WorldWideScience

Sample records for macromolecular crystallography includes

  1. Microgravity and Macromolecular Crystallography

    Science.gov (United States)

    Kundrot, Craig E.; Judge, Russell A.; Pusey, Marc L.; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Macromolecular crystal growth has been seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, simply operated and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity should be a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. Finally we outline the direction for optimizing the future use of orbiting platforms.

  2. Automated data collection for macromolecular crystallography.

    Science.gov (United States)

    Winter, Graeme; McAuley, Katherine E

    2011-09-01

    An overview, together with some practical advice, is presented of the current status of the automation of macromolecular crystallography (MX) data collection, with a focus on MX beamlines at Diamond Light Source, UK.

  3. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

  4. Celebrating macromolecular crystallography: A personal perspective

    Directory of Open Access Journals (Sweden)

    Abad-Zapatero, Celerino

    2015-04-01

    Full Text Available The twentieth century has seen an enormous advance in the knowledge of the atomic structures that surround us. The discovery of the first crystal structures of simple inorganic salts by the Braggs in 1914, using the diffraction of X-rays by crystals, provided the critical elements to unveil the atomic structure of matter. Subsequent developments in the field leading to macromolecular crystallography are presented with a personal perspective, related to the cultural milieu of Spain in the late 1950’s. The journey of discovery of the author, as he developed professionally, is interwoven with the expansion of macromolecular crystallography from the first proteins (myoglobin, hemoglobin to the ‘coming of age’ of the field in 1971 and the discoveries that followed, culminating in the determination of the structure of the ribosomes at the turn of the century. A perspective is presented exploring the future of the field and also a reflection about the future generations of Spanish scientists.El siglo XX ha sido testigo del increíble avance que ha experimentado el conocimiento de la estructura atómica de la materia que nos rodea. El descubrimiento de las primeras estructuras atómicas de sales inorgánicas por los Bragg en 1914, empleando difracción de rayos X con cristales, proporcionó los elementos clave para alcanzar tal conocimiento. Posteriores desarrollos en este campo, que condujeron a la cristalografía macromolecular, se presentan aquí desde una perspectiva personal, relacionada con el contexto cultural de la España de la década de los 50. La experiencia del descubrimiento científico, durante mi desarrollo profesional, se integra en el desarrollo de la cristalografía macromolecular, desde las primeras proteínas (míoglobina y hemoglobina, hasta su madurez en 1971 que, con los posteriores descubrimientos, culmina con la determinación del la estructura del ribosoma. Asimismo, se explora el futuro de esta disciplina y se

  5. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography

    Directory of Open Access Journals (Sweden)

    Julian C.-H. Chen

    2017-01-01

    Full Text Available The Protein Crystallography Station (PCS, located at the Los Alamos Neutron Scattering Center (LANSCE, was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER for 13 years (2002–2014. The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  6. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography.

    Science.gov (United States)

    Chen, Julian C-H; Unkefer, Clifford J

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  7. Macromolecular crystallography beamline X25 at the NSLS.

    Science.gov (United States)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L; Dvorak, Joseph; Flaks, Leon; Lamarra, Steven; Myers, Stuart F; Orville, Allen M; Robinson, Howard H; Roessler, Christian G; Schneider, Dieter K; Shea-McCarthy, Grace; Skinner, John M; Skinner, Michael; Soares, Alexei S; Sweet, Robert M; Berman, Lonny E

    2014-05-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  8. Functional Sub-states by High-pressure Macromolecular Crystallography.

    Science.gov (United States)

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  9. PROFESSOR TEJ PAL SINGH: THE LEGEND OF INDIAN MACROMOLECULAR CRYSTALLOGRAPHY

    Directory of Open Access Journals (Sweden)

    Md. Imtaiyaz Hassan

    2013-12-01

    Full Text Available Professor Tej Pal Singh, an internationally recognized Indian scientist par excellence, is one of the pioneers of Indian macromolecular crystallography. He is a person of significant and enduring accomplishments as a teacher, scientist, administrator and family man. He has developed various methods to crystallize wide varieties of proteins. He has successfully determined crystal structures of lactoferrin, phospholipase A2, lactoperoxidase, peptidoglycan recognition proteins, disintegrin, zinc-α2-glycoprotein and several others including various protein-ligand and protein-protein complexes. He has a remarkably high number of structural entries in protein data bank. He received most of the prestigious awards and honors by Indian Government. This article covers most of his research and other achievements which will be a source of inspiration for young scientific community, motivation for peers and joy for his fellow colleagues and friends.

  10. Large-volume protein crystal growth for neutron macromolecular crystallography.

    Science.gov (United States)

    Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay

    2015-04-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  11. Temperature-dependent macromolecular X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Weik, Martin, E-mail: martin.weik@ibs.fr; Colletier, Jacques-Philippe [CEA, IBS, Laboratoire de Biophysique Moléculaire, F-38054 Grenoble (France); CNRS, UMR5075, F-38027 Grenoble (France); Université Joseph Fourier, F-38000 Grenoble (France)

    2010-04-01

    The dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.

  12. Synchrotron radiation macromolecular crystallography: science and spin-offs

    Directory of Open Access Journals (Sweden)

    John R. Helliwell

    2015-03-01

    Full Text Available A current overview of synchrotron radiation (SR in macromolecular crystallography (MX instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development.

  13. Canadian macromolecular crystallography facility: a suite of fully automated beamlines.

    Science.gov (United States)

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaunivan; Gorin, James; Janzen, Kathryn; Berg, Russ

    2012-06-01

    The Canadian light source is a 2.9 GeV national synchrotron radiation facility located on the University of Saskatchewan campus in Saskatoon. The small-gap in-vacuum undulator illuminated beamline, 08ID-1, together with the bending magnet beamline, 08B1-1, constitute the Canadian Macromolecular Crystallography Facility (CMCF). The CMCF provides service to more than 50 Principal Investigators in Canada and the United States. Up to 25% of the beam time is devoted to commercial users and the general user program is guaranteed up to 55% of the useful beam time through a peer-review process. CMCF staff provides "Mail-In" crystallography service to users with the highest scored proposals. Both beamlines are equipped with very robust end-stations including on-axis visualization systems, Rayonix 300 CCD series detectors and Stanford-type robotic sample auto-mounters. MxDC, an in-house developed beamline control system, is integrated with a data processing module, AutoProcess, allowing full automation of data collection and data processing with minimal human intervention. Sample management and remote monitoring of experiments is enabled through interaction with a Laboratory Information Management System developed at the facility.

  14. Facilitating structure determination: workshop on robotics andautomation in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, Corie; Cork, C.W.; McDermott, G.; Earnest, T.N.

    2006-03-28

    As part of the annual Advanced Light Source (ALS) andStanford Synchrotron Radiation Laboratory (SSRL) Users' Meeting inOctober of this year, the macromolecular crystallography staff at bothsynchrotrons held a joint hands-on workshop to address automation issuesin crystal mounting and data collection at the beamline. This paperdescribes the ALS portion of the workshop, while the accompanying paperreviews the SSRL workshop.

  15. The macromolecular crystallography facility at the advanced light source

    Science.gov (United States)

    Earnest, Thomas; Padmore, Howard; Cork, Carl; Behrsing, Rolf; Kim, Sung-Hou

    1996-10-01

    Synchrotron radiation offers several advantages over the use of rotating anode sources for biological crystallography, which allow for the collection of higher-resolution data, substantially more rapid data collection, phasing by multiwavelength anomalous diffraction (MAD) techniques, and time-resolved experiments using polychromatic radiation (Laue diffraction). The use of synchrotron radiation is often necessary to record useful data from crystals which diffract weakly or have very large unit cells. The high brightness and stability characteristics of the advanced light source (ALS) at Lawrence Berkeley National Laboratory, along with the low emittance and long straight sections to accommodate insertion devices present in third generation synchrotrons like the ALS, lead to several advantages in the field of macromolecular crystallography. We are presently constructing a macromolecular crystallography facility at the ALS which is optimized for user-friendliness and high-throughput data collection, with advanced capabilities for MAD and Laue experiments. The X-rays will be directed to three branchlines. A well-equipped support lab will be available for biochemistry, crystal mounting and sample storage, as well as computer hardware and software available, along with staff support, allowing for the complete processing of data on site.

  16. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  17. In-vacuum long-wavelength macromolecular crystallography.

    Science.gov (United States)

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-03-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.

  18. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J.; Gee, Christine; Harrop, Stephen J.; Mudie, Nathan; Panjikar, Santosh; Price, Jason R.; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom, E-mail: tom.caradoc-davies@synchrotron.org.au [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2015-01-01

    The macromolecular crystallography beamline MX1 at the Australian Synchrotron is described. MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

  19. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits.

    Science.gov (United States)

    Jaskolski, Mariusz; Dauter, Zbigniew; Wlodawer, Alexander

    2014-09-01

    As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. JBluIce-EPICS control system for macromolecular crystallography.

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, S.; Makarov, O.; Hilgart, M.; Pothineni, S.; Urakhchin, A.; Devarapalli, S.; Yoder, D.; Becker, M.; Ogata, C.; Sanishvili, R.; Nagarajan, V.; Smith, J. L.; Fischetti, R. F. (Biosciences Division); (Univ. of Michigan)

    2011-01-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.

  1. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary [University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Ravelli, Raimond B. G. [Maastricht University, PO Box 616, Maastricht 6200 MD (Netherlands); Carmichael, Ian [University of Notre Dame, Notre Dame, IN 46556 (United States); Kneale, Geoff; McGeehan, John E., E-mail: john.mcgeehan@port.ac.uk [University of Portsmouth, King Henry 1st Street, Portsmouth PO1 2DY (United Kingdom)

    2015-01-30

    Quantitative X-ray induced radiation damage studies employing a model protein–DNA complex revealed a striking partition of damage sites. The DNA component was observed to be far more resistant to specific damage compared with the protein. Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N{sub 1}—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.

  2. Non-contact luminescence lifetime cryothermometry for macromolecular crystallography.

    Science.gov (United States)

    Mykhaylyk, V B; Wagner, A; Kraus, H

    2017-05-01

    Temperature is a very important parameter when aiming to minimize radiation damage to biological samples during experiments that utilize intense ionizing radiation. A novel technique for remote, non-contact, in situ monitoring of the protein crystal temperature has been developed for the new I23 beamline at the Diamond Light Source, a facility dedicated to macromolecular crystallography (MX) with long-wavelength X-rays. The temperature is derived from the temperature-dependent decay time constant of luminescence from a minuscule scintillation sensor (luminescence lifetime thermometry is presented, the features of the detection method and the choice of temperature sensor are discussed, and it is demonstrated how the temperature monitoring system was integrated within the viewing system of the endstation used for the visualization of protein crystals. The thermometry system was characterized using a Bi4Ge3O12 crystal scintillator that exhibits good responsivity of the decay time constant as a function of temperature over a wide range (8-270 K). The scintillation sensor was calibrated and the uncertainty of the temperature measurements over the primary operation temperature range of the beamline (30-150 K) was assessed to be ±1.6 K. It has been shown that the temperature of the sample holder, measured using the luminescence sensor, agrees well with the expected value. The technique was applied to characterize the thermal performance of different sample mounts that have been used in MX experiments at the I23 beamline. The thickness of the mount is shown to have the greatest impact upon the temperature distribution across the sample mount. Altogether, these tests and findings demonstrate the usefulness of the thermometry system in highlighting the challenges that remain to be addressed for the in-vacuum MX experiment to become a reliable and indispensable tool for structural biology.

  3. A Compact X-Ray System for Macromolecular Crystallography. 5

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  4. A Compact X-Ray System for Macromolecular Crystallography

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  5. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron.

    Science.gov (United States)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J; Gee, Christine; Harrop, Stephen J; Mudie, Nathan; Panjikar, Santosh; Price, Jason R; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom

    2015-01-01

    MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

  6. Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis; McKean, John P.; Trame, Christine; Dickert, Jeff; Rozales, Anthony; Dauz,Azer; Taylor, John; Zwart, Petrus; Duarte, Robert; Padmore, Howard; McDermott, Gerry; Adams, Paul

    2007-07-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which together formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or

  7. The Joint Structural Biology Group beam lines at the ESRF: Modern macromolecular crystallography

    CERN Document Server

    Mitchell, E P

    2001-01-01

    Macromolecular crystallography has evolved considerably over the last decade. Data sets in under an hour are now possible on high throughput beam lines leading to electron density and, possibly, initial models calculated on-site. There are five beam lines currently dedicated to macromolecular crystallography: the ID14 complex and BM-14 (soon to be superseded by ID-29). These lines handle over five hundred projects every six months and demand is increasing. Automated sample handling, alignment and data management protocols will be required to work efficiently with this demanding load. Projects developing these themes are underway within the JSBG.

  8. The collection of MicroED data for macromolecular crystallography.

    Science.gov (United States)

    Shi, Dan; Nannenga, Brent L; de la Cruz, M Jason; Liu, Jinyang; Sawtelle, Steven; Calero, Guillermo; Reyes, Francis E; Hattne, Johan; Gonen, Tamir

    2016-05-01

    The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is ∼10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.

  9. Holographic methods in X-ray crystallography. Pt. 4. A fast algorithm and its application to macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, J.R. [California Univ., Berkeley (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States); Szoeke, H. [Lawrence Livermore National Lab., CA (United States); Goodman, D.M. [Lawrence Livermore National Lab., CA (United States); Beran, P. [Lawrence Livermore National Lab., CA (United States); Truckses, D. [Wisconsin Univ., Madison, WI (United States). Dept. of Biochemistry; Kim, S.H. [California Univ., Berkeley (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States); Szoeke, A. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01

    The holographic method makes use of partially modeled electron density and experimentally measured structure-factor amplitudes to recover electron density corresponding to the unmodeled part of a crystal structure. This paper describes a fast algorithm that makes it possible to apply the holographic method to sizable crystallographic problems. The algorithm uses positivity constraints on the electron density and can incorporate a `target` electron density, making it similar to solvent flattening. The potential for applying the holographic method to macromolecular X-ray crystallography is assessed using both synthetic and experimental data. (orig.).

  10. The macromolecular crystallography beamline I911-3 at the MAX IV laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ursby, Thomas, E-mail: thomas.ursby@maxlab.lu.se; Unge, Johan; Appio, Roberto [Lund University, POB 118, Lund SE-221 00 (Sweden); Logan, Derek T. [Lund University, POB 124, Lund SE-221 00 (Sweden); Fredslund, Folmer; Svensson, Christer; Larsson, Krister; Labrador, Ana [Lund University, POB 118, Lund SE-221 00 (Sweden); Thunnissen, Marjolein M. G. M. [Lund University, POB 124, Lund SE-221 00 (Sweden)

    2013-07-01

    The updated macromolecular crystallography beamline I911-3 at the MAX II storage ring is described. The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010–2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines.

  11. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    Science.gov (United States)

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  12. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Aller, Pierre [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz; Cameron, Alex [Imperial College, London SW7 2AZ (United Kingdom); Axford, Danny; Owen, Robin L. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Armour, Wes [Oxford e-Research Centre (OeRC), Keble Road, Oxford OX1 3QG (United Kingdom); Waterman, David G. [Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2013-08-01

    A systematic approach to the scaling and merging of data from multiple crystals in macromolecular crystallography is introduced and explained. The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  13. Implementation of remote monitoring and diffraction evaluation systems at the Photon Factory macromolecular crystallography beamlines

    Science.gov (United States)

    Yamada, Yusuke; pHonda, Nobuo; Matsugaki, Naohiro; Igarashi, Noriyuki; Hiraki, Masahiko; Wakatsuki, Soichi

    2008-01-01

    Owing to recent advances in high-throughput technology in macromolecular crystallography beamlines, such as high-brilliant X-ray sources, high-speed readout detectors and robotics, the number of samples that can be examined in a single visit to the beamline has increased dramatically. In order to make these experiments more efficient, two functions, remote monitoring and diffraction image evaluation, have been implemented in the macromolecular crystallography beamlines at the Photon Factory (PF). Remote monitoring allows scientists to participate in the experiment by watching from their laboratories, without having to come to the beamline. Diffraction image evaluation makes experiments easier, especially when using the sample exchange robot. To implement these two functions, two independent clients have been developed that work specifically for remote monitoring and diffraction image evaluation. In the macromolecular crystallography beamlines at PF, beamline control is performed using STARS (simple transmission and retrieval system). The system adopts a client–server style in which client programs communicate with each other through a server process using the STARS protocol. This is an advantage of the extension of the system; implementation of these new functions required few modifications of the existing system. PMID:18421163

  14. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination.

    Science.gov (United States)

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2013-11-01

    The number of macromolecular structures deposited in the Protein Data Bank now approaches 100,000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation.

  15. Room-temperature macromolecular serial crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Francesco Stellato

    2014-07-01

    Full Text Available A new approach for collecting data from many hundreds of thousands of microcrystals using X-ray pulses from a free-electron laser has recently been developed. Referred to as serial crystallography, diffraction patterns are recorded at a constant rate as a suspension of protein crystals flows across the path of an X-ray beam. Events that by chance contain single-crystal diffraction patterns are retained, then indexed and merged to form a three-dimensional set of reflection intensities for structure determination. This approach relies upon several innovations: an intense X-ray beam; a fast detector system; a means to rapidly flow a suspension of crystals across the X-ray beam; and the computational infrastructure to process the large volume of data. Originally conceived for radiation-damage-free measurements with ultrafast X-ray pulses, the same methods can be employed with synchrotron radiation. As in powder diffraction, the averaging of thousands of observations per Bragg peak may improve the ratio of signal to noise of low-dose exposures. Here, it is shown that this paradigm can be implemented for room-temperature data collection using synchrotron radiation and exposure times of less than 3 ms. Using lysozyme microcrystals as a model system, over 40 000 single-crystal diffraction patterns were obtained and merged to produce a structural model that could be refined to 2.1 Å resolution. The resulting electron density is in excellent agreement with that obtained using standard X-ray data collection techniques. With further improvements the method is well suited for even shorter exposures at future and upgraded synchrotron radiation facilities that may deliver beams with 1000 times higher brightness than they currently produce.

  16. IMAGINE: first neutron protein structure and new capabilities for neutron macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Parthapratim [ORNL; Myles, Dean A A [ORNL; Robertson, Lee [ORNL; Stoica, Alexandru Dan [ORNL; Crow, Lowell [ORNL; Kovalevskyi, Andrii Y [ORNL; Koritsanszky, Tibor S [ORNL; Chakoumakos, Bryan C [ORNL; Blessing, Robert [Hauptman-Woodward Medical Research Institute; Meilleur, Flora [ORNL

    2013-01-01

    We report the first high resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory. Neutron diffraction data extending to 1.65 resolution were collected from a relatively small 0.7 mm3 PfRd crystal using 2.5 days (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the deuterium atoms of the protein, and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolutions (1.5 ) from crystals with volume < 1.0 mm3 and with unit cell edges < 100 . Beam line features include elliptical focusing mirrors that deliver 3x107 n s-1 cm-2 into a 3.5 x 2.0 mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations ( min=2.0 , 2.8 , 3.3 - max =3.0 , 4.0 , 4.5 , ~20 ). Notably, the crystal used to collect this PfRd data is 5-10 times smaller than has been previously reported.

  17. RoboDiff: combining a sample changer and goniometer for highly automated macromolecular crystallography experiments

    Science.gov (United States)

    Nurizzo, Didier; Bowler, Matthew W.; Caserotto, Hugo; Dobias, Fabien; Giraud, Thierry; Surr, John; Guichard, Nicolas; Papp, Gergely; Guijarro, Matias; Mueller-Dieckmann, Christoph; Flot, David; McSweeney, Sean; Cipriani, Florent; Theveneau, Pascal; Leonard, Gordon A.

    2016-01-01

    Automation of the mounting of cryocooled samples is now a feature of the majority of beamlines dedicated to macromolecular crystallography (MX). Robotic sample changers have been developed over many years, with the latest designs increasing capacity, reliability and speed. Here, the development of a new sample changer deployed at the ESRF beamline MASSIF-1 (ID30A-1), based on an industrial six-axis robot, is described. The device, named RoboDiff, includes a high-capacity dewar, acts as both a sample changer and a high-accuracy goniometer, and has been designed for completely unattended sample mounting and diffraction data collection. This aim has been achieved using a high level of diagnostics at all steps of the process from mounting and characterization to data collection. The RoboDiff has been in service on the fully automated endstation MASSIF-1 at the ESRF since September 2014 and, at the time of writing, has processed more than 20 000 samples completely automatically. PMID:27487827

  18. D3, the new diffractometer for the macromolecular crystallography beamlines of the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Martin R., E-mail: mfuchs@bnl.gov [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Brookhaven National Laboratory, Mail Stop 745, Upton, NY 11973 (United States); Pradervand, Claude; Thominet, Vincent; Schneider, Roman; Panepucci, Ezequiel; Grunder, Marcel; Gabadinho, Jose; Dworkowski, Florian S. N.; Tomizaki, Takashi; Schneider, Jörg; Mayer, Aline; Curtin, Adrian; Olieric, Vincent; Frommherz, Uli; Kotrle, Goran; Welte, Jörg; Wang, Xinyu; Maag, Stephan [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Schulze-Briese, Clemens [DECTRIS Ltd, Neuenhoferstrasse 107, 5400 Baden (Switzerland); Wang, Meitian [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2014-02-04

    A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. Building upon and critically extending previous developments realised for the high-resolution endstations of the two undulator beamlines X06SA and X10SA, as well as the super-bend dipole beamline X06DA, the new diffractometer was designed to the following core design goals. (i) Redesign of the goniometer to a sub-micrometer peak-to-peak cylinder of confusion for the horizontal single axis. Crystal sizes down to at least 5 µm and advanced sample-rastering and scanning modes are supported. In addition, it can accommodate the new multi-axis goniometer PRIGo (Parallel Robotics Inspired Goniometer). (ii) A rapid-change beam-shaping element system with aperture sizes down to a minimum of 10 µm for microcrystallography measurements. (iii) Integration of the on-axis microspectrophotometer MS3 for microscopic sample imaging with 1 µm image resolution. Its multi-mode optical spectroscopy module is always online and supports in situ UV/Vis absorption, fluorescence and Raman spectroscopy. (iv) High stability of the sample environment by a mineral cast support construction and by close containment of the cryo-stream. Further features are the support for in situ crystallization plate screening and a minimal achievable detector distance of 120 mm for the Pilatus 6M, 2M and the macromolecular crystallography group’s planned future area detector Eiger 16M.

  19. Deformable elastic network refinement for low-resolution macromolecular crystallography.

    Science.gov (United States)

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2014-09-01

    Crystals of membrane proteins and protein complexes often diffract to low resolution owing to their intrinsic molecular flexibility, heterogeneity or the mosaic spread of micro-domains. At low resolution, the building and refinement of atomic models is a more challenging task. The deformable elastic network (DEN) refinement method developed previously has been instrumental in the determinion of several structures at low resolution. Here, DEN refinement is reviewed, recommendations for its optimal usage are provided and its limitations are discussed. Representative examples of the application of DEN refinement to challenging cases of refinement at low resolution are presented. These cases include soluble as well as membrane proteins determined at limiting resolutions ranging from 3 to 7 Å. Potential extensions of the DEN refinement technique and future perspectives for the interpretation of low-resolution crystal structures are also discussed.

  20. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Grischa R. [Monash University, Clayton, Victoria 3800 (Australia); Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M. [Monash University, Clayton, Victoria 3800 (Australia); Bond, Charles S. [The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia); Buckle, Ashley M. [Monash University, Clayton, Victoria 3800 (Australia); Androulakis, Steve, E-mail: steve.androulakis@monash.edu [Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800 (Australia)

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  1. Operation of the Australian Store.Synchrotron for macromolecular crystallography.

    Science.gov (United States)

    Meyer, Grischa R; Aragão, David; Mudie, Nathan J; Caradoc-Davies, Tom T; McGowan, Sheena; Bertling, Philip J; Groenewegen, David; Quenette, Stevan M; Bond, Charles S; Buckle, Ashley M; Androulakis, Steve

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  2. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin.

    Science.gov (United States)

    Mueller, Uwe; Darowski, Nora; Fuchs, Martin R; Förster, Ronald; Hellmig, Michael; Paithankar, Karthik S; Pühringer, Sandra; Steffien, Michael; Zocher, Georg; Weiss, Manfred S

    2012-05-01

    Three macromolecular crystallography (MX) beamlines at the Helmholtz-Zentrum Berlin (HZB) are available for the regional, national and international structural biology user community. The state-of-the-art synchrotron beamlines for MX BL14.1, BL14.2 and BL14.3 are located within the low-β section of the BESSY II electron storage ring. All beamlines are fed from a superconducting 7 T wavelength-shifter insertion device. BL14.1 and BL14.2 are energy tunable in the range 5-16 keV, while BL14.3 is a fixed-energy side station operated at 13.8 keV. All three beamlines are equipped with CCD detectors. BL14.1 and BL14.2 are in regular user operation providing about 200 beam days per year and about 600 user shifts to approximately 50 research groups across Europe. BL14.3 has initially been used as a test facility and was brought into regular user mode operation during the year 2010. BL14.1 has recently been upgraded with a microdiffractometer including a mini-κ goniometer and an automated sample changer. Additional user facilities include office space adjacent to the beamlines, a sample preparation laboratory, a biology laboratory (safety level 1) and high-end computing resources. In this article the instrumentation of the beamlines is described, and a summary of the experimental possibilities of the beamlines and the provided ancillary equipment for the user community is given.

  3. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments.

    Science.gov (United States)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J; Hall, David R; Lavault, Bernard; McCarthy, Andrew A; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B G; Thibault, Xavier; Walsh, Martin A; Leonard, Gordon A; McSweeney, Sean M

    2010-09-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.

  4. Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Marius Schmidt

    2013-01-01

    Full Text Available Time-resolved macromolecular crystallography unifies structure determination with chemical kinetics, since the structures of transient states and chemical and kinetic mechanisms can be determined simultaneously from the same data. To start a reaction in an enzyme, typically, an initially inactive substrate present in the crystal is activated. This has particular disadvantages that are circumvented when active substrate is directly provided by diffusion. However, then it is prohibitive to use macroscopic crystals because diffusion times become too long. With small micro- and nanocrystals diffusion times are adequately short for most enzymes and the reaction can be swiftly initiated. We demonstrate here that a time-resolved crystallographic experiment becomes feasible by mixing substrate with enzyme nanocrystals which are subsequently injected into the X-ray beam of a pulsed X-ray source.

  5. Optimized beamline design for macromolecular crystallography at the Cornell High Energy Synchrotron Source (CHESS) (abstract)

    Science.gov (United States)

    Schildkamp, Wilfried; Bilderback, Donald; Moffat, Keith

    1989-07-01

    The A1 station on the CHESS wiggler beamline has been the workhorse for most macromolecular crystallographic experiments. This station is equipped with a fixed energy focusing germanium (111) monochromator and a focusing total reflection mirror. Our macromolecular crystallographers made full use of the high flux of more than 1012 photons/s/mm2 and the stable beam conditions, both in position and energy resolution. As a result, the A1 station was heavily oversubscribed. CHESS is presently expanding its capabilities and a new diffraction station for macromolecular crystallography is under construction. This beamline will be powered by a 24-pole hybrid permanent magnet wiggler with a critical energy of 25 keV. A focusing monochromator, which handles a specific heat load of 10 W/mm2, will have a range of tunability which covers all relevant absorption edges from 7 to 15 keV using a Ge(111) crystal. The energy resolution and the focusing properties remain constant within a factor of 2 over the entire tunability range. We expect a brilliance of about 1013 photons/s/mm2/mrad2/0.1% bandpass. The diffraction station will be equipped with an oscillation camera which can be used with x-ray film of 5×5 or 8×10 in. size or alternatively with Kodak storage phosphors. A wide variety of clamp-on accessories, like crystal coolers, fast shutters, helium pathways, polarimeter, etc. are available. The station will contain a beampipe system, which can also be used for small angle scattering experiments with sample-to-detector distances of up to 3000 mm. The entire diffraction station, its control area, a biological preparation area, and a darkroom are to be embedded in a biological safety containment of the level BL3. This will allow diffraction studies of virulent strains of viruses and other biohazards, which could not previously be studied at synchrotron radiation sources before without causing major disruption to the normal laboratory procedure.

