WorldWideScience

Sample records for macromolecular crystallography mx

  1. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron

    International Nuclear Information System (INIS)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J.; Gee, Christine; Harrop, Stephen J.; Mudie, Nathan; Panjikar, Santosh; Price, Jason R.; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom

    2015-01-01

    The macromolecular crystallography beamline MX1 at the Australian Synchrotron is described. MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented

  2. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments

    International Nuclear Information System (INIS)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren

    2010-01-01

    MxCuBE is a beamline control environment optimized for the needs of macromolecular crystallography. This paper describes the design of the software and the features that MxCuBE currently provides. The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1

  3. Automated data collection for macromolecular crystallography.

    Science.gov (United States)

    Winter, Graeme; McAuley, Katherine E

    2011-09-01

    An overview, together with some practical advice, is presented of the current status of the automation of macromolecular crystallography (MX) data collection, with a focus on MX beamlines at Diamond Light Source, UK. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  5. Macromolecular crystallography research at Trombay

    International Nuclear Information System (INIS)

    Kannan, K.K.; Chidamrabam, R.

    1983-01-01

    Neutron diffraction studies of hydrogen positions in small molecules of biological interest at Trombay have provided valuable information that has been used in protein and enzyme structure model-building and in developing hydrogen bond potential functions. The new R-5 reactor is expected to provide higher neutron fluxes and also make possible small-angle neutron scattering studies of large biomolecules and bio-aggregates. In the last few years infrastructure facilities have also been established for macromolecular x-ray crystallography research. Meanwhile, the refinement of carbonic hydrases and lyysozyme structures have been carried out and interesting results obtained on protein dynamics and structure-function relationships. Some interesting presynaptic toxin phospholipases have also taken up for study. (author)

  6. Status and prospects of macromolecular crystallography

    Indian Academy of Sciences (India)

    technique that could be completely automated in most cases. ... major challenge in macromolecular crystallography today is ... tial characterization of crystals in the home source and make a ... opportunities for a generation of structural biolo-.

  7. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams. © 2012 International Union of Crystallography

  8. The design of macromolecular crystallography diffraction experiments

    International Nuclear Information System (INIS)

    Evans, Gwyndaf; Axford, Danny; Owen, Robin L.

    2011-01-01

    Thoughts about the decisions made in designing macromolecular X-ray crystallography experiments at synchrotron beamlines are presented. The measurement of X-ray diffraction data from macromolecular crystals for the purpose of structure determination is the convergence of two processes: the preparation of diffraction-quality crystal samples on the one hand and the construction and optimization of an X-ray beamline and end station on the other. Like sample preparation, a macromolecular crystallography beamline is geared to obtaining the best possible diffraction measurements from crystals provided by the synchrotron user. This paper describes the thoughts behind an experiment that fully exploits both the sample and the beamline and how these map into everyday decisions that users can and should make when visiting a beamline with their most precious crystals

  9. In situ macromolecular crystallography using microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny; Owen, Robin L.; Aishima, Jun [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Morgan, Ann W.; Robinson, James I. [University of Leeds, Leeds LS9 7FT (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Research Complex at Harwell, Rutherford Appleton Laboratory R92, Didcot, Oxfordshire OX11 0DE (United Kingdom); Moraes, Isabel [Imperial College, London SW7 2AZ (United Kingdom); Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2012-04-17

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

  10. In situ macromolecular crystallography using microbeams

    International Nuclear Information System (INIS)

    Axford, Danny; Owen, Robin L.; Aishima, Jun; Foadi, James; Morgan, Ann W.; Robinson, James I.; Nettleship, Joanne E.; Owens, Raymond J.; Moraes, Isabel; Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S.; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams

  11. Celebrating macromolecular crystallography: A personal perspective

    Directory of Open Access Journals (Sweden)

    Abad-Zapatero, Celerino

    2015-04-01

    Full Text Available The twentieth century has seen an enormous advance in the knowledge of the atomic structures that surround us. The discovery of the first crystal structures of simple inorganic salts by the Braggs in 1914, using the diffraction of X-rays by crystals, provided the critical elements to unveil the atomic structure of matter. Subsequent developments in the field leading to macromolecular crystallography are presented with a personal perspective, related to the cultural milieu of Spain in the late 1950’s. The journey of discovery of the author, as he developed professionally, is interwoven with the expansion of macromolecular crystallography from the first proteins (myoglobin, hemoglobin to the ‘coming of age’ of the field in 1971 and the discoveries that followed, culminating in the determination of the structure of the ribosomes at the turn of the century. A perspective is presented exploring the future of the field and also a reflection about the future generations of Spanish scientists.El siglo XX ha sido testigo del increíble avance que ha experimentado el conocimiento de la estructura atómica de la materia que nos rodea. El descubrimiento de las primeras estructuras atómicas de sales inorgánicas por los Bragg en 1914, empleando difracción de rayos X con cristales, proporcionó los elementos clave para alcanzar tal conocimiento. Posteriores desarrollos en este campo, que condujeron a la cristalografía macromolecular, se presentan aquí desde una perspectiva personal, relacionada con el contexto cultural de la España de la década de los 50. La experiencia del descubrimiento científico, durante mi desarrollo profesional, se integra en el desarrollo de la cristalografía macromolecular, desde las primeras proteínas (míoglobina y hemoglobina, hasta su madurez en 1971 que, con los posteriores descubrimientos, culmina con la determinación del la estructura del ribosoma. Asimismo, se explora el futuro de esta disciplina y se

  12. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines.

    Science.gov (United States)

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

  13. Macromolecular crystallography beamline X25 at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E., E-mail: berman@bnl.gov [Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000 (United States)

    2014-04-08

    A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented. Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  14. Macromolecular crystallography beamline X25 at the NSLS

    International Nuclear Information System (INIS)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented. Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community

  15. Macromolecular neutron crystallography at the Protein Crystallography Station (PCS)

    OpenAIRE

    Kovalevsky, Andrey; Fisher, Zoe; Johnson, Hannah; Mustyakimov, Marat; Waltman, Mary Jo; Langan, Paul

    2010-01-01

    The Protein Crystallography Station user facility at Los Alamos National Laboratory not only offers open access to a high-performance neutron beamline, but also actively supports and develops new methods in protein expression, deuteration, purification, robotic crystallization and the synthesis of substrates with stable isotopes and provides assistance with data-reduction and structure-refinement software and comprehensive neutron structure analysis.

  16. ISPyB: an information management system for synchrotron macromolecular crystallography.

    Science.gov (United States)

    Delagenière, Solange; Brenchereau, Patrice; Launer, Ludovic; Ashton, Alun W; Leal, Ricardo; Veyrier, Stéphanie; Gabadinho, José; Gordon, Elspeth J; Jones, Samuel D; Levik, Karl Erik; McSweeney, Seán M; Monaco, Stéphanie; Nanao, Max; Spruce, Darren; Svensson, Olof; Walsh, Martin A; Leonard, Gordon A

    2011-11-15

    Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.

  17. Recent Major Improvements to the ALS Sector 5 Macromolecular Crystallography Beamlines

    International Nuclear Information System (INIS)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis; McKean, John P.; Trame, Christine; Dickert, Jeff; Rozales, Anthony; Dauz, Azer; Taylor, John; Zwart, Petrus; Duarte, Robert; Padmore, Howard; McDermott, Gerry; Adams, Paul

    2007-01-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which together formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller

  18. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  19. A new paradigm for macromolecular crystallography beamlines derived from high-pressure methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Fourme, Roger, E-mail: roger.fourme@synchrotron-soleil.fr [Synchrotron SOLEIL, BP 48, Saint Aubin, 91192 Gif-sur-Yvette (France); Girard, Eric [IBS (UMR 5075 CEA-CNRS-UJF-PSB), 41 rue Jules Horowitz, 38027 Grenoble Cedex (France); Dhaussy, Anne-Claire [CRISMAT, ENSICAEN, 6 Boulevard du Maréchal Juin, 14000 Caen (France); Medjoubi, Kadda [Synchrotron SOLEIL, BP 48, Saint Aubin, 91192 Gif-sur-Yvette (France); Prangé, Thierry [LCRB (UMR 8015 CNRS), Université Paris Descartes, Faculté de Pharmacie, 4 avenue de l’Observatoire, 75270 Paris (France); Ascone, Isabella [ENSCP (UMR CNRS 7223), 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mezouar, Mohamed [ESRF, BP 220, 38043 Grenoble (France); Kahn, Richard [IBS (UMR 5075 CEA-CNRS-UJF-PSB), 41 rue Jules Horowitz, 38027 Grenoble Cedex (France)

    2011-01-01

    Macromolecular crystallography at high pressure (HPMX) is a mature technique. Shorter X-ray wavelengths increase data collection efficiency on cryocooled crystals. Extending applications and exploiting spin-off of HPMX will require dedicated synchrotron radiation beamlines based on a new paradigm. Biological structures can now be investigated at high resolution by high-pressure X-ray macromolecular crystallography (HPMX). The number of HPMX studies is growing, with applications to polynucleotides, monomeric and multimeric proteins, complex assemblies and even a virus capsid. Investigations of the effects of pressure perturbation have encompassed elastic compression of the native state, study of proteins from extremophiles and trapping of higher-energy conformers that are often of biological interest; measurements of the compressibility of crystals and macromolecules were also performed. HPMX results were an incentive to investigate short and ultra-short wavelengths for standard biocrystallography. On cryocooled lysozyme crystals it was found that the data collection efficiency using 33 keV photons is increased with respect to 18 keV photons. This conclusion was extended from 33 keV down to 6.5 keV by exploiting previously published data. To be fully exploited, the potential of higher-energy photons requires detectors with a good efficiency. Accordingly, a new paradigm for MX beamlines was suggested, using conventional short and ultra-short wavelengths, aiming at the collection of very high accuracy data on crystals under standard conditions or under high pressure. The main elements of such beamlines are outlined.

  20. Protein crystal growth studies at the Center for Macromolecular Crystallography

    International Nuclear Information System (INIS)

    DeLucas, Lawrence J.; Long, Marianna M.; Moore, Karen M.; Harrington, Michael; McDonald, William T.; Smith, Craig D.; Bray, Terry; Lewis, Johanna; Crysel, William B.; Weise, Lance D.

    2000-01-01

    The Center for Macromolecular Crystallography (CMC) has been involved in fundamental studies of protein crystal growth (PCG) in microgravity and in our earth-based laboratories. A large group of co-investigators from academia and industry participated in these experiments by providing protein samples and by performing the x-ray crystallographic analysis. These studies have clearly demonstrated the usefulness of a microgravity environment for enhancing the quality and size of protein crystals. Review of the vapor diffusion (VDA) PCG results from nineteen space shuttle missions is given in this paper

  1. Data Management System at the Photon Factory Macromolecular Crystallography Beamline

    International Nuclear Information System (INIS)

    Yamada, Y; Matsugaki, N; Chavas, L M G; Hiraki, M; Igarashi, N; Wakatsuki, S

    2013-01-01

    Macromolecular crystallography is a very powerful tool to investigate three-dimensional structures of macromolecules at the atomic level, and is widely spread among structural biology researchers. Due to recent upgrades of the macromolecular crystallography beamlines at the Photon Factory, beamline throughput has improved, allowing more experiments to be conducted during a user's beam time. Although the number of beamlines has increased, so has the number of beam time applications. Consequently, both the experimental data from users' experiments and data derived from beamline operations have dramatically increased, causing difficulties in organizing these diverse and large amounts of data for the beamline operation staff and users. To overcome this problem, we have developed a data management system by introducing commercial middleware, which consists of a controller, database, and web servers. We have prepared several database projects using this system. Each project is dedicated to a certain aspect such as experimental results, beam time applications, beam time schedule, or beamline operation reports. Then we designed a scheme to link all the database projects.

  2. In-vacuum long-wavelength macromolecular crystallography.

    Science.gov (United States)

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-03-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.

  3. The monitoring system for macromolecular crystallography beamlines at BSRF

    International Nuclear Information System (INIS)

    Guo Xian; Chang Guangcai; Gan Quan; Shi Hong; Liu Peng; Sun Gongxing

    2012-01-01

    The monitoring system for macromolecular crystallography beamlines at BSRF (Beijing Synchrotron Radiation Facility) based on LabVIEW is introduced. In order to guarantee a safe, stable, and reliable running for the beamline devices, the system monitors the state of vacuum, cooling-water, optical components, beam, Liquid nitrogen in the beamlines in real time, detects faults and gives the alarm timely. System underlying uses the driver developed for the field devices for data acquisition, Data of collection is uploaded to the data-sharing platform makes it accessible via a network share. The upper system divides modules according to the actual function, and establishes the main interface of the monitoring system of beamline. To Facilitate data storage, management and inquiry, the system use LabSQL toolkit to achieve the interconnection with MySQL database which data of collection is sent to. (authors)

  4. JBluIce-EPICS control system for macromolecular crystallography

    International Nuclear Information System (INIS)

    Stepanov, S.; Makarov, O.; Hilgart, M.; Pothineni, S.; Urakhchin, A.; Devarapalli, S.; Yoder, D.; Becker, M.; Ogata, C.; Sanishvili, R.; Nagarajan, V.; Smith, J.L.; Fischetti, R.F.

    2011-01-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.

  5. A beamline for macromolecular crystallography at the Advanced Light Source

    International Nuclear Information System (INIS)

    Padmore, H.A.; Earnest, T.; Kim, S.H.; Thompson, A.C.; Robinson, A.L.

    1994-08-01

    A beamline for macromolecular crystallography has been designed for the ALS. The source will be a 37-pole wiggler with a, 2-T on-axis peak field. The wiggler will illuminate three beamlines, each accepting 3 mrad of horizontal aperture. The central beamline will primarily be used for multiple-wavelength anomalous dispersion measurements in the wavelength range from 4 to 0.9 angstrom. The beamline optics will comprise a double-crystal monochromator with a collimating pre-mirror and a double-focusing mirror after the monochromator. The two side stations will be used for fixed-wavelength experiments within the wavelength range from 1.5 to 0.95 angstrom. The optics will consist of a conventional vertically focusing cylindrical mirror followed by an asymmetrically cut curved-crystal monochromator. This paper presents details of the optimization of the wiggler source for crystallography, gives a description of the beamline configuration, and discusses the reasons for the choices made

  6. Outrunning free radicals in room-temperature macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Robinson, James I.; Morgan, Ann W. [University of Leeds, Leeds LS9 7FT (United Kingdom); Doré, Andrew S. [Heptares Therapeutics Ltd, BioPark, Welwyn Garden City AL7 3AX (United Kingdom); Lebon, Guillaume; Tate, Christopher G. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Fry, Elizabeth E.; Ren, Jingshan [The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2012-06-15

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A{sub 2A} adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.

  7. Outrunning free radicals in room-temperature macromolecular crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A 2A adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography

  8. Progress in rational methods of cryoprotection in macromolecular crystallography

    International Nuclear Information System (INIS)

    Alcorn, Thomas; Juers, Douglas H.

    2010-01-01

    Measurements of the average thermal contractions (294→72 K) of 26 different cryosolutions are presented and discussed in conjunction with other recent advances in the rational design of protocols for cryogenic cooling in macromolecular crystallography. Cryogenic cooling of macromolecular crystals is commonly used for X-ray data collection both to reduce crystal damage from radiation and to gather functional information by cryogenically trapping intermediates. However, the cooling process can damage the crystals. Limiting cooling-induced crystal damage often requires cryoprotection strategies, which can involve substantial screening of solution conditions and cooling protocols. Here, recent developments directed towards rational methods for cryoprotection are described. Crystal damage is described in the context of the temperature response of the crystal as a thermodynamic system. As such, the internal and external parts of the crystal typically have different cryoprotection requirements. A key physical parameter, the thermal contraction, of 26 different cryoprotective solutions was measured between 294 and 72 K. The range of contractions was 2–13%, with the more polar cryosolutions contracting less. The potential uses of these results in the development of cryocooling conditions, as well as recent developments in determining minimum cryosolution soaking times, are discussed

  9. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    International Nuclear Information System (INIS)

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; Ravelli, Raimond B. G.; Carmichael, Ian; Kneale, Geoff; McGeehan, John E.

    2015-01-01

    Quantitative X-ray induced radiation damage studies employing a model protein–DNA complex revealed a striking partition of damage sites. The DNA component was observed to be far more resistant to specific damage compared with the protein. Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1 —C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses

  10. Polycapillary x-ray optics for macromolecular crystallography

    International Nuclear Information System (INIS)

    Owens, S.M.; Gibson, W.M.; Carter, D.C.; Sisk, R.C.; Ho, J.X.

    1996-01-01

    Polycapillary x-ray optics have found potential application in many different fields, including antiscatter and magnification in mammography, radiography, x-ray fluorescence, x-ray lithography, and x-ray diffraction techniques. In x-ray diffraction, an optic is used to collect divergent x-rays from a point source and redirect them into a quasi-parallel, or slightly focused beam. Monolithic polycapillary optics have been developed recently for macromolecular crystallography and have already shown considerable gains in diffracted beam intensity over pinhole collimation. Development is being pursued through a series of simulations and prototype optics. Many improvements have been made over the stage 1 prototype reported previously, which include better control over the manufacturing process, reducing the diameter of the output beam, and addition of a slight focusing at the output of the optic to further increase x-ray flux at the sample. The authors report the characteristics and performance of the stage 1 and stage 2 optics

  11. Macromolecular crystallography with a large format CMOS detector

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Jay C., E-mail: jcnix@lbl.gov [Molecular Biology Consortium 12003 S. Pulaski Rd. #166 Alsip, IL 60803 U.S.A (United States)

    2016-07-27

    Recent advances in CMOS technology have allowed the production of large surface area detectors suitable for macromolecular crystallography experiments [1]. The Molecular Biology Consortium (MBC) Beamline 4.2.2 at the Advanced Light Source in Berkeley, CA, has installed a 2952 x 2820 mm RDI CMOS-8M detector with funds from NIH grant S10OD012073. The detector has a 20nsec dead pixel time and performs well with shutterless data collection strategies. The sensor obtains sharp point response and minimal optical distortion by use of a thin fiber-optic plate between the phosphor and sensor module. Shutterless data collections produce high-quality redundant datasets that can be obtained in minutes. The fine-sliced data are suitable for processing in standard crystallographic software packages (XDS, HKL2000, D*TREK, MOSFLM). Faster collection times relative to the previous CCD detector have resulted in a record number of datasets collected in a calendar year and de novo phasing experiments have resulted in publications in both Science and Nature [2,3]. The faster collections are due to a combination of the decreased overhead requirements of shutterless collections combined with exposure times that have decreased by over a factor of 2 for images with comparable signal to noise of the NOIR-1 detector. The overall increased productivity has allowed the development of new beamline capabilities and data collection strategies.

  12. New Paradigm for Macromolecular Crystallography Experiments at SSRL: Automated Crystal Screening And Remote Data Collection

    International Nuclear Information System (INIS)

    Soltis, S.M.; Cohen, A.E.; Deacon, A.; Eriksson, T.; Gonzalez, A.; McPhillips, S.; Chui, H.; Dunten, P.; Hollenbeck, M.; Mathews, I.; Miller, M.; Moorhead, P.; Phizackerley, R.P.; Smith, C.; Song, J.; Bedem, H. van dem; Ellis, P.; Kuhn, P.; McPhillips, T.; Sauter, N.; Sharp, K.

    2009-01-01

    Complete automation of the macromolecular crystallography experiment has been achieved at Stanford Synchrotron Radiation Lightsource (SSRL) through the combination of robust mechanized experimental hardware and a flexible control system with an intuitive user interface. These highly reliable systems have enabled crystallography experiments to be carried out from the researchers' home institutions and other remote locations while retaining complete control over even the most challenging systems. A breakthrough component of the system, the Stanford Auto-Mounter (SAM), has enabled the efficient mounting of cryocooled samples without human intervention. Taking advantage of this automation, researchers have successfully screened more than 200 000 samples to select the crystals with the best diffraction quality for data collection as well as to determine optimal crystallization and cryocooling conditions. These systems, which have been deployed on all SSRL macromolecular crystallography beamlines and several beamlines worldwide, are used by more than 80 research groups in remote locations, establishing a new paradigm for macromolecular crystallography experimentation.

  13. Towards a compact and precise sample holder for macromolecular crystallography.

    Science.gov (United States)

    Papp, Gergely; Rossi, Christopher; Janocha, Robert; Sorez, Clement; Lopez-Marrero, Marcos; Astruc, Anthony; McCarthy, Andrew; Belrhali, Hassan; Bowler, Matthew W; Cipriani, Florent

    2017-10-01

    Most of the sample holders currently used in macromolecular crystallography offer limited storage density and poor initial crystal-positioning precision upon mounting on a goniometer. This has now become a limiting factor at high-throughput beamlines, where data collection can be performed in a matter of seconds. Furthermore, this lack of precision limits the potential benefits emerging from automated harvesting systems that could provide crystal-position information which would further enhance alignment at beamlines. This situation provided the motivation for the development of a compact and precise sample holder with corresponding pucks, handling tools and robotic transfer protocols. The development process included four main phases: design, prototype manufacture, testing with a robotic sample changer and validation under real conditions on a beamline. Two sample-holder designs are proposed: NewPin and miniSPINE. They share the same robot gripper and allow the storage of 36 sample holders in uni-puck footprint-style pucks, which represents 252 samples in a dry-shipping dewar commonly used in the field. The pucks are identified with human- and machine-readable codes, as well as with radio-frequency identification (RFID) tags. NewPin offers a crystal-repositioning precision of up to 10 µm but requires a specific goniometer socket. The storage density could reach 64 samples using a special puck designed for fully robotic handling. miniSPINE is less precise but uses a goniometer mount compatible with the current SPINE standard. miniSPINE is proposed for the first implementation of the new standard, since it is easier to integrate at beamlines. An upgraded version of the SPINE sample holder with a corresponding puck named SPINEplus is also proposed in order to offer a homogenous and interoperable system. The project involved several European synchrotrons and industrial companies in the fields of consumables and sample-changer robotics. Manual handling of mini

  14. The Joint Structural Biology Group beam lines at the ESRF: Modern macromolecular crystallography

    CERN Document Server

    Mitchell, E P

    2001-01-01

    Macromolecular crystallography has evolved considerably over the last decade. Data sets in under an hour are now possible on high throughput beam lines leading to electron density and, possibly, initial models calculated on-site. There are five beam lines currently dedicated to macromolecular crystallography: the ID14 complex and BM-14 (soon to be superseded by ID-29). These lines handle over five hundred projects every six months and demand is increasing. Automated sample handling, alignment and data management protocols will be required to work efficiently with this demanding load. Projects developing these themes are underway within the JSBG.

  15. A history of experimental phasing in macromolecular crystallography

    OpenAIRE

    Isaacs, Neil

    2016-01-01

    It was just over a century ago that W. L. Bragg published a paper describing the first crystal structures to be determined using X-ray diffraction data. These structures were obtained from considerations of X-ray diffraction (Bragg equation), crystallography (crystal lattices and symmetry) and the scattering power of different atoms. Although W. H. Bragg proposed soon afterwards, in 1915, that the periodic electron density in crystals could be analysed using Fourier transforms, it took some d...

  16. Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    A Soares; D Schneider; J Skinner; M Cowan; R Buono; H Robinson; A Heroux; M Carlucci-Dayton; A Saxena; R Sweet

    2011-12-31

    The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.

  17. Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS

    International Nuclear Information System (INIS)

    Soares, A.; Schneider, D.; Skinner, J.; Cowan, M.; Buono, R.; Robinson, H.; Heroux, A.; Carlucci-Dayton, M.; Saxena, A.; Sweet, R.

    2008-01-01

    The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.

  18. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    Science.gov (United States)

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  19. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    International Nuclear Information System (INIS)

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf

    2013-01-01

    A systematic approach to the scaling and merging of data from multiple crystals in macromolecular crystallography is introduced and explained. The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein

  20. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Aller, Pierre [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz; Cameron, Alex [Imperial College, London SW7 2AZ (United Kingdom); Axford, Danny; Owen, Robin L. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Armour, Wes [Oxford e-Research Centre (OeRC), Keble Road, Oxford OX1 3QG (United Kingdom); Waterman, David G. [Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2013-08-01

    A systematic approach to the scaling and merging of data from multiple crystals in macromolecular crystallography is introduced and explained. The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  1. Fully automated data collection and processing system on macromolecular crystallography beamlines at the PF

    International Nuclear Information System (INIS)

    Yamada, Yusuke; Hiraki, Masahiko; Matsugaki, Naohiro; Chavas, Leonard M.G.; Igarashi, Noriyuki; Wakatsuki, Soichi

    2012-01-01

    Fully automated data collection and processing system has been developed on macromolecular crystallography beamlines at the Photon Factory. In this system, the sample exchange, centering and data collection are sequentially performed for all samples stored in the sample exchange system at a beamline without any manual operations. Data processing of collected data sets is also performed automatically. These results are stored into the database system, and users can monitor the progress and results of automated experiment via a Web browser. (author)

  2. A history of experimental phasing in macromolecular crystallography.

    Science.gov (United States)

    Isaacs, Neil

    2016-03-01

    It was just over a century ago that W. L. Bragg published a paper describing the first crystal structures to be determined using X-ray diffraction data. These structures were obtained from considerations of X-ray diffraction (Bragg equation), crystallography (crystal lattices and symmetry) and the scattering power of different atoms. Although W. H. Bragg proposed soon afterwards, in 1915, that the periodic electron density in crystals could be analysed using Fourier transforms, it took some decades before experimental phasing methods were developed. Many scientists contributed to this development and this paper presents the author's own perspective on this history. There will be other perspectives, so what follows is a history, rather than the history, of experimental phasing.

  3. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits.

    Science.gov (United States)

    Jaskolski, Mariusz; Dauter, Zbigniew; Wlodawer, Alexander

    2014-09-01

    As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  4. Room-temperature macromolecular serial crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Francesco Stellato

    2014-07-01

    Full Text Available A new approach for collecting data from many hundreds of thousands of microcrystals using X-ray pulses from a free-electron laser has recently been developed. Referred to as serial crystallography, diffraction patterns are recorded at a constant rate as a suspension of protein crystals flows across the path of an X-ray beam. Events that by chance contain single-crystal diffraction patterns are retained, then indexed and merged to form a three-dimensional set of reflection intensities for structure determination. This approach relies upon several innovations: an intense X-ray beam; a fast detector system; a means to rapidly flow a suspension of crystals across the X-ray beam; and the computational infrastructure to process the large volume of data. Originally conceived for radiation-damage-free measurements with ultrafast X-ray pulses, the same methods can be employed with synchrotron radiation. As in powder diffraction, the averaging of thousands of observations per Bragg peak may improve the ratio of signal to noise of low-dose exposures. Here, it is shown that this paradigm can be implemented for room-temperature data collection using synchrotron radiation and exposure times of less than 3 ms. Using lysozyme microcrystals as a model system, over 40 000 single-crystal diffraction patterns were obtained and merged to produce a structural model that could be refined to 2.1 Å resolution. The resulting electron density is in excellent agreement with that obtained using standard X-ray data collection techniques. With further improvements the method is well suited for even shorter exposures at future and upgraded synchrotron radiation facilities that may deliver beams with 1000 times higher brightness than they currently produce.

  5. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    Science.gov (United States)

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf

    2013-01-01

    The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein. PMID:23897484

  6. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography.

    Science.gov (United States)

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L; Armour, Wes; Waterman, David G; Iwata, So; Evans, Gwyndaf

    2013-08-01

    The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  7. Development of an online UV–visible microspectrophotometer for a macromolecular crystallography beamline

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Nobutaka, E-mail: nobutaka.shimizu@kek.jp [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimizu, Tetsuya [RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Baba, Seiki; Hasegawa, Kazuya [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yamamoto, Masaki [RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kumasaka, Takashi [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2013-11-01

    An online UV–visible microspectrophotometer has been developed for the macromolecular crystallography beamline at SPring-8. Details of this spectrophotometer are reported. Measurement of the UV–visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV–visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury–xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

  8. A technique for determining the deuterium/hydrogen contrast map in neutron macromolecular crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki; Fujiwara, Satoru

    2016-01-01

    A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.

  9. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    International Nuclear Information System (INIS)

    Tsai, Yingssu; McPhillips, Scott E.; González, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-01-01

    New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully

  10. Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Marius Schmidt

    2013-01-01

    Full Text Available Time-resolved macromolecular crystallography unifies structure determination with chemical kinetics, since the structures of transient states and chemical and kinetic mechanisms can be determined simultaneously from the same data. To start a reaction in an enzyme, typically, an initially inactive substrate present in the crystal is activated. This has particular disadvantages that are circumvented when active substrate is directly provided by diffusion. However, then it is prohibitive to use macroscopic crystals because diffusion times become too long. With small micro- and nanocrystals diffusion times are adequately short for most enzymes and the reaction can be swiftly initiated. We demonstrate here that a time-resolved crystallographic experiment becomes feasible by mixing substrate with enzyme nanocrystals which are subsequently injected into the X-ray beam of a pulsed X-ray source.

  11. OCTOPUS: an innovative multimodal diffractometer for neutron macromolecular crystallography across the length scales

    International Nuclear Information System (INIS)

    Blakeley, M.P.; Andersen, K.; Kreuz, M.; Giroud, B.; McSweeney, S.; Mitchell, E.; Teixeira, S.C.M.; Forsyth, V.T.

    2011-01-01

    We propose to construct a novel protein diffractometer at position H112B. The new instrument will deliver major efficiency gains, as well as offering greatly extended flexibility through the option of several easily interchangeable modes of operation. This proposal builds on the demonstrable need to extend ILL's capacity for high resolution structural studies of protein systems, as well as a need to widen the scope of biological crystallography - in particular for monochromatic studies at both high and low resolution. The development will be carried out in close collaboration with structural biologists at the ESRF, and engineered in such a way that the user interface of the instrument (from sample to software) will be transparently identifiable to a large, dynamic, and driven community of European synchrotron X-ray macromolecular crystallographers. (authors)

  12. Control and data acquisition system for the macromolecular crystallography beamline of SSRF

    International Nuclear Information System (INIS)

    Wang Qisheng; Huang Sheng; Sun Bo; Tang Lin; He Jianhua

    2012-01-01

    The macromolecular crystallography beamline BL17U1 of Shanghai Synchrotron Radiation Facility (SSRF) is an important platform for structure biological science. High performance of the beamline would benefit the users greatly in their experiment and data acquisition. To take full advantage of the state-of-the-art mechanical and physical design of the beamline, we have made a series of efforts to develop a robust control and data acquisition system, with user-friendly GUI. These were done by adopting EPICS and Blu-Ice systems on the BL17U1 beamline, with considerations on easy accommodation of new beeline components. In this paper, we report the integration of EPICS and Blu-Ice systems. By using the EPICS gateway interface and several new DHS, Blu-Ice was successfully established for the BL17U1 beamline. As a result, the experiment control and data acquisition system is reliable and functional for users. (authors)

  13. Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.

    Science.gov (United States)

    Shimizu, Nobutaka; Shimizu, Tetsuya; Baba, Seiki; Hasegawa, Kazuya; Yamamoto, Masaki; Kumasaka, Takashi

    2013-11-01

    Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

  14. MolProbity: all-atom structure validation for macromolecular crystallography

    International Nuclear Information System (INIS)

    Chen, Vincent B.; Arendall, W. Bryan III; Headd, Jeffrey J.; Keedy, Daniel A.; Immormino, Robert M.; Kapral, Gary J.; Murray, Laura W.; Richardson, Jane S.; Richardson, David C.

    2010-01-01

    MolProbity structure validation will diagnose most local errors in macromolecular crystal structures and help to guide their correction. MolProbity is a structure-validation web service that provides broad-spectrum solidly based evaluation of model quality at both the global and local levels for both proteins and nucleic acids. It relies heavily on the power and sensitivity provided by optimized hydrogen placement and all-atom contact analysis, complemented by updated versions of covalent-geometry and torsion-angle criteria. Some of the local corrections can be performed automatically in MolProbity and all of the diagnostics are presented in chart and graphical forms that help guide manual rebuilding. X-ray crystallography provides a wealth of biologically important molecular data in the form of atomic three-dimensional structures of proteins, nucleic acids and increasingly large complexes in multiple forms and states. Advances in automation, in everything from crystallization to data collection to phasing to model building to refinement, have made solving a structure using crystallography easier than ever. However, despite these improvements, local errors that can affect biological interpretation are widespread at low resolution and even high-resolution structures nearly all contain at least a few local errors such as Ramachandran outliers, flipped branched protein side chains and incorrect sugar puckers. It is critical both for the crystallographer and for the end user that there are easy and reliable methods to diagnose and correct these sorts of errors in structures. MolProbity is the authors’ contribution to helping solve this problem and this article reviews its general capabilities, reports on recent enhancements and usage, and presents evidence that the resulting improvements are now beneficially affecting the global database

  15. A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF

    International Nuclear Information System (INIS)

    McCarthy, Andrew A.; Brockhauser, Sandor; Nurizzo, Didier; Theveneau, Pascal; Mairs, Trevor; Spruce, Darren; Guijarro, Matias; Lesourd, Marc; Ravelli, Raimond B. G.; McSweeney, Sean

    2009-01-01

    The improvement of the X-ray beam quality achieved on ID14-4 by the installation of new X-ray optical elements is described. ID14-4 at the ESRF is the first tunable undulator-based macromolecular crystallography beamline that can celebrate a decade of user service. During this time ID14-4 has not only been instrumental in the determination of the structures of biologically important molecules but has also contributed significantly to the development of various instruments, novel data collection schemes and pioneering radiation damage studies on biological samples. Here, the evolution of ID14-4 over the last decade is presented, and some of the major improvements that were carried out in order to maintain its status as one of the most productive macromolecular crystallography beamlines are highlighted. The experimental hutch has been upgraded to accommodate a high-precision diffractometer, a sample changer and a large CCD detector. More recently, the optical hutch has been refurbished in order to improve the X-ray beam quality on ID14-4 and to incorporate the most modern and robust optical elements used at other ESRF beamlines. These new optical elements will be described and their effect on beam stability discussed. These studies may be useful in the design, construction and maintenance of future X-ray beamlines for macromolecular crystallography and indeed other applications, such as those planned for the ESRF upgrade

  16. The structural biology center at the APS: an integrated user facility for macromolecular crystallography

    International Nuclear Information System (INIS)

    Rosenbaum, G.; Westbrook, E.M.

    1997-01-01

    The Structural Biology Center (SBC) has developed and operates a sector (undulator and bending magnet) of the APS as a user facility for macromolecular crystallography. Crystallographically determined structures of proteins, nucleic acids and their complexes with proteins, viruses, and complexes between macromolecules and small ligands have become of central importance in molecular and cellular biology. Major design goals were to make the extremely high brilliance of the APS available for brilliance limited studies, and to achieve a high throughput of less demanding studies, as well as optimization for MAS-phasing. Crystal samples will include extremely small crystals, crystals with large unit cells (viruses, ribosomes, etc.) and ensembles of closely similar crystal structures for drug design, protein engineering, etc. Data are recorded on a 3000x3000 pixel CCD-area detector (optionally on image plates). The x-ray optics of both beamlines has been designed to produce a highly demagnified image of the source in order to match the focal size with the sizes of the sample and the resolution element of the detector. Vertical focusing is achieved by a flat, cylindrically bent mirror. Horizontal focusing is achieved by sagitally bending the second crystal of the double crystal monochromator. Monochromatic fluxes of 1.3 * 10 13 ph/s into focal sizes of 0.08 mm (horizontal)x0.04 mm (vertical) FWHM (flux density 3.5 * 10 15 ph/s/mm 2 ) have been recorded.copyright 1997 American Institute of Physics

  17. The use of workflows in the design and implementation of complex experiments in macromolecular crystallography

    International Nuclear Information System (INIS)

    Brockhauser, Sandor; Svensson, Olof; Bowler, Matthew W.; Nanao, Max; Gordon, Elspeth; Leal, Ricardo M. F.; Popov, Alexander; Gerring, Matthew; McCarthy, Andrew A.; Gotz, Andy

    2012-01-01

    A powerful and easy-to-use workflow environment has been developed at the ESRF for combining experiment control with online data analysis on synchrotron beamlines. This tool provides the possibility of automating complex experiments without the need for expertise in instrumentation control and programming, but rather by accessing defined beamline services. The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE

  18. A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source

    International Nuclear Information System (INIS)

    Owen, Robin L.; Pearson, Arwen R.; Meents, Alke; Boehler, Pirmin; Thominet, Vincent; Schulze-Briese, Clemens

    2009-01-01

    Complementary techniques greatly aid the interpretation of macromolecule structures to yield functional information, and can also help to track radiation-induced changes. A new on-axis spectrometer being integrated into the macromolecular crystallography beamlines of the Swiss Light Source is presented. X-ray crystallography at third-generation synchrotron sources permits tremendous insight into the three-dimensional structure of macromolecules. Additional information is, however, often required to aid the transition from structure to function. In situ spectroscopic methods such as UV–Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes. Here, preliminary results are introduced from an on-axis UV–Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source. The continuing development of the spectrometer is also outlined

  19. AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory

    International Nuclear Information System (INIS)

    Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi; Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi

    2010-01-01

    Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.

  20. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Michael E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-16

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  1. Performance of PILATUS detector technology for long-wavelength macromolecular crystallography

    International Nuclear Information System (INIS)

    Marchal, J.; Wagner, A.

    2011-01-01

    The long-wavelength MX beamline I23 currently under design at Diamond Light Source will be optimized in the X-ray energy range between 3 and 5 keV. At the moment no commercial off-the-shelf detector with high quantum efficiency and dynamic range is available to cover the large area required for diffraction experiments in this energy range. The hybrid pixel detector technology used in PILATUS detectors could overcome these limitations as the modular design could allow a large coverage in reciprocal space and high detection efficiency. Experiments were carried out on the Microfocus Spectroscopy beamline I18 at Diamond Light Source to test the performance of a 100K PILATUS module in the low-energy range from 2.3 to 3.7 keV.

  2. Long-wavelength macromolecular crystallography - First successful native SAD experiment close to the sulfur edge

    Science.gov (United States)

    Aurelius, O.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.

    2017-11-01

    Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge. This has been made possible by the in-vacuum setup and the long-wavelength optimised experimental setup at the I23 beamline at Diamond Light Source. In these early commissioning experiments only standard data collection and processing procedures have been applied, in particular no dedicated absorption correction has been used. Nevertheless the success of the experiment demonstrates that the capability to extract phase information can be even further improved once data collection protocols and data processing have been optimised.

  3. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves.

    Science.gov (United States)

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela H; French, Jarrod B; Huang, Tony Jun

    2015-06-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. PILATUS: a two-dimensional X-ray detector for macromolecular crystallography

    CERN Document Server

    Eikenberry, E F; Huelsen, G; Toyokawa, H; Horisberger, R P; Schmitt, B; Schulze-Briese, C; Tomizaki, T

    2003-01-01

    A large quantum-limited area X-ray detector for protein crystallography is under development at the Swiss Light Source. The final detector will be 2kx2k pixels covering 40x40 cm sup 2. A three-module prototype with 1120x157 pixels covering an active area of 24.3x3.4 cm sup 2 has been tested. X-rays above 6 keV with peak count rates exceeding 5x10 sup 5 X-ray/pixel/s could be detected in single photon counting mode. Statistics of module production and results of threshold trimming are presented. To demonstrate the potential of this new detector, protein crystal data were collected at beamline 6S of the SLS.

