is now emerging as one of the most thriving in molecular and cell biology (see figure 1). Figure 1. Figure 1. Left: number of articles containing the word 'crowding' as a keyword limited to the biological and chemical science domains (source: ISI Web of Science). The arrow flags the 2003 'EMBO Workshop on Biological Implications of Macromolecular Crowding' (Embo, 2012). Right: number of citations to articles containing the word 'crowding' limited to the same domains (bars) and an exponential regression curve (source: Elsevier Scopus). To promote the importance of molecular crowding and confinement and provide researchers active in this field an interdisciplinary forum for meeting and exchanging ideas, we recently organized an international conference

  1. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

    Science.gov (United States)

    Foffi, G; Pastore, A; Piazza, F; Temussi, P A

    2013-08-02

    More than 60 years of biochemical and biophysical studies have accustomed us to think of proteins as highly purified entities that act in isolation, more or less freely diffusing until they find their cognate partner to bind to. While in vitro experiments that reproduce these conditions largely remain the only way to investigate the intrinsic properties of molecules, this approach ignores an important factor: in their natural milieu , proteins are surrounded by several other molecules of different chemical nature, and this crowded environment can considerably modify their behaviour. About 40% of the cellular volume on average is occupied by all sorts of molecules. Furthermore, biological macromolecules live and operate in an extremely structured and complex environment within the cell (endoplasmic reticulum, Golgi apparatus, cytoskeletal structures, etc). Hence, to further complicate the picture, the interior of the cell is by no means a simply crowded medium, rather, a most crowded and confining one. In recent times, several approaches have been developed in the attempt to take into account important factors such as the ones mentioned above, at both theoretical and experimental levels, so that this field of research is now emerging as one of the most thriving in molecular and cell biology (see figure 1). [Formula: see text] Figure 1. Left: number of articles containing the word 'crowding' as a keyword limited to the biological and chemical science domains (source: ISI Web of Science). The arrow flags the 2003 'EMBO Workshop on Biological Implications of Macromolecular Crowding' (Embo, 2012). Right: number of citations to articles containing the word 'crowding' limited to the same domains (bars) and an exponential regression curve (source: Elsevier Scopus). To promote the importance of molecular crowding and confinement and provide researchers active in this field an interdisciplinary forum for meeting and exchanging ideas, we recently organized an international

  2. Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank; Pedersen, Steen

    1990-01-01

    In this paper, the Escherichia coli cell is considered as a system designed for rapid growth, but limited by the medium. We propose that this very design causes the cell to become subsaturated with precursors and catalytic components at all levels of macromolecular biosynthesis and leads to a mol...

  3. Errors in macromolecular synthesis after stress. A study of the possible protective role of the small heat shock proteinsBiochemistry

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  4. A fast band–Krylov eigensolver for macromolecular functional motion simulation on multicore architectures and graphics processors

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, José I., E-mail: aliaga@uji.es [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain); Alonso, Pedro [Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València (Spain); Badía, José M. [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain); Chacón, Pablo [Dept. Biological Chemical Physics, Rocasolano Physics and Chemistry Institute, CSIC, Madrid (Spain); Davidović, Davor [Rudjer Bošković Institute, Centar za Informatiku i Računarstvo – CIR, Zagreb (Croatia); López-Blanco, José R. [Dept. Biological Chemical Physics, Rocasolano Physics and Chemistry Institute, CSIC, Madrid (Spain); Quintana-Ortí, Enrique S. [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain)

    2016-03-15

    We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousands degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.

  5. The macromolecular complex of ICP and falcipain-2 from Plasmodium: preparation, crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Hansen, Guido; Schwarzloh, Britta; Rennenberg, Annika; Heussler, Volker T.; Hilgenfeld, Rolf

    2011-01-01

    The macromolecular complex of ICP (inhibitor of cysteine proteases) from P. berghei and falcipain-2 from P. falciparum has been prepared and crystallized, and a diffraction data set has been collected to a resolution of 2.6 Å. The malaria parasite Plasmodium depends on the tight control of cysteine-protease activity throughout its life cycle. Recently, the characterization of a new class of potent inhibitors of cysteine proteases (ICPs) secreted by Plasmodium has been reported. Here, the recombinant production, purification and crystallization of the inhibitory C-terminal domain of ICP from P. berghei in complex with the P. falciparum haemoglobinase falcipain-2 is described. The 1:1 complex was crystallized in space group P4 3 , with unit-cell parameters a = b = 71.15, c = 120.09 Å. A complete diffraction data set was collected to a resolution of 2.6 Å

  6. A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source

    International Nuclear Information System (INIS)

    Owen, Robin L.; Pearson, Arwen R.; Meents, Alke; Boehler, Pirmin; Thominet, Vincent; Schulze-Briese, Clemens

    2009-01-01

    Complementary techniques greatly aid the interpretation of macromolecule structures to yield functional information, and can also help to track radiation-induced changes. A new on-axis spectrometer being integrated into the macromolecular crystallography beamlines of the Swiss Light Source is presented. X-ray crystallography at third-generation synchrotron sources permits tremendous insight into the three-dimensional structure of macromolecules. Additional information is, however, often required to aid the transition from structure to function. In situ spectroscopic methods such as UV–Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes. Here, preliminary results are introduced from an on-axis UV–Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source. The continuing development of the spectrometer is also outlined

  7. A fast band–Krylov eigensolver for macromolecular functional motion simulation on multicore architectures and graphics processors

    International Nuclear Information System (INIS)

    Aliaga, José I.; Alonso, Pedro; Badía, José M.; Chacón, Pablo; Davidović, Davor; López-Blanco, José R.; Quintana-Ortí, Enrique S.

    2016-01-01

    We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousands degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.

  8. Recent Advances in the Analysis of Macromolecular Interactions Using the Matrix-Free Method of Sedimentation in the Analytical Ultracentrifuge

    Directory of Open Access Journals (Sweden)

    Stephen E. Harding

    2015-03-01

    Full Text Available Sedimentation in the analytical ultracentrifuge is a matrix free solution technique with no immobilisation, columns, or membranes required and can be used to study self-association and complex or “hetero”-interactions, stoichiometry, reversibility and interaction strength of a wide variety of macromolecular types and across a very large dynamic range (dissociation constants from 10−12 M to 10−1 M. We extend an earlier review specifically highlighting advances in sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge applied to protein interactions and mucoadhesion and to review recent applications in protein self-association (tetanus toxoid, agrin, protein-like carbohydrate association (aminocelluloses, carbohydrate-protein interactions (polysaccharide-gliadin, nucleic-acid protein (G-duplexes, nucleic acid-carbohydrate (DNA-chitosan and finally carbohydrate-carbohydrate (xanthan-chitosan and a ternary polysaccharide complex interactions.

  9. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    Science.gov (United States)

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Macromolecular Engineering: New Routes Towards the Synthesis of Well-??Defined Polyethers/Polyesters Co/Terpolymers with Different Architectures

    KAUST Repository

    Alamri, Haleema

    2016-05-18

    The primary objective of this research was to develop a new and efficient pathway for well-defined multicomponent homo/co/terpolymers of cyclic esters/ethers using an organocatalytic approach with an emphasis on the macromolecular engineering aspects of the overall synthesis. Macromolecular engineering (as discussed in the first chapter) of homo/copolymers refers to the specific tailoring of these materials for achieving an easy and reproducible synthesis that results in precise molecular characteristics, i.e. molecular weight and polydispersity, as well as specific structure and end?group choices. Precise control of these molecular characteristics will provide access to new materials that can be used for pre-targeted purposes such as biomedical applications. Among the most commonly used engineering materials are polyesters (biocompatible and biodegradable) and polyethers (biocompatible), either as homopolymers or when or copolymers with linear structures. The ability to create non-linear structures, for example stars, will open new horizons in the applications of these important polymeric materials. The second part of this thesis describes the synthesis of aliphatic polyesters, particularly polycaprolactone and polylactide, using a metal-free initiator/catalyst system. A phosphazene base (t?BuP2) was used as the catalyst for the ring-opening copolymerization of ?-aprolactone (??CL) and L,Lactide (LLA) at room temperature with a variety of protic initiators in different solvents. These studies provided important information for the design of a metal-free route toward the synthesis of polyester?based (bio) materials. The third part of the thesis describes a novel route for the one?pot synthesis of polyether-b polyester block copolymers with either a linear or a specific macromolecular architecture. Poly (styrene oxide)?b?poly(caprolactone)?b?poly(L,lactide) was prepared using this method with the goal of synthesizing poly(styrene oxide)-based materials since this

  11. Drug Facts

    Medline Plus

    Full Text Available ... Drug Use Hurts Brains Drug Use and Mental Health Problems Often Happen Together The Link Between Drug Use and HIV/AIDS Treatment & Recovery Why Does a Person Need Treatment? Does Drug Treatment Work? What Are the Treatment Options? What Is Recovery? ...

  12. Drug Facts

    Medline Plus

    Full Text Available ... 4357) at any time to find drug treatment centers near you. I want my daughter to avoid drugs. "Debbie" has been drug-free for years. She wants her daughter to stay away from drugs. But she's afraid ...

  13. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  14. Passive tumor targeting of polymer therapeutics: in vivo imaging of both the polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2016-01-01

    Roč. 16, č. 11 (2016), s. 1577-1582 ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer drug carriers * tumor targeting * enzymatic release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.238, year: 2016

  15. In vitro dissolution study of acetylsalicylic acid solid dispersions. Tunable drug release allowed by the choice of polymer matrix

    Czech Academy of Sciences Publication Activity Database

    Policianová, Olivia; Brus, Jiří; Hrubý, Martin; Urbanová, Martina

    2015-01-01

    Roč. 20, č. 8 (2015), s. 935-940 ISSN 1083-7450 R&D Projects: GA ČR(CZ) GA14-03636S; GA ČR GPP106/11/P426 Grant - others:AV ČR(CZ) M200501201 Program:M Institutional support: RVO:61389013 Keywords : acetylsallicylic acid * controlled drug release * polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.566, year: 2015

  16. Substance use - prescription drugs

    Science.gov (United States)

    Substance use disorder - prescription drugs; Substance abuse - prescription drugs; Drug abuse - prescription drugs; Drug use - prescription drugs; Narcotics - substance use; Opioid - substance use; Sedative - substance ...

  17. Conceptual design report for the high-throughput macromolecular crystallography beamline at the Indus-2

    International Nuclear Information System (INIS)

    Kumar, Ashwani; Jagannath

    2007-07-01

    Studies aimed at understanding the functionality of several bio-molecules as well as related efficacy of drugs necessitate determination of the structure of relevant molecules. Based on the presumption that the structure of these molecules does not undergo any dramatic change on crystallization, these structures are being reliably determined with the help of x-ray diffraction technique. With the availability of intense x-ray beams from the synchrotrons, along with the tunability of the x-ray energies, the progress in this field has been phenomenal. Presently, all over the world, most of the high quality investigations in this field are being carried out at the synchrotron sources. So as to facilitate the scientists working in this field in India, we at BARC have undertaken to build a protein crystallography beamline for Indus-2 synchrotron. In this report we present the design features of this beamline as determined through our extensive calculations. (author)

  18. Drug Facts

    Medline Plus

    Full Text Available ... abuse, addiction, and treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs You can ...

  19. Prescription Drugs

    Science.gov (United States)

    ... different competition is going on: the National Football League (NFL) vs. drug use. Read More » 92 Comments ... Future survey highlights drug use trends among the Nation’s youth for marijuana, alcohol, cigarettes, e-cigarettes (e- ...

  20. Drug Facts

    Medline Plus

    Full Text Available ... abuse, addiction, and treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth ... 662-HELP (4357) at any time to find drug treatment centers near you. I want my daughter ...

  1. Drug Facts

    Medline Plus

    Full Text Available ... form Search Menu Home Drugs That People Abuse Alcohol Facts Bath Salts Facts Cocaine (Coke, Crack) Facts ... addiction, and treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain ...

  2. Drug Facts

    Medline Plus

    Full Text Available ... Ice) Facts Pain Medicine (Oxy, Vike) Facts Spice (K2) Facts Tobacco and Nicotine Facts Other Drugs of ... Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs You can call 1- ...

  3. Drug Control

    Science.gov (United States)

    Leviton, Harvey S.

    1975-01-01

    This article attempts to assemble pertinent information about the drug problem, particularily marihuana. It also focuses on the need for an educational program for drug control with the public schools as the main arena. (Author/HMV)

  4. Drug Facts

    Medline Plus

    Full Text Available ... Crank, Ice) Facts Pain Medicine (Oxy, Vike) Facts Spice (K2) Facts Tobacco and Nicotine Facts Other Drugs ... Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs You can call ...

  5. Drug Facts

    Medline Plus

    Full Text Available ... Nicotine Facts Other Drugs of Abuse What is Addiction? What are some signs and symptoms of someone ... use problem? How Does Drug Use Become an Addiction? What Makes Someone More Likely to Get Addicted ...

  6. Drug Facts

    Medline Plus

    Full Text Available ... Numbers and Websites Search Share Listen English Español Information about this page Click on the button that ... about drug abuse, addiction, and treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana ...

  7. Drug Facts

    Medline Plus

    Full Text Available ... Home Drugs That People Abuse Alcohol Facts Bath Salts Facts Cocaine (Coke, Crack) Facts Heroin (Smack, Junk) ... treatment. Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice ( ...

  8. Drug Facts

    Medline Plus

    Full Text Available ... call 1-800-662-HELP (4357) at any time to find drug treatment centers near you. I ... The National Institute on Drug Abuse (NIDA) is part of the National Institutes of Health (NIH) , the ...

  9. Orphan drugs

    OpenAIRE

    Goločorbin-Kon, Svetlana; Vojinović, Aleksandra; Lalić-Popović, Mladena; Pavlović, Nebojša; Mikov, Momir

    2013-01-01

    Introduction. Drugs used for treatment of rare diseases are known worldwide under the term of orphan drugs because pharmaceutical companies have not been interested in ”adopting” them, that is in investing in research, developing and producing these drugs. This kind of policy has been justified by the fact that these drugs are targeted for small markets, that only a small number of patients is available for clinical trials, and that large investments are required for the development of ...

  10. Gd-DTPA L-cystine bisamide copolymers as novel biodegradable macromolecular contrast agents for MR blood pool imaging.

    Science.gov (United States)

    Kaneshiro, Todd L; Ke, Tianyi; Jeong, Eun-Kee; Parker, Dennis L; Lu, Zheng-Rong

    2006-06-01

    The purpose of this study was to synthesize biodegradable Gd-DTPA L-cystine bisamide copolymers (GCAC) as safe and effective, macromolecular contrast agents for magnetic resonance imaging (MRI) and to evaluate their biodegradability and efficacy in MR blood pool imaging in an animal model. Three new biodegradable GCAC with different substituents at the cystine bisamide [R = H (GCAC), CH2CH2CH3 (Gd-DTPA L-cystine bispropyl amide copolymers, GCPC), and CH(CH3)2 (Gd-DTPA cystine bisisopropyl copolymers, GCIC)] were prepared by the condensation copolymerization of diethylenetriamine pentaacetic acid (DTPA) dianhydride with cystine bisamide or bisalkyl amides, followed by complexation with gadolinium triacetate. The degradability of the agents was studied in vitro by incubation in 15 microM cysteine and in vivo with Sprague-Dawley rats. The kinetics of in vivo contrast enhancement was investigated in Sprague-Dawley rats on a Siemens Trio 3 T scanner. The apparent molecular weight of the polydisulfide Gd(III) chelates ranged from 22 to 25 kDa. The longitudinal (T1) relaxivities of GCAC, GCPC, and GCIC were 4.37, 5.28, and 5.56 mM(-1) s(-1) at 3 T, respectively. The polymeric ligands and polymeric Gd(III) chelates readily degraded into smaller molecules in incubation with 15 microM cysteine via disulfide-thiol exchange reactions. The in vitro degradation rates of both the polymeric ligands and macromolecular Gd(III) chelates decreased as the steric effect around the disulfide bonds increased. The agents readily degraded in vivo, and the catabolic degradation products were detected in rat urine samples collected after intravenous injection. The agents showed strong contrast enhancement in the blood pool, major organs, and tissues at a dose of 0.1 mmol Gd/kg. The difference of their in vitro degradability did not significantly alter the kinetics of in vivo contrast enhancement of the agents. These novel GCAC are promising contrast agents for cardiovascular and tumor MRI

  11. Drug Testing

    Science.gov (United States)

    ... testing, substance abuse testing, toxicology screen, tox screen, sports doping tests What is it used for? Drug screening is used to find out whether or not a person has taken a certain drug or drugs. It ... Sports organizations. Professional and collegiate athletes usually need to ...