  6. Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.

    Science.gov (United States)

    Shimizu, Nobutaka; Shimizu, Tetsuya; Baba, Seiki; Hasegawa, Kazuya; Yamamoto, Masaki; Kumasaka, Takashi

    2013-11-01

    Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

  7. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering

    Science.gov (United States)

    Roedig, Philip; Duman, Ramona; Sanchez-Weatherby, Juan; Vartiainen, Ismo; Burkhardt, Anja; Warmer, Martin; David, Christian; Wagner, Armin; Meents, Alke

    2016-01-01

    Recent success at X-ray free-electron lasers has led to serial crystallography experiments staging a comeback at synchrotron sources as well. With crystal lifetimes typically in the millisecond range and the latest-generation detector technologies with high framing rates up to 1 kHz, fast sample exchange has become the bottleneck for such experiments. A micro-patterned chip has been developed from single-crystalline silicon, which acts as a sample holder for up to several thousand microcrystals at a very low background level. The crystals can be easily loaded onto the chip and excess mother liquor can be efficiently removed. Dehydration of the crystals is prevented by keeping them in a stream of humidified air during data collection. Further sealing of the sample holder, for example with Kapton, is not required. Room-temperature data collection from insulin crystals loaded onto the chip proves the applicability of the chip for macromolecular crystallography. Subsequent structure refinements reveal no radiation-damage-induced structural changes for insulin crystals up to a dose of 565.6 kGy, even though the total diffraction power of the crystals has on average decreased to 19.1% of its initial value for the same dose. A decay of the diffracting power by half is observed for a dose of D 1/2 = 147.5 ± 19.1 kGy, which is about 1/300 of the dose before crystals show a similar decay at cryogenic temperatures. PMID:27275143

  8. 08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source.

    Science.gov (United States)

    Fodje, Michel; Grochulski, Pawel; Janzen, Kathryn; Labiuk, Shaunivan; Gorin, James; Berg, Russ

    2014-05-01

    Beamline 08B1-1 is a recently commissioned bending-magnet beamline at the Canadian Light Source. The beamline is designed for automation and remote access. Together with the undulator-based beamline 08ID-1, they constitute the Canadian Macromolecular Crystallography Facility. This paper describes the design, specifications, hardware and software of beamline 08B1-1. A few scientific results using data obtained at the beamline will be highlighted.

  9. A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF.

    Science.gov (United States)

    McCarthy, Andrew A; Brockhauser, Sandor; Nurizzo, Didier; Theveneau, Pascal; Mairs, Trevor; Spruce, Darren; Guijarro, Matias; Lesourd, Marc; Ravelli, Raimond B G; McSweeney, Sean

    2009-11-01

    ID14-4 at the ESRF is the first tunable undulator-based macromolecular crystallography beamline that can celebrate a decade of user service. During this time ID14-4 has not only been instrumental in the determination of the structures of biologically important molecules but has also contributed significantly to the development of various instruments, novel data collection schemes and pioneering radiation damage studies on biological samples. Here, the evolution of ID14-4 over the last decade is presented, and some of the major improvements that were carried out in order to maintain its status as one of the most productive macromolecular crystallography beamlines are highlighted. The experimental hutch has been upgraded to accommodate a high-precision diffractometer, a sample changer and a large CCD detector. More recently, the optical hutch has been refurbished in order to improve the X-ray beam quality on ID14-4 and to incorporate the most modern and robust optical elements used at other ESRF beamlines. These new optical elements will be described and their effect on beam stability discussed. These studies may be useful in the design, construction and maintenance of future X-ray beamlines for macromolecular crystallography and indeed other applications, such as those planned for the ESRF upgrade.

  10. A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Andrew A., E-mail: andrewmc@embl.fr; Brockhauser, Sandor [European Molecular Biology Laboratory, 6 rue Jules Horowitz, BP 181, 38042 Grenoble (France); Unit of Virus Host Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Nurizzo, Didier; Theveneau, Pascal; Mairs, Trevor; Spruce, Darren; Guijarro, Matias; Lesourd, Marc [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38042 Grenoble (France); Ravelli, Raimond B. G. [European Molecular Biology Laboratory, 6 rue Jules Horowitz, BP 181, 38042 Grenoble (France); McSweeney, Sean [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38042 Grenoble (France)

    2009-11-01

    The improvement of the X-ray beam quality achieved on ID14-4 by the installation of new X-ray optical elements is described. ID14-4 at the ESRF is the first tunable undulator-based macromolecular crystallography beamline that can celebrate a decade of user service. During this time ID14-4 has not only been instrumental in the determination of the structures of biologically important molecules but has also contributed significantly to the development of various instruments, novel data collection schemes and pioneering radiation damage studies on biological samples. Here, the evolution of ID14-4 over the last decade is presented, and some of the major improvements that were carried out in order to maintain its status as one of the most productive macromolecular crystallography beamlines are highlighted. The experimental hutch has been upgraded to accommodate a high-precision diffractometer, a sample changer and a large CCD detector. More recently, the optical hutch has been refurbished in order to improve the X-ray beam quality on ID14-4 and to incorporate the most modern and robust optical elements used at other ESRF beamlines. These new optical elements will be described and their effect on beam stability discussed. These studies may be useful in the design, construction and maintenance of future X-ray beamlines for macromolecular crystallography and indeed other applications, such as those planned for the ESRF upgrade.

  11. Visualization of X-ray Beam Using CdWO4 Crystal for Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Kazimierz J. Gofron

    2011-12-01

    Full Text Available In synchrotron diffraction experiments, it is typically assumed that the X-ray beam at the sample position is uniform, stable and has dimensions that are controlled by the focus and slits settings. As might be expected, this process is much more complex. We present here an investigation of the properties of a synchrotron X-ray beam at the sample position. The X-ray beam is visualized with a single crystal scintillator that converts X-ray photons into visible light photons, which can be imaged using Structure Biology Center (SBC on-axis and off-axis microscope optics. The X-ray penetration is dependent on the composition of the scintillator (especially the effective Z, and X-ray energy. Several scintillators have been used to visualize X-ray beams. Here we compare CdWO4, PbWO4, Bi4Ge3O12, Y3Al5O12:Ce (YAG:Ce, and Gd2O2S:Tb (phosphor. We determined that scintillator crystals made of CdWO4 and similar high-Z materials are best suited for the energy range (7–20 keV and are most suitable for beam visualization for macromolecular crystallography applications. These scintillators show excellent absorption, optical, and mechanical properties.

  12. Large area high-resolution CCD-based X-ray detector for macromolecular crystallography

    CERN Document Server

    Pokric, M; Jorden, A R; Cox, M P; Marshall, A; Long, P G; Moon, K; Jerram, P A; Pool, P; Nave, C; Derbyshire, G E; Helliwell, J R

    2002-01-01

    An X-ray detector system for macromolecular crystallography based on a large area charge-coupled device (CCD) sensor has been developed as part of a large research and development programme for advanced X-ray sensor technology, funded by industry and the Particle Physics and Astronomy Research Council (PPARC) in the UK. The prototype detector consists of two large area three-sides buttable charge-coupled devices (CCD 46-62 EEV), where the single CCD area is 55.3 mmx41.5 mm. Overall detector imaging area is easily extendable to 85 mmx110 mm. The detector consists of an optically coupled X-ray sensitive phosphor, skewed fibre-optic studs and CCDs. The crystallographic measurement requirements at synchrotron sources are met through a high spatial resolution (2048x1536 pixel array), high dynamic range (approx 10 sup 5), a fast readout (approx 1 s), low noise (<10e sup -) and much reduced parallax error. Additionally, the prototype detector system has been optimised by increasing its efficiency at low X-ray ene...

  13. Visualization of X-ray Beam Using CdWO4 Crystal for Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Kazimierz J. Gofron

    2011-12-01

    Full Text Available In synchrotron diffraction experiments, it is typically assumed that the X-ray beam at the sample position is uniform, stable and has dimensions that are controlled by the focus and slits settings. As might be expected, this process is much more complex. We present here an investigation of the properties of a synchrotron X-ray beam at the sample position. The X-ray beam is visualized with a single crystal scintillator that converts X-ray photons into visible light photons, which can be imaged using Structure Biology Center (SBC on-axis and off-axis microscope optics. The X-ray penetration is dependent on the composition of the scintillator (especially the effective Z, and X-ray energy. Several scintillators have been used to visualize X-ray beams. Here we compare CdWO4, PbWO4, Bi4Ge3O12, Y3Al5O12:Ce (YAG:Ce, and Gd2O2S:Tb (phosphor. We determined that scintillator crystals made of CdWO4 and similar high-Z materials are best suited for the energy range (7–20 keV and are most suitable for beam visualization for macromolecular crystallography applications. These scintillators show excellent absorption, optical, and mechanical properties.

  14. The status of the macromolecular crystallography beamlines at the European Synchrotron Radiation Facility

    Science.gov (United States)

    Mueller-Dieckmann, Christoph; Bowler, Matthew W.; Carpentier, Philippe; Flot, David; McCarthy, Andrew A.; Nanao, Max H.; Nurizzo, Didier; Pernot, Petra; Popov, Alexander; Round, Adam; Royant, Antoine; de Sanctis, Daniele; von Stetten, David; Leonard, Gordon A.

    2015-04-01

    The European Synchrotron Radiation Facility (ESRF) is the oldest and most powerful 3rd generation synchrotron in Europe, providing X-rays to more than 40 experimental stations welcoming several thousand researchers per year. A major success story has been the ESRF's facilities for macromolecular crystallography (MX). These are grouped around 3 straight sections: On ID23 canted undulators accommodate ID23-1, a mini-focus tuneable energy end station and ID23-2, the world's first micro-focus beamline dedicated to MX; ID29 houses a single, mini-focus, tuneable energy end station; ID30 will provide three end stations for MX due in operation from mid-2014 to early 2015. Here, one branch of a canted X-ray source feeds two fixed-energy end stations (MASSIF-1, MASSIF-3). The second feeds ID30B, a variable focus, tuneable energy beamline. MASSIF-1 is optimised for automatic high-throughput experiments requiring a relatively large beam size at the sample position, MASSIF-3 is a high-intensity, micro-focus facility designed to complement ID23-2. All end stations are highly automated, equipped with sample mounting robots and large area, fast-readout photon-counting detectors. Experiment control and tracking is achieved via a combination of the MXCuBE2 graphical user interface and the ISPyB database, the former allowing user-friendly control of all beamline components, the latter providing data tracking before, after and during experiments.

  15. Optimizing the spatial distribution of dose in X-ray macromolecular crystallography.

    Science.gov (United States)

    Zeldin, Oliver B; Gerstel, Markus; Garman, Elspeth F

    2013-01-01

    X-ray data collection for macromolecular crystallography can lead to highly inhomogeneous distributions of dose within the crystal volume for cases when the crystal is larger than the beam or when the beam is non-uniform (gaussian-like), particularly when crystal rotation is fully taken into account. Here the spatial distribution of dose is quantitatively modelled in order to compare the effectiveness of two dose-spreading data-collection protocols: helical scanning and translational collection. Their effectiveness in reducing the peak dose per unit diffraction is investigated via simulations for four common crystal shapes (cube, plate, long and short needles) and beams with a wide range of full width half maximum values. By inspection of the chosen metric, it is concluded that the optimum strategy is always to use as flat (top-hat) a beam as possible and to either match the beam size in both dimensions to the crystal, or to perform a helical scan with a beam which is narrow along the rotation axis and matched to the crystal size along the perpendicular axis. For crystal shapes where this is not possible, the reduction in peak dose per unit diffraction achieved through dose spreading is quantified and tabulated as a reference for experimenters.

  16. Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection.

    Science.gov (United States)

    Bowler, Matthew W; Guijarro, Matias; Petitdemange, Sebastien; Baker, Isabel; Svensson, Olof; Burghammer, Manfred; Mueller-Dieckmann, Christoph; Gordon, Elspeth J; Flot, David; McSweeney, Sean M; Leonard, Gordon A

    2010-08-01

    Crystals of biological macromolecules often exhibit considerable inter-crystal and intra-crystal variation in diffraction quality. This requires the evaluation of many samples prior to data collection, a practice that is already widespread in macromolecular crystallography. As structural biologists move towards tackling ever more ambitious projects, new automated methods of sample evaluation will become crucial to the success of many projects, as will the availability of synchrotron-based facilities optimized for high-throughput evaluation of the diffraction characteristics of samples. Here, two examples of the types of advanced sample evaluation that will be required are presented: searching within a sample-containing loop for microcrystals using an X-ray beam of 5 microm diameter and selecting the most ordered regions of relatively large crystals using X-ray beams of 5-50 microm in diameter. A graphical user interface developed to assist with these screening methods is also presented. For the case in which the diffraction quality of a relatively large crystal is probed using a microbeam, the usefulness and implications of mapping diffraction-quality heterogeneity (diffraction cartography) are discussed. The implementation of these techniques in the context of planned upgrades to the ESRF's structural biology beamlines is also presented.

  17. JBluIce-EPICS: a fast and flexible open-source beamline control system for macromolecular crystallography

    Science.gov (United States)

    Stepanov, S.; Hilgart, M.; Makarov, O.; Pothineni, S. B.; Yoder, D.; Ogata, C.; Sanishvili, R.; Venugopalan, N.; Becker, M.; Clift, M.; Smith, J. L.; Fischetti, R. F.

    2013-03-01

    This paper overviews recent advances in the JBluIce-EPICS open-source control system designed at the macromolecular crystallography beamlines of the National Institute of General Medical Sciences and National Cancer Institute at the Advanced Photon Source (GM/CA@APS). We discuss some technical highlights of this system distinguishing it from the competition, such as reduction of software layers to only two, possibility to operate JBluIce in parallel with other beamline controls, plugin-enabled architecture where the plugins can be written in any programming language, and utilization of the whole power of the Java integrated development environment in the Graphical User Interface. Then, we demonstrate how these highlights help to make JBluIce fast, easily adaptable to new beamline developments, and intuitive for users. In particular, we discuss several recent additions to the system including a bridge between crystal rastering and data collection, automatic detection of raster polygons from optical crystal centering, background data processing, and a pathway to a fully automated pipeline from crystal screening to solving crystal structure.

  18. Upgrade of IMCA-CAT Bending Magnet Beamline 17-BM for Macromolecular Crystallography at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, I.; Huang, R.; Graber, T.; Meron, M.; Muir, J.L.; Lavender, W.; Battaile, K.; Mulichak, A.M.; Keefe, L.J. (UC)

    2007-05-15

    Pharmaceutical research depends on macromolecular crystallography as a tool in drug design and development. To solve the de novo three-dimensional atomic structure of a protein, it is essential to know the phases of the X-rays scattered by a protein crystal. Experimental phases can be obtained from multiwavelength anomalous dispersion (MAD) experiments. Dedicated to macromolecular crystallography, the IMCA-CAT bending magnet beamline at sector 17 of the Advanced Photon Source (APS) was upgraded to provide the energy resolution required to successfully perform synchrotron radiation-based MAD phasing of protein crystal structures. A collimating mirror was inserted into the beam path upstream of a double-crystal monochromator, thus increasing the monochromatic beam throughput in a particular bandwidth without sacrificing the energy resolution of the system. The beam is focused horizontally by a sagittally bent crystal and vertically by a cylindrically bent mirror, delivering a beam at the sample of 130 {micro}m (vertically) x 250 {micro}m (horizontally) FWHM. As a result of the upgrade, the beamline now operates with an energy range of 7.5 x 17.5 keV, delivers 8 x 10{sup +11} photons/sec at 12.398 keV at the sample, and has an energy resolution of {delta}E/E = 1.45 x 10{sup -4} at 10 keV, which is suitable for MAD experiments.

  19. Web-Ice: Integrated Data Collection and Analysis for Macromolecular Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Ana; Gonzalez, Ana; Moorhead, Penjit; McPhillips, Scott E.; Song, Jinhu; Sharp, Ken; Taylor, John R.; Adams, Paul D.; Sauter, Nicholas K.; Soltis, S. Michael

    2007-10-10

    New software tools are introduced to facilitate diffraction experiments involving largenumbers of crystals. While existing programs have long provided a framework for lattice indexing, Bragg spot integration, and symmetry determination, these initial data processing steps often require significant manual effort. This limits the timely availability of data analysis needed for high-throughput procedures, including the selection of the best crystals from a large sample pool, and the calculation of optimal data collection parameters to assure complete spot coverage with minimal radiation damage. To make these protocols more efficient, we developed a network of software applications and application servers, collectively known as Web-Ice. When the package is installed at a crystallography beamline, a programming interface allows the beamline control software (e.g., Blu-Ice / DCSS) to trigger data analysis automatically. Results are organized based on a list of samples that the user provides, and are examined within a Web page, accessible both locally at the beamline or remotely. Optional programming interfaces permit the user tocontrol data acquisition through the Web browser. The system as a whole is implemented to support multiple users and multiple processors, and can be expanded to provide additional scientific functionality. Web-Ice has a distributed architecture consisting of several stand-alone software components working together via a well defined interface. Other synchrotrons or institutions may integrate selected components or the whole of Web-Ice with their own data acquisition software. Updated information about current developments may be obtained at http://smb.slac.stanford.edu/research/developments/webice.

  20. New methodologies at PF AR-NW12A: the implementation of high-pressure macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Chavas, Leonard Michel Gabriel, E-mail: leonard.chavas@kek.jp [PF/IMSS/KEK, 1-1 Oho, Tsukuba, Ibaraki 300-0801 (Japan); Nagae, Tadayuki [Nagoya University, Nagoya, Aichi 464-8603 (Japan); Nagoya University, Nagoya, Aichi 464-8603 (Japan); Yamada, Hiroyuki [Nagoya University, Nagoya, Aichi 464-8603 (Japan); Watanabe, Nobuhisa [Nagoya University, Nagoya, Aichi 464-8603 (Japan); Nagoya University, Furo-cho Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Yamada, Yusuke; Hiraki, Masahiko; Matsugaki, Naohiro [PF/IMSS/KEK, 1-1 Oho, Tsukuba, Ibaraki 300-0801 (Japan)

    2013-11-01

    The evolution of AR-NW12A into a multi-purpose end-station with optional high-pressure crystallography is described. The macromolecular crystallography (MX) beamline AR-NW12A is evolving from its original design of high-throughput crystallography to a multi-purpose end-station. Among the various options to be implemented, great efforts were made in making available high-pressure MX (HPMX) at the beamline. High-pressure molecular biophysics is a developing field that attracts the interest of a constantly growing scientific community. A plethora of activities can benefit from high pressure, and investigations have been performed on its applicability to study multimeric complex assemblies, compressibility of proteins and their crystals, macromolecules originating from extremophiles, or even the trapping of higher-energy conformers for molecules of biological interest. Recent studies using HPMX showed structural hydrostatic-pressure-induced changes in proteins. The conformational modifications could explain the enzymatic mechanism differences between proteins of the same family, living at different environmental pressures, as well as the initial steps in the pressure-denaturation process that have been attributed to water penetration into the protein interior. To facilitate further HPMX, while allowing access to various individualized set-ups and experiments, the AR-NW12A sample environment has been revisited. Altogether, the newly added implementations will bring a fresh breath of life to AR-NW12A and allow the MX community to experiment in a larger set of fields related to structural biology.

  1. First Results from a Microfocus X-Ray System for Macromolecular Crystallography

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    1999-01-01

    The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.

  2. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves.

    Science.gov (United States)

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela H; French, Jarrod B; Huang, Tony Jun

    2015-06-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable.

  3. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    Science.gov (United States)

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms.

  4. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Schulze-Briese, Clemens [DECTRIS Ltd, CH-5400 Baden (Switzerland); Fuchs, Martin R., E-mail: mfuchs@bnl.gov [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2013-09-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  5. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  6. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF.

    Science.gov (United States)

    von Stetten, David; Giraud, Thierry; Carpentier, Philippe; Sever, Franc; Terrien, Maxime; Dobias, Fabien; Juers, Douglas H; Flot, David; Mueller-Dieckmann, Christoph; Leonard, Gordon A; de Sanctis, Daniele; Royant, Antoine

    2015-01-01

    The analysis of structural data obtained by X-ray crystallography benefits from information obtained from complementary techniques, especially as applied to the crystals themselves. As a consequence, optical spectroscopies in structural biology have become instrumental in assessing the relevance and context of many crystallographic results. Since the year 2000, it has been possible to record such data adjacent to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This paper reports the current status of the Cryobench, which is now located on the MAD beamline ID29 and is thus called the ID29S-Cryobench (where S stands for `spectroscopy'). It also reviews the diverse experiments that can be performed at the Cryobench, highlighting the various scientific questions that can be addressed.

  7. Crystallography using synchrotron radiation X-ray. Application of Weissenberg and time resolved Laue methods to macromolecular structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sakabe, Noriyoshi [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1994-12-31

    The three-dimensional structures of macromolecules under static and dynamic conditions are very important for the study of molecular biology. X-ray crystallography is the most powerful tool to obtain the three-dimensional structures of the macromolecules of especially large size, for which synchrotron radiation X-ray is used, The collection of diffraction data is the first, most important step for crystalline structure analysis. Efforts have been exerted to establish the data collection system using monochromatic synchrotron radiation X-ray (SRX). The diffraction intensity data collection system combined with a newly developed Weissenberg camera for macromolecules and an image plate (IP) using SRX has been established at the Photon Factory. Many important biological structures by high resolution have already come out with this data collection system, which is used also for the study on enzymatic reaction mechanism. A time resolved Laue camera has been designed, and the preliminary experiment has been carried out in the Photon Factory. These systems are reported. (K.I.).

  8. Using macromolecular-crystallography beamline and microfluidic platform for small-angle diffraction studies of lipidic matrices for membrane-protein crystallization

    Science.gov (United States)

    Kondrashkina, E.; Khvostichenko, D. S.; Perry, S. L.; Von Osinski, J.; Kenis, P. J. A.; Brister, K.

    2013-03-01

    Macromolecular-crystallography (MX) beamlines routinely provide a possibility to change X-ray beam energy, focus the beam to a size of tens of microns, align a sample on a microdiffractometer using on-axis video microscope, and collect data with an area-detector positioned in three dimensions. These capabilities allow for running complementary measurements of small-angle X-ray scattering and diffraction (SAXS) at the same beamline with such additions to the standard MX setup as a vacuum path between the sample and the detector, a modified beam stop, and a custom sample cell. On the 21-ID-D MX beamline at the Advanced Photon Source we attach a vacuum flight tube to the area detector support and use the support motion for aligning a beam stop built into the rear end of the flight tube. At 8 KeV energy and 1 m sample-to-detector distance we can achieve a small-angle resolution of 0.01A-1 in the reciprocal space. Measuring SAXS with this setup, we have studied phase diagrams of lipidic mesophases used as matrices for membrane-protein crystallization. The outcome of crystallization trials is significantly affected by the structure of the lipidic mesophases, which is determined by the composition of the crystallization mixture. We use a microfluidic chip for the mesophase formulation and in situ SAXS data collection. Using the MX beamline and the microfluidic platform we have demonstrated the viability of the high-throughput SAXS studies facilitating screening of lipidic matrices for membrane-protein crystallization.

  9. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing

    Science.gov (United States)

    Cianci, Michele; Bourenkov, Gleb; Pompidor, Guillaume; Karpics, Ivars; Kallio, Johanna; Bento, Isabel; Roessle, Manfred; Cipriani, Florent; Fiedler, Stefan; Schneider, Thomas R.

    2017-01-01

    The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination. An adaptive Kirk­patrick–Baez focusing system provides an X-ray beam with a high photon flux and tunable focus size to adapt to diverse experimental situations. Data collections at energies as low as 4 keV (λ = 3.1 Å) are possible due to a beamline design minimizing background and maximizing photon flux particularly at low energy (up to 1011 photons s−1 at 4 keV), a custom calibration of the PILATUS 6M-F detector for use at low energies, and the availability of a helium path. At high energies, the high photon flux (5.4 × 1011 photons s−1 at 17.5 keV) combined with a large area detector mounted on a 2θ arm allows data collection to sub-atomic resolution (0.55 Å). A peak flux of about 8.0 × 1012 photons s−1 is reached at 11 keV. Automated sample mounting is available by means of the robotic sample changer ‘MARVIN’ with a dewar capacity of 160 samples. In close proximity to the beamline, laboratories have been set up for sample preparation and characterization; a laboratory specifically equipped for on-site heavy atom derivatization with a library of more than 150 compounds is available to beamline users. PMID:28009574

  10. Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, O., E-mail: makarov@anl.gov [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hilgart, M.; Ogata, C.; Pothineni, S. [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cork, C. [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-09-01

    GM/CA-CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  11. MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Zander, Ulrich [European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble (France); Bourenkov, Gleb [European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22607 Hamburg (Germany); Popov, Alexander N.; Sanctis, Daniele de; Svensson, Olof [European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble (France); McCarthy, Andrew A. [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 38042 Grenoble (France); Round, Ekaterina; Gordeliy, Valentin [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Institute of Complex Systems (ICS), Research Centre Juelich, 52425 Juelich (Germany); Moscow Institute of Physics and Technology, Dolgoprudniy 141700 (Russian Federation); Mueller-Dieckmann, Christoph; Leonard, Gordon A., E-mail: leonard@esrf.fr [European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble (France)

    2015-10-31

    The fully automated collection and merging of partial data sets from a series of cryocooled crystals of biological macromolecules contained on the same support is presented, as are the results of test experiments carried out on various systems. Here, an automated procedure is described to identify the positions of many cryocooled crystals mounted on the same sample holder, to rapidly predict and rank their relative diffraction strengths and to collect partial X-ray diffraction data sets from as many of the crystals as desired. Subsequent hierarchical cluster analysis then allows the best combination of partial data sets, optimizing the quality of the final data set obtained. The results of applying the method developed to various systems and scenarios including the compilation of a complete data set from tiny crystals of the membrane protein bacteriorhodopsin and the collection of data sets for successful structure determination using the single-wavelength anomalous dispersion technique are also presented.

  12. MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines.

    Science.gov (United States)

    Zander, Ulrich; Bourenkov, Gleb; Popov, Alexander N; de Sanctis, Daniele; Svensson, Olof; McCarthy, Andrew A; Round, Ekaterina; Gordeliy, Valentin; Mueller-Dieckmann, Christoph; Leonard, Gordon A

    2015-11-01

    Here, an automated procedure is described to identify the positions of many cryocooled crystals mounted on the same sample holder, to rapidly predict and rank their relative diffraction strengths and to collect partial X-ray diffraction data sets from as many of the crystals as desired. Subsequent hierarchical cluster analysis then allows the best combination of partial data sets, optimizing the quality of the final data set obtained. The results of applying the method developed to various systems and scenarios including the compilation of a complete data set from tiny crystals of the membrane protein bacteriorhodopsin and the collection of data sets for successful structure determination using the single-wavelength anomalous dispersion technique are also presented.

  13. History of protein crystallography in China.

    Science.gov (United States)

    Rao, Zihe

    2007-06-29

    China has a strong background in X-ray crystallography dating back to the 1920s. Protein crystallography research in China was first developed following the successful synthesis of insulin in China in 1966. The subsequent determination of the three-dimensional structure of porcine insulin made China one of the few countries which could determine macromolecular structures by X-ray diffraction methods in the late 1960s and early 1970s. After a slow period during the 1970s and 1980s, protein crystallography in China has reached a new climax with a number of outstanding accomplishments. Here, I review the history and progress of protein crystallography in China and detail some of the recent research highlights, including the crystal structures of two membrane proteins as well as the structural genomics initiative in China.