  5. Conceptual design report for the high-throughput macromolecular crystallography beamline at the Indus-2

    International Nuclear Information System (INIS)

    Kumar, Ashwani; Jagannath

    2007-07-01

    Studies aimed at understanding the functionality of several bio-molecules as well as related efficacy of drugs necessitate determination of the structure of relevant molecules. Based on the presumption that the structure of these molecules does not undergo any dramatic change on crystallization, these structures are being reliably determined with the help of x-ray diffraction technique. With the availability of intense x-ray beams from the synchrotrons, along with the tunability of the x-ray energies, the progress in this field has been phenomenal. Presently, all over the world, most of the high quality investigations in this field are being carried out at the synchrotron sources. So as to facilitate the scientists working in this field in India, we at BARC have undertaken to build a protein crystallography beamline for Indus-2 synchrotron. In this report we present the design features of this beamline as determined through our extensive calculations. (author)

  6. Web-Ice: Integrated Data Collection and Analysis for Macromolecular Crystallography

    International Nuclear Information System (INIS)

    Gonzalez, Ana; Gonzalez, Ana; Moorhead, Penjit; McPhillips, Scott E.; Song, Jinhu; Sharp, Ken; Taylor, John R.; Adams, Paul D.; Sauter, Nicholas K.; Soltis, S. Michael

    2007-01-01

    New software tools are introduced to facilitate diffraction experiments involving large numbers of crystals. While existing programs have long provided a framework for lattice indexing, Bragg spot integration, and symmetry determination, these initial data processing steps often require significant manual effort. This limits the timely availability of data analysis needed for high-throughput procedures, including the selection of the best crystals from a large sample pool, and the calculation of optimal data collection parameters to assure complete spot coverage with minimal radiation damage. To make these protocols more efficient, we developed a network of software applications and application servers, collectively known as Web-Ice. When the package is installed at a crystallography beamline, a programming interface allows the beamline control software (e.g., Blu-Ice/DCSS) to trigger data analysis automatically. Results are organized based on a list of samples that the user provides, and are examined within a Web page, accessible both locally at the beamline or remotely. Optional programming interfaces permit the user to control data acquisition through the Web browser. The system as a whole is implemented to support multiple users and multiple processors, and can be expanded to provide additional scientific functionality. Web-Ice has a distributed architecture consisting of several stand-alone software components working together via a well defined interface. Other synchrotrons or institutions may integrate selected components or the whole of Web-Ice with their own data acquisition software. Updated information about current developments may be obtained at http://smb.slac.stanford.edu/research/developments/webice

  7. FlexED8: the first member of a fast and flexible sample-changer family for macromolecular crystallography.

    Science.gov (United States)

    Papp, Gergely; Felisaz, Franck; Sorez, Clement; Lopez-Marrero, Marcos; Janocha, Robert; Manjasetty, Babu; Gobbo, Alexandre; Belrhali, Hassan; Bowler, Matthew W; Cipriani, Florent

    2017-10-01

    Automated sample changers are now standard equipment for modern macromolecular crystallography synchrotron beamlines. Nevertheless, most are only compatible with a single type of sample holder and puck. Recent work aimed at reducing sample-handling efforts and crystal-alignment times at beamlines has resulted in a new generation of compact and precise sample holders for cryocrystallography: miniSPINE and NewPin [see the companion paper by Papp et al. (2017, Acta Cryst., D73, 829-840)]. With full data collection now possible within seconds at most advanced beamlines, and future fourth-generation synchrotron sources promising to extract data in a few tens of milliseconds, the time taken to mount and centre a sample is rate-limiting. In this context, a versatile and fast sample changer, FlexED8, has been developed that is compatible with the highly successful SPINE sample holder and with the miniSPINE and NewPin sample holders. Based on a six-axis industrial robot, FlexED8 is equipped with a tool changer and includes a novel open sample-storage dewar with a built-in ice-filtering system. With seven versatile puck slots, it can hold up to 112 SPINE sample holders in uni-pucks, or 252 miniSPINE or NewPin sample holders, with 36 samples per puck. Additionally, a double gripper, compatible with the SPINE sample holders and uni-pucks, allows a reduction in the sample-exchange time from 40 s, the typical time with a standard single gripper, to less than 5 s. Computer vision-based sample-transfer monitoring, sophisticated error handling and automatic error-recovery procedures ensure high reliability. The FlexED8 sample changer has been successfully tested under real conditions on a beamline.

  8. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    International Nuclear Information System (INIS)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years

  9. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  10. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  11. 10 years of protein crystallography at AR-NW12A beamline

    Science.gov (United States)

    Chavas, L. M. G.; Yamada, Y.; Hiraki, M.; Igarashi, N.; Matsugaki, N.; Wakatsuki, S.

    2013-03-01

    The exponential growth of protein crystallography can be observed in the continuously increasing demand for synchrotron beam time, both from academic and industrial users. Nowadays, the screening of a profusion of sample crystals for more and more projects is being implemented by taking advantage of fully automated procedures at every level of the experiments. The insertion device AR-NW12A beamline is one of the five macromolecular crystallography (MX) beamlines at the Photon Factory (PF). Currently the oldest MX beamline operational at the High Energy Accelerator Research Organization (KEK), the end-station was launched in 2001 as part of an upgrade of the PF Advanced Ring. Since its commissioning, AR-NW12A has been operating as a high-throughput beamline, slowly evolving to a multipurpose end-station for MX experiments. The development of the beamline took place about a decade ago, in parallel with a drastic development of protein crystallography and more general synchrotron technology. To keep the beamline up-to-date and competitive with other MX stations in Japan and worldwide, new features have been constantly added, with the goal of user friendliness of the various beamline optics and other instruments. Here we describe the evolution of AR-NW12A for its tenth anniversary. We also discuss the plans for upgrades for AR-NW12A, the future objectives in terms of the beamline developments, and especially the strong desire to open the beamline to a larger user community.

  12. Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments

    International Nuclear Information System (INIS)

    Cipriani, Florent; Felisaz, Franck; Lavault, Bernard; Brockhauser, Sandor; Ravelli, Raimond; Launer, Ludovic; Leonard, Gordon; Renier, Michel

    2007-01-01

    While routine Macromolecular x-ray (MX) crystallography has relied on well established techniques for some years all the synchrotrons around the world are improving the throughput of their MX beamlines. Third generation synchrotrons provide small intense beams that make data collection of 5-10 microns sized crystals possible. The EMBL/ESRF MX Group in Grenoble has developed a new generation of instruments to easily collect data on 10 μm size crystals in an automated environment. This work is part of the Grenoble automation program that enables FedEx like crystallography using fully automated data collection and web monitored experiments. Seven ESRF beamlines and the MRC BM14 ESRF/CRG beamline are currently equipped with these latest instruments. We describe here the main features of the MD2x diffractometer family and the SC3 sample changer robot. Although the SC3 was primarily designed to increase the throughput of MX beamlines, it has also been shown to be efficient in improving the quality of the data collected. Strategies in screening a large number of crystals, selecting the best, and collecting a full data set from several re-oriented micro-crystals can now be run with minimum time and effort. The MD2x and SC3 instruments are now commercialised by the company ACCEL GmbH

  13. Distributed computing for macromolecular crystallography.

    Science.gov (United States)

    Krissinel, Evgeny; Uski, Ville; Lebedev, Andrey; Winn, Martyn; Ballard, Charles

    2018-02-01

    Modern crystallographic computing is characterized by the growing role of automated structure-solution pipelines, which represent complex expert systems utilizing a number of program components, decision makers and databases. They also require considerable computational resources and regular database maintenance, which is increasingly more difficult to provide at the level of individual desktop-based CCP4 setups. On the other hand, there is a significant growth in data processed in the field, which brings up the issue of centralized facilities for keeping both the data collected and structure-solution projects. The paradigm of distributed computing and data management offers a convenient approach to tackling these problems, which has become more attractive in recent years owing to the popularity of mobile devices such as tablets and ultra-portable laptops. In this article, an overview is given of developments by CCP4 aimed at bringing distributed crystallographic computations to a wide crystallographic community.

  14. Conceptual design of novel IP-conveyor-belt Weissenberg-mode data-collection system with multi-readers for macromolecular crystallography. A comparison between Galaxy and Super Galaxy.

    Science.gov (United States)

    Sakabe, N; Sakabe, K; Sasaki, K

    2004-01-01

    Galaxy is a Weissenberg-type high-speed high-resolution and highly accurate fully automatic data-collection system using two cylindrical IP-cassettes each with a radius of 400 mm and a width of 450 mm. It was originally developed for static three-dimensional analysis using X-ray diffraction and was installed on bending-magnet beamline BL6C at the Photon Factory. It was found, however, that Galaxy was also very useful for time-resolved protein crystallography on a time scale of minutes. This has prompted us to design a new IP-conveyor-belt Weissenberg-mode data-collection system called Super Galaxy for time-resolved crystallography with improved time and crystallographic resolution over that achievable with Galaxy. Super Galaxy was designed with a half-cylinder-shaped cassette with a radius of 420 mm and a width of 690 mm. Using 1.0 A incident X-rays, these dimensions correspond to a maximum resolutions of 0.71 A in the vertical direction and 1.58 A in the horizontal. Upper and lower screens can be used to set the frame size of the recorded image. This function is useful not only to reduce the frame exchange time but also to save disk space on the data server. The use of an IP-conveyor-belt and many IP-readers make Super Galaxy well suited for time-resolved, monochromatic X-ray crystallography at a very intense third-generation SR beamline. Here, Galaxy and a conceptual design for Super Galaxy are described, and their suitability for use as data-collection systems for macromolecular time-resolved monochromatic X-ray crystallography are compared.

  15. Serial Femtosecond Crystallography

    OpenAIRE

    Chapman, Henry N.

    2015-01-01

    X-ray free-electron lasers produce brief flashes of X-rays that are of about a billion times higher peak brightness than achievable from storage ring sources. Such a tremendous jump in X-ray source capabilities, which came in 2009 when the Linac Coherent Light Source began operations, was unprecedented in the history of X-ray science. Protein structure determination through the method of macromolecular crystallography has consistently benefited from the many increases in source performance fr...

  16. Direct methods in protein crystallography.

    Science.gov (United States)

    Karle, J

    1989-11-01

    It is pointed out that the 'direct methods' of phase determination for small-structure crystallography do not have immediate applicability to macromolecular structures. The term 'direct methods in macromolecular crystallography' is suggested to categorize a spectrum of approaches to macromolecular structure determination in which the analyses are characterized by the use of two-phase and higher-order-phase invariants. The evaluation of the invariants is generally obtained by the use of heavy-atom techniques. The results of a number of the more recent algebraic and probabilistic studies involving isomorphous replacement and anomalous dispersion thus become valid subjects for discussion here. These studies are described and suggestions are also presented concerning future applicability. Additional discussion concerns the special techniques of filtering, the use of non-crystallographic symmetry, some features of maximum entropy and attempts to apply phase-determining formulas to the refinement of macromolecular structure. It is noted that, in addition to the continuing remarkable progress in macromolecular crystallography based on the traditional applications of isomorphous replacement and anomalous dispersion, recent valuable advances have been made in the application of non-crystallographic symmetry, in particular, to virus structures and in applications of filtering. Good progress has also been reported in the application of exact linear algebra to multiple-wavelength anomalous-dispersion investigations of structures containing anomalous scatterers of only moderate scattering power.

  17. Macromolecular crystallization in microgravity

    International Nuclear Information System (INIS)

    Snell, Edward H; Helliwell, John R

    2005-01-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  18. NSLS-II biomedical beamlines for micro-crystallography, FMX, and for highly automated crystallography, AMX: New opportunities for advanced data collection

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Martin R., E-mail: mfuchs@bnl.gov; Bhogadi, Dileep K.; Jakoncic, Jean; Myers, Stuart; Sweet, Robert M.; Berman, Lonny E.; Skinner, John; Idir, Mourad; Chubar, Oleg; McSweeney, Sean; Schneider, Dieter K. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-07-27

    We present the final design of the x-ray optics and experimental stations of two macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source-II. The microfocusing FMX beamline will deliver a flux of ∼5×10{sup 12} ph/s at 1 Å into a 1 – 20 µm spot, its flux density surpassing current MX beamlines by up to two orders of magnitude. It covers an energy range from 5 – 30 keV. The highly automated AMX beamline is optimized for high throughput, with beam sizes from 4 – 100 µm, an energy range of 5 – 18 keV and a flux at 1 Å of ∼10{sup 13} ph/s. A focus in designing the beamlines lay on achieving high beam stability, for example by implementing a horizontal bounce double crystal monochromator at FMX. A combination of compound refractive lenses and bimorph mirror optics at FMX supports rapid beam size changes. Central components of the in-house developed experimental stations are horizontal axis goniometers with a target sphere of confusion of 100 nm, piezo-slits for dynamic beam size changes during diffraction experiments, dedicated secondary goniometers for data collection from specimen in crystallization plates, and next generation pixel array detectors. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and room temperature data collection of crystals in trays.

  19. Macromolecular therapeutics.

    Science.gov (United States)

    Yang, Jiyuan; Kopeček, Jindřich

    2014-09-28

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines - (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Multigrain crystallography

    DEFF Research Database (Denmark)

    Sørensen, Henning Osholm; Schmidt, Søren; Wright, Jonathan P.

    2012-01-01

    We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing, integra......We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing...... of the methodology in terms of number of grains, size of unit cell and direct space resolution. First experimental results in the fields of chemistry, structural biology and time-resolved studies in photochemistry are presented. As an outlook, the concept of TotalCrystallography is introduced, defined...

  1. Missed opportunities in crystallography.

    Science.gov (United States)

    Dauter, Zbigniew; Jaskolski, Mariusz

    2014-09-01

    Scrutinized from the perspective of time, the giants in the history of crystallography more than once missed a nearly obvious chance to make another great discovery, or went in the wrong direction. This review analyzes such missed opportunities focusing on macromolecular crystallographers (using Perutz, Pauling, Franklin as examples), although cases of particular historical (Kepler), methodological (Laue, Patterson) or structural (Pauling, Ramachandran) relevance are also described. Linus Pauling, in particular, is presented several times in different circumstances, as a man of vision, oversight, or even blindness. His example underscores the simple truth that also in science incessant creativity is inevitably connected with some probability of fault. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  2. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  3. History of protein crystallography in China.

    Science.gov (United States)

    Rao, Zihe

    2007-06-29

    China has a strong background in X-ray crystallography dating back to the 1920s. Protein crystallography research in China was first developed following the successful synthesis of insulin in China in 1966. The subsequent determination of the three-dimensional structure of porcine insulin made China one of the few countries which could determine macromolecular structures by X-ray diffraction methods in the late 1960s and early 1970s. After a slow period during the 1970s and 1980s, protein crystallography in China has reached a new climax with a number of outstanding accomplishments. Here, I review the history and progress of protein crystallography in China and detail some of the recent research highlights, including the crystal structures of two membrane proteins as well as the structural genomics initiative in China.

  4. MX draft proposal

    International Nuclear Information System (INIS)

    1976-01-01

    This is an interim report on the design of a large mirror fusion experiment, MX, that LLL is proposing to construct in FY 78-80. The MX experiment brings together the main elements of our present concept of a mirror reactor: a superconducting magnet and neutral beam injection. The plasma will be created by pulsed beam injection into a plasma stream injected along the magnetic field through the mirrors. This will be followed by sustained injection of high energy neutrals to achieve steady-state conditions for 0.5 to several seconds

  5. History of protein crystallography in China

    OpenAIRE

    Rao, Zihe

    2007-01-01

    China has a strong background in X-ray crystallography dating back to the 1920s. Protein crystallography research in China was first developed following the successful synthesis of insulin in China in 1966. The subsequent determination of the three-dimensional structure of porcine insulin made China one of the few countries which could determine macromolecular structures by X-ray diffraction methods in the late 1960s and early 1970s. After a slow period during the 1970s and 1980s, protein cry...

  6. The success story of crystallography.

    Science.gov (United States)

    Schwarzenbach, Dieter

    2012-01-01

    Diffractionists usually place the birth of crystallography in 1912 with the first X-ray diffraction experiment of Friedrich, Knipping and Laue. This discovery propelled the mathematical branch of mineralogy to global importance and enabled crystal structure determination. Knowledge of the geometrical structure of matter at atomic resolution had revolutionary consequences for all branches of the natural sciences: physics, chemistry, biology, earth sciences and material science. It is scarcely possible for a single person in a single article to trace and appropriately value all of these developments. This article presents the limited, subjective view of its author and a limited selection of references. The bulk of the article covers the history of X-ray structure determination from the NaCl structure to aperiodic structures and macromolecular structures. The theoretical foundations were available by 1920. The subsequent success of crystallography was then due to the development of diffraction equipment, the theory of the solution of the phase problem, symmetry theory and computers. The many structures becoming known called for the development of crystal chemistry and of data banks. Diffuse scattering from disordered structures without and with partial long-range order allows determination of short-range order. Neutron and electron scattering and diffraction are also mentioned.

  7. Fragment-based screening by protein crystallography: successes and pitfalls.

    Science.gov (United States)

    Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J

    2012-10-08

    Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality.

  8. Fragment-Based Screening by Protein Crystallography: Successes and Pitfalls

    Directory of Open Access Journals (Sweden)

    Aaron J. Oakley

    2012-10-01

    Full Text Available Fragment-based drug discovery (FBDD concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality.

  9. Racemic DNA Crystallography

    OpenAIRE

    Mandal , Pradeep K.; Collie , Gavin W.; Kauffmann , Brice; Huc , Ivan

    2014-01-01

    International audience; Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of Land D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propens...

  10. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    International Nuclear Information System (INIS)

    Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T.; McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M.; Bond, Charles S.; Buckle, Ashley M.; Androulakis, Steve

    2014-01-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community

  11. Operation of the Australian Store.Synchrotron for macromolecular crystallography.

    Science.gov (United States)

    Meyer, Grischa R; Aragão, David; Mudie, Nathan J; Caradoc-Davies, Tom T; McGowan, Sheena; Bertling, Philip J; Groenewegen, David; Quenette, Stevan M; Bond, Charles S; Buckle, Ashley M; Androulakis, Steve

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  12. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Grischa R. [Monash University, Clayton, Victoria 3800 (Australia); Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M. [Monash University, Clayton, Victoria 3800 (Australia); Bond, Charles S. [The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia); Buckle, Ashley M. [Monash University, Clayton, Victoria 3800 (Australia); Androulakis, Steve, E-mail: steve.androulakis@monash.edu [Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800 (Australia)

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  13. A public database of macromolecular diffraction experiments.

    Science.gov (United States)

    Grabowski, Marek; Langner, Karol M; Cymborowski, Marcin; Porebski, Przemyslaw J; Sroka, Piotr; Zheng, Heping; Cooper, David R; Zimmerman, Matthew D; Elsliger, Marc André; Burley, Stephen K; Minor, Wladek

    2016-11-01

    The low reproducibility of published experimental results in many scientific disciplines has recently garnered negative attention in scientific journals and the general media. Public transparency, including the availability of `raw' experimental data, will help to address growing concerns regarding scientific integrity. Macromolecular X-ray crystallography has led the way in requiring the public dissemination of atomic coordinates and a wealth of experimental data, making the field one of the most reproducible in the biological sciences. However, there remains no mandate for public disclosure of the original diffraction data. The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC) has been developed to archive raw data from diffraction experiments and, equally importantly, to provide related metadata. Currently, the database of our resource contains data from 2920 macromolecular diffraction experiments (5767 data sets), accounting for around 3% of all depositions in the Protein Data Bank (PDB), with their corresponding partially curated metadata. IRRMC utilizes distributed storage implemented using a federated architecture of many independent storage servers, which provides both scalability and sustainability. The resource, which is accessible via the web portal at http://www.proteindiffraction.org, can be searched using various criteria. All data are available for unrestricted access and download. The resource serves as a proof of concept and demonstrates the feasibility of archiving raw diffraction data and associated metadata from X-ray crystallographic studies of biological macromolecules. The goal is to expand this resource and include data sets that failed to yield X-ray structures in order to facilitate collaborative efforts that will improve protein structure-determination methods and to ensure the availability of `orphan' data left behind for various reasons by individual investigators and/or extinct structural genomics

  14. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential.

    Science.gov (United States)

    Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V

    2015-07-01

    The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron

  16. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

    Directory of Open Access Journals (Sweden)

    Matthew P. Blakeley

    2015-07-01

    Full Text Available The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden and Sirius (Brazil under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å, for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59% were released since 2010. Sub-mm3 crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H+ remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place

  17. Electron crystallography with the EIGER detector

    Directory of Open Access Journals (Sweden)

    Gemma Tinti

    2018-03-01

    Full Text Available Electron crystallography is a discipline that currently attracts much attention as method for inorganic, organic and macromolecular structure solution. EIGER, a direct-detection hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland, has been tested for electron diffraction in a transmission electron microscope. EIGER features a pixel pitch of 75 × 75 µm2, frame rates up to 23 kHz and a dead time between frames as low as 3 µs. Cluster size and modulation transfer functions of the detector at 100, 200 and 300 keV electron energies are reported and the data quality is demonstrated by structure determination of a SAPO-34 zeotype from electron diffraction data.

  18. Practical macromolecular cryocrystallography

    Energy Technology Data Exchange (ETDEWEB)

    Pflugrath, J. W., E-mail: jim.pflugrath@gmail.com [Rigaku Americas Corp., 9009 New Trails Drive, The Woodlands, TX 77381 (United States)

    2015-05-27

    Current methods, reagents and experimental hardware for successfully and reproducibly flash-cooling macromolecular crystals to cryogenic temperatures for X-ray diffraction data collection are reviewed. Cryocrystallography is an indispensable technique that is routinely used for single-crystal X-ray diffraction data collection at temperatures near 100 K, where radiation damage is mitigated. Modern procedures and tools to cryoprotect and rapidly cool macromolecular crystals with a significant solvent fraction to below the glass-transition phase of water are reviewed. Reagents and methods to help prevent the stresses that damage crystals when flash-cooling are described. A method of using isopentane to assess whether cryogenic temperatures have been preserved when dismounting screened crystals is also presented.

  19. NATO Advanced Study Institute on Evolving Methods for Macromolecular Gystallography

    CERN Document Server

    Read, Randy J

    2007-01-01

    X-ray crystallography is the pre-eminent technique for visualizing the structures of macromolecules at atomic resolution. These structures are central to understanding the detailed mechanisms of biological processes, and to discovering novel therapeutics using a structure-based approach. As yet, structures are known for only a small fraction of the proteins encoded by human and pathogenic genomes. To counter the myriad modern threats of disease, there is an urgent need to determine the structures of the thousands of proteins whose structure and function remain unknown. This volume draws on the expertise of leaders in the field of macromolecular crystallography to illuminate the dramatic developments that are accelerating progress in structural biology. Their contributions span the range of techniques from crystallization through data collection, structure solution and analysis, and show how modern high-throughput methods are contributing to a deeper understanding of medical problems.

  20. Crystallography and Drug Design

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Crystallography and Drug Design. K Suguna. General Article Volume 19 Issue 12 December 2014 pp 1093-1103. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/12/1093-1103. Keywords.

  1. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  2. RCC-MX (2008 edition)

    International Nuclear Information System (INIS)

    Bravo, X.; Drubay, B.

    2008-10-01

    The RCC-MX books is a compilation of design and construction rules for the mechanical materials of experimental reactors, for their auxiliaries and irradiation devices. This second edition includes the updates of references to NF, EN and ISO standards, the compliance with the regulations for nuclear pressure equipments, and the feedback since the 2005 edition. It comprises 9 books and a CD-Rom and includes a presentation document. The RCC-MX has been developed for the Jules Horowitz reactor but can be used for the design and construction of new projects of new experimental reactors or new equipments and devices for existing facilities. Content: - Book 1: general dispositions, materials for experimental reactors and their auxiliaries, for irradiation devices and for control or handling mechanisms, complementary requirements and particular dispositions; - Book 2: materials for the reactor and for its level 1 auxiliaries; - Book 3: materials for the reactor and for its level 2 and level 3 auxiliaries, control and handling mechanisms, materials for irradiation devices; - Book 4: technical appendixes - materials characteristics (steels and alloys); - Book 5: technical appendixes (design rules); - Book 6: technical specifications of materials; - Book 7: tests and control methods; - Book 8: welding; - Book 9: fabrication. (J.S.)

  3. MX: A beamline control system toolkit

    Science.gov (United States)

    Lavender, William M.

    2000-06-01

    The development of experimental and beamline control systems for two Collaborative Access Teams at the Advanced Photon Source has resulted in the creation of a portable data acquisition and control toolkit called MX. MX consists of a set of servers, application programs and libraries that enable the creation of command line and graphical user interface applications that may be easily retargeted to new and different kinds of motor and device controllers. The source code for MX is written in ANSI C and Tcl/Tk with interprocess communication via TCP/IP. MX is available for several versions of Unix, Windows 95/98/NT and DOS. It may be downloaded from the web site http://www.imca.aps.anl.gov/mx/.

  4. Quantum crystallography: A perspective.

    Science.gov (United States)

    Massa, Lou; Matta, Chérif F

    2018-06-30

    Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  6. Crystallography and environment development

    International Nuclear Information System (INIS)

    Radwan, M.M.

    1992-01-01

    Crystallography, the study of atomic and molecular structure, has given detailed information about the fine-structure of the inorganic and living world-i.e. about the environment (in the widest sense of the world)-. It has contributed to geology (at the atomic level), crystal chemistry, the structure of minerals, soils and clays. In the case of the living world it has contributed to structural studies of biological molecules; proteins, nucleic acids (DNA and RNA), and polysaccharides. knowing how the atoms in a material are arranged allows to understand the relationship between atomic structure and properties of these materials. Today we are entering a new age in crystallography-the age of genetic engineering in the living world, and inorganic crystallographic engineering, where we use crystallographic information from the structures nature has given us, to begin to design and build structure of our own, of specified properties, aiming at the welfare of man and the development of his environment

  7. The story of crystallography

    International Nuclear Information System (INIS)

    Nigam, G.D.

    1976-01-01

    The historical development of the very important field of crystallography has been narrated. The important land marks such as the first determination of the crystal structure of NaCl by Sir Poragy and that of DNA by Watson et al., etc. are mentioned. The important role played by this field and its role in bringing broad fields such as physics, chemistry and biology very close to each other are emphasised. Some of the outstanding contributions made by eminent crystallographers in India and abroad are mentioned. (K.B.)

  8. Crystallography: past and present

    Science.gov (United States)

    Hodeau, J.-L.; Guinebretiere, R.

    2007-12-01

    In the 19th century, crystallography referred to the study of crystal shapes. Such studies by Haüy and Bravais allowed the establishment of important hypotheses such as (i) “les molécules intégrantes qui sont censées être les plus petits solides que l’on puisse extraire d’un minéral” [1], (ii) the definition of the crystal lattice and (iii) “le cristal est clivable parallèlement à deux ou trois formes cristallines” [2]. This morphological crystallography defined a crystal like “a chemically homogeneous solid, wholly or partly bounded by natural planes that intersect at predetermined angles” [3]. It described the main symmetry elements and operations, nomenclatures of different crystal forms and also the theory of twinning. A breakthrough appeared in 1912 with the use of X-rays by M. von Laue and W.H. and W.L. Bragg. This experimental development allowed the determination of the atomic content of each unit cell constituting the crystal and defined a crystal as “any solid in which an atomic pattern is repeated periodically in three dimensions, that is, any solid that “diffracts” an incident X-ray beam” [3]. Mathematical tools like the Patterson methods, the direct methods, were developed. The way for solving crystalline structure was opened first for simple compounds and at that time crystallography was associated mainly with perfect crystals. In the fifties, crystallographers already had most apparatus and fundamental methods at their disposal; however, we had to wait for the development of computers to see the full use of these tools. Furthermore the development of new sources of neutrons, electrons and synchrotron X-rays allowed the studies of complex compounds like large macromolecules in biology. Nowadays, one of the new frontiers for crystallographers is to relate the crystal structure to its physical-chemical-biological properties, this means that an accurate structural determination is needed to focus on a selective part of the

  9. X-ray crystallography facility for the international space station

    International Nuclear Information System (INIS)

    McdDonald, William T.; Lewis, Johanna L.; Smith, Craig D.; DeLucas, Lawrence J.

    1997-01-01

    Directed by NASA's Office of Space Access and Technology (OSAT), the University of Alabama at Birmingham (UAB) Center for Macromolecular Crystallography (CMC) recently completed a Design Feasibility Study for the X-ray Crystallography Facility (XCF) for the International Space Station (ISS). The XCF is a facility for growing macromolecular protein crystals; harvesting, selecting, and mounting sample crystals, and snap-freezing the samples, if necessary; performing x-ray diffraction; and downlinking the diffraction data to the ground. Knowledge of the structure of protein molecules is essential for the development of pharmaceuticals by structure-based drug design techniques. Currently, x-ray diffraction of high quality protein crystals is the only method of determining the structure of these macromolecules. High quality protein crystals have been grown in microgravity onboard the Space Shuttle Orbiter for more than 10 years, but these crystals always have been returned to Earth for x-ray diffraction. The XCF will allow crystal growth, harvesting, mounting, and x-ray diffraction onboard the ISS, maximizing diffraction data quality and timeliness. This paper presents the XCF design concept, describing key feasibility issues for the ISS application and advanced technologies and operational features which resolve those issues. The conclusion is that the XCF design is feasible and can be operational onboard the ISS by early in 2002

  10. MX-INDUCED URINARY BLADDER EPITHELIAL HYPERPLASIA IN EKER RATS

    Science.gov (United States)

    MX-INDUCED URINARY BLADDER EPITHELIAL HYPERPLASIA IN EKER RATS Epidemiological studies have shown a positive association between chronic exposure to chlorinated drinking water and human cancer, particularly of the urinary bladder. MX (3- chloro-4-(dichloromethyl)-5-hydrox...

  11. Air Traffic Control Officer AFSC 13MX OSSN 2335

    National Research Council Canada - National Science Library

    1999-01-01

    ... of AFSC 13MX officers, determine career intentions of AFSC 1 3MX company grade officers, determine job satisfaction levels of officers, and to ensure that members are receiving the right training for their current jobs...

  12. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  13. Crystallography: past and present

    International Nuclear Information System (INIS)

    Hodeau, J.L.; Guinebretiere, R.

    2007-01-01

    In the 19th century, crystallography referred to the study of crystal shapes. A breakthrough appeared in 1912 with the use of X-rays by M. von Laue and W.H. and W.L. Bragg. This experimental development allowed the determination of the atomic content of each unit cell constituting the crystal and defined a crystal as ''any solid in which an atomic pattern is repeated periodically in three dimensions, that is, any solid that ''diffracts'' an incident X-ray beam''. Mathematical tools like the Patterson methods, the direct methods, were developed. Furthermore the development of new sources of neutrons, electrons and synchrotron X-rays allowed the studies of complex compounds like large macromolecules in biology. In our contribution we show by selected examples that these improvements were allowed (i) by the use of powerful sources, apparatus and detectors which allow micro-diffraction, in-situ diffraction, spectroscopy, resonant scattering, inelastic scattering, coherent scattering, (ii) by the development of methods like diffraction anomalous fine structure (DAFS), pair distribution function (PDF), simulated annealing, single object reconstruction, (iii) by combination of scattering and spectroscopy and by combination of scattering and microscopy. (orig.)

  14. Recent advances in macromolecular prodrugs

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Zelikin, Alexander N.

    2017-01-01

    Macromolecular prodrugs (MP) are high molar mass conjugates, typically carrying several copies of a drug or a drug combination, designed to optimize delivery of the drug, that is — its pharmacokinetics. From its advent several decades ago, design of MP has undergone significant development and es...

  15. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, T. D. [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Schnieders, M. J. [Department of Chemistry, Stanford, California (United States); Brunger, A. T., E-mail: brunger@stanford.edu [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford, California (United States)

    2010-09-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R{sub free} and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography.

  16. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    International Nuclear Information System (INIS)

    Fenn, T. D.; Schnieders, M. J.; Brunger, A. T.

    2010-01-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R free and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography

  17. Crystallography taken to the extreme

    Science.gov (United States)

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid

    2018-06-01

    This article is a brief autobiographical account of our life in science and the path that we took in performing the research for which we were awarded the Gregori Aminoff Prize in Crystallography 2017 by the Royal Swedish Academy of Sciences. We were invited to write it by the editor-in-chief of Physica Scripta, Suzy Lidström, who charged us with the task of contributing to a series of autobiographical articles published since 2014, the International Year of Crystallography, on the lives of the Aminoff Prize winners. As this series is intended to be of particular interest to young scientists, teachers and lecturers and those researching the history of science, we tried to adhere to this purpose while writing our story. It does not pretend to be a comprehensive review either of our own scientific results or, especially, of covering the complete history of the research field of high-pressure crystallography in which we are active.

  18. The development of structural x-ray crystallography

    Science.gov (United States)

    Woolfson, M. M.

    2018-03-01

    From its birth in 1912, when only the simplest structures could be solved, x-ray structural crystallography is now able to solve macromolecular structures containing many thousands of independent non-hydrogen atoms. This progress has depended on, and been driven by, great technical advances in the development of powerful synchrotron x-ray sources, advanced automated equipment for the collection and storage of large data sets and powerful computers to deal with everything from data processing to running programmes employing complex algorithms for the automatic solution of structures. The sheer number of developments in the subject over the past century makes it impossible for this review to be exhaustive, but it will describe some major developments that will enable the reader to understand how the subject has grown from its humble beginnings to what it is today.

  19. Structure studies of macromolecular systems

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Dohnálek, Jan; Skálová, Tereza; Dušková, Jarmila; Kolenko, Petr

    2006-01-01

    Roč. 13, č. 3 (2006), s. 136 ISSN 1211-5894. [Czech and Slovak Crystallographic Colloquium. 22.06.2006-24.06.2006, Grenoble] R&D Projects: GA AV ČR IAA4050811; GA MŠk 1K05008 Keywords : structure * X-ray diffraction * synchrotron Subject RIV: CD - Macromolecular Chemistry http://www. xray .cz/ms/default.htm

  20. Crystallography across the Sciences 2

    NARCIS (Netherlands)

    Schenk, H.

    2008-01-01

    This second commemorative compilation from the IUCr contains 24 invited articles, all refereed, from some of today's most eminent crystallographers. The articles describe state-of-the-art research in which crystallography has played a major role, and are intended to be attractive for a broad

  1. The Cambridge crystallography subroutine library

    International Nuclear Information System (INIS)

    Brown, P.J.; Matthewman, J.C.

    1981-06-01

    This manual is an amalgamation of the original Cambridge Crystallography Subroutine Library Mark II manual and its supplement No I. The original Mark II system, a set of FORTRAN Subroutines which can be used for standard crystallographic calculations, has been extended to include facilities for conventional least squares refinement. Several new routines have also been added. (U.K.)

  2. Protein energy landscapes determined by five-dimensional crystallography

    International Nuclear Information System (INIS)

    Schmidt, Marius; Srajer, Vukica; Henning, Robert; Ihee, Hyotcherl; Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh

    2013-01-01

    Barriers of activation within the photocycle of a photoactive protein were extracted from comprehensive time courses of time resolved crystallographic data collected at multiple temperature settings. Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012 ▶), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001 ▶), Chem. Rev.101, 1569–1581; Schmidt et al. (2005 ▶), Methods Mol. Biol.305, 115–154; Schmidt (2008 ▶), Ultrashort Laser Pulses in Medicine and Biology] because both can be determined from the same set of X-ray data. Here, it is demonstrated how barriers of activation can be determined solely from five-dimensional crystallography, where in addition to space and time, temperature is a variable as well [Schmidt et al. (2010 ▶), Acta Cryst. A66, 198–206]. Directly linking molecular structures with barriers of activation between them allows insight into the structural nature of the barrier to be gained. Comprehensive time series of crystallographic data at 14 different temperature settings were analyzed and the entropy and enthalpy contributions to the barriers of activation were determined. One hundred years after the discovery of X-ray scattering, these results advance X-ray structure determination to a new frontier: the determination of energy landscapes

  3. Atomic Scale Structural Studies of Macromolecular Assemblies by Solid-state Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit

    2017-09-17

    Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.

  4. Air Traffic Control Officer AFSC 13MX OSSN 2335

    National Research Council Canada - National Science Library

    1999-01-01

    The Air Traffic Control Officer utilization field was surveyed to better understand the utilization of AFSC 1 3MX personnel, validate training requirements, empirically determine career progression...

  5. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering.

    Science.gov (United States)

    Keedy, Daniel A; Hill, Zachary B; Biel, Justin T; Kang, Emily; Rettenmaier, T Justin; Brandao-Neto, Jose; Pearce, Nicholas M; von Delft, Frank; Wells, James A; Fraser, James S

    2018-06-07

    Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function. © 2018, Keedy et al.

  6. Operational experience of a large area x-ray camera for protein crystallography

    International Nuclear Information System (INIS)

    Joachimiak, A.; Jorden, A. R.; Loeffen, P. W.; Naday, I.; Sanishvili, R.; Westbrook, E. M.

    1999-01-01

    After 3 years experience of operating very large area (210mm x 210mm) CCD-based detectors at the Advanced Photon Source, operational experience is reported. Four such detectors have been built, two for Structural Biology Center (APS-1 and SBC-2), one for Basic Energy Sciences Synchrotrons Radiation Center (Gold-2) at Argonne National Laboratory's Advanced Photon Source and one for Osaka University by Oxford Instruments, for use at Spring 8 (PX-21O). The detector is specifically designed as a high resolution and fast readout camera for macromolecular crystallography. Design trade-offs for speed and size are reviewed in light of operational experience and future requirements are considered. Operational data and examples of crystallography data are presented, together with plans for more development

  7. The bio-crystallography beamline (BL41XU) at SPring-8

    CERN Document Server

    Kawamoto, M; Kamiya, N

    2001-01-01

    The bio-crystallography beamline (BL41XU), one of two pilot beamlines at SPring-8, was constructed using a standard in-vacuum-type undulator and opened for general users from domestic and overseas countries. Many tests and improvements were carried out on beamline elements and equipment for macromolecular crystallography, especially on the so-called 'pin-post' water cooling crystal of rotated-inclined double crystal monochromator. The maximum brilliance at sample position reached to 4x10 sup 1 sup 5 photons/s/mm sup 2 /mrad sup 2 at an X-ray energy of 11 keV. Commercially available X-ray detectors of CCD and imaging plate were installed in the experimental station. A beamline control software system for beam tracking and an on-line reader for large-format imaging plate were newly developed.

  8. Automated sample mounting and technical advance alignment system for biological crystallography at a synchrotron source

    International Nuclear Information System (INIS)

    Snell, Gyorgy; Cork, Carl; Nordmeyer, Robert; Cornell, Earl; Meigs, George; Yegian, Derek; Jaklevic, Joseph; Jin, Jian; Stevens, Raymond C.; Earnest, Thomas

    2004-01-01

    High-throughput data collection for macromolecular crystallography requires an automated sample mounting system for cryo-protected crystals that functions reliably when integrated into protein-crystallography beamlines at synchrotrons. Rapid mounting and dismounting of the samples increases the efficiency of the crystal screening and data collection processes, where many crystals can be tested for the quality of diffraction. The sample-mounting subsystem has random access to 112 samples, stored under liquid nitrogen. Results of extensive tests regarding the performance and reliability of the system are presented. To further increase throughput, we have also developed a sample transport/storage system based on 'puck-shaped' cassettes, which can hold sixteen samples each. Seven cassettes fit into a standard dry shipping Dewar. The capabilities of a robotic crystal mounting and alignment system with instrumentation control software and a relational database allows for automated screening and data collection to be developed

  9. Nanoflow electrospinning serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Laksmono, Hartawan [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kern, Jan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Tran, Rosalie; Hattne, Johan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Alonso-Mori, Roberto [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Lassalle-Kaiser, Benedikt [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glöckner, Carina; Hellmich, Julia [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Schafer, Donald W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sellberg, Jonas [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stockholm University, S-106 91 Stockholm (Sweden); McQueen, Trevor A. [Stanford University, Stanford, CA 94025 (United States); Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zwart, Petrus H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glatzel, Pieter [European Synchrotron Radiation Facility, Grenoble (France); Milathianaki, Despina; White, William E. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Williams, Garth J.; Boutet, Sébastien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zouni, Athina [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Messinger, Johannes [Umeå Universitet, Umeå (Sweden); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bergmann, Uwe [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Yano, Junko; Yachandra, Vittal K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bogan, Michael J., E-mail: mbogan@slac.stanford.edu [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-11-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min{sup −1} to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min{sup −1} and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.

  10. Nanoflow electrospinning serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min −1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min −1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption

  11. A convolutional neural network-based screening tool for X-ray serial crystallography.

    Science.gov (United States)

    Ke, Tsung Wei; Brewster, Aaron S; Yu, Stella X; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K

    2018-05-01

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. open access.

  12. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal

    Directory of Open Access Journals (Sweden)

    Sam Horrell

    2016-07-01

    Full Text Available Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07–1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a `catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.

  13. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    Science.gov (United States)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth

  14. Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Application to Neutron Crystallography and DNA Hydration

    OpenAIRE

    Fenn, Timothy D.; Schnieders, Michael J.; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S.; Brunger, Axel T.

    2011-01-01

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a prot...

  15. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    Science.gov (United States)

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Macromolecular systems for vaccine delivery.

    Science.gov (United States)

    MuŽíková, G; Laga, R

    2016-10-20

    Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.