  12. Drug Facts

    Medline Plus

    Full Text Available ... to main content Easy-to-Read Drug Facts Search form Search Menu Home Drugs That People Abuse Alcohol Facts ... Past Drug Use Prevention Phone Numbers and Websites Search Share Listen English Español Information about this page ...

  13. Drug Facts

    Medline Plus

    Full Text Available ... can call 1-800-662-HELP (4357) at any time to find drug treatment centers near you. I want my daughter to avoid drugs. "Debbie" has been drug-free for years. She wants her daughter to stay away from ...

  14. Drug Facts

    Medline Plus

    Full Text Available ... the computer will read the text to you. This website talks about drug abuse, addiction, and treatment. Watch Videos ... I want my daughter to avoid drugs. "Debbie" has been drug-free for years. She wants her daughter to stay away from ...

  15. Drug Facts

    Medline Plus

    Full Text Available ... the text to you. This website talks about drug abuse, addiction, and treatment. Watch Videos Information About Drugs ... adicción. English Español About the National Institute on Drug Abuse (NIDA) | About This Website Tools and Resources | Contact ...

  16. Drug Facts

    Medline Plus

    Full Text Available ... Drug Use and Mental Health Problems Often Happen Together The Link Between Drug Use and HIV/AIDS Treatment & Recovery Why Does a Person Need Treatment? Does Drug Treatment Work? What Are the Treatment Options? What Is Recovery? ...

  17. Drug Facts

    Medline Plus

    Full Text Available ... Makes Someone More Likely to Get Addicted to Drugs? Does Addiction Run in Families? Why Is It So Hard ... the text to you. This website talks about drug abuse, addiction, and treatment. Watch Videos Information About Drugs Alcohol ...

  18. Clinical developments of chemotherapeutic nanomedicines: Polymers and liposomes for delivery of camptothecins and platinum (II) drugs

    KAUST Repository

    Kieler-Ferguson, Heidi M.

    2013-01-17

    For the past 40 years, liposomal and polymeric delivery vehicles have been studied as systems capable of modulating the cytotoxicity of small molecule chemotherapeutics, increasing tumor bearing animal survival times, and improving drug targeting. Although a number of macromolecular-drug conjugates have progressed to clinical trials, tuning drug release to maintain efficacy in conjunction with controlling drug toxicity has prevented the clinical adoption of many vehicles. In this article, we review the motivations for and approaches to polymer and liposomal delivery with regard to camptothecin and cisplatin delivery. WIREs Nanomed Nanobiotechnol 2013, 5:130-138. doi: 10.1002/wnan.1209 For further resources related to this article, please visit the WIREs website. Conflict of interest: Drs Kieler-Ferguson and Fréchet declare no conflicts of interest. Dr Szoka is the founder of a liposome drug delivery company that is not working on any of the compounds mentioned in this article. © 2013 Wiley Periodicals, Inc.

  19. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes

    Science.gov (United States)

    Li, Huilin; Nguyen, Hong Hanh; Ogorzalek Loo, Rachel R.; Campuzano, Iain D. G.; Loo, Joseph A.

    2018-02-01

    Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation.

  20. Making microenvironments: A look into incorporating macromolecular crowding into in vitro experiments, to generate biomimetic microenvironments which are capable of directing cell function for tissue engineering applications.

    Science.gov (United States)

    Benny, Paula; Raghunath, Michael

    2017-01-01

    Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.

  1. WAr on DrugS

    African Journals Online (AJOL)

    2009-04-12

    Apr 12, 2009 ... ABStrAct. Since drugs became both a public and social issue in Nigeria, fear about both the real and .... drugs as being morally reprehensible, and ..... tice system (see for instance, Shaw, 1995; ..... A cut throat business:.

  2. Spondias mombin L. (Anacardiaceae) enhances detoxification of hepatic and macromolecular oxidants in acetaminophen-intoxicated rats.

    Science.gov (United States)

    Saheed, Sabiu; Taofik, Sunmonu Olatunde; Oladipo, Ajani Emmanuel; Tom, Ashafa Anofi Omotayo

    2017-11-01

    Oxidative stress is a common pathological condition associated with drug-induced hepatotoxicity. This study investigated Spondias mombin L. aqueous leaf extract on reactive oxygen species and acetaminophen-mediated oxidative onslaught in rats' hepatocytes. Hepatotoxic rats were orally administered with the extract and vitamin C for 4 weeks. The extract dose-dependently scavenged DPPH, hydrogen peroxide and hydroxyl radicals, with IC 50 values of 0.13, 0.66, and 0.64 mg/mL, and corresponding % inhibitions of 89, 80, and 90%, respectively at 1.0 mg/mL. Ferric ion was also significantly reduced. The marked (p<0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase were reduced following treatment with the extract. The extract also significantly (p<0.05) induced the activities of antioxidant enzymes. These inductions reversed the acetaminophen-enhanced reduction in the specific activities of these enzymes as well as attenuated the observed elevated concentrations of autooxidized products and rived DNA in the acetaminophen-intoxicated animals. The observed effects competed with those of vitamin C and are suggestive of hepatoprotective and antioxidative attributes of the extract. Overall, the data from the present findings suggest that S. Mombin aqueous leaf extract is capable of ameliorating acetaminophen-mediated oxidative hepatic damage via enhancement of antioxidant defense systems.

  3. Innovative High-Throughput SAXS Methodologies Based on Photonic Lab-on-a-Chip Sensors: Application to Macromolecular Studies.

    Science.gov (United States)

    Rodríguez-Ruiz, Isaac; Radajewski, Dimitri; Charton, Sophie; Phamvan, Nhat; Brennich, Martha; Pernot, Petra; Bonneté, Françoise; Teychené, Sébastien

    2017-06-02

    The relevance of coupling droplet-based Photonic Lab-on-a-Chip (PhLoC) platforms and Small-Angle X-Ray Scattering (SAXS) technique is here highlighted for the performance of high throughput investigations, related to the study of protein macromolecular interactions. With this configuration, minute amounts of sample are required to obtain reliable statistical data. The PhLoC platforms presented in this work are designed to allow and control an effective mixing of precise amounts of proteins, crystallization reagents and buffer in nanoliter volumes, and the subsequent generation of nanodroplets by means of a two-phase flow. Spectrophotometric sensing permits a fine control on droplet generation frequency and stability as well as on concentration conditions, and finally the droplet flow is synchronized to perform synchrotron radiation SAXS measurements in individual droplets (each one acting as an isolated microreactor) to probe protein interactions. With this configuration, droplet physic-chemical conditions can be reproducibly and finely tuned, and monitored without cross-contamination, allowing for the screening of a substantial number of saturation conditions with a small amount of biological material. The setup was tested and validated using lysozyme as a model of study. By means of SAXS experiments, the proteins gyration radius and structure envelope were calculated as a function of protein concentration. The obtained values were found to be in good agreement with previously reported data, but with a dramatic reduction of sample volume requirements compared to studies reported in the literature.

  4. Accelerated Development of Supramolecular Corneal Stromal-Like Assemblies from Corneal Fibroblasts in the Presence of Macromolecular Crowders.

    Science.gov (United States)

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-07-01

    Tissue engineering by self-assembly uses the cells' secretome as a regeneration template and biological factory of trophic factors. Despite the several advantages that have been witnessed in preclinical and clinical settings, the major obstacle for wide acceptance of this technology remains the tardy extracellular matrix formation. In this study, we assessed the influence of macromolecular crowding (MMC)/excluding volume effect, a biophysical phenomenon that accelerates thermodynamic activities and biological processes by several orders of magnitude, in human corneal fibroblast (HCF) culture. Our data indicate that the addition of negatively charged galactose derivative (carrageenan) in HCF culture, even at 0.5% serum, increases by 12-fold tissue-specific matrix deposition, while maintaining physiological cell morphology and protein/gene expression. Gene analysis indicates that a glucose derivative (dextran sulfate) may drive corneal fibroblasts toward a myofibroblast lineage. Collectively, these results indicate that MMC may be suitable not only for clinical translation and commercialization of tissue engineering by self-assembly therapies, but also for the development of in vitro pathophysiology models.

  5. New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation

    Science.gov (United States)

    Remusat, Laurent; Derenne, Sylvie; Robert, François

    2005-09-01

    Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO 2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected. Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported. Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.

  6. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    Science.gov (United States)

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  7. Effects of nicotine on cellular proliferation, cell cycle phase distribution, and macromolecular synthesis in human promyelocytic HL-60 leukaemia cells

    International Nuclear Information System (INIS)

    Konno, S.; Wu, J.M.; Chiao, J.W.

    1986-01-01

    Addition of nicotine causes a dose- and time-dependent inhibition of cell growth in the human promyelocytic HL-60 leukemia cells, with 4 mM nicotine resulting in a 50% inhibition of cellular proliferation after 48-50h. Accompanying the anticellular effect of nicotine is a significant change in the cell cycle distribution of HL-60 cells. For example, treatment with 4 mM nicotine for 20h causes an increase in the proportion of G1-phase cells (from 49% to 57%) and a significant decrease in the proportion of S-phase cells (from 41% to 32%). These results suggest that nicotine causes partial cell arrest in the G-1 phase which may in part account for its effects on cell growth. To determine whether nicotine changes the cellular uptake/transport to macromolecular precursors, HL-60 cells were treated with 216 mM nicotine for 30h, at the end of which time cells were labelled with ( 3 H)thymidine, ( 3 H)uridine, ( 14 C)lysine and( 35 S)methionine, the trichloroacetic acid soluble and insoluble radioactivities from each of the labelling conditions were determined. These studies show that nicotine mainly affects the ''de novo synthesis'' of proteins. (author)

  8. Determination of macromolecular exchange and PO2 in the microcirculation: a simple system for in vivo fluorescence and phosphorescence videomicroscopy

    Directory of Open Access Journals (Sweden)

    Torres L.N.

    2001-01-01

    Full Text Available We have developed a system with two epi-illumination sources, a DC-regulated lamp for transillumination and mechanical switches for rapid shift of illumination and detection of defined areas (250-750 µm² by fluorescence and phosphorescence videomicroscopy. The system permits investigation of standard microvascular parameters, vascular permeability as well as intra- and extravascular PO2 by phosphorescence quenching of Pd-meso-tetra (4-carboxyphenyl porphine (PORPH. A Pechan prism was used to position a defined region over the photomultiplier and TV camera. In order to validate the system for in vivo use, in vitro tests were performed with probes at concentrations that can be found in microvascular studies. Extensive in vitro evaluations were performed by filling glass capillaries with solutions of various concentrations of FITC-dextran (diluted in blood and in saline mixed with different amounts of PORPH. Fluorescence intensity and phosphorescence decay were determined for each mixture. FITC-dextran solutions without PORPH and PORPH solutions without FITC-dextran were used as references. Phosphorescence decay curves were relatively unaffected by the presence of FITC-dextran at all concentrations tested (0.1 µg/ml to 5 mg/ml. Likewise, fluorescence determinations were performed in the presence of PORPH (0.05 to 0.5 mg/ml. The system was successfully used to study macromolecular extravasation and PO2 in the rat mesentery circulation under controlled conditions and during ischemia-reperfusion.

  9. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    Science.gov (United States)

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2  day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    Science.gov (United States)

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P<0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM−1 s−1) was observed compared to Magnevist® (4.9 mM−1 s−1; P<0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. PMID:28765707

  11. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    Science.gov (United States)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  12. Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining

    Directory of Open Access Journals (Sweden)

    Zbigniew Dauter

    2014-05-01

    Full Text Available Whereas the vast majority of the more than 85 000 crystal structures of macromolecules currently deposited in the Protein Data Bank are of high quality, some suffer from a variety of imperfections. Although this fact has been pointed out in the past, it is still worth periodic updates so that the metadata obtained by global analysis of the available crystal structures, as well as the utilization of the individual structures for tasks such as drug design, should be based on only the most reliable data. Here, selected abnormal deposited structures have been analysed based on the Bayesian reasoning that the correctness of a model must be judged against both the primary evidence as well as prior knowledge. These structures, as well as information gained from the corresponding publications (if available, have emphasized some of the most prevalent types of common problems. The errors are often perfect illustrations of the nature of human cognition, which is frequently influenced by preconceptions that may lead to fanciful results in the absence of proper validation. Common errors can be traced to negligence and a lack of rigorous verification of the models against electron density, creation of non-parsimonious models, generation of improbable numbers, application of incorrect symmetry, illogical presentation of the results, or violation of the rules of chemistry and physics. Paying more attention to such problems, not only in the final validation stages but during the structure-determination process as well, is necessary not only in order to maintain the highest possible quality of the structural repositories and databases but most of all to provide a solid basis for subsequent studies, including large-scale data-mining projects. For many scientists PDB deposition is a rather infrequent event, so the need for proper training and supervision is emphasized, as well as the need for constant alertness of reason and critical judgment as absolutely

  13. COPD - control drugs

    Science.gov (United States)

    Chronic obstructive pulmonary disease - control drugs; Bronchodilators - COPD - control drugs; Beta agonist inhaler - COPD - control drugs; Anticholinergic inhaler - COPD - control drugs; Long-acting inhaler - COPD - control drugs; ...

  14. [Orphan drugs].

    Science.gov (United States)

    Golocorbin Kon, Svetlana; Vojinović, Aleksandra; Lalić-Popović, Mladena; Pavlović, Nebojsa; Mikov, Momir

    2013-01-01

    Drugs used for treatment of rare diseases are known worldwide under the term of orphan drugs because pharmaceutical companies have not been interested in "adopting" them, that is in investing in research, developing and producing these drugs. This kind of policy has been justified by the fact that these drugs are targeted for small markets, that only a small number of patients is available for clinical trials, and that large investments are required for the development of drugs meant to treat diseases whose pathogenesis has not yet been clarified in majority of cases. The aim of this paper is to present previous and present status of orphan drugs in Serbia and other countries. THE BEGINNING OF ORPHAN DRUGS DEVELOPMENT: This problem was first recognized by Congress of the United States of America in January 1983, and when the "Orphan Drug Act" was passed, it was a turning point in the development of orphan drugs. This law provides pharmaceutical companies with a series of reliefs, both financial ones that allow them to regain funds invested into the research and development and regulatory ones. Seven years of marketing exclusivity, as a type of patent monopoly, is the most important relief that enables companies to make large profits. There are no sufficient funds and institutions to give financial support to the patients. It is therefore necessary to make health professionals much more aware of rare diseases in order to avoid time loss in making the right diagnosis and thus to gain more time to treat rare diseases. The importance of discovery, development and production of orphan drugs lies in the number of patients whose life quality can be improved significantly by administration of these drugs as well as in the number of potential survivals resulting from the treatment with these drugs.