  14. The use of trimethylamine N-oxide as a primary precipitating agent and related methylamine osmolytes as cryoprotective agents for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Haley; Venkat, Murugappan; Hti Lar Seng, Nang San; Cahn, Jackson [Whitman College, Walla Walla, Washington (United States); Juers, Douglas H., E-mail: juersdh@whitman.edu [Whitman College, Walla Walla, Washington (United States); Whitman College, Walla Walla, Washington (United States)

    2012-01-01

    The stabilizing osmolyte trimethylamine N-oxide (TMAO) is shown to be an efficient primary precipitant for protein crystal growth. In addition to TMAO, two other methylamine osmolytes, sarcosine and betaine, are shown to be effective cryoprotective agents for protein crystal cooling. Both crystallization and cryoprotection are often bottlenecks for high-resolution X-ray structure determination of macromolecules. Methylamine osmolytes are known stabilizers of protein structure. One such osmolyte, trimethylamine N-oxide (TMAO), has seen occasional use as an additive to improve macromolecular crystal quality and has recently been shown to be an effective cryoprotective agent for low-temperature data collection. Here, TMAO and the related osmolytes sarcosine and betaine are investigated as primary precipitating agents for protein crystal growth. Crystallization experiments were undertaken with 14 proteins. Using TMAO, seven proteins crystallized in a total of 13 crystal forms, including a new tetragonal crystal form of trypsin. The crystals diffracted well, and eight of the 13 crystal forms could be effectively cryocooled as grown with TMAO as an in situ cryoprotective agent. Sarcosine and betaine produced crystals of four and two of the 14 proteins, respectively. In addition to TMAO, sarcosine and betaine were effective post-crystallization cryoprotective agents for two different crystal forms of thermolysin. Precipitation reactions of TMAO with several transition-metal ions (Fe{sup 3+}, Co{sup 2+}, Cu{sup 2+} and Zn{sup 2+}) did not occur with sarcosine or betaine and were inhibited for TMAO at lower pH. Structures of proteins from TMAO-grown crystals and from crystals soaked in TMAO, sarcosine or betaine were determined, showing osmolyte binding in five of the 12 crystals tested. When an osmolyte was shown to bind, it did so near the protein surface, interacting with water molecules, side chains and backbone atoms, often at crystal contacts.

  15. Comparing chemistry to outcome: the development of a chemical distance metric, coupled with clustering and hierarchal visualization applied to macromolecular crystallography.

    Directory of Open Access Journals (Sweden)

    Andrew E Bruno

    Full Text Available Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails is the most effective method of probing a proteins phase diagram and guiding crystallization but the interpretation of results can be time-consuming. To aid this empirical approach a cocktail distance coefficient was developed to quantitatively compare macromolecule crystallization conditions and outcome. These coefficients were evaluated against an existing similarity metric developed for crystallization, the C6 metric, using both virtual crystallization screens and by comparison of two related 1,536-cocktail high-throughput crystallization screens. Hierarchical clustering was employed to visualize one of these screens and the crystallization results from an exopolyphosphatase-related protein from Bacteroides fragilis, (BfR192 overlaid on this clustering. This demonstrated a strong correlation between certain chemically related clusters and crystal lead conditions. While this analysis was not used to guide the initial crystallization optimization, it led to the re-evaluation of unexplained peaks in the electron density map of the protein and to the insertion and correct placement of sodium, potassium and phosphate atoms in the structure. With these in place, the resulting structure of the putative active site demonstrated features consistent with active sites of other phosphatases which are involved in binding the phosphoryl moieties of nucleotide triphosphates. The new distance coefficient, CDcoeff, appears to be robust in this application, and coupled with hierarchical clustering and the overlay of crystallization outcome, reveals information of biological relevance. While tested with a single example the

  16. Direct methods in protein crystallography.

    Science.gov (United States)

    Karle, J

    1989-11-01

    It is pointed out that the 'direct methods' of phase determination for small-structure crystallography do not have immediate applicability to macromolecular structures. The term 'direct methods in macromolecular crystallography' is suggested to categorize a spectrum of approaches to macromolecular structure determination in which the analyses are characterized by the use of two-phase and higher-order-phase invariants. The evaluation of the invariants is generally obtained by the use of heavy-atom techniques. The results of a number of the more recent algebraic and probabilistic studies involving isomorphous replacement and anomalous dispersion thus become valid subjects for discussion here. These studies are described and suggestions are also presented concerning future applicability. Additional discussion concerns the special techniques of filtering, the use of non-crystallographic symmetry, some features of maximum entropy and attempts to apply phase-determining formulas to the refinement of macromolecular structure. It is noted that, in addition to the continuing remarkable progress in macromolecular crystallography based on the traditional applications of isomorphous replacement and anomalous dispersion, recent valuable advances have been made in the application of non-crystallographic symmetry, in particular, to virus structures and in applications of filtering. Good progress has also been reported in the application of exact linear algebra to multiple-wavelength anomalous-dispersion investigations of structures containing anomalous scatterers of only moderate scattering power.

  17. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA.

  18. Rietveld full-profile quantification of Portland cement: the importance of including full crystallography of the phase polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.C.; Matulis, C.E [Commonwealth Scientific and Industrial Research Organization, Lucas Heights, NSW (Australia); Hinczak, I. [James Hardie Research Laboratories, Granville, NSW (Australia)

    1999-12-01

    Full text: Previous Rietveld quantifications of Portland cement clinkers used a fixed structural model for alite, the major clinker phase with a C{sub 3}S-type structure. From Rietveld quantification studies using the SlROQUANT{sup tm} program on XRD powder patterns of the three NIST SRM standard clinkers 8486, 8487, and 8488 (CoK{alpha}), it is shown that best results here are obtained using three C{sub 3}S models, one from each of the three crystal systems found in alite polymorphs. It is necessary to specify the phase crystallography well, owing to the extreme superposition of alite and belite XRD lines. Unsatisfactory results can sometimes occur when only one or two of these C{sub 3}S polymorphs are used in the Rietveld quantifications. Polymorphism in belite (clinker C{sub 2}S-type phase) and C{sub 3}A(aluminate phase), is also included. The Rietveld full-profile XRD method is shown to be as powerful in quantifying phases in Portland cement clinker as the microscope point-counting(MPC) method. The Rietveld method can in addition, discriminate between phase polymorphs, and is far less labour-intensive than MPC. Rietveld and MPC methods give the same results for the three NIST standard clinkers. The Rietveld oxide weight percentages, obtained from the Rietveld phase weight percentages by a reverse-Bogue calculation, assuming the average chemical compositions of the clinker phases of Taylor(1990), agree well with the XRF oxide percentages. The MPC method also agrees equally as well with XRF oxide percentages as the Rietveld method. Bogue weight percentages do not agree with Rietveld or MPC figures. Transformation of the Bogue percentages by the reverse-Bogue program to oxides does not give as good a comparison with XRF as does either the Rietveld or MPC method. Copyright (1999) Australian X-ray Analytical Association Inc.

  19. The future of crystallography in drug discovery

    Science.gov (United States)

    Zheng, Heping; Hou, Jing; Zimmerman, Matthew D; Wlodawer, Alexander; Minor, Wladek

    2014-01-01

    Introduction X-ray crystallography plays an important role in structure-based drug design (SBDD), and accurate analysis of crystal structures of target macromolecules and macromolecule–ligand complexes is critical at all stages. However, whereas there has been significant progress in improving methods of structural biology, particularly in X-ray crystallography, corresponding progress in the development of computational methods (such as in silico high-throughput screening) is still on the horizon. Crystal structures can be overinterpreted and thus bias hypotheses and follow-up experiments. As in any experimental science, the models of macromolecular structures derived from X-ray diffraction data have their limitations, which need to be critically evaluated and well understood for structure-based drug discovery. Areas covered This review describes how the validity, accuracy and precision of a protein or nucleic acid structure determined by X-ray crystallography can be evaluated from three different perspectives: i) the nature of the diffraction experiment; ii) the interpretation of an electron density map; and iii) the interpretation of the structural model in terms of function and mechanism. The strategies to optimally exploit a macromolecular structure are also discussed in the context of ‘Big Data’ analysis, biochemical experimental design and structure-based drug discovery. Expert opinion Although X-ray crystallography is one of the most detailed ‘microscopes’ available today for examining macromolecular structures, the authors would like to re-emphasize that such structures are only simplified models of the target macromolecules. The authors also wish to reinforce the idea that a structure should not be thought of as a set of precise coordinates but rather as a framework for generating hypotheses to be explored. Numerous biochemical and biophysical experiments, including new diffraction experiments, can and should be performed to verify or falsify

  20. Macromolecular Crystallization in Microgravity

    Science.gov (United States)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  1. Micro-crystallography comes of age.

    Science.gov (United States)

    Smith, Janet L; Fischetti, Robert F; Yamamoto, Masaki

    2012-10-01

    The latest revolution in macromolecular crystallography was incited by the development of dedicated, user friendly, micro-crystallography beam lines. Brilliant X-ray beams of diameter 20 μm or less, now available at most synchrotron sources, enable structure determination from samples that previously were inaccessible. Relative to traditional crystallography, crystals with one or more small dimensions have diffraction patterns with vastly improved signal-to-noise when recorded with an appropriately matched beam size. Structures can be solved from isolated, well diffracting regions within inhomogeneous samples. This review summarizes the technological requirements and approaches to producing micro-beams and how they continue to change the practice of crystallography.

  2. Control system for the 2nd generation Berkeley AutoMounters (BAM2) at GM/CA CAT macromolecular crystallography beamlines.

    Science.gov (United States)

    Makarov, O; Hilgart, M; Ogata, C; Pothineni, S; Cork, C

    2011-09-01

    GM/CA CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction.A second generation Berkeley automounter is being integrated into the beamline control system at the 23-BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  3. Macromolecular crystallization in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Edward H [Biophysics Group, NASA Marshall Space Flight Center, Code XD42, Huntsville, AL 35812 (United States); Helliwell, John R [Department of Chemistry, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2005-04-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  4. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  5. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

    Directory of Open Access Journals (Sweden)

    Matthew P. Blakeley

    2015-07-01

    . Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c′, are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.

  6. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential.

    Science.gov (United States)

    Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V

    2015-07-01

    crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.

  7. Multigrain crystallography

    DEFF Research Database (Denmark)

    Sørensen, Henning Osholm; Schmidt, Søren; Wright, Jonathan P.;

    2012-01-01

    We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing, integra......We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing...... of the methodology in terms of number of grains, size of unit cell and direct space resolution. First experimental results in the fields of chemistry, structural biology and time-resolved studies in photochemistry are presented. As an outlook, the concept of TotalCrystallography is introduced, defined...

  8. Introduction to electron crystallography.

    Science.gov (United States)

    Kühlbrandt, Werner

    2013-01-01

    From the earliest work on regular arrays in negative stain, electron crystallography has contributed greatly to our understanding of the structure and function of biological macromolecules. The development of electron cryo-microscopy (cryo-EM) then lead to the first groundbreaking atomic models of the membrane proteins bacteriorhodopsin and light harvesting complex II within lipid bilayers. Key contributions towards cryo-EM and electron crystallography methods included specimen preparation and vitrification, liquid-helium cooling, data collection, and image processing. These methods are now applied almost routinely to both membrane and soluble proteins. Here we outline the advances and the breakthroughs that paved the way towards high-resolution structures by electron crystallography, both in terms of methods development and biological milestones.

  9. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  10. Warm dense crystallography

    Science.gov (United States)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  11. Beamline X29: a novel undulator source for X-ray crystallography.

    Science.gov (United States)

    Shi, Wuxian; Robinson, Howard; Sullivan, Michael; Abel, Don; Toomey, John; Berman, Lonny E; Lynch, Don; Rosenbaum, Gerd; Rakowsky, George; Rock, Larry; Nolan, Bill; Shea-McCarthy, Grace; Schneider, Dieter; Johnson, Erik; Sweet, Robert M; Chance, Mark R

    2006-09-01

    A high-flux insertion device and beamline for macromolecular crystallography has been built at the National Synchrotron Light Source (NSLS) that employs a mini-gap undulator source developed by the NSLS. The mini-gap undulator at beamline X29 is a hybrid-magnet device of period 12.5 mm operating at proven gaps of 3.3-10 mm. The beamline provides hard X-rays for macromolecular crystallography experiments from the second and third harmonics over an energy range of 5-15 keV. The X-ray optics is designed to deliver intense and highly collimated X-rays. Horizontal focusing is achieved by a cryogenically cooled sagittally focusing double-crystal monochromator with approximately 4.1:1 demagnification. A vertical focusing mirror downstream of the monochromator is used for harmonic rejection and vertical focusing. The experimental station hosts an Area Detector Systems Quantum 315 CCD detector with 2.2 s readout time between exposures and Crystal Logic goniostat for crystal rotation and detector positioning. An auto-mounter crystal changer has been installed to facilitate the high-throughput data collection required by the major users, which includes structural genomics projects and the Macromolecular Crystallography Research Resource mail-in program. X29 is 10(3) times brighter than any existing bending-magnet beamline at NSLS with an actual flux of 2.5 x 10(11) photons s(-1) through a 0.12 mm square aperture at 11.271 keV.

  12. Fundamentals of crystallography

    CERN Document Server

    2011-01-01

    Crystallography is a basic tool for scientists in many diverse disciplines. This text offers a clear description of fundamentals and of modern applications. It supports curricula in crystallography at undergraduate level.

  13. Identifying and visualizing macromolecular flexibility in structural biology

    Directory of Open Access Journals (Sweden)

    Martina Palamini

    2016-09-01

    Full Text Available Structural biology comprises a variety of tools to obtain atomic resolution data for the investigation of macromolecules. Conventional structural methodologies including crystallography, NMR and electron microscopy often do not provide sufficient details concerning flexibility and dynamics, even though these aspects are critical for the physiological functions of the systems under investigation. However, the increasing complexity of the molecules studied by structural biology (including large macromolecular assemblies, integral membrane proteins, intrinsically disordered systems, and folding intermediates continuously demands in-depth analyses of the roles of flexibility and conformational specificity involved in interactions with ligands and inhibitors. The intrinsic difficulties in capturing often subtle but critical molecular motions in biological systems have restrained the investigation of flexible molecules into a small niche of structural biology. Introduction of massive technological developments over the recent years, which include time-resolved studies, solution X-ray scattering, and new detectors for cryo-electron microscopy, have pushed the limits of structural investigation of flexible systems far beyond traditional approaches of NMR analysis. By integrating these modern methods with powerful biophysical and computational approaches such as generation of ensembles of molecular models and selective particle picking in electron microscopy, more feasible investigations of dynamic systems are now possible. Using some prominent examples from recent literature, we review how current structural biology methods can contribute useful data to accurately visualize flexibility in macromolecular structures and understand its important roles in regulation of biological processes.

  14. Data Mining of Macromolecular Structures.

    Science.gov (United States)

    van Beusekom, Bart; Perrakis, Anastassis; Joosten, Robbie P

    2016-01-01

    The use of macromolecular structures is widespread for a variety of applications, from teaching protein structure principles all the way to ligand optimization in drug development. Applying data mining techniques on these experimentally determined structures requires a highly uniform, standardized structural data source. The Protein Data Bank (PDB) has evolved over the years toward becoming the standard resource for macromolecular structures. However, the process selecting the data most suitable for specific applications is still very much based on personal preferences and understanding of the experimental techniques used to obtain these models. In this chapter, we will first explain the challenges with data standardization, annotation, and uniformity in the PDB entries determined by X-ray crystallography. We then discuss the specific effect that crystallographic data quality and model optimization methods have on structural models and how validation tools can be used to make informed choices. We also discuss specific advantages of using the PDB_REDO databank as a resource for structural data. Finally, we will provide guidelines on how to select the most suitable protein structure models for detailed analysis and how to select a set of structure models suitable for data mining.

  15. Electron crystallography and aquaporins.

    Science.gov (United States)

    Schenk, Andreas D; Hite, Richard K; Engel, Andreas; Fujiyoshi, Yoshinori; Walz, Thomas

    2010-01-01

    Electron crystallography of two-dimensional (2D) crystals can provide information on the structure of membrane proteins at near-atomic resolution. Originally developed and used to determine the structure of bacteriorhodopsin (bR), electron crystallography has recently been applied to elucidate the structure of aquaporins (AQPs), a family of membrane proteins that form pores mostly for water but also other solutes. While electron crystallography has made major contributions to our understanding of the structure and function of AQPs, structural studies on AQPs, in turn, have fostered a number of technical developments in electron crystallography. In this contribution, we summarize the insights electron crystallography has provided into the biology of AQPs, and describe technical advancements in electron crystallography that were driven by structural studies on AQP 2D crystals. In addition, we discuss some of the lessons that were learned from electron crystallographic work on AQPs.

  16. Atom probe crystallography

    National Research Council Canada - National Science Library

    Gault, Baptiste; Moody, Michael P; Cairney, Julie M; Ringer, Simon P

    2012-01-01

    This review addresses new developments in the emerging area of "atom probe crystallography", a materials characterization tool with the unique capacity to reveal both composition and crystallographic...

  17. Macromolecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Safinya, C.R.; Safran, S.A. (Exxon Research and Engineering Co., Annandale, NJ (US)); Pincus, P.A. (Univ. of California at Santa Barbara, Santa Barbara, CA (US))

    1990-01-01

    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  18. Method for removing atomic-model bias in macromolecular crystallography

    Science.gov (United States)

    Terwilliger, Thomas C.

    2006-08-01

    Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.

  19. Center for Macromolecular Crystallography, University of Alabama in Birmingham

    Science.gov (United States)

    Navia, Manuel A.

    1991-01-01

    Porcine pancreatic elastase (PPE) crystals grown under microgravity conditions on mission STS-26 of the Space Shuttle Discovery were shown to diffract to considerably higher resolution than the best PPE crystals grown by us on the ground. We have now independently refined both the microgravity and ground-based data. Preliminary results of these refinements are summarized. These results show nearly a doubling of experimental diffraction data for this structure, exceeding 1.3 A resolution. Improved phase information derived from the refined structure of PPE based on this microgravity data has allowed us to interpret previously-uninterpretable electron density obtained from ground-based crystals of a complex of PPE with a chemically-reactive inhibitor. Intermediate stages in the enzyme-inhibitor reaction mechanism in the crystal can now be directly observed. Further refinement of PPE structures is in progress.

  20. Future directions of electron crystallography.

    Science.gov (United States)

    Fujiyoshi, Yoshinori

    2013-01-01

    In biological science, there are still many interesting and fundamental yet difficult questions, such as those in neuroscience, remaining to be answered. Structural and functional studies of membrane proteins, which are key molecules of signal transduction in neural and other cells, are essential for understanding the molecular mechanisms of many fundamental biological processes. Technological and instrumental advancements of electron microscopy have facilitated comprehension of structural studies of biological components, such as membrane proteins. While X-ray crystallography has been the main method of structure analysis of proteins including membrane proteins, electron crystallography is now an established technique to analyze structures of membrane proteins in the lipid bilayer, which is close to their natural biological environment. By utilizing cryo-electron microscopes with helium-cooled specimen stages, structures of membrane proteins were analyzed at a resolution better than 3 Å. Such high-resolution structural analysis of membrane proteins by electron crystallography opens up the new research field of structural physiology. Considering the fact that the structures of integral membrane proteins in their native membrane environment without artifacts from crystal contacts are critical in understanding their physiological functions, electron crystallography will continue to be an important technology for structural analysis. In this chapter, I will present several examples to highlight important advantages and to suggest future directions of this technique.

  1. Status of the crystallography beamlines at PETRA III

    Science.gov (United States)

    Burkhardt, Anja; Pakendorf, Tim; Reime, Bernd; Meyer, Jan; Fischer, Pontus; Stübe, Nicolas; Panneerselvam, Saravanan; Lorbeer, Olga; Stachnik, Karolina; Warmer, Martin; Rödig, Philip; Göries, Dennis; Meents, Alke

    2016-03-01

    Since 2013, three beamlines for macromolecular crystallography are available to users at the third-generation synchrotron PETRA III in Hamburg: P11, P13 and P14, the latter two operated by EMBL. Beamline P11 is operated by DESY and is equipped with a Pilatus 6M detector. Together with the photon flux of 2× 10^{13} ph/s provided by the very brilliant X-ray source of PETRA III, a full data set can be typically collected in less than 2min. P11 provides state-of-the-art microfocusing capabilities with beam sizes down to 1× 1 μ m2, which makes the beamline ideally suited for investigation of microcrystals and serial crystallography experiments. An automatic sample changer allows fast sample exchange in less than 20s, which enables high-throughput crystallography and fast crystal screening. For sample preparation, an S2 biosafety laboratory is available in close proximity to the beamline.

  2. Electron crystallography--the waking beauty of structural biology.

    Science.gov (United States)

    Pope, Christopher R; Unger, Vinzenz M

    2012-08-01

    Since its debut in the mid 1970s, electron crystallography has been a valuable alternative in the structure determination of biological macromolecules. Its reliance on single-layered or double-layered two-dimensionally ordered arrays and the ability to obtain structural information from small and disordered crystals make this approach particularly useful for the study of membrane proteins in a lipid bilayer environment. Despite its unique advantages, technological hurdles have kept electron crystallography from reaching its full potential. Addressing the issues, recent initiatives developed high-throughput pipelines for crystallization and screening. Adding progress in automating data collection, image analysis and phase extension methods, electron crystallography is poised to raise its profile and may lead the way in exploring the structural biology of macromolecular complexes.

  3. Protein Crystallography in Vaccine Research and Development.

    Science.gov (United States)

    Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J

    2015-06-09

    The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.

  4. Raman crystallography of RNA.

    Science.gov (United States)

    Gong, Bo; Chen, Jui-Hui; Yajima, Rieko; Chen, Yuanyuan; Chase, Elaine; Chadalavada, Durga M; Golden, Barbara L; Carey, Paul R; Bevilacqua, Philip C

    2009-10-01

    Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.

  5. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  6. Macromolecular Prodrugs of Ribavirin

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Hinton, Tracey M; Gajda, Paulina

    2017-01-01

    The requirement for new antiviral therapeutics is an ever present need. Particularly lacking are broad spectrum antivirals that have low toxicity. We develop such agents based on macromolecular prodrugs whereby both the polymer chain and the drug released from the polymer upon cell entry have ant...

  7. SPINE-compatible `carboloops': a new microshaped vitreous carbon sample mount for X-ray and neutron crystallography.

    Science.gov (United States)

    Romoli, Filippo; Mossou, Estelle; Cuypers, Maxime; van der Linden, Peter; Carpentier, Philippe; Mason, Sax A; Forsyth, V Trevor; McSweeney, Sean

    2014-05-01

    A novel vitreous carbon mount for macromolecular crystallography, suitable for neutron and X-ray crystallographic studies, has been developed. The technology described here is compatible both with X-ray and neutron cryo-crystallography. The mounts have low density and low background scattering for both neutrons and X-rays. They are prepared by laser cutting, allowing high standards of production quality, the ability to custom-design the mount to specific crystal sizes and large-scale production.

  8. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  9. Protein Energy Landscapes Determined by 5-Dimensional Crystallography

    CERN Document Server

    Schmidt, Marius; Henning, Robert; Ihee, Hyotcherl; Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh

    2013-01-01

    Free energy landscapes decisively determine the progress of enzymatically catalyzed reactions[1]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [2-4] because both can be determined from the same set of X-ray data. We demonstrate here how barriers of activation can be determined solely from five-dimensional crystallography [5]. Directly linking molecular structures with barriers of activation between them allows for gaining insight into the structural nature of the barrier. We analyze comprehensive time series of crystal-lographic data at 14 different temperature settings and determine entropy and enthalpy contributions to the barriers of activation. 100 years after the discovery of X-ray scattering, we advance X-ray structure determination to a new frontier, the determination of energy landscapes.

  10. NATO Advanced Study Institute on Evolving Methods for Macromolecular Gystallography

    CERN Document Server

    Read, Randy J

    2007-01-01

    X-ray crystallography is the pre-eminent technique for visualizing the structures of macromolecules at atomic resolution. These structures are central to understanding the detailed mechanisms of biological processes, and to discovering novel therapeutics using a structure-based approach. As yet, structures are known for only a small fraction of the proteins encoded by human and pathogenic genomes. To counter the myriad modern threats of disease, there is an urgent need to determine the structures of the thousands of proteins whose structure and function remain unknown. This volume draws on the expertise of leaders in the field of macromolecular crystallography to illuminate the dramatic developments that are accelerating progress in structural biology. Their contributions span the range of techniques from crystallization through data collection, structure solution and analysis, and show how modern high-throughput methods are contributing to a deeper understanding of medical problems.

  11. Crystallography: past and present

    Science.gov (United States)

    Hodeau, J.-L.; Guinebretiere, R.

    2007-12-01

    In the 19th century, crystallography referred to the study of crystal shapes. Such studies by Haüy and Bravais allowed the establishment of important hypotheses such as (i) “les molécules intégrantes qui sont censées être les plus petits solides que l’on puisse extraire d’un minéral” [1], (ii) the definition of the crystal lattice and (iii) “le cristal est clivable parallèlement à deux ou trois formes cristallines” [2]. This morphological crystallography defined a crystal like “a chemically homogeneous solid, wholly or partly bounded by natural planes that intersect at predetermined angles” [3]. It described the main symmetry elements and operations, nomenclatures of different crystal forms and also the theory of twinning. A breakthrough appeared in 1912 with the use of X-rays by M. von Laue and W.H. and W.L. Bragg. This experimental development allowed the determination of the atomic content of each unit cell constituting the crystal and defined a crystal as “any solid in which an atomic pattern is repeated periodically in three dimensions, that is, any solid that “diffracts” an incident X-ray beam” [3]. Mathematical tools like the Patterson methods, the direct methods, were developed. The way for solving crystalline structure was opened first for simple compounds and at that time crystallography was associated mainly with perfect crystals. In the fifties, crystallographers already had most apparatus and fundamental methods at their disposal; however, we had to wait for the development of computers to see the full use of these tools. Furthermore the development of new sources of neutrons, electrons and synchrotron X-rays allowed the studies of complex compounds like large macromolecules in biology. Nowadays, one of the new frontiers for crystallographers is to relate the crystal structure to its physical-chemical-biological properties, this means that an accurate structural determination is needed to focus on a selective part of the

  12. Sample mounts for microcrystal crystallography

    Science.gov (United States)

    Thorne, Robert E. (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor)

    2009-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  13. X-ray crystallography facility for the international space station

    Science.gov (United States)

    McDdonald, William T.; Lewis, Johanna L.; Smith, Craig D.; Delucas, Lawrence J.

    1997-01-01

    Directed by NASA's Office of Space Access and Technology (OSAT), the University of Alabama at Birmingham (UAB) Center for Macromolecular Crystallography (CMC) recently completed a Design Feasibility Study for the X-ray Crystallography Facility (XCF) for the International Space Station (ISS). The XCF is a facility for growing macromolecular protein crystals; harvesting, selecting, and mounting sample crystals, and snap-freezing the samples, if necessary; performing x-ray diffraction; and downlinking the diffraction data to the ground. Knowledge of the structure of protein molecules is essential for the development of pharmaceuticals by structure-based drug design techniques. Currently, x-ray diffraction of high quality protein crystals is the only method of determining the structure of these macromolecules. High quality protein crystals have been grown in microgravity onboard the Space Shuttle Orbiter for more than 10 years, but these crystals always have been returned to Earth for x-ray diffraction. The XCF will allow crystal growth, harvesting, mounting, and x-ray diffraction onboard the ISS, maximizing diffraction data quality and timeliness. This paper presents the XCF design concept, describing key feasibility issues for the ISS application and advanced technologies and operational features which resolve those issues. The conclusion is that the XCF design is feasible and can be operational onboard the ISS by early in 2002.