  17. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  18. Nanoflow electrospinning serial femtosecond crystallography

    Science.gov (United States)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min−1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min−1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption. PMID:23090408

  19. OpenMx: An Open Source Extended Structural Equation Modeling Framework

    Science.gov (United States)

    Boker, Steven; Neale, Michael; Maes, Hermine; Wilde, Michael; Spiegel, Michael; Brick, Timothy; Spies, Jeffrey; Estabrook, Ryne; Kenny, Sarah; Bates, Timothy; Mehta, Paras; Fox, John

    2011-01-01

    OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the "R" statistical programming environment on Windows, Mac OS-X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are…

  20. Recent advances in racemic protein crystallography.

    Science.gov (United States)

    Yan, Bingjia; Ye, Linzhi; Xu, Weiliang; Liu, Lei

    2017-09-15

    Solution of the three-dimensional structures of proteins is a critical step in deciphering the molecular mechanisms of their bioactivities. Among the many approaches for obtaining protein crystals, racemic protein crystallography has been developed as a unique method to solve the structures of an increasing number of proteins. Exploiting unnatural protein enantiomers in crystallization and resolution, racemic protein crystallography manifests two major advantages that are 1) to increase the success rate of protein crystallization, and 2) to obviate the phase problem in X-ray diffraction. The requirement of unnatural protein enantiomers in racemic protein crystallography necessitates chemical protein synthesis, which is hitherto accomplished through solid phase peptide synthesis and chemical ligation reactions. This review highlights the fundamental ideas of racemic protein crystallography and surveys the harvests in the field of racemic protein crystallography over the last five years from early 2012 to late 2016. Copyright © 2017. Published by Elsevier Ltd.

  1. Timely deposition of macromolecular structures is necessary for peer review

    International Nuclear Information System (INIS)

    Joosten, Robbie P.; Soueidan, Hayssam; Wessels, Lodewyk F. A.; Perrakis, Anastassis

    2013-01-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature

  2. Timely deposition of macromolecular structures is necessary for peer review

    Energy Technology Data Exchange (ETDEWEB)

    Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Soueidan, Hayssam; Wessels, Lodewyk F. A. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam (Netherlands); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2013-12-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature.

  3. On macromolecular refinement at subatomic resolution with interatomic scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Lunin, Vladimir Y. [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino 142290 (Russian Federation); Urzhumtsev, Alexandre [IGMBC, 1 Rue L. Fries, 67404 Illkirch and IBMC, 15 Rue R. Descartes, 67084 Strasbourg (France); Faculty of Sciences, Nancy University, 54506 Vandoeuvre-lès-Nancy (France); Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States)

    2007-11-01

    Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  4. Macromolecular refinement by model morphing using non-atomic parameterizations.

    Science.gov (United States)

    Cowtan, Kevin; Agirre, Jon

    2018-02-01

    Refinement is a critical step in the determination of a model which explains the crystallographic observations and thus best accounts for the missing phase components. The scattering density is usually described in terms of atomic parameters; however, in macromolecular crystallography the resolution of the data is generally insufficient to determine the values of these parameters for individual atoms. Stereochemical and geometric restraints are used to provide additional information, but produce interrelationships between parameters which slow convergence, resulting in longer refinement times. An alternative approach is proposed in which parameters are not attached to atoms, but to regions of the electron-density map. These parameters can move the density or change the local temperature factor to better explain the structure factors. Varying the size of the region which determines the parameters at a particular position in the map allows the method to be applied at different resolutions without the use of restraints. Potential applications include initial refinement of molecular-replacement models with domain motions, and potentially the use of electron density from other sources such as electron cryo-microscopy (cryo-EM) as the refinement model.

  5. Semigroup Method on a MX/G/1 Queueing Model

    Directory of Open Access Journals (Sweden)

    Alim Mijit

    2013-01-01

    Full Text Available By using the Hille-Yosida theorem, Phillips theorem, and Fattorini theorem in functional analysis we prove that the MX/G/1 queueing model with vacation times has a unique nonnegative time-dependent solution.

  6. Minoxidil (Mx) as a prophylaxis of doxorubicin--induced alopecia.

    Science.gov (United States)

    Rodriguez, R; Machiavelli, M; Leone, B; Romero, A; Cuevas, M A; Langhi, M; Romero Acuña, L; Romero Acuña, J; Amato, S; Barbieri, M

    1994-10-01

    Minoxidil (Mx) is known to induce hair growth in men with male-pattern baldness. Based on this potential, the effectiveness of Mx 2% topical solution was evaluated in cancer patients (pts) to prevent doxorubicin-induced alopecia. 48 female pts with different types of solid tumors treated with doxorubicin-based chemotherapy in a dose range of 50-60 mg/m2/cycle were randomly assigned to receive Mx 2% topical solution or placebo. 88% and 92% of pts in both arms showed severe alopecia (p = ns). No adverse effects were observed. In this study Mx 2% topical solution was non-toxic but was not effective in the prevention of chemotherapy-induced alopecia.

  7. Software development tools for the CDF MX scanner

    Energy Technology Data Exchange (ETDEWEB)

    Stuermer, W.; Turner, K.; Littleton-Sestini, S.

    1991-11-01

    This paper discuses the design of the high level assembler and diagnostic control program developed for the MX, a high speed, custom designed computer used in the CDF data acquisition system at Fermilab. These programs provide a friendly productive environment for the development of software on the MX. Details of their implementation and special features, and some of the lessons learned during their development are included.

  8. Software development tools for the CDF MX scanner

    International Nuclear Information System (INIS)

    Stuermer, W.; Turner, K.; Littleton-Sestini, S.

    1991-11-01

    This paper discuses the design of the high level assembler and diagnostic control program developed for the MX, a high speed, custom designed computer used in the CDF data acquisition system at Fermilab. These programs provide a friendly productive environment for the development of software on the MX. Details of their implementation and special features, and some of the lessons learned during their development are included

  9. Macromolecular synthesis in algal cells

    International Nuclear Information System (INIS)

    Ishida, M.R.; Kikuchi, Tadatoshi

    1980-01-01

    The present paper is a review of our experimental results obtained previously on the macromolecular biosyntheses in the cells of blue-green alga Anacystis nidulans as a representative species of prokaryote, and also in those of three species of eukaryotic algae, i.e. Euglena gracilis strain Z, Chlamydomonas reinhardi, and Cyanidium caldarium. In these algal cells, the combined methods consisting of pulse-labelling using 32 P, 3 H- and 14 C-labelled precursors for macromolecules, of their chasing and of the use of inhibitors which block specifically the syntheses of macromolecules such as proteins, RNA and DNA in living cells were very effectively applied for the analyses of the regulatory mechanism in biosyntheses of macromolecules and of the mode of their assembly into the cell structure, especially organelle constituents. Rased on the results obtained thus, the following conclusions are reached: (1) the metabolic pool for syntheses of macromolecules in the cells of prokaryotic blue-green alga is limited to the small extent and such activities couple largely with the photosynthetic mechanism; (2) 70 S ribosomes in the blue-green algal cells are assembled on the surface of thylakoid membranes widely distributed in their cytoplasm; and (3) the cells of eukaryotic unicellular algae used here have biochemical characters specific for already differentiated enzyme system involving in transcription and translation machineries as the same as in higher organisms, but the control mechanism concerning with such macromolecule syntheses are different among each species. (author)

  10. Mx Is Not Responsible for the Antiviral Activity of Interferon-α against Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2017-01-01

    Full Text Available Mx proteins are interferon (IFN-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA, overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.

  11. Advances in powder diffraction crystallography

    International Nuclear Information System (INIS)

    Magneli, A.

    1986-01-01

    This is the first conference to be arranged within the framework of an agreement on scientific exchange and co-operation between l Academie des Sciences de l Institut de France and the Royal Swedish Academy of Sciences. The responsibility for the scientific program of the conference has been shared between members of the two Academies. The contributions include glimpses of the historical background and broad reviews of the present status of development and of recent work in powder crystallography. Reports are given on a number of studies, basic as well as applied in character, currently conducted in the two countries in a large variety of fields. Prospects of further developments in the area are also presented

  12. Structure analysis of molecular systems in the Institute of Macromolecular Chemistry of the Czech Academy of Sciences

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2010-01-01

    Roč. 17, 2a (2010), k32-k34 ISSN 1211-5894. [Struktura 2010. Soláň, 14.06.2010-17.06.2010] R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : Academy of Sciences of the Czech Republic * X-ray structure analysis * crystallography Subject RIV: CD - Macromolecular Chemistry http:// xray .cz/ms/bul2010-2a/hasek.pdf

  13. NATO Advanced Study Institute on Electron Crystallography

    CERN Document Server

    Weirich, Thomas E; Zou, Xiaodong

    2006-01-01

    During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to r...

  14. Structure and forces in bentonite MX-80

    International Nuclear Information System (INIS)

    Joensson, Bo; Aakesson, Torbjoern; Joensson, Bengt; Meehdi, Segad; Janiak, John; Wallenberg, Reine

    2009-03-01

    Wyoming bentonite (MX-80) and its ion exchanged forms, Na and Ca montmorillonite, have been studied experimentally and theoretically. A variety of experimental techniques have been used in order to gain insight into the structural conditions in dry clay as well as clay in equilibrium with a bulk solution of given ionic composition. The main objective has been the swelling behaviour and osmotic pressure of montmorillonite clay when the bulk solution contains a mix of monovalent sodium and divalent calcium ions. For a clay system in equilibrium with pure water, Monte Carlo simulations predict a large swelling when the clay counterions are monovalent, while in presence of divalent counterions a limited swelling is predicted with an aqueous layer between the clay lamellaes of about 1 nm. This latter result is in excellent agreement with small angle x-ray scattering data, but in disagreement with dialysis experiments, which gives a significantly larger swelling for Ca montmorillonite in pure water. Obviously, there is one lamellar swelling and a second 'extra-lamellar' swelling, which could be the result of a phase separation in the clay. Montmorillonite in contact with a salt reservoir with both Na + and Ca 2+ counterions will only show a modest swelling unless the sodium concentration in the bulk is several orders of magnitude larger than the calcium concentration. The limited swelling of clay in presence of divalent counterions is a consequence of ion-ion correlations, which reduce the entropic repulsion as well as give rise to an attractive component in the total osmotic pressure. Ion-ion correlations also favour divalent counterions in a situation where we have a competition with monovalent ones. A more fundamental result of ion-ion correlations is that the osmotic pressure as a function of clay sheet separation becomes nonmonotonic, which indicates the possibility of a phase separation into a concentrated and a dilute clay phase. This phenomenon could explain the

  15. Crystallography beyond periodic Crystal perfection

    International Nuclear Information System (INIS)

    Estevez-Rams, E.

    2008-01-01

    Full text: The discovery of the quasi-crystals [D. Schechtman et. Al., Phys.] Rev. Lett. [53, 1951-1953 (1984)] made very narrow definition of the crystalline state based on the periodicity of a local arrangement of atoms. Since the definition of this State has been a matter of much controversy [G.R. Desiraju, Nature 423, 485 (2003); S. van Smaalen, IUCR Aperiodic Commission Reports. August 7, 2002; International Union of Crystallography. Report of the Executive Committee for 1991; ACTA Cryst. A48, 922-946 (1992)]. We will make a presentation of the current time of the crystallography in this regard from the conceptual point of view. We show the use of the formalism of algorithmic complexity or Kolmogorov [M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications (Springer Verlag, Heidelberg, 1993), W.H. Zurek, Phys.] Rev. 40, 4731 (1989); Nature 341, 119-124 (1989)] provides a different perspective on the nature of the Crystallographic order. Infinite crystals can be considered solid with zero algorithmic complexities by atom. Show statistical analysis of inorganic compounds [J.L.C. Daams et al., Atlas of Crystal Structure Types for Intermetallic Phases (ASM International, Ohio, 1991), Fachinformationszentrum/NIST Inorganic Crystal Structure Database, Karlsruhe (2003) icsd.fkf.mpg.de] demonstrating that the minimization of complexity is a trend in the crystalline arrangement. We will then compare the degree of disorder of some typical solids according to their algorithmic complexity. Finally, space diffraction will be studied from this same perspective and will be discussed that zero algorithmic complexities by point in space of diffraction does not necessarily imply the same thing for the Atomic arrangement. The discrete portion of the diffraction pattern is a fingerprint of the underlying order but not the actual existence of long-range order. Experimental results will be showcased [E. Estévez-Rams et al., Physical Review B, 63 (2001

  16. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1977-01-01

    Crystallography may be described as the science of the structure of materi­ als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal­ lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post­ graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain ...

  17. Structure and forces in bentonite MX-80

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Bo; Aakesson, Torbjoern; Joensson, Bengt; Meehdi, Segad; Janiak, John; Wallenberg, Reine (Theoretical Chemistry, Chemical Center, Lund Univ., Lund (Sweden))

    2009-03-15

    Wyoming bentonite (MX-80) and its ion exchanged forms, Na and Ca montmorillonite, have been studied experimentally and theoretically. A variety of experimental techniques have been used in order to gain insight into the structural conditions in dry clay as well as clay in equilibrium with a bulk solution of given ionic composition. The main objective has been the swelling behaviour and osmotic pressure of montmorillonite clay when the bulk solution contains a mix of monovalent sodium and divalent calcium ions. For a clay system in equilibrium with pure water, Monte Carlo simulations predict a large swelling when the clay counterions are monovalent, while in presence of divalent counterions a limited swelling is predicted with an aqueous layer between the clay lamellaes of about 1 nm. This latter result is in excellent agreement with small angle x-ray scattering data, but in disagreement with dialysis experiments, which gives a significantly larger swelling for Ca montmorillonite in pure water. Obviously, there is one lamellar swelling and a second 'extra-lamellar' swelling, which could be the result of a phase separation in the clay. Montmorillonite in contact with a salt reservoir with both Na+ and Ca2+ counterions will only show a modest swelling unless the sodium concentration in the bulk is several orders of magnitude larger than the calcium concentration. The limited swelling of clay in presence of divalent counterions is a consequence of ion-ion correlations, which reduce the entropic repulsion as well as give rise to an attractive component in the total osmotic pressure. Ion-ion correlations also favour divalent counterions in a situation where we have a competition with monovalent ones. A more fundamental result of ion-ion correlations is that the osmotic pressure as a function of clay sheet separation becomes nonmonotonic, which indicates the possibility of a phase separation into a concentrated and a dilute clay phase. This phenomenon could

  18. Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice

    Directory of Open Access Journals (Sweden)

    Paul L. Maurizio

    2018-02-01

    Full Text Available Influenza A virus (IAV is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC. Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1 polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.

  19. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    Science.gov (United States)

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  20. Watching proteins function with time-resolved x-ray crystallography

    International Nuclear Information System (INIS)

    Šrajer, Vukica; Schmidt, Marius

    2017-01-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol . 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol . 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  1. Watching proteins function with time-resolved x-ray crystallography

    Science.gov (United States)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  2. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  3. Electron crystallography of organic pigments

    International Nuclear Information System (INIS)

    Boyce, G.

    1997-10-01

    The principle aim of this thesis is the detailing of the development and subsequent use of electron crystallographic techniques which employ the maximum entropy approach. An account is given of the electron microscope as a crystallographic instrument, along with the necessary theory involved. Also, an overview of the development of electron crystallography, as a whole, is given. This progresses to a description of the maximum entropy methodology and how use can be made of electron diffraction data in ab initio phasing techniques. Details are also given of the utilisation of image derived phases in the determination of structural information. Extensive examples are given of the use of the maximum entropy program MICE, as applied to a variety of structural problems. A particular area of interest covered by this thesis is regarding the solid state structure of organic pigments. A detailed structure review of both β-naphthol and acetoacetanilide pigments was undertaken. Information gained from this review was used as a starting point for the attempted structural elucidation of a related pigment, Barium Lake Red C. Details are given of the synthesis, electron microscope studies and subsequent ab initio phasing procedures applied in the determination of structural information on Barium Lake Red C. The final sections of this thesis detail electron crystallographic analyses of three quite different structures. Common to all was the use of maximum entropy methods, both for ab initio phasing and use of image derived phases. Overall, it is shown that electron crystallographic structure analyses using maximum entropy methods are successful using electron diffraction data and do provide distinct structural information even when significant perturbations to the data exist. (author)

  4. Transfer of the amino-terminal nuclear envelope targeting domain of human MX2 converts MX1 into an HIV-1 resistance factor.

    Science.gov (United States)

    Goujon, Caroline; Moncorgé, Olivier; Bauby, Hélène; Doyle, Tomas; Barclay, Wendy S; Malim, Michael H

    2014-08-01

    The myxovirus resistance 2 (MX2) protein of humans has been identified recently as an interferon (IFN)-inducible inhibitor of human immunodeficiency virus type 1 (HIV-1) that acts at a late postentry step of infection to prevent the nuclear accumulation of viral cDNA (C. Goujon et al., Nature 502:559-562, 2013, http://dx.doi.org/10.1038/nature12542; M. Kane et al., Nature 502:563-566, 2013, http://dx.doi.org/10.1038/nature12653; Z. Liu et al., Cell Host Microbe 14:398-410, 2013, http://dx.doi.org/10.1016/j.chom.2013.08.015). In contrast, the closely related human MX1 protein, which suppresses infection by a range of RNA and DNA viruses (such as influenza A virus [FluAV]), is ineffective against HIV-1. Using a panel of engineered chimeric MX1/2 proteins, we demonstrate that the amino-terminal 91-amino-acid domain of MX2 confers full anti-HIV-1 function when transferred to the amino terminus of MX1, and that this fusion protein retains full anti-FluAV activity. Confocal microscopy experiments further show that this MX1/2 fusion, similar to MX2 but not MX1, can localize to the nuclear envelope (NE), linking HIV-1 inhibition with MX accumulation at the NE. MX proteins are dynamin-like GTPases, and while MX1 antiviral function requires GTPase activity, neither MX2 nor MX1/2 chimeras require this attribute to inhibit HIV-1. This key discrepancy between the characteristics of MX1- and MX2-mediated viral resistance, together with previous observations showing that the L4 loop of the stalk domain of MX1 is a critical determinant of viral substrate specificity, presumably reflect fundamental differences in the mechanisms of antiviral suppression. Accordingly, we propose that further comparative studies of MX proteins will help illuminate the molecular basis and subcellular localization requirements for implementing the noted diversity of virus inhibition by MX proteins. Interferon (IFN) elicits an antiviral state in cells through the induction of hundreds of IFN

  5. Remote access and automation of SPring-8 MX beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Go, E-mail: ueno@spring8.or.jp; Hikima, Takaaki; Yamashita, Keitaro; Hirata, Kunio; Yamamoto, Masaki [RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 JAPAN (Japan); Hasegawa, Kazuya; Murakami, Hironori; Furukawa, Yukito; Mizuno, Nobuhiro; Kumasaka, Takashi [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 JAPAN (Japan)

    2016-07-27

    At SPring-8 MX beamlines, a remote access system has been developed and started user operation in 2010. The system has been developed based on an automated data collection and data management architecture utilized for the confirmed scheme of SPring-8 mail-in data collection. Currently, further improvement to the remote access and automation which covers data processing and analysis are being developed.

  6. Crystallography of quasicrystals concepts, methods and structures

    CERN Document Server

    Walter, Steurer

    2009-01-01

    From tilings to quasicrystal structures and from surfaces to the n-dimensional approach, this book gives a full, self-contained in-depth description of the crystallography of quasicrystals. It aims not only at conveying the concepts and a precise picture of the structures of quasicrystals, butit also enables the interested reader to enter the field of quasicrystal structure analysis. Going beyond metallic quasicrystals, it also describes the new, dynamically growing field of photonic quasicrystals. The readership will be graduate students and researchers in crystallography, solid-state physics, materials science, solid- state chemistry and applied mathematics.

  7. Pharmaceutical crystallography: is there a devil in the details?

    DEFF Research Database (Denmark)

    Bond, A. D.

    2012-01-01

    Modern instruments for small-molecule crystallography continue to become more sophisticated and more automated. This technical progress provides a basis for frontier research in chemical and pharmaceutical crystallography, but it also encourages analytical crystallographers to become more...... are presented for pharmaceutical compounds, and the potential importance of the "details" in pharmaceutical crystallography is discussed....

  8. Accumulation of MxB/Mx2-resistant HIV-1 Capsid Variants During Expansion of the HIV-1 Epidemic in Human Populations.

    Science.gov (United States)

    Wei, Wei; Guo, Haoran; Ma, Min; Markham, Richard; Yu, Xiao-Fang

    2016-06-01

    Recent studies have identified human myxovirus resistance protein 2 (MxB or Mx2) as an interferon induced inhibitor of HIV-1 replication. However, whether HIV-1 can overcome MxB restriction without compromise of viral fitness has been undefined. Here, we have discovered that naturally occurring capsid (CA) variants can render HIV-1 resistant to the activity of MxB without losing viral infectivity or the ability to escape from interferon induction. Moreover, these MxB resistant HIV-1 variants do not lose MxB recognition. Surprisingly, MxB resistant CA variants are most commonly found in the Clade C HIV-1 that is the most rapidly expanding Clade throughout the world. Accumulation of MxB resistant mutations is also observed during HIV-1 spreading in human populations. These findings support a potential role for MxB as a selective force during HIV-1 transmission and evolution. Copyright © 2016. Published by Elsevier B.V.

  9. The Beginnings of X-ray Crystallography

    Indian Academy of Sciences (India)

    IAS Admin

    significant change in his career came in 1904 when he gave a talk at Dunedin on ... In his personal reminiscences, W L Bragg talks about his school days in Australia. ... two Braggs on the occasion of the International Year of Crystallography .

  10. Special issue on Chemical Crystallography Editorial

    Indian Academy of Sciences (India)

    Virtually, every invitation that we extended has translated into an article. We sincerely believe and wish that the collection of articles in this issue sufficiently showcases the panorama of chemical science involving X-ray crystallography in India. We note with pride that Prof. Gautam R. Desiraju, an eminent scientist who has.

  11. Optimizing the Recognition of Surface Crystallography

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mika, Filip; Müllerová, Ilona

    2015-01-01

    Roč. 21, S4 (2015), s. 124-129 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : surface crystallography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  12. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  13. Current status and future prospects of an automated sample exchange system PAM for protein crystallography

    Science.gov (United States)

    Hiraki, M.; Yamada, Y.; Chavas, L. M. G.; Matsugaki, N.; Igarashi, N.; Wakatsuki, S.

    2013-03-01

    To achieve fully-automated and/or remote data collection in high-throughput X-ray experiments, the Structural Biology Research Centre at the Photon Factory (PF) has installed PF automated mounting system (PAM) for sample exchange robots at PF macromolecular crystallography beamlines BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. We are upgrading the experimental systems, including the PAM for stable and efficient operation. To prevent human error in automated data collection, we installed a two-dimensional barcode reader for identification of the cassettes and sample pins. Because no liquid nitrogen pipeline in the PF experimental hutch is installed, the users commonly add liquid nitrogen using a small Dewar. To address this issue, an automated liquid nitrogen filling system that links a 100-liter tank to the robot Dewar has been installed on the PF macromolecular beamline. Here we describe this new implementation, as well as future prospects.

  14. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  15. Macromolecular nanotheranostics for multimodal anticancer therapy

    Science.gov (United States)

    Huis in't Veld, Ruben; Storm, Gert; Hennink, Wim E.; Kiessling, Fabian; Lammers, Twan

    2011-10-01

    Macromolecular carrier materials based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized drug delivery systems that have been extensively evaluated in the past two decades, both at the preclinical and at the clinical level. Using several different imaging agents and techniques, HPMA copolymers have been shown to circulate for prolonged periods of time, and to accumulate in tumors both effectively and selectively by means of the Enhanced Permeability and Retention (EPR) effect. Because of this, HPMA-based macromolecular nanotheranostics, i.e. formulations containing both drug and imaging agents within a single formulation, have been shown to be highly effective in inducing tumor growth inhibition in animal models. In patients, however, as essentially all other tumor-targeted nanomedicines, they are generally only able to improve the therapeutic index of the attached active agent by lowering its toxicity, and they fail to improve the efficacy of the intervention. Bearing this in mind, we have recently reasoned that because of their biocompatibility and their beneficial biodistribution, nanomedicine formulations might be highly suitable systems for combination therapies. In the present manuscript, we briefly summarize several exemplary efforts undertaken in this regard in our labs in the past couple of years, and we show that long-circulating and passively tumor-targeted macromolecular nanotheranostics can be used to improve the efficacy of radiochemotherapy and of chemotherapy combinations.

  16. Host and viral determinants for MxB restriction of HIV-1 infection.

    Science.gov (United States)

    Matreyek, Kenneth A; Wang, Weifeng; Serrao, Erik; Singh, Parmit Kumar; Levin, Henry L; Engelman, Alan

    2014-10-25

    Interferon-induced cellular proteins play important roles in the host response against viral infection. The Mx family of dynamin-like GTPases, which include MxA and MxB, target a wide variety of viruses. Despite considerable evidence demonstrating the breadth of antiviral activity of MxA, human MxB was only recently discovered to specifically inhibit lentiviruses. Here we assess both host and viral determinants that underlie MxB restriction of HIV-1 infection. Heterologous expression of MxB in human osteosarcoma cells potently inhibited HIV-1 infection (~12-fold), yet had little to no effect on divergent retroviruses. The anti-HIV effect manifested as a partial block in the formation of 2-long terminal repeat circle DNA and hence nuclear import, and we accordingly found evidence for an additional post-nuclear entry block. A large number of previously characterized capsid mutations, as well as mutations that abrogated integrase activity, counteracted MxB restriction. MxB expression suppressed integration into gene-enriched regions of chromosomes, similar to affects observed previously when cells were depleted for nuclear transport factors such as transportin 3. MxB activity did not require predicted GTPase active site residues or a series of unstructured loops within the stalk domain that confer functional oligomerization to related dynamin family proteins. In contrast, we observed an N-terminal stretch of residues in MxB to harbor key determinants. Protein localization conferred by a nuclear localization signal (NLS) within the N-terminal 25 residues, which was critical, was fully rescuable by a heterologous NLS. Consistent with this observation, a heterologous nuclear export sequence (NES) abolished full-length MxB activity. We additionally mapped sub-regions within amino acids 26-90 that contribute to MxB activity, finding sequences present within residues 27-50 particularly important. MxB inhibits HIV-1 by interfering with minimally two steps of infection

  17. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA.

    Directory of Open Access Journals (Sweden)

    Orr Ashenberg

    2017-03-01

    Full Text Available The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP. Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors.

  18. Sources, instrumentation and detectors for protein crystallography

    CERN Document Server

    Nave, C

    2001-01-01

    Some of the requirements for protein crystallography experiments on a synchrotron are described. Although data from different types of crystal are often collected without changing the X-ray beam properties, there are benefits if the incident beam is matched to a particular crystal and its diffraction pattern. These benefits are described with some examples. Radiation damage and other effects impose limits on the dose and dose rate on a protein crystal if the maximum amount of data is to be obtained. These limitations have possible consequences for the X-ray source required. Presently available commercial detector systems provide excellent data for protein crystallography but do not quite reach the specifications of the 'ideal' detector. In order to collect the most accurate data (e.g. for very weak anomalous scattering applications) detectors that produce near photon counting statistics over a wide dynamic range are required. It is possible that developments in 'pixel' detectors will allow these demanding exp...

  19. Serial Millisecond Crystallography of Membrane Proteins.

    Science.gov (United States)

    Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.

  20. On R factors for dynamic structure crystallography

    DEFF Research Database (Denmark)

    Coppens, Philip; Kaminski, Radoslaw; Schmøkel, Mette Stokkebro

    2010-01-01

    In studies of dynamic changes in crystals in which induced metastable species may have lifetimes of microseconds or less, refinements are most sensitive if based on the changes induced in the measured intensities. Agreement factors appropriate for such refinements, based on the ratios of the inte...... of the intensities before and after the external perturbation is applied, are discussed and compared with R factors commonly applied in static structure crystallography....

  1. Phasing in crystallography a modern perspective

    CERN Document Server

    Giacovazzo, Carmelo

    2014-01-01

    Modern crystallographic methods originate from the synergy of two main research streams, the small-molecule and the macro-molecular streams. The first stream was able to definitively solve the phase problem for molecules up to 200 atoms in the asymmetric unit. The achievements obtained by the macromolecular stream are also impressive. A huge number of protein structures have been deposited in the Protein Data Bank. The solution of them is no longer reserved to an elite group of scientists, but may be attained in a large number of laboratories around the world, even by young scientists. New probabilistic approaches have been tailored to deal with larger structures, errors in the experimental data, and modest data resolution. Traditional phasing techniques like ab initio, molecular replacement, isomorphous replacement, and anomalous dispersion techniques have been revisited. The new approaches have been implemented in robust phasing programs, which have been organized in automatic pipelines usable even by non-e...

  2. The role of macromolecular stability in desiccation tolerance

    NARCIS (Netherlands)

    Wolkers, W.F.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular

  3. Super-resolution biomolecular crystallography with low-resolution data.

    Science.gov (United States)

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X

  4. From crystallography to structural biology, a century of discoveries

    Directory of Open Access Journals (Sweden)

    Montoya, Guillermo

    2015-04-01

    Full Text Available From crystallography, the technique mostly used to study the structure of matter, the field mutated into structural biology, has mutated in life sciences into structural biology, which has been developed as an essential and rather successful area of research to fully understand the workings of cellular pathways. The application of physical approaches to biological systems has been crucial to comprehend the structure and function of the biological components of living organisms. In this assay the author walks the reader through the last century, which has witnessed how this life sciences research area was born and moved towards larger assemblies in the core of crucial biological problems. The influence of research in physics, biochemistry and molecular biology has been key in the successes and large body of seminal results obtained by structural biologists. The author proposes that the future of this area implies the integration of its results at the cellular level apart of using more quantitative approaches to describe biological processes.La cristalografía, la técnica más ampliamente usada para estudiar la estructura de la materia, ha evolucionado en las ciencias de la vida hacia la biología estructural, una exitosa área de investigación encaminada a comprender el funcionamiento de los procesos celulares. La aplicación de aproximaciones físicas a sistemas biológicos es clave para entender la estructura y funcionamiento de los componentes de los organismos. En este artículo el autor ofrece al lector un paseo por la evolución de esta área de conocimiento durante el siglo XX, desde su nacimiento hasta el análisis de grandes complejos macromoleculares, protagonistas importantes en diversos procesos biológicos. La influencia de investigaciones en física, bioquímica y biología molecular ha sido clave para los numerosos éxitos alcanzados por biólogos estructurales. El autor sostiene que el futuro de esta disciplina pasa por la

  5. Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, O., E-mail: makarov@anl.gov [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hilgart, M.; Ogata, C.; Pothineni, S. [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cork, C. [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-09-01

    GM/CA-CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  6. Testing of gadolinium oxy-sulphide phosphors for use in CCD-based X-ray detectors for macromolecular crystallography

    CERN Document Server

    Pokric, M

    2002-01-01

    The resolution and detective quantum efficiency of CCD-based detectors used for X-ray diffraction is primarily affected by the layer of phosphor that converts incident X-ray photons into visible photons. The optimum thickness of this phosphor layer is strongly dependent on the fraction of absorbed incident X-ray photons and required spatial resolution. A range of terbium doped gadolinium oxy-sulphide (Gd sub 2 O sub 2 S : Tb) phosphor samples, provided by Applied Scintillation Technologies, have been evaluated for spatial resolution, light output and uniformity. The phosphor samples varied in coating weight (10-25 mg/cm sup 2), grain size (2.5, 4, 10 mu m), and applied coating (no coating, reflectors and absorbers). In addition, a non-uniform layer was introduced to some samples in order to provide an inherent diffusion layer. The experimental results showed that the introduction of a reflector increases the point spread function (PSF) and increases light yield up to 30%, while an absorber reduces the PSF tai...

  7. Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction.

    Directory of Open Access Journals (Sweden)

    Patrick S Mitchell

    2015-12-01

    Full Text Available Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host

  8. Metalloprotein Crystallography: More than a Structure.

    Science.gov (United States)

    Bowman, Sarah E J; Bridwell-Rabb, Jennifer; Drennan, Catherine L

    2016-04-19

    Metal ions and metallocofactors play important roles in a broad range of biochemical reactions. Accordingly, it has been estimated that as much as 25-50% of the proteome uses transition metal ions to carry out a variety of essential functions. The metal ions incorporated within metalloproteins fulfill functional roles based on chemical properties, the diversity of which arises as transition metals can adopt different redox states and geometries, dictated by the identity of the metal and the protein environment. The coupling of a metal ion with an organic framework in metallocofactors, such as heme and cobalamin, further expands the chemical functionality of metals in biology. The three-dimensional visualization of metal ions and complex metallocofactors within a protein scaffold is often a starting point for enzymology, highlighting the importance of structural characterization of metalloproteins. Metalloprotein crystallography, however, presents a number of implicit challenges including correctly incorporating the relevant metal or metallocofactor, maintaining the proper environment for the protein to be purified and crystallized (including providing anaerobic, cold, or aphotic environments), and being mindful of the possibility of X-ray induced damage to the proteins or incorporated metal ions. Nevertheless, the incorporated metals or metallocofactors also present unique advantages in metalloprotein crystallography. The significant resonance that metals undergo with X-ray photons at wavelengths used for protein crystallography and the rich electronic properties of metals, which provide intense and spectroscopically unique signatures, allow a metalloprotein crystallographer to use anomalous dispersion to determine phases for structure solution and to use simultaneous or parallel spectroscopic techniques on single crystals. These properties, coupled with the improved brightness of beamlines, the ability to tune the wavelength of the X-ray beam, the availability of

  9. The basics of crystallography and diffraction

    CERN Document Server

    Hammond, C

    2015-01-01

    This title provides a clear and very broadly based introduction to crystallography, light, X-ray, and electron diffraction; a knowledge of which is essential to students in a wide range of scientific disciplines but which is otherwise generally covered in subject-specific and more mathematically detailed texts. The book is also designed to appeal to the more general reader since it shows, by historical and biographical references, how the subject has developed from the work and insights of successive generations of crystallographers and scientists.

  10. Generalized Born Models of Macromolecular Solvation Effects

    Science.gov (United States)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  11. Resilient data staging through MxN distributed transactions.

    Energy Technology Data Exchange (ETDEWEB)

    Schwan, Karsten (Georgia Institute of Technology, Atlanta, GA); Oldfield, Ron A.; Lofstead, Gerald Fredrick, II; Dayal, Jai (Georgia Institute of Technology, Atlanta, GA)

    2011-11-01

    Scientific computing-driven discoveries are frequently driven from workflows that use persistent storage as a staging area for data between operations. With the bad and progressively worse bandwidth vs. data size issues as we continue towards exascale, eliminating persistent storage through techniques like data staging will both enable these workflows to continue online, but also enable more interactive workflows reducing the time to scientific discoveries. Data staging has shown to be an effective way for applications running on high-end computing platforms to offload expensive I/O operations and to manage the tremendous amounts of data they produce. This data staging approach, however, lacks the ACID style guarantees traditional straight-to-disk methods provide. Distributed transactions are a proven way to add ACID properties to data movements, however distributed transactions follow 1xN data movement semantics, where our highly parallel HPC environments employ MxN data movement semantics. In this paper we present a novel protocol that extends distributed transaction terminology to include MxN semantics which allows our data staging areas to benefit from ACID properties. We show that with our protocol we can provide resilient data staging with a limited performance penalty over current data staging implementations.

  12. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  13. Production of transgenic pigs over-expressing the antiviral gene Mx1

    Directory of Open Access Journals (Sweden)

    Quanmei Yan

    2014-01-01

    Full Text Available The myxovirus resistance gene (Mx1 has a broad spectrum of antiviral activities. It is therefore an interesting candidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cell nuclear transfer (SCNT to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs express approximately 15–25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was also markedly enhanced. We challenged fibroblast cells isolated from the ear skin of transgenic and control pigs with influenza A virus and classical swine fever virus (CFSV. Indirect immunofluorescence assay (IFA revealed a profound decrease of influenza A proliferation in Mx1 transgenic cells. Growth kinetics showed an approximately 10-fold reduction of viral copies in the transgenic cells compared to non-transgenic controls. Additionally, we found that the Mx1 transgenic cells were more resistant to CSFV infection in comparison to non-transgenic cells. These results demonstrate that the Mx1 transgene can protect against viral infection in cells of transgenic pigs and indicate that the Mx1 transgene can be harnessed to develop disease-resistant pigs.

  14. X-Ray Crystallography: One Century of Nobel Prizes

    Science.gov (United States)

    Galli, Simona

    2014-01-01

    In 2012, the United Nations General Assembly declared 2014 the International Year of Crystallography. Throughout the year 2014 and beyond, all the crystallographic associations and societies active all over the world are organizing events to attract the wider public toward crystallography and the numerous topics to which it is deeply interlinked.…

  15. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  16. Fresh MOX fuel transport in Germany: experience for using the MX6

    Energy Technology Data Exchange (ETDEWEB)

    Lallemant, T. [COGEMA Logistics (AREVA Group), Bagnols/sur Ceze (France); Marien, L. [FBFC-I (AREVA Group), Dessel (Belgium); Wagner, R. [RWE, Gundremmingen (Germany); Jahreiss, W. [FRAMATOME ANP GmbH (AREVA Group), Erlangen (Germany); Tschiesche, H. [NCS, Hanau (Germany)

    2004-07-01

    The MX6 packaging developed by COGEMA LOGISTICS replaces the BWR SIEMENS packaging and SIEMENS III packaging for the transport of either BWR or PWR fresh MOX assemblies. It is licensed in France, Germany and Belgium according to TS-R-1 requirements (IAEA 1996). The associated security transport system was developed in co-operation with NCS (Nuclear Cargo + Service GmbH). The MX6 packaging is based on innovative solutions implemented at each step of the design. In 2004, RWE GUNDREMMINGEN Nuclear Power Plant (NPP) will be the first NPP delivered with the MX6 system and MOX assemblies manufactured by BELGONUCLEAIRE and FBFC in Belgium. Before this first transport, successful cold tests were performed for qualification of the whole system with the participation of all parties involved: NPP, carrier, fuel supplier and local Authorities. These tests were conducted by the NPP's operators in FBFC and GUNDREMMINGEN facilities and lead to the validation of the operating manual. Specific conditions for the return of the empty MX6 were also agreed between all parties. Similar operation will be conducted in each NPP before the first use of the MX 6. The large payload of the MX6: - 16 BWR MOX assemblies in one packaging instead of 2 - 6 PWR MOX assemblies in one packaging instead of 3 contributes to the optimisation of the dose uptake during unloading in the NPP. In this paper, the main contributors to the first MOX transport to Germany with the MX6 will present their involvement and feedback at each step of the transport of this new type of packaging, including loading and unloading operations. The use of the MX6 will be extended to other German NPP's from the next year. After FBFC in Belgium, MELOX in France will load the MX6 as well as the current MX8 packaging for the delivery to the French NPP's.

  17. Fresh MOX fuel transport in Germany: experience for using the MX6

    International Nuclear Information System (INIS)

    Lallemant, T.; Marien, L.; Wagner, R.; Jahreiss, W.; Tschiesche, H.

    2004-01-01

    The MX6 packaging developed by COGEMA LOGISTICS replaces the BWR SIEMENS packaging and SIEMENS III packaging for the transport of either BWR or PWR fresh MOX assemblies. It is licensed in France, Germany and Belgium according to TS-R-1 requirements (IAEA 1996). The associated security transport system was developed in co-operation with NCS (Nuclear Cargo + Service GmbH). The MX6 packaging is based on innovative solutions implemented at each step of the design. In 2004, RWE GUNDREMMINGEN Nuclear Power Plant (NPP) will be the first NPP delivered with the MX6 system and MOX assemblies manufactured by BELGONUCLEAIRE and FBFC in Belgium. Before this first transport, successful cold tests were performed for qualification of the whole system with the participation of all parties involved: NPP, carrier, fuel supplier and local Authorities. These tests were conducted by the NPP's operators in FBFC and GUNDREMMINGEN facilities and lead to the validation of the operating manual. Specific conditions for the return of the empty MX6 were also agreed between all parties. Similar operation will be conducted in each NPP before the first use of the MX 6. The large payload of the MX6: - 16 BWR MOX assemblies in one packaging instead of 2 - 6 PWR MOX assemblies in one packaging instead of 3 contributes to the optimisation of the dose uptake during unloading in the NPP. In this paper, the main contributors to the first MOX transport to Germany with the MX6 will present their involvement and feedback at each step of the transport of this new type of packaging, including loading and unloading operations. The use of the MX6 will be extended to other German NPP's from the next year. After FBFC in Belgium, MELOX in France will load the MX6 as well as the current MX8 packaging for the delivery to the French NPP's

  18. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    Science.gov (United States)

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  19. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    International Nuclear Information System (INIS)

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-01-01

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β 2 -adrenoreceptor–G s protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular

  20. Running the source term code package in Elebra MX-850

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.; Goes, A.G.A.