  15. Dual fluorescent N-(2-hydroxypropyl) methacrylamide-based conjugates for passive tumor targeting with reduction-sensitive drug release: proof of the concept, tumor accumulation, and biodistribution

    Czech Academy of Sciences Publication Activity Database

    Studenovský, Martin; Heinrich, A. K.; Lucas, H.; Mueller, T.; Mäder, K.; Etrych, Tomáš

    2016-01-01

    Roč. 31, č. 4 (2016), s. 348-360 ISSN 0883-9115 R&D Projects: GA ČR(CZ) GCP207/12/J030; GA ČR(CZ) GA14-12742S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : HPMA copolymers * reduction-responsive drug release * tumor accumulation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.310, year: 2016

  16. AIDSinfo Drug Database

    Science.gov (United States)

    ... AIDS Drugs Clinical Trials Apps skip to content Drugs Home Drugs Find information on FDA-approved HIV/ ... infection drugs and investigational HIV/AIDS drugs. Search Drugs Search drug Search Icon What's this? Close Popup ...

  17. FlexED8: the first member of a fast and flexible sample-changer family for macromolecular crystallography.

    Science.gov (United States)

    Papp, Gergely; Felisaz, Franck; Sorez, Clement; Lopez-Marrero, Marcos; Janocha, Robert; Manjasetty, Babu; Gobbo, Alexandre; Belrhali, Hassan; Bowler, Matthew W; Cipriani, Florent

    2017-10-01

    Automated sample changers are now standard equipment for modern macromolecular crystallography synchrotron beamlines. Nevertheless, most are only compatible with a single type of sample holder and puck. Recent work aimed at reducing sample-handling efforts and crystal-alignment times at beamlines has resulted in a new generation of compact and precise sample holders for cryocrystallography: miniSPINE and NewPin [see the companion paper by Papp et al. (2017, Acta Cryst., D73, 829-840)]. With full data collection now possible within seconds at most advanced beamlines, and future fourth-generation synchrotron sources promising to extract data in a few tens of milliseconds, the time taken to mount and centre a sample is rate-limiting. In this context, a versatile and fast sample changer, FlexED8, has been developed that is compatible with the highly successful SPINE sample holder and with the miniSPINE and NewPin sample holders. Based on a six-axis industrial robot, FlexED8 is equipped with a tool changer and includes a novel open sample-storage dewar with a built-in ice-filtering system. With seven versatile puck slots, it can hold up to 112 SPINE sample holders in uni-pucks, or 252 miniSPINE or NewPin sample holders, with 36 samples per puck. Additionally, a double gripper, compatible with the SPINE sample holders and uni-pucks, allows a reduction in the sample-exchange time from 40 s, the typical time with a standard single gripper, to less than 5 s. Computer vision-based sample-transfer monitoring, sophisticated error handling and automatic error-recovery procedures ensure high reliability. The FlexED8 sample changer has been successfully tested under real conditions on a beamline.

  18. Macromolecular competition titration method accessing thermodynamics of the unmodified macromolecule-ligand interactions through spectroscopic titrations of fluorescent analogs.

    Science.gov (United States)

    Bujalowski, Wlodzimierz; Jezewska, Maria J

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand-macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein-nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein-nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein-nucleic acid interactions, it can generally be applied to any ligand-macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. iDC: A comprehensive toolkit for the analysis of residual dipolar couplings for macromolecular structure determination

    International Nuclear Information System (INIS)

    Wei Yufeng; Werner, Milton H.

    2006-01-01

    Measurement of residual dipolar couplings (RDCs) has become an important method for the determination and validation of protein or nucleic acid structures by NMRf spectroscopy. A number of toolkits have been devised for the handling of RDC data which run in the Linux/Unix operating environment and require specifically formatted input files. The outputs from these programs, while informative, require format modification prior to the incorporation of this data into commonly used personal computer programs for manuscript preparation. To bridge the gap between analysis and publication, an easy-to-use, comprehensive toolkit for RDC analysis has been created, iDC. iDC is written for the WaveMetrics Igor Pro mathematics program, a widely used graphing and data analysis software program that runs on both Windows PC and Mac OS X computers. Experimental RDC values can be loaded into iDC using simple data formats accessible to Igor's tabular data function. The program can perform most useful RDC analyses, including alignment tensor estimation from a histogram of RDC occurrence versus values and order tensor analysis by singular value decomposition (SVD). SVD analysis can be performed on an entire structure family at once, a feature missing in other applications of this kind. iDC can also import from and export to several different commonly used programs for the analysis of RDC data (DC, PALES, REDCAT) and can prepare formatted files for RDC-based refinement of macromolecular structures using XPLOR-NIH, CNS and ARIA. The graphical user interface provides an easy-to-use I/O for data, structures and formatted outputs

  20. Macromolecular Competition Titration Method: Accessing Thermodynamics of the Unmodified Macromolecule–Ligand Interactions Through Spectroscopic Titrations of Fluorescent Analogs

    Science.gov (United States)

    Bujalowski, Wlodzimierz; Jezewska, Maria J.

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand–macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein–nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein–nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein–nucleic acid interactions, it can generally be applied to any ligand–macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. PMID:21195223

  1. Orphan receptor GPR179 forms macromolecular complexes with components of metabotropic signaling cascade in retina ON-bipolar neurons.

    Science.gov (United States)

    Orlandi, Cesare; Cao, Yan; Martemyanov, Kirill A

    2013-10-29

    In the mammalian retina, synaptic transmission between light-excited rod photoreceptors and downstream ON-bipolar neurons is indispensable for dim vision, and disruption of this process leads to congenital stationary night blindness in human patients. The ON-bipolar neurons use the metabotropic signaling cascade, initiated by the mGluR6 receptor, to generate depolarizing responses to light-induced changes in neurotransmitter glutamate release from the photoreceptor axonal terminals. Evidence for the identity of the components involved in transducing these signals is growing rapidly. Recently, the orphan receptor, GPR179, a member of the G protein-coupled receptor (GPCR) superfamily, has been shown to be indispensable for the synaptic responses of ON-bipolar cells. In our study, we investigated the interaction of GPR179 with principle components of the signal transduction cascade. We used immunoprecipitation and proximity ligation assays in transfected cells and native retinas to characterize the protein-protein interactions involving GPR179. The influence of cascade components on GPR179 localization was examined through immunohistochemical staining of the retinas from genetic mouse models. We demonstrated that, in mouse retinas, GPR179 forms physical complexes with the main components of the metabotropic cascade, recruiting mGluR6, TRPM1, and the RGS proteins. Elimination of mGluR6 or RGS proteins, but not TRPM1, detrimentally affects postsynaptic targeting or GPR179 expression. These observations suggest that the mGluR6 signaling cascade is scaffolded as a macromolecular complex in which the interactions between the components ensure the optimal spatiotemporal characteristics of signal transduction.

  2. New Programs Utilizing Light Scattering and Flow Imaging Techniques for Macromolecular Crystal Growth and Fluid Dynamics Studies

    Science.gov (United States)

    2003-01-01

    Dr. Phil Segre, a physicist by training, is a recent addition to the Biotech group, SD46, having joined NASA in August of 2000. Over the past two years he has been developing a laboratory for the study of macromolecular and protein crystal growth. The main apparatus for this work is a Dynamic Light Scattering apparatus, DLS, which is capable of making highly precise measurements of size distributions of both protein solutions and protein crystals. With Drs. Chernov and Thomas (USRA), he has begun a collaboration studying the affects of protein impurities on protein crystal growth and subsequent crystal quality. One of the hypotheses behind the differences between Earth and space grown protein crystals is that the absorption of harmful impurities is reduced in space due to the absence of convective flows. Using DLS measurements we are examining crystal growth with varying amounts of impurities and testing whether there is a strong physical basis behind this hypothesis. With Dr. Joe Ng of UAH he has been collaborating on a project to examine the folding/unfolding dynamics of large RNA complexes. A detailed understanding of this process is necessary for the handling of RNA in biotech applications, and the DLS instrument gives details and results beyond that of other instruments. With Prof. Jim McClymer of the University of Maine (summer faculty visitor to NASA in 2001, 2002), we have been studying the crystallization process in model colloidal suspensions whose behavior in some cases can mimic that of much smaller protein solutions. An understanding of the self-assembly of colloids is the first step in the process of engineering novel materials for photonic and light switching applications. Finally, he has begun an investigation into the physics of particle sedimentation. In addition to the DLS instrument he also has an instrument (called PIV) that can measure flow fields of fluids. The applications are to the dynamics of protein crystal motions both on earth and in

  3. Macromolecular 'size' and 'hardness' drives structure in solvent-swollen blends of linear, cyclic, and star polymers.

    Science.gov (United States)

    Gartner, Thomas E; Jayaraman, Arthi

    2018-01-17

    In this paper, we apply molecular simulation and liquid state theory to uncover the structure and thermodynamics of homopolymer blends of the same chemistry and varying chain architecture in the presence of explicit solvent species. We use hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations in the Gibbs ensemble to study the swelling of ∼12 000 g mol -1 linear, cyclic, and 4-arm star polystyrene chains in toluene. Our simulations show that the macroscopic swelling response is indistinguishable between the various architectures and matches published experimental data for the solvent annealing of linear polystyrene by toluene vapor. We then use standard MD simulations in the NPT ensemble along with polymer reference interaction site model (PRISM) theory to calculate effective polymer-solvent and polymer-polymer Flory-Huggins interaction parameters (χ eff ) in these systems. As seen in the macroscopic swelling results, there are no significant differences in the polymer-solvent and polymer-polymer χ eff between the various architectures. Despite similar macroscopic swelling and effective interaction parameters between various architectures, the pair correlation function between chain centers-of-mass indicates stronger correlations between cyclic or star chains in the linear-cyclic blends and linear-star blends, compared to linear chain-linear chain correlations. Furthermore, we note striking similarities in the chain-level correlations and the radius of gyration of cyclic and 4-arm star architectures of identical molecular weight. Our results indicate that the cyclic and star chains are 'smaller' and 'harder' than their linear counterparts, and through comparison with MD simulations of blends of soft spheres with varying hardness and size we suggest that these macromolecular characteristics are the source of the stronger cyclic-cyclic and star-star correlations.

  4. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    Directory of Open Access Journals (Sweden)

    Liu YJ

    2017-07-01

    Full Text Available Yongjun Liu,1 Xiaoyun Wu,1 Xiaohe Sun,1 Dan Wang,1 Ying Zhong,1 Dandan Jiang,1 Tianqi Wang,1 Dexin Yu,2 Na Zhang1 1School of Pharmaceutical Science, Shandong University, 2Department of Radiology Medicine, Qilu Hospital, Jinan, People’s Republic of China Abstract: Developing magnetic resonance imaging (MRI contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR-targeted poly (l-lysine (PLL-diethylene triamine pentacetate acid (DTPA-gadolinium (Gd (VEGFR-targeted PLL-DTPA-Gd, VPDG, was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22% in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG (25.16%±4.71%, P<0.05. In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM-1 s-1 was observed compared to Magnevist® (4.9 mM-1 s-1; P<0.01. Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h. These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. Keywords: MRI, contrast agent, VEGFR, biotin–avidin reaction, relaxivity

  5. Characterization of macromolecular baseline of human brain using metabolite cycled semi-LASER at 9.4T.

    Science.gov (United States)

    Giapitzakis, Ioannis-Angelos; Avdievich, Nikolai; Henning, Anke

    2018-08-01

    Macromolecular resonances (MM) arise mainly from cytosolic proteins and overlap with metabolites, influencing metabolite quantification. Macromolecules can serve as valuable biomarkers for diseases and pathologies. The objectives of this study were to characterize MM at 9.4T in the human brain (occipital and left parietal lobe) and to describe the RF coil setup used for MM acquisition in the two regions. An adiabatic inversion pulse was optimised for metabolite nulling at 9.4T using double inversion recovery and was combined for the first time with metabolite cycled (MC) semi-LASER and appropriate coil configuration. MM spectra (seven volunteers) from two brain locations were averaged and smoothed creating MM templates, which were then parametrized using simulated Voigt-shaped lines within LCModel. Quantification was performed on individual data sets, including corrections for different tissue composition and the T 1 and T 2 relaxation of water. Our coil configuration method resulted in efficient B1+ (>30 T/√kW) for both brain regions. The 15 MM components were detected and quantified in MM baselines of the two brain areas. No significant differences in concentration levels of MM between different regions were found. Two new MM peaks were reported (M7 & M8). Double inversion, which was combined with MC semi-LASER, enabled the acquisition of high spectral resolution MM spectra for both brain regions at 9.4T. The 15 MM components were detected and quantified. Two new MM peaks were reported for the first time (M7 & M8) and preliminarily assigned to β-methylene protons of aspartyl-groups. Magn Reson Med 80:462-473, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Investigation of a potential macromolecular MRI contrast agent prepared from PPI (G = 2, polypropyleneimine, generation 2) dendrimer bifunctional chelates

    Science.gov (United States)

    Wang, Jianxin Steven

    The long-term objective is to develop magnetic resonance (MR) contrast agents that actively and passively target tumors for diagnosis and therapy. Many diagnostic imaging techniques for cancer lack specificity. A dendrimer based magnetic resonance imaging contrast agent has been developed with large proton relaxation enhancements and high molecular relaxivities. A new type of linear dendrimer based MRI contrast agent that is built from the polypropyleneimine and polyamidoamine dendrimers in which free amines have been conjugated to the chelate DTPA, which further formed the complex with Gadolinium (Gd) was studied. The specific research goals were to test the hypothesis that a linear chelate with macromolecular agents can be used in vitro and in vivo. This work successfully examined the adequacy and viability of the application for this agent in vitro and in vivo. A small animal whole body counter was designed and constructed to allow us to monitor biodistribution and kinetic mechanisms using a radioisotope labeled complex. The procedures of metal labeling, separation and purification have been established from this work. A biodistribution study has been performed using radioisotope induced organ/tissue counting and gamma camera imaging. The ratio of percentage of injected dose per gram organ/tissue for kidney and liver is 3.71 from whole body counter and 3.77 from the gamma camera. The results suggested that retention of Gd (III) is too high and a more kinetically stable chelate should be developed. The pharmacokinetic was evaluated in the whole animal model with the whole body clearance, and a kinetics model was developed. The pharmacokinetic results showed a bi-exponential decay in the animal model with two component excretion constants 1.43e(-5) and 0.0038511, which give half-lives of 3 hours and 33.6 days, respectively. Magnetic resonance imaging of this complex resulted in a 52% contrast enhancement in the rat kidney following the agents' administration in

  7. Drug Facts

    Medline Plus

    Full Text Available ... Pain Medicine (Oxy, Vike) Facts Spice (K2) Facts Tobacco and Nicotine Facts Other Drugs of Abuse What ... Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs You can call 1-800- ...

  8. Drug Facts

    Medline Plus

    Full Text Available ... Oxy, Vike) Facts Spice (K2) Facts Tobacco and Nicotine Facts Other Drugs of Abuse What is Addiction? ... Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs You can call 1-800-662- ...