  14. Developing advanced X-ray scattering methods combined with crystallography and computation.

    Science.gov (United States)

    Perry, J Jefferson P; Tainer, John A

    2013-03-01

    The extensive use of small angle X-ray scattering (SAXS) over the last few years is rapidly providing new insights into protein interactions, complex formation and conformational states in solution. This SAXS methodology allows for detailed biophysical quantification of samples of interest. Initial analyses provide a judgment of sample quality, revealing the potential presence of aggregation, the overall extent of folding or disorder, the radius of gyration, maximum particle dimensions and oligomerization state. Structural characterizations include ab initio approaches from SAXS data alone, and when combined with previously determined crystal/NMR, atomistic modeling can further enhance structural solutions and assess validity. This combination can provide definitions of architectures, spatial organizations of protein domains within a complex, including those not determined by crystallography or NMR, as well as defining key conformational states of a protein interaction. SAXS is not generally constrained by macromolecule size, and the rapid collection of data in a 96-well plate format provides methods to screen sample conditions. This includes screening for co-factors, substrates, differing protein or nucleotide partners or small molecule inhibitors, to more fully characterize the variations within assembly states and key conformational changes. Such analyses may be useful for screening constructs and conditions to determine those most likely to promote crystal growth of a complex under study. Moreover, these high throughput structural determinations can be leveraged to define how polymorphisms affect assembly formations and activities. This is in addition to potentially providing architectural characterizations of complexes and interactions for systems biology-based research, and distinctions in assemblies and interactions in comparative genomics. Thus, SAXS combined with crystallography/NMR and computation provides a unique set of tools that should be considered

  15. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  16. REFMAC5 for the refinement of macromolecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Murshudov, Garib N., E-mail: garib@ysbl.york.ac.uk [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom); Skubák, Pavol [Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden (Netherlands); Lebedev, Andrey A. [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom); Pannu, Navraj S. [Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden (Netherlands); Steiner, Roberto A. [Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London (United Kingdom); Nicholls, Robert A. [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom); Winn, Martyn D. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Long, Fei; Vagin, Alexei A. [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom)

    2011-04-01

    The general principles behind the macromolecular crystal structure refinement program REFMAC5 are described. This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization. Reliable models at resolutions at least as low as 4 Å can be achieved thanks to low-resolution refinement tools such as secondary-structure restraints, restraints to known homologous structures, automatic global and local NCS restraints, ‘jelly-body’ restraints and the use of novel long-range restraints on atomic displacement parameters (ADPs) based on the Kullback–Leibler divergence. REFMAC5 additionally offers TLS parameterization and, when high-resolution data are available, fast refinement of anisotropic ADPs. Refinement in the presence of twinning is performed in a fully automated fashion. REFMAC5 is a flexible and highly optimized refinement package that is ideally suited for refinement across the entire resolution spectrum encountered in macromolecular crystallography.

  17. Overview of electron crystallography of membrane proteins: crystallization and screening strategies using negative stain electron microscopy.

    Science.gov (United States)

    Nannenga, Brent L; Iadanza, Matthew G; Vollmar, Breanna S; Gonen, Tamir

    2013-01-01

    Electron cryomicroscopy, or cryoEM, is an emerging technique for studying the three-dimensional structures of proteins and large macromolecular machines. Electron crystallography is a branch of cryoEM in which structures of proteins can be studied at resolutions that rival those achieved by X-ray crystallography. Electron crystallography employs two-dimensional crystals of a membrane protein embedded within a lipid bilayer. The key to a successful electron crystallographic experiment is the crystallization, or reconstitution, of the protein of interest. This unit describes ways in which protein can be expressed, purified, and reconstituted into well-ordered two-dimensional crystals. A protocol is also provided for negative stain electron microscopy as a tool for screening crystallization trials. When large and well-ordered crystals are obtained, the structures of both protein and its surrounding membrane can be determined to atomic resolution.

  18. The 16th National Seminar on Crystallography: Abstract of papers

    Science.gov (United States)

    1982-03-01

    The abstracts of the papers received for this seminar are presented. These papers deal with the following subjects: Methods in Crystal Structure Analysis Including Computational Methods; Crystallography in Biology, Biohemistry, and Pharmacology; Atomic Scale Mechanisms, Physical Properties and Structures; Materials Science; Real and Ideal Crystals; Inorganic and Mineralogical Crystallography; Structures of Organic, Organic-Metallic Coordination Compounds and Polymers; Apparatus and Techniques; and Structural Methods Other Than Diffraction.

  19. Use of Site-Specifically Tethered Chemical Nucleases to Study Macromolecular Reactions

    Directory of Open Access Journals (Sweden)

    Mukherjee Srabani

    2003-01-01

    Full Text Available During a complex macromolecular reaction multiple changes in molecular conformation and interactions with ligands may occur. X-ray crystallography may provide only a limited set of snapshots of these changes. Solution methods can augment such structural information to provide a more complete picture of a macromolecular reaction. We analyzed the changes in protein conformation and protein:nucleic acid interactions which occur during transcription initiation by using a chemical nuclease tethered to cysteines introduced site-specifically into the RNA polymerase of bacteriophage T7 (T7 RNAP. Changes in cleavage patterns as the polymerase steps through transcription reveal a series of structural transitions which mediate transcription initiation. Cleavage by tethered chemical nucleases is seen to be a powerful method for revealing the conformational dynamics of macromolecular reactions, and has certain advantages over cross-linking or energy transfer approaches.

  20. In meso in situ serial X-ray crystallography of soluble and membrane proteins.

    Science.gov (United States)

    Huang, Chia Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-06-01

    The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β2-adrenoreceptor-Gs protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development.

  1. Electron Crystallography Novel Approaches for Structure Determination of Nanosized Materials

    CERN Document Server

    Weirich, Thomas E; Zou, Xiaodong

    2006-01-01

    During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to r...

  2. Sequential recovery of macromolecular components of the nucleolus.

    Science.gov (United States)

    Bai, Baoyan; Laiho, Marikki

    2015-01-01

    The nucleolus is involved in a number of cellular processes of importance to cell physiology and pathology, including cell stress responses and malignancies. Studies of macromolecular composition of the nucleolus depend critically on the efficient extraction and accurate quantification of all macromolecular components (e.g., DNA, RNA, and protein). We have developed a TRIzol-based method that efficiently and simultaneously isolates these three macromolecular constituents from the same sample of purified nucleoli. The recovered and solubilized protein can be accurately quantified by the bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis or by mass spectrometry. We have successfully applied this approach to extract and quantify the responses of all three macromolecular components in nucleoli after drug treatments of HeLa cells, and conducted RNA-Seq analysis of the nucleolar RNA.

  3. 北京同步辐射1W2B生物大分子束线双丝型BPM实时跟踪监测系统%Dynamic monitoring system with double-wire BPM of the macromolecular crystallography beamline 1W2B at BSRF

    Institute of Scientific and Technical Information of China (English)

    常广才; 郭娴; 石泓; 李明; 甘泉; 刘鹏

    2012-01-01

    同步辐射光束位置稳定性对光束强度至关重要,直接会影响到实验数据的质量,因此需要在实验过程中对光束位置进行实时监测.在同步辐射光束线上一般会使用双丝型的光束位置监测器(beam position monitor,BPM)扫描光束,获得光束的截面分布,同时在固定位置的双丝会对光束位置进行静态的实时监测.但是这种监测方式对于入射光束分布有特殊的要求,当光束较大地偏离原有位置时会对双丝BPM造成损伤的危险.北京同步辐射1W2B生物大分子实验站通过采用双丝型BPM实时动态跟踪监测方式,有效地解决了常规监测方式带来的光束分布和光敏丝损伤问题,为实验光束的稳定性研究提供了基础.%The stability of the synchrotron radiation (SR) beam's position is essential to beam flux, and it will also directly affect the quality of the experiment data. It is therefore necessary to monitor the beam position in real-time during the whole experiment. The double-wire type BPM (beam position monitor) is normally used to scan the beam profile and it can also monitor the beam position in a fixed position. But this kind of monitoring demands a special beam distribution because when the beam greatly deviates from the original position, the double-wire BPM might face the threat of damage. By means of the dynamic realtime tracking mode, 1W2B macromolecular beamline of BSRF (Beijing Synchrotron Radiation Facility) has solved the problems of the routine monitoring mode, such as beam distribution and the damage of the photosensitive wires, thus providing a basis for the study of beam stability.

  4. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chia-Ying [Trinity College, Dublin (Ireland); Olieric, Vincent [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Ma, Pikyee [Trinity College, Dublin (Ireland); Panepucci, Ezequiel [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Diederichs, Kay [Universität Konstanz, M647, D-78457 Konstanz (Germany); Wang, Meitian, E-mail: meitian.wang@psi.ch [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Caffrey, Martin, E-mail: meitian.wang@psi.ch [Trinity College, Dublin (Ireland)

    2015-05-14

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β{sub 2}-adrenoreceptor–G{sub s} protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at

  5. Crystallography across the Sciences 2

    NARCIS (Netherlands)

    H. Schenk

    2008-01-01

    This second commemorative compilation from the IUCr contains 24 invited articles, all refereed, from some of today's most eminent crystallographers. The articles describe state-of-the-art research in which crystallography has played a major role, and are intended to be attractive for a broad scienti

  6. X-ray Crystallography Facility

    Science.gov (United States)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  7. On macromolecular refinement at subatomic resolution withinteratomic scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.; Lunin, Vladimir Y.; Urzhumtsev, Alexandre

    2007-11-09

    A study of the accurate electron density distribution in molecular crystals at subatomic resolution, better than {approx} 1.0 {angstrom}, requires more detailed models than those based on independent spherical atoms. A tool conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8-1.0 {angstrom}, the number of experimental data is insufficient for the full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark datasets gave results comparable in quality with results of multipolar refinement and superior of those for conventional models. Applications to several datasets of both small- and macro-molecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  8. Protein energy landscapes determined by five-dimensional crystallography.

    Science.gov (United States)

    Schmidt, Marius; Srajer, Vukica; Henning, Robert; Ihee, Hyotcherl; Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh

    2013-12-01

    Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001), Chem. Rev. 101, 1569-1581; Schmidt et al. (2005), Methods Mol. Biol. 305, 115-154; Schmidt (2008), Ultrashort Laser Pulses in Medicine and Biology] because both can be determined from the same set of X-ray data. Here, it is demonstrated how barriers of activation can be determined solely from five-dimensional crystallography, where in addition to space and time, temperature is a variable as well [Schmidt et al. (2010), Acta Cryst. A66, 198-206]. Directly linking molecular structures with barriers of activation between them allows insight into the structural nature of the barrier to be gained. Comprehensive time series of crystallographic data at 14 different temperature settings were analyzed and the entropy and enthalpy contributions to the barriers of activation were determined. One hundred years after the discovery of X-ray scattering, these results advance X-ray structure determination to a new frontier: the determination of energy landscapes.

  9. Future developments in instrumentation for electron crystallography.

    Science.gov (United States)

    Downing, Kenneth H

    2013-01-01

    Advances in instrumentation have proceeded at an impressive rate since the invention of the electron microscope. These advances have produced a continuous expansion of the capabilities and range of application of electron microscopy. In order to provide some insights on how continuing advances may enhance cryo-electron microscopy and electron crystallography, we review some of the active areas of instrumentation development. There is strong momentum in areas including detectors, phase contrast devices, and aberration correctors that may have substantial impact on the productivity and expectations of electron crystallographers.

  10. Macromolecular crystallization and crystal perfection

    CERN Document Server

    Chayen, Naomi E; Snell, Edward H

    2010-01-01

    Structural biology is key to our understanding of the mechanisms of biological processes. This text describes current methods and future frontiers in crystal growth and use of X-ray and neutron crystallography, in the context of automation of crystallization and generation of synchrotron X-ray and neutron beams.

  11. Metalloprotein Crystallography: More than a Structure.

    Science.gov (United States)

    Bowman, Sarah E J; Bridwell-Rabb, Jennifer; Drennan, Catherine L

    2016-04-19

    Metal ions and metallocofactors play important roles in a broad range of biochemical reactions. Accordingly, it has been estimated that as much as 25-50% of the proteome uses transition metal ions to carry out a variety of essential functions. The metal ions incorporated within metalloproteins fulfill functional roles based on chemical properties, the diversity of which arises as transition metals can adopt different redox states and geometries, dictated by the identity of the metal and the protein environment. The coupling of a metal ion with an organic framework in metallocofactors, such as heme and cobalamin, further expands the chemical functionality of metals in biology. The three-dimensional visualization of metal ions and complex metallocofactors within a protein scaffold is often a starting point for enzymology, highlighting the importance of structural characterization of metalloproteins. Metalloprotein crystallography, however, presents a number of implicit challenges including correctly incorporating the relevant metal or metallocofactor, maintaining the proper environment for the protein to be purified and crystallized (including providing anaerobic, cold, or aphotic environments), and being mindful of the possibility of X-ray induced damage to the proteins or incorporated metal ions. Nevertheless, the incorporated metals or metallocofactors also present unique advantages in metalloprotein crystallography. The significant resonance that metals undergo with X-ray photons at wavelengths used for protein crystallography and the rich electronic properties of metals, which provide intense and spectroscopically unique signatures, allow a metalloprotein crystallographer to use anomalous dispersion to determine phases for structure solution and to use simultaneous or parallel spectroscopic techniques on single crystals. These properties, coupled with the improved brightness of beamlines, the ability to tune the wavelength of the X-ray beam, the availability of

  12. Cosmic crystallography in a circle

    CERN Document Server

    Teixeira, A F F

    2000-01-01

    In a circle (an $S^1$) with circumference 1 assume $m$ objects distributed pseudo-randomly. In the universal covering $R^1$ assume the objects replicated accordingly, and take an interval $L>1$. In this interval, make the normalized histogram of the pair separations which are not an integer. The theoretical (expected) such histogram is obtained in this report, as well as its difference to a similar histogram for non-replicated objects. The whole study is of interest for the cosmic crystallography.

  13. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds.

    Science.gov (United States)

    Sanz-Pintos, Nerea; Pérez-Jiménez, Jara; Buschmann, Alejandro H; Vergara-Salinas, José Rodrigo; Pérez-Correa, José Ricardo; Saura-Calixto, Fulgencio

    2017-02-01

    Seaweeds are rich in different bioactive compounds with potential uses in drugs, cosmetics and the food industry. The objective of this study was to analyze macromolecular antioxidants or nonextractable polyphenols, in several edible seaweed species collected in Chile (Gracilaria chilensis, Callophyllis concepcionensis, Macrocystis pyrifera, Scytosyphon lomentaria, Ulva sp. and Enteromorpha compressa), including their 1st HPLC characterization. Macromolecular antioxidants are commonly ignored in studies of bioactive compounds. They are associated with insoluble dietary fiber and exhibit significant biological activity, with specific features that are different from those of both dietary fiber and extractable polyphenols. We also evaluated extractable polyphenols and dietary fiber, given their relationship with macromolecular antioxidants. Our results show that macromolecular antioxidants are a major polyphenol fraction (averaging 42% to total polyphenol content), with hydroxycinnamic acids, hydroxybenzoic acids and flavonols being the main constituents. This fraction also showed remarkable antioxidant capacity, as determined by 2 complementary assays. The dietary fiber content was over 50% of dry weight, with some samples exhibiting the target proportionality between soluble and insoluble dietary fiber for adequate nutrition. Overall, our data show that seaweed could be an important source of commonly ignored macromolecular antioxidants. © 2017 Institute of Food Technologists®.

  14. Models as an Aid to Courses in Crystallography and Mineralogy.

    Science.gov (United States)

    Brady, K. T.

    1983-01-01

    Three models used in teaching crystallography/mineralogy at the University of Technology (Papua, New Guinea) are described. These include stereographic projection model, optical indicatrix models for Istropic/Anisotropic minerals, and model showing effect of anisotropic minerals under crossed polars. Photographs of the models are also included.…

  15. Protein crystallography prescreen kit

    Science.gov (United States)

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  16. Personal remarks on the future of protein crystallography and structural biology.

    Science.gov (United States)

    Jaskolski, Mariusz

    2010-01-01

    Protein crystallography, the main experimental method of structural biology, has undergone in the recent past three revolutionary changes leading to its unexpected renaissance. They were connected with (i) the introduction of synchrotron radiation sources for X-ray diffraction experiments, (ii) implementation of Se-Met multiwavelength anomalous diffraction (MAD) for phasing, and (iii) initiation of structural genomics (SG) programs. It can be foreseen that in the next 10-15 years protein crystallography will continue to be in this revolutionary phase. We can expect not only an avalanche of protein crystal structures from SG centers, but also attacking of more demanding projects, such as the structure of membrane proteins and of very large macromolecular complexes. On the technological front, the introduction of X-ray radiation from free-electron lasers will revolutionize the experimental possibilities, making feasible even the imaging of single molecules and of intact biological cells.

  17. Multiscale macromolecular simulation: role of evolving ensembles.

    Science.gov (United States)

    Singharoy, A; Joshi, H; Ortoleva, P J

    2012-10-22

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin time step is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers.

  18. The crystallography of correlated disorder.

    Science.gov (United States)

    Keen, David A; Goodwin, Andrew L

    2015-05-21

    Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.

  19. Performance of PILATUS detector technology for long-wavelength macromolecular crystallography

    Science.gov (United States)

    Marchal, J.; Wagner, A.

    2011-05-01

    The long-wavelength MX beamline I23 currently under design at Diamond Light Source will be optimized in the X-ray energy range between 3 and 5 keV. At the moment no commercial off-the-shelf detector with high quantum efficiency and dynamic range is available to cover the large area required for diffraction experiments in this energy range. The hybrid pixel detector technology used in PILATUS detectors could overcome these limitations as the modular design could allow a large coverage in reciprocal space and high detection efficiency. Experiments were carried out on the Microfocus Spectroscopy beamline I18 at Diamond Light Source to test the performance of a 100K PILATUS module in the low-energy range from 2.3 to 3.7 keV.

  20. Automatic loop centring with a high-precision goniometer head at the SLS macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Pauluhn, Anuschka, E-mail: anuschka.pauluhn@psi.ch; Pradervand, Claude; Rossetti, Daniel; Salathe, Marco; Schulze-Briese, Clemens [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-07-01

    An automated loop-centring program and a high-precision goniometer head used at the Swiss Light Source are described. Automatic loop centring has been developed as part of the automation process in crystallographic data collection at the Swiss Light Source. The procedure described here consists of an optional set-up part, in which the background images are taken, and the actual centring part. The algorithm uses boundary and centre-of-mass detection at two different microscope image magnifications. Micromounts can be handled as well. Centring of the loops can be achieved in 15–26 s, depending on their initial position, and as fast as manual centring. The alignment of the sample is carried out by means of a new flexural-hinge-based compact goniometer head. The device features an electromagnet for robotic wet mounting of samples. The circle of confusion was measured to be smaller than 1 µm (r.m.s.); its bidirectional backlash is below 2 µm.

  1. Neutron macromolecular crystallography at the FRM IIThe neutron single crystal diffractometer BIODIFF

    OpenAIRE

    Ostermann, Andreas; Schrader, Tobias Erich; Monkenbusch, Michael; Laatsch, Bernhard; Jüttner, Philipp; Petry, Winfried; Richter, Dieter

    2015-01-01

    The research reactor Heinz Maier-Leibnitz (FRM II) is a modern high flux neutron source which feeds at the present 27 state of the art instruments. The newly build neutron single crystal diffractometer BIODIFF is especially designed to collect data from crystals with large unit cells. The main field of application is the structure analysis of proteins, especially the determination of hydrogen atom positions. BIODIFF is a joint project of the Forschungszentrum Jülich (FZJ/JCNS) and the Forschu...

  2. Macromolecular architectures for organic photovoltaics.

    Science.gov (United States)

    Popere, Bhooshan C; Della Pelle, Andrea M; Poe, Ambata; Thayumanavan, S

    2012-03-28

    Research in the field of organic photovoltaics has gained considerable momentum in the last two decades owing to the need for developing low-cost and efficient energy harvesting systems. Elegant molecular architectures have been designed, synthesized and employed as active materials for photovoltaic devices thereby leading to a better molecular structure-device property relationship understanding. In this perspective, we outline new macromolecular scaffolds that have been designed within the purview of each of the three fundamental processes involving light harvesting, charge separation and charge transport.

  3. CIF: the computer language of crystallography.

    Science.gov (United States)

    Brown, I David; McMahon, Brian

    2002-06-01

    The Crystallographic Information File (CIF) was adopted in 1990 by the International Union of Crystallography as a file structure for the archiving and distribution of crystallographic information. The CIF standard is now well established and is in regular use for reporting crystal structure determinations to Acta Crystallographica and other journals. The structure of CIF is flexible and extensible and is compatible with other evolving standards. It is well suited to relational and object-oriented models, and is being adopted by the crystallographic databases. This paper reviews the development of CIF and describes its salient features. Future extension of the standard to include implementation of methods will allow CIF to exploit the potential of advanced information-handling software.

  4. Microfluidic Tools for Protein Crystallography

    Science.gov (United States)

    Abdallah, Bahige G.

    X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm -- ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm -- ~20 ?m crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion

  5. Emergent Property in Macromolecular Motion

    Institute of Scientific and Technical Information of China (English)

    吴嘉麟

    2003-01-01

    In this paper, the model of inverse cascade fractal super-blocks along one direction (in the positive or negative) in the 3-dimensional space is developed to describe the self-similar motion in macromolecular system. Microscopically the cohesive and dispersed states of the motion blocks are co-existent states with vastly different probability of occurrence.Experimental results and theoretical analysis show that the microscopic cohesive state energy and dispersed state energy of each motion block are respectively equal to the macroscopic glassy state energy kT8 and molten state energy kTm of the system. This singularity unveils topologically the nonintegrability, mathematically the anholonomy, and macroscopically the emergent property. This singularity also reveals that the glass, viscoelastic and melt states are three distinct emergent properties of macromolecular motion from a macroscopic viewpoint. The fractal concept of excluded volume is introduced to depict the random motion at various scales in the system. The Hausdorff dimensions of the excluded volune and the motion blocks are both found equal to 3/2.

  6. Fab Chaperone-Assisted RNA Crystallography (Fab CARC).

    Science.gov (United States)

    Sherman, Eileen; Archer, Jennifer; Ye, Jing-Dong

    2016-01-01

    Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.

  7. Macromolecular mimicry of nucleic acid and protein

    DEFF Research Database (Denmark)

    Nautrup Pedersen, Gitte; Nyborg, Jens; Clark, Brian F

    1999-01-01

    of the concept of macromolecular mimicry. Macromolecular mimicry has further been proposed among initiation and release factors, thereby adding a new element to the description of protein synthesis in bacteria. Such mimicry has also been observed in other biological processes such as autoimmunity, DNA repair......, and gene regulation, at both transcriptional and translational levels. Udgivelsesdato: 1999-Jul...

  8. X-ray crystallography: Assessment and validation of protein-small molecule complexes for drug discovery

    Science.gov (United States)

    Cooper, David R.; Porebski, Przemyslaw J.; Chruszcz, Maksymilian; Minor, Wladek

    2011-01-01

    Introduction Crystallography is the key initial component for structure-based and fragment-based drug design and can often generate leads that can be developed into high potency drugs. Therefore, huge sums of money are committed based on the outcome of crystallography experiments and their interpretation. Areas covered This review discusses how to evaluate the correctness of an X-ray structure, focusing on the validation of small molecule-protein complexes. Various types of inaccuracies found within the PDB are identified and the ramifications of these errors are discussed. The reader will gain an understanding of the key parameters that need to be inspected before a structure can be used in drug discovery efforts, as well as an appreciation of the difficulties of correctly interpreting electron density for small molecules. The reader will also be introduced to methods for validating small molecules within the context of a macromolecular structure. Expert opinion One of the reasons that ligand identification and positioning, within a macromolecular crystal structure, is so difficult is that the quality of small molecules widely varies in the PDB. For this reason, the PDB can not always be considered a reliable repository of structural information pertaining to small molecules, and this makes the derivation of general principles that govern small molecule-protein interactions more difficult. PMID:21779303

  9. Structure validation in chemical crystallography.

    Science.gov (United States)

    Spek, Anthony L

    2009-02-01

    Automated structure validation was introduced in chemical crystallography about 12 years ago as a tool to assist practitioners with the exponential growth in crystal structure analyses. Validation has since evolved into an easy-to-use checkCIF/PLATON web-based IUCr service. The result of a crystal structure determination has to be supplied as a CIF-formatted computer-readable file. The checking software tests the data in the CIF for completeness, quality and consistency. In addition, the reported structure is checked for incomplete analysis, errors in the analysis and relevant issues to be verified. A validation report is generated in the form of a list of ALERTS on the issues to be corrected, checked or commented on. Structure validation has largely eliminated obvious problems with structure reports published in IUCr journals, such as refinement in a space group of too low symmetry. This paper reports on the current status of structure validation and possible future extensions.

  10. Phase retrieval in protein crystallography.

    Science.gov (United States)

    Liu, Zhong Chuan; Xu, Rui; Dong, Yu Hui

    2012-03-01

    Solution of the phase problem is central to crystallographic structure determination. An oversampling method is proposed, based on the hybrid input-output algorithm (HIO) [Fienup (1982). Appl. Opt. 21, 2758-2769], to retrieve the phases of reflections in crystallography. This method can extend low-resolution structures to higher resolution for structure determination of proteins without additional sample preparation. The method requires an envelope of the protein which divides a unit cell into the density region where the proteins are located and the non-density region occupied by solvents. After a few hundred to a few thousand iterations, the correct phases and density maps are recovered. The method has been used successfully in several cases to retrieve the phases from the experimental X-ray diffraction data and the envelopes of proteins constructed from structure files downloaded from the Protein Data Bank. It is hoped that this method will greatly facilitate the ab initio structure determination of proteins.

  11. Generating triangulated macromolecular surfaces by Euclidean Distance Transform.

    Directory of Open Access Journals (Sweden)

    Dong Xu

    Full Text Available Macromolecular surfaces are fundamental representations of their three-dimensional geometric shape. Accurate calculation of protein surfaces is of critical importance in the protein structural and functional studies including ligand-protein docking and virtual screening. In contrast to analytical or parametric representation of macromolecular surfaces, triangulated mesh surfaces have been proved to be easy to describe, visualize and manipulate by computer programs. Here, we develop a new algorithm of EDTSurf for generating three major macromolecular surfaces of van der Waals surface, solvent-accessible surface and molecular surface, using the technique of fast Euclidean Distance Transform (EDT. The triangulated surfaces are constructed directly from volumetric solids by a Vertex-Connected Marching Cube algorithm that forms triangles from grid points. Compared to the analytical result, the relative error of the surface calculations by EDTSurf is <2-4% depending on the grid resolution, which is 1.5-4 times lower than the methods in the literature; and yet, the algorithm is faster and costs less computer memory than the comparative methods. The improvements in both accuracy and speed of the macromolecular surface determination should make EDTSurf a useful tool for the detailed study of protein docking and structure predictions. Both source code and the executable program of EDTSurf are freely available at http://zhang.bioinformatics.ku.edu/EDTSurf.

  12. Liver-targeting macromolecular MRI contrast agents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Macromolecular ligands with liver-targeting group (pyridoxamine, PM) PHEA-DTPA-PM and PAEA-DTPA-PM were prepared by the incorporation of different amount of diethylenetriaminepentaacetic acid monopyridoxamine group (DTPA-PM) into poly-a, b-[N-(2-hydroxyethyl)-L- aspartamide] (PHEA) and poly-a, b-[N-(2-aminoethyl)-L-aspartamide] (PAEA). The macromolecular ligands thus obtained were further complexed with gadolinium chloride to give macromolecular MRI contrast agents with different Gd(Ⅲ) contents. These macromolecular ligands and their gadolinium complexes were characterized by 1H NMR, IR, UV and elementary analysis. Relaxivity studies showed that these polyaspartamide gadolinium complexes possess higher relaxation effectiveness than that of the clinically used Gd-DTPA. Magnetic resonance imaging of the liver in rats and experimental data of biodistribution in mice indicate that these macromolecular MRI contrast agents containing pyridoxamine exhibit liver-targeting property.

  13. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.

    Science.gov (United States)

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-03-17

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.

  14. An Optical Crystallography Instructional Package on Videocassettes.

    Science.gov (United States)

    Birnie, Richard W.

    1980-01-01

    Describes a self-teaching instructional package on color videocassettes, supplemented with audio descriptions, prepared from original super-8mm cinephotomicrographs for use in optical crystallography courses. Production techniques are also reviewed. (Author/JN)

  15. Statistical learning for chemical crystallography

    Science.gov (United States)

    Balachandran, Prasanna V.

    A novel computational approach is developed for the study of chemical crystallography in materials science using the tools of information theory and data science. By integrating the information derived from phase homologies, electronic structure calculations and known crystal structure data, a high-dimensional data space is created. From this data space, we seek to extract statistically robust and yet physically meaningful relationships linking structure with chemistry and property in the form of chemical design rules that identifies the exact role of key structure governing factors without any a priori assumptions. The powerful role of data dimensionality reduction, clustering analysis and data mining methods for both classification and prediction of structure-property relationships in materials is discussed. Using examples from two different crystal chemistry families, apatites and perovskite oxides, it is shown how high-dimensional data can be used to assess patterns of behavior as well as establish predictive Quantitative Structure-Activity Relationships (QSARs). A library of potentially new "virtual" stoichiometric and non-stoichiometric apatites and high TC piezoelectric perovskite materials chemistries were identified, thereby reinforcing the value of statistical learning methods in rational materials design.