    1988-01-01

    The source term package (STCP) is one of the main tools applied in calculations of behavior of fission products from nuclear power plants. It is a set of computer codes to assist the calculations of the radioactive materials leaving from the metallic containment of power reactors to the environment during a severe reactor accident. The original version of STCP runs in SDC computer systems, but as it has been written in FORTRAN 77, is possible run it in others systems such as IBM, Burroughs, Elebra, etc. The Elebra MX-8500 version of STCP contains 5 codes:March 3, Trapmelt, Tcca, Vanessa and Nava. The example presented in this report has taken into consideration a small LOCA accident into a PWR type reactor. (M.I.)

  1. MX chains: 1-D analog of CuO planes?

    International Nuclear Information System (INIS)

    Gammel, J.T.; Batistic, I.; Bishop, A.R.; Loh, E.Y. Jr.; Marianer, S.

    1989-01-01

    We study a two-band Peierls-Hubbard model for halogen-bridged mixed-valence transition metal linear chain complexes (MX chains). We include electron-electron correlations (both Hubbard and PPP-like expressions) using several techniques including calculations in the zero-hopping limit, exact diagonalization of small systems, mean field approximation, and a Gutzwiller-like Ansatz for quantum phonons. The adiabatic optical absorption and phonon spectra for both photo-excited and doping induced defects (kinks, polarons, bipolarons, and excitons) are discussed. A long period phase which occurs even at commensurate filling for certain parameter values may be related to twinning. The effect of including the electron-phonon in addition to the electron-electron interaction on the polaron/bipolaron (pairing) competition is especially interesting when this class of compounds is viewed as a 1-D analog of high-temperature superconductors. 6 refs., 4 figs

  2. Porosity in MX-type fuels and its stability

    International Nuclear Information System (INIS)

    Sari, C.

    1978-01-01

    Radial and axial temperature gradients were generated in MX-type fuels (U,Pu)C, (U,Pu)CN and (U,Pu)N in regions of temperature between 1000 and 2000 0 C. Typical temperature gradients were between 150 and 350 0 C/mm. Experiments show that under these conditions important restructuring of the fuel occurs after less than 40 hours. Densification in the thermal gradient was observed at temperature as low as 1100 0 C and the densification decreases with the increase of the nitrogen content. The grain growth rates decrease with the increase of the nitrogen content, thus paralleling the results of densification. Evidence of pore migration was found in the region with T approximately equal to 1500 0 C. Data of pore migration in MC and in carbon rich MCN plotted in an Arrhenius diagram gives a ΔH approximately equal to 95kcal/mole in approximate agreement with the values of evaporation enthalpy

  3. Sequential recovery of macromolecular components of the nucleolus.

    Science.gov (United States)

    Bai, Baoyan; Laiho, Marikki

    2015-01-01

    The nucleolus is involved in a number of cellular processes of importance to cell physiology and pathology, including cell stress responses and malignancies. Studies of macromolecular composition of the nucleolus depend critically on the efficient extraction and accurate quantification of all macromolecular components (e.g., DNA, RNA, and protein). We have developed a TRIzol-based method that efficiently and simultaneously isolates these three macromolecular constituents from the same sample of purified nucleoli. The recovered and solubilized protein can be accurately quantified by the bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis or by mass spectrometry. We have successfully applied this approach to extract and quantify the responses of all three macromolecular components in nucleoli after drug treatments of HeLa cells, and conducted RNA-Seq analysis of the nucleolar RNA.

  4. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1995-01-01

    X-ray crystallography provides us with the most accurate picture we can get of atomic and molecular structures in crystals. It provides a hard bedrock of structural results in chemistry and in mineralogy. In biology, where the structures are not fully crystalline, it can still provide valuable results and, indeed, the impact here has been revolutionary. It is still an immense field for young workers, and no doubt will provide yet more striking develop­ ments of a major character. It does, however, require a wide range of intellectual application, and a considerable ability in many fields. This book will provide much help. It is a very straightforward and thorough guide to every aspect of the subject. The authors are experienced both as research workers themselves and as teachers of standing, and this is shown in their clarity of exposition. There are plenty of iliustrations and worked examples to aid the student to obtain a real grasp of the subject.

  5. Viscous hydrophilic injection matrices for serial crystallography

    Directory of Open Access Journals (Sweden)

    Gabriela Kovácsová

    2017-07-01

    Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new

  6. Macromolecular Crystal Growth by Means of Microfluidics

    Science.gov (United States)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  7. Atomic force microscopy imaging of macromolecular complexes.

    Science.gov (United States)

    Santos, Sergio; Billingsley, Daniel; Thomson, Neil

    2013-01-01

    This chapter reviews amplitude modulation (AM) AFM in air and its applications to high-resolution imaging and interpretation of macromolecular complexes. We discuss single DNA molecular imaging and DNA-protein interactions, such as those with topoisomerases and RNA polymerase. We show how relative humidity can have a major influence on resolution and contrast and how it can also affect conformational switching of supercoiled DNA. Four regimes of AFM tip-sample interaction in air are defined and described, and relate to water perturbation and/or intermittent mechanical contact of the tip with either the molecular sample or the surface. Precise control and understanding of the AFM operational parameters is shown to allow the user to switch between these different regimes: an interpretation of the origins of topographical contrast is given for each regime. Perpetual water contact is shown to lead to a high-resolution mode of operation, which we term SASS (small amplitude small set-point) imaging, and which maximizes resolution while greatly decreasing tip and sample wear and any noise due to perturbation of the surface water. Thus, this chapter provides sufficient information to reliably control the AFM in the AM AFM mode of operation in order to image both heterogeneous samples and single macromolecules including complexes, with high resolution and with reproducibility. A brief introduction to AFM, its versatility and applications to biology is also given while providing references to key work and general reviews in the field.

  8. Development of the protein crystallography by synchrotron radiation

    International Nuclear Information System (INIS)

    Yamamoto, Masaki

    2014-01-01

    Since crystal structure determination of the first protein by Kendrew in 1959, protein crystallography developed into the leading role of the protein structure study by various technology developments. Especially the utilization of synchrotron radiation from the 1990s brought innovative progress of protein crystallography on the data quality and the phasing method and had expanded the samples targets including membrane proteins and suprarmolecular complexes. Here I give the outline of the history and the future prospects of the protein crystallography from the role of synchrotron radiation. (author)

  9. Affinity maturation of a portable Fab–RNA module for chaperone-assisted RNA crystallography

    Science.gov (United States)

    Koirala, Deepak; Shelke, Sandip A; Dupont, Marcel; Ruiz, Stormy; DasGupta, Saurja; Bailey, Lucas J; Benner, Steven A; Piccirilli, Joseph A

    2018-01-01

    Abstract Antibody fragments such as Fabs possess properties that can enhance protein and RNA crystallization and therefore can facilitate macromolecular structure determination. In particular, Fab BL3–6 binds to an AAACA RNA pentaloop closed by a GC pair with ∼100 nM affinity. The Fab and hairpin have served as a portable module for RNA crystallization. The potential for general application make it desirable to adjust the properties of this crystallization module in a manner that facilitates its use for RNA structure determination, such as ease of purification, surface entropy or binding affinity. In this work, we used both in vitro RNA selection and phage display selection to alter the epitope and paratope sides of the binding interface, respectively, for improved binding affinity. We identified a 5′-GNGACCC-3′ consensus motif in the RNA and S97N mutation in complimentarity determining region L3 of the Fab that independently impart about an order of magnitude improvement in affinity, resulting from new hydrogen bonding interactions. Using a model RNA, these modifications facilitated crystallization under a wider range of conditions and improved diffraction. The improved features of the Fab–RNA module may facilitate its use as an affinity tag for RNA purification and imaging and as a chaperone for RNA crystallography. PMID:29309709

  10. Why do We Trust X-ray Crystallography?

    Indian Academy of Sciences (India)

    IAS Admin

    crystal X-ray diffraction pattern and good chemical sense that elevates X-ray crystallography to its position as the most trusted analytical technique. Suggested Reading. [1] William Clegg, Crystal Structure Determination, Oxford Chemistry Prim-.

  11. Chemical Crystallography· From Inception to Maturity

    Indian Academy of Sciences (India)

    design, charge density ... did not readily accept this first chemical crystallography experi- .... graphics. The packages clearly illustrate the complexity involved in both molecu- ... interactive online programs help to search, match and analyze.

  12. Crystallography and Interphase Boundary of Martensite and Bainite in Steels

    Science.gov (United States)

    Furuhara, Tadashi; Chiba, Tadachika; Kaneshita, Takeshi; Wu, Huidong; Miyamoto, Goro

    2017-06-01

    Grain refinements in lath martensite and bainite structures are crucial for strengthening and toughening of high-strength structural steels. Clearly, crystallography of transformation plays an important role in determining the "grain" sizes in these structures. In the present study, crystallography and intrinsic boundary structure of martensite and bainite are described. Furthermore, various extrinsic factors affecting variant selection and growth kinetics, such as elastic/plastic strain and alloying effects on interphase boundary migration, are discussed.

  13. Material designs and new physical properties in MX- and MMX-chain compounds

    CERN Document Server

    Yamashita, Masahiro

    2014-01-01

    This book details the structures, physical properties, theoretical treatments, applications, and perspectives of MX and MMX chain compounds for chemists and physicists. It also examines various photoinduced phase transitions and their dynamics.

  14. Partial antiviral activities detection of chicken Mx jointing with neuraminidase gene (NA against Newcastle disease virus.

    Directory of Open Access Journals (Sweden)

    Yani Zhang

    Full Text Available As an attempt to increase the resistance to Newcastle Disease Virus (NDV and so further reduction of its risk on the poultry industry. This work aimed to build the eukaryotic gene co-expression plasmid of neuraminidase (NA gene and myxo-virus resistance (Mx and detect the gene expression in transfected mouse fibroblasts (NIH-3T3 cells, it is most important to investigate the influence of the recombinant plasmid on the chicken embryonic fibroblasts (CEF cells. cDNA fragment of NA and mutant Mx gene were derived from pcDNA3.0-NA and pcDNA3.0-Mx plasmid via PCR, respectively, then NA and Mx cDNA fragment were inserted into the multiple cloning sites of pVITRO2 to generate the eukaryotic co-expression plasmid pVITRO2-Mx-NA. The recombinant plasmid was confirmed by restriction endonuclease treatment and sequencing, and it was transfected into the mouse fibroblasts (NIH-3T3 cells. The expression of genes in pVITRO2-Mx-NA were measured by RT-PCR and indirect immunofluorescence assay (IFA. The recombinant plasmid was transfected into CEF cells then RT-PCR and the micro-cell inhibition tests were used to test the antiviral activity for NDV. Our results showed that co-expression vector pVITRO2-Mx-NA was constructed successfully; the expression of Mx and NA could be detected in both NIH-3T3 and CEF cells. The recombinant proteins of Mx and NA protect CEF cells from NDV infection until after 72 h of incubation but the individually mutagenic Mx protein or NA protein protects CEF cells from NDV infection till 48 h post-infection, and co-transfection group decreased significantly NDV infection compared with single-gene transfection group (P<0. 05, indicating that Mx-NA jointing contributed to delaying the infection of NDV in single-cell level and the co-transfection of the jointed genes was more powerful than single one due to their synergistic effects.

  15. About Making Music and Website Design, Film, and Novel Latest Usingmacromedia Dreamweaver Mx 2004 and Php

    OpenAIRE

    Tamara Prastya Bakti

    2006-01-01

    Website is one of the means to deliver a new information at this time. To create a website required a variety of means of support, one that is software. Macromedia Dreamweaver MX 2004 is one of the software to design or build a website. By using Macromedia Dreamweaver MX 2004, we can create websites that look interesting that in accordance with the wishes. In addition, we can insert media from several other Macromedia. Scientific writing contains about creating and designing websites about mo...

  16. Brief communication: Population variation in human maxillary premolar accessory ridges (MxPAR).

    Science.gov (United States)

    Burnett, Scott E; Hawkey, Diane E; Turner, Christy G

    2010-02-01

    The purpose of this brief communication is to report the results of an analysis of maxillary premolar accessory ridges (MxPAR), a common but understudied accessory ridge that may occur both mesial and distal to the central ridge of the buccal cusp of upper premolars. We developed a new five-grade scoring plaque to better categorize MxPAR variation. Subsequently, we conducted a population analysis of MxPAR frequency in 749 dental casts of South African Indian, American Chinese, Alaskan Eskimo, Tohono O'odham (Papago), Akimel O'odham (Pima), Solomon Islander, South African Bantu, and both American and South African Whites. Northeast Asian and Asian-derived populations exhibited the highest MxPAR frequencies while Indo-European samples (South African Indians, American and South African Whites) exhibited relatively low frequencies. The Solomon Islanders and South African Bantu samples exhibited intermediate frequencies. Our analysis indicates that statistically significant differences in MxPAR frequency exist between major geographic populations. As a result, the MxPAR plaque has now been added to the Arizona State University Dental Anthropology System, an important contribution as maxillary premolar traits are underrepresented in analyses of dental morphology. 2009 Wiley-Liss, Inc.

  17. Identification of Gene Resistance to Avian InfluenzaVirus (Mx Gene among Wild Waterbirds

    Directory of Open Access Journals (Sweden)

    Dewi Elfidasari

    2013-04-01

    Full Text Available The Mx gene is an antiviral gene used to determine the resistance or the susceptibility to different types of viruses, including the Avian Influenza (AI virus subtype H5N1. The AI virus subtype H5N1 infection in chickens causes Mx gene polymorphism. The Mx+ gene shows resistant to the AIvirus subtype H5N1, whereas the Mx-gene shows signs of susceptible. The objective of thisresearch was to detect the Mxgene in wild aquatic birds using the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP method with the primer pairs F2 and NE-R2/R and the RsaI restriction enzyme. DNA samples were obtained from eight species of wild waterbirds with positive and negative exposure to the AI virus subtype H5N1. DNA amplification results showed that the Mxgene in wild aquatic birds is found in a 100 bp fragment, which is the same as the Mx gene found in chickens. However, unlike chickens, the Mxgene in wild aquatic birds did not show any polymorphism. This study proves that Mx- based resistance to AI virus subtype H5N1 in different in wild birds than in chickens.

  18. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  19. Control of Macromolecular Architectures for Renewable Polymers: Case Studies

    Science.gov (United States)

    Tang, Chuanbing

    The development of sustainable polymers from nature biomass is growing, but facing fierce competition from existing petrochemical-based counterparts. Controlling macromolecular architectures to maximize the properties of renewable polymers is a desirable approach to gain advantages. Given the complexity of biomass, there needs special consideration other than traditional design. In the presentation, I will talk about a few case studies on how macromolecular architectures could tune the properties of sustainable bioplastics and elastomers from renewable biomass such as resin acids (natural rosin) and plant oils.

  20. Langmuir-Blodgett nanotemplates for protein crystallography.

    Science.gov (United States)

    Pechkova, Eugenia; Nicolini, Claudio

    2017-12-01

    The new generation of synchrotrons and microfocused beamlines has enabled great progress in X-ray protein crystallography, resulting in new 3D atomic structures for proteins of high interest to the pharmaceutical industry and life sciences. It is, however, often still challenging to produce protein crystals of sufficient size and quality (order, intensity of diffraction, radiation stability). In this protocol, we provide instructions for performing the Langmuir-Blodgett (LB) nanotemplate method, a crystallization approach that can be used for any protein (including membrane proteins). We describe how to produce highly ordered 2D LB protein monolayers at the air-water interface and deposit them on glass slides. LB-film formation can be observed by surface-pressure measurements and Brewster angle microscopy (BAM), although its quality can be characterized by atomic force microscopy (AFM) and nanogravimetry. Such films are then used as a 2D template for triggering 3D protein crystal formation by hanging-drop vapor diffusion. The procedure for forming the 2D template takes a few minutes. Structural information about the protein reorganization in the LB film during the crystallization process on the nano level can be obtained using an in situ submicron GISAXS (grazing-incidence small-angle X-ray scattering) method. MicroGISAXS spectra, measured directly at the interface of the LB films and protein solution in real time, as described in this protocol, can be interpreted in terms of the buildup of layers, islands, or holes. In our experience, the obtained LB crystals take 1-10 d to prepare and they are more ordered and radiation stable as compared with those produced using other crystallization methods.

  1. Hydration–dehydration behavior and thermodynamics of MX-80 montmorillonite studied using thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tajeddine, L. [CNRS-IC2MP-UMR- Hydrasa, 5 Ave Albert, Turpain, (France); Gailhanou, H.; Blanc, P.; Lassin, A.; Gaboreau, S. [BRGM, 3 Av. Claude Guillemin, BP6009, Orléans F-45060 (France); Vieillard, P., E-mail: philippe.vieillard@univ-poitiers.fr [CNRS-IC2MP-UMR- Hydrasa, 5 Ave Albert, Turpain, (France)

    2015-03-20

    Highlights: • Adsorption–desorption of water on MX-80 is determined from TGA and DTA analysis. • From DTA analysis, three types of water behavior exist at various hydration states. • Surface area of DTA allows to determine the dehydration enthalpy per mole of water. • A maximum enthalpy is 12 kJ/mol for the adsorption and desorption processes. • Enthalpy of formation of water for adsorption and desorption processes are provided. - Abstract: The thermal dehydration of natural bentonite clay MX-80 chosen as a possible future backfill material, was investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The aim of this work is to provide a better understanding of the thermodynamics of the hydration–dehydration process of MX-80. The data obtained from thermogravimetry derivative curves at different relative humidities were used to determine the adsorption–desorption isotherm of MX-80. The total amount of water varies from 0.35 to 5.62 and from 0.78 to 6.12 mol adsorbed H{sub 2}O/mol of clay upon adsorption and desorption, respectively, for a RH between 11 and 91%. Furthermore, the heats released upon adsorption and desorption are not completely similar. Moreover, the analysis of DTA signals obtained at various hydration states provides insights about three types of water behavior in MX-80. Therefore, the surface area of DTA curves was taken into account to determine the dehydration enthalpy per mole of water; the values do not correlate with the amount of adsorbed water in MX-80, and the maximum enthalpy was approximately 12 kJ/mol for the adsorption and desorption studies. The values obtained were combined with the standard enthalpies of the formation of liquid water to obtain the corresponding enthalpy of the formation of water relative to dehydrated MX-80.

  2. Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Adams, Paul D.; Moriarty, Nigel W.; Zwart, Peter; Read, Randy J.; Turk, Dusan; Hung, Li-Wei

    2007-01-01

    Heterogeneity in ensembles generated by independent model rebuilding principally reflects the limitations of the data and of the model-building process rather than the diversity of structures in the crystal. Automation of iterative model building, density modification and refinement in macromolecular crystallography has made it feasible to carry out this entire process multiple times. By using different random seeds in the process, a number of different models compatible with experimental data can be created. Sets of models were generated in this way using real data for ten protein structures from the Protein Data Bank and using synthetic data generated at various resolutions. Most of the heterogeneity among models produced in this way is in the side chains and loops on the protein surface. Possible interpretations of the variation among models created by repetitive rebuilding were investigated. Synthetic data were created in which a crystal structure was modelled as the average of a set of ‘perfect’ structures and the range of models obtained by rebuilding a single starting model was examined. The standard deviations of coordinates in models obtained by repetitive rebuilding at high resolution are small, while those obtained for the same synthetic crystal structure at low resolution are large, so that the diversity within a group of models cannot generally be a quantitative reflection of the actual structures in a crystal. Instead, the group of structures obtained by repetitive rebuilding reflects the precision of the models, and the standard deviation of coordinates of these structures is a lower bound estimate of the uncertainty in coordinates of the individual models

  3. A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Feng; Wang, Weichao; Luo, Xiaoguang; Cheng, Yahui; Dong, Hong; Liu, Hui; Wang, Wei-Hua, E-mail: whwangnk@nankai.edu.cn [Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Xie, Xinjian [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-03-28

    With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electron (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.

  4. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  5. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-01-01

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures

  6. Applied Crystallography - Proceedings of the XVth Conference

    Science.gov (United States)

    Morawiec, H.; Ströż, D.

    1993-06-01

    The Table of Contents for the full book PDF is as follows: * Foreword * The International Centre for Diffraction Data and Its Future Developments * The Rietveld Method - A Historical Perspective * Real Structure in Quantitative Powder Diffraction Phase Analysis * Neutron Focusing Optics in Applied Crystallography * The Crystal Structures of Oxygen Deficient Rare Earth Oxides * Short-Range Order in Layer-Structured Ba1-xSrxBi2Nb2O9 Ferroelectrics * Radial Distribution Function as a Tool of Structural Studies on Noncrystalline Materials * Determination of Radial Distribution Function (RDF) of Electrodeposited Cu-Cd Alloys After Annealing * Spheres Packing as a Factor Describing the Local Environment and Structure Stability * X-Ray Stress Measurement of Samples Combined with Diffraction Line Analysis * Phase Stability and Martensitic Transformation in Cu-Zn and Cu-Zn-Al Single Crystals * Order, Defects, Precipitates and the Martensitic Transformation in β Cu-Zn-Al * Effect of γ Precipitates on the Martensitic Transformation in Cu-Zn-Al Alloys * Phase Transitions and Shape Memory Effect in a Thermomechanically Treated NiTi Alloy * Structure of Martensite and Bainite in CuAlMn Alloys * Glass-Ceramics * Mechanism of Texture Formation at the Rolling of Low Stacking Fault Energy Metals and Alloys * Shear Texture of Zinc and the Conditions of Its Occuring * The Development of Texture of ZnAlMg Sheets Depending on Deformation Geometry * Texture Stability of the D.S. NiAlMoCrTi Alloy After Heat Treatment * X-Ray Diffraction Method for Controlling of Texture Evolution in Layers * Texture and Lattice Imperfections Study of Some Low Alloyed Copper Alloys * Selected Examples of the Calculation of the Orientation Distribution Function for Low Crystal and Sample Symmetries * Automatical X-Ray Quantitative Phase Analysis * Application of a PC Computer for Crystallographic Calculations * Electron Diffraction Analysis using a Personal Computer * CA.R.INE Crystallography Version 2

  7. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    Energy Technology Data Exchange (ETDEWEB)

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I. [QuantumBio Inc., 2790 West College Avenue, State College, PA 16801 (United States); Merz, Kenneth M. Jr [University of Florida, Gainesville, Florida (United States); Westerhoff, Lance M., E-mail: lance@quantumbioinc.com [QuantumBio Inc., 2790 West College Avenue, State College, PA 16801 (United States)

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  8. Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW?

    International Nuclear Information System (INIS)

    Pusch, R.

    1999-12-01

    Four commercial clays, saponite, mixed-layer smectite-mica, kaolinite, and palygorskite, have been examined as possible alternatives to MX-80 buffer. General estimates based on the microstructural constitution and hydration potential as well as actual laboratory testing show that except for normally graded kaolinite, they would all serve acceptably in a repository. MX-80 is, however, superior with respect to hydraulic conductivity and retardation of diffusive transport of relevant cations and, like saponite and palygorskite, it has a high swelling pressure, that may in fact be too high. The mixed-layer clay is less but sufficiently expandable and is concluded to have better thermal and rheological properties as well as gas release capacity. It is hence the number one competitor to MX-80

  9. Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW?

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R [Geodevelopment AB, Lund (Sweden)

    1999-12-01

    Four commercial clays, saponite, mixed-layer smectite-mica, kaolinite, and palygorskite, have been examined as possible alternatives to MX-80 buffer. General estimates based on the microstructural constitution and hydration potential as well as actual laboratory testing show that except for normally graded kaolinite, they would all serve acceptably in a repository. MX-80 is, however, superior with respect to hydraulic conductivity and retardation of diffusive transport of relevant cations and, like saponite and palygorskite, it has a high swelling pressure, that may in fact be too high. The mixed-layer clay is less but sufficiently expandable and is concluded to have better thermal and rheological properties as well as gas release capacity. It is hence the number one competitor to MX-80.

  10. Community response to large-scale federal projects: the case of the MX

    International Nuclear Information System (INIS)

    Albrecht, S.L.

    1983-01-01

    An analysis of community response to large-scale defense projects, such as the proposals to site MX missiles in Utah and Nevada, is one way to identify those factors likely to be important in determining community response to nuclear waste repository siting. This chapter gives a brief overview of the MX system's characteristics and the potential impacts it would have had on the rural areas, describes the patterns of community mobilization that occurred in Utah and Nevada, and suggests where this response may parallel community concerns about a repository siting. Three lessons from the MX experience are that local residents, asked to assume a disproportionate share of the negative impacts, should be involved in the siting process, that local residents should be treated as equal, and that compensation should be offered when local residents suffer from political expediency

  11. On the effect of hot water vapor on MX-80 clay

    International Nuclear Information System (INIS)

    Pusch, Roland

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant

  12. On the effect of hot water vapor on MX-80 clay

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant.

  13. Physical changes in MX-80 bentonite saturated under thermal gradient

    International Nuclear Information System (INIS)

    Villar, Maria Victoria; Gomez-Espina, Roberto; Gutierrez-Nebot, Luis; Campos, Rocio; Barrios, Iciar

    2012-01-01

    Document available in extended abstract form only. This study was developed in the framework of the Temperature Buffer Test (TBT project), which was a full-scale test for HLW disposal that aimed at improving the understanding of the thermo-hydro-mechanical (THM) behaviour of buffers with a temperature around and above 100 deg. C during the water saturation transient. The French organisation ANDRA run this test at the Aespoe HRL in cooperation with SKB (Svensk Kaernbraenslehantering AB 2005). To simulate the conditions of the field test in the laboratory, 20-cm high columns of MX80 bentonite compacted at dry density 1.70 g/cm 3 with an initial water content of 16 percent were submitted in thermo-hydraulic cells to heating and hydration by opposite ends for different periods of time (TH test). The temperature at the bottom of the columns was set at 140 deg. C and on top at 30 C, and deionised water was injected on top at a pressure of 0.01 MPa. The tests were running for 337, 496 and 1510 days. Upon dismantling water content, dry density, specific surface area, porosity and basal spacings, among others, were determined in different positions along the bentonite columns. The strong gradients developed are remarkable. In the shorter tests the water content decreased below the initial value in the 7 cm closest to the heater, whereas in the longer test the decrease below the initial value took place only in the 5 cm closest to the heater. In the remaining part of the columns the water content increased with respect to the initial value, particularly so in the longest test. The dry density along the bentonite changed accordingly, decreasing in the hydrated areas below the initial value and increasing near the heater. The decrease in dry density is due to the swelling of the bentonite upon saturation, while the dry density increase results from the combination of two processes: the compression of the dry areas exerted by the hydrated bentonite, and the shrinkage due to the

  14. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein

    Energy Technology Data Exchange (ETDEWEB)

    Hoenen, Antje [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Gillespie, Leah [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia); Morgan, Garry; Heide, Peter van der [Institute for Molecular Bioscience, University of Queensland, Brisbane (Australia); Khromykh, Alexander [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Australian Infectious Diseases Research Centre, University of Queensland, Brisbane (Australia); Mackenzie, Jason, E-mail: jason.mackenzie@unimelb.edu.au [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia)

    2014-01-05

    Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNV{sub KUN}) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNV{sub KUN} particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNV{sub KUN} under conditions of virus infection. Our results indicate a co-ordinated and compartmentalized WNV{sub KUN} assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNV{sub KUN} assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system. - Highlights: • We show that the ISG MxA can recognize the West Nile virus capsid protein. • Interaction between WNV C protein and MxA induces cytoplasmic fibrils. • MxA can be retargeted to the ER to restrict WNV particle release. • WNV assembly process is a strategy to avoid MxA recognition.

  15. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein.

    Directory of Open Access Journals (Sweden)

    Benjamin Mänz

    2013-03-01

    Full Text Available The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP of pandemic strains A/Brevig Mission/1/1918 (1918 and A/Hamburg/4/2009 (pH1N1 that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1/04 (H5N1 resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored.

  16. Fab Chaperone-Assisted RNA Crystallography (Fab CARC).

    Science.gov (United States)

    Sherman, Eileen; Archer, Jennifer; Ye, Jing-Dong

    2016-01-01

    Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.

  17. Crystallography of the Sb-Te-Ni system

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Drábek, M.; Skála, Roman; Císařová, I.

    2005-01-01

    Roč. 12, č. 2 (2005), s. 153-154 ISSN 1211-5894 Grant - others:GAUK(CZ) 43-203391 Institutional research plan: CEZ:AV0Z30130516 Keywords : crystallography * antimony * tellurium Subject RIV: DB - Geology ; Mineralogy http:// xray .cz/ms/bul2005-2/student3.pdf

  18. A high-pressure MWPC detector for crystallography

    DEFF Research Database (Denmark)

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.

    1999-01-01

    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a solution...

  19. Review on cation exchange selectivity coefficients for MX-80 bentonite

    International Nuclear Information System (INIS)

    Domenech, C.; Arcos, D.; Duro, L.; Sellin, P.

    2005-01-01

    Full text of publication follows: Bentonite is considered as engineered barrier in the near field of a nuclear waste repository due to its low permeability, what impedes groundwater flow to the nuclear waste, and its high retention capacity (sorption) of radionuclides in the eventuality of groundwater intrusion. One of the main retention processes occurring at the bentonite surface is ion exchange. This process may exert a strong control on the mobility of major pore water cations. Changes in major cation concentration, especially calcium, can affect the dissolution-precipitation of calcite, which in turn controls one of the key parameters in the system: pH. The cation exchange process is usually described according to the Gaines-Thomas convention: Ca 2+ + 2 NaX = CaX 2 + 2 Na + , K Ca = (N Ca x a 2 Na + )/(N 2 Na x a Ca 2+ ) where K Ca is the selectivity coefficient for the Ca by Na exchange, ai is the activity of cation 'i' in solution and NJ the equivalent fractional occupancy of cation 'J' in bentonite. Parameters such as solid to liquid (S:L) ratio and dry density of the solid have an important influence on the value of selectivity coefficients (K ex ). Although in most geochemical modelling works, K ex values are directly taken from experiments conducted at low S:L ratios and low dry densities, the expected conditions in a deep geological nuclear waste repository are higher S:L and higher bentonite density (1.6 g.cm -3 in the SKB design to obtain a fully water saturated density of around 2.0 g.cm -3 ). Experiments focused at obtaining selectivity coefficients under the conditions of interest face the difficulty of achieving a proper extraction and analyses of pore water without disturbing the system by the sampling method itself. In this work we have conducted a complete analyses of published data on MX-80 bentonite cationic exchange in order to assess the effect of the S:L ratio and dry density on the value of the selectivity coefficients determined so far

  20. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  1. Crowding-facilitated macromolecular transport in attractive micropost arrays.

    Science.gov (United States)

    Chien, Fan-Tso; Lin, Po-Keng; Chien, Wei; Hung, Cheng-Hsiang; Yu, Ming-Hung; Chou, Chia-Fu; Chen, Yeng-Long

    2017-05-02

    Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.

  2. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  3. Stochastic reaction-diffusion algorithms for macromolecular crowding

    Science.gov (United States)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction-diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction-diffusion simulations is investigated. Reaction-diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35-53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  4. Diffusion accessibility as a method for visualizing macromolecular surface geometry.

    Science.gov (United States)

    Tsai, Yingssu; Holton, Thomas; Yeates, Todd O

    2015-10-01

    Important three-dimensional spatial features such as depth and surface concavity can be difficult to convey clearly in the context of two-dimensional images. In the area of macromolecular visualization, the computer graphics technique of ray-tracing can be helpful, but further techniques for emphasizing surface concavity can give clearer perceptions of depth. The notion of diffusion accessibility is well-suited for emphasizing such features of macromolecular surfaces, but a method for calculating diffusion accessibility has not been made widely available. Here we make available a web-based platform that performs the necessary calculation by solving the Laplace equation for steady state diffusion, and produces scripts for visualization that emphasize surface depth by coloring according to diffusion accessibility. The URL is http://services.mbi.ucla.edu/DiffAcc/. © 2015 The Protein Society.

  5. Constitutive expression of interferon-induced human MxA protein in transgenic tobacco plants does not confer resistance to a variety of RNA viruses

    NARCIS (Netherlands)

    Frese, M.; Prins, M.; Ponten, A.; Goldbach, R.W.; Haller, O.; Zeltz, P.

    2000-01-01

    MxA is a key component in the interferon-induced antiviral defense in humans. After viral infections, MxA is rapidly induced and accumulates in the cytoplasm. The multiplication of many RNA viruses,including all bunyaviruses tested so far, is inhibited by MxA. These findings prompted us to express

  6. Modeling the multi-scale mechanisms of macromolecular resource allocation

    DEFF Research Database (Denmark)

    Yang, Laurence; Yurkovich, James T; King, Zachary A

    2018-01-01

    As microbes face changing environments, they dynamically allocate macromolecular resources to produce a particular phenotypic state. Broad 'omics' data sets have revealed several interesting phenomena regarding how the proteome is allocated under differing conditions, but the functional consequen...... and detail how mathematical models have aided in our understanding of these processes. Ultimately, such modeling efforts have helped elucidate the principles of proteome allocation and hold promise for further discovery....

  7. What Macromolecular Crowding Can Do to a Protein

    Science.gov (United States)

    Kuznetsova, Irina M.; Turoverov, Konstantin K.; Uversky, Vladimir N.

    2014-01-01

    The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area. PMID:25514413

  8. Macromolecular target prediction by self-organizing feature maps.

    Science.gov (United States)

    Schneider, Gisbert; Schneider, Petra

    2017-03-01

    Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.

  9. Design and application of a C++ macromolecular class library.

    Science.gov (United States)

    Chang, W; Shindyalov, I N; Pu, C; Bourne, P E

    1994-01-01

    PDBlib is an extensible object oriented class library written in C++ for representing the 3-dimensional structure of biological macromolecules. PDBlib forms the kernel of a larger software framework being developed for assiting in knowledge discovery from macromolecular structure data. The software design strategy used by PDBlib, how the library may be used and several prototype applications that use the library are summarized. PDBlib represents the structural features of proteins, DNA, RNA, and complexes thereof, at a level of detail on a par with that which can be parsed from a Protein Data Bank (PDB) entry. However, the memory resident representation of the macromolecule is independent of the PDB entry and can be obtained from other back-end data sources, for example, existing relational databases and our own object oriented database (OOPDB) built on top of the commercial object oriented database, ObjectStore. At the front-end are several prototype applications that use the library: Macromolecular Query Language (MMQL) is based on a separate class library (MMQLlib) for building complex queries pertaining to macromolecular structure; PDBtool is an interactive structure verification tool; and PDBview, is a structure rendering tool used either as a standalone tool or as part of another application. Each of these software components are described. All software is available via anonymous ftp from cuhhca.hhmi.columbia.edu.

  10. Induction of Abasic Sites by the Drinking-Water Mutagen MX in Salmonella TA100

    Science.gov (United States)

    Mutagen X (MX) is a chlorinated furanone that accounts for more of the mutagenic activity of drinking water than any other disinfection by-product. It is one of the most potent base-substitution mutagens in the Salmonella (Ames) mutagenicity assay, producing primarily GC to TA mu...

  11. Remote monitoring of radioactive sources based on i.MX27 platform

    International Nuclear Information System (INIS)

    Li Defeng; Wang Renbo; Lin Gangyong; Ding Yufei

    2012-01-01

    It based on the ASIC solutions, has chosen Freescale's i.MX27 development system as a platform for designing video capture and transmission system. The article uses the latest H.264 video compression standard and complete the entire system of hardware and software design, which is successfully applied to remote monitoring of radioactive sources. (authors)

  12. CERN Technical Training 2006: Introduction à Dreamweaver MX (26-27 juillet 2006)

    CERN Multimedia

    2006-01-01

    CERN Enseignement technique 2006: Introduction à Dreamweaver MX (26-27 juillet 2006) Learning for the LHC! Une nouvelle session du cours pratique Introduction à Dreamweaver MX est proposée à l'ensemble du personnel par le service de l'Enseignement technique. Cette session aura lieu en français mercredi 26 et jeudi 27 juillet 2006. Objectifs: Maîtriser les différentes fonctions de base de Dreamweaver MX pour créer et gérer des pages ou des sites web. Programme: L'interface Dreamweaver MX. Images, couleurs et fonds. Ajouter des liens. Présenter des données en tables. Utiliser les tables pour la mise en page. L'Interface mise en page. L'image réactive. Les tags META et les moteurs de recherche. Les formulaires. Les éléments dynamiques. Boutons dynamiques. Boutons flash et texte. La barre de navigation. Les styles HTML. Feuilles de style. Positionnement par couches. Gestion du site. Révision générale et évaluation. Durée: 2 jours. Coût estimé: entre 750.- et 350.- CHF par personne, se...

  13. Simple approximations for the batch-arrival MX/G/1 queue

    NARCIS (Netherlands)

    van Ommeren, Jan C.W.

    1990-01-01

    In this paper we consider the MX/G/I queueing system with batch arrivals. We give simple approximations for the waiting-time probabilities of individual customers. These approximations are checked numerically and they are found to perform very well for a wide variety of batch-size and service-timed

  14. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography

    Science.gov (United States)

    Wan, Qun; Parks, Jerry M.; Hanson, B. Leif; Fisher, Suzanne Zoe; Ostermann, Andreas; Schrader, Tobias E.; Graham, David E.; Coates, Leighton; Langan, Paul; Kovalevsky, Andrey

    2015-01-01

    Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen. PMID:26392527

  15. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-15

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe{sup 2+} is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe{sup 2+}. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe{sup 2+}/Fe{sub total} ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe{sup 2+} were also able to buffer the reduction potential E{sub H} between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  16. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    International Nuclear Information System (INIS)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-01

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe"2"+ is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe"2"+. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe"2"+/Fe_t_o_t_a_l ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe"2"+ were also able to buffer the reduction potential E_H between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  17. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  18. A readout system for X-ray powder crystallography

    CERN Document Server

    Loukas, D; Pavlidis, A; Karvelas, E; Psycharis, K; Misiakos, V; Mousa, J; Dre, C

    2000-01-01

    A system for capturing and processing data, from radiation detectors, in the field of X-ray crystallography has been developed. The system includes a custom-made mixed analog-digital 16-channel VLSI circuit in 50 mu m pitch. Each channel comprises a charge amplifier, a shaper, a comparator and a 21-bit counter. The circuit can be scaled in a daisy chain configuration. Data acquisition is performed with a custom made PCI card while the control software is developed with Visual C++ under the MS Windows NT environment. Performance of a fully operational system, in terms of electronic noise, statistical variations and data capture speed is presented. The noise level permits counting of X-rays down to 8 keV while the counting capability is in excess of 200 kHz. The system is intended for X-ray crystallography with silicon detectors.

  19. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    Science.gov (United States)

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity

  20. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography.

    Science.gov (United States)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-12-01

    Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  1. Novel organophosphorus compounds; synthesis, spectroscopy and X-ray crystallography

    Czech Academy of Sciences Publication Activity Database

    Shariatinia, Z.; Sohrabi, M.; Yousefi, M.; Kovaľ, Tomáš; Dušek, Michal

    2012-01-01

    Roč. 11, č. 2 (2012), s. 125-133 ISSN 1024-1221 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : organophosphorus compounds * NMR * X-ray crystallography * hydrogen bond Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.686, year: 2012

  2. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules

    Directory of Open Access Journals (Sweden)

    Esko Oksanen

    2017-04-01

    Full Text Available Abstract: The hydrogen bond (H bond is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.

  3. The founding and development of X-ray crystallography

    International Nuclear Information System (INIS)

    Mai Zhenhong

    2014-01-01

    2014 is the centennial of X-ray crystallography. Crystals have played an important role in our lives and in the development of society throughout these 100 years. In July 2012 the 66th General Assembly of the United Nations declared 2014 to be the official International Year of Crystallography (IYCr2014). The discovery of X-ray diffraction by crystals has had a profound impact on science and technology worldwide. It provides for us a distinct image of the arrangement of atoms or/and molecules in crystals. The development of X-ray spectroscopy has made it possible for us to understand the laws of atomic structure, and thus to identify the elements in all kinds of matter. In this article the greatest events in the history of X-ray crystallography, including the development of X-ray sources, detectors, experimental data analysis, and experimental methods are reviewed to commemorate the pioneers who made such important contributions to science and technology. (author)

  4. Workshop on algorithms for macromolecular modeling. Final project report, June 1, 1994--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Leimkuhler, B.; Hermans, J.; Skeel, R.D.

    1995-07-01

    A workshop was held on algorithms and parallel implementations for macromolecular dynamics, protein folding, and structural refinement. This document contains abstracts and brief reports from that workshop.

  5. The contrasting effect of macromolecular crowding on amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1 have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins.As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l.We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of proteins (amyloidogenic proteins and non-amyloidogenic proteins has been

  6. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs

    Czech Academy of Sciences Publication Activity Database

    Angelov, Borislav; Garamus, V.M.; Drechsler, M.; Angelova, A.