  9. Antineoplastic Drugs

    Science.gov (United States)

    Sadée, Wolfgang; El Sayed, Yousry Mahmoud

    The limited scope of therapeutic drug-level monitoring in cancer chemotherapy results from the often complex biochemical mechanisms that contribute to antineoplastic activity and obscure the relationships among drug serum levels and therapeutic benefits. Moreover, new agents for cancer chemotherapy are being introduced at a more rapid rate than for the treatment of other diseases, although the successful application of therapeutic drug-level monitoring may require several years of intensive study of the significance of serum drug levels. However, drug level monitoring can be of considerable value during phase I clinical trials of new antineoplastic agents in order to assess drug metabolism, bioavailability, and intersubject variability; these are important parameters in the interpretation of clinical studies, but have no immediate benefit to the patient. High performance liquid chromatography (HPLC) probably represents the most versatile and easily adaptable analytical technique for drug metabolite screening (1). HPLC may therefore now be the method of choice during phase I clinical trials of antineoplastic drugs. For example, within a single week we developed an HPLC assay—using a C18 reverse-phase column, UV detection, and direct serum injection after protein precipitation—for the new radiosensitizer, misonidazole (2).

  10. Drugged Driving

    Science.gov (United States)

    ... Survey Results Synthetic Cannabinoids (K2/Spice) Unpredictable Danger Drug and Alcohol Use in College-Age Adults in 2016 Monitoring the Future 2016 Survey Results Drug and Alcohol Use in College-Age Adults in 2015 View All NIDA Home ...

  11. Drug repurposing based on drug-drug interaction.

    Science.gov (United States)

    Zhou, Bin; Wang, Rong; Wu, Ping; Kong, De-Xin

    2015-02-01

    Given the high risk and lengthy procedure of traditional drug development, drug repurposing is gaining more and more attention. Although many types of drug information have been used to repurpose drugs, drug-drug interaction data, which imply possible physiological effects or targets of drugs, remain unexploited. In this work, similarity of drug interaction was employed to infer similarity of the physiological effects or targets for the drugs. We collected 10,835 drug-drug interactions concerning 1074 drugs, and for 700 of them, drug similarity scores based on drug interaction profiles were computed and rendered using a drug association network with 589 nodes (drugs) and 2375 edges (drug similarity scores). The 589 drugs were clustered into 98 groups with Markov Clustering Algorithm, most of which were significantly correlated with certain drug functions. This indicates that the network can be used to infer the physiological effects of drugs. Furthermore, we evaluated the ability of this drug association network to predict drug targets. The results show that the method is effective for 317 of 561 drugs that have known targets. Comparison of this method with the structure-based approach shows that they are complementary. In summary, this study demonstrates the feasibility of drug repurposing based on drug-drug interaction data. © 2014 John Wiley & Sons A/S.

  12. [Club drugs].

    Science.gov (United States)

    Guerreiro, Diogo Frasquilho; Carmo, Ana Lisa; da Silva, Joaquim Alves; Navarro, Rita; Góis, Carlos

    2011-01-01

    Club drugs are the following substances: Methylenedioxymethamphetamine (MDMA); Methamphetamine; Lysergic Acid Diethylamide (LSD); Ketamine; Gamma-hydroxybutyrate (GHB) and Flunitrazepam. These substances are mainly used by adolescents and young adults, mostly in recreational settings like dance clubs and rave parties. These drugs have diverse psychotropic effects, are associated with several degrees of toxicity, dependence and long term adverse effects. Some have been used for several decades, while others are relatively recent substances of abuse. They have distinct pharmacodynamic and pharmacokinetic properties, are not easy to detect and, many times, the use of club drugs is under diagnosed. Although the use of these drugs is increasingly common, few health professionals feel comfortable with the diagnosis and treatment. The authors performed a systematic literature review, with the goal of synthesising the existing knowledge about club drugs, namely epidemiology, mechanism of action, detection, adverse reactions and treatment. The purpose of this article is creating in Portuguese language a knowledge data base on club drugs, that health professionals of various specialties can use as a reference when dealing with individual with this kind of drug abuse.

  13. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.

    Science.gov (United States)

    Esfand, R; Tomalia, D A.

    2001-04-01

    Poly(amidoamine) (PAMAM) dendrimers are the first complete dendrimer family to be synthesized, characterized and commercialized. Based on this extensive activity, they are recognized as a unique new class of synthetic nanostructures. Dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. From this perspective, this review focuses on crucial properties of biomimetic dendrimers that will broaden the potential for their use as macromolecular vectors in novel drug delivery and biomedical applications.

  14. Drug Facts

    Medline Plus

    Full Text Available ... MDMA (Ecstasy, Molly) Facts Meth (Crank, Ice) Facts Pain Medicine (Oxy, Vike) Facts Spice (K2) Facts Tobacco ... Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs You ...

  15. Drug Facts

    Medline Plus

    Full Text Available ... Facts Bath Salts Facts Cocaine (Coke, Crack) Facts Heroin (Smack, Junk) Facts Marijuana (Weed, Pot) Facts MDMA ( ... Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/ ...

  16. Drug Facts

    Medline Plus

    Full Text Available ... Cocaine (Coke, Crack) Facts Heroin (Smack, Junk) Facts Marijuana (Weed, Pot) Facts MDMA (Ecstasy, Molly) Facts Meth ( ... Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine ...

  17. Drug Facts

    Medline Plus

    Full Text Available ... Heroin (Smack, Junk) Facts Marijuana (Weed, Pot) Facts MDMA (Ecstasy, Molly) Facts Meth (Crank, Ice) Facts Pain ... About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other ...

  18. Drug Metabolism

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Drug Metabolism: A Fascinating Link Between Chemistry and Biology. Nikhil Taxak Prasad V Bharatam. General Article Volume 19 Issue 3 March 2014 pp 259-282 ...

  19. Drugged Driving

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  20. Club Drugs

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  1. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    behind metabolic reactions, importance, and consequences with several ... required for drug action. ... lism, which is catalyzed by enzymes present in the above-men- ... catalyze the transfer of one atom of oxygen to a substrate produc-.

  2. Drug Facts

    Medline Plus

    Full Text Available ... Ecstasy, Molly) Facts Meth (Crank, Ice) Facts Pain Medicine (Oxy, Vike) Facts Spice (K2) Facts Tobacco and ... Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine Other Drugs You can ...

  3. Drug Facts

    Medline Plus

    Full Text Available ... 800-662-HELP (4357) at any time to find drug treatment centers near you. I want my ... is making positive changes in her life. She finds support from family and friends who don't ...

  4. Drug Facts

    Medline Plus

    Full Text Available ... That People Abuse Alcohol Facts Bath Salts Facts Cocaine (Coke, Crack) Facts Heroin (Smack, Junk) Facts Marijuana (Weed, ... Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) ...

  5. Drug Facts

    Medline Plus

    Full Text Available ... Together The Link Between Drug Use and HIV/AIDS Treatment & Recovery Why Does a Person Need Treatment? ... of Health (NIH) , the principal biomedical and behavioral research agency of the United States Government. NIH is ...

  6. Drug Reactions

    Science.gov (United States)

    ... Kids and Teens Pregnancy and Childbirth Women Men Seniors Your Health Resources Healthcare Management End-of-Life Issues Insurance & Bills Self Care Working With Your Doctor Drugs, Procedures & Devices Over-the- ...

  7. Drug Facts

    Medline Plus

    Full Text Available ... prescription drugs. The addiction slowly took over his life. I need different people around me. To stop ... marijuana, "Cristina" is making positive changes in her life. She finds support from family and friends who ...

  8. Drug Resistance

    Science.gov (United States)

    ... Drug-resistance testing is also recommended for all pregnant women with HIV before starting HIV medicines and also in some pregnant women already taking HIV medicines. Pregnant women will work with their health ...

  9. Drug Facts

    Medline Plus

    Full Text Available ... Cocaine (Coke, Crack) Facts Heroin (Smack, Junk) Facts Marijuana (Weed, Pot) Facts MDMA (Ecstasy, Molly) Facts Meth (Crank, ... Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) Tobacco/Nicotine ...

  10. Drug Addiction

    Science.gov (United States)

    ... as hearing colors Impulsive behavior Rapid shifts in emotions Permanent mental changes in perception Rapid heart rate ... Drug use can negatively affect academic performance and motivation to excel in school. Legal issues. Legal problems ...

  11. Drug Facts

    Medline Plus

    Full Text Available ... That People Abuse Alcohol Facts Bath Salts Facts Cocaine (Coke, Crack) Facts Heroin (Smack, Junk) Facts Marijuana ( ... Watch Videos Information About Drugs Alcohol Bath Salts Cocaine Heroin Marijuana MDMA Meth Pain Medicines Spice (K2) ...

  12. Chiral Recognition in Molecular and Macromolecular Pairs of(S)- and (R)- 1-Cyano-2-Methylpropyl 4’((4-(8-Vinyloxyoctyloxy)Benzoyl) Biphenyl-4-Carboxylate Enantiomers

    Science.gov (United States)

    1994-06-30

    above please provide a graphical abstract of the paper ar, return it to the Editorial Office as soon as possible. 4oeg0 o F-99S or TS A& I DTI•’ I J. u1...TCLSICAON 2.LIMITATION OF ABSTRAC •F oFPORT OF THIS PAGE OF ABSTRACT . unclass ified Graphical Abstracts for Perkin Txans. 1 Example TITLE GRAPHICAL ... ABSTRACT AUTHORS’ N AMES Template (S)-II Chiral recognition in molecular and . -- macromolecular pairs of (S)- and -- (R)-i-cyano-2-methyipropyl 4’-{[4

  13. A simple model for solvation in mixed solvents. Applications to the stabilization and destabilization of macromolecular structures.

    Science.gov (United States)

    Schellman, J A

    1990-08-31

    The properties of a simple model for solvation in mixed solvents are explored in this paper. The model is based on the supposition that solvent replacement is a simple one-for-one substitution reaction at macromolecular sites which are independent of one another. This leads to a new form for the binding polynomial in which all terms are associated with ligand interchange rather than ligand addition. The principal solvent acts as one of the ligands. Thermodynamic analysis then shows that thermodynamic binding (i.e., selective interaction) depends on the properties of K'-1, whereas stoichiometric binding (site occupation) depends on K'. K' is a 'practical' interchange equilibrium constant given by (f3/f1)K, where K is the true equilibrium constant for the interchange of components 3 and 1 on the site and f3 and f4 denote their respective activity coefficients on the mole fraction scale. Values of K' less than unity lead to negative selective interaction. It is selective interaction and not occupation number which determines the thermodynamic effects of solvation. When K' greater than 100 on the mole fraction scale or K' greater than 2 on the molality scale (in water), the differences between stoichiometric binding and selective interaction become less than 1%. The theory of this paper is therefore necessary only for very weak binding constants. When K'-1 is small, large concentrations of the added solvent component are required to produce a thermodynamic effect. Under these circumstances the isotherms for the selective interaction and for the excess (or transfer) free energy are strongly dependent on the behavior of the activity coefficients of both solvent components. Two classes of behavior are described depending on whether the components display positive or negative deviations from Raoult's law. Examples which are discussed are aqueous solutions of urea and guanidinium chloride for positive deviations and of sucrose and glucose for negative deviations

  14. Macromolecular Rate Theory (MMRT) Provides a Thermodynamics Rationale to Underpin the Convergent Temperature Response in Plant Leaf Respiration

    Science.gov (United States)

    Liang, L. L.; Arcus, V. L.; Heskel, M.; O'Sullivan, O. S.; Weerasinghe, L. K.; Creek, D.; Egerton, J. J. G.; Tjoelker, M. G.; Atkin, O. K.; Schipper, L. A.

    2017-12-01

    Temperature is a crucial factor in determining the rates of ecosystem processes such as leaf respiration (R) - the flux of plant respired carbon dioxide (CO2) from leaves to the atmosphere. Generally, respiration rate increases exponentially with temperature as modelled by the Arrhenius equation, but a recent study (Heskel et al., 2016) showed a universally convergent temperature response of R using an empirical exponential/polynomial model whereby the exponent in the Arrhenius model is replaced by a quadratic function of temperature. The exponential/polynomial model has been used elsewhere to describe shoot respiration and plant respiration. What are the principles that underlie these empirical observations? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for chemical kinetics, is equivalent to the exponential/polynomial model. We re-analyse the data from Heskel et al. 2016 using MMRT to show this equivalence and thus, provide an explanation based on thermodynamics, for the convergent temperature response of R. Using statistical tools, we also show the equivalent explanatory power of MMRT when compared to the exponential/polynomial model and the superiority of both of these models over the Arrhenius function. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration is maximum (the so called optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the so called change in heat capacity for the system, ). The latter term originates from the change in heat capacity between an enzyme-substrate complex and an enzyme transition state complex in enzyme-catalysed metabolic reactions. From MMRT, we find the average Topt and Tinf of R are 67.0±1.2 °C and 41.4±0.7 °C across global sites. The average curvature (average

  15. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  16. Design, Synthesis and Characterization of Polyethylene-Based Macromolecular Architectures by Combining Polyhomologation with Powerful Linking Chemistry

    KAUST Repository

    Alkayal, Nazeeha

    2016-09-05

    Polyhomologation is a powerful method to prepare polyethylene-based materials with controlled molecular weight, topology and composition. This dissertation focuses on the discovery of new synthetic routes to prepare polyethylene-based macromolecular architectures by combining polyhomologation with highly orthogonal and efficient linking reactions such as Diels Alder, copper-catalyzed azide-alkyne cycloaddition (CuAAC), and Glaser. Taking advantage of functionalized polyhomologation initiators, as well as of the efficient coupling chemistry, we were able to synthesize various types of polymethylene (polyethylene)-based materials with complex architectures including linear co/terpolymers, graft terpolymers, and tadpole copolymers. In the first project, a facile synthetic route towards well-defined polymethylene-based co/terpolymers, by combining the anthracene/maleimide Diels–Alder reaction with polyhomologation, is presented. For the synthesis of diblock copolymers the following approach was applied: (a) synthesis of α-anthracene-ω-hydroxy-polymethylene by polyhomologation using tri (9 anthracene-methyl propyl ether) borane as the initiator, (b) synthesis of furan-protected-maleimide-terminated poly(ε-caprolactone) or polyethylene glycol and (c) Diels–Alder reaction between anthracene and maleimide-terminated polymers. In the case of triblock terpolymers, the α-anthracene-ω-hydroxy polymethylene was used as a macroinitiator for the ring-opening polymerization of D, L-lactide to afford an anthracene-terminated PM-b-PLA copolymer, followed by the Diels–Alder reaction with furan-protected maleimide-terminated poly (ε-caprolactone) or polyethylene glycol to give the triblock terpolymers. The synthetic methodology is general and potentially applicable to a range of polymers. The coupling reaction applied in the second project of this dissertation was copper-catalyzed “click” cycloaddition of azides and alkynes (CuAAC). Novel well-defined polyethylene

  17. Legal Drugs Are Good Drugs and Illegal Drugs Are Bad Drugs

    OpenAIRE

    Indrati, Dina; Prasetyo, Herry

    2011-01-01

    ABSTRACT : Labelling drugs are important issue nowadays in a modern society. Although it is generally believed that legal drugs are good drugs and illegal drugs are bad drugs, it is evident that some people do not aware about the side effects of drugs used. Therefore, a key contention of this philosophical essay is that explores harms minimisation policy, discuss whether legal drugs are good drugs and illegal drugs are bad drugs and explores relation of drugs misuse in a psychiatric nursing s...