  16. Structure validation in chemical crystallography

    Science.gov (United States)

    Spek, Anthony L.

    2009-01-01

    Automated structure validation was introduced in chemical crystallography about 12 years ago as a tool to assist practitioners with the exponential growth in crystal structure analyses. Validation has since evolved into an easy-to-use checkCIF/PLATON web-based IUCr service. The result of a crystal structure determination has to be supplied as a CIF-formatted computer-readable file. The checking software tests the data in the CIF for completeness, quality and consistency. In addition, the reported structure is checked for incomplete analysis, errors in the analysis and relevant issues to be verified. A validation report is generated in the form of a list of ALERTS on the issues to be corrected, checked or commented on. Structure validation has largely eliminated obvious problems with structure reports published in IUCr journals, such as refinement in a space group of too low symmetry. This paper reports on the current status of structure validation and possible future extensions. PMID:19171970

  17. Timely deposition of macromolecular structures is necessary for peer review

    Energy Technology Data Exchange (ETDEWEB)

    Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Soueidan, Hayssam; Wessels, Lodewyk F. A. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam (Netherlands); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2013-12-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature.

  18. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1977-01-01

    Crystallography may be described as the science of the structure of materi­ als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal­ lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post­ graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain ...

  19. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    Science.gov (United States)

    Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So

    2016-04-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.

  20. Analysis of Tagish Lake macromolecular organic material

    OpenAIRE

    Gilmour, I; Pearson, V. K.; Sephton, M.A.

    2001-01-01

    Macromolecular material is, by far, the major organic component of meteorites. Flash pyrolysis GCMS has been used to investigate this organic component in Tagish Lake. It is more condensed, less susbtituted than Murchson.

  1. Metalloprotein active site structure determination: synergy between X-ray absorption spectroscopy and X-ray crystallography.

    Science.gov (United States)

    Cotelesage, Julien J H; Pushie, M Jake; Grochulski, Pawel; Pickering, Ingrid J; George, Graham N

    2012-10-01

    Structures of metalloprotein active sites derived from X-ray crystallography frequently contain chemical anomalies such as unexpected atomic geometries or elongated bond-lengths. Such anomalies are expected from the known errors inherent in macromolecular crystallography (ca. 0.1-0.2Å) and from the lack of appropriate restraints for metal sites which are often without precedent in the small molecule structure literature. Here we review the potential of X-ray absorption spectroscopy to provide information and perspective which could aid in improving the accuracy of metalloprotein crystal structure solutions. We also review the potential problem areas in analysis of the extended X-ray absorption fine structure (EXAFS) and discuss the use of density functional theory as another possible source of geometrical restraints for crystal structure analysis of metalloprotein active sites.

  2. X-ray crystallography over the past decade for novel drug discovery – where are we heading next?

    Science.gov (United States)

    Zheng, Heping; Handing, Katarzyna B; Zimmerman, Matthew D; Shabalin, Ivan G; Almo, Steven C; Minor, Wladek

    2015-01-01

    Introduction Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. Areas covered This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. Expert opinion X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible. PMID:26177814

  3. Macromolecular crowding: Macromolecules friend or foe.

    Science.gov (United States)

    Mittal, Shruti; Chowhan, Rimpy Kaur; Singh, Laishram Rajendrakumar

    2015-09-01

    Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules. Macromolecular crowding is observed to have both positive and negative effects on protein folding, structure, stability and function. Significant data has been accumulated so far on both the aspects. However, most of the review articles so far have focused on the positive aspect of macromolecular crowding and not much attention has been paid on the deleterious aspect of crowding on macromolecules. In order to have a complete knowledge of the effect of macromolecular crowding on proteins and enzymes, it is important to look into both the aspects of crowding to determine its precise role under physiological conditions. To fill the gap in the understanding of the effect of macromolecular crowding on proteins and enzymes, this review article focuses on the deleterious influence of crowding on macromolecules. Macromolecular crowding is not always good but also has several deleterious effects on various macromolecular properties. Taken together, the properties of biological macromolecules in vivo appears to be finely regulated by the nature and level of the intracellular crowdedness in order to perform their biological functions appropriately. The information provided here gives an understanding of the role played by the nature and level of cellular crowdedness in intensifying and/or alleviating the burden of various proteopathies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A readout system for X-ray powder crystallography

    CERN Document Server

    Loukas, D; Pavlidis, A; Karvelas, E; Psycharis, K; Misiakos, V; Mousa, J; Dre, C

    2000-01-01

    A system for capturing and processing data, from radiation detectors, in the field of X-ray crystallography has been developed. The system includes a custom-made mixed analog-digital 16-channel VLSI circuit in 50 mu m pitch. Each channel comprises a charge amplifier, a shaper, a comparator and a 21-bit counter. The circuit can be scaled in a daisy chain configuration. Data acquisition is performed with a custom made PCI card while the control software is developed with Visual C++ under the MS Windows NT environment. Performance of a fully operational system, in terms of electronic noise, statistical variations and data capture speed is presented. The noise level permits counting of X-rays down to 8 keV while the counting capability is in excess of 200 kHz. The system is intended for X-ray crystallography with silicon detectors.

  5. A readout system for X-ray powder crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Loukas, D. E-mail: loukas@inplab.ariadne-t.gr; Haralabidis, N.; Pavlidis, A.; Karvelas, E.; Psycharis, K.; Misiakos, V.; Mousa, J.; Dre, Ch

    2000-06-11

    A system for capturing and processing data, from radiation detectors, in the field of X-ray crystallography has been developed. The system includes a custom-made mixed analog-digital 16-channel VLSI circuit in 50 {mu}m pitch. Each channel comprises a charge amplifier, a shaper, a comparator and a 21-bit counter. The circuit can be scaled in a daisy chain configuration. Data acquisition is performed with a custom made PCI card while the control software is developed with Visual C++ under the MS Windows NT environment. Performance of a fully operational system, in terms of electronic noise, statistical variations and data capture speed is presented. The noise level permits counting of X-rays down to 8 keV while the counting capability is in excess of 200 kHz. The system is intended for X-ray crystallography with silicon detectors.

  6. Energy transfer in macromolecular arrays

    Science.gov (United States)

    Andrews, David L.; Jenkins, Robert D.

    2003-11-01

    Macromolecular systems comprised of many light-sensitive centres (the photosynthetic unit, dendrimers, and other highly symmetric multichromophore arrays) are important structures offering challenges to theoreticians and synthetic chemists alike. Here we outline novel photophysical interactions predicted and observed in such arrays. Using the tools of molecular quantum electrodynamics (QED) we present quantum amplitudes for a variety of higher-order resonance energy transfer (RET) schemes associated with well-known nonlinear optical effects such as two- and three-photon absorption. The initial analysis is extended to account for situations where the participant donor species are identical and exist in a highly symmetric environment, leading to the possible formation of excitons. It emerges from the QED theory that such excitons are closely associated with the higher-order RET processes. General results are interpreted by analyzing particular molecular architectures which offer interesting features such as rate enhancement or limitation and exciton pathway quenching. Applications in the areas of photosynthesis, molecular logic gates and low-intensity fluorescence energy transfer are predicted.

  7. Serial femtosecond crystallography: the first five years

    Directory of Open Access Journals (Sweden)

    Ilme Schlichting

    2015-03-01

    Full Text Available Protein crystallography using synchrotron radiation sources has had a tremendous impact on biology, having yielded the structures of thousands of proteins and given detailed insight into their mechanisms. However, the technique is limited by the requirement for macroscopic crystals, which can be difficult to obtain, as well as by the often severe radiation damage caused in diffraction experiments, in particular when using tiny crystals. To slow radiation damage, data collection is typically performed at cryogenic temperatures. With the advent of free-electron lasers (FELs capable of delivering extremely intense femtosecond X-ray pulses, this situation appears to be remedied, allowing the structure determination of undamaged macromolecules using either macroscopic or microscopic crystals. The latter are exposed to the FEL beam in random orientations and their diffraction data are collected at cryogenic or room temperature in a serial fashion, since each crystal is destroyed upon a single exposure. The new approaches required for crystal growth and delivery, and for diffraction data analysis, including de novo phasing, are reviewed. The opportunities and challenges of SFX are described, including applications such as time-resolved measurements and the analysis of radiation damage-prone systems.

  8. Refinement of macromolecular structures against neutron data with SHELXL2013.

    Science.gov (United States)

    Gruene, Tim; Hahn, Hinrich W; Luebben, Anna V; Meilleur, Flora; Sheldrick, George M

    2014-02-01

    Some of the improvements in SHELX2013 make SHELXL convenient to use for refinement of macromolecular structures against neutron data without the support of X-ray data. The new NEUT instruction adjusts the behaviour of the SFAC instruction as well as the default bond lengths of the AFIX instructions. This work presents a protocol on how to use SHELXL for refinement of protein structures against neutron data. It includes restraints extending the Engh & Huber [Acta Cryst. (1991), A47, 392-400] restraints to H atoms and discusses several of the features of SHELXL that make the program particularly useful for the investigation of H atoms with neutron diffraction. SHELXL2013 is already adequate for the refinement of small molecules against neutron data, but there is still room for improvement, like the introduction of chain IDs for the refinement of macromolecular structures.

  9. A macromolecular model for the endothelial surface layer

    Science.gov (United States)

    Harden, James; Danova-Okpetu, Darina; Grest, Gary

    2006-03-01

    The endothelial surface layer (ESL) is a micron-scale macromolecular lining of the luminal side of blood vessels composed of proteoglycans, glycoproteins, polysaccharides and associated plasma proteins all in dynamic equilibrium. It has numerous physiological roles including the regulation of blood flow and microvascular permeability, and active participation in mechanotransduction and stress regulation, coagulation, cell adhesion, and inflammatory response. The dynamic structure and the mechanical properties of the ESL are crucial for many of its physiological properties. We present a topological model for the ESL composed of three basic macromolecular elements: branched proteoglycans, linear polysaccharide chains, and small plasma proteins. The model was studied using non-equilibrium molecular dynamics simulations and compared with scaling theories for associating tethered polymers. We discuss the observed dynamical and mechanical properties of the ESL captured by this model, and the possible physical insight it provides into the physiological behavior of the ESL.

  10. The solvent component of macromolecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Weichenberger, Christian X. [European Academy of Bozen/Bolzano (EURAC), Viale Druso 1, Bozen/Bolzano, I-39100 Südtirol/Alto Adige (Italy); Afonine, Pavel V. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Mail Stop 64R0121, Berkeley, CA 94720 (United States); Kantardjieff, Katherine [California State University, San Marcos, CA 92078 (United States); Rupp, Bernhard, E-mail: br@hofkristallamt.org [k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084 (United States); Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck (Austria)

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.

  11. Watching proteins function with time-resolved x-ray crystallography

    Science.gov (United States)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  12. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  13. Go hybrid: EM, crystallography, and beyond.

    Science.gov (United States)

    Lander, Gabriel C; Saibil, Helen R; Nogales, Eva

    2012-10-01

    A mechanistic understanding of the molecular transactions that govern cellular function requires knowledge of the dynamic organization of the macromolecular machines involved in these processes. Structural biologists employ a variety of biophysical methods to study large macromolecular complexes, but no single technique is likely to provide a complete description of the structure-function relationship of all the constituent components. Since structural studies generally only provide snapshots of these dynamic machines as they accomplish their molecular functions, combining data from many methodologies is crucial to our understanding of molecular function.

  14. Crystallography of quasicrystals concepts, methods and structures

    CERN Document Server

    Walter, Steurer

    2009-01-01

    From tilings to quasicrystal structures and from surfaces to the n-dimensional approach, this book gives a full, self-contained in-depth description of the crystallography of quasicrystals. It aims not only at conveying the concepts and a precise picture of the structures of quasicrystals, butit also enables the interested reader to enter the field of quasicrystal structure analysis. Going beyond metallic quasicrystals, it also describes the new, dynamically growing field of photonic quasicrystals. The readership will be graduate students and researchers in crystallography, solid-state physics, materials science, solid- state chemistry and applied mathematics.

  15. Effects of macromolecular crowding on genetic networks.

    Science.gov (United States)

    Morelli, Marco J; Allen, Rosalind J; Wolde, Pieter Rein ten

    2011-12-21

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance.

  16. Macromolecular mimicry of nucleic acid and protein

    DEFF Research Database (Denmark)

    Nautrup Pedersen, Gitte; Nyborg, Jens; Clark, Brian F

    1999-01-01

    of the concept of macromolecular mimicry. Macromolecular mimicry has further been proposed among initiation and release factors, thereby adding a new element to the description of protein synthesis in bacteria. Such mimicry has also been observed in other biological processes such as autoimmunity, DNA repair......Although proteins and nucleic acids consist of different chemical components, proteins can mimic structures and possibly also functions of nucleic acids. Recently, structural mimicry was observed between two elongation factors in bacterial protein biosynthesis leading to the introduction...

  17. Phenix - a comprehensive python-based system for macromolecular structure solution

    Energy Technology Data Exchange (ETDEWEB)

    Terwilliger, Thomas C [Los Alamos National Laboratory; Hung, Li - Wei [Los Alamos National Laboratory; Adams, Paul D [UC BERKELEY; Afonine, Pavel V [UC BERKELEY; Bunkoczi, Gabor [UNIV OF CAMBRIDGE; Chen, Vincent B [DUKE UNIV; Davis, Ian [DUKE UNIV; Echols, Nathaniel [LBNL; Headd, Jeffrey J [DUKE UNIV; Grosse Kunstleve, Ralf W [LBNL; Mccoy, Airlie J [UNIV OF CAMBRIDGE; Moriarty, Nigel W [LBNL; Oeffner, Robert [UNIV OF CAMBRIDGE; Read, Randy J [UNIV OF CAMBRIDGE; Richardson, David C [DUKE UNIV; Richardson, Jane S [DUKE UNIV; Zwarta, Peter H [LBNL

    2009-01-01

    Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. However, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages, and the repeated use of interactive three-dimensional graphics. Phenix has been developed to provide a comprehensive system for crystallographic structure solution with an emphasis on automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand, and finally the development of a framework that allows a tight integration between the algorithms.

  18. Symmetry in crystallography understanding the international tables

    CERN Document Server

    Radaelli, Paolo G

    2011-01-01

    A fresh approach to teaching crystallographic symmetry. Rather than being swamped by heavy algebraic notation, the reader is taken through a series of simple and beautiful examples from the visual arts, and taught how to analyse them employing the 'pictorial' diagrams used in the international tables of crystallography.

  19. Pharmaceutical crystallography: is there a devil in the details?

    DEFF Research Database (Denmark)

    Bond, A. D.

    2012-01-01

    Modern instruments for small-molecule crystallography continue to become more sophisticated and more automated. This technical progress provides a basis for frontier research in chemical and pharmaceutical crystallography, but it also encourages analytical crystallographers to become more...... are presented for pharmaceutical compounds, and the potential importance of the "details" in pharmaceutical crystallography is discussed....

  20. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions.

    Science.gov (United States)

    Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2016-01-01

    Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction's mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein-protein interactions or protein-DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1,040,000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43,000 RNA-mediated interactions, and ∼12,000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network

  1. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature.

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-06

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  2. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  3. Macromolecular Topography Leaps into the Digital Age

    Science.gov (United States)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    A low-cost, real-time digital topography system is under development which will replace x-ray film and nuclear emulsion plates. The imaging system is based on an inexpensive surveillance camera that offers a 1000x1000 array of 8 im square pixels, anti-blooming circuitry, and very quick read out. Currently, the system directly converts x-rays to an image with no phosphor. The system is small and light and can be easily adapted to work with other crystallographic equipment. Preliminary images have been acquired of cubic insulin at the NSLS x26c beam line. NSLS x26c was configured for unfocused monochromatic radiation. Six reflections were collected with stills spaced from 0.002 to 0.001 degrees apart across the entire oscillation range that the reflections were in diffracting condition. All of the reflections were rotated to the vertical to reduce Lorentz and beam related effects. This particular CCD is designed for short exposure applications (much less than 1 sec) and so has a relatively high dark current leading to noisy raw images. The images are processed to remove background and other system noise with a multi-step approach including the use of wavelets, histogram, and mean window filtering. After processing, animations were constructed with the corresponding reflection profile to show the diffraction of the crystal volume vs. the oscillation angle as well as composite images showing the parts of the crystal with the strongest diffraction for each reflection. The final goal is to correlate features seen in reflection profiles captured with fine phi slicing to those seen in the topography images. With this development macromolecular topography finally comes into the digital age.

  4. E-Science and Protein Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Laniece E. [Los Alamos National Laboratory; Powell, James E. Jr. [Los Alamos National Laboratory

    2012-08-09

    -ray scattering techniques. Many of the major funders as well as the major journals dealing with protein crystallography require deposition of the structural data in the Protein Data Bank (PDB). Files formatted for the PDB are automatically generated when the data is compressed. The header files in the PDB included experimental conditions of the experiment as well as experimental methods. Depending on the completeness and how 'hot' of a topic, it may not be needed to contact the original experimenter about using the data. Having said that, not all of the data is accurate and does requires some back and forth with the creators of the data. The RCSB PDB staff at Rutgers University goes through all submissions and works with the submitters to verify that the data meets their minimum standards of completeness and robustness. The Protein Data Bank (PDB) was initially created by Walter Hamilton at Brookhaven National Laboratory in 1971 after discussions about the value of scientists having access to structural biology data. Originally a partnership between Brookhaven and the Cambridge Crystallographic Data Center, the idea was conceived as a global initiative, which is certainly has become with partner sites in the US, Europe, and Japan. The PDB now contains structures determined from many different experimental techniques (Berman et al. 2012). Deposited structures are assigned a unique ID, and the structures are embargoed until the publication that references and describes them is published. The PDB staff often monitors these publications and takes the initiative to release protein structures when papers describing them are published. Dr. Fisher records setup and experimental details in word documents and inserts printed copies into paper lab notebooks. These details appear in the final published papers and the header files for structures in the PDB. Analysis of data collected at the PCS is performed with a combination of locally developed tools and commercial products which

  5. Phasing in crystallography a modern perspective

    CERN Document Server

    Giacovazzo, Carmelo

    2014-01-01

    Modern crystallographic methods originate from the synergy of two main research streams, the small-molecule and the macro-molecular streams. The first stream was able to definitively solve the phase problem for molecules up to 200 atoms in the asymmetric unit. The achievements obtained by the macromolecular stream are also impressive. A huge number of protein structures have been deposited in the Protein Data Bank. The solution of them is no longer reserved to an elite group of scientists, but may be attained in a large number of laboratories around the world, even by young scientists. New probabilistic approaches have been tailored to deal with larger structures, errors in the experimental data, and modest data resolution. Traditional phasing techniques like ab initio, molecular replacement, isomorphous replacement, and anomalous dispersion techniques have been revisited. The new approaches have been implemented in robust phasing programs, which have been organized in automatic pipelines usable even by non-e...

  6. Sources, instrumentation and detectors for protein crystallography

    CERN Document Server

    Nave, C

    2001-01-01

    Some of the requirements for protein crystallography experiments on a synchrotron are described. Although data from different types of crystal are often collected without changing the X-ray beam properties, there are benefits if the incident beam is matched to a particular crystal and its diffraction pattern. These benefits are described with some examples. Radiation damage and other effects impose limits on the dose and dose rate on a protein crystal if the maximum amount of data is to be obtained. These limitations have possible consequences for the X-ray source required. Presently available commercial detector systems provide excellent data for protein crystallography but do not quite reach the specifications of the 'ideal' detector. In order to collect the most accurate data (e.g. for very weak anomalous scattering applications) detectors that produce near photon counting statistics over a wide dynamic range are required. It is possible that developments in 'pixel' detectors will allow these demanding exp...

  7. Resolution of structural heterogeneity in dynamic crystallography.

    Science.gov (United States)

    Ren, Zhong; Chan, Peter W Y; Moffat, Keith; Pai, Emil F; Royer, William E; Šrajer, Vukica; Yang, Xiaojing

    2013-06-01

    Dynamic behavior of proteins is critical to their function. X-ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamic `structural changes' are often indirectly inferred from `structural differences' by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods.

  8. On R factors for dynamic structure crystallography

    DEFF Research Database (Denmark)

    Coppens, Philip; Kaminski, Radoslaw; Schmøkel, Mette Stokkebro

    2010-01-01

    In studies of dynamic changes in crystals in which induced metastable species may have lifetimes of microseconds or less, refinements are most sensitive if based on the changes induced in the measured intensities. Agreement factors appropriate for such refinements, based on the ratios of the inte...... of the intensities before and after the external perturbation is applied, are discussed and compared with R factors commonly applied in static structure crystallography....

  9. High-throughput methods for electron crystallography.

    Science.gov (United States)

    Stokes, David L; Ubarretxena-Belandia, Iban; Gonen, Tamir; Engel, Andreas

    2013-01-01

    Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing a native lipid environment for these proteins. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, electron microscopy can be used to collect images and diffraction and the corresponding data can be combined to produce a three-dimensional reconstruction, which under favorable conditions can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on titration of cyclodextrin as a chelating agent for detergent; a specialized pipetting robot has been designed not only to add cyclodextrin in a systematic way, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described.

  10. The legacy of women to crystallography

    Directory of Open Access Journals (Sweden)

    Sanz-Aparicio, Julia

    2015-04-01

    Full Text Available It is common to hear that X-ray crystallography is particularly welcoming to women. This assertion is perhaps based in the crucial contribution that a few brilliant women made to crystallography in the very early days. Therefore, this chapter will be mainly dedicated to honour the exceptional legacy of Kathleen Lonsdale, Dorothy Hodgkin, Rosalind Franklin and Isabella Karle, who were pioneers in a time when there was a strong discrimination against women in all aspects of life. Other prominent women, like Caroline MacGillavry, Olga Kennard, Eleanor Dodson, Louise Johnson, Jenny Glusker, Jane Richardson, among others, contributed to disseminate crystallography worldwide, providing the fundamental tools that resulted in the modern crystallography. The outstanding results that crystallography have provided to life sciences in the last years is well represented by the Nobel Prize awarded to Ada Yonath in 2009 for its contribution to the understanding of ribosome, the largest structure solved up-to-now.Existe la impresión de que la cristalografía ha sido una ciencia donde las mujeres han estado más representadas que en otras disciplinas. Esto se debe a la contribución esencial de unas cuantas científicas excepcionales en los inicios de la nueva ciencia. Por tanto, este capítulo pretende reconocer especialmente el legado de Kathleen Lonsdale, Dorothy Hodgkin, Rosalind Franklin e Isabella Karle, que fueron verdaderas pioneras en tiempos en que las mujeres tenían que enfrentarse a una fuerte discriminación social. Otras científicas destacadas, como Caroline MacGillavry, Olga Kennard, Eleanor Dodson, Louise Johnson, Jenny Glusker o Jane Richardson, contribuyeron al desarrollo de los procedimientos fundamentales que configuraron la cristalografía moderna. Los espectaculares resultados que la cristalografía ha aportado a las ciencias de la vida están bien representados en el Premio Nobel concedido a Ada Yonath en 2009 por su contribución al

  11. Statistics of Multiscale Fluctuations in Macromolecular Systems

    CERN Document Server

    Yukalov, V I

    2012-01-01

    An approach is suggested for treating multiscale fluctuations in macromolecular systems. The emphasis is on the statistical properties of such fluctuations. The approach is illustrated by a macromolecular system with mesoscopic fluctuations between the states of atomic orbitals. Strong-orbital and weak-orbital couplings fluctuationally arise, being multiscale in space and time. Statistical properties of the system are obtained by averaging over the multiscale fluctuations. The existence of such multiscale fluctuations causes phase transitions between strong-coupling and weak-coupling states. These transitions are connected with structure and size transformations of macromolecules. An approach for treating density and size multiscale fluctuations by means of classical statistical mechanics is also advanced.

  12. Growth and dissolution of macromolecular Markov chains

    CERN Document Server

    Gaspard, Pierre

    2016-01-01

    The kinetics and thermodynamics of free living copolymerization are studied for processes with rates depending on k monomeric units of the macromolecular chain behind the unit that is attached or detached. In this case, the sequence of monomeric units in the growing copolymer is a kth-order Markov chain. In the regime of steady growth, the statistical properties of the sequence are determined analytically in terms of the attachment and detachment rates. In this way, the mean growth velocity as well as the thermodynamic entropy production and the sequence disorder can be calculated systematically. These different properties are also investigated in the regime of depolymerization where the macromolecular chain is dissolved by the surrounding solution. In this regime, the entropy production is shown to satisfy Landauer's principle.

  13. Growth and Dissolution of Macromolecular Markov Chains

    Science.gov (United States)

    Gaspard, Pierre

    2016-07-01

    The kinetics and thermodynamics of free living copolymerization are studied for processes with rates depending on k monomeric units of the macromolecular chain behind the unit that is attached or detached. In this case, the sequence of monomeric units in the growing copolymer is a kth-order Markov chain. In the regime of steady growth, the statistical properties of the sequence are determined analytically in terms of the attachment and detachment rates. In this way, the mean growth velocity as well as the thermodynamic entropy production and the sequence disorder can be calculated systematically. These different properties are also investigated in the regime of depolymerization where the macromolecular chain is dissolved by the surrounding solution. In this regime, the entropy production is shown to satisfy Landauer's principle.

  14. Dextran: A promising macromolecular drug carrier

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Suneela

    2006-01-01

    Full Text Available Over the past three decades intensive efforts have been made to design novel systems able to deliver the drug more effectively to the target site. The ongoing intense search for novel and innovative drug delivery systems is predominantly a consequence of the well-established fact that the conventional dosage forms are not sufficiently effective in conveying the drug compound to its site of action and once in the target area, in releasing the active agent over a desired period of time. The potential use of macromolecular prodrugs as a means of achieving targeted drug delivery has attracted considerable interest in recent years. Macromolecules such as antibodies, lipoproteins, lectins, proteins, polypeptides, polysaccharides, natural as well as synthetic polymers offer potential applicabilities as high molecular weight carriers for various therapeutically active compounds. Dextrans serve as one of the most promising macromolecular carrier candidates for a wide variety of therapeutic agents due to their excellent physico-chemical properties and physiological acceptance. The present contribution attempts to review various features of the dextran carrier like its source, structural and physico-chemical characteristics, pharmacokinetic fate and its applications as macromolecular carrier with special emphasis on dextran prodrugs.

  15. High-pressure crystallography of periodic and aperiodic crystals.

    Science.gov (United States)

    Hejny, Clivia; Minkov, Vasily S

    2015-03-01

    More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal-organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium 'High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  16. A novel inert crystal delivery medium for serial femtosecond crystallography

    Directory of Open Access Journals (Sweden)

    Chelsie E. Conrad

    2015-07-01

    Full Text Available Serial femtosecond crystallography (SFX has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.

  17. Proline: Mother Nature's cryoprotectant applied to protein crystallography.

    Science.gov (United States)

    Pemberton, Travis A; Still, Brady R; Christensen, Emily M; Singh, Harkewal; Srivastava, Dhiraj; Tanner, John J

    2012-08-01

    L-Proline is one of Mother Nature's cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that L-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6-8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0-3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that L-proline is an effective cryoprotectant for protein crystallography.

  18. A novel inert crystal delivery medium for serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel; Wang, Dingjie; Schaffer, Alexander; Roy-Chowdhury, Shatabdi; Zatsepin, Nadia A.; Aquila, Andrew; Coe, Jesse; Gati, Cornelius; Hunter, Mark S.; Koglin, Jason E.; Kupitz, Christopher; Nelson, Garrett; Subramanian, Ganesh; White, Thomas A.; Zhao, Yun; Zook, James; Boutet, Sébastien; Cherezov, Vadim; Spence, John C. H.; Fromme, Raimund; Weierstall, Uwe; Fromme, Petra

    2015-06-30

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5Å resolution using 300µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.