    2017-01-01

    Roč. 235, Jun (2017), s. 83-89 ISSN 0167-7322 R&D Projects: GA MŠk EF15_003/0000447; GA MŠk EF15_008/0000162 Grant - others:OP VVV - ELIBIO(XE) CZ.02.1.01/0.0/0.0/15_003/0000447; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : self-assembled nanocarriers * liquid crystalline phase transitions * cationic lipids * macromolecular drugs Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.648, year: 2016

  7. Bringing macromolecular machinery to life using 3D animation.

    Science.gov (United States)

    Iwasa, Janet H

    2015-04-01

    Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere. Copyright © 2015. Published by Elsevier Ltd.

  8. Identifying, studying and making good use of macromolecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Calero, Guillermo [University of Pittsburgh Medical School, Pittsburgh, PA 15261 (United States); Cohen, Aina E. [SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Luft, Joseph R. [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); Newman, Janet [CSIRO Collaborative Crystallisation Centre, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Snell, Edward H., E-mail: esnell@hwi.buffalo.edu [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); University of Pittsburgh Medical School, Pittsburgh, PA 15261 (United States)

    2014-07-25

    As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.

  9. Identifying, studying and making good use of macromolecular crystals

    International Nuclear Information System (INIS)

    Calero, Guillermo; Cohen, Aina E.; Luft, Joseph R.; Newman, Janet; Snell, Edward H.

    2014-01-01

    As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed

  10. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity

    DEFF Research Database (Denmark)

    Hesse, D.; Sellebjerg, F.; Sorensen, P.S.

    2009-01-01

    BACKGROUND: In patients with multiple sclerosis (MS), neutralizing antibodies (NAbs) appearing during treatment with interferon (IFN) beta reduce or in high concentrations abolish bioactivity and therapeutic efficacy. In vivo MxA induction by IFNbeta is used as a marker of biologic response....... Lack of MxA in vivo response in patients with multiple sclerosis with NAbs is a reliable marker of a completely blocked biologic response to IFNbeta, with no indication of residual bioactivity Udgivelsesdato: 2009/8/4...

  11. Structural determination of new solid solutions [Y2-x Mx ][Sn2-x Mx ]O7-3x/2 (M = Mg or Zn by Rietveld method

    Directory of Open Access Journals (Sweden)

    Mohamed Douma

    2010-12-01

    Full Text Available New [Y2-x Mx][Sn2-x Mx]O7-3x/2 (0 ≤x≤ 0.30 for M = Mg and 0 ≤x≤ 0.36 for M = Zn solid solutions with the pyrochlore structure were synthesized via high-temperature solid-state reaction method. Powder X-ray diffraction (PXRD patterns and Fourier transform infrared (FT-IR spectra showed that these materials are new non-stoichiometric solid solutions with the pyrochlore type structure. The structural parameters for the solids obtained were successfully determined by Rietveld refinement based on the analysis of the PXRD diagrams. Lattice parameter (a of these solid solutions decreases when x increases in both series. All samples obtained have the pyrochlore structure Fd-3m, no. 227 (origin at center -3m with M2+ (M = Mg2+ or Zn2+ cations in Y3+ and Sn4+ sites, thus creating vacancies in the anionic sublattice.

  12. The MX/G/1 queue with queue length dependent service times

    Directory of Open Access Journals (Sweden)

    Bong Dae Choi

    2001-01-01

    Full Text Available We deal with the MX/G/1 queue where service times depend on the queue length at the service initiation. By using Markov renewal theory, we derive the queue length distribution at departure epochs. We also obtain the transient queue length distribution at time t and its limiting distribution and the virtual waiting time distribution. The numerical results for transient mean queue length and queue length distributions are given.

  13. Thiomers for oral delivery of hydrophilic macromolecular drugs.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Hoffer, Martin H; Kafedjiiski, Krum

    2004-11-01

    In recent years thiolated polymers (thiomers) have appeared as a promising new tool in oral drug delivery. Thiomers are obtained by the immobilisation of thio-bearing ligands to mucoadhesive polymeric excipients. By the formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of thiomers are up to 130-fold improved compared with the corresponding unmodified polymers. Owing to the formation of inter- and intramolecular disulfide bonds within the thiomer itself, matrix tablets and particulate delivery systems show strong cohesive properties, resulting in comparatively higher stability, prolonged disintegration times and a more controlled drug release. The permeation of hydrophilic macromolecular drugs through the gastrointestinal (GI) mucosa can be improved by the use of thiomers. Furthermore, some thiomers exhibit improved inhibitory properties towards GI peptidases. The efficacy of thiomers in oral drug delivery has been demonstrated by various in vivo studies. A pharmacological efficacy of 1%, for example, was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Furthermore, tablets comprising a thiomer and pegylated insulin resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Low-molecular-weight heparin embedded in thiolated polycarbophil led to an absolute bioavailability of > or = 20% after oral administration to rats. In these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. These results indicate drug carrier systems based on thiomers appear to be a promising tool for oral delivery of hydrophilic macromolecular drugs.

  14. Variable effects of soman on macromolecular secretion by ferret trachea

    International Nuclear Information System (INIS)

    McBride, R.K.; Zwierzynski, D.J.; Stone, K.K.; Culp, D.J.; Marin, M.G.

    1991-01-01

    The purpose of this study was to examine the effect of the anticholinesterase agent, soman, on macromolecular secretion by ferret trachea, in vitro. We mounted pieces of ferret trachea in Ussing-type chambers. Secreted sulfated macromolecules were radiolabeled by adding 500 microCi of 35 SO 4 to the submucosal medium and incubating for 17 hr. Soman added to the submucosal side produced a concentration-dependent increase in radiolabeled macromolecular release with a maximal secretory response (mean +/- SD) of 202 +/- 125% (n = 8) relative to the basal secretion rate at a concentration of 10 - 7 M. The addition of either 10 -6 M pralidoxime (acetylcholinesterase reactivator) or 10 -6 M atropine blocked the response to 10 -7 M soman. At soman concentrations greater than 10 -7 M, secretion rate decreased and was not significantly different from basal secretion. Additional experiments utilizing acetylcholine and the acetylcholinesterase inhibitor, physostigmine, suggest that inhibition of secretion by high concentrations of soman may be due to a secondary antagonistic effect of soman on muscarinic receptors

  15. Dendrimer-based Macromolecular MRI Contrast Agents: Characteristics and Application

    Directory of Open Access Journals (Sweden)

    Hisataka Kobayashi

    2003-01-01

    Full Text Available Numerous macromolecular MRI contrast agents prepared employing relatively simple chemistry may be readily available that can provide sufficient enhancement for multiple applications. These agents operate using a ~100-fold lower concentration of gadolinium ions in comparison to the necessary concentration of iodine employed in CT imaging. Herein, we describe some of the general potential directions of macromolecular MRI contrast agents using our recently reported families of dendrimer-based agents as examples. Changes in molecular size altered the route of excretion. Smaller-sized contrast agents less than 60 kDa molecular weight were excreted through the kidney resulting in these agents being potentially suitable as functional renal contrast agents. Hydrophilic and larger-sized contrast agents were found better suited for use as blood pool contrast agents. Hydrophobic variants formed with polypropylenimine diaminobutane dendrimer cores created liver contrast agents. Larger hydrophilic agents are useful for lymphatic imaging. Finally, contrast agents conjugated with either monoclonal antibodies or with avidin are able to function as tumor-specific contrast agents, which also might be employed as therapeutic drugs for either gadolinium neutron capture therapy or in conjunction with radioimmunotherapy.

  16. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    Science.gov (United States)

    Shoda, Shin-ichiro; Uyama, Hiroshi; Kadokawa, Jun-ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

  17. Strain Screening from Traditional Fermented Soybean Foods and Induction of Nattokinase Production in Bacillus subtilis MX-6.

    Science.gov (United States)

    Man, Li-Li; Xiang, Dian-Jun; Zhang, Chun-Lan

    2018-02-06

    The plasminogen-free fibrin plate assay method was used to isolate Bacillus subtilis MX-6, a strain with high production of nattokinase from Chinese douchi. The presence of aprN, a gene-encoding nattokinase, was verified with PCR method. The predicted amino acid sequence was aligned with homologous sequences, and a phylogenetic tree was constructed. Nattokinase was sublimated with ammonium sulfate, using a DEAE-Sepharose Fast Flow column, a CM-Sepharose Fast Flow column and a Sephadex G-75 gel filtration column. SDS-PAGE analysis indicated that the molecular weight of the purified nattokinase from Bacillus subtilis MX-6 was about 28 kDa. Fermentation of Bacillus subtilis MX-6 nattokinase showed that nattokinase production was maximized after 72 h; the diameter of clear zone reached 21.60 mm on the plasminogen-free fibrin plate. Nattokinase production by Bacillus subtilis MX-6 increased significantly after supplementation with supernatant I, supernatant II and soy peptone but decreased substantially after the addition of amino acids. This result indicated that the nattokinase production by B. subtilis MX-6 might be induced by soybean polypeptides. The addition of MgSO 4 and CaCl 2 increased B. subtilis MX-6 nattokinase production.

  18. CERN Technical Training 2005: Introduction à Dreamweaver MX (3-4 octobre 2005)

    CERN Multimedia

    Davide Vitè

    2005-01-01

    Learning for the LHC! Un nouveau cours pratique sur Dreamweaver MX est proposé dès maintenant à l'ensemble du personnel par le service de l'Enseignement technique. La première session aura lieu en français lundi 3 et mardi 4 octobre 2005. Objectifs : Maîtriser les différentes fonctions de base de Dreamweaver MX. Programme : L'interface Dreamweaver MX. Images, couleurs et fonds. Ajouter des liens. Présenter des données en tables. Utiliser les tables pour la mise en page. L'Interface mise en page. L'image réactive. Les tags META et les moteurs de recherche. Les formulaires. Les éléments dynamiques. Boutons dynamiques. Boutons flash et texte. La barre de navigation. Les styles HTML. Feuilles de style. Positionnement par couches. Gestion du site. Révision générale et évaluation. Durée : 2 jours. Coût estimé : entre 700.- et 350.- CHF par personne, selon le nombre de participants (limité à 12 par session). Langue : Français Chaque participant recevra un support de cours avec exercic...

  19. CERN Technical Training 2005: Introduction à Dreamweaver MX (3-4 octobre 2005)

    CERN Multimedia

    Daive Vitè

    2005-01-01

    Learning for the LHC! Un nouveau cours pratique sur Dreamweaver MX est proposé dès maintenant à l'ensemble du personnel par le service de l'Enseignement Technique. La première session aura lieuen français lundi 3 et mardi 4 octobre 2005. Objectifs : Maîtriser les différentes fonctions de base de Dreamweaver MX. Programme : L’interface Dreamweaver MX. Images, couleurs et fonds. Ajouter des liens. Présenter des données en tables. Utiliser les tables pour la mise en page. L’Interface mise en page. L’image réactive. Les tags META et les moteurs de recherche. Les formulaires. Les éléments dynamiques. Boutons dynamiques. Boutons flash et texte. La barre de navigation. Les styles HTML. Feuilles de style. Positionnement par couches. Gestion du site. Révision générale et évaluation. Durée : 2 jours. Coût estimé : entre 700.- et 350.- CHF par personne, selon le nombre de participants (plus que 4 places disponibles sur cette session). Langue : Français Chaque participant recevra un ...

  20. Enseignement technique: Introduction à Dreamweaver MX (26-27 juillet 2006) - French version only

    CERN Multimedia

    Davide Vitè

    2006-01-01

    Une nouvelle session du cours pratique Introduction à Dreamweaver MX est proposée à l'ensemble du personnel par le service de l'Enseignement Technique. Cette session aura lieu en français mercredi 26 et jeudi 27 juillet 2006. Objectifs: Maîtriser les différentes fonctions de base de Dreamweaver MX pour créer et gérer des pages ou des sites web. Programme: L'interface Dreamweaver MX. Images, couleurs et fonds. Ajouter des liens. Présenter des données en tables. Utiliser les tables pour la mise en page. L'Interface mise en page. L'image réactive. Les tags META et les moteurs de recherche. Les formulaires. Les éléments dynamiques. Boutons dynamiques. Boutons flash et texte. La barre de navigation. Les styles HTML. Feuilles de style. Positionnement par couches. Gestion du site. Révision générale et évaluation. Durée: 2 jours. Coût estimé: entre 750.- et 350.- CHF par personne, selon le nombre de participants. Langue: Français Chaque participant recevra un support de cours avec exercices,...

  1. Contribution of X-ray crystallography in energy related problems

    International Nuclear Information System (INIS)

    Majid, C.A.; Hussain, M.A.

    1995-01-01

    Crystallography is concerned with the study of the structure of matter at the atomic level in condensed state. The great practical importance of scientific knowledge of the structure of solid is self evident when consideration is given to the definition of desired physical and chemical properties. The strength of steel girders, the corrosion of alloys, the plasticity of lime, the wearing properties of case hardness steel, the dielectric capacity of materials, the lubricating properties of long chain paraffin's or of graphite, the stretching of rubber and innumerable other practical phenomena of every day life depend upon ultimate structure of these materials. To understand function to control, manipulate and best utilize their properties, and to produce materials with properties meeting a desired set of specification it is essential to understand thoroughly both the characteristics and origin of each property. Origins of materials properties lie in a combination of natural laws with the detailed structure and composition of materials, i.e. the choice, location, bonding, etc. of every atom in the material object. Therefore, to understand their various properties, it is important to explore the structure property relationship in materials. X-ray crystallography is not only helping to develop new materials having desired properties, but also in improving existing materials. Radiation effects, electrolytes, superconductors and catalysts etc. are just a few examples of many areas where crystallography is helping. With the invent of new radiation sources like synchrotron and new detectors materials and techniques, this almost 80 years old discipline continues to capture the interest of solid state physicists and chemists alike. (author)

  2. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior.

    Directory of Open Access Journals (Sweden)

    Adam S Zeiger

    Full Text Available Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs via immunocytochemistry, atomic force microscopy (AFM, and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.

  3. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior.

    Science.gov (United States)

    Zeiger, Adam S; Loe, Felicia C; Li, Ran; Raghunath, Michael; Van Vliet, Krystyn J

    2012-01-01

    Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs) via immunocytochemistry, atomic force microscopy (AFM), and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.

  4. "XANSONS for COD": a new small BOINC project in crystallography

    Science.gov (United States)

    Neverov, Vladislav S.; Khrapov, Nikolay P.

    2018-04-01

    "XANSONS for COD" (http://xansons4cod.com) is a new BOINC project aimed at creating the open-access database of simulated x-ray and neutron powder diffraction patterns for nanocrystalline phase of materials from the collection of the Crystallography Open Database (COD). The project uses original open-source software XaNSoNS to simulate diffraction patterns on CPU and GPU. This paper describes the scientific problem this project solves, the project's internal structure, its operation principles and organization of the final database.

  5. Crystallography of lath martensite and stabilization of retained austenite

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya. M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200/sup 0/C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different (111) variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample.

  6. Crystallography of lath martensite and stabilization of retained austenite

    International Nuclear Information System (INIS)

    Sarikaya, M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200 0 C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different [111] variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample

  7. Present needs and future trends in neutron crystallography and spectroscopy

    International Nuclear Information System (INIS)

    Williams, J.M.

    1978-11-01

    Topics covered include: structural investigation by neutron and x-ray diffraction; sources and characteristics of neutron radiation; time-of-flight techniques; overview of neutron crystallography and structural chemistry; hydrogen bonds; transition-metal hydride complexes; actinide and lanthanide complexes; carbon-hydrogen-metal interactions in organometallic chemistry and catalysis; metal clusters and catalysis; materials with unusual solid-state properties; biochemical molecules and biological systems; electron and spin density distributions in crystalline solids; incoherent neutron-scattering spectroscopy; and quasielastic neutron scattering and high resolution spectroscopy

  8. Protein Crystallography: A 'Must' Technology for Drug Design

    International Nuclear Information System (INIS)

    Matsuzaki, Takao

    2004-01-01

    The history of drug-related protein crystallography and drug design is reviewed to show that 'Lead Generation' is high-lighted in the pharmaceutical industry nowadays. A new drug design method has been developed. The method gave very high success rate; 10-60 % gave < 100 μM, 90 % gave < 10 mM. The crystal structures of drug-protein complexes have become even more important to give solid experimental bases for e.g. 1,000 designed structures and to find the new mechanisms of drug action

  9. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data

    International Nuclear Information System (INIS)

    Dosset, Patrice; Hus, Jean-Christophe; Blackledge, Martin; Marion, Dominique

    2000-01-01

    A novel program has been developed for the interpretation of 15 N relaxation rates in terms of macromolecular anisotropic rotational diffusion. The program is based on a highly efficient simulated annealing/minimization algorithm, designed specifically to search the parametric space described by the isotropic, axially symmetric and fully anisotropic rotational diffusion tensor models. The high efficiency of this algorithm allows extensive noise-based Monte Carlo error analysis. Relevant statistical tests are systematically applied to provide confidence limits for the proposed tensorial models. The program is illustrated here using the example of the cytochrome c' from Rhodobacter capsulatus, a four-helix bundle heme protein, for which data at three different field strengths were independently analysed and compared

  10. Macromolecular Crystallization in Microfluidics for the International Space Station

    Science.gov (United States)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  11. Macromolecular and dendrimer-based magnetic resonance contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Bumb, Ambika; Brechbiel, Martin W. (Radiation Oncology Branch, National Cancer Inst., National Inst. of Health, Bethesda, MD (United States)), e-mail: pchoyke@mail.nih.gov; Choyke, Peter (Molecular Imaging Program, National Cancer Inst., National Inst. of Health, Bethesda, MD (United States))

    2010-09-15

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20-25 years, a number of gadolinium-based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution, and targeting of dendrimer-based MR contrast agents are also discussed

  12. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Muller D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Dao, Phuong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Jeong, Keunhong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Slack, Clancy C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Vassiliou, Christophoros C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Finbloom, Joel A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Francis, Matthew B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Wemmer, David E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Pines, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of a biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T2 is reduced by a factor of 4.

  13. E-MSD: the European Bioinformatics Institute Macromolecular Structure Database.

    Science.gov (United States)

    Boutselakis, H; Dimitropoulos, D; Fillon, J; Golovin, A; Henrick, K; Hussain, A; Ionides, J; John, M; Keller, P A; Krissinel, E; McNeil, P; Naim, A; Newman, R; Oldfield, T; Pineda, J; Rachedi, A; Copeland, J; Sitnov, A; Sobhany, S; Suarez-Uruena, A; Swaminathan, J; Tagari, M; Tate, J; Tromm, S; Velankar, S; Vranken, W

    2003-01-01

    The E-MSD macromolecular structure relational database (http://www.ebi.ac.uk/msd) is designed to be a single access point for protein and nucleic acid structures and related information. The database is derived from Protein Data Bank (PDB) entries. Relational database technologies are used in a comprehensive cleaning procedure to ensure data uniformity across the whole archive. The search database contains an extensive set of derived properties, goodness-of-fit indicators, and links to other EBI databases including InterPro, GO, and SWISS-PROT, together with links to SCOP, CATH, PFAM and PROSITE. A generic search interface is available, coupled with a fast secondary structure domain search tool.

  14. MR lymphography with macromolecular Gd-DTPA compounds

    International Nuclear Information System (INIS)

    Hamm, B.; Wagner, S.; Branding, G.; Taupitz, M.; Wolf, K.J.

    1990-01-01

    This paper investigates the suitability of macromolecular Gd-DTPA compounds as signal-enhancing lymphographic agents in MR imaging. Two Gd-DTPA polylysin compounds and Gd-DTPA albumin, with molecular weights of 48,000,170,000, and 87,000 daltons, respectively, were tested in rabbits at gadolinium doses of 5 and 15 μmol per animal. Three animals were examined at each dose with T1-weighted sequences. The iliac lymph nodes were imaged prior to and during unilateral endolymphatic infusion into a femoral lymph vessel as well as over a period of 2 hours thereafter. All contrast media showed a homogeneous and pronounced signal enhancement in the lymph nodes during infusion at both doses

  15. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.

    Science.gov (United States)

    Theobald, Douglas L; Wuttke, Deborah S

    2006-09-01

    THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.

  16. Extracting trends from two decades of microgravity macromolecular crystallization history.

    Science.gov (United States)

    Judge, Russell A; Snell, Edward H; van der Woerd, Mark J

    2005-06-01

    Since the 1980s hundreds of macromolecular crystal growth experiments have been performed in the reduced acceleration environment of an orbiting spacecraft. Significant enhancements in structural knowledge have resulted from X-ray diffraction of the crystals grown. Similarly, many samples have shown no improvement or degradation in comparison to those grown on the ground. A complex series of interrelated factors affect these experiments and by building a comprehensive archive of the results it was aimed to identify factors that result in success and those that result in failure. Specifically, it was found that dedicated microgravity missions increase the chance of success when compared with those where crystallization took place as a parasitic aspect of the mission. It was also found that the chance of success could not be predicted based on any discernible property of the macromolecule available to us.

  17. Macromolecular contrast agents for MR mammography: current status

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Brasch, Robert C.

    2003-01-01

    Macromolecular contrast media (MMCM) encompass a new class of diagnostic drugs that can be applied with dynamic MRI to extract both physiologic and morphologic information in breast lesions. Kinetic analysis of dynamic MMCM-enhanced MR data in breast tumor patients provides useful estimates of tumor blood volume and microvascular permeability, typically increased in cancer. These tumor characteristics can be applied to differentiate benign from malignant lesions, to define the angiogenesis status of cancers, and to monitor tumor response to therapy. The most immediate challenge to the development of MMCM-enhanced mammography is the identification of those candidate compounds that demonstrate the requisite long intravascular distribution and have the high tolerance necessary for clinical use. Potential mammographic applications and limitations of various MMCM, defined by either experimental animal testing or clinical testing in patients, are reviewed in this article. (orig.)

  18. Macromolecular organization of xyloglucan and cellulose in pea epicotyls

    International Nuclear Information System (INIS)

    Hayashi, T.; Maclachlan, G.

    1984-01-01

    Xyloglucan is known to occur widely in the primary cell walls of higher plants. This polysaccharide in most dicots possesses a cellulose-like main chain with three of every four consecutive residues substituted with xylose and minor addition of other sugars. Xyloglucan and cellulose metabolism is regulated by different processes; since different enzyme systems are probably required for the synthesis of their 1,4-β-linkages. A macromolecular complex composed of xyloglucan and cellulose only was obtained from elongating regions of etiolated pea stems. It was examined by light microscopy using iodine staining, by radioautography after labeling with [ 3 H]fructose, by fluorescence microscopy using a fluorescein-lectin (fructose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall ghosts, in which xyloglucan was localized both on and between the cellulose microfibrils

  19. Probing the hydration water diffusion of macromolecular surfaces and interfaces

    International Nuclear Information System (INIS)

    Ortony, Julia H; Cheng, Chi-Yuan; Franck, John M; Pavlova, Anna; Hunt, Jasmine; Han, Songi; Kausik, Ravinath

    2011-01-01

    We probe the translational dynamics of the hydration water surrounding the macromolecular surfaces of selected polyelectrolytes, lipid vesicles and intrinsically disordered proteins with site specificity in aqueous solutions. These measurements are made possible by the recent development of a new instrumental and methodological approach based on Overhauser dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. This technique selectively amplifies 1 H NMR signals of hydration water around a spin label that is attached to a molecular site of interest. The selective 1 H NMR amplification within molecular length scales of a spin label is achieved by utilizing short-distance range (∼r -3 ) magnetic dipolar interactions between the 1 H spin of water and the electron spin of a nitroxide radical-based label. Key features include the fact that only minute quantities (<10 μl) and dilute (≥100 μM) sample concentrations are needed. There is no size limit on the macromolecule or molecular assembly to be analyzed. Hydration water with translational correlation times between 10 and 800 ps is measured within ∼10 A distance of the spin label, encompassing the typical thickness of a hydration layer with three water molecules across. The hydration water moving within this time scale has significant implications, as this is what is modulated whenever macromolecules or molecular assemblies undergo interactions, binding or conformational changes. We demonstrate, with the examples of polymer complexation, protein aggregation and lipid-polymer interaction, that the measurements of interfacial hydration dynamics can sensitively and site specifically probe macromolecular interactions.

  20. A novel inert crystal delivery medium for serial femtosecond crystallography

    Directory of Open Access Journals (Sweden)

    Chelsie E. Conrad

    2015-07-01

    Full Text Available Serial femtosecond crystallography (SFX has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.

  1. Smarter Drugs: How Protein Crystallography Revolutionizes Drug Design

    International Nuclear Information System (INIS)

    Smith, Clyde

    2005-01-01

    According to Smith, protein crystallography allows scientists to design drugs in a much more efficient way than the standard methods traditionally used by large drug companies, which can cost close to a billion dollars and take 10 to 15 years. 'A lot of the work can be compressed down,' Smith said. Protein crystallography enables researchers to learn the structure of molecules involved in disease and health. Seeing the loops, folds and placement of atoms in anything from a virus to a healthy cell membrane gives important information about how these things work - and how to encourage, sidestep or stop their functions. Drug design can be much faster when the relationship between structure and function tells you what area of a molecule to target. Smith will use a timeline to illustrate the traditional methods of drug development and the new ways it can be done now. 'It is very exciting work. There have been some failures, but many successes too.' A new drug to combat the flu was developed in a year or so. Smith will tell us how. He will also highlight drugs developed to combat HIV, Tuberculosis, hypertension and Anthrax.

  2. Identification of Mx gene nucleotide dimorphism (G/A as genetic marker for antiviral activity in Egyptian chickens

    Directory of Open Access Journals (Sweden)

    Mohamed S. Hassanane

    2018-06-01

    Full Text Available Egyptian chickens, representing 2 breeds and 7 strains, were genotyped using the PCR-RFLP and sequencing techniques for detection of a non-synonymous dimorphism (G/A in exon 14 of chicken Myxovirus resistance (Mx gene. This dimorphic position is responsible for altering Mx protein’s antiviral activity. Polymerase Chain reactions were performed using Egyptian chickens DNA and specific primer set to amplify Mx DNA fragments of 299 or 301 bp, containing the dimorphic position. Amplicons were cut with restriction enzyme Hpy81. Genotype and allele frequencies for the resistant allele A and sensitive allele G were calculated in all the tested chickens. Results of PCR-RFLP were confirmed by sequencing. The three genotypes AA, AG, GG at the target nucleotide position in Mx gene were represented in all the studied Egyptian chicken breeds and strains except Baladi strain which showed only one genotype AA. The average allele frequency of the resistant A allele in the tested birds (0.67 was higher than the sensitive G allele average frequency in the same birds (0.33. Appling PCR-RFLP technique in the breeding program can be used to select chickens carrying the A allele with high frequencies. This will help in improving poultry breeding in Egypt by producing infectious disease-resistant chickens. Keywords: Egyptian chickens, Antiviral activity, Mx gene, Genotyping, PCR-RFLP

  3. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein.

    Science.gov (United States)

    Deeg, Christoph M; Hassan, Ebrahim; Mutz, Pascal; Rheinemann, Lara; Götz, Veronika; Magar, Linda; Schilling, Mirjam; Kallfass, Carsten; Nürnberger, Cindy; Soubies, Sébastien; Kochs, Georg; Haller, Otto; Schwemmle, Martin; Staeheli, Peter

    2017-05-01

    Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population. © 2017 Deeg et al.

  4. An MX/GI/1/N queue with close-down and vacation times

    Directory of Open Access Journals (Sweden)

    Andreas Frey

    1999-01-01

    Full Text Available An MX/GI/1/N finite capacity queue with close-down time, vacation time and exhaustive service discipline is considered under the partial batch acceptance strategy as well as under the whole batch acceptance strategy. Applying the supplementary variable technique the queue length distribution at an arbitrary instant and at a departure epoch is obtained under both strategies, where no assumption on the batch size distribution is made. The loss probabilities and the Laplace-Stieltjes transforms of the waiting time distribution of the first customer and of an arbitrary customer of a batch are also given. Numerical examples give some insight into the behavior of the system.

  5. Use of source term code package in the ELEBRA MX-850 system

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.; Goes, A.G.A.

    1988-12-01

    The implantation of source term code package in the ELEBRA-MX850 system is presented. The source term is formed when radioactive materials generated in nuclear fuel leakage toward containment and the external environment to reactor containment. The implantated version in the ELEBRA system are composed of five codes: MARCH 3, TRAPMELT 3, THCCA, VANESA and NAVA. The original example case was used. The example consists of a small loca accident in a PWR type reactor. A sensitivity study for the TRAPMELT 3 code was carried out, modifying the 'TIME STEP' to estimate the processing time of CPU for executing the original example case. (M.C.K.) [pt

  6. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Steel Industry.

    Science.gov (United States)

    1980-12-22

    180,000 Utah Pl’!nouth Nucor Steel (Proposed) 350,000 I 50 175,000 ,rem Unied State Steel Corp. 2,500,000 0 0 Arizona Tempe urathion Steel Co. 180,300 75...allocated to the M-X system construction without disrupting supply to its existing customers. h. Nucor Corporation. Nucor Corporation operates three...amount of this, at least 40 percent to possibly one half, could be in the form of rebar. Nucor will have an obvious freight advantage. i. Ameron, Inc

  7. The 100th Anniversary of X-Ray Crystallography

    Directory of Open Access Journals (Sweden)

    Kojić-Prodić, B.

    2013-07-01

    Full Text Available The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them.W. L. BraggThe 100th anniversary of X-ray crystallography dates back to the first X-ray diffraction experiment on a crystal of copper sulphate pentahydrate. Max von Laue designed the theoretical background of the experiment, which was performed by German physicists W. Friedrich and P. Knipping in 1912. At that time, the mathematical formulation of the phenomenon and the fundamental concepts of crystallography were subjects of mineralogy. Altogether, they facilitated the development of methods for determination of the structure of matter at the atomic level. In 1913, father and son Bragg started to develop X-ray structure analysis for determination of crystal structures of simple molecules. Historic examples of structure determination starting from rock salt to complex, biologically important (macromolecules, such as globular proteins haemoglobin and myoglobin, DNA, vitamin B12 and the recent discovery of ribozyme, illustrate the development of X-ray structural analysis. The determination of 3D structures of these molecules by X-ray diffraction had opened new areas of scientific research, such as molecular biophysics, molecular genetics, structural molecular biology, bioinorganic chemistry, organometallic chemistry, and many others. The discovery and development of X-ray crystallography revolutionised our understanding of natural sciences – physics, chemistry, biology, and also science of materials. The scientific community recognised these fundamental achievements (including the discovery of X-rays by awarding twenty-eight Nobel prizes to thirty-nine men and two women. The explosive growth of science and technology in the 20th and 21st centuries had been founded on the detailed knowledge of the three-dimensional structure of molecules, which was the basis for explaining and predicting the physical, chemical, biological and

  8. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    Science.gov (United States)

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  9. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

    Directory of Open Access Journals (Sweden)

    Xiaozhao Xu

    2017-06-01

    Full Text Available Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156, the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA, semi-lignified leafy cuttings from juvenile phase (Mx-J and rejuvenated (Mx-R Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1, PIN10, and rootless concerning crown and seminal roots-like (RTCS-like genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26 and some auxin response factor (ARF gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings.

  10. X-ray powder crystallography with vertex instrumentation

    International Nuclear Information System (INIS)

    Chatzisotiriou, V.; Christofis, I.; Dimitriou, N.; Karvelas, S.; Karydas, A.G.; Loukas, D.; Pavlidis, A.; Spirou, S.; Dre, C.; Haralabidis, N.; Misiakos, K.; Tsoi, E.; Perdikatsis, V.; Psycharis, V.; Terzis, A.; Turchetta, R.

    1998-01-01

    An X-ray Diffractometer for Powder Crystallography is described along with experimental results and future plans. This is an intermediate instrument toward a long linear array system. Three channels of a silicon microstrip detector, are the detecting elements in the present instrument. Each detector channel is followed by a VLSI readout chain, which consists of a charge preamplifier with pulse shaping circuitry, a discriminator, and a 16-bit counter. Control and data acquisition is performed with a custom made PC readout card. A motorized goniometer scans the angle range of interest. Calibration of the system is done with reference samples and data which are captured with a one-channel conventional NaI detector. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Status of the digital pixel array detector for protein crystallography

    CERN Document Server

    Datte, P; Beuville, E; Endres, N; Druillole, F; Luo, L; Millaud, J E; Xuong, N H

    1999-01-01

    A two-dimensional photon counting digital pixel array detector is being designed for static and time resolved protein crystallography. The room temperature detector will significantly enhance monochromatic and polychromatic protein crystallographic through-put data rates by more than three orders of magnitude. The detector has an almost infinite photon counting dynamic range and exhibits superior spatial resolution when compared to present crystallographic phosphor imaging plates or phosphor coupled CCD detectors. The detector is a high resistivity N-type Si with a pixel pitch of 150x150 mu m, and a thickness of 300 mu m, and is bump bonded to an application specific integrated circuit. The event driven readout of the detector is based on the column architecture and allows an independent pixel hit rate above 1 million photons/s/pixel. The device provides energy discrimination and sparse data readout which yields minimal dead-time. This type of architecture allows a continuous (frameless) data acquisition, a f...

  12. Functionalization of Planet-Satellite Nanostructures Revealed by Nanoscopic Localization of Distinct Macromolecular Species

    KAUST Repository

    Rossner, Christian; Roddatis, Vladimir; Lopatin, Sergei; Vana, Philipp

    2016-01-01

    The development of a straightforward method is reported to form hybrid polymer/gold planet-satellite nanostructures (PlSNs) with functional polymer. Polyacrylate type polymer with benzyl chloride in its backbone as a macromolecular tracer

  13. The managing role of the school principal in Mi Compu. Mx program

    Directory of Open Access Journals (Sweden)

    Leonardo David GLASSERMAN MORALES

    2016-07-01

    Full Text Available This study is part of a macro research project, which seeks to identify digital competences developed by students and teachers participating in the program called Mi Compu.Mx in the states of Tabasco, Colima and Sonora, Mexico. This article describes the experience of implementing the program in the state of Sonora reported from the perspective of the principal and the management carried out in the process of educational innovation. The aim of the study was to identify the managing role of the school principal while implementing an innovation program in the context of the state of Sonora, Mexico. The research question was: What is the involvement of the school principal in the implementation of Mi Compu.Mx program in elementary schools in the state of Sonora, Mexico? A qualitative methodology was followed with a case study approach where interviews were conducted with 114 heads of primary level. Key findings revealed that the school principal participates as manager of material resources to fulfill the autonomy of school management and is essential to ensure the necessary conditions for full functioning of innovation projects with technology in the classroom.

  14. Diffusion of Cs, Ni, Pb, Se through MX80 bentonite and Bure argilite

    International Nuclear Information System (INIS)

    Kedziorek, M.A.M.; Bourg, A.C.M.

    2010-01-01

    Document available in extended abstract form only. In order to isolate nuclear waste in repositories from the biosphere two characteristics are required from the confining environment: adsorption as high as possible and permeability as low as possible. In France, bentonite (MX80) and argillite from the Bure underground laboratories are the candidates for the near- and far-field barriers, respectively. To investigate interactive diffusive transport, we performed a series of diffusion experiments in experimental cells. 'Through' diffusion and 'in' diffusion protocols were followed and performed for a cocktail of Cs, Ni, Pb and Se, this under a variety of conditions susceptible of affecting adsorption and diffusive transport, i.e. solid density, water pH and ionic strength. For the argillite experiments the solution pH and solid density are controlled by the solid. The MX80 bentonite was pretreated according to the proposed experimental solution pH and ionic strength. The reservoirs (downstream for the 'through' diffusion experiments and upstream for the 'in' diffusion experiments were sampled at regular intervals and analyzed for the elements of interests. At the end of the experiments the solids were sliced and the elemental content analyzed. A series of results will be presented and preliminary interpretation proposed

  15. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles

    Science.gov (United States)

    Aléon, Jérôme; Robert, François; Chaussidon, Marc; Marty, Bernard

    2003-10-01

    Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ 15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ 15N = +208‰). The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10 -3 and δ 15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ 15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed

  16. Structural changes in the ordering processes of macromolecular compounds

    International Nuclear Information System (INIS)

    Kobayashi, M.; Tashiro, K.

    1998-01-01

    In order to clarify the microscopically-viewed relationship between the conformational ordering process and the aggregation process of the macromolecular chains in the phase transitions from melt to solid or from solution to gel, the time-resolved Fourier-transform infrared spectra and small-angle X-ray or neutron scattering data have been analyzed in an organized manner. Two concrete examples were presented. (1) In the gelation phenomenon of syndiotactic polystyrene-organic solvent system, the ordered TTGG conformation is formed and develops with time. This conformational ordering is accelerated by the aggregation of these chain segments, resulting in the formation of macroscopic gel network. (2) In the isothermal crystallization process from the melt of polyethylene, the following ordering mechanism was revealed. The conformationally-disordered short trans conformers appear at first in the random coils of the melt. These disordered trans sequences grow to longer and more regular trans sequences of the orthorhombic-type crystal and then the isolated lamellae are formed. Afterwards, the stacked lamellar structure is developed without change of lamellar thickness but with small decrease in the long period, indicating an insertion of new lamellae between the already produced lamellar layers

  17. Macromolecular crystallization in microgravity generated by a superconducting magnet.

    Science.gov (United States)

    Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y

    2006-09-01

    About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.

  18. Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport.

    Directory of Open Access Journals (Sweden)

    Samata M Kakkad

    Full Text Available Hypoxic tumor microenvironments result in an aggressive phenotype and resistance to therapy that lead to tumor progression, recurrence, and metastasis. While poor vascularization and the resultant inadequate drug delivery are known to contribute to drug resistance, the effect of hypoxia on molecular transport through the interstitium, and the role of the extracellular matrix (ECM in mediating this transport are unexplored. The dense mesh of fibers present in the ECM can especially influence the movement of macromolecules. Collagen 1 (Col1 fibers form a key component of the ECM in breast cancers. Here we characterized the influence of hypoxia on macromolecular transport in tumors, and the role of Col1 fibers in mediating this transport using an MDA-MB-231 breast cancer xenograft model engineered to express red fluorescent protein under hypoxia. Magnetic resonance imaging of macromolecular transport was combined with second harmonic generation microscopy of Col1 fibers. Hypoxic tumor regions displayed significantly decreased Col1 fiber density and volume, as well as significantly lower macromolecular draining and pooling rates, than normoxic regions. Regions adjacent to severely hypoxic areas revealed higher deposition of Col1 fibers and increased macromolecular transport. These data suggest that Col1 fibers may facilitate macromolecular transport in tumors, and their reduction in hypoxic regions may reduce this transport. Decreased macromolecular transport in hypoxic regions may also contribute to poor drug delivery and tumor recurrence in hypoxic regions. High Col1 fiber density observed around hypoxic regions may facilitate the escape of aggressive cancer cells from hypoxic regions.

  19. Electronic states of SiO2-MxOy (MxOy=P205, TiO2 and ZrO2) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kowada, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan); Adachi, H [Kyoto Univ. (Japan). Faculty of Engineering; Minami, T [Univ. of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1993-12-01

    Using the sol-gel method the surface of metal and glass substrates can be modified. For example, stainless steel sheets coated with the SiO2-ZrO2 glass films have higher resistance to corrosion and oxidation. The coating films contain high concentration of alkali ions diffusing from the glass substrates. It suggests that the sodium ions are trapped strongly within the coating films and are blocked to further diffuse to the surface. This behavior must be associated with the chemical bonding around the sodium ions in the SiO2-TiO2 and SiO2-ZrO2 films. For better understanding of the chemical bonding in the glasses, the electronic states of the SiO2-MxOy glasses were calculated by means of the DV-Xa cluster method. In this paper, the calculation method is explained, the results are discussed and the conclusion is stated. 17 refs., 6 figs.

  20. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    Directory of Open Access Journals (Sweden)

    C. Mueller

    2015-09-01

    Full Text Available We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA. The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  1. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive.