  18. Vertical Distributions of Macromolecular Composition of Particulate Organic Matter in the Water Column of the Amundsen Sea Polynya During the Summer in 2014

    Science.gov (United States)

    Kim, Bo Kyung; Lee, SangHoon; Ha, Sun-Yong; Jung, Jinyoung; Kim, Tae Wan; Yang, Eun Jin; Jo, Naeun; Lim, Yu Jeong; Park, Jisoo; Lee, Sang Heon

    2018-02-01

    Macromolecular compositions (carbohydrates, proteins, and lipids) of particulate organic matter (POM) are crucial as a basic marine food quality. To date, however, one investigation has been carried out in the Amundsen Sea. Water samples for macromolecular compositions were obtained at selected seven stations in the Amundsen Sea Polynya (AP) during the austral summer in 2014 to investigate vertical characteristics of POM. We found that a high proportion of carbohydrates (45.9 ± 11.4%) in photic layer which are significantly different from the previous result (27.9 ± 6.9%) in the AP, 2012. The plausible reason could be the carbohydrate content strongly associated with biomass of the dominant species (Phaeocystis antarctica). The calorific content of food material (FM) in the photic layer obtained in this study is similar with that of the Ross Sea as one of the highest primary productivity regions in the Southern Ocean. Total concentrations, calorific values, and calorific contents of FM were higher in the photic layer than the aphotic layer, which implies that a significant fraction of organic matter underwent degradation. A decreasing proteins/carbohydrates (PRT/CHO) ratio with depth could be caused by preferential nitrogen loss during sinking period. Since the biochemical compositions of POM mostly fixed in photic layers could play an important role in transporting organic carbon into the deep sea, further detail studies on the variations in biochemical compositions and main controlling factors are needed to understand sinking mechanisms of POM.

  19. Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels.

    Science.gov (United States)

    Li, Panpan; Jin, Zhaoyu; Peng, Lele; Zhao, Fei; Xiao, Dan; Jin, Yong; Yu, Guihua

    2018-05-01

    Nanostructured conductive polymer hydrogels (CPHs) have been extensively applied in energy storage owing to their advantageous features, such as excellent electrochemical activity and relatively high electrical conductivity, yet the fabrication of self-standing and flexible electrode-based CPHs is still hampered by their limited mechanical properties. Herein, macromolecularly interconnected 3D graphene/nanostructured CPH is synthesized via self-assembly of CPHs and graphene oxide macrostructures. The 3D hybrid hydrogel shows uniform interconnectivity and enhanced mechanical properties due to the strong macromolecular interaction between the CPHs and graphene, thus greatly reducing aggregation in the fiber-shaping process. A proof-of-concept all-gel-state fibrous supercapacitor based on the 3D polyaniline/graphene hydrogel is fabricated to demonstrate the outstanding flexibility and mouldability, as well as superior electrochemical properties enabled by this 3D hybrid hydrogel design. The proposed device can achieve a large strain (up to ≈40%), and deliver a remarkable volumetric energy density of 8.80 mWh cm -3 (at power density of 30.77 mW cm -3 ), outperforming many fiber-shaped supercapacitors reported previously. The all-hydrogel design opens up opportunities in the fabrication of next-generation wearable and portable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    International Nuclear Information System (INIS)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years

  1. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    Energy Technology Data Exchange (ETDEWEB)

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I. [QuantumBio Inc., 2790 West College Avenue, State College, PA 16801 (United States); Merz, Kenneth M. Jr [University of Florida, Gainesville, Florida (United States); Westerhoff, Lance M., E-mail: lance@quantumbioinc.com [QuantumBio Inc., 2790 West College Avenue, State College, PA 16801 (United States)

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  2. Drugs@FDA: FDA Approved Drug Products

    Science.gov (United States)

    ... Cosmetics Tobacco Products Home Drug Databases Drugs@FDA Drugs@FDA: FDA Approved Drug Products Share Tweet Linkedin Pin it More sharing ... Download Drugs@FDA Express for free Search by Drug Name, Active Ingredient, or Application Number Enter at ...

  3. Study Drugs

    OpenAIRE

    Lam, Stephanie Phuong; Roosta, Natalie; Nielsen, Mikkel Fuhr; Meyer, Maria Holmgaard; Friis, Katrine Birk

    2016-01-01

    In recent years, students around the world, started to use preparations as Ritalin and Modafinil,also known as study drugs, to improve their cognitive abilities1. It is a common use among thestudents in United States of America, but it is a new tendency in Denmark. Our main focus is tolocate whether study drugs needs to be legalized in Denmark or not. To investigate this ourstarting point is to understand central ethical arguments in the debate. We have chosen twoarguments from Nick Bostrom a...

  4. Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Vishnevetskaya, N. S.; Niebuur, B.-J.; Koziolová, Eva; Lomkova, Ekaterina A.; Chytil, Petr; Etrych, Tomáš; Papadakis, C. M.

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1313-1325 ISSN 0303-402X R&D Projects: GA MZd(CZ) NV16-28600A; GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : drug delivery * HPMA copolymers * fluorescence correlation spectroscopy Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.723, year: 2016

  5. Drug Facts

    Medline Plus

    Full Text Available ... Phone Numbers and Websites Search Share Listen English Español Information about this page Click on the button ... sobre el abuso de drogas, y adicción. English Español About the National Institute on Drug Abuse (NIDA) | ...

  6. Drugs reviews

    African Journals Online (AJOL)

    Angel_D

    tests (LFTs) to monitor hepatotoxicity (liver [hepatic] damage) is uncommon in many resource-poor ... cholesterol ester storage disease. ... The problem with many patients is that they are taking several drugs often ... Urine, saliva and other body fluids may be coloured orange-red: this can be very alarming to patients.

  7. Drug resistance

    NARCIS (Netherlands)

    Gorter, J.A.; Potschka, H.; Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Delgado-Escueta, A.V.

    2012-01-01

    Drug resistance remains to be one of the major challenges in epilepsy therapy. Identification of factors that contribute to therapeutic failure is crucial for future development of novel therapeutic strategies for difficult-to-treat epilepsies. Several clinical studies have shown that high seizure

  8. Capping Drugs

    Indian Academy of Sciences (India)

    preventing disease in human beings or in animals. In the process ... of requirement. In the process, they may cause toxic side effects. .... the liver to release the physiologically active drug. Similarly ... patients addicted to alcohol. However, it is a ...

  9. Drug Facts

    Medline Plus

    Full Text Available ... Prevention Phone Numbers and Websites Search Share Listen English Español Information about this page Click on the ... información sobre el abuso de drogas, y adicción. English Español About the National Institute on Drug Abuse ( ...

  10. Drug abuse first aid

    Science.gov (United States)

    ... use of these drugs is a form of drug abuse. Medicines that are for treating a health problem ... about local resources. Alternative Names Overdose from drugs; Drug abuse first aid References Myck MB. Hallucinogens and drugs ...

  11. Drug Safety: Managing Multiple Drugs

    Science.gov (United States)

    ... This series is produced by Consumers Union and Consumer Reports Best Buy Drugs , a public information project sup- ported by grants from the Engelberg Foundation and the National Library of Medicine of ... Consumer and Prescriber Education Grant Program which is funded ...

  12. Recent in vivo advances in cell-penetrating peptide-assisted drug delivery.

    Science.gov (United States)

    Kurrikoff, Kaido; Gestin, Maxime; Langel, Ülo

    2016-01-01

    Delivery of macromolecular drugs is an important field in medical research. However, macromolecules are usually unable to cross the cell membrane without the assistance of a delivery system. Cell penetrating peptides (CPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into the cytosol or nucleus. In addition to macromolecular delivery, CPPs have been used to deliver smaller bioactive molecules. Therefore CPPs have become an intensive field of research for medical treatment. In this review, we highlight studies that include CPP in vivo disease models. We review different strategies and approaches that have been used, with specific attention on recent publications. The approaches that have been used include CPP-cargo covalent conjugation strategies and nanoparticle strategies. Various additional strategies have been used to achieve disease targeting, including active targeting, passive targeting, and combined active/passive strategies. As a result, delivery of various types of molecule has been achieved, including small drug molecules, proteins and nucleic acid-based macromolecules (e.g. siRNA, antisense nucleotides and plasmid DNA). Despite recent advances in the field, confusions surrounding CPP internalization mechanisms and intracellular trafficking are hindering the development of new and more efficient vectors. Nevertheless, the recent increase in the number of publications containing in vivo CPP utilization looks promising that the number of clinical trials would also increase in the near future.

  13. Legal Drugs Are Good Drugs And Illegal Drugs Are Bad Drugs

    Directory of Open Access Journals (Sweden)

    Dina Indrati

    2011-07-01

    Full Text Available ABSTRACT : Labelling drugs are important issue nowadays in a modern society. Although it is generally believed that legal drugs are good drugs and illegal drugs are bad drugs, it is evident that some people do not aware about the side effects of drugs used. Therefore, a key contention of this philosophical essay is that explores harms minimisation policy, discuss whether legal drugs are good drugs and illegal drugs are bad drugs and explores relation of drugs misuse in a psychiatric nursing setting and dual diagnosis.Key words: Legal, good drugs, illegal, bad drugs.

  14. Polymer nitric oxide donors potentiate the treatment of experimental solid tumours by increasing drug accumulation in the tumour tissue

    Czech Academy of Sciences Publication Activity Database

    Studenovský, Martin; Sivák, Ladislav; Sedláček, Ondřej; Konefal, Rafal; Horková, Veronika; Etrych, Tomáš; Kovář, Marek; Říhová, Blanka; Šírová, Milada

    2018-01-01

    Roč. 269, 10 January (2018), s. 214-224 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA14-12742S; GA MZd(CZ) NV16-28600A; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : enhanced permeability and retention effect * nitric oxide donor * polymer-based cytotoxic drugs Subject RIV: CD - Macromolecular Chemistry; EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Microbiology (MBU-M) Impact factor: 7.786, year: 2016

  15. Synthesis and properties of star HPMA copolymer nanocarriers synthesised by RAFT polymerisation designed for selective anticancer drug delivery and imaging

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    2015-01-01

    Roč. 15, č. 6 (2015), s. 839-850 ISSN 1616-5187 R&D Projects: GA ČR GPP207/11/P551; GA ČR(CZ) GCP207/12/J030; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : drug delivery systems * HPMA copolymers * pH-controlled release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.680, year: 2015

  16. Biodegradable multiblock polymers based on N-(2-hydroxypropyl)methacrylamide designed as drug carriers for tumor-targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Pola, Robert; Laga, Richard; Pechar, Michal

    2016-01-01

    Roč. 217, č. 15 (2016), s. 1690-1703 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA14-12742S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : biodegradable polymers * click chemistry * drug delivery systems Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  17. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  18. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  19. Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets.

    Science.gov (United States)

    Griffith, Jack D; Willcox, Smaranda; Powers, Dennis W; Nelson, Roger; Baxter, Bonnie K

    2008-04-01

    In this study, we utilized transmission electron microscopy to examine the contents of fluid inclusions in halite (NaCl) and solid halite crystals collected 650 m below the surface from the Late Permian Salado Formation in southeastern New Mexico (USA). The halite has been isolated from contaminating groundwater since deposition approximately 250 Ma ago. We show that abundant cellulose microfibers are present in the halite and appear remarkably intact. The cellulose is in the form of 5 nm microfibers as well as composite ropes and mats, and was identified by resistance to 0.5 N NaOH treatment and susceptibility to cellulase enzyme treatment. These cellulose microfibers represent the oldest native biological macromolecules to have been directly isolated, examined biochemically, and visualized (without growth or replication) to date. This discovery points to cellulose as an ideal macromolecular target in the search for life on other planets in our Solar System.

  20. An 'attachment kinetics-based' volume of fraction method for organic crystallization: a fluid-dynamic approach to macromolecular-crystal engineering

    International Nuclear Information System (INIS)

    Lappa, Marcello

    2003-01-01

    This analysis exhibits a strong interdisciplinary nature and deals with advances in protein (crystal) engineering models and computational methods as well as with novel results on the relative importance of 'controlling forces' in macromolecular crystal growth. The attention is focused in particular on microgravity fluid-dynamic aspects. From a numerical point of view, the growing crystal gives rise to a moving boundary problem. A 'kinetic-coefficient-based' volume tracking method is specifically and carefully developed according to the complex properties and mechanisms of macromolecular protein crystal growth taking into account the possibility of anisotropic (faceted) surface-orientation-dependent growth. The method is used to shed some light on the interplay of surface attachment kinetics and mass transport (diffusive or convective) in liquid phase and on several mechanisms still poorly understood. It is shown that the size of a growing crystal plays a 'critical role' in the relative importance of surface effects and in determining the intensity of convection. Convective effects, in turn, are found to impact growth rates, macroscopic structures of precipitates, particle size and morphology as well as the mechanisms driving growth. The paper introduces a novel computational method (that simulates the growth due to the slow addition of solute molecules to a lattice and can handle the shape of organic growing crystals under the influence of natural convection) and, at the same time, represents a quite exhaustive attempt to help organic crystal growers to discern the complex interrelations among the various parameters under one's control (that are not independent of one another) and to elaborate rational guidelines relating to physical factors that can influence the probability of success in crystallizing protein substances

  1. The effect of macromolecular crowding on the electrostatic component of barnase-barstar binding: a computational, implicit solvent-based study.

    Directory of Open Access Journals (Sweden)

    Helena W Qi

    Full Text Available Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder-protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein-protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase-barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders, this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered "effective" solvent dielectric to account for crowding, although the "best" effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the

  2. Role of the Na(+)/K(+)-ATPase beta-subunit in peptide-mediated transdermal drug delivery.

    Science.gov (United States)

    Wang, Changli; Ruan, Renquan; Zhang, Li; Zhang, Yunjiao; Zhou, Wei; Lin, Jun; Ding, Weiping; Wen, Longping

    2015-04-06

    In this work, we discovered that the Na(+)/K(+)-ATPase beta-subunit (ATP1B1) on epidermal cells plays a key role in the peptide-mediated transdermal delivery of macromolecular drugs. First, using a yeast two-hybrid assay, we screened candidate proteins that have specific affinity for the short peptide TD1 (ACSSSPSKHCG) identified in our previous work. Then, we verified the specific binding of TD1 to ATP1B1 in yeast and mammalian cells by a pull-down ELISA and an immunoprecipitation assay. Finally, we confirmed that TD1 mainly interacted with the C-terminus of ATP1B1. Our results showed that the interaction between TD1 and ATP1B1 affected not only the expression and localization of ATP1B1, but also the epidermal structure. In addition, this interaction could be antagonized by the exogenous competitor ATP1B1 or be inhibited by ouabain, which results in the decreased delivery of macromolecular drugs across the skin. The discovery of a critical role of ATP1B1 in the peptide-mediated transdermal drug delivery is of great significance for the future development of new transdermal peptide enhancers.

  3. Drugs Approved for Neuroblastoma

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for neuroblastoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  4. Drugs Approved for Leukemia

    Science.gov (United States)

    This page lists cancer drugs approved by the FDA for use in leukemia. The drug names link to NCI's Cancer Drug Information summaries. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters.

  5. Drugs Approved for Retinoblastoma

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for retinoblastoma. The list includes generic names and brand names. The drug names link to NCI’s Cancer Drug Information summaries.

  6. National Drug Code Directory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Drug Listing Act of 1972 requires registered drug establishments to provide the Food and Drug Administration (FDA) with a current list of all drugs manufactured,...

  7. Other Drugs of Abuse

    Science.gov (United States)

    ... People Abuse » Other Drugs of Abuse Other Drugs of Abuse Listen There are many other drugs of abuse, ... and Rehab Resources About the National Institute on Drug Abuse (NIDA) | About This Website Tools and Resources | Contact ...