  19. High-pressure crystallography of periodic and aperiodic crystals

    Directory of Open Access Journals (Sweden)

    Clivia Hejny

    2015-03-01

    Full Text Available More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium `High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  20. From crystallography to structural biology, a century of discoveries

    Directory of Open Access Journals (Sweden)

    Montoya, Guillermo

    2015-04-01

    Full Text Available From crystallography, the technique mostly used to study the structure of matter, the field mutated into structural biology, has mutated in life sciences into structural biology, which has been developed as an essential and rather successful area of research to fully understand the workings of cellular pathways. The application of physical approaches to biological systems has been crucial to comprehend the structure and function of the biological components of living organisms. In this assay the author walks the reader through the last century, which has witnessed how this life sciences research area was born and moved towards larger assemblies in the core of crucial biological problems. The influence of research in physics, biochemistry and molecular biology has been key in the successes and large body of seminal results obtained by structural biologists. The author proposes that the future of this area implies the integration of its results at the cellular level apart of using more quantitative approaches to describe biological processes.La cristalografía, la técnica más ampliamente usada para estudiar la estructura de la materia, ha evolucionado en las ciencias de la vida hacia la biología estructural, una exitosa área de investigación encaminada a comprender el funcionamiento de los procesos celulares. La aplicación de aproximaciones físicas a sistemas biológicos es clave para entender la estructura y funcionamiento de los componentes de los organismos. En este artículo el autor ofrece al lector un paseo por la evolución de esta área de conocimiento durante el siglo XX, desde su nacimiento hasta el análisis de grandes complejos macromoleculares, protagonistas importantes en diversos procesos biológicos. La influencia de investigaciones en física, bioquímica y biología molecular ha sido clave para los numerosos éxitos alcanzados por biólogos estructurales. El autor sostiene que el futuro de esta disciplina pasa por la

  1. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    Science.gov (United States)

    Shoda, Shin-ichiro; Uyama, Hiroshi; Kadokawa, Jun-ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

  2. Critical review and perspective of macromolecularly imprinted polymers.

    Science.gov (United States)

    Kryscio, David R; Peppas, Nicholas A

    2012-02-01

    Molecular recognition is a fundamental and ubiquitous process that is the driving force behind life. Natural recognition elements - including antibodies, enzymes, nucleic acids, and cells - exploit non-covalent interactions to bind to their targets with exceptionally strong affinities. Due to this unparalleled proficiency, scientists have long sought to mimic natural recognition pathways. One promising approach is molecularly imprinted polymers (MIPs), which are fully synthetic systems formed via the crosslinking of organic polymers in the presence of a template molecule, which results in stereo-specific binding sites for this analyte of interest. Macromolecularly imprinted polymers, those synthesized in the presence of macromolecule templates (>1500 Da), are of particular importance because they open up the field for a whole new set of robust diagnostic tools. Although the specific recognition of small-molecular-weight analytes is now considered routine, extension of these efficacious procedures to the protein regime has, thus far, proved challenging. This paper reviews the main approaches employed, highlights studies of interest with an emphasis on recent work, and offers suggestions for future success in the field of macromolecularly imprinted polymers.

  3. MMDB and VAST+: tracking structural similarities between macromolecular complexes.

    Science.gov (United States)

    Madej, Thomas; Lanczycki, Christopher J; Zhang, Dachuan; Thiessen, Paul A; Geer, Renata C; Marchler-Bauer, Aron; Bryant, Stephen H

    2014-01-01

    The computational detection of similarities between protein 3D structures has become an indispensable tool for the detection of homologous relationships, the classification of protein families and functional inference. Consequently, numerous algorithms have been developed that facilitate structure comparison, including rapid searches against a steadily growing collection of protein structures. To this end, NCBI's Molecular Modeling Database (MMDB), which is based on the Protein Data Bank (PDB), maintains a comprehensive and up-to-date archive of protein structure similarities computed with the Vector Alignment Search Tool (VAST). These similarities have been recorded on the level of single proteins and protein domains, comprising in excess of 1.5 billion pairwise alignments. Here we present VAST+, an extension to the existing VAST service, which summarizes and presents structural similarity on the level of biological assemblies or macromolecular complexes. VAST+ simplifies structure neighboring results and shows, for macromolecular complexes tracked in MMDB, lists of similar complexes ranked by the extent of similarity. VAST+ replaces the previous VAST service as the default presentation of structure neighboring data in NCBI's Entrez query and retrieval system. MMDB and VAST+ can be accessed via http://www.ncbi.nlm.nih.gov/Structure.

  4. A glimpse of structural biology through X-ray crystallography.

    Science.gov (United States)

    Shi, Yigong

    2014-11-20

    Since determination of the myoglobin structure in 1957, X-ray crystallography, as the anchoring tool of structural biology, has played an instrumental role in deciphering the secrets of life. Knowledge gained through X-ray crystallography has fundamentally advanced our views on cellular processes and greatly facilitated development of modern medicine. In this brief narrative, I describe my personal understanding of the evolution of structural biology through X-ray crystallography-using as examples mechanistic understanding of protein kinases and integral membrane proteins-and comment on the impact of technological development and outlook of X-ray crystallography.

  5. Apparatus and method for nanoflow liquid jet and serial femtosecond x-ray protein crystallography

    Science.gov (United States)

    Bogan, Michael J.; Laksmono, Hartawan; Sierra, Raymond G.

    2016-03-01

    Techniques for nanoflow serial femtosecond x-ray protein crystallography include providing a sample fluid by mixing a plurality of a first target of interest with a carrier fluid and injecting the sample fluid into a vacuum chamber at a rate less than about 4 microliters per minute. In some embodiments, the carrier fluid has a viscosity greater than about 3 centipoise.

  6. Researches, Publications and Achievements 2007-2011, Department of Macromolecular Science and Engineering

    OpenAIRE

    All teaching staffs at Department of Macromolecular Science and Engineering (19 members)

    2012-01-01

    Recent researches, publications and achievements are presented, which were made during these five years (2007-2011) by 19 members at Department of Macromolecular Science and Engineering. Listed publications include original papers, books, reviews and reports. Achievements such as invited lectures, patents, funds and financial supports, and awards are also listed.

  7. Automated High Throughput Drug Target Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  8. Crystallography of shear transformations in zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Michael Philip [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    The crystallography and substructure of the transformations which have been hypothesized as involving a martensitic shear, and which occur between zirconium hydrides were investigated. Specifically, the formation of gamma zirconium hydride from delta hydride and the delta hydride to epsilon hydride transformation were studied. The habit planes, orientation relationships, lattice invariant shears, and interface structures were determined by transmission electron microscopy and diffraction. Surface tilts were observed and measured with an interference microscope. The direction and magnitude of the shape strain produced by the formation of gamma were determined by the measurement of fiducial scratch displacements. These results were compared with the phenomenological crystallographic theory of martensitic transformations.

  9. The basics of crystallography and diffraction

    CERN Document Server

    Hammond, C

    2015-01-01

    This title provides a clear and very broadly based introduction to crystallography, light, X-ray, and electron diffraction; a knowledge of which is essential to students in a wide range of scientific disciplines but which is otherwise generally covered in subject-specific and more mathematically detailed texts. The book is also designed to appeal to the more general reader since it shows, by historical and biographical references, how the subject has developed from the work and insights of successive generations of crystallographers and scientists.

  10. Statistical crystallography of surface micelle spacing

    Science.gov (United States)

    Noever, David A.

    1992-01-01

    The aggregation of the recently reported surface micelles of block polyelectrolytes is analyzed using techniques of statistical crystallography. A polygonal lattice (Voronoi mosaic) connects center-to-center points, yielding statistical agreement with crystallographic predictions; Aboav-Weaire's law and Lewis's law are verified. This protocol supplements the standard analysis of surface micelles leading to aggregation number determination and, when compared to numerical simulations, allows further insight into the random partitioning of surface films. In particular, agreement with Lewis's law has been linked to the geometric packing requirements of filling two-dimensional space which compete with (or balance) physical forces such as interfacial tension, electrostatic repulsion, and van der Waals attraction.

  11. Merging of image data in electron crystallography.

    Science.gov (United States)

    Arheit, Marcel; Castaño-Diéz, Daniel; Thierry, Raphaël; Abeyrathne, Priyanka; Gipson, Bryant R; Stahlberg, Henning

    2013-01-01

    Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to record images and diffraction patterns of frozen-hydrated 2D crystals. Each two-dimensional (2D) crystal is only imaged once, at one specific tilt angle, and the recorded images can be automatically processed with the 2dx/MRC software package. Processed image data from non-tilted and tilted 2D crystals then need to be merged into a 3D reconstruction of the membrane protein structure. We here describe the process of the 3D merging, using the 2dx software system.

  12. Advances in Macromolecular Data Storage

    CERN Document Server

    Mansuripur, Masud

    2014-01-01

    We propose to develop a new method of information storage to replace magnetic hard disk drives and other instruments of secondary/backup data storage. The proposed method stores petabytes of user-data in a sugar cube (1 cm3), and can read/write that information at hundreds of megabits/sec. Digital information is recorded and stored in the form of a long macromolecule consisting of at least two bases, A and B. (This would be similar to DNA strands constructed from the four nucleic acids G,C,A,T.) The macromolecules initially enter the system as blank slates. A macromolecule with, say, 10,000 identical bases in the form of AAAAA....AAA may be used to record a kilobyte block of user-data (including modulation and error-correction coding), although, in this blank state, it can only represent the null sequence 00000....000. Suppose this blank string of A's is dragged before an atomically-sharp needle of a scanning tunneling microscope (STM). When electric pulses are applied to the needle in accordance with the seq...

  13. Breaking the indexing ambiguity in serial crystallography.

    Science.gov (United States)

    Brehm, Wolfgang; Diederichs, Kay

    2014-01-01

    In serial crystallography, a very incomplete partial data set is obtained from each diffraction experiment (a `snapshot'). In some space groups, an indexing ambiguity exists which requires that the indexing mode of each snapshot needs to be established with respect to a reference data set. In the absence of such re-indexing information, crystallographers have thus far resorted to a straight merging of all snapshots, yielding a perfectly twinned data set of higher symmetry which is poorly suited for structure solution and refinement. Here, two algorithms have been designed for assembling complete data sets by clustering those snapshots that are indexed in the same way, and they have been tested using 15,445 snapshots from photosystem I [Chapman et al. (2011), Nature (London), 470, 73-77] and with noisy model data. The results of the clustering are unambiguous and enabled the construction of complete data sets in the correct space group P63 instead of (twinned) P6322 that researchers have been forced to use previously in such cases of indexing ambiguity. The algorithms thus extend the applicability and reach of serial crystallography.

  14. Smoothing techniques for macromolecular global optimization

    Energy Technology Data Exchange (ETDEWEB)

    More, J.J.; Wu, Zhijun

    1995-09-01

    We study global optimization problems that arise in macromolecular modeling, and the solution of these problems via continuation and smoothing. Our results unify and extend the theory associated with the use of the Gaussian transform for smoothing. We show that the, Gaussian transform can be viewed as a special case of a generalized transform and that these generalized transforms share many of the properties of the Gaussian transform. We also show that the smoothing behavior of the generalized transform can be studied in terms of the Fourier transform and that these results indicate that the Gaussian transform has superior smoothing properties.

  15. X-Ray Crystallography: One Century of Nobel Prizes

    Science.gov (United States)

    Galli, Simona

    2014-01-01

    In 2012, the United Nations General Assembly declared 2014 the International Year of Crystallography. Throughout the year 2014 and beyond, all the crystallographic associations and societies active all over the world are organizing events to attract the wider public toward crystallography and the numerous topics to which it is deeply interlinked.…

  16. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  17. Macromolecular recognition in the Protein Data Bank

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Joël, E-mail: joel.janin@ibbmc.u-psud.fr [Laboratoire d’Enzymologie et de Biochimie Structurales, UPR9063, CNRS, 91198 Gif-sur-Yvette (France); Institut de Biochimie et Biologie Moléculaire et Cellulaire, UMR8619, Bâtiment 430, Université Paris-Sud, 91405 Orsay (France); Rodier, Francis [Laboratoire d’Enzymologie et de Biochimie Structurales, UPR9063, CNRS, 91198 Gif-sur-Yvette (France); Chakrabarti, Pinak [Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054 (India); Bahadur, Ranjit P. [Institut de Biochimie et Biologie Moléculaire et Cellulaire, UMR8619, Bâtiment 430, Université Paris-Sud, 91405 Orsay (France); Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054 (India); Laboratoire d’Enzymologie et de Biochimie Structurales, UPR9063, CNRS, 91198 Gif-sur-Yvette (France)

    2007-01-01

    X-ray structures in the PDB illustrate both the specific recognition of two polypeptide chains in protein–protein complexes and dimeric proteins and their nonspecific interaction at crystal contacts. Crystal structures deposited in the Protein Data Bank illustrate the diversity of biological macromolecular recognition: transient interactions in protein–protein and protein–DNA complexes and permanent assemblies in homodimeric proteins. The geometric and physical chemical properties of the macromolecular interfaces that may govern the stability and specificity of recognition are explored in complexes and homodimers compared with crystal-packing interactions. It is found that crystal-packing interfaces are usually much smaller; they bury fewer atoms and are less tightly packed than in specific assemblies. Standard-size interfaces burying 1200–2000 Å{sup 2} of protein surface occur in protease–inhibitor and antigen–antibody complexes that assemble with little or no conformation changes. Short-lived electron-transfer complexes have small interfaces; the larger size of the interfaces observed in complexes involved in signal transduction and homodimers correlates with the presence of conformation changes, often implicated in biological function. Results of the CAPRI (critical assessment of predicted interactions) blind prediction experiment show that docking algorithms efficiently and accurately predict the mode of assembly of proteins that do not change conformation when they associate. They perform less well in the presence of large conformation changes and the experiment stimulates the development of novel procedures that can handle such changes.

  18. Rotation-Induced Macromolecular Spooling of DNA

    Directory of Open Access Journals (Sweden)

    Tyler N. Shendruk

    2017-07-01

    Full Text Available Genetic information is stored in a linear sequence of base pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands, resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.

  19. Rotation-Induced Macromolecular Spooling of DNA

    Science.gov (United States)

    Shendruk, Tyler N.; Sean, David; Berard, Daniel J.; Wolf, Julian; Dragoman, Justin; Battat, Sophie; Slater, Gary W.; Leslie, Sabrina R.

    2017-07-01

    Genetic information is stored in a linear sequence of base pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands, resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.

  20. The role of macromolecular stability in desiccation tolerance

    NARCIS (Netherlands)

    Wolkers, W.F.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular st

  1. The role of macromolecular stability in desiccation tolerance.

    NARCIS (Netherlands)

    Wolkers, W.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular structures

  2. The 100th Anniversary of X-Ray Crystallography

    Directory of Open Access Journals (Sweden)

    Kojić-Prodić, B.

    2013-07-01

    Full Text Available The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them.W. L. BraggThe 100th anniversary of X-ray crystallography dates back to the first X-ray diffraction experiment on a crystal of copper sulphate pentahydrate. Max von Laue designed the theoretical background of the experiment, which was performed by German physicists W. Friedrich and P. Knipping in 1912. At that time, the mathematical formulation of the phenomenon and the fundamental concepts of crystallography were subjects of mineralogy. Altogether, they facilitated the development of methods for determination of the structure of matter at the atomic level. In 1913, father and son Bragg started to develop X-ray structure analysis for determination of crystal structures of simple molecules. Historic examples of structure determination starting from rock salt to complex, biologically important (macromolecules, such as globular proteins haemoglobin and myoglobin, DNA, vitamin B12 and the recent discovery of ribozyme, illustrate the development of X-ray structural analysis. The determination of 3D structures of these molecules by X-ray diffraction had opened new areas of scientific research, such as molecular biophysics, molecular genetics, structural molecular biology, bioinorganic chemistry, organometallic chemistry, and many others. The discovery and development of X-ray crystallography revolutionised our understanding of natural sciences – physics, chemistry, biology, and also science of materials. The scientific community recognised these fundamental achievements (including the discovery of X-rays by awarding twenty-eight Nobel prizes to thirty-nine men and two women. The explosive growth of science and technology in the 20th and 21st centuries had been founded on the detailed knowledge of the three-dimensional structure of molecules, which was the basis for explaining and predicting the physical, chemical, biological and

  3. 100 Years later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology.

    Science.gov (United States)

    Pomés, Anna; Chruszcz, Maksymilian; Gustchina, Alla; Minor, Wladek; Mueller, Geoffrey A; Pedersen, Lars C; Wlodawer, Alexander; Chapman, Martin D

    2015-07-01

    Current knowledge of molecules involved in immunology and allergic disease results from the significant contributions of x-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and x-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact 3-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind LPSs can also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. In turn, this surface determines antibody specificity and cross-reactivity, which are important factors for the selection of allergen panels used for molecular diagnosis and the interpretation of clinical symptoms. This review celebrates the contributions of x-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases.

  4. Feasibility of macromolecular structure experiments operating at the 3W1 beamline of BSRF in the parasitic mode

    Institute of Scientific and Technical Information of China (English)

    X.Ju; D.C.Xian

    2001-01-01

    Parameters for the 3W1 source at BSRF were determined in both the dedicated and parasitic mode and their suitability for protein crystallography beamline at BSRF were realized.It is discussed that the physics motivation and the design of the 3W1 is compared with similar experimental stations at the Brazilian Light Sourec(1.37Gev) and Max-II in Sweden(1.5GeV).The photon flux from the 3W1 sourcd is about 2×1011 photon/smA in the wavelength range of 2.0-0.9A in parasitic mode and 50-80 times higher in the dedicated mode.Both the dedicated and parasitic modes are suitable for macromolecular structure experiments.2001 Elsevier Science B.V.All rights reserved.

  5. Hydropyrolysis: A new technique for the analysis of macromolecular material in meteorites

    Science.gov (United States)

    Sephton, Mark A.; Love, Gordon D.; Meredith, Will; Snape, Colin E.; Sun, Cheng-Gong; Watson, Jonathan S.

    2005-10-01

    The carbonaceous chondrite meteorites are fragments of asteroids that have remained relatively unprocessed since the formation of the Solar System 4.56 billion years ago. The major organic component in these meteorites is a macromolecular phase that is resistant to solvent extraction. The information contained within macromolecular material can be accessed by degradative techniques such as pyrolysis. Hydropyrolysis refers to pyrolysis assisted by high hydrogen gas pressures and a dispersed sulphided molybdenum catalyst. Hydropyrolysis of the Murchison macromolecular material successfully releases much greater quantities of hydrocarbons than traditional pyrolysis techniques (twofold greater than hydrous pyrolysis) including significant amounts of high molecular weight polyaromatic hydrocarbons (PAH) such as phenanthrene, carbazole, fluoranthene, pyrene, chrysene, perylene, benzoperylene and coronene units with varying degrees of alkylation. When hydropyrolysis products are collected using a silica trap immersed in liquid nitrogen, the technique enables the solubilisation and retention of compounds with a wide range of volatilities (i.e. benzene to coronene). This report describes the hydropyrolysis method and the information it can provide about meteorite macromolecular material constitution.

  6. [Progress in researches on synthetic antimicrobial macromolecular polymers].

    Science.gov (United States)

    Wei, Gang; Yang, Lihua; Chu, Liangyin

    2010-08-01

    Broad-spectrum antimicrobial peptides provide a new way to address the urgent growing problem of bacterial resistance. However, the limited natural resources and the high cost of extraction and purification of natural antimicrobial peptides can not meet the requirements of clinical application. In order to solve this problem, researchers have utilized two basic common structural features (amphiphilic and cationic) for designing and preparing synthetic antimicrobial macromolecular polymers. During the last decade, several kinds of amphiphilic polymers, including arylamide oligomers, phenylene ethynylenes, polymethacrylates, polynorbornenes as well as nylon-3 polymers have been synthesized. In this paper, the structures, antibacterial activities and selectivities of these polymers are reviewed, and the effects of molecular size, polarity and ratio of hydrophobic groups, positive charge density on antibacterial activity and selectivity are also summarized.

  7. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1995-01-01

    X-ray crystallography provides us with the most accurate picture we can get of atomic and molecular structures in crystals. It provides a hard bedrock of structural results in chemistry and in mineralogy. In biology, where the structures are not fully crystalline, it can still provide valuable results and, indeed, the impact here has been revolutionary. It is still an immense field for young workers, and no doubt will provide yet more striking develop­ ments of a major character. It does, however, require a wide range of intellectual application, and a considerable ability in many fields. This book will provide much help. It is a very straightforward and thorough guide to every aspect of the subject. The authors are experienced both as research workers themselves and as teachers of standing, and this is shown in their clarity of exposition. There are plenty of iliustrations and worked examples to aid the student to obtain a real grasp of the subject.

  8. Busting out of crystallography's Sisyphean prison

    Science.gov (United States)

    Cranswick, L. M. D.

    2008-01-01

    The history of crystallographic computing and use of crystallographic software is one which traces the escape from the drudgery of manual human calculations to a world where the user delegates most of the travail to electronic computers. This review traces the development of small-molecule single-crystal and powder diffraction hardware, starting with the use of Hollerith tabulators of the late 1930's through to today's use of high-performance personal computers. It also emphasizes that the main challenge for current and future crystallography computing is not that of hardware development, or even specific scientific challenges, but rather in maintaining a critical mass of human expertise with which these computational challenges can be undertaken.

  9. Crystallography of Alumina-YAG-Eutectic

    Science.gov (United States)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  10. Crystallography and the world of symmetry

    CERN Document Server

    Chatterjee, Sanat K

    2008-01-01

    Symmetry exists in realms from crystals to patterns, in external shapes of living or non-living objects, as well as in the fundamental particles and the physical laws that govern them. In fact, the search for this symmetry is the driving force for the discovery of many fundamental particles and the formulation of many physical laws. While one can not imagine a world which is absolutely symmetrical nor can one a world which is absolutely asymmetrical. These two aspects of nature are intermingled with each other inseparably. This is the basis of the existence of aperiodicity manifested in the liquid crystals and also quasi-crystals also discussed in Crystallography and the World of Symmetry.

  11. Time-resolved crystallography and protein design: signalling photoreceptors and optogenetics.

    Science.gov (United States)

    Moffat, Keith

    2014-07-17

    Time-resolved X-ray crystallography and solution scattering have been successfully conducted on proteins on time-scales down to around 100 ps, set by the duration of the hard X-ray pulses emitted by synchrotron sources. The advent of hard X-ray free-electron lasers (FELs), which emit extremely intense, very brief, coherent X-ray pulses, opens the exciting possibility of time-resolved experiments with femtosecond time resolution on macromolecular structure, in both single crystals and solution. The X-ray pulses emitted by an FEL differ greatly in many properties from those emitted by a synchrotron, in ways that at first glance make time-resolved measurements of X-ray scattering with the required accuracy extremely challenging. This opens up several questions which I consider in this brief overview. Are there likely to be chemically and biologically interesting structural changes to be revealed on the femtosecond time-scale? How shall time-resolved experiments best be designed and conducted to exploit the properties of FELs and overcome challenges that they pose? To date, fast time-resolved reactions have been initiated by a brief laser pulse, which obviously requires that the system under study be light-sensitive. Although this is true for proteins of the visual system and for signalling photoreceptors, it is not naturally the case for most interesting biological systems. To generate more biological targets for time-resolved study, can this limitation be overcome by optogenetic, chemical or other means?

  12. Protein structure validation and analysis with X-ray crystallography.

    Science.gov (United States)

    Papageorgiou, Anastassios C; Mattsson, Jesse

    2014-01-01

    X-ray crystallography is the main technique for the determination of protein structures. About 85 % of all protein structures known to date have been elucidated using X-ray crystallography. Knowledge of the three-dimensional structure of proteins can be used in various applications in biotechnology, biomedicine, drug design, and basic research and as a validation tool for protein modifications, ligand binding, and structural authenticity. Moreover, the requirement for pure, homogeneous, and stable protein solutions in crystallizations makes X-ray crystallography beneficial in other fields of protein research as well. Here, we describe the technique of X-ray protein crystallography and the steps involved for a successful three-dimensional crystal structure determination.

  13. An integrated web resource for crystallography

    Directory of Open Access Journals (Sweden)

    Brian McMahon

    2006-01-01

    Full Text Available A recurring theme during the CODATA 2000 conference (Lake Maggiore, Italy, 15 - 19 October 2000 was the increasing convergence in data-rich branches of science between the storage and retrieval of data and the publication of conclusions drawn from the data. Web publishing technologies facilitate access to publications and data through the same interfaces and tools. For crystallography, the ability to deliver the experimental data alongside the research commentary offers tremendous advantages. A structured file format has been developed that allows not only submission of a research article accompanied by a complete supporting data set, but also automated validation of the description of the crystal structure reported in the article against the accompanying data. Such validation is an important component of the review process, and encourages better-quality publications. The adopted format is different from XML, but shares some of the properties of that markup language; and suggests the improvements in quality that might result in other subject areas from the adoption of similar methodology. The International Union of Crystallographyfully exploits the convergence of publishing and data-handling technologies in its online journals and associated Web site.

  14. Crystallography, evolution, and the structure of viruses.

    Science.gov (United States)

    Rossmann, Michael G

    2012-03-16

    My undergraduate education in mathematics and physics was a good grounding for graduate studies in crystallographic studies of small organic molecules. As a postdoctoral fellow in Minnesota, I learned how to program an early electronic computer for crystallographic calculations. I then joined Max Perutz, excited to use my skills in the determination of the first protein structures. The results were even more fascinating than the development of techniques and provided inspiration for starting my own laboratory at Purdue University. My first studies on dehydrogenases established the conservation of nucleotide-binding structures. Having thus established myself as an independent scientist, I could start on my most cherished ambition of studying the structure of viruses. About a decade later, my laboratory had produced the structure of a small RNA plant virus and then, in another six years, the first structure of a human common cold virus. Many more virus structures followed, but soon it became essential to supplement crystallography with electron microscopy to investigate viral assembly, viral infection of cells, and neutralization of viruses by antibodies. A major guide in all these studies was the discovery of evolution at the molecular level. The conservation of three-dimensional structure has been a recurring theme, from my experiences with Max Perutz in the study of hemoglobin to the recognition of the conserved nucleotide-binding fold and to the recognition of the jelly roll fold in the capsid protein of a large variety of viruses.

  15. Two-Dimensional Crystallization of the Ca(2+)-ATPase for Electron Crystallography.

    Science.gov (United States)

    Glaves, John Paul; Primeau, Joseph O; Young, Howard S

    2016-01-01

    Electron crystallography of two-dimensional crystalline arrays is a powerful alternative for the structure determination of membrane proteins. The advantages offered by this technique include a native membrane environment and the ability to closely correlate function and dynamics with crystalline preparations and structural data. Herein, we provide a detailed protocol for the reconstitution and two-dimensional crystallization of the sarcoplasmic reticulum calcium pump (also known as Ca(2+)-ATPase or SERCA) and its regulatory subunits phospholamban and sarcolipin.

  16. Controlling Macromolecular Topology with Genetically Encoded SpyTag-SpyCatcher Chemistry

    OpenAIRE

    Zhang, Wen-Bin; Sun, Fei; Tirrell, David A.; Arnold, Frances H.

    2013-01-01

    Control of molecular topology constitutes a fundamental challenge in macromolecular chemistry. Here we describe the synthesis and characterization of artificial elastin-like proteins (ELPs) with unconventional nonlinear topologies including circular, tadpole, star, and H-shaped proteins using genetically encoded SpyTag–SpyCatcher chemistry. SpyTag is a short polypeptide that binds its protein partner SpyCatcher and forms isopeptide bonds under physiological conditions. Sequences encoding SpyT...

  17. An upper limit for macromolecular crowding effects

    Directory of Open Access Journals (Sweden)

    Miklos Andrew C

    2011-05-01

    Full Text Available Abstract Background Solutions containing high macromolecule concentrations are predicted to affect a number of protein properties compared to those properties in dilute solution. In cells, these macromolecular crowders have a large range of sizes and can occupy 30% or more of the available volume. We chose to study the stability and ps-ns internal dynamics of a globular protein whose radius is ~2 nm when crowded by a synthetic microgel composed of poly(N-isopropylacrylamide-co-acrylic acid with particle radii of ~300 nm. Results Our studies revealed no change in protein rotational or ps-ns backbone dynamics and only mild (~0.5 kcal/mol at 37°C, pH 5.4 stabilization at a volume occupancy of 70%, which approaches the occupancy of closely packing spheres. The lack of change in rotational dynamics indicates the absence of strong crowder-protein interactions. Conclusions Our observations are explained by the large size discrepancy between the protein and crowders and by the internal structure of the microgels, which provide interstitial spaces and internal pores where the protein can exist in a dilute solution-like environment. In summary, microgels that interact weakly with proteins do not strongly influence protein dynamics or stability because these large microgels constitute an upper size limit on crowding effects.