    Science.gov (United States)

    Burley, Stephen K; Berman, Helen M; Kleywegt, Gerard J; Markley, John L; Nakamura, Haruki; Velankar, Sameer

    2017-01-01

    The Protein Data Bank (PDB)--the single global repository of experimentally determined 3D structures of biological macromolecules and their complexes--was established in 1971, becoming the first open-access digital resource in the biological sciences. The PDB archive currently houses ~130,000 entries (May 2017). It is managed by the Worldwide Protein Data Bank organization (wwPDB; wwpdb.org), which includes the RCSB Protein Data Bank (RCSB PDB; rcsb.org), the Protein Data Bank Japan (PDBj; pdbj.org), the Protein Data Bank in Europe (PDBe; pdbe.org), and BioMagResBank (BMRB; www.bmrb.wisc.edu). The four wwPDB partners operate a unified global software system that enforces community-agreed data standards and supports data Deposition, Biocuration, and Validation of ~11,000 new PDB entries annually (deposit.wwpdb.org). The RCSB PDB currently acts as the archive keeper, ensuring disaster recovery of PDB data and coordinating weekly updates. wwPDB partners disseminate the same archival data from multiple FTP sites, while operating complementary websites that provide their own views of PDB data with selected value-added information and links to related data resources. At present, the PDB archives experimental data, associated metadata, and 3D-atomic level structural models derived from three well-established methods: crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron microscopy (3DEM). wwPDB partners are working closely with experts in related experimental areas (small-angle scattering, chemical cross-linking/mass spectrometry, Forster energy resonance transfer or FRET, etc.) to establish a federation of data resources that will support sustainable archiving and validation of 3D structural models and experimental data derived from integrative or hybrid methods.

  2. Theoretical investigation of lithium adsorption, diffusion and coverage on MX2 (M = Mo, W; X = O, S, Se, Te) monolayers

    Science.gov (United States)

    Ersan, F.; Ozaydin, H. D.; Gökoğlu, G.; Aktürk, E.

    2017-12-01

    It is important to improve the high-efficient anode materials for Li batteries, which require the large capacity, high stability and mobility. In this work, we present the adsorption and diffusion properties of lithium atom on MX2 (M = Mo, W; X = O, S, Se, Te) transition metal dichalcogenide structures using first principles calculations within density functional theory. All the MX2 systems considered are semiconductor in bare state with band gaps between 0.93 eV (MoO2) and 1.79 eV (WS2). They turn into metal upon single Li adsorption. Li atom is adsorbed on MoO2 and WO2 rather stronger than other systems. The energy barrier for diffusion of single Li on MX2 varies between 0.15 eV and 0.28 eV which are lower or comparable to that of graphene or silicene. Two Li atoms are preferably adsorbed on MX2 monolayer symmetrically at opposite sides with high adsorption energy. The increasing number of Li atoms does not remarkably affect the adsorption energy per Li atom. This can be attributed to that Li atoms do not accumulate on certain regions of the surface. The systems under investigation provide insights into exploring electronic properties which are rather adequate for possible applications in Li-ion batteries.

  3. Synthesis of vanadium oxides 5 wt.%VO2–MxOy by sol–gel process ...

    Indian Academy of Sciences (India)

    Experimental results indicated that the VO2–SiO2 catalysts .... crucible, which was supported by the beam of a balance in the oven. ... Epoxidation of cyclohexene on VO2–Mx Oy (M = Si, Al, Ti). 1189 ... tially amorphous nature of silica.

  4. TOXICOGENOMIC ANALYSIS INCORPORATING OPERON-TRANSCRIPTIONAL COUPLING AND TOXICANT CONCENTRATRION-EXPRESSION RESPONSE: Analysis of MX-Treated Salmonella

    Science.gov (United States)

    What is the study? This study is the first to use microarray analysis in the Ames strains of Salmonella. The microarray chips were custom-designed for this study and are not commercially available, and we evaluated the well-studied drinking water mutagen, MX. Because much inform...

  5. Macromolecular query language (MMQL): prototype data model and implementation.

    Science.gov (United States)

    Shindyalov, I N; Chang, W; Pu, C; Bourne, P E

    1994-11-01

    Macromolecular query language (MMQL) is an extensible interpretive language in which to pose questions concerning the experimental or derived features of the 3-D structure of biological macromolecules. MMQL portends to be intuitive with a simple syntax, so that from a user's perspective complex queries are easily written. A number of basic queries and a more complex query--determination of structures containing a five-strand Greek key motif--are presented to illustrate the strengths and weaknesses of the language. The predominant features of MMQL are a filter and pattern grammar which are combined to express a wide range of interesting biological queries. Filters permit the selection of object attributes, for example, compound name and resolution, whereas the patterns currently implemented query primary sequence, close contacts, hydrogen bonding, secondary structure, conformation and amino acid properties (volume, polarity, isoelectric point, hydrophobicity and different forms of exposure). MMQL queries are processed by MMQLlib; a C++ class library, to which new query methods and pattern types are easily added. The prototype implementation described uses PDBlib, another C(++)-based class library from representing the features of biological macromolecules at the level of detail parsable from a PDB file. Since PDBlib can represent data stored in relational and object-oriented databases, as well as PDB files, once these data are loaded they too can be queried by MMQL. Performance metrics are given for queries of PDB files for which all derived data are calculated at run time and compared to a preliminary version of OOPDB, a prototype object-oriented database with a schema based on a persistent version of PDBlib which offers more efficient data access and the potential to maintain derived information. MMQLlib, PDBlib and associated software are available via anonymous ftp from cuhhca.hhmi.columbia.edu.

  6. Macromolecular weight specificity in covalent binding of bromobenzene

    International Nuclear Information System (INIS)

    Sun, J.D.; Dent, J.G.

    1984-01-01

    Bromobenzene is a hepatotoxicant that causes centrilobular necrosis. Pretreatment of animals with 3-methylcholanthrene decreases and phenobarbital pretreatment enhances the hepatotoxic action of this compound. We have investigated the macromolecular weight specificity of the covalent interactions of bromobenzene with liver macromolecules following incubation of [ 14 C]bromobenzene in isolated hepatocytes. Hepatocytes were prepared from Fischer-344 rats treated for 3 days with 3-methylcholanthrene, phenobarbital, or normal saline. After a 1-hr incubation, total covalent binding, as measured by sodium dodecyl sulfate-equilibrium dialysis, was twofold less in hepatocytes from 3-methylcholanthrene-treated rats and sixfold greater in hepatocytes from phenobarbital-treated rats, as compared to hepatocytes from control animals. Analysis of the arylated macromolecules by electrophoresis on 15% sodium dodecyl sulfate-polyacrylamide disc gels indicated that in the first 1 to 3 min of incubation substantial amounts of covalently bound radiolabel were associated with macromolecules of between 20,000 and 40,000. The amount of radioactivity associated with these macromolecules rapidly diminished in hepatocytes from control and 3-methylcholanthrene-treated animals. In hepatocytes from phenobarbital-treated animals, the amount of radioactivity associated with macromolecules, 20,000, increased throughout the incubation. The amount of radiolabel associated with macromolecules, 20,000, increased in all incubations. When nontoxic doses of phenylmethylsulfonyl fluoride, a specific inhibitor of serine proteases, were added to control hepatocytes incubated with [ 14 C]-bromobenzene, the decrease in radioactivity associated with larger (greater than 20,000) macromolecules was inhibited and a corresponding lack of increase in radioactivity associated with smaller macromolecules was observed

  7. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein.

    Science.gov (United States)

    Broni, B; Julkunen, I; Condra, J H; Davies, M E; Berry, M J; Krug, R M

    1990-12-01

    The interferon-induced murine Mx1 protein, which is localized in the nucleus, most likely specifically blocks influenza virus replication by inhibiting nuclear viral mRNA synthesis, including the mRNA synthesis catalyzed by inoculum (parental) virion nucleocapsids (R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, J. Virol. 56:201-206, 1985). We tested two possible mechanisms for this inhibition. First, we determined whether the transport of parental nucleocapsids into the nucleus was inhibited in murine cells expressing the nuclear Mx1 protein. To detect the Mx1 protein, we prepared rabbit antibodies against the Mx1 protein with a CheY-Mx fusion protein expressed in bacteria. The fate of parental nucleocapsids was monitored by immunofluorescence with an appropriate dilution of monoclonal antibody to the nucleocapsid protein. The protein synthesis inhibitor anisomycin was added to the cells 30 min prior to infection, so that the only nucleocapsids protein molecules in the cells were those associated with nucleocapsids of the parental virus. These nucleocapsids were efficiently transported into the nuclei of murine cells expressing the Mx1 protein, indicating that this protein most likely acts after the parental nucleocapsids enter the nucleus. The second possibility was that the murine Mx1 protein might act in the nucleus to inhibit viral mRNA synthesis indirectly via new cap-binding activities that sequestered cellular capped RNAs away from the viral RNA transcriptase. We show that the same array of nuclear cap-binding proteins was present in Mx-positive and Mx-negative cells treated with interferon. Interestingly, a large amount of a 43-kDa cap-binding activity appeared after interferon treatment of both Mx-positive and Mx-negative cells. Hence, the appearance of new cap-binding activities was unlikely to account for the Mx-specific inhibition of viral mRNA synthesis. These results are most consistent with the possibility that the Mx1 protein acts

  8. Measurements and observations on microscopic swelling in MX-type fuels

    International Nuclear Information System (INIS)

    Ronchi, C.; Ray, I.L.F.; Thiele, H.; Laar, J. van de.

    1978-01-01

    Microscopic swelling has been investigated by electron microscopy in several MX-type fuels, irradiated in fast and thermal neutron flux. The results show that fission gas bubbles in these compounds grow to large sizes if the in-pile fuel temperature rises above a critical value (swelling critical temperature Tsub(C)). A comparison has been made of the swelling rates in fuels of different composition, showing that Tsub(C) increases from carbides to nitrides. In fuels subjected to in-pile restructuring (highly rated) He-bonded pins microscopic swelling is affected by pore and grain boundary migration. The influence of these phenomena on the fuel swelling performance has been discussed

  9. Nonlinear Structured Growth Mixture Models in Mplus and OpenMx

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne

    2014-01-01

    Growth mixture models (GMMs; Muthén & Muthén, 2000; Muthén & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models because of their common use, flexibility in modeling many types of change patterns, the availability of statistical programs to fit such models, and the ease of programming. In this paper, we present additional ways of modeling nonlinear change patterns with GMMs. Specifically, we show how LCMs that follow specific nonlinear functions can be extended to examine the presence of multiple latent classes using the Mplus and OpenMx computer programs. These models are fit to longitudinal reading data from the Early Childhood Longitudinal Study-Kindergarten Cohort to illustrate their use. PMID:25419006

  10. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

    2002-02-01

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible

  11. Structure of HIV-1 protease determined by neutron crystallography

    International Nuclear Information System (INIS)

    Adachi, Motoyasu; Kuroki, Ryota

    2009-01-01

    HIV-1 protease is an aspartic protease, and plays an essential role in replication of HIV. To develop HIV-1 protease inhibitors through structure-based drug design, it is necessary to understand the catalytic mechanism and inhibitor recognition of HIV-1 protease. We have determined the crystal structure of HIV-1 protease in complex with KNI-272 to 1.9 A resolution by neutron crystallography in combination with 1.4 A resolution X-ray diffraction data. The results show that the carbonyl group of hydroxymethylcarbonyl (HMC) in KNI-272 forms a hydrogen bonding interaction with protonated Asp 25 and the hydrogen atom from the hydroxyl group of HMC forms a hydrogen bonding interaction with the deprotonated Asp125. This is the first neutron report for HIV-1/inhibitor complex and shows directly the locations of key hydrogen atoms in catalysis and in the binding of a transition-state analog. The results confirm key aspect of the presumed catalytic mechanism of HIV-1 protease and will aid in the further development of protease inhibitors. (author)

  12. Choice and maintenance of equipment for electron crystallography.

    Science.gov (United States)

    Mills, Deryck J; Vonck, Janet

    2013-01-01

    The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.

  13. Modifications in Compacted MX-80 Bentonite Due to Thermo-Hydraulic Treatment; Modificaciones en la Bentonita MX-80 Compactada Sometida a Tratamiento Termo-Hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Espina, R.; Villar, M. V.

    2013-09-01

    The thermo-hydraulic tests reproduce the thermal and hydraulic conditions to which bentonite is subjected in the engineered barrier of a deep geological repository of radioactive waste. The results of thermo-hydraulic test TBT1500, which was running for approximately 1500 days, are presented. This is a continuation to the Technical Report Ciemat 1199, which presented results of test TBT500, performed under similar conditions but with duration of 500 days. In both tests the MX-80 bentonite was used with initial density and water content similar to those of the large-scale test TBT. The bentonite column was heated at the bottom at 140 degree centigrade and hydrated on top with deionized water. At the end of the test a sharp water content gradient was observed along the column, as well as an inverse dry density gradient. Hydration modified also the bentonite microstructure. Besides, an overall decrease of the smectite content with respect to the initial value took place, especially in the most hydrated areas where the percentage of interest ratified illite increased and in the longer test. On the other hand, the content of cristobalite, feldspars and calcite increased. Smectite dissolution processes (probably colloidal) occurred, particularly in the more hydrated areas and in the longer test. Due to the dissolution of low-solubility species and to the loss of exchangeable positions in the smectite, the content of soluble salts in the pore water increased with respect to the original one, especially in the longer test. The solubilized ions were transported; sodium, calcium, magnesium and sulphate having a similar mobility, which was in turn lower than that of potassium and chloride. The cationic exchange complex was also modified. (Author)

  14. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  15. Effects of macromolecular crowding on protein conformational changes.

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2010-07-01

    Full Text Available Many protein functions can be directly linked to conformational changes. Inside cells, the equilibria and transition rates between different conformations may be affected by macromolecular crowding. We have recently developed a new approach for modeling crowding effects, which enables an atomistic representation of "test" proteins. Here this approach is applied to study how crowding affects the equilibria and transition rates between open and closed conformations of seven proteins: yeast protein disulfide isomerase (yPDI, adenylate kinase (AdK, orotidine phosphate decarboxylase (ODCase, Trp repressor (TrpR, hemoglobin, DNA beta-glucosyltransferase, and Ap(4A hydrolase. For each protein, molecular dynamics simulations of the open and closed states are separately run. Representative open and closed conformations are then used to calculate the crowding-induced changes in chemical potential for the two states. The difference in chemical-potential change between the two states finally predicts the effects of crowding on the population ratio of the two states. Crowding is found to reduce the open population to various extents. In the presence of crowders with a 15 A radius and occupying 35% of volume, the open-to-closed population ratios of yPDI, AdK, ODCase and TrpR are reduced by 79%, 78%, 62% and 55%, respectively. The reductions for the remaining three proteins are 20-44%. As expected, the four proteins experiencing the stronger crowding effects are those with larger conformational changes between open and closed states (e.g., as measured by the change in radius of gyration. Larger proteins also tend to experience stronger crowding effects than smaller ones [e.g., comparing yPDI (480 residues and TrpR (98 residues]. The potentials of mean force along the open-closed reaction coordinate of apo and ligand-bound ODCase are altered by crowding, suggesting that transition rates are also affected. These quantitative results and qualitative trends will

  16. Absorbed Doses and Risk Estimates of (211)At-MX35 F(ab')2 in Intraperitoneal Therapy of Ovarian Cancer Patients

    DEFF Research Database (Denmark)

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter

    2015-01-01

    dose associated with i.p. administration of (211)At-MX35 F(ab')2. METHODS AND MATERIALS: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of (211)At-MX35 F(ab')2. Potassium perchlorate was given to block unwanted accumulation...... 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. CONCLUSION: Intraperitoneal (211)At-MX35 F(ab')2 treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective...

  17. The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA.

    Science.gov (United States)

    Riegger, David; Hai, Rong; Dornfeld, Dominik; Mänz, Benjamin; Leyva-Grado, Victor; Sánchez-Aparicio, Maria T; Albrecht, Randy A; Palese, Peter; Haller, Otto; Schwemmle, Martin; García-Sastre, Adolfo; Kochs, Georg; Schmolke, Mirco

    2015-02-01

    Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo. This cluster has been maintained in all descendant seasonal strains, including A/PR/8/34 (PR/8). Accordingly, two substitutions in the NP of PR/8 [PR/8(mut)] to the Mx-sensitive amino acids (P283L and Y313F) led to attenuation in Mx1-positive mice. Serial lung passages of PR/8(mut) in Mx1 mice resulted in a single exchange of tyrosine to asparagine at position 52 in NP (in close proximity to the amino acid cluster at positions 100, 283, and 313), which partially compensates loss of Mx resistance in PR/8(mut). Intriguingly, the NP of the newly emerged avian-origin H7N9 virus also contains an asparagine at position 52 and shows reduced Mx sensitivity. N52Y substitution in NP results in increased sensitivity of the H7N9 virus to human Mx, indicating that this residue is a determinant of Mx resistance in mammals. Our data strengthen the hypothesis that the human Mx protein represents a potent barrier against zoonotic transmission of avian influenza viruses. However, the H7N9 viruses overcome this restriction by harboring an NP that is less sensitive to Mx-mediated host defense. This might contribute to zoonotic transmission of H7N9 and to the severe to fatal outcome of H7N9 infections in humans. The natural host of influenza A viruses (IAVs) are aquatic birds. Occasionally, these viruses cross the species barrier, as in early 2013 when an avian H7N9 virus infected humans in China. Since then, multiple transmissions of H7N9 viruses to humans have occurred, leaving experts

  18. Comparing pharmacophore models derived from crystallography and NMR ensembles

    Science.gov (United States)

    Ghanakota, Phani; Carlson, Heather A.

    2017-11-01

    NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.

  19. Dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux in vivo.

    Science.gov (United States)

    Akhter, S R; Ikezaki, H; Gao, X P; Rubinstein, I

    1999-05-01

    The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.

  20. Aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes as revealed by microscopic radioautography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuji [Shinshu University, Matsumoto (Japan). Dept. of Anatomy and Cell Biology

    2007-07-01

    This mini-review reports aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes. We have observed the macromolecular synthesis, such as DNA, RNA and proteins, in the mitochondria of various mammalian cells by means of electron microscopic radioautography technique developed in our laboratory. The number of mitochondria per cell, number of labeled mitochondria per cell with 3H-thymidine, 3H-uridine and 3H-leucine, precursors for DNA, RNA and proteins, respectively, were counted and the labeling indices at various ages, from fetal to postnatal early days and several months to 1 and 2 years in senescence, were calculated, which showed variations due to aging. (author)

  1. Influence of sorption competition on sorption data for MX-80 bentonite used in performance assessment

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.; Marques Fernandes, M.

    2012-01-01

    sorption. The starting point for the calculations are the estimated maximum limit concentrations of the most important metal cations in the bentonite near field as given by Berner (2002). The metals have been divided into three broad groups according to their chemical similarity (valence, hydrolysis behaviour). Group 1: bivalent transition and heavy metals, Group 2: trivalent metals and Group 3: tetravalent metals. There is experimental evidence that competitive sorption occurs between the metals within each of these three groups but not between metals from different groups. In the calculations illustrating the influence of sorption competition at high concentrations, the 'maximum limit concentrations' are considered to be equilibrium values existing simultaneously in the bentonite pore water. For each of the three groups of nuclides the procedure was as follows. Firstly, calculations were made in the MX-80 bentonite pore water-mineral system to produce sorption values for each nuclide individually at trace concentration without considering competition effects. These sorption values approximate those derived for the MX-80 SDB. Secondly, for each group of nuclides, sorption values for each nuclide within the same group were calculated simultaneously with all of the others at the corresponding (equilibrium) concentrations in the MX-80 bentonite/pore water system. All of these calculations were carried out using the full 2SPNE SC/CE model and the parameters given in Bradbury and Baeyens (2005a). In terms of the calculation results obtained with the 2SPNE SC/CE sorption model, the overall effect of competitive sorption, especially for combinations of competing nuclides at high concentrations, is to reduce the sorption values. Nevertheless, the sorption of the metals in all three groups remains significant due to sorption on the weak sites of the montmorillonite which exhibit a high site capacity. (authors)

  2. Sorption behaviour of Np(IV) on illite, shale and MX-80 in high ionic strength solutions

    International Nuclear Information System (INIS)

    Shinya Nagasaki; Riddoch, Justin; Goguen, Jared; Walker, Andrew; Tammy Tianxiao Yang

    2017-01-01

    The dependence of sorption distribution coefficient (K_d) of Np(IV) for illite, shale and MX-80 was investigated as a function of pH_c and ionic strength (I) under high ionic strength, reducing conditions. The overall trends of K_d on three solids were independent of pH_c at 5 ≤ pH_c ≤ 10 and I at 0.5 M ≤ I ≤ 6 M. The surface complexation constants of Np(IV) sorption on illite and MX-80 were estimated by the 2 SPNE SC/CE model. The sorption model well predicted the pH_c dependence of K_d, but could not completely describe the ionic strength dependence. (author)

  3. MX-80 Bentonite. Thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    International Nuclear Information System (INIS)

    Villar, M. V.

    2005-01-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60 0 C. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs

  4. MX-80 Bentonite. thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2005-07-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60oC. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs.

  5. Ribavirin enhances IFN-α signalling and MxA expression: a novel immune modulation mechanism during treatment of HCV.

    Directory of Open Access Journals (Sweden)

    Nigel J Stevenson

    Full Text Available The nucleoside analogue Ribavirin significantly increases patient response to IFN-α treatment of HCV, by directly inhibiting viral replication. Recent studies indicate that Ribavirin also regulates immunity and we propose that Ribavirin enhances specific interferon sensitive gene (ISG expression by amplifying the IFN-α-JAK/STAT pathway. We found that IFN-α-induced STAT1 and STAT3 phosphorylation was increased in hepatocytes co-treated with Ribavirin and IFN-α, compared to IFN-α alone. Ribavirin specifically enhanced IFN-α induced mRNA and protein of the anti-viral mediator MxA, which co-localised with HCV core protein. These novel findings indicate for the first time that Ribavirin, in addition to its viral incorporation, also enhances IFN-α-JAK/STAT signalling, leading to a novel MxA-mediated immuno-modulatory mechanism that may enhance IFN-α anti-viral activity against HCV.

  6. Comparison of therapeutic efficacy and biodistribution of 213Bi- and 211At-labeled monoclonal antibody MX35 in an ovarian cancer model

    DEFF Research Database (Denmark)

    Gustafsson, Anna M E; Bäck, Tom; Elgqvist, Jörgen

    2012-01-01

    The purpose of this study was to compare the therapeutic efficacy and biodistribution of the monoclonal antibody MX35 labeled with either (213)Bi or (211)At, both α-emitters, in an ovarian cancer model.......The purpose of this study was to compare the therapeutic efficacy and biodistribution of the monoclonal antibody MX35 labeled with either (213)Bi or (211)At, both α-emitters, in an ovarian cancer model....

  7. The protein micro-crystallography beamlines for targeted protein research program

    International Nuclear Information System (INIS)

    Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2010-01-01

    In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented. (author)

  8. On the hydro-mechanical behaviour of MX80 bentonite-based materials

    Directory of Open Access Journals (Sweden)

    Yu-Jun Cui

    2017-06-01

    Full Text Available Bentonite-based materials have been considered in many countries as engineered barrier/backfilling materials in deep geological disposal of high-level radioactive waste. During the long period of waste storage, these materials will play an essential role in ensuring the integrity of the storage system that consists of the waste canisters, the engineered barrier/backfill, the retaining structures as well as the geological barrier. Thus, it is essential to well understand the hydro-mechanical behaviours of these bentonite-based materials. This review paper presents the recent advances of knowledge on MX80 bentonite-based materials, in terms of water retention properties, hydraulic behaviour and mechanical behaviour. Emphasis is put on the effect of technological voids and the role of the dry density of bentonite. The swelling anisotropy is also discussed based on the results from swelling tests with measurements of both axial and radial swelling pressures on a sand-bentonite mixture compacted at different densities. Microstructure observation was used to help the interpretation of macroscopic hydro-mechanical behaviour. Also, the evolution of soil microstructure thus the soil density over time is discussed based on the results from mock-up tests. This evolution is essential for understanding the long-term hydro-mechanical behaviour of the engineered barrier/backfill.

  9. Fabrication and characterization of MX-type fuels and fuel pins

    International Nuclear Information System (INIS)

    Richter, K.; Bartscher, W.; Benedict, U.; Gueugnon, J.F.; Kutter, H.; Sari, C.; Schmidt, H.E.

    1978-01-01

    This paper summarizes the most important fabrication parameters and characterization of fuel and fuel pins obtained during the investigation of uranium-plutonium carbides, oxicarbides, carbonitrides and nitrides in the past years at the European Institute for Transuranium Elements at Karlsruhe. All preparation methods discussed are based on carbothermic reduction of a mechanical blend of uranium-plutonium oxide and carbon powder. General data for carbothermic reduction processes are discussed (influence of starting material, homogeneity, control of degree of reaction, etc). A survey of different preparation methods investigated is given. Limitations with respect to temperature and atmosphere for both carbothermic reduction processes and sintering conditions for the different compounds are summarized. A special preparation process for mixed carbonitrides with low nitrogen content (U,Pu)sub(1-x)Nsub(x) in the range 0.1 0 C to 1400 0 C by means of a modulated electron beam technique. A scheme is proposed, which allows to predict the thermal properties of MX fuels on the basis of their chemical composition and porosity. Preparation, preirradiation characterization and final controls of fuel test pins for pellet and vibrocompacted type of pins are described and the most important data summarized for all advanced fuels irradiated at Dounreay (DN1) and Rapsodie Fast Reactor (DN2) within the TU irradiation programme

  10. Large calculated electron-phonon interactions in La2-xMxCuO4

    International Nuclear Information System (INIS)

    Krakauer, H.; Pickett, W.E.; Cohen, R.E.

    1993-01-01

    Results of self-consistent linearized-augmented-plane-wave calculations within the local-density-functional approximation (LDA) are presented of the electron-phonon-induced linewidths and interaction strength of selected phonons in La 2-xMx CuO 4 at x=0.15. Through the use of a supercell geometry, rigid-ion-type approximations are avoided and the full electron-phonon matrix elements are determined from finite differences of the LDA potentials corresponding to frozen-in phonon at Γ X, and Z. At the X point, all fully symmetric A g modes (i.e., having the symmetry of the oxygen planar-breathing mode) as well as three modes having B 3g symmetry are examined. Small linewidths were found for the three B 3g modes, and moderate linewidths for the A g modes, the largest corresponding to ratios γ q,ν /ω q,ν =0.02 for the oxygen breathing and axial modes

  11. In vitro inhibition of fish rhabdoviruses by Japanese flounder, Paralichthys olivaceus Mx

    International Nuclear Information System (INIS)

    Caipang, Christopher Marlowe A.; Hirono, Ikuo; Aoki, Takashi

    2003-01-01

    A homologous fish cell line stably expressing the recombinant Japanese flounder Mx (JFMx) was infected with hirame rhabdovirus (HIRRV) and viral hemorrhagic septicemia virus (VHSV), both of which are negative single-stranded RNA viruses belonging to the Rhabdoviridae family. Analysis of primary transcription of the two rhabdoviruses showed that there was lower expression level and copy number of the viral nucleoprotein transcript in the JFMx-transfected cell line than the infected, control cells, although no significant difference was observed. This suggests that JFMx may not be a potent inhibitor of rhabdoviral primary transcription. Kinetics of rhabdovirus expression by RT-PCR and quantitative real-time RT-PCR showed reduced levels of the rhabdoviral glycoprotein and nucleoprotein transcripts over time, indicating the possible role of JFMx in blocking rhabdoviral replication by interfering with the transcription of the viral subgenomic mRNAs. Significant inhibition in rhabdovirus replication consequently resulted in the synthesis of fewer viral particles. This may explain why JFMx-expressing cells are less susceptible to virus-induced cell lysis, and thus, why they would have a significantly higher survival than the infected, control cells. These results provide direct evidence that JFMx has an antiviral effect in vitro

  12. Detekce spamu pomocí DNS MX záznamů

    OpenAIRE

    Plotěný, Ondřej

    2016-01-01

    Předmětem této práce je detekce stanic v síti rozesílající nevyžádanou poštu pomocí pasivní analýzy zachyceného DNS provozu. Představuje návrh a implementaci systému, který realizuje detekci DNS anomálií na základě vysokého počtu MX dotazů a poměru obdržených NXDomain odpovědí.     Systém byl testován na DNS datech získaných z reálného provozu a jeho testováním a analýzou výsledků byla ověřena funkčnost implementovaných detektorů. The aim of this thesis is the detection of malicious spamme...

  13. Genetic Polymorphisms of The Chicken Antiviral Mx Gene in A Variety of Indonesian Indigenous Chicken Breeds

    Directory of Open Access Journals (Sweden)

    Sri Sulandari

    2009-06-01

    Full Text Available It has previously been demonstrated that a G/A Single Nucleotide Polymorphism (SNP at nucleotideposition 1,892 of coding sequence of chicken Mx gene confers susceptibility/resistance to avian viral diseases.The aim of this study was to assess the geographical distribution of G/A alleles in relation to differentgenetic backgrounds of a wide range of chicken populations. Using Polymerase Chain Reaction- RestrictionFragment Length Polymorphism (PCR-RFLP methods, 492 samples from 15 breeds of indigenous chickenpopulations from Java, Sumatera, Kalimantan and Sulawesi islands were genotyped. Allele and genotypefrequencies of each population were calculated. Deviations from Hardy-Weinberg equilibrium were testedand inbreeding coefficient FIS estimated. Overall, the susceptible allele G had a frequency of 37.27% whilethe resistant allele A had a corresponding frequency of 62.73%. No clear relation of the geographicaldistribution of the G/A alleles to genetic backgrounds was found. The distribution of this SNP acrosspopulations seems to be affected by genetic drift rather than selection.

  14. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980

    Directory of Open Access Journals (Sweden)

    Kunst, B.

    2008-07-01

    Full Text Available The postgraduate study of macromolecular sciences (PSMS was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study comprised basic fields of macromolecular sciences: organic chemistry of synthetic macromolecules, physical chemistry of macromolecules, physics of macromolecules, biological macromolecules and polymer engineering with polymer application and processing, and teaching was performed in 29 lecture courses lead by 30 professors with their collaborators. PSMS ceased to exist with the change of legislation in Croatia in 1980, when the attitude prevailed to render back postgraduate studies to the university schools. During 9 years of existence of PSMS the MSci grade was awarded to 37 macromolecular experts. It was assessed that the PSMS some thirty years ago was an important example of modern postgraduate education as compared with the international postgraduate development. In concordance with the recent introduction of similar interdisciplinary studies in macromolecular sciences elsewhere in the world, the establishment of a modern interdisciplinary study in the field would be of importance for further development of these sciences in Croatia.

  15. MMTF-An efficient file format for the transmission, visualization, and analysis of macromolecular structures.

    Directory of Open Access Journals (Sweden)

    Anthony R Bradley

    2017-06-01

    Full Text Available Recent advances in experimental techniques have led to a rapid growth in complexity, size, and number of macromolecular structures that are made available through the Protein Data Bank. This creates a challenge for macromolecular visualization and analysis. Macromolecular structure files, such as PDB or PDBx/mmCIF files can be slow to transfer, parse, and hard to incorporate into third-party software tools. Here, we present a new binary and compressed data representation, the MacroMolecular Transmission Format, MMTF, as well as software implementations in several languages that have been developed around it, which address these issues. We describe the new format and its APIs and demonstrate that it is several times faster to parse, and about a quarter of the file size of the current standard format, PDBx/mmCIF. As a consequence of the new data representation, it is now possible to visualize structures with millions of atoms in a web browser, keep the whole PDB archive in memory or parse it within few minutes on average computers, which opens up a new way of thinking how to design and implement efficient algorithms in structural bioinformatics. The PDB archive is available in MMTF file format through web services and data that are updated on a weekly basis.

  16. Synthesis and characterization of macromolecular rhodamine tethers and their interactions with P-glycoprotein.

    Science.gov (United States)

    Crawford, Lindsey; Putnam, David

    2014-08-20

    Rhodamine dyes are well-known P-glycoprotein (P-gp) substrates that have played an important role in the detection of inhibitors and other substrates of P-gp, as well as in the understanding of P-gp function. Macromolecular conjugates of rhodamines could prove useful as tethers for further probing of P-gp structure and function. Two macromolecular derivatives of rhodamine, methoxypolyethylene glycol-rhodamine6G and methoxypolyethylene glycol-rhodamine123, were synthesized through the 2'-position of rhodamine6G and rhodamine123, thoroughly characterized, and then evaluated by inhibition with verapamil for their ability to interact with P-gp and to act as efflux substrates. To put the results into context, the P-gp interactions of the new conjugates were compared to the commercially available methoxypolyethylene glycol-rhodamineB. FACS analysis confirmed that macromolecular tethers of rhodamine6G, rhodamine123, and rhodamineB were accumulated in P-gp expressing cells 5.2 ± 0.3%, 26.2 ± 4%, and 64.2 ± 6%, respectively, compared to a sensitive cell line that does not overexpress P-gp. Along with confocal imaging, the efflux analysis confirmed that the macromolecular rhodamine tethers remain P-gp substrates. These results open potential avenues for new ways to probe the function of P-gp both in vitro and in vivo.

  17. Interplay between the bacterial nucleoid protein H-NS and macromolecular crowding in compacting DNA

    NARCIS (Netherlands)

    Wintraecken, C.H.J.M.

    2012-01-01

    In this dissertation we discuss H-NS and its connection to nucleoid compaction and organization. Nucleoid formation involves a dramatic reduction in coil volume of the genomic DNA. Four factors are thought to influence coil volume: supercoiling, DNA charge neutralization, macromolecular

  18. Effect of macromolecular crowding on the rate of diffusion-limited ...

    Indian Academy of Sciences (India)

    The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model qualitatively explains some ...

  19. Detection and cellular localisation of the synthetic soluble macromolecular drug carrier pHPMA

    Czech Academy of Sciences Publication Activity Database

    Kissel, M.; Peschke, P.; Šubr, Vladimír; Ulbrich, Karel; Strunz, A. M.; Kühnlein, R.; Debus, J.; Friedrich, E.

    2002-01-01

    Roč. 29, č. 8 (2002), s. 1055-1062 ISSN 1619-7070 R&D Projects: GA ČR GV307/96/K226 Institutional research plan: CEZ:AV0Z4050913 Keywords : EPR effect * Radiolabelled macromolecules * Pharmacokinetic Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.568, year: 2002

  20. Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.

    Science.gov (United States)

    Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji

    2016-11-23

    The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.

  1. A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1.

    Directory of Open Access Journals (Sweden)

    Matthew C Clifton

    Full Text Available Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.

  2. A pixel detector for the protein crystallography beamline at the SLS

    CERN Document Server

    Brönnimann, C; Eikenberry, E F; Fischer, P; Florin, S; Horisberger, R P; Lindner, Manfred; Schmitt, B; Schulze, C

    2002-01-01

    At the Paul Scherrer Institute a new synchrotron light source is currently under construction, the Swiss Light Source (SLS), which will be operational in summer 2001. Among the first beamlines is a high brightness, micro-focusing protein crystallography beamline. It will be equipped with a pixel detector, which has several features of interest for the next generation of protein crystallography detectors. The point spread function and the effect of charge sharing was measured with a prototype detector in a test experiment at the European Synchrotron Radiation Facility in Grenoble. The concepts of the SLS pixel detector is presented as well as test results from radiation hard prototype chips.

  3. Hyperbranched Polyethylenebased Macromolecular Architectures: Synthesis, Characterization, and Selfassembly

    KAUST Repository

    Al-Sulami, Ahlam

    2018-05-01

    "Chain walking” catalytic polymerization CWCP is a powerful tool for the one-pot synthesis of a unique class of hyperbranched polyethylene HBPE-based macromolecules with a controllable molecular weight, topology, and composition. This dissertation focuses on new synthetic routes to prepare HBPE-based macromolecular architectures by combining the CWCP technique with ring opening polymerization ROP, atom–transfer radical polymerization ATRP, and “click” chemistry. Taking advantage of end-functionalized HBPE, and a new ethynyl-soketal star-shape agent, we were able to synthesize different types of the HBPE-based architectures including hyperbranched-on-hyperbranched core-shell nanostructure, and miktoarm-star-HBPE-based block copolymers. The first part of the dissertation provides a general introduction to the synthesis of polyethylene types with controllable structures. Well-defined polyethylene with different macromolecule architectures were synthesized either for academic or industrial purposes. In the second part, the HBPE with different topologies was synthesized by CWCP, using a α-diimine Pd (II) catalyst. The effect of the temperature and pressure on the catalyst activity and polymer properties, including branch content, molecular weight, distribution, and thermal properties were studied. Two series of samples were synthesized: a) serial samples (A) under pressures of 1, 5, and 27 atm at 5˚C, and b) serial samples (B) at temperatures of 5, 15, and 35 ˚C under 5 atm. Proton nuclear magnetic resonance spectroscopy, 1H NMR, and gel permeation chromatography, GPC, analysis were used to calculate the branching content, molecular weight, and distribution, whereas differential scanning calorimetry, DSC, was used to record the melting and glass transition temperatures as well as the degree of the crystallinity. Well-defined HBPE-based core diblock copolymers with predictable amphiphilic properties are studied in the third part of the project. Hyperbranched

  4. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  5. Neutron protein crystallography hydrogen protons and hydration in bio-macromolecules

    CERN Document Server

    Niimura, Nobuo

    2011-01-01

    This text is dedicated to the emerging field of neutron protein crystallography (NPC). It covers all of the practical aspects of NPC and demonstrates how NPC can explore protein features such as hydrogen bonds, protonation and deprotonation of amino acid residues, and hydration structures.

  6. 100 Years later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology.

    Science.gov (United States)

    Pomés, Anna; Chruszcz, Maksymilian; Gustchina, Alla; Minor, Wladek; Mueller, Geoffrey A; Pedersen, Lars C; Wlodawer, Alexander; Chapman, Martin D

    2015-07-01

    Current knowledge of molecules involved in immunology and allergic disease results from the significant contributions of x-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and x-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact 3-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind LPSs can also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. In turn, this surface determines antibody specificity and cross-reactivity, which are important factors for the selection of allergen panels used for molecular diagnosis and the interpretation of clinical symptoms. This review celebrates the contributions of x-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  7. Automation of specimen selection and data acquisition for protein electron crystallography

    NARCIS (Netherlands)

    Oostergetel, G.T.; Keegstra, W.; Brisson, A.D R

    A system is presented for semi-automatic specimen selection and data acquisition for protein electron crystallography, based on a slow-scan CCD camera connected to a transmission electron microscope and control from an external computer. Areas of interest on the specimen are localised at low

  8. Using the Plan View to Teach Basic Crystallography in General Chemistry

    Science.gov (United States)

    Cushman, Cody V.; Linford, Matthew R.

    2015-01-01

    The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…

  9. Synthesis, spectroscopy, X-ray crystallography, and DFT computations of nanosized phosphazenes

    Czech Academy of Sciences Publication Activity Database

    Shariatinia, Z.; Moghadam, E.J.; Maghsoudi, N.; Mousavi, H.S.M.; Dušek, Michal; Eigner, Václav

    2015-01-01

    Roč. 641, č. 5 (2015), s. 967-978 ISSN 0044-2313 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : phosphazene * ultrasonic * nanoparticle * x-ray crystallography * DFT calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.261, year: 2015

  10. Crystallographic and dynamic aspects of solid-state NMR calibration compounds: towards ab initio NMR crystallography

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Tapmeyer, Lukas; Bolte, Michael

    2016-01-01

    The excellent results of dispersion-corrected density functional theory (DFT-D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT-D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss...

  11. Synthesis of new nano Schiff base complexes: X-ray crystallography ...

    African Journals Online (AJOL)

    This study presents synthesis and characterization of new nano uranyl Schiff base complexes. Electrochemistry of these complexes showed a quasireversible redox reaction without any successive reactions. Furthermore, X-ray crystallography exhibited that beside the coordination of tetradentate Schiff base, one solvent ...

  12. Geochemical and Mineralogical Changes in Compacted MX-80 Bentonite Submitted to Heat and Water Gradients

    International Nuclear Information System (INIS)

    Gomez-Espina, R.; Villar, M. V.

    2010-01-01

    A 20-cm high column of MX80 bentonite compacted at dry density 1.70 g/cm 3 with an initial water content of 16 percent was submitted to heating and hydration by opposite ends for 496 days (TH test). The temperature at the bottom of the column was set at 140 degree centigrade and on top at 30 degree centigrade, and deionised water was injected on top at a pressure of 0.01 MPa. Upon dismantling water content, dry density, mineralogy, specific surface area, cation exchange capacity, content of exchangeable cations, and concentration of soluble salts and pH of aqueous extracts were determined in different positions along the bentonite column. The pore water composition was modelled with a geochemical software. The test tried to simulate the conditions of an engineered barrier in a deep geological repository for high-level radioactive waste. The water intake and distribution of water content and dry density along the bentonite were conditioned by the thermal gradient. Liquid water did not penetrate into the column beyond the area in which the temperature was higher than 100 degree centigrade. A convection cell was formed above this area, and liquid water loaded with ions evaporated towards cooler bentonite as it reached the area where the temperature was too high. In this area precipitation of mineral phases took place, Advection, interlayer exchange and dissolution/precipitation processes conditioned the composition of the pore water along the column. In most of the column the pore water was Na-SO 4 2 - type, and changed to Na-Cl near the heater. TH treatment did not cause significant changes in the smectite content or the other mineral phases of the bentonite. (Author) 41 refs.