  8. Urine drug screen

    Science.gov (United States)

    Drug screen - urine ... detect the presence of illegal and some prescription drugs in your urine. Their presence may indicate that you recently used these drugs. Some drugs may remain in your system for ...

  9. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    Science.gov (United States)

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  10. CPP-Assisted Intracellular Drug Delivery, What Is Next?

    Directory of Open Access Journals (Sweden)

    Junxiao Ye

    2016-11-01

    Full Text Available For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs, the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.

  11. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery

    Directory of Open Access Journals (Sweden)

    Dario Gioia

    2017-11-01

    Full Text Available Molecular docking is the methodology of choice for studying in silico protein-ligand binding and for prioritizing compounds to discover new lead candidates. Traditional docking simulations suffer from major limitations, mostly related to the static or semi-flexible treatment of ligands and targets. They also neglect solvation and entropic effects, which strongly limits their predictive power. During the last decade, methods based on full atomistic molecular dynamics (MD have emerged as a valid alternative for simulating macromolecular complexes. In principle, compared to traditional docking, MD allows the full exploration of drug-target recognition and binding from both the mechanistic and energetic points of view (dynamic docking. Binding and unbinding kinetic constants can also be determined. While dynamic docking is still too computationally expensive to be routinely used in fast-paced drug discovery programs, the advent of faster computing architectures and advanced simulation methodologies are changing this scenario. It is feasible that dynamic docking will replace static docking approaches in the near future, leading to a major paradigm shift in in silico drug discovery. Against this background, we review the key achievements that have paved the way for this progress.

  12. Drug targeting and the carriers. Application to chemoembolization and medical imaging

    International Nuclear Information System (INIS)

    Puisieux, F.; Benoit, J.P.; Roblot-Treupel, L.

    1987-01-01

    The last fifteen years have seen an increased interest in drug targeting which can be considered as a new way to control the body distribution of drugs when associated with an appropriate carrier. The systems currently studied possess different structures (macromolecular, vesicular and particular) and can be classified into carriers of first, second and third generation. After a brief review of the three types of carriers, this paper focuses on their respective interest in the different fields of radiology: carriers of first generation (microcapsules, microspheres) in chemoembolization, carriers of second generation (liposomes, nanocapsules, nanospheres) in conventional radiology, in computerized tomography, in scintigraphy, in RMN; carriers of third generation (monoclonal antibodies...) in immunoscintigraphy of tumors [fr

  13. Understanding drugs and behaviour

    National Research Council Canada - National Science Library

    Parrott, Andrew

    2004-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix xi Part I Drugs and Their Actions . . . . . . . . . . . . . . . . . . . . . . 1 Psychoactive drugs: introduction and overview . . . . . . . . 2 The brain...

  14. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs.

    Science.gov (United States)

    Sudhakar, Yajaman; Kuotsu, Ketousetuo; Bandyopadhyay, A K

    2006-08-10

    Rapid developments in the field of molecular biology and gene technology resulted in generation of many macromolecular drugs including peptides, proteins, polysaccharides and nucleic acids in great number possessing superior pharmacological efficacy with site specificity and devoid of untoward and toxic effects. However, the main impediment for the oral delivery of these drugs as potential therapeutic agents is their extensive presystemic metabolism, instability in acidic environment resulting into inadequate and erratic oral absorption. Parenteral route of administration is the only established route that overcomes all these drawbacks associated with these orally less/inefficient drugs. But, these formulations are costly, have least patient compliance, require repeated administration, in addition to the other hazardous effects associated with this route. Over the last few decades' pharmaceutical scientists throughout the world are trying to explore transdermal and transmucosal routes as an alternative to injections. Among the various transmucosal sites available, mucosa of the buccal cavity was found to be the most convenient and easily accessible site for the delivery of therapeutic agents for both local and systemic delivery as retentive dosage forms, because it has expanse of smooth muscle which is relatively immobile, abundant vascularization, rapid recovery time after exposure to stress and the near absence of langerhans cells. Direct access to the systemic circulation through the internal jugular vein bypasses drugs from the hepatic first pass metabolism leading to high bioavailability. Further, these dosage forms are self-administrable, cheap and have superior patient compliance. Developing a dosage form with the optimum pharmacokinetics is a promising area for continued research as it is enormously important and intellectually challenging. With the right dosage form design, local environment of the mucosa can be controlled and manipulated in order to

  15. Prescription Drug Abuse

    Science.gov (United States)

    ... drug abuse. And it's illegal, just like taking street drugs. Why Do People Abuse Prescription Drugs? Some people abuse prescription drugs ... common risk of prescription drug abuse is addiction . People who abuse ... as if they were taking street drugs. That's one reason most doctors won't ...

  16. Drug abuse

    International Nuclear Information System (INIS)

    Simon, T.R.; Seastrunk, J.W.; Malone, G.; Knesevich, M.A.; Hickey, D.C.

    1991-01-01

    This paper reports that this study used SPECT to examine patients who have abused drugs to determine whether SPECT could identify abnormalities and whether these findings have clinical importance. Fifteen patients with a history of substance abuse (eight with cocaine, six with amphetamine, and one with organic solvent) underwent SPECT performed with a triple-headed camera and Tc-99m HMPAO both early for blood flow and later for functional information. These images were then processed into a 3D videotaped display used in group therapy. All 15 patients had multiple areas of decreased tracer uptake peppered throughout the cortex but mainly affecting the parietal lobes, expect for the organic solvent abuser who had a large parietal defect. The videotapes were subjectively described by a therapist as an exceptional tool that countered patient denial of physical damage from substance abuse. Statistical studies of recidivism between groups is under way

  17. Personality, Drug Preference, Drug Use, and Drug Availability

    Science.gov (United States)

    Feldman, Marc; Boyer, Bret; Kumar, V. K.; Prout, Maurice

    2011-01-01

    This study examined the relationship between drug preference, drug use, drug availability, and personality among individuals (n = 100) in treatment for substance abuse in an effort to replicate the results of an earlier study (Feldman, Kumar, Angelini, Pekala, & Porter, 2007) designed to test prediction derived from Eysenck's (1957, 1967)…

  18. Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets

    Directory of Open Access Journals (Sweden)

    Arun Bahadur Gurung

    Full Text Available Plants are vital source of compounds offering plethora of therapeutic effects against various ailments without much side effects. Due to wide spread prevalence and drug resistance in cancer; there is an urgent need for discovery of new anti-cancer drugs. In the present study, selected novel anti-cancer plants derived compounds (cmpd1 to cmpd15 from Himalayan region were docked with defined molecular targets that regulate cell proliferation and apoptosis. The binding energies of best docked compounds ranged between −8.0 kcal/mol and −11.71 kcal/mol. Further analysis revealed critical hydrogen bonds and hydrophobic interactions between compounds and targets. The best docked compounds viz., cmpd15 against cyclin-dependent kinase-2 (CDK-2, cmpd8 against CDK-6 and cmpd9 against Topoisomerase I and II showed higher binding affinities than the native co-crystal ligands. The root mean square deviation (RMSD and potential energy plot clearly indicates the stability of the complexes during 20 ns molecular dynamics (MD simulation. The Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA binding energy analysis revealed Van der Waals energy component which is the principal stabilizing energy for their interactions except CDK-2/cmpd15 complex. The polar solvation energy did not have favorable contribution to their stabilization. The binding energy decomposition analysis revealed per residue contribution for each docked complexes. Physicochemical profile studies showed that majority of the compounds conform to Lipinski's rule of five (ROF having low to high blood brain barrier (BBB penetration, human intestinal absorption, plasma binding protein inhibition and P glycoprotein inhibition. Keywords: ADMET, Anticancer, MM/PBSA, Molecular docking, Molecular dynamics simulation and plant derived compounds

  19. Making more matrix: enhancing the deposition of dermal-epidermal junction components in vitro and accelerating organotypic skin culture development, using macromolecular crowding.

    Science.gov (United States)

    Benny, Paula; Badowski, Cedric; Lane, E Birgitte; Raghunath, Michael

    2015-01-01

    Skin is one of the most accessible tissues for experimental biomedical sciences, and cultured skin cells represent one of the longest-running clinical applications of stem cell therapy. However, culture-generated skin mimetic multicellular structures are still limited in their application by the time taken to develop these constructs in vitro and by their incomplete differentiation. The development of a functional dermal-epidermal junction (DEJ) is one of the most sought after aspects of cultured skin, and one of the hardest to recreate in vitro. At the DEJ, dermal fibroblasts and epidermal keratinocytes interact to form an interlinked basement membrane of extracellular matrix (ECM), which forms as a concerted action of both keratinocytes and fibroblasts. Successful formation of this basement membrane is essential for take and stability of cultured skin autografts. We studied interactive matrix production by monocultures and cocultures of primary human keratinocytes and fibroblasts in an attempt to improve the efficiency of basement membrane production in culture using mixed macromolecular crowding (mMMC); resulting ECM were enriched with the deposition of collagens I, IV, fibronectin, and laminin 332 (laminin 5) and also in collagen VII, the anchoring fibril component. Our in vitro data point to fibroblasts, rather than keratinocytes, as the major cellular contributors of the DEJ. Not only did we find more collagen VII production and deposition by fibroblasts in comparison to keratinocytes, but also observed that decellularized fibroblast ECM stimulated the production and deposition of collagen VII by keratinocytes, over and above that of keratinocyte monocultures. In confrontation cultures, keratinocytes and fibroblasts showed spontaneous segregation and demarcation of cell boundaries by DEJ protein deposition. Finally, mMMC was used in a classical organotypic coculture protocol with keratinocytes seeded over fibroblast-containing collagen gels. Applied during

  20. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    Directory of Open Access Journals (Sweden)

    Purbasha Sarkar

    Full Text Available Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm, and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF, cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we

  1. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-01-01

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be

  2. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507 (United States); Bricogne, Gerard, E-mail: terwilliger@lanl.gov [Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX (United Kingdom); Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507 (United States)

    2014-10-01

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be

  3. Drugs Approved for Rhabdomyosarcoma

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for rhabdomyosarcoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries. There may be drugs used in rhabdomyosarcoma that are not listed here.

  4. Information for Consumers (Drugs)

    Science.gov (United States)

    ... approved drugs Drugs@FDA Information on FDA-approved brand name and generic drugs including labeling and regulatory history Drugs with Approved Risk Evaluation and Mitigation Strategies (REMS) REMS is a risk management plan required by FDA for certain prescription drugs, ...

  5. Drugs and lactation

    International Nuclear Information System (INIS)

    Kelssering, G.; Aguiar, L.F.; Ribeiro, R.M.; Souza, A.Z. de

    1988-01-01

    Different kinds of drugs who can be transferred through the mother's milk to the lactant and its effects are showed in this work. A list of them as below: cardiotonics, diuretics, anti-hypertensives, beta-blockings, anti-arrythmics, drugs with gastrintestinal tract action, hormones, antibiotics and chemotherapeutics, citostatic drugs, central nervous system action drugs and anticoagulants drugs. (L.M.J.) [pt

  6. Cyclosporine A loaded electrospun poly(D,L-lactic acid)/poly(ethylene glycol) nanofibers: drug carriers utilizable in local immunosuppression

    Czech Academy of Sciences Publication Activity Database

    Širc, Jakub; Hampejsová, Z.; Trnovská, J.; Kozlík, P.; Hrib, Jakub; Hobzová, Radka; Zajícová, Alena; Holáň, Vladimír; Bosáková, Z.

    2017-01-01

    Roč. 34, č. 7 (2017), s. 1391-1401 ISSN 0724-8741 R&D Projects: GA ČR(CZ) GA16-04863S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:68378041 Keywords : cyclosporine A * drug release kinetics * LC-MS/MS Subject RIV: CD - Macromolecular Chemistry; JJ - Other Materials (UEM-P) OBOR OECD: Biochemical research methods; Nano-materials (production and properties) (UEM-P) Impact factor: 3.002, year: 2016

  7. In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realise coatings for drug-eluting stents

    International Nuclear Information System (INIS)

    Gagliardi, Mariacristina

    2012-01-01

    In the present paper, a preliminary in vitro analysis of biocompatibility of newly-synthesised acrylic copolymers is reported. In particular, with the aim to obtain coatings for drug-eluting stents, blood protein absorption and cytocompatibility were studied. For protein absorption tests, bovine serum albumin and bovine plasma fibrinogen were considered. Cytocompatibility was tested using C2C12 cell line as model, analysing the behaviour of polymeric matrices and of drug-eluting systems, obtained loading polymeric matrices with paclitaxel, an anti-mitotic drug, in order to evaluate the efficacy of a pharmacological treatment locally administered from these materials. Results showed that the amount of albumin absorbed was greater than the amount of fibrinogen (comprised in the range of 70%–85% and 10%–22% respectively) and it is a good behaviour in terms of haemocompatibility. Cell culture tests showed good adhesion properties and a relative poor proliferation. In addition, a strong effect related to drug elution and a correlation with the macromolecular composition were detected. In this preliminary analysis, tested materials showed good characteristics and can be considered possible candidates to obtain coatings for drug-eluting stents. Highlights: ► Preliminary evaluation of haemo- and cytocompatibility of newly-synthesised acrylic copolymers ► Materials adsorb higher amounts of albumin and with a faster rate than fibrinogen. ► Protein adsorption depended on the macromolecular composition and surface properties. ► Cell viability on pure samples and efficacy of paclitaxel release were verified in C2C12 cultures.

  8. In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realise coatings for drug-eluting stents

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Mariacristina, E-mail: mariacristina.gagliardi@iit.it

    2012-12-01

    In the present paper, a preliminary in vitro analysis of biocompatibility of newly-synthesised acrylic copolymers is reported. In particular, with the aim to obtain coatings for drug-eluting stents, blood protein absorption and cytocompatibility were studied. For protein absorption tests, bovine serum albumin and bovine plasma fibrinogen were considered. Cytocompatibility was tested using C2C12 cell line as model, analysing the behaviour of polymeric matrices and of drug-eluting systems, obtained loading polymeric matrices with paclitaxel, an anti-mitotic drug, in order to evaluate the efficacy of a pharmacological treatment locally administered from these materials. Results showed that the amount of albumin absorbed was greater than the amount of fibrinogen (comprised in the range of 70%-85% and 10%-22% respectively) and it is a good behaviour in terms of haemocompatibility. Cell culture tests showed good adhesion properties and a relative poor proliferation. In addition, a strong effect related to drug elution and a correlation with the macromolecular composition were detected. In this preliminary analysis, tested materials showed good characteristics and can be considered possible candidates to obtain coatings for drug-eluting stents. Highlights: Black-Right-Pointing-Pointer Preliminary evaluation of haemo- and cytocompatibility of newly-synthesised acrylic copolymers Black-Right-Pointing-Pointer Materials adsorb higher amounts of albumin and with a faster rate than fibrinogen. Black-Right-Pointing-Pointer Protein adsorption depended on the macromolecular composition and surface properties. Black-Right-Pointing-Pointer Cell viability on pure samples and efficacy of paclitaxel release were verified in C2C12 cultures.

  9. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    Science.gov (United States)

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  10. The influence of oxygen exposure time on the composition of macromolecular organic matter as revealed by surface sediments on the Murray Ridge (Arabian Sea)

    Science.gov (United States)

    Nierop, Klaas G. J.; Reichart, Gert-Jan; Veld, Harry; Sinninghe Damsté, Jaap S.