  18. Macromolecular components of tomato fruit pectin.

    Science.gov (United States)

    Fishman, M L; Gross, K C; Gillespie, D T; Sondey, S M

    1989-10-01

    Chelate and alkaline-soluble pectin extracted from cell walls of pericarp tissue from mature green, turning, and red ripe (Lycopersicon esculentum Mill.) fruit (cv. Rutgers), were studied by high-performance size-exclusion chromatography. Computer-aided curve fitting of the chromatograms to a series of Gaussian-shaped components revealed that pectin from all fractions was composed of a linear combination of five macromolecular-sized species. The relative sizes of these macromolecules as obtained from their radii of gyration were 1:2:4:8:16. Dialysis against 0.05 M NaCl induced partial dissociation of the biopolymers. Apparently, the weight fraction of smaller sized species increased at the expense of larger ones. Also, the dissociation produced low-molecular-weight fragments. Behavior in the presence of 0.05 M NaCl led to the conclusion that cell wall pectin acted as if it were an aggregated mosaic, held together at least partially through noncovalent interactions.

  19. Microbeam MAD Beamline for Challenging Protein Crystallography in TPS

    Science.gov (United States)

    Liu, D. G.; Chao, C. H.; Chang, C. H.; Juang, J. M.; Liu, C. Y.; Chang, S. H.; Chang, C. F.; Chou, C. K.; Tseng, C. C.; Chiang, C. H.; Jean, Y. C.; Tang, M. T.; Chung, S. C.; Chang, S. L.

    2013-03-01

    The TPS-05A beamline is the first X-ray beamline at NSRRC built for micro protein crystallography experiment as well as one of the seven ID beamlines in phase I at the TPS synchrotron facility. A 2-meter in-vacuum undulator (IU22) serves as the photon source from which the harmonics #3 to #9 will provide brilliance of 1018-1020 photons s-1 mrad-2 mm-2 (0.1% bandwidth)-1 and photon flux of 1013-1014 photons s-1 (0.1% bandwidth)-1 in the required energy range of 5.7-20 keV (2.175-0.620 Å) to cover MAD phasing experiments at 1 Å and SAD phasing experiments at 2 Å. The beamline optics consists of a cryo-cooled double crystal monochromator (DCM) and a pair of focusing K-B mirrors. Requirements from the user group include a target focus size of 50 μm × 50 μm (H × V) at the sample position, photon flux greater than 2 × 1012 photons s-1 at Se K-edge (0.9795 Å), pinholes for adjusting the beam size down to 5 μm. Calculation of heat load for the first optical element, i.e. the first crystal of DCM, is included in this paper.

  20. Macromolecular networks and intelligence in microorganisms

    Directory of Open Access Journals (Sweden)

    Hans V Westerhoff

    2014-07-01

    Full Text Available Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of Information and Communication Technology (ICT: they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call intelligence. Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as human and brain out of the defining features of intelligence, all forms of life – from microbes to humans – exhibit some or all characteristics consistent with intelligence. We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo.

  1. Macromolecular networks and intelligence in microorganisms

    Science.gov (United States)

    Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  2. Choice and maintenance of equipment for electron crystallography.

    Science.gov (United States)

    Mills, Deryck J; Vonck, Janet

    2013-01-01

    The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.

  3. Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography.

    Science.gov (United States)

    Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei

    2016-09-20

    Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include

  4. A Compact X-Ray System for Support of High Throughput Crystallography

    Science.gov (United States)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  5. Applied Crystallography - Proceedings of the XVth Conference

    Science.gov (United States)

    Morawiec, H.; Ströż, D.

    1993-06-01

    The Table of Contents for the full book PDF is as follows: * Foreword * The International Centre for Diffraction Data and Its Future Developments * The Rietveld Method - A Historical Perspective * Real Structure in Quantitative Powder Diffraction Phase Analysis * Neutron Focusing Optics in Applied Crystallography * The Crystal Structures of Oxygen Deficient Rare Earth Oxides * Short-Range Order in Layer-Structured Ba1-xSrxBi2Nb2O9 Ferroelectrics * Radial Distribution Function as a Tool of Structural Studies on Noncrystalline Materials * Determination of Radial Distribution Function (RDF) of Electrodeposited Cu-Cd Alloys After Annealing * Spheres Packing as a Factor Describing the Local Environment and Structure Stability * X-Ray Stress Measurement of Samples Combined with Diffraction Line Analysis * Phase Stability and Martensitic Transformation in Cu-Zn and Cu-Zn-Al Single Crystals * Order, Defects, Precipitates and the Martensitic Transformation in β Cu-Zn-Al * Effect of γ Precipitates on the Martensitic Transformation in Cu-Zn-Al Alloys * Phase Transitions and Shape Memory Effect in a Thermomechanically Treated NiTi Alloy * Structure of Martensite and Bainite in CuAlMn Alloys * Glass-Ceramics * Mechanism of Texture Formation at the Rolling of Low Stacking Fault Energy Metals and Alloys * Shear Texture of Zinc and the Conditions of Its Occuring * The Development of Texture of ZnAlMg Sheets Depending on Deformation Geometry * Texture Stability of the D.S. NiAlMoCrTi Alloy After Heat Treatment * X-Ray Diffraction Method for Controlling of Texture Evolution in Layers * Texture and Lattice Imperfections Study of Some Low Alloyed Copper Alloys * Selected Examples of the Calculation of the Orientation Distribution Function for Low Crystal and Sample Symmetries * Automatical X-Ray Quantitative Phase Analysis * Application of a PC Computer for Crystallographic Calculations * Electron Diffraction Analysis using a Personal Computer * CA.R.INE Crystallography Version 2

  6. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers.

    Science.gov (United States)

    Xie, Nan; Liu, Meijiao; Deng, Hanlin; Li, Weihua; Qiu, Feng; Shi, An-Chang

    2014-02-26

    Self-assembling block copolymers provide access to the fabrication of various ordered phases. In particular, the ordered spherical phases can be used to engineer soft mesocrystals with domain size at the 5-100 nm scales. Simple block copolymers, such as diblock copolymers, form a limited number of mesocrystals. However multiblock copolymers are capable to form more complex mesocrystals. We demonstrate that designed B1AB2CB3 multiblock terpolymers, in which the A- and C-blocks form spherical domains and the packing of these spheres can be controlled by changing the lengths of the middle and terminal B-blocks, self-assemble into various binary mesocrystals with space group symmetries of a large number of binary ionic crystals, including NaCl, CsCl, ZnS, α-BN, AlB2, CaF2, TiO2, ReO3, Li3Bi, Nb3Sn(A15), and α-Al2O3. This approach can be generalized to other terpolymers as well as to tetrapolymers to obtain ternary mesocrystals. Our study provides a new concept of macromolecular metallurgy for producing crystal phases in a mesoscale and thus makes multiblock copolymers a robust platform for the engineering of functional materials.

  7. Macromolecular Powder Diffraction: Ready for genuine biological problems.

    Science.gov (United States)

    Karavassili, Fotini; Margiolaki, Irene

    2016-01-01

    Knowledge of 3D structures of biological molecules plays a major role in both understanding important processes of life and developing pharmaceuticals. Among several methods available for structure determination, macromolecular X-ray powder diffraction (XRPD) has transformed over the past decade from an impossible dream to a respectable method. XRPD can be employed in biosciences for various purposes such as observing phase transitions, characterizing bulk pharmaceuticals, determining structures via the molecular replacement method, detecting ligands in protein-ligand complexes, as well as combining micro-sized single crystal crystallographic data and powder diffraction data. Studies using synchrotron and laboratory sources in some standard configuration setups are reported in this review, including their respective advantages and disadvantages. Methods presented here provide an alternative, complementary set of tools to resolve structural problems. A variety of already existing software packages for powder diffraction data processing and analysis, some of which have been adapted to large unit cell studies, are briefly described. This review aims to provide necessary elements of theory and current methods, along with practical explanations, available software packages and highlighted case studies.

  8. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  9. Two-dimensional pixel array image sensor for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Beche, J.-F.; Cork, C. [and others

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  10. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Takanori [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Song, Changyong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); POSTECH, Pohang 790-784 (Korea, Republic of); Suzuki, Mamoru [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nango, Eriko; Kobayashi, Jun [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Masuda, Tetsuya [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Inoue, Shigeyuki [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mizohata, Eiichi [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakatsu, Toru [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, Tomoyuki; Tanaka, Rie [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shimamura, Tatsuro [Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hatsui, Takaki; Yabashi, Makina [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Nureki, Osamu [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Iwata, So [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Sugahara, Michihiro, E-mail: msuga@spring8.or.jp [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-11-27

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  11. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  12. Structural preablation dynamics of graphite observed by ultrafast electron crystallography

    NARCIS (Netherlands)

    Carbone, Fabrizio; Baum, Peter; Rudolf, Petra; Zewail, Ahmed H.

    2008-01-01

    By means of time-resolved electron crystallography, we report direct observation of the structural dynamics of graphite, providing new insights into the processes involving coherent lattice motions and ultrafast graphene ablation. When graphite is excited by an ultrashort laser pulse, the excited

  13. Two-Dimensional Crystallography Introduced by the Sprinkler Watering Problem

    Science.gov (United States)

    De Toro, Jose A.; Calvo, Gabriel F.; Muniz, Pablo

    2012-01-01

    The problem of optimizing the number of circular sprinklers watering large fields is used to introduce, from a purely elementary geometrical perspective, some basic concepts in crystallography and comment on a few size effects in condensed matter physics. We examine square and hexagonal lattices to build a function describing the, so-called, dry…

  14. A high-pressure MWPC detector for crystallography

    DEFF Research Database (Denmark)

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.;

    1999-01-01

    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a solution...

  15. Tinker Toys, Crystallography, and the Introductory Mineralogy Course

    Science.gov (United States)

    Buseck, Peter R.

    1970-01-01

    Describes the use of Tinker Toys to construct three dimensional models of crystals useful in illustrating many concepts of crystallography. Space lattices representing all of the Bravais types can be constructed. Also discusses the use of appropriate models to demonstrate the various symmetry operations. Bibliography. (LC)

  16. Using Two-Dimensional Colloidal Crystals to Understand Crystallography

    Science.gov (United States)

    Bosse, Stephanie A.; Loening, Nikolaus M.

    2008-01-01

    X-ray crystallography is an essential technique for modern chemistry and biochemistry, but it is infrequently encountered by undergraduate students owing to lack of access to equipment, the time-scale for generating diffraction-quality molecular crystals, and the level of mathematics involved in analyzing the resulting diffraction patterns.…

  17. Exploring ribozyme conformational changes with X-ray crystallography.

    Science.gov (United States)

    Spitale, Robert C; Wedekind, Joseph E

    2009-10-01

    Relating three-dimensional fold to function is a central challenge in RNA structural biology. Toward this goal, X-ray crystallography has long been considered the "gold standard" for structure determinations at atomic resolution, although NMR spectroscopy has become a powerhouse in this arena as well. In the area of dynamics, NMR remains the dominant technique to probe the magnitude and timescales of molecular motion. Although the latter area remains largely unassailable by conventional crystallographic methods, inroads have been made on proteins using Laue radiation on timescales of ms to ns. Proposed 'fourth generation' radiation sources, such as free-electron X-ray lasers, promise ps- to fs-timescale resolution, and credible evidence is emerging that supports the feasibility of single molecule imaging. At present however, the preponderance of RNA structural information has been derived from timescale and motion insensitive crystallographic techniques. Importantly, developments in computing, automation and high-flux synchrotron sources have propelled the rapidity of 'conventional' RNA crystal structure determinations to timeframes of hours once a suitable set of phases is obtained. With a sufficient number of crystal structures, it is possible to create a structural ensemble that can provide insight into global and local molecular motion characteristics that are relevant to biological function. Here we describe techniques to explore conformational changes in the hairpin ribozyme, a representative non-protein-coding RNA catalyst. The approaches discussed include: (i) construct choice and design using prior knowledge to improve X-ray diffraction; (ii) recognition of long-range conformational changes and (iii) use of single-base or single-atom changes to create ensembles. The methods are broadly applicable to other RNA systems.

  18. Two-center-multipole expansion method: application to macromolecular systems

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.;

    2007-01-01

    We propose a theoretical method for the calculation of the interaction energy between macromolecular systems at large distances. The method provides a linear scaling of the computing time with the system size and is considered as an alternative to the well-known fast multipole method. Its...

  19. Splendid Century of X-ray Crystallography%X射线晶体学的百年辉煌

    Institute of Scientific and Technical Information of China (English)

    马礼敦

    2014-01-01

    It has been more than one century since Max von Laue discovered the X-ray diffraction by copper sulfate crystal and W. L. Bragg pioneered the X-ray Crystallography. This has been one of the major milestones in the progress of modern sciences, in particular in the sciences and technologies of microstructures. In the past 100 years, the X-ray Crystallography has developed rapidly with significant scientific achievements. In this review article, the history of the X-ray Crystallography is highlighted from four distinct stages for the X-ray crystallographic experimental techniques. In each of the ma jor stages, the developments of the X-ray Crystallography in terms of the sin-gle crystal diffraction, powder diffraction, and X-ray spectroscopy are presented. Furthermore, the profound impacts of the X-ray Crystallography on not only basic sciences such as Physics, Crystallography, Chemistry and Biology, but also applied sciences such as Materials, Medicine, Pharmacology, Environments and so on, are described. The future challenges and opportuni-ties for the X-ray Crystallography, including several scientific frontiers such as the giant X-ray source-hard X-ray free electron laser, multi-dimensional crystallography, electron crystallography, mathematical crystallography, and three-dimensional X-ray diffraction microscopy etc will be dis-cussed. It is believed that as much as has been achieved in the last century, even more will be expected in the next 100 years.%自1912年劳厄发现X射线晶体衍射现象,小布拉格开创X射线晶体学以来,已经过去了100年。这一发现,对人类科学的发展,特别是微观结构科学的影响至为巨大,具有里程碑的意义。在这100年中,X射线晶体学发展迅速,成果累累。本文按主要实验技术的特点将100年大致分为四个阶段,从单晶体衍射、多晶体衍射和X射线光谱三个方面简述其主要进展和成果。并简单概括了她对物理学、晶体学、

  20. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    Energy Technology Data Exchange (ETDEWEB)

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I. [QuantumBio Inc., 2790 West College Avenue, State College, PA 16801 (United States); Merz, Kenneth M. Jr [University of Florida, Gainesville, Florida (United States); Westerhoff, Lance M., E-mail: lance@quantumbioinc.com [QuantumBio Inc., 2790 West College Avenue, State College, PA 16801 (United States)

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  1. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive.

    Science.gov (United States)

    Burley, Stephen K; Berman, Helen M; Kleywegt, Gerard J; Markley, John L; Nakamura, Haruki; Velankar, Sameer

    2017-01-01

    The Protein Data Bank (PDB)--the single global repository of experimentally determined 3D structures of biological macromolecules and their complexes--was established in 1971, becoming the first open-access digital resource in the biological sciences. The PDB archive currently houses ~130,000 entries (May 2017). It is managed by the Worldwide Protein Data Bank organization (wwPDB; wwpdb.org), which includes the RCSB Protein Data Bank (RCSB PDB; rcsb.org), the Protein Data Bank Japan (PDBj; pdbj.org), the Protein Data Bank in Europe (PDBe; pdbe.org), and BioMagResBank (BMRB; www.bmrb.wisc.edu). The four wwPDB partners operate a unified global software system that enforces community-agreed data standards and supports data Deposition, Biocuration, and Validation of ~11,000 new PDB entries annually (deposit.wwpdb.org). The RCSB PDB currently acts as the archive keeper, ensuring disaster recovery of PDB data and coordinating weekly updates. wwPDB partners disseminate the same archival data from multiple FTP sites, while operating complementary websites that provide their own views of PDB data with selected value-added information and links to related data resources. At present, the PDB archives experimental data, associated metadata, and 3D-atomic level structural models derived from three well-established methods: crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron microscopy (3DEM). wwPDB partners are working closely with experts in related experimental areas (small-angle scattering, chemical cross-linking/mass spectrometry, Forster energy resonance transfer or FRET, etc.) to establish a federation of data resources that will support sustainable archiving and validation of 3D structural models and experimental data derived from integrative or hybrid methods.

  2. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  3. Liquid sample delivery techniques for serial femtosecond crystallography.

    Science.gov (United States)

    Weierstall, Uwe

    2014-07-17

    X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques.

  4. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.

    Science.gov (United States)

    Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim

    2014-01-01

    Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.

  5. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    Science.gov (United States)

    Ó Conchúir, Shane; Barlow, Kyle A; Pache, Roland A; Ollikainen, Noah; Kundert, Kale; O'Meara, Matthew J; Smith, Colin A; Kortemme, Tanja

    2015-01-01

    The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.

  6. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Shane Ó Conchúir

    Full Text Available The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.

  7. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Jose M. Martin-Garcia

    2017-07-01

    Full Text Available Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX is severely limited by the scarcity of X-ray free-electron laser (XFEL sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX. As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS, are reported. Microcrystals (5–20 µm of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR, the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP or a high-molecular-weight poly(ethylene oxide (PEO; molecular weight 8 000 000 were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the

  8. Stochastic reaction–diffusion algorithms for macromolecular crowding

    Science.gov (United States)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction–diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction–diffusion simulations is investigated. Reaction–diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35–53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  9. Controlled architecture for improved macromolecular memory within polymer networks.

    Science.gov (United States)

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms.

  10. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  11. The vibron dressing in α-helicoidal macromolecular chains

    Institute of Scientific and Technical Information of China (English)

    D.(C)evizovi(c); S.Galovi(c); A.Reshetnyak; Z.Ivi(c)

    2013-01-01

    We present a study of the physical properties of the vibrational excitation in α-helicoidal macromolecular chains,caused by the interaction with acoustical and optical phonon modes.The influence of the temperature and the basic system parameters on the vibron dressing have been analyzed by employing the simple mean-field approach based on the variational extension of the Lang-Firsov unitary transformation.The applied approach predicts a region in system parameter space where one has an abrupt transition from a partially dressed (light and mobile) to a fully dressed (immobile) vibron state.We found that the boundary of this region depends on system temperature and the type of bond among structural elements in the macromolecular chain.

  12. Invariant line and crystallography of HCP→BCC precipitation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    [1]Luo,C.P.,Weatherly,G.C.,The precipitation behavior of a Zr-2.5%wt.%pct Nb alloy,Metall.Trans.,1988,19A: 1153-1162.[2]Lang,J.M.,Dahmen,U.,Westmacott,K.H.,The origin of Mo2C precipitate morphology in molybdenum,Phys.Stat.Sol.(a),1983,75: 409-420.[3]Luo,C.P.,Dahmen,U.,Wesmacott,K.H.,Morphology,and crestallography of precipitates in a Cu-0.33wt.%Cr alloy,Acta Metall.,1994,42,1923-1932.[4]Luo,C.P.,Wu,D.X.,Xiao,X.L.,Crystallography of the BCCFCC transformation in a Cr-10wt.%Ni alloy,Abstract (Letters) of Science and Technology of China,1996,2 (10): 121-127.[5]Xiao,X.L.,Luo,C.P.,Nie,J.F.,Morphology and crystallography of β-(Mg17Al12) precipitate in an AZ91 magnesium-aluminum alloy,Acta Metall.Sinica,2001,in press.[6]Wechsler,M.S.,Lieberman,D.S.,Read,T.A.,On the theory of formation of martensite,Trans.Am.Inst.Min.Engrs.,1953,197: 1503-1515.[7]Bowles,J.S.,Mackenzine,J.K.,The crystallography of martensite transformation,Acta Metall.,1954,2: 129-147.[8]Wayman,C.M.,Introduction to the Crystallography of Martensitic Transformations,New York: Macmillan Co.,1964.76-80.[9]Luo,C.P.,Weatherly,G.C.,The invariant line and precipitation in a Ni-25wt.%Cr alloy,Acta Metall.,1987,35: 1963-1972.[10]Luo,C.P.,Xiao,X.L.,Wu,D.X.,Invariant line strain theory and its application to the crystallography of solid-state phase transformations,Progress in Natural Science,2000,10(3): 193-200.[11]Luo,C.P.,Weatherly,G.C.,The interphase boundary structure of precipitates in a Ni-Cr alloy,Philos.Mag.,1988,58: 445-462.[12]Luo,C.P.,Dahmen,U.,Interface structure of faceted lath-shaped Cr precipitates in a Cu-0.33wt.%Cr alloy,Acta Metall.,1998,46: 2063-2081.

  13. A Strategy for the Development of Macromolecular Nonlinear Optical Materials

    Science.gov (United States)

    1990-01-01

    obsolete. SECURITY CLASSIFICATION OF THIS PAGE STRATEGY FOR THE DEVELOPMENT OF MACROMOLECULAR NONLINEAR OPTICAL MATERIALS Braja K. Mandala , Jan-Chan...materials is significantly different from the conventional inorganic NLO materials. The extent of second order (quadratic) NLO effect such as second...is a criterion of paramount importance for a large second order electro-optic effect in organic materials 8 ,9 . The most common approach to obtain

  14. Single-particle cryo-electron microscopy of macromolecular assemblies

    OpenAIRE

    Cheng, Kimberley

    2009-01-01

    In this thesis, single-particle cryo-electron microscopy (cryo-EM) was used to study the structure of three macromolecular assemblies: the two hemocyanin isoforms from Rapana thomasiana, the Pyrococcus furiosus chaperonin, and the ribosome from Escherichia coli. Hemocyanins are large respiratory proteins in arthropods and molluscs. Most molluscan hemocyanins exist as two distinct isoforms composed of related polypeptides. In most species the two isoforms differ in terms of their oligomeric st...

  15. What Macromolecular Crowding Can Do to a Protein

    Science.gov (United States)

    Kuznetsova, Irina M.; Turoverov, Konstantin K.; Uversky, Vladimir N.

    2014-01-01

    The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area. PMID:25514413

  16. Macromolecular amplification of binding response in superaptamer hydrogels.

    Science.gov (United States)

    Bai, Wei; Gariano, Nicholas A; Spivak, David A

    2013-05-08

    It is becoming more important to detect ultralow concentrations of analytes for biomedical, environmental, and national security applications. Equally important is that new methods should be easy to use, inexpensive, portable, and if possible allow detection by the naked eye. By and large, detection of low concentrations of analytes cannot be achieved directly but requires signal amplification by catalysts, macromolecules, metal surfaces, or supramolecular aggregates. The rapidly progressing field of macromolecular signal amplification has been advanced using conjugated polymers, chirality in polymers, solvating polymers, and polymerization/depolymerization strategies. A new type of aptamer-based hydrogel with specific response to target proteins presented in this report demonstrates an additional category of macromolecular signal amplification. This superaptamer assembly provides the first example of using protein-specific aptamers to create volume-changing hydrogels with amplified response to the target protein. A remarkable aspect of these superaptamer hydrogels is that volume shrinking is visible to the naked eye down to femtomolar concentrations of protein. This extraordinary macromolecular amplification is attributed to a complex interplay between protein-aptamer supramolecular cross-links and the consequential reduction of excluded volume in the hydrogel. Specific recognition is even maintained in biological matrices such as urine and tears. Furthermore, the gels can be dried for long-term storage and regenerated for use without loss of activity. In practice, the ease of this biomarker detection method offers an alternative to traditional analytical techniques that require sophisticated instrumentation and highly trained personnel.

  17. Macromolecular Assemblage in the Design of a Synthetic AIDS Vaccine

    Science.gov (United States)

    Defoort, Jean-Philippe; Nardelli, Bernardetta; Huang, Wolin; Ho, David D.; Tam, James P.

    1992-05-01

    We describe a peptide vaccine model based on the mimicry of surface coat protein of a pathogen. This model used a macromolecular assemblage approach to amplify peptide antigens in liposomes or micelles. The key components of the model consisted of an oligomeric lysine scaffolding to amplify peptide antigens covalently 4-fold and a lipophilic membrane-anchoring group to further amplify noncovalently the antigens many-fold in liposomal or micellar form. A peptide antigen derived from the third variable domain of glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1), consisting of neutralizing, T-helper, and T-cytotoxic epitopes, was used in a macromolecular assemblage model (HIV-1 linear peptide amino acid sequence 308-331 in a tetravalent multiple antigen peptide system linked to tripalmitoyl-S-glycerylcysteine). The latter complex, in liposome or micelle, was used to immunize mice and guinea pigs without any adjuvant and found to induce gp120-specific antibodies that neutralize virus infectivity in vitro, elicit cytokine production, and prime CD8^+ cytotoxic T lymphocytes in vivo. Our results show that the macromolecular assemblage approach bears immunological mimicry of the gp120 of HIV virus and may lead to useful vaccines against HIV infection.

  18. Crystallography of metal–organic frameworks

    Directory of Open Access Journals (Sweden)

    Felipe Gándara

    2014-11-01

    Full Text Available Metal–organic frameworks (MOFs are one of the most intensely studied material types in recent times. Their networks, resulting from the formation of strong bonds between inorganic and organic building units, offer unparalled chemical diversity and pore environments of growing complexity. Therefore, advances in single-crystal X-ray diffraction equipment and techniques are required to characterize materials with increasingly larger surface areas, and more complex linkers. In addition, whilst structure solution from powder diffraction data is possible, the area is much less populated and we detail the current efforts going on here. We also review the growing number of reports on diffraction under non-ambient conditions, including the response of MOF structures to very high pressures. Such experiments are important due to the expected presence of stresses in proposed applications of MOFs – evidence suggesting rich and complex behaviour. Given the entwined and inseparable nature of their structure, properties and applications, it is essential that the field of structural elucidation is able to continue growing and advancing, so as not to provide a rate-limiting step on characterization of their properties and incorporation into devices and applications. This review has been prepared with this in mind.

  19. Translational diffusion of macromolecular assemblies measured using transverse-relaxation-optimized pulsed field gradient NMR.

    Science.gov (United States)

    Horst, Reto; Horwich, Arthur L; Wüthrich, Kurt

    2011-10-19

    In structural biology, pulsed field gradient (PFG) NMR spectroscopy for the characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution conditions as used for NMR structure determination or for crystallization trials. This paper describes two transverse-relaxation-optimized (TRO) (15)N-filtered PFG stimulated-echo (STE) experiments for studies of macromolecular translational diffusion in solution, (1)H-TRO-STE and (15)N-TRO-STE, which include CRINEPT and TROSY elements. Measurements with mixed micelles of the Escherichia coli outer membrane protein X (OmpX) and the detergent Fos-10 were used for a systematic comparison of (1)H-TRO-STE and (15)N-TRO-STE with conventional (15)N-filtered STE experimental schemes. The results provide an extended platform for evaluating the NMR experiments available for diffusion measurements in structural biology projects involving molecular particles with different size ranges. An initial application of the (15)N-TRO-STE experiment with very long diffusion delays showed that the tedradecamer structure of the 800 kDa Thermus thermophilus chaperonin GroEL is preserved in aqueous solution over the temperature range 25-60 °C.

  20. Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR

    Science.gov (United States)

    Horst, Reto; Horwich, Arthur L.

    2012-01-01

    In structural biology, pulsed field gradient (PFG) NMR for characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution conditions as used for NMR structure determination or for crystallization trials. This paper describes two transverse relaxation-optimized (TRO) 15N-filtered PFG stimulated-echo (STE) experiments for studies of macromolecular translational diffusion in solution, 1H-TRO-STE and 15N-TRO-STE, which include CRINEPT and TROSY elements. Measurements with mixed micelles of the Escherichia coli outer membrane protein X (OmpX) and the detergent Fos-10 were used for a systematic comparison of 1H-TRO-STE and 15N-TRO-STE with conventional 15N-filtered STE experimental schemes. The results provide an extended platform for evaluating the NMR experiments available for diffusion measurements in structural biology projects with molecular particles of different size ranges. An initial application of the 15N-TRO-STE experiment with very long diffusion delays showed that the tedradecamer structure of the 800 kDa Thermus thermophilus chaperonin GroEL is preserved in aqueous solution over the temperature range 25–60°C. PMID:21919531

  1. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Amninder S Virk

    2015-02-01

    Full Text Available Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction. Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  2. Advances in structural and functional analysis of membrane proteins by electron crystallography.

    Science.gov (United States)

    Wisedchaisri, Goragot; Reichow, Steve L; Gonen, Tamir

    2011-10-12

    Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography.