  13. MX 8: the next generation high capacity system for the transport of fresh MOX fuel

    International Nuclear Information System (INIS)

    Potelle, F.; Issard, H.

    1998-01-01

    The choice of reprocessing policy was made a long time ago in France, leading to the development of an advanced Pu recycling industry. In 1987, Saint Laurent was the first French reactor to be loaded with fresh MOX fuel. Transnucleaire, then in charge of transport packaging development, created the FS 69 concept, derived from the classical RCC concept for the transport of UO 2 fresh fuel. On the other hand, Cogema, as the main actor in the field of fuel cycle and thus in transport matters, developed the associated security truck and security caisson in order to provide the transport system with the acceptable Physical Protection devices required by French Authorities. As a whole, the security truck and the FS 69 have now been used for more than ten years with a remarkable level of efficiency and safety. Indeed, more than 600 fresh MOX fuel elements have been delivered, without any incident, both regarding safety or fuel integrity requirements. But, as a matter of fact, the replacement of FS 69 transport system is now scheduled for several reasons. First of all, the burnups achieved with UO 2 fuel progressed together with its enrichment within the last ten years, and the MOX 'equivalence' also implies that its Pu content be increased to enhance its reactor performances: from 5.25 % of Pu content today, the MOX fuel will reach 7% tomorrow, and almost 10% the day after tomorrow. Lastly, the reprocessing/recycling policy has been confirmed and amplified, leading to an increasing number of 'moxified' reactors. As a consequence, the French utility (EDF), the fuel designer (Fragema, the joint venture between Framatome and Cogema), the fuel manufacturer (Cogema), and the transporter (Transnucleaire) joined in a specific working group devoted to the development of the MX 8, the next generation high capacity system for the land transport of MOX fuel. (authors)

  14. Modifications in Compacted MX-80 Bentonite Due to Thermo-Hydraulic Treatment

    International Nuclear Information System (INIS)

    Gomez-Espina, R.; Villar, M. V.

    2013-01-01

    The thermo-hydraulic tests reproduce the thermal and hydraulic conditions to which bentonite is subjected in the engineered barrier of a deep geological repository of radioactive waste. The results of thermo-hydraulic test TBT1500, which was running for approximately 1500 days, are presented. This is a continuation to the Technical Report Ciemat 1199, which presented results of test TBT500, performed under similar conditions but with duration of 500 days. In both tests the MX-80 bentonite was used with initial density and water content similar to those of the large-scale test TBT. The bentonite column was heated at the bottom at 140 degree centigrade and hydrated on top with deionized water. At the end of the test a sharp water content gradient was observed along the column, as well as an inverse dry density gradient. Hydration modified also the bentonite microstructure. Besides, an overall decrease of the smectite content with respect to the initial value took place, especially in the most hydrated areas where the percentage of interest ratified illite increased and in the longer test. On the other hand, the content of cristobalite, feldspars and calcite increased. Smectite dissolution processes (probably colloidal) occurred, particularly in the more hydrated areas and in the longer test. Due to the dissolution of low-solubility species and to the loss of exchangeable positions in the smectite, the content of soluble salts in the pore water increased with respect to the original one, especially in the longer test. The solubilized ions were transported; sodium, calcium, magnesium and sulphate having a similar mobility, which was in turn lower than that of potassium and chloride. The cationic exchange complex was also modified. (Author)

  15. Geochemical and Mineralogical Changes in Compacted MX-80 Bentonite Submitted to Heat and Water Gradients

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Espina, R.; Villar, M. V.

    2010-05-01

    A 20-cm high column of MX80 bentonite compacted at dry density 1.70 g/cm{sup 3} with an initial water content of 16 percent was submitted to heating and hydration by opposite ends for 496 days (TH test). The temperature at the bottom of the column was set at 140 degree centigrade and on top at 30 degree centigrade, and deionised water was injected on top at a pressure of 0.01 MPa. Upon dismantling water content, dry density, mineralogy, specific surface area, cation exchange capacity, content of exchangeable cations, and concentration of soluble salts and pH of aqueous extracts were determined in different positions along the bentonite column. The pore water composition was modelled with a geochemical software. The test tried to simulate the conditions of an engineered barrier in a deep geological repository for high-level radioactive waste. The water intake and distribution of water content and dry density along the bentonite were conditioned by the thermal gradient. Liquid water did not penetrate into the column beyond the area in which the temperature was higher than 100 degree centigrade. A convection cell was formed above this area, and liquid water loaded with ions evaporated towards cooler bentonite as it reached the area where the temperature was too high. In this area precipitation of mineral phases took place, Advection, interlayer exchange and dissolution/precipitation processes conditioned the composition of the pore water along the column. In most of the column the pore water was Na-SO{sub 4} {sup 2}- type, and changed to Na-Cl near the heater. TH treatment did not cause significant changes in the smectite content or the other mineral phases of the bentonite. (Author) 41 refs.

  16. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  17. Granular MX-80 bentonite as buffer material: a focus on swelling characteristics

    International Nuclear Information System (INIS)

    Rizzi, M.; Laloui, L.; Salager, S.; Marschall, P.

    2010-01-01

    Document available in extended abstract form only. The Swiss High Level Waste (HLW) disposal concept envisages the emplacement of the waste canisters in horizontal tunnels excavated at a depth of several hundred meters in an over-consolidated clay-stone formation. After waste emplacement the disposal tunnels are backfilled with MX-80 granular bentonite. Research activities are presented in this paper, aimed at characterising the geomechanical behaviour of the MX-80 granular bentonite and at providing the theoretical framework for modelling its response to thermo-hydro- mechanical (THM) perturbations. From the experimental point of view, a series of tests has been designed in order to extract constitutive data and to assess the temperature and suction effects on the mechanical behaviour of the bentonite, paying particular attention in the investigation to the swelling behaviour of the material. As for the theoretical framework an elasto-plastic constitutive model has been developed to take into account those coupled processes of stress, capillary pressure, and temperature to which the bentonite will be submitted,. Bentonite is mainly composed of the smectite mineral montmorillonite with a high swelling capacity which may provide sufficient sealing properties to seal the tunnel without gaps and to restore the buffer continuity. In fact, as bentonite hydrates in the repositories it will expand in those areas where it is allowed and will exert a swelling pressure where the material is confined. The results of both confined and free swelling tests are presented. Confined tests are aiming at determining the pressure applied by the material during complete saturation under isochoric conditions, whereas in the free swelling tests the strain on hydration is measured. Some results from confined swelling tests at ambient temperature are presented. The specimen is compacted uniaxially directly in the cells, the initial dry density being chosen in the range between 1.6 and 1

  18. Understanding the apparent diffusivity of Sr-85 ion for MX-80 in different salinity condition at low dry density

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin

    2012-01-01

    The apparent diffusivity of strontium-85 in the compacted MX-80 bentonite under different salinity conditions and dry densities was conducted were studied from the viewpoint of activation energy. Through in-diffusions experiments the effect of salinity on diffusion behavior of Sr-85 ions can also can be explained. As we know, Sr-90 is by product of the fission materials of nuclear wastes and should be manage properly. Sr-85 is radioactive isotope with the same chemical properties of Sr-90. Adsorption affects only non-steady-state diffusion while at the steady state (e.g., a constant concentration gradient between a constant source and a constant sink), there is no net uptake or release by adsorption, so adsorption has no effect on diffusion (Drever, James I., 1997). The changes in the basal spacing of bentonite as a function of salinity are needed to be observed by the X-ray diffraction method to understand the microstructure changes in diffusion pathways for Sr-85 in MX-80 bentonite. As we know, there could be three potential pathways for radionuclide diffusion in solution-saturated, compacted montmorillonite, i.e., pore water, external surfaces and the internal surface (interlayer spaces) of montmorillonite aggregates (Kozaki et al., 2008). So, it is important to understand the diffusion processes in term of apparent diffusivity of Sr-85 ions in different salinity concentration at low dry density of MX-80. Several parameters are needed in explaining the process such as dry density, activation energy, temperature dependence and concentration of the salinity solutions. (author)

  19. Coevolutionary constraints in the sequence-space of macromolecular complexes reflect their self-assembly pathways.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2017-07-01

    Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Variationally optimal selection of slow coordinates and reaction coordinates in macromolecular systems

    Science.gov (United States)

    Noe, Frank

    To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.

  1. Local analysis of strains and rotations for macromolecular electron microscopy maps

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Ramos, A.; Prieto, F.; Melero, R.; Martin-Benito, J.; Jonic, S.; Navas-Calvente, J.; Vargas, J.; Oton, J.; Abrishami, V.; Rosa-Trevin, J.L. de la; Gomez-Blanco, J.; Vilas, J.L.; Marabini, R.; Carazo, R.; Sorzano, C.O.S.

    2016-07-01

    Macromolecular complexes can be considered as molecular nano-machines that must have mobile parts in order to perform their physiological functions. The reordering of their parts is essential to execute their task. These rearrangements induce local strains and rotations which, after analyzing them, may provide relevant information about how the proteins perform their function. In this project these deformations of the macromolecular complexes are characterized, translating into a “mathematical language” the conformational changes of the complexes when they perform their function. Electron Microscopy (EM) volumes are analyzed using a method that uses B-splines as its basis functions. It is shown that the results obtained are consistent with the conformational changes described in their corresponding reference publications. (Author)

  2. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    Science.gov (United States)

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-03-04

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.

  3. Atomic force microscopy applied to study macromolecular content of embedded biological material

    Energy Technology Data Exchange (ETDEWEB)

    Matsko, Nadejda B. [Electron Microscopy Centre, Institute of Applied Physics, HPM C 15.1, ETH-Hoenggerberg, CH-8093, Zurich (Switzerland)]. E-mail: matsko@iap.phys.ethz.ch

    2007-02-15

    We demonstrate that atomic force microscopy represents a powerful tool for the estimation of structural preservation of biological samples embedded in epoxy resin, in terms of their macromolecular distribution and architecture. The comparison of atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of a biosample (Caenorhabditis elegans) prepared following to different types of freeze-substitution protocols (conventional OsO{sub 4} fixation, epoxy fixation) led to the conclusion that high TEM stainability of the sample results from a low macromolecular density of the cellular matrix. We propose a novel procedure aimed to obtain AFM and TEM images of the same particular organelle, which strongly facilitates AFM image interpretation and reveals new ultrastructural aspects (mainly protein arrangement) of a biosample in addition to TEM data.

  4. Extraction of cobalt ion from textile using a complexing macromolecular surfactant in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Chirat, Mathieu; Ribaut, Tiphaine; Clerc, Sebastien; Lacroix-Desmazes, Patrick; Charton, Frederic; Fournel, Bruno

    2013-01-01

    Cobalt ion under the form of cobalt nitrate is removed from a textile lab coat using supercritical carbon dioxide extraction. The process involves a macromolecular additive of well-defined architecture, acting both as a surfactant and a complexing agent. The extraction efficiency of cobalt reaches 66% when using a poly(1,1,2,2-tetrahydroperfluoro-decyl-acrylate-co-vinyl-benzylphosphonic diacid) gradient copolymer in the presence of water at 160 bar and 40 C. The synergy of the two additives, namely the copolymer and water which are useless if used separately, is pointed out. The potential of the supercritical carbon dioxide process using complexing macromolecular surfactant lies in the ability to modulate the complexing unit as a function of the metal as well as the architecture of the surface-active agent for applications ranging for instance from nuclear decontamination to the recovery of strategic metals. (authors)

  5. Pi sampling: a methodical and flexible approach to initial macromolecular crystallization screening

    International Nuclear Information System (INIS)

    Gorrec, Fabrice; Palmer, Colin M.; Lebon, Guillaume; Warne, Tony

    2011-01-01

    Pi sampling, derived from the incomplete factorial approach, is an effort to maximize the diversity of macromolecular crystallization conditions and to facilitate the preparation of 96-condition initial screens. The Pi sampling method is derived from the incomplete factorial approach to macromolecular crystallization screen design. The resulting ‘Pi screens’ have a modular distribution of a given set of up to 36 stock solutions. Maximally diverse conditions can be produced by taking into account the properties of the chemicals used in the formulation and the concentrations of the corresponding solutions. The Pi sampling method has been implemented in a web-based application that generates screen formulations and recipes. It is particularly adapted to screens consisting of 96 different conditions. The flexibility and efficiency of Pi sampling is demonstrated by the crystallization of soluble proteins and of an integral membrane-protein sample

  6. Macromolecular Engineering: New Routes Towards the Synthesis of Well-??Defined Polyethers/Polyesters Co/Terpolymers with Different Architectures

    KAUST Repository

    Alamri, Haleema

    2016-01-01

    Macromolecular engineering (as discussed in the first chapter) of homo/copolymers refers to the specific tailoring of these materials for achieving an easy and reproducible synthesis that results in precise molecular

  7. Waiting time analysis for MX/G/1 priority queues with/without vacations under random order of service discipline

    Directory of Open Access Journals (Sweden)

    Norikazu Kawasaki

    2000-01-01

    Full Text Available We study MX/G/1 nonpreemptive and preemptive-resume priority queues with/without vacations under random order of service (ROS discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first-come first-served disciplines extends the one found previously by Takacs and Fuhrmann for non-priority single arrival queues.

  8. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980)

    OpenAIRE

    Kunst, B.; Dezelic, D.; Veksli, Z.

    2008-01-01

    The postgraduate study of macromolecular sciences (PSMS) was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study...

  9. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971– 1980)

    OpenAIRE

    Deželić, D.; Kunst, B.; Veksli, Zorica

    2008-01-01

    The postgraduate study of macromolecular sciences (PSMS) was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technological disciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The s...

  10. Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores.

    Science.gov (United States)

    Lazzara, Thomas D; Lau, K H Aaron; Knoll, Wolfgang; Janshoff, Andreas; Steinem, Claudia

    2012-01-01

    Layer-by-layer (LbL) deposition of polyelectrolytes and proteins within the cylindrical nanopores of anodic aluminum oxide (AAO) membranes was studied by optical waveguide spectroscopy (OWS). AAO has aligned cylindrical, nonintersecting pores with a defined pore diameter d(0) and functions as a planar optical waveguide so as to monitor, in situ, the LbL process by OWS. The LbL deposition of globular proteins, i.e., avidin and biotinylated bovine serum albumin was compared with that of linear polyelectrolytes (linear-PEs), both species being of similar molecular weight. LbL deposition within the cylindrical AAO geometry for different pore diameters (d(0) = 25-80 nm) for the various macromolecular species, showed that the multilayer film growth was inhibited at different maximum numbers of LbL steps (n(max)). The value of n(max) was greatest for linear-PEs, while proteins had a lower value. The cylindrical pore geometry imposes a physical limit to LbL growth such that n(max) is strongly dependent on the overall internal structure of the LbL film. For all macromolecular species, deposition was inhibited in native AAO, having pores of d(0) = 25-30 nm. Both, OWS and scanning electron microscopy showed that LbL growth in larger AAO pores (d(0) > 25-30 nm) became inhibited when approaching a pore diameter of d(eff,n_max) = 25-35 nm, a similar size to that of native AAO pores, with d(0) = 25-30 nm. For a reasonable estimation of d(eff,n_max), the actual volume occupied by a macromolecular assembly must be taken into consideration. The results clearly show that electrostatic LbL allowed for compact macromolecular layers, whereas proteins formed loosely packed multilayers.

  11. Tuning the properties of an anthracene-based PPE-PPV copolymer by fine variation of its macromolecular parameters

    Czech Academy of Sciences Publication Activity Database

    Tinti, F.; Sabir, F. K.; Gazzano, M.; Righi, S.; Ulbricht, C.; Usluer, Ö.; Pokorná, Veronika; Cimrová, Věra; Yohannes, T.; Egbe, D. A. M.; Camaioni, N.

    2013-01-01

    Roč. 3, č. 19 (2013), s. 6972-6980 ISSN 2046-2069 R&D Projects: GA ČR GAP106/12/0827; GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : anthracene-containing PPE-PPV copolymer * macromolecular parameters * structural and transport properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.708, year: 2013

  12. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules.

    Science.gov (United States)

    Miyaguchi, Katsuyuki

    2014-10-01

    Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  13. Macromolecular diffusion in crowded media beyond the hard-sphere model.

    Science.gov (United States)

    Blanco, Pablo M; Garcés, Josep Lluís; Madurga, Sergio; Mas, Francesc

    2018-04-25

    The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.

  14. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Science.gov (United States)

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  15. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.

    Science.gov (United States)

    Maximova, Tatiana; Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda

    2016-04-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.

  16. In Vitro and In Vivo Evaluation of Microparticulate Drug Delivery Systems Composed of Macromolecular Prodrugs

    Directory of Open Access Journals (Sweden)

    Yoshiharu Machida

    2008-08-01

    Full Text Available Macromolecular prodrugs are very useful systems for achieving controlled drug release and drug targeting. In particular, various macromolecule-antitumor drug conjugates enhance the effectiveness and improve the toxic side effects. Also, polymeric micro- and nanoparticles have been actively examined and their in vivo behaviors elucidated, and it has been realized that their particle characteristics are very useful to control drug behavior. Recently, researches based on the combination of the concepts of macromolecular prodrugs and micro- or nanoparticles have been reported, although they are limited. Macromolecular prodrugs enable drugs to be released at a certain controlled release rate based on the features of the macromolecule-drug linkage. Micro- and nanoparticles can control in vivo behavior based on their size, surface charge and surface structure. These merits are expected for systems produced by the combination of each concept. In this review, several micro- or nanoparticles composed of macromolecule-drug conjugates are described for their preparation, in vitro properties and/or in vivo behavior.

  17. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Directory of Open Access Journals (Sweden)

    Preston Donovan

    Full Text Available The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  18. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  19. Glomerular filtration rate after alpha-radioimmunotherapy with 211At-MX35-F(ab')2: a long-term study of renal function in nude mice

    DEFF Research Database (Denmark)

    Back, T.; Haraldsson, B.; Hultborn, R

    2009-01-01

    of the glomerular filtration rate (GFR). The renal toxicity was evaluated at levels close to the dose limit for the bone marrow and well within the range for therapeutic efficacy on tumors. Astatinated MX35-F(ab')(2) monoclonal antibodies were administered intravenously to nude mice. Both non-tumor-bearing animals...... manifested late. Examination of the kidney sections showed histologic changes that were overall subdued. Following alpha-RIT with (211)At-MX35-F(ab')(2) at levels close to the dose limit of severe myelotoxicity, the effects found on renal function were relatively small, with only minor to moderate reductions...... in GFR. These results suggest that a mean absorbed dose to the kidneys of approximately 10 Gy is acceptable, and that the kidneys would not be the primary dose-limiting organ in systemic alpha-RIT when using (211)At-MX35-F(ab')(2) Udgivelsesdato: 2009/12...

  20. Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography

    KAUST Repository

    Zhang, Daliang

    2011-12-01

    High resolution electron microscopy (HRTEM) has unique advantages for structural determination of nano-sized porous materials compared to X-ray diffraction, because it provides the important structure factor phase information which is lost in diffraction. Here we demonstrate the structure determination of the first tri-continuous mesoporous silica IBN-9 by electron crystallography. IBN-9 has a hexagonal unit cell with the space group P6 3/mcm and a = 88.4 , c = 84.3 . HRTEM images taken along three main directions, [0 0 1], [11̄0] and [1 0 0] were combined to reconstruct the 3D electrostatic potential map, from which the tri-continuous pore structure of IBN-9 was discovered. The different steps of structure determination of unknown mesoporous structures by electron crystallography are described in details. Similar procedures can also be applied for structure determination of other porous and nonporous crystalline materials. © 2011 Elsevier Inc. All rights reserved.

  1. Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.

    Science.gov (United States)

    Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A; White, Thomas A; Spence, John C H; Chapman, Henry N; Barty, Anton

    2014-07-17

    Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies.

  2. Semi-empirical atom-atom interaction models and X-ray crystallography

    International Nuclear Information System (INIS)

    Braam, A.W.M.

    1981-01-01

    Several aspects of semi-empirical energy calculations in crystallography are considered. Solid modifications of ethane have been studied using energy calculations and a fast summation technique has been evaluated. The structure of tetramethylpyrazine has been determined at room temperature and at 100K and accurate structure factors have been derived from measured Bragg intensities. Finally electrostatic properties have been deduced from X-ray structure factors. (C.F.)

  3. Vladimír Vand (1911-1968): Pioneer of computational methods in crystallography

    Czech Academy of Sciences Publication Activity Database

    Šolcová, A.; Křížek, Michal

    2011-01-01

    Roč. 33, č. 4 (2011), s. 38-44 ISSN 1058-6180 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : history of computing * Vladimír Vand * crystallography Subject RIV: BA - General Mathematics Impact factor: 0.378, year: 2011 http://www.computer.org/portal/web/csdl/doi/10.1109/MAHC.2011.80

  4. Distributed control of protein crystallography beamline 5.0 using CORBA

    International Nuclear Information System (INIS)

    Timossi, Chris

    1999-01-01

    The Protein Crystallography Beamline at Berkeley Lab's Advanced Light Source is a facility that is being used to solve the structure of proteins. The software that is being used to control this beamline uses Java for user interface applications which communicate via CORBA with workstations that control the beamline hardware. We describe the software architecture for the beamline and our experiences after two years of operation

  5. K. S. Krishnan Memorial Lecture: The role of crystallography in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Guinier, A [Paris-11 Univ., 91 - Orsay (France)

    1977-06-01

    The role of crystallography in solving problems in solid state physics, is explained. A few domains in solid state physics such as detection of localized defects, structure of metallic solid solutions, mechanism of phase transitions and the intermediate states between crystalline and amorphous states, have been investigated successfully by X-ray and neutron diffraction methods. The studies have helped a deeper understanding of solid state phenomena. Structures of CuBa, AlZn, ..beta..-alumina etc. are discussed.

  6. SPring-8 Structural Biology Beamlines / Current Status of Public Beamlines for Protein Crystallography at SPring-8

    International Nuclear Information System (INIS)

    Kawamoto, Masahide; Hasegawa, Kazuya; Shimizu, Nobutaka; Sakai, Hisanobu; Shimizu, Tetsuya; Nisawa, Atsushi; Yamamoto, Masaki

    2007-01-01

    SPring-8 has 2 protein crystallography beamlines for public use, BL38B1 (Structural Biology III) and BL41XU (Structural Biology I). The BL38B1 is a bending magnet beamline for routine data collection, and the BL41XU is an undulator beamline specially customized for micro beam and ultra-high resolutional experiment. The designs and the performances of each beamline are presented

  7. Synthesis, X-ray crystallography, spectroscopy, electrochemistry, thermal and kinetic study of uranyl Schiff base complexes

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Golzard, F.; Eigner, Václav; Dušek, Michal

    2013-01-01

    Roč. 66, č. 20 (2013), s. 3629-3646 ISSN 0095-8972 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : X-ray crystallography * uranyl Schiff base complex * kinetics of thermal decomposition * cyclic voltammetry * kinetics and mechanism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.224, year: 2013

  8. Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys

    International Nuclear Information System (INIS)

    Muddle, B.C.; Nie, J.F.; Hugo, G.R.

    1994-01-01

    It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ' (Ag 2 Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1 plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites

  9. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    Energy Technology Data Exchange (ETDEWEB)

    Coquelle, Nicolas [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Burghammer, Manfred, E-mail: burgham@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Ghent University, Ghent B-9000 (Belgium); Colletier, Jacques-Philippe, E-mail: burgham@esrf.fr [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France)

    2015-05-01

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  10. Integrated Controlling System and Unified Database for High Throughput Protein Crystallography Experiments

    International Nuclear Information System (INIS)

    Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.; Sasajima, K.; Matsugaki, N.; Suzuki, M.; Kosuge, T.; Wakatsuki, S.

    2004-01-01

    An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view, create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments

  11. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  12. Development of Control Applications for High-Throughput Protein Crystallography Experiments

    International Nuclear Information System (INIS)

    Gaponov, Yurii A.; Matsugaki, Naohiro; Honda, Nobuo; Sasajima, Kumiko; Igarashi, Noriyuki; Hiraki, Masahiko; Yamada, Yusuke; Wakatsuki, Soichi

    2007-01-01

    An integrated client-server control system (PCCS) with a unified relational database (PCDB) has been developed for high-throughput protein crystallography experiments on synchrotron beamlines. The major steps in protein crystallographic experiments (purification, crystallization, crystal harvesting, data collection, and data processing) are integrated into the software. All information necessary for performing protein crystallography experiments is stored in the PCDB database (except raw X-ray diffraction data, which is stored in the Network File Server). To allow all members of a protein crystallography group to participate in experiments, the system was developed as a multi-user system with secure network access based on TCP/IP secure UNIX sockets. Secure remote access to the system is possible from any operating system with X-terminal and SSH/X11 (Secure Shell with graphical user interface) support. Currently, the system covers the high-throughput X-ray data collection stages and is being commissioned at BL5A and NW12A (PF, PF-AR, KEK, Tsukuba, Japan)

  13. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Zhao, Jinkui; Pierce, Josh; Robertson, J. L.; Herwig, Kenneth W.; Myles, Dean; Cuneo, Matt; Li, Le; Meilleur, Flora; Standaert, Bob

    2016-01-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals. (paper)

  14. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    OpenAIRE

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  15. Gothenburg Experience with At-211-MX35 for Targeting Ovarian Carcinomas

    International Nuclear Information System (INIS)

    Elgqvist, J.

    2009-01-01

    indicate that microscopic tumors smaller than approximately 0.1 mm are likely sterilized without any serious organ toxicity. Tumor cure probability decreases with increasing tumor size. Dosimetry, based on biokinetic modeling and a Monte Carlo program, indicates that an absorbed dose of approximately 20 Gy is needed for tumor eradication in nude mice. The tolerance level (mean absorbed dose) is estimated to be ∼0.5 Gy for bone-marrow and ∼10 Gy for kidneys. For the peritoneal membrane preliminary results indicate a tolerance level of more than ∼25 Gy. Comparisons with low-LET 60Co irradiation for tumor-growth inhibition and bone-marrow toxicity both resulted in an RBE of ∼5. Based on the promising results of the animal studies, a clinical Phase I study of 9 patients was started in 2005 (and published in 2009). Thirty to 120 MBq of 211 At-MX35 F(ab')2 was administered i.p. in 1.1 - 2.2 L of fluid (Extraneal). Dosimetric calculations were mainly based on the 211 At activity in samples of peritoneal fluid, blood, and urine 0 - 48 h post injection. Gamma camera imaging did not reveal uptake in any major organs except the thyroid. The thyroid uptake was reduced by potassium perchlorate or potassium iodide in the last four patients. No adverse effects of the treatment were observed subjectively or in the laboratory parameters. In conclusion, therapeutic absorbed doses of 211 At in microscopic tumors in the abdominal cavity of humans are achievable without significant toxicity. (author)

  16. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Coquel

    2013-04-01

    Full Text Available Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian. Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on

  17. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Shane Ó Conchúir

    Full Text Available The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.

  18. Binding Affinity, Specificity and Comparative Biodistribution of the Parental Murine Monoclonal Antibody MX35 (Anti-NaPi2b) and Its Humanized Version Rebmab200

    DEFF Research Database (Denmark)

    Lindegren, Sture; Andrade, Luciana N S; Bäck, Tom

    2015-01-01

    The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual...

  19. Benchmark assessment of density functional methods on group II-VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots

    NARCIS (Netherlands)

    Azpiroz, Jon M.; Ugalde, Jesus M.; Infante, Ivan

    2014-01-01

    In this work, we build a benchmark data set of geometrical parameters, vibrational normal modes, and low-lying excitation energies for MX quantum dots, with M = Cd, Zn, and X = S, Se, Te. The reference database has been constructed by ab initio resolution-of-identity second-order approximate coupled

  20. [Macromolecular aromatic network characteristics of Chinese power coal analyzed by synchronous fluorescence and X-ray diffraction].

    Science.gov (United States)

    Ye, Cui-Ping; Feng, Jie; Li, Wen-Ying

    2012-07-01

    Coal structure, especially the macromolecular aromatic skeleton structure, has a strong influence on coke reactivity and coal gasification, so it is the key to grasp the macromolecular aromatic skeleton coal structure for getting the reasonable high efficiency utilization of coal. However, it is difficult to acquire their information due to the complex compositions and structure of coal. It has been found that the macromolecular aromatic network coal structure would be most isolated if small molecular of coal was first extracted. Then the macromolecular aromatic skeleton coal structure would be clearly analyzed by instruments, such as X-ray diffraction (XRD), fluorescence spectroscopy with synchronous mode (Syn-F), Gel permeation chromatography (GPC) etc. Based on the previous results, according to the stepwise fractional liquid extraction, two Chinese typical power coals, PS and HDG, were extracted by silica gel as stationary phase and acetonitrile, tetrahydrofuran (THF), pyridine and 1-methyl-2-pyrollidinone (NMP) as a solvent group for sequential elution. GPC, Syn-F and XRD were applied to investigate molecular mass distribution, condensed aromatic structure and crystal characteristics. The results showed that the size of aromatic layers (La) is small (3-3.95 nm) and the stacking heights (Lc) are 0.8-1.2 nm. The molecular mass distribution of the macromolecular aromatic network structure is between 400 and 1 130 amu, with condensed aromatic numbers of 3-7 in the structure units.

  1. Grain sorghum dust increases macromolecular efflux from the in situ nasal mucosa.

    Science.gov (United States)

    Gao, X P

    1998-04-01

    The purpose of this study was to determine whether an aqueous extract of grain sorghum dust increases macromolecular efflux from the nasal mucosa in vivo and, if so, whether this response is mediated, in part, by substance P. Suffusion of grain sorghum dust extract on the in situ nasal mucosa of anesthetized hamsters elicits a significant increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass, 70 kDa; P grain sorghum dust elicits neurogenic plasma exudation from the in situ nasal mucosa.

  2. Evaluation of quantum-chemical methods of radiolysis stability for macromolecular structures

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2005-01-01

    The behavior of macromolecular structures in ionising fields was analyzed by quantum-chemical methods. In this study the primary radiolytic effect was analyzed using a two-step radiolytic mechanism: a) ionisation of molecule and spatial redistribution of atoms in order to reach a minimum value of energy, characteristic to the quantum state; b) neutralisation of the molecule by electron capture and its rapid dissociation into free radicals. Chemical bonds suspected to break are located in the distribution region of LUMO orbital and have minimal homolytic dissociation energies. Representative polymer structures (polyethylene, polypropylene, polystyrene, poly α and β polystyrene, polyisobutylene, polytetrafluoroethylene, poly methylsiloxanes) were analyzed. (authors)

  3. Physicochemical and Geotechnical Alterations to MX-80 Bentonite at the Waste Canister Interface in an Engineered Barrier System

    Directory of Open Access Journals (Sweden)

    Christopher W. Davies

    2017-08-01

    Full Text Available The study investigated the basic geomechanical and mineralogical evolution of the bentonite barrier under various experimental boundary conditions which replicated the near-field Thermo-Hydro-Chemico (THC conditions in a repository. The relationships between the physicochemical alterations and changes in the geotechnical properties have seldom been studied, especially on a consistent dataset. This paper attempts to link the physicochemical properties of Na-bentonite (MX-80 to the macro-scale engineering functionality of the bentonite post THC exposure. Experiments investigated the impact of THC variables on the engineering and physicochemical functionality of the bentonite with respect to its application within a High-Level Waste (HLW engineered barrier system. Intrinsic alterations to the MX-80 bentonite under relatively short-term exposure to hydrothermal and chemical conditions were measured. Additionally, two long-term tests were conducted under ambient conditions to consider the impact of exposure duration. The intrinsic measurements were then related to the overall performance of the bentonite as a candidate barrier material for application in a UK geological disposal facility. Findings indicate that exposure to thermo-saline-corrosion conditions (i.e., corrosion products derived from structural grade 275 carbon steel inhibits the free swell capacity and plasticity of the bentonite. However, the measured values remained above the design limits set out for the Swedish multi-barrier concept, from which the UK concept may take a lead. Corrosion alone does not appear to significantly affect the geotechnical measurements compared with the influence of thermal loading and high saline pore water after relatively short-term exposure. Thermal and corrosion exposure displayed no impact on the intrinsic swelling of the smectite component, indicating that no significant structural alteration had occurred. However, when exploring more complex saline

  4. Organ specific acute toxicity of the carcinogen trans-4-acetylaminostilbene is not correlated with macromolecular binding.

    Science.gov (United States)

    Pfeifer, A; Neumann, H G

    1986-09-01

    trans-4-Acetylaminostilbene (trans-AAS) is acutely toxic in rats and lesions are produced specifically in the glandular stomach. Toxicity is slightly increased by pretreating the animals with phenobarbital (PB) and is completely prevented by pretreatment with methylcholanthrene (MC). The prostaglandin inhibitors, indomethacin and acetyl salicylic acid, do not reduce toxicity. The high efficiency of MC suggested that toxicity is caused by reactive metabolites. trans-[3H]-AAS was administered orally to untreated and to PB- or MC-pretreated female Wistar rats and target doses in different tissues were measured by means of covalent binding to proteins, RNA and DNA. Macromolecular binding in the target tissue of poisoned animals was significantly lower than in liver and kidney and comparable to other non-target tissues. Pretreatment with MC lowered macromolecular binding in all extrahepatic tissues but not in liver. These findings are not in line with tissue specific metabolic activation. The only unique property of the target tissue, glandular stomach, that we observed was a particular affinity for the systemically available parent compound. In the early phase of poisoning, tissue concentrations were exceedingly high and the stomach function was impaired.

  5. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    Directory of Open Access Journals (Sweden)

    Iborra Francisco J

    2007-04-01

    Full Text Available Abstract Background The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. Results The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin scattered within domains rich in fast components (protein/RNA. Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. Conclusion I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

  6. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  7. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    Science.gov (United States)

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  8. The charm of protein crystals--Structural biology at a glance in the International Year of Crystallography

    International Nuclear Information System (INIS)

    Su Xiaodong; Cao Qin

    2014-01-01

    Crystallography is a typical intellectual endeavor that has spanned human history for centuries. Through the persistent efforts of generations of scientists, crystallography has been transformed from a mathematical hypothesis to actual physical reality, mainly thanks to X-ray diffraction technology. 2014 is celebrated as the International Year of Crystallography (IYCr-2014), to commemorate that about 100 years ago, when Max von Laue in Germany and the father-and-son Braggs (William Henry Bragg and William Lawrence Bragg) in England pioneered the use of X-rays to determine the atomic structure of crystals; for this pioneering work they were awarded Nobel prizes for physics in the years of 1914 and 1915. This article is dedicated to the IYCr to describe the use of protein crystals, an application that has developed into protein crystallography and subsequently structural biology. In our overview of the history and future prospects of this field, we discuss in detail one example of caspase-6, to demonstrate how protein crystallography can help us understand the structure-function relationship of important proteins. (authors)

  9. Accounting for partiality in serial crystallography using ray-tracing principles

    International Nuclear Information System (INIS)

    Kroon-Batenburg, Loes M. J.; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet

    2015-01-01

    Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R int factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R int of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography

  10. Accounting for partiality in serial crystallography using ray-tracing principles

    Energy Technology Data Exchange (ETDEWEB)

    Kroon-Batenburg, Loes M. J., E-mail: l.m.j.kroon-batenburg@uu.nl; Schreurs, Antoine M. M. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Ravelli, Raimond B. G. [Maastricht University, PO Box 616, 6200 MD Maastricht (Netherlands); Gros, Piet [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2015-08-25

    Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  11. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    International Nuclear Information System (INIS)

    Timmins, P.A.; Pebay-Peyroula, E.

    1994-01-01

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H 2 O/D 2 O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished

  12. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  13. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, P.A. [ILL, Grenoble (France); Pebay-Peyroula, E. [IBS-UJF Grenoble (France)

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  14. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation.

    Science.gov (United States)

    Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei

    2017-07-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  15. Neutron beam-line shield design for the protein crystallography instrument at the Lujan Center

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Muhrer, G.; Ferguson, P.D.

    2001-01-01

    We have developed a very useful methodology for calculating absolute total (neutron plus gamma-ray) dose equivalent rates for use in the design of neutron beam line shields at a spallation neutron source. We have applied this technique to the design of beam line shields for several new materials science instruments being built at the Manuel Lujan Jr. Neutron Scattering Center. These instruments have a variety of collimation systems and different beam line shielding issues. We show here some specific beam line shield designs for the Protein Crystallography Instrument. (author)

  16. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Jose M. Martin-Garcia

    2017-07-01

    Full Text Available Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX is severely limited by the scarcity of X-ray free-electron laser (XFEL sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX. As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS, are reported. Microcrystals (5–20 µm of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR, the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP or a high-molecular-weight poly(ethylene oxide (PEO; molecular weight 8 000 000 were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the

  17. Electron crystallography applied to the structure determination of Nb(Cu,Al,X) Laves phases.

    Science.gov (United States)

    Gigla, M; Lelatko, J; Krzelowski, M; Morawiec, H

    2006-09-01

    The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

  18. Exploiting fast detectors to enter a new dimension in room-temperature crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Paterson, Neil; Axford, Danny; Aishima, Jun; Schulze-Briese, Clemens; Ren, Jingshan; Fry, Elizabeth E.; Stuart, David I.; Evans, Gwyndaf

    2014-01-01

    A departure from a linear or an exponential decay in the diffracting power of macromolecular crystals is observed and accounted for through consideration of a multi-state sequential model. A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first time to high frame-rate room-temperature data collection

  19. Application of in situ diffraction in high-throughput structure determination platforms.

    Science.gov (United States)

    Aller, Pierre; Sanchez-Weatherby, Juan; Foadi, James; Winter, Graeme; Lobley, Carina M C; Axford, Danny; Ashton, Alun W; Bellini, Domenico; Brandao-Neto, Jose; Culurgioni, Simone; Douangamath, Alice; Duman, Ramona; Evans, Gwyndaf; Fisher, Stuart; Flaig, Ralf; Hall, David R; Lukacik, Petra; Mazzorana, Marco; McAuley, Katherine E; Mykhaylyk, Vitaliy; Owen, Robin L; Paterson, Neil G; Romano, Pierpaolo; Sandy, James; Sorensen, Thomas; von Delft, Frank; Wagner, Armin; Warren, Anna; Williams, Mark; Stuart, David I; Walsh, Martin A

    2015-01-01

    Macromolecular crystallography (MX) is the most powerful technique available to structural biologists to visualize in atomic detail the macromolecular machinery of the cell. Since the emergence of structural genomics initiatives, significant advances have been made in all key steps of the structure determination process. In particular, third-generation synchrotron sources and the application of highly automated approaches to data acquisition and analysis at these facilities have been the major factors in the rate of increase of macromolecular structures determined annually. A plethora of tools are now available to users of synchrotron beamlines to enable rapid and efficient evaluation of samples, collection of the best data, and in favorable cases structure solution in near real time. Here, we provide a short overview of the emerging use of collecting X-ray diffraction data directly from the crystallization experiment. These in situ experiments are now routinely available to users at a number of synchrotron MX beamlines. A practical guide to the use of the method on the MX suite of beamlines at Diamond Light Source is given.

  20. Protein crystallography beamline (PX-BL21); its utilization and research highlights

    International Nuclear Information System (INIS)

    Kumar, Ashwani; Ghosh, Biplab; Singh, Rahul; Makde, Ravindra; Sharma, Surinder M.