    2017-06-01

    The Arabian Sea represents a prime example of an open ocean extended oxygen minimum zone (OMZ) with low oxygen concentrations (down to less than 2 μM) between 200 and 1000 m water depth. The OMZ impinges on the ocean floor, affecting organic matter (OM) mineralization. We investigated impact of oxygen depletion on the composition of macromolecular OM (MOM) along a transect through the OMZ on the slopes of the Murray Ridge. This sub-marine high in the northern Arabian Sea, with the top at approximately 500 m below sea surface (mbss), intersects the OMZ. We analyzed sediments deposited in the core of OMZ (suboxic conditions), directly below the OMZ (dysoxic conditions) and well below the OMZ (fully oxic conditions). The upper 18 cm of sediments from three stations recovered at different depths were studied. MOM was investigated by Rock Eval and flash pyrolysis techniques. The MOM was of a predominant marine origin and inferred from their pyrolysis products, most biomolecules (tetra-alkylpyrrole pigments, polysaccharides, proteins and their transformation products, and polyphenols including phlorotannins), showed a progressive relative degradation with increasing exposure to oxygen. Alkylbenzenes and, in particular, aliphatic macromolecules increased relatively. The observed differences in MOM composition between sediment deposited under various bottom water oxygen conditions (i.e. in terms of concentration and exposure time) was much larger than within sediment cores, implying that early diagenetic alteration of organic matter depends largely on bottom water oxygenation rather than subsequent anaerobic degradation within the sediments, even at longer time scales.

  11. Effects of Macromolecular Crowding on Human Adipose Stem Cell Culture in Fetal Bovine Serum, Human Serum, and Defined Xeno-Free/Serum-Free Conditions.

    Science.gov (United States)

    Patrikoski, Mimmi; Lee, Michelle Hui Ching; Mäkinen, Laura; Ang, Xiu Min; Mannerström, Bettina; Raghunath, Michael; Miettinen, Susanna

    2017-01-01

    Microenvironment plays an important role for stem cell proliferation and differentiation. Macromolecular crowding (MMC) was recently shown to assist stem cells in forming their own matrix microenvironment in vitro. The ability of MMC to support adipose stem cell (ASC) proliferation, metabolism, and multilineage differentiation was studied under different conditions: fetal bovine serum- (FBS-) and human serum- (HS-) based media and xeno- and serum-free (XF/SF) media. Furthermore, the immunophenotype of ASCs under MMC was evaluated. The proliferative capacity of ASCs under MMC was attenuated in each condition. However, osteogenic differentiation was enhanced under MMC, shown by increased deposition of mineralized matrix in FBS and HS cultures. Likewise, significantly greater lipid droplet accumulation and increased collagen IV deposition indicated enhanced adipogenesis under MMC in FBS and HS cultures. In contrast, chondrogenic differentiation was attenuated in ASCs expanded under MMC. The ASC immunophenotype was maintained under MMC with significantly higher expression of CD54. However, MMC impaired metabolic activity and differentiation capacity of ASCs in XF/SF conditions. Both the supportive and inhibitory effects of MMC on ASC are culture condition dependent. In the presence of serum, MMC maintains ASC immunophenotype and enhances adipogenic and osteogenic differentiation at the cost of reduced proliferation.

  12. Drug Retention Times

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user.

  13. Drug Reactions - Multiple Languages

    Science.gov (United States)

    ... PDF Drug Interactions - HIV medicines, part 6 - English MP3 Drug Interactions - HIV medicines, part 6 - 简体中文 (Chinese, Simplified (Mandarin dialect)) MP3 Drug Interactions - HIV medicines, part 6 - English MP4 ...

  14. Teenagers and drugs

    Science.gov (United States)

    Teenagers and drugs; Symptoms of drug use in teenagers; Drug abuse - teenagers; Substance abuse - teenagers ... for a specialist who has experience working with teenagers. Do not hesitate, get help right away. The ...

  15. Drug Interaction API

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Interaction API is a web service for accessing drug-drug interactions. No license is needed to use the Interaction API. Currently, the API uses DrugBank for its...

  16. Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State.

    Science.gov (United States)

    Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J

    2017-08-18

    Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.

  17. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    Directory of Open Access Journals (Sweden)

    Kaur R

    2013-01-01

    Full Text Available Randeep Kaur, Ildiko BadeaDrug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Detonation nanodiamonds (NDs are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.Keywords: dispersion, surface functionalization, toxicity, carriers, fluorescence, light scattering

  18. Effects of Drugs

    Science.gov (United States)

    ... Used Drugs in the Past Drug Use Prevention Phone Numbers and Websites Search ... who aren't yet born. Drug use can hurt the body and the brain, sometimes forever. Drug use can also lead to addiction, a long-lasting brain disease in which people ...

  19. Drugs and Young People

    Science.gov (United States)

    Drug abuse is a serious public health problem. It affects almost every community and family in some way. Drug abuse in children and teenagers may pose a ... of young people may be more susceptible to drug abuse and addiction than adult brains. Abused drugs ...

  20. DRUG POLICY AND DRUG ADDICTION IN TURKEY

    OpenAIRE

    İLHAN, Mustafa Necmi

    2018-01-01

    The NationalStrategy Document on Drugs and Emergency Action Plan started with thecontributions of all the relevant institutions within the year of 2014 wasprepared and after that in accordance with the Prime Ministry Notice entitledFight Against Drugs published within this scope, the committees for FightAgainst Drugs were established (under the presidency of Deputy Prime Ministerand with the help of Ministry of Health, Ministry of Justice, Ministry of Laborand Social Security, Ministry of Fam...

  1. Drug interactions with oral sulphonylurea hypoglycaemic drugs.

    Science.gov (United States)

    Hansen, J M; Christensen, L K

    1977-01-01

    The effect of the oral sulphonylurea hypoglycaemic drugs may be influenced by a large number of other drugs. Some of these combinations (e.g. phenylbutazone, sulphaphenazole) may result in cases of severe hypoglycaemic collapse. Tolbutamide and chlorpropamide should never be given to a patient without a prior careful check of which medicaments are already being given. Similarly, no drug should be given to a diabetic treated with tolbutamide and chlorpropamide without consideration of the possibility of interaction phenomena.

  2. International Drug Control Policy

    Science.gov (United States)

    2009-08-24

    Common illegal drugs include cannabis, cocaine, opiates, and synthetic drugs. International trade in these drugs represents a lucrative and what...into effect, decriminalizing “personal use” amounts of marijuana , heroin, cocaine, methamphetamine, and other internationally sanctioned drugs.15 While...President Calls for Legalizing Marijuana ,”CNN.com, May 13, 2009. 15 “Mexico Legalizes Drug Possession,” Associated Press, August 21, 2009. 16 In support

  3. Long-range correlations, geometrical structure, and transport properties of macromolecular solutions. The equivalence of configurational statistics and geometrodynamics of large molecules.

    Science.gov (United States)

    Mezzasalma, Stefano A

    2007-12-04

    A special theory of Brownian relativity was previously proposed to describe the universal picture arising in ideal polymer solutions. In brief, it redefines a Gaussian macromolecule in a 4-dimensional diffusive spacetime, establishing a (weak) Lorentz-Poincaré invariance between liquid and polymer Einstein's laws for Brownian movement. Here, aimed at inquiring into the effect of correlations, we deepen the extension of the special theory to a general formulation. The previous statistical equivalence, for dynamic trajectories of liquid molecules and static configurations of macromolecules, and rather obvious in uncorrelated systems, is enlarged by a more general principle of equivalence, for configurational statistics and geometrodynamics. Accordingly, the three geodesic motion, continuity, and field equations could be rewritten, and a number of scaling behaviors were recovered in a spacetime endowed with general static isotropic metric (i.e., for equilibrium polymer solutions). We also dealt with universality in the volume fraction and, unexpectedly, found that a hyperscaling relation of the form, (average size) x (diffusivity) x (viscosity)1/2 ~f(N0, phi0) is fulfilled in several regimes, both in the chain monomer number (N) and polymer volume fraction (phi). Entangled macromolecular dynamics was treated as a geodesic light deflection, entaglements acting in close analogy to the field generated by a spherically symmetric mass source, where length fluctuations of the chain primitive path behave as azimuth fluctuations of its shape. Finally, the general transformation rule for translational and diffusive frames gives a coordinate gauge invariance, suggesting a widened Lorentz-Poincaré symmetry for Brownian statistics. We expect this approach to find effective applications to solutions of arbitrarily large molecules displaying a variety of structures, where the effect of geometry is more explicit and significant in itself (e.g., surfactants, lipids, proteins).

  4. Effects of pectin-containing diets on the hepatic macromolecular covalent binding of 2,6-dinitro-[3H]toluene in Fischer-344 rats

    International Nuclear Information System (INIS)

    deBethizy, J.D.; Sherrill, J.M.; Rickert, D.E.; Hamm, T.E. Jr.

    1983-01-01

    The influence of diets varying in pectin content on intestinal microfloral metabolic capacity of rats has been investigated as a possible mechanism for the alteration of toxicity of 2,6-dinitrotoluene (2,6-DNT) produced by these diets. Male F-344 rats were fed a purified diet (AIN-76A), AIN-76A plus 5% or 10% citrus pectin, or either of two cereal-based diets that vary in pectin content, NIH-07 or Purina Chow 5002. After 28 days, rats were given tritium-labeled 2,6-DNT (10 or 75 mg/kg po) and killed 12 hr later. Total hepatic macromolecular covalent binding (CVB) was determined by exhaustive extraction. The CVB of 2,6-DNT was found to be independent of diet at 10 mg/kg. However, at 75 mg/kg CVB was increased 40% by feeding 5% pectin in the purified diet and 90% by feeding 10% pectin in the purified diet. Animals fed Purina 5002 and NIH-07 had 135 and 150% higher CVB, respectively, than animals fed the purified diet alone and significantly greater CVB than animals fed the pectin supplemented diets. Elevated (two- to threefold) beta-glucuronidase and nitroreductase activities, microfloral enzymes proposed to be involved in the activation of 2,6-DNT to a toxicant, were found in the cecal contents of animals fed the pectin-containing diets which correlated with a two- to threefold increase in total number of cecal anaerobes. These results suggest that pectin-induced changes in microflora may enhance hepatoxicity after high doses of 2,6-DNT

  5. Indicators of Macromolecular Oxidative Damage and Antioxidant Defence Examinees Exposed to the Radar Frequencies 1.5 - 10.9 GHz

    International Nuclear Information System (INIS)

    Marjanovic, A.M.; Flajs, D.; Pavicic, I.; Domijan, A.

    2011-01-01

    Radar is an object-detection system which uses microwaves (Mw). As a result of increased use of radar there is a rising concern regarding health effects of Mw radiation on human body. Living organisms are complex electrochemical systems being evolved in a relatively narrow range of well-defined environmental parameters. For life to be maintained these parameters must be kept within their normal range, since deviations can induce biochemical effects causing cell function impairment and disease. Some theories indicate connection between Mw radiation, oxidative damage as well as antioxidant defence of organism. Aim of this study was to evaluate level and damage of macromolecular structures - proteins and lipids in blood of men occupationally exposed to Mw radiation. Concentration of glutathione (GSH), a known indicator of organism antioxidant defence, was also determined. Blood samples were collected from 27 male workers occupationally exposed to radar frequencies 1.5 to 10.9 GHz. Corresponding control group (N = 8) was a part of study. Concentrations of total and oxidised proteins, protein carbonyls, and GSH were measured by spectrophotometric method, while malondialdeyde (MDA), product of lipid peroxidation, was determined by high performance liquid chromatography (HPLC). Gained concentrations of oxidised proteins, GSH and MDA were presented in relation to total proteins. Concentration of oxidised proteins between control and exposed group of examinees did not show any significant statistical difference. However, concentration of GSH in exposed group was found considerably decreased, while concentration of MDA was found to be increased. Results indicate that Mw radiation of radar operating at frequencies 1.5 - 10.9 GHz could cause damage to proteins and lipids in addition to impairment of antioxidant defence of organism. (author)

  6. Multi-modal magnetic resonance imaging and histology of vascular function in xenografts using macromolecular contrast agent hyperbranched polyglycerol (HPG-GdF).

    Science.gov (United States)

    Baker, Jennifer H E; McPhee, Kelly C; Moosvi, Firas; Saatchi, Katayoun; Häfeli, Urs O; Minchinton, Andrew I; Reinsberg, Stefan A

    2016-01-01

    Macromolecular gadolinium (Gd)-based contrast agents are in development as blood pool markers for MRI. HPG-GdF is a 583 kDa hyperbranched polyglycerol doubly tagged with Gd and Alexa 647 nm dye, making it both MR and histologically visible. In this study we examined the location of HPG-GdF in whole-tumor xenograft sections matched to in vivo DCE-MR images of both HPG-GdF and Gadovist. Despite its large size, we have shown that HPG-GdF extravasates from some tumor vessels and accumulates over time, but does not distribute beyond a few cell diameters from vessels. Fractional plasma volume (fPV) and apparent permeability-surface area product (aPS) parameters were derived from the MR concentration-time curves of HPG-GdF. Non-viable necrotic tumor tissue was excluded from the analysis by applying a novel bolus arrival time (BAT) algorithm to all voxels. aPS derived from HPG-GdF was the only MR parameter to identify a difference in vascular function between HCT116 and HT29 colorectal tumors. This study is the first to relate low and high molecular weight contrast agents with matched whole-tumor histological sections. These detailed comparisons identified tumor regions that appear distinct from each other using the HPG-GdF biomarkers related to perfusion and vessel leakiness, while Gadovist-imaged parameter measures in the same regions were unable to detect variation in vascular function. We have established HPG-GdF as a biocompatible multi-modal high molecular weight contrast agent with application for examining vascular function in both MR and histological modalities. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data.

    Science.gov (United States)

    Terwilliger, Thomas C; Bricogne, Gerard

    2014-10-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.

  8. Effects of babassu nut oil on ischemia/reperfusion-induced leukocyte adhesion and macromolecular leakage in the microcirculation: Observation in the hamster cheek pouch

    Directory of Open Access Journals (Sweden)

    Barbosa Maria do

    2012-11-01

    Full Text Available Abstract Background The babassu palm tree is native to Brazil and is most densely distributed in the Cocais region of the state of Maranhão, in northeastern Brazil. In addition to the industrial use of refined babassu oil, the milk, the unrefined oil and the nuts in natura are used by families from several communities of African descendants as one of the principal sources of food energy. The objective of this study was to evaluate the effects of babassu oil on microvascular permeability and leukocyte-endothelial interactions induced by ischemia/reperfusion using the hamster cheek pouch microcirculation as experimental model. Methods Twice a day for 14 days, male hamsters received unrefined babassu oil (0.02 ml/dose [BO-2 group], 0.06 ml/dose [BO-6 group], 0.18 ml/dose [BO-18 group] or mineral oil (0.18 ml/dose [MO group]. Observations were made in the cheek pouch and macromolecular permeability increase induced by ischemia/reperfusion (I/R or topical application of histamine, as well as leukocyte-endothelial interaction after I/R were evaluated. Results The mean value of I/R-induced microvascular leakage, determined during reperfusion, was significantly lower in the BO-6 and BO-18 groups than in the MO one (P Conclusions Our findings suggest that unrefined babassu oil reduced microvascular leakage and protected against histamine-induced effects in postcapillary venules and highlights that these almost unexploited nut and its oil might be secure sources of food energy.

  9. Drug Products in the Medicaid Drug Rebate Program

    Data.gov (United States)

    U.S. Department of Health & Human Services — Active drugs that have been reported by participating drug manufacturers under the Medicaid Drug Rebate Program. All drugs are identified by National Drug Code...