    2016-01-01

    The protein crystallography beamline (PX-BL21) is sourced on 1.5 T bending magnet of 2.5 GeV Indus-2 synchrotron. This beamline has been designed to perform monochromatic and anomalous diffraction experiments on single crystals of biological macromolecules such as protein, DNA and their complexes. PX beamline also has a state-of-art ancillary biochemical laboratory to prepare single crystals of biological macromolecules. Since the commissioning of the beamline, it has been utilized by more than 70% of research groups working in the area of protein crystallography in India. About 30 crystal structures of proteins, determined using this beamline, have been deposited in Protein Data Bank (PDB). Some of these structures have been determined using experimental phasing, such as the single wavelength anomalous diffraction (SAD) experiments. The energy tunability of the synchrotron have been exploited to carry our various SAD experiments: Selenium-SAD, Zinc-SAD and Manganese-SAD and Sulphar-SAD. In the present talk, the key results from the PX-BL21 beamline will be discussed. (author)

  1. Effect of impurities and post-experimental purification in SAD phasing with serial femtosecond crystallography data.

    Science.gov (United States)

    Zhang, Tao; Gu, Yuanxin; Fan, Haifu

    2016-06-01

    In serial crystallography (SX) with either an X-ray free-electron laser (XFEL) or synchrotron radiation as the light source, huge numbers of micrometre-sized crystals are used in diffraction data collection. For a SAD experiment using a derivative with introduced heavy atoms, it is difficult to completely exclude crystals of the native protein from the sample. In this paper, simulations were performed to study how the inclusion of native crystals in the derivative sample could affect the result of SAD phasing and how the post-experimental purification proposed by Zhang et al. [(2015), Acta Cryst. D71, 2513-2518] could be used to remove the impurities. A gadolinium derivative of lysozyme and the corresponding native protein were used in the test. Serial femtosecond crystallography (SFX) diffraction snapshots were generated by CrystFEL. SHELXC/D, Phaser, DM, ARP/wARP and REFMAC were used for automatic structure solution. It is shown that a small amount of impurities (snapshots from native crystals) in the set of derivative snapshots can strongly affect the SAD phasing results. On the other hand, post-experimental purification can efficiently remove the impurities, leading to results similar to those from a pure sample.

  2. Application of electron crystallography to structure characterization of ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    Jin-Gyu Kim

    2011-07-01

    Full Text Available We chracterized the structure properties of two types of ZnS nanocrystals by electron crystallography. X-ray diffraction analysis for these ZnS nanocrystals was performed to determine their initial structures. Their crystallite sizes were about 5.9 nm and 8.1 nm and their crystal systems were hexagonal and cubic, respectively. Their atomic structures, however, could not be determined because of the weak diffraction intensities as well as the unexpected intensities from impurty. To overcome these problems, the structures of ZnS nanocrystals were resolved by electron crystallography using EF-EPD (energy-filtered electron powder diffraction and HRTEM (high resolution transmission electron microscopy methods. The structrues determined by Rietveld analysis are P63mc (a = 3.8452 Å, c = 18.5453 Å and F-43m (a = 5.4356 Å, respectively. Their crystallite shapes were nanorods and quasi-nanoparticles and the nanorod crystal were grown along the [001] direction. It was revealed that the phase transformation between the cubic sphalerite to the hexagonal wurtzite structure of ZnS nanocrytals was related to their shapes and growth mechanism. Electron cryststallogrpahy, employing EF-EPD and HRTEM methods together, has advantages for structure analysis and property chracterization of nano-sized materials.

  3. From electron microscopy to X-ray crystallography: molecular-replacement case studies

    International Nuclear Information System (INIS)

    Xiong, Yong

    2008-01-01

    Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement using various standard MR packages such as AMoRe, MOLREP and Phaser. Multi-component molecular complexes are increasingly being tackled by structural biology, bringing X-ray crystallography into the purview of electron-microscopy (EM) studies. X-ray crystallography can utilize a low-resolution EM map for structure determination followed by phase extension to high resolution. Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement (MR) using various standard MR packages such as AMoRe, MOLREP and Phaser. The results demonstrate that EM maps are viable models for molecular replacement. Possible difficulties in data analysis, such as the effects of the EM magnification error, and the effect of MR positional/rotational errors on phase extension are discussed

  4. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    International Nuclear Information System (INIS)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-01-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described

  5. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source.

    Science.gov (United States)

    MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A

    2004-11-01

    At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  6. X-ray spectroscopy and X-ray crystallography of metalloenzymes at XFELs

    International Nuclear Information System (INIS)

    Yano, Junko

    2016-01-01

    The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting crystallography data and X-ray emission spectra, using an energy dispersive spectrometer at ambient conditions. In addition, we have developed a way to collect metal L-edge data of dilute samples using soft X-rays at XFELs. The advantages and challenges of these methods will be described in this review. (author)

  7. Some Aspects of Crystal Centering During X-ray High-throughput Protein Crystallography Experiment

    Science.gov (United States)

    Gaponov, Yu. A.; Matsugaki, N.; Sasajima, K.; Igarashi, N.; Wakatsuki, S.

    A set of algorithms and procedures of a crystal loop centering during X-ray high-throughput protein crystallography experiment has been designed and developed. A simple algorithm of the crystal loop detection and preliminary recognition has been designed and developed. The crystal loop detection algorithm is based on finding out the crystal loop ending point (opposite to the crystal loop pin) using image cross section (digital image column) profile analysis. The crystal loop preliminary recognition procedure is based on finding out the crystal loop sizes and position using image cross section profile analysis. The crystal loop fine recognition procedure based on Hooke-Jeeves pattern search method with an ellipse as a fitting pattern has been designed and developed. The procedure of restoring missing coordinate of the crystal loop is described. Based on developed algorithms and procedures the optimal auto-centering procedure has been designed and developed. A procedure of optimal manual crystal centering (Two Clicks Procedure) has been designed and developed. Developed procedures have been integrated into control software system PCCS installed at crystallography beamlines Photon Factory BL5A and PF-AR NW12, KEK.

  8. The crystallographic information file (CIF): A new standard archive file for crystallography

    International Nuclear Information System (INIS)

    Hall, S.R.; Allen, F.H.; Brown, I.D.

    1991-01-01

    The specification of a new standard Crystallographic Information File (CIF) is described. Its development is based on the Self-Defining Text Archieve and Retrieval (STAR) procedure. The CIF is a general, flexible and easily extensible free-format archive file; it is human and machine readable and can be edited by a simple editor. The CIF is designed for the electronic transmission of crystallographic data between individual laboratories, journals and databases: It has been adopted by the International Union of Crystallography as the recommended medium for this purpose. The file consists of data names and data items, together with a loop facility for repeated items. The data names, constructed hierarchically so as to form data categories, are self-descriptive within a 32-character limit. The sorted list of data names, together with their precise definitions, constitutes the CIF dictionary (core version 1991). The CIF core dictionary is presented in full and covers the fundamental and most commonly used data items relevant to crystal structure analysis. The dictionary is also available as an electronic file suitable for CIF computer applications. Future extensions to the dictionary will include data items used in more specialized areas of crystallography. (orig.)

  9. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.

    Science.gov (United States)

    Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H

    2017-08-15

    DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.

  10. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-08-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  11. Design of a High-Throughput Biological Crystallography Beamline for Superconducting Wiggler

    International Nuclear Information System (INIS)

    Tseng, P.C.; Chang, C.H.; Fung, H.S.; Ma, C.I.; Huang, L.J.; Jean, Y.C.; Song, Y.F.; Huang, Y.S.; Tsang, K.L.; Chen, C.T.

    2004-01-01

    We are constructing a high-throughput biological crystallography beamline BL13B, which utilizes the radiation generated from a 3.2 Tesla, 32-pole superconducting multipole wiggler, for multi-wavelength anomalous diffraction (MAD), single-wavelength anomalous diffraction (SAD), and other related experiments. This beamline is a standard double crystal monochromator (DCM) x-ray beamline equipped with a collimating mirror (CM) and a focusing mirror (FM). Both the CM and FM are one meter long and made of Si substrate, and the CM is side-cooled by water. Based on detailed thermal analysis, liquid nitrogen (LN2) cooling for both crystals of the DCM has been adopted to optimize the energy resolution and photon beam throughput. This beamline will deliver, through a 100 μm diameter pinhole, photon flux of greater than 1011 photons/sec in the energy range from 6.5 keV to 19 keV, which is comparable to existing protein crystallography beamlines from bending magnet source at high energy storage rings

  12. Proceedings of a one-week course on exploiting anomalous scattering in macromolecular structure determination (EMBO'07)

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.S.; Shepard, W.; Dauter, Z.; Leslie, A.; Diederichs, K.; Evans, G.; Svensson, O.; Schneider, T.; Bricogne, G.; Dauter, Z.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Leslie, A.; Kabsch, W.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Read, R.; Panjikar, S.; Pannu, N.S.; Dauter, Z.; Weiss, M.S.; McSweeney, S

    2007-07-01

    This course, which was directed to young scientists, illustrated both theoretical and practical aspects of macromolecular crystal structure solution using synchrotron radiation. Some software dedicated to data collection, processing and analysis were presented. This document gathers only the slides of the presentations.

  13. Macromolecular crowding compacts unfolded apoflavodoxin and causes severe aggregation of the off-pathway intermediate during apoflavodoxin folding

    NARCIS (Netherlands)

    Engel, R.; Westphal, A.H.; Huberts, D.; Nabuurs, S.M.; Lindhoud, S.; Visser, A.J.W.G.; Mierlo, van C.P.M.

    2008-01-01

    To understand how proteins fold in vivo, it is important to investigate the effects of macromolecular crowding on protein folding. Here, the influence of crowding on in vitro apoflavodoxin folding, which involves a relatively stable off-pathway intermediate with molten globule characteristics, is

  14. Proceedings of a one-week course on exploiting anomalous scattering in macromolecular structure determination (EMBO'07)

    International Nuclear Information System (INIS)

    Weiss, M.S.; Shepard, W.; Dauter, Z.; Leslie, A.; Diederichs, K.; Evans, G.; Svensson, O.; Schneider, T.; Bricogne, G.; Dauter, Z.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Leslie, A.; Kabsch, W.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Read, R.; Panjikar, S.; Pannu, N.S.; Dauter, Z.; Weiss, M.S.; McSweeney, S.

    2007-01-01

    This course, which was directed to young scientists, illustrated both theoretical and practical aspects of macromolecular crystal structure solution using synchrotron radiation. Some software dedicated to data collection, processing and analysis were presented. This document gathers only the slides of the presentations

  15. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    Science.gov (United States)

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  16. Proceedings of a one-week course on exploiting anomalous scattering in macromolecular structure determination (EMBO'07)

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M S; Shepard, W; Dauter, Z; Leslie, A; Diederichs, K; Evans, G; Svensson, O; Schneider, T; Bricogne, G; Dauter, Z; Flensburg, C; Terwilliger, T; Lamzin, V; Leslie, A; Kabsch, W; Flensburg, C; Terwilliger, T; Lamzin, V; Read, R; Panjikar, S; Pannu, N S; Dauter, Z; Weiss, M S; McSweeney, S

    2007-07-01

    This course, which was directed to young scientists, illustrated both theoretical and practical aspects of macromolecular crystal structure solution using synchrotron radiation. Some software dedicated to data collection, processing and analysis were presented. This document gathers only the slides of the presentations.

  17. A Test of Macromolecular Crystallization in Microgravity: Large, Well-Ordered Insulin Crystals

    Science.gov (United States)

    Borgstahl, Gloria E. O.; Vahedi-Faridi, Ardeschir; Lovelace, Jeff; Bellamy, Henry D.; Snell, Edward H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Crystals of insulin grown in microgravity on space shuttle mission STS-95 were extremely well-ordered and unusually large (many > 2 mm). The physical characteristics of six microgravity and six earth-grown crystals were examined by X-ray analysis employing superfine f slicing and unfocused synchrotron radiation. This experimental setup allowed hundreds of reflections to be precisely examined for each crystal in a short period of time. The microgravity crystals were on average 34 times larger, had 7 times lower mosaicity, had 54 times higher reflection peak heights and diffracted to significantly higher resolution than their earth grown counterparts. A single mosaic domain model could account for reflections in microgravity crystals whereas reflections from earth crystals required a model with multiple mosaic domains. This statistically significant and unbiased characterization indicates that the microgravity environment was useful for the improvement of crystal growth and resultant diffraction quality in insulin crystals and may be similarly useful for macromolecular crystals in general.

  18. Proteome-wide dataset supporting the study of ancient metazoan macromolecular complexes

    Directory of Open Access Journals (Sweden)

    Sadhna Phanse

    2016-03-01

    Full Text Available Our analysis examines the conservation of multiprotein complexes among metazoa through use of high resolution biochemical fractionation and precision mass spectrometry applied to soluble cell extracts from 5 representative model organisms Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Strongylocentrotus purpuratus, and Homo sapiens. The interaction network obtained from the data was validated globally in 4 distant species (Xenopus laevis, Nematostella vectensis, Dictyostelium discoideum, Saccharomyces cerevisiae and locally by targeted affinity-purification experiments. Here we provide details of our massive set of supporting biochemical fractionation data available via ProteomeXchange (http://www.ebi.ac.uk/pride/archive/projects/PXD002319-http://www.ebi.ac.uk/pride/archive/projects/PXD002328, PPIs via BioGRID (185267; and interaction network projections via (http://metazoa.med.utoronto.ca made fully accessible to allow further exploration. The datasets here are related to the research article on metazoan macromolecular complexes in Nature [1]. Keywords: Proteomics, Metazoa, Protein complexes, Biochemical, Fractionation

  19. Functionalization of Planet-Satellite Nanostructures Revealed by Nanoscopic Localization of Distinct Macromolecular Species

    KAUST Repository

    Rossner, Christian

    2016-09-26

    The development of a straightforward method is reported to form hybrid polymer/gold planet-satellite nanostructures (PlSNs) with functional polymer. Polyacrylate type polymer with benzyl chloride in its backbone as a macromolecular tracer is synthesized to study its localization within PlSNs by analyzing the elemental distribution of chlorine. The functionalized nanohybrid structures are analyzed by scanning transmission electron microscopy, electron energy loss spectroscopy, and spectrum imaging. The results show that the RAFT (reversible addition-fragmentation chain transfer) polymers\\' sulfur containing end groups are colocalized at the gold cores, both within nanohybrids of simple core-shell morphology and within higher order PlSNs, providing microscopic evidence for the affinity of the RAFT group toward gold surfaces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA., Weinheim.

  20. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.

    Science.gov (United States)

    Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter

    2016-05-01

    Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.

  1. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De

    2017-05-09

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  2. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DEFF Research Database (Denmark)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.

    2017-01-01

    orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME......Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many...... models have 70,000 constraints and variables and will grow larger). We have developed a quadrupleprecision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging...

  3. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  4. Structure, function and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding.

    Science.gov (United States)

    Samiotakis, Antonios; Dhar, Apratim; Ebbinghaus, Simon; Nienhaus, Lea; Homouz, Dirar; Gruebele, Martin; Cheung, Margaret

    2010-10-01

    We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal) and Sph (spherical compact). With an adjustment for viscosity, crowded wild type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a new solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates.

  5. Macromolecular contrast media. A new approach for characterising breast tumors with MR-mammography

    International Nuclear Information System (INIS)

    Daldrup, H.E.; Gossmann, A.; Koeln Univ.; Wendland, M.; Brasch, R.C.; Rosenau, W.

    1997-01-01

    The value of macromolecular contrast agents (MMCM) for the characterization of benign and malignant breast tumors will be demonstrated in this review. Animal studies suggest a high potential of MMCM to increase the specificity of MR-mammography. The concept of tumor differentiation is based on the pathological hyperpermeability of microvessels in malignant tumors. MMCM show a leak into the interstitium of carcinomas, whereas they are confined to the intravascular space in benign tumors. Capabilities and limitations of the MMCM-prototype. Albumin-Gd-DTPA, for breast tumor characterization will be summarized and compared to the standard low molecular weight contrast agent Gd-DTPA. Initial experience with new MMCM, such as Dendrimers, Gd-DTPA-Polylysine and MS-325 will be outlined. The potential of 'blood-pool'-iron oxides, such as AMI-227 for the evaluation of tumor microvascular permeabilities will be discussed. (orig.) [de

  6. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De; Zhang, Zhen; Hadjichristidis, Nikolaos

    2017-01-01

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  7. The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden)

    2001-03-01

    A model of microstructural evolution of MX-80 buffer is presented in the report.Quantification of the microstructure is made by use of digitalized micrographs taken by transmission electron microscopy using suitably impregnated specimens with appropriate thickness. The model is termed MMM, a successor of the earlier GMM. Practically useful microstructural parameters refer to the fraction of a thin section that represents dense and soft parts of the clay matrix. The derived microstructural parameters are directly coupled to the most important bulk physical properties, i.e. the hydraulic conductivity, gas penetrability, swelling pressure and cation/anion diffusion capacities. The study has shown that even at very high densities, softer and more pervious zones exist in the form of interconnected 'external' voids filled with more or less dense clay gels. At bulk densities exceeding 2000 kg/m{sup 3} after water saturation, the gel density is also high but for low bulk densities it may be so much reduced that the gels do not remain stable at high electrolyte content of the pore water. The fact that the density variations are small for high bulk densities means that the separation of matrix components ('fracturing') that is required for letting gas through is on the same order of magnitude as the bulk swelling pressure. For lower bulk densities, displacement or consolidation of the clay gels in 'external' voids is concluded to take place in conjunction with gas penetration. At high densities the limited degree of continuity and constrictions of the channels leading to anion-excluding charge conditions mean that the anion diffusion capacity is very low, while cation diffusion may be extensive because it takes place not only through channels but also through the inter lamellar space and along the surfaces of stacks of lamellae, i.e. by surface diffusion. Two Pre-Quaternary clays that have been investigated and characterized with respect to the

  8. The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions

    International Nuclear Information System (INIS)

    Pusch, R.

    2001-03-01

    A model of microstructural evolution of MX-80 buffer is presented in the report.Quantification of the microstructure is made by use of digitalized micrographs taken by transmission electron microscopy using suitably impregnated specimens with appropriate thickness. The model is termed MMM, a successor of the earlier GMM. Practically useful microstructural parameters refer to the fraction of a thin section that represents dense and soft parts of the clay matrix. The derived microstructural parameters are directly coupled to the most important bulk physical properties, i.e. the hydraulic conductivity, gas penetrability, swelling pressure and cation/anion diffusion capacities. The study has shown that even at very high densities, softer and more pervious zones exist in the form of interconnected 'external' voids filled with more or less dense clay gels. At bulk densities exceeding 2000 kg/m 3 after water saturation, the gel density is also high but for low bulk densities it may be so much reduced that the gels do not remain stable at high electrolyte content of the pore water. The fact that the density variations are small for high bulk densities means that the separation of matrix components ('fracturing') that is required for letting gas through is on the same order of magnitude as the bulk swelling pressure. For lower bulk densities, displacement or consolidation of the clay gels in 'external' voids is concluded to take place in conjunction with gas penetration. At high densities the limited degree of continuity and constrictions of the channels leading to anion-excluding charge conditions mean that the anion diffusion capacity is very low, while cation diffusion may be extensive because it takes place not only through channels but also through the inter lamellar space and along the surfaces of stacks of lamellae, i.e. by surface diffusion. Two Pre-Quaternary clays that have been investigated and characterized with respect to the microstructure represent two

  9. A 3D Image Filter for Parameter-Free Segmentation of Macromolecular Structures from Electron Tomograms

    Science.gov (United States)

    Ali, Rubbiya A.; Landsberg, Michael J.; Knauth, Emily; Morgan, Garry P.; Marsh, Brad J.; Hankamer, Ben

    2012-01-01

    3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms. PMID:22479430

  10. Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain.

    Science.gov (United States)

    Dortch, Richard D; Bagnato, Francesca; Gochberg, Daniel F; Gore, John C; Smith, Seth A

    2018-03-24

    To optimize a selective inversion recovery (SIR) sequence for macromolecular content mapping in the human brain at 3.0T. SIR is a quantitative method for measuring magnetization transfer (qMT) that uses a low-power, on-resonance inversion pulse. This results in a biexponential recovery of free water signal that can be sampled at various inversion/predelay times (t I/ t D ) to estimate a subset of qMT parameters, including the macromolecular-to-free pool-size-ratio (PSR), the R 1 of free water (R 1f ), and the rate of MT exchange (k mf ). The adoption of SIR has been limited by long acquisition times (≈4 min/slice). Here, we use Cramér-Rao lower bound theory and data reduction strategies to select optimal t I /t D combinations to reduce imaging times. The schemes were experimentally validated in phantoms, and tested in healthy volunteers (N = 4) and a multiple sclerosis patient. Two optimal sampling schemes were determined: (i) a 5-point scheme (k mf estimated) and (ii) a 4-point scheme (k mf assumed). In phantoms, the 5/4-point schemes yielded parameter estimates with similar SNRs as our previous 16-point scheme, but with 4.1/6.1-fold shorter scan times. Pair-wise comparisons between schemes did not detect significant differences for any scheme/parameter. In humans, parameter values were consistent with published values, and similar levels of precision were obtained from all schemes. Furthermore, fixing k mf reduced the sensitivity of PSR to partial-volume averaging, yielding more consistent estimates throughout the brain. qMT parameters can be robustly estimated in ≤1 min/slice (without independent measures of ΔB 0 , B1+, and T 1 ) when optimized t I -t D combinations are selected. © 2018 International Society for Magnetic Resonance in Medicine.

  11. Macromolecular composition of terrestrial and marine organic matter in sediments across the East Siberian Arctic Shelf

    Science.gov (United States)

    Sparkes, Robert B.; Doğrul Selver, Ayça; Gustafsson, Örjan; Semiletov, Igor P.; Haghipour, Negar; Wacker, Lukas; Eglinton, Timothy I.; Talbot, Helen M.; van Dongen, Bart E.

    2016-10-01

    Mobilisation of terrestrial organic carbon (terrOC) from permafrost environments in eastern Siberia has the potential to deliver significant amounts of carbon to the Arctic Ocean, via both fluvial and coastal erosion. Eroded terrOC can be degraded during offshore transport or deposited across the wide East Siberian Arctic Shelf (ESAS). Most studies of terrOC on the ESAS have concentrated on solvent-extractable organic matter, but this represents only a small proportion of the total terrOC load. In this study we have used pyrolysis-gas chromatography-mass spectrometry (py-GCMS) to study all major groups of macromolecular components of the terrOC; this is the first time that this technique has been applied to the ESAS. This has shown that there is a strong offshore trend from terrestrial phenols, aromatics and cyclopentenones to marine pyridines. There is good agreement between proportion phenols measured using py-GCMS and independent quantification of lignin phenol concentrations (r2 = 0.67, p radiocarbon data for bulk OC (14COC) which, when coupled with previous measurements, allows us to produce the most comprehensive 14COC map of the ESAS to date. Combining the 14COC and py-GCMS data suggests that the aromatics group of compounds is likely sourced from old, aged terrOC, in contrast to the phenols group, which is likely sourced from modern woody material. We propose that an index of the relative proportions of phenols and pyridines can be used as a novel terrestrial vs. marine proxy measurement for macromolecular organic matter. Principal component analysis found that various terrestrial vs. marine proxies show different patterns across the ESAS, and it shows that multiple river-ocean transects of surface sediments transition from river-dominated to coastal-erosion-dominated to marine-dominated signatures.

  12. Two-dimensional square ternary Cu2MX4 (M = Mo, W; X = S, Se) monolayers and nanoribbons predicted from density functional theory

    KAUST Repository

    Gan, Liyong

    2014-03-19

    Two-dimensional (2D) materials often adopt a hexagonal lattice. We report on a class of 2D materials, Cu2MX4 (M = Mo, W; X = S, Se), that has a square lattice. Up to three monolayers, the systems are kinetically stable. All of them are semiconductors with band gaps from 2.03 to 2.48 eV. Specifically, the states giving rise to the valence band maximum are confined to the Cu and X atoms, while those giving rise to the conduction band minimum are confined to the M atoms, suggesting that spontaneous charge separation occurs. The semiconductive nature makes the materials promising for transistors, optoelectronics, and solar energy conversion. Moreover, the ferromagnetism on the edges of square Cu2MX4 nanoribbons opens applications in spintronics.

  13. Two-dimensional square ternary Cu2MX4 (M = Mo, W; X = S, Se) monolayers and nanoribbons predicted from density functional theory

    KAUST Repository

    Gan, Liyong; Schwingenschlö gl, Udo

    2014-01-01

    Two-dimensional (2D) materials often adopt a hexagonal lattice. We report on a class of 2D materials, Cu2MX4 (M = Mo, W; X = S, Se), that has a square lattice. Up to three monolayers, the systems are kinetically stable. All of them are semiconductors with band gaps from 2.03 to 2.48 eV. Specifically, the states giving rise to the valence band maximum are confined to the Cu and X atoms, while those giving rise to the conduction band minimum are confined to the M atoms, suggesting that spontaneous charge separation occurs. The semiconductive nature makes the materials promising for transistors, optoelectronics, and solar energy conversion. Moreover, the ferromagnetism on the edges of square Cu2MX4 nanoribbons opens applications in spintronics.

  14. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties

    Science.gov (United States)

    Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian

    2018-05-01

    Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.

  15. Draft Environmental Impact Statement. MX Deployment Area Selection and Land Withdrawal/Acquisition DEIS. Volume IV. Part II. Environmental Consequences to the Study Regions and Operating Base Vicinities.

    Science.gov (United States)

    1980-12-01

    Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Draft Environmental Impact Statement-MX Draft-December 80 Deployment Alea Selection-Environmental...recreation, a weekend at the lake, the opportunity to be alone with yourself and your family, the clean air to see the next mountain and the freedom to...traffic volumes and projected traffic volumes during the peak construction year. In mountain passes, where capacity is severely reduced by steep grades

  16. Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Brusentsov, Nikolai A.; Gogosov, V.V.; Brusentsova, T.N.; Sergeev, A.V.; Jurchenko, N.Y.; Kuznetsov, Anatoly A.; Kuznetsov, Oleg A. E-mail: oleg@louisiana.edu; Shumakov, L.I

    2001-07-01

    Seventeen different ferromagnetic fluids and suspensions were prepared and evaluated for application in radiofrequency-induced hyperthermia. Specific power absorption rates were measured at 0.88 MHz to range from 0 to 240 W per gram of iron for different preparations. Survival of MX11 cells mixed with ferrofluids and subjected to radiofrequency was much lower than with RF without ferrofluid or ferrofluid alone.

  17. Effect of pH and ionic strength on sorption of Eu(III) to MX-80 bentonite: batch and XAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, G.D.; Wang, X.K. [School of Nuclear Science and Engincering, North China Electric Power Univ., BJ (China); Key Lab of Novel Thin Film Solar Cells, Inst. of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Shao, D.D.; Fan, Q.H.; Xu, D. [Key Lab of Novel Thin Film Solar Cells, Inst. of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Chen, Y.X. [School of Nuclear Science and Engincering, North China Electric Power Univ., BJ (China)

    2009-07-01

    Sorption of radionuclides on MX-80 bentonite has been studied extensively because of its high sorption capacity and low penetrability. Herein, MX-80 bentonite was characterized by acid-base titration, XRD and FTIR in detail. The sorption of Eu(III) from aqueous solution to MX-80 bentonite was investigated as a function of contact time, solid content, ionic strength and pH under N{sub 2} conditions. The experimental data was performed with the diffuse layer model (DLM) with the aid of FITEQL 3.1 code. The site densities are 2.52 x 10{sup -4} mol/g for [{identical_to}XOH] and 1.54 x 10{sup -4} mol/g for [{identical_to}YOH], and acidity constants as pK{sub a} are pK{sub XO} = 6.772, pK{sub YOH{sub 2}{sup +}} = -1.68. and pK{sub YO} = 4.145. The sorption of Eu(III) on MX-80 bentonite consists of {identical_to}YOEu{sup 2+} species at low pH values and {identical_to}XOEu(OH){sup 2+} species at high pH values. The sorption isotherms were simulated by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, respectively, and the results indicated that Langmuir model fitted the sorption data better than the Langmuir and D-R models. XAFS technique was applied to characterize the local structural environment of the adsorbed Eu(III), and the results indicated that Eu(III) was bond to O atoms at a distance of about 2.43 A as {identical_to}Y/XO-Eu{sup 2+} at low pH values. (orig.)

  18. Diversity of interferon inducible Mx gene in horses and association of variations with susceptibility vis-à-vis resistance against equine influenza infection.

    Science.gov (United States)

    Manuja, Balvinder K; Manuja, Anju; Dahiya, Rajni; Singh, Sandeep; Sharma, R C; Gahlot, S K

    2014-10-01

    Equine influenza (EI) is primarily an infection of the upper respiratory tract and is one of the major infectious respiratory diseases of economic importance in equines. Re-emergence of the disease, species jumping by H3N8 virus in canines and possible threat of human pandemic due to the unpredictable nature of the virus have necessitated research on devising strategies for preventing the disease. The myxovirus resistance protein (Mx) has been reported to confer resistance to Orthomyxo virus infection by modifying cellular functions needed along the viral replication pathway. Polymorphisms and differential antiviral activities of Mx gene have been reported in pigs and chicken. Here we report the diversity of Mx gene, its expression in response to stimulation with interferon (IFN) α/β and their association with EI resistance and susceptibility in Marwari horses. Blood samples were collected from horses declared positive for equine influenza and in contact animals with a history of no clinical signs. Mx gene was amplified by reverse transcription from total RNA isolated from peripheral blood mononuclear cells (PBMCs) stimulated with IFN α/β using gene specific primers. The amplified gene products from representative samples were cloned and sequenced. Nucleotide sequences and deduced amino acid sequences were analyzed. Out of a total 24 amino acids substitutions sorting intolerant from tolerant (SIFT) analysis predicted 13 substitutions with functional consequences. Five substitutions (V67A, W123L, E346Y, N347Y, S689N) were observed only in resistant animals. Evolutionary distances based on nucleotide sequences with in equines ranged between 0.3-2.0% and 20-24% with other species. On phylogenetic analysis all equine sequences clustered together while other species formed separate clades. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein.

    OpenAIRE

    Broni, B; Julkunen, I; Condra, J H; Davies, M E; Berry, M J; Krug, R M

    1990-01-01

    The interferon-induced murine Mx1 protein, which is localized in the nucleus, most likely specifically blocks influenza virus replication by inhibiting nuclear viral mRNA synthesis, including the mRNA synthesis catalyzed by inoculum (parental) virion nucleocapsids (R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, J. Virol. 56:201-206, 1985). We tested two possible mechanisms for this inhibition. First, we determined whether the transport of parental nucleocapsids into the nucleus was...

  20. Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro

    International Nuclear Information System (INIS)

    Brusentsov, Nikolai A.; Gogosov, V.V.; Brusentsova, T.N.; Sergeev, A.V.; Jurchenko, N.Y.; Kuznetsov, Anatoly A.; Kuznetsov, Oleg A.; Shumakov, L.I.

    2001-01-01

    Seventeen different ferromagnetic fluids and suspensions were prepared and evaluated for application in radiofrequency-induced hyperthermia. Specific power absorption rates were measured at 0.88 MHz to range from 0 to 240 W per gram of iron for different preparations. Survival of MX11 cells mixed with ferrofluids and subjected to radiofrequency was much lower than with RF without ferrofluid or ferrofluid alone

  1. Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (MX4 (M=Pb, Sn, Hg; X=I-, Br-)

    Science.gov (United States)

    Ahmad, Shahab; Prakash, G. Vijaya

    2014-01-01

    Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.

  2. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enough to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.

  3. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    Science.gov (United States)

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  4. Analysis of MxA, IL-4, and IRF-1 genes in Filipino patients with subacute sclerosing panencephalitis.

    Science.gov (United States)

    Pipo-Deveza, J R; Kusuhara, K; Silao, C L T; Lukban, M B; Salonga, A M; Sanchez, B C; Kira, R; Takemoto, M; Torisu, H; Hara, T

    2006-08-01

    Subacute sclerosing panencephalitis (SSPE) is a chronic and debilitating disease of the central nervous system caused by a latent measles virus infection. Three candidate genes, MxA, IL-4, and IRF-1 genes were shown to be associated with SSPE in Japanese patients. These genes have been suggested to play a role in the establishment of persistent viral infection in the central nervous system. Sixty Filipino SSPE patients and 120 healthy control subjects were included in the study. Single nucleotide polymorphisms at promoter regions ( IL-4-590C/T and MXA-88G/T) were screened using PCR-RFLP method. Genotyping was done for GT repeat polymorphism within intron 7 of IRF-1. The TT genotype of MXA, as well as the CT genotype of IL-4, were seen a little more frequently among the SSPE patients as compared to the control subjects. The values though, did not reach statistical significance. IRF-1 analysis did not differ between the two groups. Our study failed to demonstrate a significant association between IL-4, MXA, or IRF-1, and SSPE in the Filipino population. Our results might be explained by a greater contribution of environmental factors such as the socio-economic and nutritional factors in the susceptibility of Filipinos to SSPE other than genetic factors.

  5. Computational Search for Two-Dimensional MX2 Semiconductors with Possible High Electron Mobility at Room Temperature

    Directory of Open Access Journals (Sweden)

    Zhishuo Huang

    2016-08-01

    Full Text Available Neither of the two typical two-dimensional materials, graphene and single layer MoS 2 , are good enough for developing semiconductor logical devices. We calculated the electron mobility of 14 two-dimensional semiconductors with composition of MX 2 , where M (=Mo, W, Sn, Hf, Zr and Pt are transition metals, and Xs are S, Se and Te. We approximated the electron phonon scattering matrix by deformation potentials, within which long wave longitudinal acoustical and optical phonon scatterings were included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WS 2 , PtS 2 and PtSe 2 are promising for logical devices regarding the possible high electron mobility and finite band gap. Especially, the phonon limited electron mobility in PtSe 2 reaches about 4000 cm 2 ·V - 1 ·s - 1 at room temperature, which is the highest among the compounds with an indirect bandgap of about 1.25 eV under the local density approximation. Our results can be the first guide for experiments to synthesize better two-dimensional materials for future semiconductor devices.

  6. Structural elucidation of dendritic host-guest complexes by X-ray crystallography and molecular dynamics simulations

    NARCIS (Netherlands)

    Chang, T.; Pieterse, K.; Broeren, M.A.C.; Kooijman, H.; Spek, A.L.; Hilbers, P.A.J.; Meijer, E.W.

    2007-01-01

    The multiple monovalent binding of adamantyl-urea poly(propyleneimine) dendrimers with carboxylic acid-urea guests was investigated using molecular dynamics simulations and X-ray crystallography to better understand the structure and behavior of the dynamic multivalent complex in solution. The

  7. Proceedings of the 42nd basic science seminar. (The 7th workshop on neutron crystallography in biology)

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1996-02-01

    42nd advanced science seminar (the 7th workshop on neutron crystallography in biology) was held on October, 25-26, 1995 at Tokai. Forty three participants from university, research institute and private company took part in the workshop and there were 17 lectures given. The proceedings collect the figures and tables which the speakers used in their lectures. (author)

  8. NATURAL CYCLOPENTANOID CYANOHYDRIN GLYCOSIDES .13. STRUCTURE DETERMINATION OF NATURAL EPOXYCYCLOPENTANES BY X-RAY CRYSTALLOGRAPHY AND NMR-SPECTROSCOPY

    DEFF Research Database (Denmark)

    Olafsdottir, E. S.; Sorensen, A. M.; Cornett, Claus

    1991-01-01

    nonannellated cyclopentane derivatives. The new glucosides were shown, by NMR spectroscopy (including NOE measurements), X-ray crystallography, and enzymatic hydrolysis to the corresponding cyanohydrins, to be (1R,2R,3R,4R)- and (1S,2S,3S,4S)-1-(beta-D-glucopyranosyloxy)-2,3-epoxy-4-hydroxycyclopenta ne-1...

  9. A neutron image plate quasi-Laue diffractometer for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Cipriani, F.; Castagna, J.C.; Wilkinson, C. [European Molecular Biology Laboratory, Grenoble (France)] [and others

    1994-12-31

    An instrument which is based on image plate technology has been constructed to perform cold neutron Laue crystallography on protein structures. The crystal is mounted at the center of a cylindrical detector which is 400mm long and has a circumference of 1000mm, with gadolinium oxide-containing image plates mounted on its exterior surface. Laue images registered on the plate are read out by rotating the drum and translating a laser read head parallel to the cylinder axis, giving a pixel size of 200{mu}m x 200{mu}m and a total read time of 5 minutes. Preliminary results indicate that it should be possible to obtain a complete data set from a protein crystal to atomic resolution in about two weeks.

  10. Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.

    2014-07-01

    The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.

  11. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  12. Crystallography and structure of lath martensite of hexagonal α-phase in zirconium

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Talits, N.I.

    1989-01-01

    Crystallography, morphology and substructural features of lath martensite produced in zirconium after quenching are studied using transmission electron microscopy and electron diffraction methods. It is shown that all lathes in the package as a rule have close oreintation, but sometimes lathes are met which are present in a twin position in relation to neighbouring ones. In this case twining plane between the lathes coincides with α-phase [1011] plane. Residual β-phase between lathes is not preserved. It is detected that threi types of habitus planes of lath martensite of hexagonal α-phase are observed: [1010], [1120], [1011]. Atom-crystallographic mechanism of lattice reconstruction at β → α-phase lath habitus planes produced on its base coincide with the ones experimentally determined

  13. One-dimensional curved wire chamber for powder x-ray crystallography

    International Nuclear Information System (INIS)

    Ortendahl, D.; Perez-Mendez, V.; Stoker, J.; Beyermann, W.

    1978-01-01

    A xenon filled single anode wire chamber with delay line readout has been constructed for use in powder x-ray crystallography using 8 to 20 keV x-rays. The entire chamber including the anode wire and the delay line which forms part of the cathode plane is a section of a circular arc whose center is the powder specimen. The anode wire--38 μm gold-plated tungsten--is suspended in a circular arc by the interaction of a current flowing through it and magnetic field provided by two permanent magnets, above and below the wire, extending along the active length of the chamber. When filled with xenon to 3 atmospheres the chamber has uniform sensitivity in excess of 80% at 8 keV and a spatial resolution better than 0.3 mm

  14. Structural study of piracetam polymorphs and cocrystals: crystallography redetermination and quantum mechanics calculations.

    Science.gov (United States)

    Tilborg, Anaëlle; Jacquemin, Denis; Norberg, Bernadette; Perpète, Eric; Michaux, Catherine; Wouters, Johan

    2011-12-01

    Pharmaceutical compounds are mostly developed as solid dosage forms containing a single-crystal form. It means that the selection of a particular crystal state for a given molecule is an important step for further clinical outlooks. In this context, piracetam, a pharmaceutical molecule known since the sixties for its nootropic properties, is considered in the present work. This molecule is analyzed using several experimental and theoretical approaches. First, the conformational space of the molecule has been systematically explored by performing a quantum mechanics scan of the two most relevant dihedral angles of the lateral chain. The predicted stable conformations have been compared to all the reported experimental geometries retrieved from the Cambridge Structural Database (CSD) covering polymorphs and cocrystals structures. In parallel, different batches of powders have been recrystallized. Under specific conditions, single crystals of polymorph (III) of piracetam have been obtained, an outcome confirmed by crystallographic analysis. © 2011 International Union of Crystallography. Printed in Singapore – all rights reserved.

  15. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  16. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.

    Science.gov (United States)

    Kent, Stephen Bh

    2018-04-04

    A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng

    2011-06-01

    Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.

  18. Data processing in neutron protein crystallography using position-sensitive detectors

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1982-01-01

    Neutrons provide a unique probe for localizing hydrogen atoms and for distinguishing hydrogen from deuterons. Hydrogen atoms largely determine the three-dimensional structure of proteins and are responsible for many catalytic reactions. The study of hydrogen bonding and hydrogen exchange will therefore give insight into reaction mechanisms and conformational fluctuations. In addition, neutrons provide the ability to distinguish N from C and O and to allow correct orientation of groups such as histidine and glutamine. To take advantage of these unique features of neutron crystallography, one needs accurate Fourier maps depicting atomic structure to a high precision. In this paper, techniques are described for minimizing error in the observed structure factors by optimizing data collection and analysis procedures. Special attention is given to subtraction of the high background associated with hydrogen-containing molecules, which produces a disproportionately large statistical error

  19. Synthesis, x-ray crystallography and leishmanicidal activity of benzimidazolinyl piperidine derivative

    International Nuclear Information System (INIS)

    Saify, Z.S.; Begum, N.; Yousuf, S.; Ashraf, S.

    2014-01-01

    Protozoan parasites of the Leishmania genus are the main cause of vector-borne disease leishmaniasis throughout the world. It is caused by at least 17 different species of protozoan Leishmania and transmitted by the bite of infected sand flies. Leishmaniasis could be fatal. Present drugs have limitations to cure it due to the development of drug resistance. Hence, to design an effective leishmanicidal agent would be of great interest. Benzimidazolinyl piperidine has served as potential target due to a vast range of biological activities. In the present study a new 4-(2-keto-1-benzimidazolinyl)piperidine derivative, 1-(2-(4-fluorophenyl)-2-oxoethyl)-4-(2-oxo-2,3-dihydro-1H-benzo(d)imidazol) piperidinium bromide has been synthesized and characterized by X-ray crystallography, 1D and 2D NMR spectroscopy. Evaluation by in vitro leishmanicidal assay showed good activity. (author)

  20. Accounting for partiality in serial crystallography using ray-tracing principles.

    Science.gov (United States)

    Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet

    2015-09-01

    Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.