  10. Drug-Target Kinetics in Drug Discovery.

    Science.gov (United States)

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  11. [Designer drugs in Jutland].

    Science.gov (United States)

    Simonsen, K W; Kaa, E

    2001-04-16

    The aim of this investigation was to examine illegal tablets and capsules seized in Jutland, the western part of Denmark, during the period 1995-1999. The drugs are described according to technical appearance (colour, logo, score, diameter) and content of synthetic drugs. All illegal tablets and capsules received during the period 1995-1999 (109 cases containing 192 different samples) were examined. MDMA was the most common drug and was seen during the entire period. Amphetamine was the second most common drug and has been frequently detected during the the last two years. Drugs like MDE, MBDB, BDB, and 2-CB were rarely seen and they disappeared quickly from the illegal market. MDA appeared on the market at the end of 1999. Only 53% of the tablets contained MDMA as the sole drug. Eighty-one percent of the tablets/capsules contained only one synthetic drug, whereas 13% contained a mixture of two or more synthetic drugs. Six per cent of the samples did not contain a euphoric drug/designer drug. The content of MDMA, MDE, and amphetamine in the tablets varied greatly. MDMA is apparently the drug preferred by the users, but still only half of the tablets contained MDMA as the only drug. The rest of the tablets contained either another synthetic drug or a mixture of drugs. In conclusion, the increasing supply of various drugs with different and unpredictable effects and of miscellaneous quality brings about the risk of serious and complicated intoxications.

  12. Medicaid Drug Rebate Program Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Product Data for Drugs in the Medicaid Drug Rebate Program. The rebate drug product data file contains the active drugs that have been reported by participating drug...

  13. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... Cigs Other Drugs Related Topics Addiction Science Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the Brain Genetics Global Health Health Consequences of Drug Misuse ...

  14. Food-drug interactions

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Dalhoff, Kim

    2002-01-01

    Interactions between food and drugs may inadvertently reduce or increase the drug effect. The majority of clinically relevant food-drug interactions are caused by food-induced changes in the bioavailability of the drug. Since the bioavailability and clinical effect of most drugs are correlated......, the bioavailability is an important pharmacokinetic effect parameter. However, in order to evaluate the clinical relevance of a food-drug interaction, the impact of food intake on the clinical effect of the drug has to be quantified as well. As a result of quality review in healthcare systems, healthcare providers...... are increasingly required to develop methods for identifying and preventing adverse food-drug interactions. In this review of original literature, we have tried to provide both pharmacokinetic and clinical effect parameters of clinically relevant food-drug interactions. The most important interactions are those...

  15. Drugs and drug policy in the Netherlands

    NARCIS (Netherlands)

    Leuw, Ed.

    1991-01-01

    The Dutch parliament enacted the revised Opium Act in 1976. This penal law is part of the Dutch drug policy framework that includes tolerance for nonconforming lifestyles, risk reduction in regard to the harmful health and social consequences of drug taking, and penal measures directed against

  16. Food-Drug Interactions

    Directory of Open Access Journals (Sweden)

    Arshad Yar Khan

    2011-03-01

    Full Text Available The effect of drug on a person may be different than expected because that drug interacts with another drug the person is taking (drug-drug interaction, food, beverages, dietary supplements the person is consuming (drug-nutrient/food interaction or another disease the person has (drug-disease interaction. A drug interaction is a situation in which a substance affects the activity of a drug, i.e. the effects are increased or decreased, or they produce a new effect that neither produces on its own. These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances. Regarding food-drug interactions physicians and pharmacists recognize that some foods and drugs, when taken simultaneously, can alter the body's ability to utilize a particular food or drug, or cause serious side effects. Clinically significant drug interactions, which pose potential harm to the patient, may result from changes in pharmaceutical, pharmacokinetic, or pharmacodynamic properties. Some may be taken advantage of, to the benefit of patients, but more commonly drug interactions result in adverse drug events. Therefore it is advisable for patients to follow the physician and doctors instructions to obtain maximum benefits with least fooddrug interactions. The literature survey was conducted by extracting data from different review and original articles on general or specific drug interactions with food. This review gives information about various interactions between different foods and drugs and will help physicians and pharmacists prescribe drugs cautiously with only suitable food supplement to get maximum benefit for the patient.

  17. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.

    Science.gov (United States)

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

  18. IMPROVING ACCESS TO DRUGS

    Directory of Open Access Journals (Sweden)

    Max Joseph Herman

    2012-11-01

    Full Text Available Although essentially not all therapies need drug intervention, drugs is still an important components in health sector, either in preventive, curative, rehabilitative or promotion efforts. Hence the access to drugs is a main problem, either in international or national scale even to the smallest unit. The problem on access to drugs is very complicated and cannot be separated especially from pharmacy management problems; moreover in general from the overall lack of policy development and effective of health policy, and also the implementation process. With the policy development and effective health policy, rational drug uses, sufficient health service budget so a country can overcome the health problems. Besides infrastructures, regulations, distribution and cultural influences; the main obstacles for drug access is drugs affordability if the price of drugs is an important part and determined by many factors, especially the drug status whether is still patent orgenerics that significantly decrease cost of health cares and enhance the drugs affordability. The determination of essential drug prices in developing countries should based on equity principal so that poor people pay cheaper and could afford the essential drugs. WHO predicts two third of world population can not afford the essential drugs in which in developing countries, some are because of in efficient budget allocation in consequence of drug distribution management, including incorrect selection and allocation and also irrational uses. In part these could be overcome by enhancing performances on the allocation pharmacy needs, including the management of information system, inventory management, stock management and the distribution. Key words: access, drugs, essential drugs, generic drugs

  19. Drug-induced thrombocytopenia

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Andersen, M; Hansen, P B

    1997-01-01

    induced by non-cytotoxic drugs is characterised by heterogeneous clinical picture and recovery is generally rapid. Although corticosteroids seem inefficient, we still recommend that severe symptomatic cases of drug-induced thrombocytopenia are treated as idiopathic thrombocytopenic purpura due...

  20. Drugs@FDA Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — Information about FDA-approved brand name and generic prescription and over-the-counter human drugs and biological therapeutic products. Drugs@FDA includes most of...

  1. Inflammatory Drug (NSAID)

    African Journals Online (AJOL)

    Inflammatory Drug (NSAID)-Induced Seizures in a Patient with HIV Infection ... interaction not supported by existing literature, and it is possible that the background HIV infection may have a role to .... Foods and Drug Administration and Control.

  2. CMS Drug Spending

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS has released several information products that provide spending information for prescription drugs in the Medicare and Medicaid programs. The CMS Drug Spending...

  3. Drug Enforcement Administration

    Science.gov (United States)

    ... de informacin confidencial --> DEA NEWS The Drug Enforcement Administration and Discovery Education name grand winner of Operation ... JUN 15 (Washington) The United States Drug Enforcement Administration, DEA Educational Foundation and Discovery Education awarded Porter ...

  4. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Antimicrobial (Drug) Resistance Go to Information for Researchers ► Credit: ... and infectious diseases. Why Is the Study of Antimicrobial (Drug) Resistance a Priority for NIAID? Over time, ...

  5. Drugs to be Discontinued

    Data.gov (United States)

    U.S. Department of Health & Human Services — Companies are required under Section 506C of the Federal Food, Drug, and Cosmetic Act (FD&C Act) (as amended by the Food and Drug Administration Safety and...

  6. Prescription Drug Profiles PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Prescription Drug Profiles Public Use Files (PUFs) drawn from Medicare prescription drug claims for the year of the date on which the...

  7. Prescription Drug Abuse

    Science.gov (United States)

    ... what the doctor prescribed, it is called prescription drug abuse. It could be Taking a medicine that ... purpose, such as getting high Abusing some prescription drugs can lead to addiction. These include opioids, sedatives, ...

  8. National Drug IQ Challenge

    Science.gov (United States)

    ... National Drug IQ Challenge 2017 Reto nacional del coeficiente intelectual (CI) sobre las drogas y el alcohol 2016 National Drug IQ Challenge 2016 Reto nacional del coeficiente intelectual (CI) sobre las drogas y el alcohol 2015 ...

  9. Medication/Drug Allergy

    Science.gov (United States)

    ... Training Home Conditions Medication/Drug Allergy Medication/Drug Allergy Make an Appointment Find a Doctor Ask a ... risk for adverse reactions to medications. Facts about Allergies The tendency to develop allergies may be inherited. ...

  10. Drugs in sport

    OpenAIRE

    Robinson, D

    2007-01-01

    This new edition includes fresh information regarding drugs use and abuse in sport and the updated worldwide anti-doping laws, and changes to the prohibited and therapeutic use exemption lists. The objectives of the book are to review/discuss the latest information on drugs in sport by considering i) actions of drugs and hormones, ii) medication and nutritional supplements in sport, iii) the latest doping control regulations of the WADA, iv) the use of banned therapeutic drugs in sport, v) an...

  11. Sociology of Drug Consumption

    OpenAIRE

    2004-01-01

    In this article which is a review of sociological ideas and studies of drug abusers in social situation, drug addiction steps (particularly alcohol, heroin and cocaine consumption) are revised and some explanations are made. Also, the role of some sociological ideas in drug addiction is considered in which Anomie Theory reads: "because of such duality, the individuals who are not satisfied with their role are in hurt." According to this theory, drug users choose seclusion and neglecting usual...

  12. Drug development in neuropsychopharmacology.

    Science.gov (United States)

    Fritze, Jürgen

    2008-03-01

    Personalized medicine is still in its infancy concerning drug development in neuropsychopharmacology. Adequate biomarkers with clinical relevance to drug response and/or tolerability and safety largely remain to be identified. Possibly, this kind of personalized medicine will first gain clinical relevance in the dementias. The clinical relevance of the genotyping of drug-metabolizing enzymes as suggested by drug licensing authorities for the pharmacokinetic evaluation of medicinal products needs to be proven in sound clinical trials.

  13. The effect of thermal processing in oil on the macromolecular integrity and acrylamide formation from starch of three potato cultivars organically fertilized

    Directory of Open Access Journals (Sweden)

    Theo Varzakas

    2016-12-01

    Full Text Available Starches from three organically produced cultivars of potato tuber (Lady Rosetta, Spunta and Voyager have been studied in relation to (i acrylamide production (ii macromolecular integrity after frying with extra virgin olive oil, soybean oil and corn oil. During cultivation, a treatment involving the combination of nitrogen, phosphorus and potassium fertilization under organic farming was applied (N1, P2, K1 where Ν1 = 1.3 g Ν per plant, P2 = 5.2 g P2O5 per plant, Κ1 = 4.0 g K2O per plant. Potatoes fried in olive oil retained the highest glucose concentrations for all cultivars 0.85 ± 0.2 mmol/kg, followed by 0.48 ± 0.2 for those fried in corn oil and 0.40 ± 0.1 mmol/kg for those fried in soybean oil. The highest average fructose concentration was recorded for the samples fried in corn oil as 0.81 ± 0.2, followed by 0.80 ± 0.2 and 0.68 ± 0.3 mmol/kg for the samples fried in olive and soybean oils, respectively. Asparagine was the most abundant free amino acid in the three varieties tested, followed by glutamine and aspartic acid. The mean initial concentration of asparagine in raw potatoes tubers was 42.8 ± 1.6 mmoles kg−1 for Lady Rosetta, 34.6 ± 1.2 mmoles kg−1 (dry weight for Spunta and 36.2 ± 2.0 mmoles kg−1 for Voyager. Lady Rosetta contained a significantly higher concentration of asparagine compared to the other two varieties (p < 0.05. The greatest quantity of acrylamide was observed in French fries derived from the potato variety Lady Rosetta when fried in soybean oil and it was 2,600 ± 440 μg/kg, followed by Spunta which was 2,280 ± 340 μg/kg and Voyager 1,120 ± 220 μg/kg. There is a significant reduction in the formation of acrylamide in the variety Voyager compared to the others (p = 0.05.

  14. Synthesis of novel complexing macromolecular surfactants and study of their interactions with cobalt for the development of a decontamination process of textiles in dense CO2 medium

    International Nuclear Information System (INIS)

    Chirat, M.

    2012-01-01

    This study is about textile decontamination in dense CO 2 (liquid CO 2 or supercritical CO 2 ). The study is carried out in the framework of decontamination of textile used in the nuclear industry. The dense CO 2 offers an alternative to aqueous medium used in the current process which generates a huge quantity of contaminated aqueous effluent requiring a post-treatment. Cobalt is the targeted contamination and can be found as ionic species or particles. The cobalt extraction in dense CO 2 is achieved with an additive: a complexing CO 2 -philic/CO 2 -phobic macromolecular surfactant. Several types of additives were synthesized by controlled free radical polymerization: gradient copolymers made with CO 2 -philic groups (silicone-based or fluorinated moieties) and CO 2 -phobic complexing groups (aceto acetoxy, di-ethylphosphonate or phosphonic acid moieties). The copolymer behavior in dense CO 2 was determined by phase diagram measurements (cloud point method) and their self-assembly in dense CO 2 was investigated by small angle neutron scattering. The fluorinated copolymers were found advantageous in terms of solubility. Nevertheless, the silicone-based copolymers showed solubilities which are compatible with the process, therefore they are a good alternative to avoid fluorinated compounds which are unwanted in the conditioning of nuclear wastes. The study of cobalt complexation by the copolymers (UV-vis spectroscopy and inductively coupled plasma-mass spectroscopy) established relations between the type of complexing group and the affinity with the cobalt. The solubility of copolymer-cobalt complexes in dense CO 2 is similar to those of copolymers. Moreover, the self-assembly study of the complex revealed a low aggregation. Finally, the synthesized copolymers were used in particle or ionic decontamination processes. In the case of ionic decontamination process, a rate of 70% of decontamination was reached with the use of gradient copolymer poly(1

  15. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-01

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  16. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Directory of Open Access Journals (Sweden)

    Hongda Chen

    2018-01-01

    Full Text Available In order to improve the efficiency of intumescent flame retardants (IFRs, a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine (PETAT with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP in combination with ammonium polyphosphate (APP via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR, and 1H nuclear magnetic resonance (NMR spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR. The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI values before and after soaking, underwritten laboratory-94 (UL-94 vertical burning test, cone calorimetric test (CCT, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS, and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR, total heat release (THR, and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  17. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-11

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  18. Drug interactions with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hesslewood, S.; Leung, E.

    1994-01-01

    Considerable information on documented drug and radiopharmaceutical interactions has been assembled in a tabular form, classified by the type of nuclear medicine study. The aim is to provide a rapid reference for nuclear medicine staff to look for such interactions. The initiation of drug chart monitoring or drug history taking of nuclear medicine patients and the reporting of such events are encouraged. (orig.)

  19. Drugs of Abuse.

    Science.gov (United States)

    Joseph, Donald E., Ed.

    This Drug Enforcement Administration publication delivers clear, scientific information about drugs in a factual, straightforward way, combined with precise photographs shot to scale. The publication is intended to serve as an A to Z guide for drug history, effects, and identification information. Chapters are included on the Controlled Substances…

  20. Drug Enforcement Administration.

    Science.gov (United States)

    Department of Justice, Washington, DC.

    This fact sheet contains information relating to drug abuse and abusers; drug traffic legislation; law enforcement; and descriptions of commonly used narcotics, stimulants, depressants, and hallucinogens. Also included is a short but explicit listing of audiovisual aids, an annotated bibliography, and drug identification pictures. The booklet…