  3. Dynamics simulations for engineering macromolecular interactions

    Science.gov (United States)

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could

  4. Membrane-Protein Crystallography and Potentiality for Drug Design

    Science.gov (United States)

    Yamashita, Atsuko

    Structure-based drug design for membrane proteins is far behind that for soluble proteins due to difficulty in crystallographic structure determination, despite the fact that about 60% of FDA-approved drugs target membrane proteins located at the cell surface. Stable homologs for a membrane protein of interest, such as prokaryotic neurotransmitter transporter homolog LeuT, might enable cooperative analyses by crystallography and functional assays, provide useful information for functional mechanisms, and thus serve as important probes for drug design based on mechanisms as well as structures.

  5. Crystallography of lath martensite and stabilization of retained austenite

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya. M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200/sup 0/C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different (111) variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample.

  6. High-resolution protein structure determination by serial femtosecond crystallography.

    Science.gov (United States)

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  7. Invariant line and crystallography of HCP→BCC precipitation

    Institute of Scientific and Technical Information of China (English)

    肖晓玲; 罗承萍; 刘江文

    2002-01-01

    The method of calculating the invariant line in HCP→BCC precipitation based on the invariant line strain model is described.The experimentally determined crystallographic features of the lath-shaped or needle-like precipitates formed in the HCP→BCC precipitations occurring in Mg-Al and Zr-Nb alloys were found to be in excellent agreement with the predictions from the model,thus suggesting that the model is valid for predicting the crystallography of diffusion-controlled phase transformations.

  8. Crystallography of rare galactic honeycomb structure near supernova 1987a

    Science.gov (United States)

    Noever, David A.

    1994-01-01

    Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.

  9. Criticality and Connectivity in Macromolecular Charge Complexation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Jian; de Pablo, Juan J.

    2016-11-04

    We examine the role of molecular connectivity and architecture on the complexation of ionic macromolecules (polyelectrolytes) of finite size. A unified framework is developed and applied to evaluate the electrostatic correlation free energy for point-like, rod-like, and coil-like molecules. That framework is generalized to molecules of variable fractal dimensions, including dendrimers. Analytical expressions for the free energy, correlation length, and osmotic pressure are derived, thereby enabling consideration of the effects of charge connectivity, fractal dimension, and backbone stiffness on the complexation behavior of a wide range of polyelectrolytes. Results are presented for regions in the immediate vicinity of the critical region and far from it. A transparent and explicit expression for the coexistence curve is derived in order to facilitate analysis of experimentally observed phase diagrams.

  10. Workshop on algorithms for macromolecular modeling. Final project report, June 1, 1994--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Leimkuhler, B.; Hermans, J.; Skeel, R.D.

    1995-07-01

    A workshop was held on algorithms and parallel implementations for macromolecular dynamics, protein folding, and structural refinement. This document contains abstracts and brief reports from that workshop.

  11. The contrasting effect of macromolecular crowding on amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available BACKGROUND: Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1 have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins. METHODOLOGY/PRINCIPAL FINDINGS: As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l. CONCLUSIONS/SIGNIFICANCE: We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of

  12. Discovery of Leukotriene A4 Hydrolase Inhibitors Using Metabolomics Biased Fragment Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.; Mamat, B; Magnusson, O; Christensen, J; Haraldsson, M; Mishra, R; Pease, B; Hansen, E; Singh, J; et. al.

    2009-01-01

    We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein-protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4H representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors.

  13. Bringing macromolecular machinery to life using 3D animation.

    Science.gov (United States)

    Iwasa, Janet H

    2015-04-01

    Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere.

  14. BLOOD FLOW AND MACROMOLECULAR TRANSPORT IN CURVED BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    WEI Lan; WEN Gong-bi; TAN Wen-chang

    2006-01-01

    A numerical analysis of the steady/pulsatile flow and macromolecular (such as LDL and Albumin) transport in curved blood vessels was carried out. The computational results predict that the vortex of the secondary flow is time-dependent in the aortic arch.The concentration of macromolecule concentrates at the region of sharp curve, and the wall concentration at the outer part is higher than that at the inner part. Atherosclerosis and thrombosis are prone to develop in such regions with sharp flow.

  15. Serial crystallography on in vivo grown microcrystals using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Cornelius Gati

    2014-03-01

    Full Text Available Crystal structure determinations of biological macromolecules are limited by the availability of sufficiently sized crystals and by the fact that crystal quality deteriorates during data collection owing to radiation damage. Exploiting a micrometre-sized X-ray beam, high-precision diffractometry and shutterless data acquisition with a pixel-array detector, a strategy for collecting data from many micrometre-sized crystals presented to an X-ray beam in a vitrified suspension is demonstrated. By combining diffraction data from 80 Trypanosoma brucei procathepsin B crystals with an average volume of 9 µm3, a complete data set to 3.0 Å resolution has been assembled. The data allowed the refinement of a structural model that is consistent with that previously obtained using free-electron laser radiation, providing mutual validation. Further improvements of the serial synchrotron crystallography technique and its combination with serial femtosecond crystallography are discussed that may allow the determination of high-resolution structures of micrometre-sized crystals.

  16. Combining X-ray and neutron crystallography with spectroscopy

    Science.gov (United States)

    Smith, Oliver

    2017-01-01

    X-ray protein crystallography has, through the determination of the three-dimensional structures of enzymes and their complexes, been essential to the understanding of biological chemistry. However, as X-rays are scattered by electrons, the technique has difficulty locating the presence and position of H atoms (and cannot locate H+ ions), knowledge of which is often crucially important for the understanding of enzyme mechanism. Furthermore, X-ray irradiation, through photoelectronic effects, will perturb the redox state in the crystal. By using single-crystal spectrophotometry, reactions taking place in the crystal can be monitored, either to trap intermediates or follow photoreduction during X-ray data collection. By using neutron crystallography, the positions of H atoms can be located, as it is the nuclei rather than the electrons that scatter neutrons, and the scattering length is not determined by the atomic number. Combining the two techniques allows much greater insight into both reaction mechanism and X-ray-induced photoreduction. PMID:28177310

  17. Electron crystallography for structural and functional studies of membrane proteins.

    Science.gov (United States)

    Fujiyoshi, Yoshinori

    2011-01-01

    Membrane proteins are important research targets for basic biological sciences and drug design, but studies of their structure and function are considered difficult to perform. Studies of membrane structures have been greatly facilitated by technological and instrumental advancements in electron microscopy together with methodological advancements in biology. Electron crystallography is especially useful in studying the structure and function of membrane proteins. Electron crystallography is now an established method of analyzing the structures of membrane proteins in lipid bilayers, which resembles their natural biological environment. To better understand the neural system function from a structural point of view, we developed the cryo-electron microscope with a helium-cooled specimen stage, which allows for analysis of the structures of membrane proteins at a resolution higher than 3 Å. This review introduces recent instrumental advances in cryo-electron microscopy and presents some examples of structure analyses of membrane proteins, such as bacteriorhodopsin, water channels and gap junction channels. This review has two objectives: first, to provide a personal historical background to describe how we came to develop the cryo-electron microscope and second, to discuss some of the technology required for the structural analysis of membrane proteins based on cryo-electron microscopy.

  18. Crystallography from Hauy to Laue : controversies on the molecular and atomistic nature of solids

    NARCIS (Netherlands)

    Kubbinga, Henk

    2012-01-01

    The history of crystallography has been assessed in the context of the emergence and spread of the molecular theory. The present paper focuses on the 19th century, which saw the emancipation of crystallography as a science sui generis. Around 1800, Laplace's molecularism called the tune in the

  19. Crystallography from Hauy to Laue : controversies on the molecular and atomistic nature of solids

    NARCIS (Netherlands)

    Kubbinga, Henk

    The history of crystallography has been assessed in the context of the emergence and spread of the molecular theory. The present paper focuses on the 19th century, which saw the emancipation of crystallography as a science sui generis. Around 1800, Laplace's molecularism called the tune in the

  20. Crystallography from Hauy to Laue : controversies on the molecular and atomistic nature of solids

    NARCIS (Netherlands)

    Kubbinga, Henk

    2012-01-01

    The history of crystallography has been assessed in the context of the emergence and spread of the molecular theory. The present paper focuses on the 19th century, which saw the emancipation of crystallography as a science sui generis. Around 1800, Laplace's molecularism called the tune in the vario

  1. Macromolecular Crowding Enhances Thermal Stability of Rabbit Muscle Creatine Kinase

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiang; HE Huawei; LI Sen

    2008-01-01

    The effect of dextran on the conformation (or secondary structure) and thermal stability of creatine kinase (CK) was studied using the far-ultraviolet (UV) circular dichroism (CD) spectra.The results showed that lower concentrations of dextran (less than 60 g/L) induced formation of the secondary CK structures.However,the secondary structure content of CK decreased when the dextran concentrations exceeded 60 g/L.Thermally induced transition curves were measured for CK in the presence of different concentrations of dextran by far-UV CD.The thermal transition curves were fitted to a two-state model by a nonlinear,least-squares method to obtain the transition temperature of the unfolding transition.An increase in the tran- sition temperature was observed with the increase of the dextran concentration.These observations qualita-tively accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation.These findings imply that the effects of macromolecular crowding can have an important influence on our understanding of how protein folding oc-curs in vivo.

  2. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    Science.gov (United States)

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-09-08

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.

  3. Identifying, studying and making good use of macromolecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Calero, Guillermo [University of Pittsburgh Medical School, Pittsburgh, PA 15261 (United States); Cohen, Aina E. [SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Luft, Joseph R. [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); Newman, Janet [CSIRO Collaborative Crystallisation Centre, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Snell, Edward H., E-mail: esnell@hwi.buffalo.edu [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); University of Pittsburgh Medical School, Pittsburgh, PA 15261 (United States)

    2014-07-25

    As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.

  4. On-line optical and X-ray spectroscopies with crystallography: an integrated approach for determining metalloprotein structures in functionally well defined states.

    Science.gov (United States)

    Ellis, Mark J; Buffey, Steven G; Hough, Michael A; Hasnain, S Samar

    2008-09-01

    X-ray-induced redox changes can lead to incorrect assignments of the functional states of metals in metalloprotein crystals. The need for on-line monitoring of the status of metal ions (and other chromophores) during protein crystallography experiments is of growing importance with the use of intense synchrotron X-ray beams. Significant efforts are therefore being made worldwide to combine different spectroscopies in parallel with X-ray crystallographic data collection. Here the implementation and utilization of optical and X-ray absorption spectroscopies on the modern macromolecular crystallography (MX) beamline 10, at the SRS, Daresbury Laboratory, is described. This beamline is equipped with a dedicated monolithic energy-dispersive X-ray fluorescence detector, allowing X-ray absorption spectroscopy (XAS) measurements to be made in situ on the same crystal used to record the diffraction data. In addition, an optical microspectrophotometer has been incorporated on the beamline, thus facilitating combined MX, XAS and optical spectroscopic measurements. By uniting these techniques it is also possible to monitor the status of optically active and optically silent metal centres present in a crystal at the same time. This unique capability has been applied to observe the results of crystallographic data collection on crystals of nitrite reductase from Alcaligenes xylosoxidans, which contains both type-1 and type-2 Cu centres. It is found that the type-1 Cu centre photoreduces quickly, resulting in the loss of the 595 nm peak in the optical spectrum, while the type-2 Cu centre remains in the oxidized state over a much longer time period, for which independent confirmation is provided by XAS data as this centre has an optical spectrum which is barely detectable using microspectrophotometry. This example clearly demonstrates the importance of using two on-line methods, spectroscopy and XAS, for identifying well defined redox states of metalloproteins during

  5. Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys

    Science.gov (United States)

    Muddle, B. C.; Nie, J. F.; Hugo, G. R.

    1994-09-01

    It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ’ (Ag2Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1, plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites. In the case of the coherent, planar interfaces associated with γ’ precipitate plates in Al-Ag alloys, there is direct experimental evidence that this is accomplished by the motion of transformation dislocations across the coherent broad faces of the precipitate plates; the transformation dislocations define steps that are two atom layers in height normal to the habit plane and have a Burgers vector at least approximately equivalent to an (α/6)(112) Shockley partial dislocation in the parent fcc

  6. X-ray powder crystallography with vertex instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Chatzisotiriou, V. [NCSR Demokritos, X-Ray Lab., Institute of Material Science, 15310 Aghia Paraskevi (Greece); Christofis, I. [General Machining S.A., 183 46 Moshato Attiki (Greece); Dimitriou, N.; Karvelas, S.; Karydas, A.G.; Loukas, D.; Pavlidis, A.; Spirou, S. [NCSR Demokritos, Institute of Nuclear Physics, 15310 Aghia Paraskevi (Greece); Dre, C. [Intracom S.A., 19002 Peania Attika (Greece); Haralabidis, N.; Misiakos, K.; Tsoi, E. [NCSR Demokritos, Institute of Microelectronics, 15310 Aghia Paraskevi (Greece); Perdikatsis, V. [Institute of Geology and Mineral Exploration, 115 27 Athens (Greece); Psycharis, V.; Terzis, A. [NCSR Demokritos, X-Ray Lab., Institute of Material Science, 15310 Aghia Paraskevi (Greece); Turchetta, R. [LEPSI, 67037 Strasbourg (France)

    1998-11-21

    An X-ray Diffractometer for Powder Crystallography is described along with experimental results and future plans. This is an intermediate instrument toward a long linear array system. Three channels of a silicon microstrip detector, are the detecting elements in the present instrument. Each detector channel is followed by a VLSI readout chain, which consists of a charge preamplifier with pulse shaping circuitry, a discriminator, and a 16-bit counter. Control and data acquisition is performed with a custom made PC readout card. A motorized goniometer scans the angle range of interest. Calibration of the system is done with reference samples and data which are captured with a one-channel conventional NaI detector. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Serial femtosecond crystallography datasets from G protein-coupled receptors.

    Science.gov (United States)

    White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-08-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

  8. Towards time-resolved serial crystallography in a microfluidic device.

    Science.gov (United States)

    Pawate, Ashtamurthy S; Šrajer, Vukica; Schieferstein, Jeremy; Guha, Sudipto; Henning, Robert; Kosheleva, Irina; Schmidt, Marius; Ren, Zhong; Kenis, Paul J A; Perry, Sarah L

    2015-07-01

    Serial methods for crystallography have the potential to enable dynamic structural studies of protein targets that have been resistant to single-crystal strategies. The use of serial data-collection strategies can circumvent challenges associated with radiation damage and repeated reaction initiation. This work utilizes a microfluidic crystallization platform for the serial time-resolved Laue diffraction analysis of macroscopic crystals of photoactive yellow protein (PYP). Reaction initiation was achieved via pulsed laser illumination, and the resultant electron-density difference maps clearly depict the expected pR(1)/pR(E46Q) and pR(2)/pR(CW) states at 10 µs and the pB1 intermediate at 1 ms. The strategies presented here have tremendous potential for extension to chemical triggering methods for reaction initiation and for extension to dynamic, multivariable analyses.

  9. Dose, exposure time, and resolution in Serial X-ray Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Starodub, D; Rez, P; Hembree, G; Howells, M; Shapiro, D; Chapman, H N; Fromme, P; Schmidt, K; Weierstall, U; Doak, R B; Spence, J C

    2007-03-22

    Using detailed simulation and analytical models, the exposure time is estimated for serial crystallography, where hydrated laser-aligned proteins are sprayed across a continuous synchrotron beam. The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available fluxes of molecules and X-rays. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of a density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 7 {angstrom} should be possible with short (below 100 s) exposures.

  10. An improved cosmic crystallography method to detect holonomies in flat spaces

    Science.gov (United States)

    Fujii, H.; Yoshii, Y.

    2011-05-01

    A new, improved version of a cosmic crystallography method for constraining cosmic topology is introduced. Like the circles-in-the-sky method using CMB data, we work in a thin, shell-like region containing plenty of objects. Two pairs of objects (quadruplet) linked by a holonomy show a specific distribution pattern, and three filters of separation, vectorial condition, and lifetime of objects extract these quadruplets. Each object Pi is assigned an integer si, which is the number of candidate quadruplets including Pi as their members. Then an additional device of si-histogram is used to extract topological ghosts, which tend to have high values of si. In this paper we consider flat spaces with Euclidean geometry, and the filters are designed to constrain their holonomies. As the second filter, we prepared five types that are specialized for constraining specific holonomies: one for translation, one for half-turn corkscrew motion and glide reflection, and three for nth turn corkscrew motion for n = 4,3, and 6. Every multiconnected space has holonomies that are detected by at least one of these five filters.Our method is applied to the catalogs of toy quasars in flat Λ-CDM universes whose typical sizes correspond to z ~ 5. With these simulations our method is found to work quite well. These are the situations in which type-II pair crystallography methods are insensitive because of the tiny number of ghosts. Moreover, in the flat cases, our method should be more sensitive than the type-I pair (or, in general, n-tuplet) methods because of its multifilter construction and its independence from n.

  11. Identification of macromolecular complexes in cryoelectron tomograms of phantom cells

    Science.gov (United States)

    Frangakis, Achilleas S.; Böhm, Jochen; Förster, Friedrich; Nickell, Stephan; Nicastro, Daniela; Typke, Dieter; Hegerl, Reiner; Baumeister, Wolfgang

    2002-01-01

    Electron tomograms of intact frozen-hydrated cells are essentially three-dimensional images of the entire proteome of the cell, and they depict the whole network of macromolecular interactions. However, this information is not easily accessible because of the poor signal-to-noise ratio of the tomograms and the crowded nature of the cytoplasm. Here, we describe a template matching algorithm that is capable of detecting and identifying macromolecules in tomographic volumes in a fully automated manner. The algorithm is based on nonlinear cross correlation and incorporates elements of multivariate statistical analysis. Phantom cells, i.e., lipid vesicles filled with macromolecules, provide a realistic experimental scenario for an assessment of the fidelity of this approach. At the current resolution of ≈4 nm, macromolecules in the size range of 0.5–1 MDa can be identified with good fidelity. PMID:12391313

  12. Detecting stoichiometry of macromolecular complexes in live cells using FRET

    Science.gov (United States)

    Ben-Johny, Manu; Yue, Daniel N.; Yue, David T.

    2016-01-01

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca2+-induced switch in calmodulin stoichiometry with Ca2+ channels—one calmodulin binds at basal cytosolic Ca2+ levels while two calmodulins interact following Ca2+ elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells. PMID:27922011

  13. An analysis of fractal geometry of macromolecular gelation

    Institute of Scientific and Technical Information of China (English)

    左榘; 陈天红; 冉少峰; 何炳林; 董宝中; 生文君; 杨恒林

    1996-01-01

    With fractal geometry theory and based on experiments, an analysis of fractal geometry behavior of gelation of macromolecules was carried out. Using the cross-linking copolymerization of styrene-divinylbenzene (DVB) as an example, through the determinations of the evolution of the molecular weight, size and the dependence of scattering intensity on the angle of macromolecules by employing laser and synchrotron small angle X-ray scattering, respectively, this chemical reaction was described quantitatively, its fractal behavior was analyzed and the fractal dimension was also measured. By avoiding the complex theories on gelation, this approach is based on modern physical techniques and theories to perform the analysis of the behavior of fractal geometry of macromolecular gelation and thus is able to reveal the rules of this kind of complicated gelation more essentially and profoundly.

  14. Revealing the macromolecular targets of complex natural products

    Science.gov (United States)

    Reker, Daniel; Perna, Anna M.; Rodrigues, Tiago; Schneider, Petra; Reutlinger, Michael; Mönch, Bettina; Koeberle, Andreas; Lamers, Christina; Gabler, Matthias; Steinmetz, Heinrich; Müller, Rolf; Schubert-Zsilavecz, Manfred; Werz, Oliver; Schneider, Gisbert

    2014-12-01

    Natural products have long been a source of useful biological activity for the development of new drugs. Their macromolecular targets are, however, largely unknown, which hampers rational drug design and optimization. Here we present the development and experimental validation of a computational method for the discovery of such targets. The technique does not require three-dimensional target models and may be applied to structurally complex natural products. The algorithm dissects the natural products into fragments and infers potential pharmacological targets by comparing the fragments to synthetic reference drugs with known targets. We demonstrate that this approach results in confident predictions. In a prospective validation, we show that fragments of the potent antitumour agent archazolid A, a macrolide from the myxobacterium Archangium gephyra, contain relevant information regarding its polypharmacology. Biochemical and biophysical evaluation confirmed the predictions. The results obtained corroborate the practical applicability of the computational approach to natural product ‘de-orphaning’.

  15. Macromolecularly "Caged" Carbon Nanoparticles for Intracellular Trafficking via Switchable Photoluminescence.

    Science.gov (United States)

    Misra, Santosh K; Srivastava, Indrajit; Tripathi, Indu; Daza, Enrique; Ostadhossein, Fatemeh; Pan, Dipanjan

    2017-02-08

    Reversible switching of photoluminescence (PL) of carbon nanoparticles (CNP) can be achieved with counterionic macromolecular caging and decaging at the nanoscale. A negatively charged uncoated, "bare" CNP with high luminescence loses its PL when positively charged macromolecules are wrapped around its surface. Prepared caged carbons could regain their emission only through interaction with anionic surfactant molecules, representing anionic amphiphiles of endocytic membranes. This process could be verified by gel electrophoresis, spectroscopically and in vitro confocal imaging studies. Results indicated for the first time that luminescence switchable CNPs can be synthesized for efficient intracellular tracking. This study further supports the origin of photoluminescence in CNP as a surface phenomenon correlated a function of characteristic charged macromolecules.

  16. Protein Coevolution and Isoexpression in Yeast Macromolecular Complexes

    Directory of Open Access Journals (Sweden)

    Laurence Ettwiller

    2007-01-01

    Full Text Available Previous studies in the yeast Saccharomyces cerevisiae have shown that genes encoding subunits of macromolecular complexes have similar evolutionary rates (K and expression levels (E. Besides, it is known that the expression of a gene is a strong predictor of its rate of evolution (i.e., E and K are correlated. Here we show that intracomplex variation of subunit expression correlates with intracomplex variation of their evolutionary rates (using two different measures of dispersion. However, a similar trend was observed for randomized complexes. Therefore, using a mathematical transformation, we created new variables capturing intracomplex variation of both E and K. The values of these new compound variables were smaller for real complexes than for randomized ones. This shows that proteins in complexes tend to have closer expressivities (E and K's simultaneously than in the randomly grouped genes. We speculate about the possible implications of this finding.

  17. Macromolecular Crystallization with Microfluidic Free-Interface Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Segelke, B

    2005-02-24

    Fluidigm released the Topaz 1.96 and 4.96 crystallization chips in the fall of 2004. Topaz 1.96 and 4.96 are the latest evolution of Fluidigm's microfluidics crystallization technologies that enable ultra low volume rapid screening for macromolecular crystallization. Topaz 1.96 and 4.96 are similar to each other but represent a major redesign of the Topaz system and have of substantially improved ease of automation and ease of use, improved efficiency and even further reduced amount of material needed. With the release of the new Topaz system, Fluidigm continues to set the standard in low volume crystallization screening which is having an increasing impact in the field of structural genomics, and structural biology more generally. In to the future we are likely to see further optimization and increased utility of the Topaz crystallization system, but we are also likely to see further innovation and the emergence of competing technologies.

  18. Extracting trends from two decades of microgravity macromolecular crystallization history

    Science.gov (United States)

    Judge, Russell A.; Snell, Edward H.; van der Woerd, Mark J.

    2005-01-01

    Since the 1980s hundreds of macromolecular crystal growth experiments have been performed in the reduced acceleration environment of an orbiting spacecraft. Significant enhancements in structural knowledge have resulted from X-ray diffraction of the crystals grown. Similarly, many samples have shown no improvement or degradation in comparison to those grown on the ground. A complex series of interrelated factors affect these experiments and by building a comprehensive archive of the results it was aimed to identify factors that result in success and those that result in failure. Specifically, it was found that dedicated microgravity missions increase the chance of success when compared with those where crystallization took place as a parasitic aspect of the mission. It was also found that the chance of success could not be predicted based on any discernible property of the macromolecule available to us.

  19. Macromolecular and dendrimer-based magnetic resonance contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Bumb, Ambika; Brechbiel, Martin W. (Radiation Oncology Branch, National Cancer Inst., National Inst. of Health, Bethesda, MD (United States)), e-mail: pchoyke@mail.nih.gov; Choyke, Peter (Molecular Imaging Program, National Cancer Inst., National Inst. of Health, Bethesda, MD (United States))

    2010-09-15

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20-25 years, a number of gadolinium-based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution, and targeting of dendrimer-based MR contrast agents are also discussed

  20. NATURAL CYCLOPENTANOID CYANOHYDRIN GLYCOSIDES .13. STRUCTURE DETERMINATION OF NATURAL EPOXYCYCLOPENTANES BY X-RAY CRYSTALLOGRAPHY AND NMR-SPECTROSCOPY

    DEFF Research Database (Denmark)

    Olafsdottir, E. S.; Sorensen, A. M.; Cornett, Claus;

    1991-01-01

    nonannellated cyclopentane derivatives. The new glucosides were shown, by NMR spectroscopy (including NOE measurements), X-ray crystallography, and enzymatic hydrolysis to the corresponding cyanohydrins, to be (1R,2R,3R,4R)- and (1S,2S,3S,4S)-1-(beta-D-glucopyranosyloxy)-2,3-epoxy-4-hydroxycyclopenta ne-1...... side as the three oxygen substituents. In addition to the glucosides, two amides, (1S,2S,3R,4R)-2,3-epoxy-1,4-dihydroxycyclopentane-1-carboxamide and (1S,4R)-1,4-dihydroxy-2-cyclopentene-1-carboxamide, were isolated from P. suberosa and characterized; the amides are probably artefacts...

  1. Structure-function insights of membrane and soluble proteins revealed by electron crystallography.

    Science.gov (United States)

    Dreaden, Tina M; Devarajan, Bharanidharan; Barry, Bridgette A; Schmidt-Krey, Ingeborg

    2013-01-01

    Electron crystallography is emerging as an important method in solving protein structures. While it has found extensive applications in the understanding of membrane protein structure and function at a wide range of resolutions, from revealing oligomeric arrangements to atomic models, electron crystallography has also provided invaluable information on the soluble α/β-tubulin which could not be obtained by any other method to date. Examples of critical insights from selected structures of membrane proteins as well as α/β-tubulin are described here, demonstrating the vast potential of electron crystallography that is first beginning to unfold.

  2. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    Directory of Open Access Journals (Sweden)

    C. Mueller

    2015-09-01

    Full Text Available We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA. The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  3. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    Science.gov (United States)

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  4. Implications of the focal beam profile in serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Lorenzo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Chapman, Henry N. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Metcalf, Peter [Univ. of Auckland (New Zealand)

    2015-05-12

    The photon density profile of an X-ray free-electron laser (XFEL) beam at the focal position is a critical parameter for serial femtosecond crystallography (SFX), but is difficult to measure because of the destructive power of the beam. A novel high intensity radiation induced phasing method (HIRIP) has been proposed as a general experimental approach for protein structure determination, but has proved to be sensitive to variations of the X-ray intensity, with uniform incident fluence desired for best performance. Here we show that experimental SFX data collected at the nano-focus chamber of the Coherent X-ray Imaging end-station at the Linac Coherent Light Source using crystals with a limited size distribution suggests an average profile of the X-ray beam that has a large variation of intensity. We propose a new method to improve the quality of high fluence data for HI-RIP, by identifying and removing diffraction patterns from crystals exposed to the low intensity region of the beam. The method requires crystals of average size comparable to the width of the focal spot.

  5. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase

    Directory of Open Access Journals (Sweden)

    Raimund Fromme

    2015-09-01

    Full Text Available Serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP, using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.

  6. Application of FFT Data from HREM images to Electron crystallography

    Directory of Open Access Journals (Sweden)

    Snag-Gil Lee

    2012-03-01

    Full Text Available We succesfully determined the 3D crystal structure of inorganic nano-crystalline material using fast fourier transform (FFT data from high-resolution electron microscopy (HREM images. For extracting the reliable structure information from nano-crystalline materials by HREM imaging, it is essential to minimize the dynamical scattering effects happend from interactions bewteen electrons and matters. To alleviate this restriction, we tried to solve the crystal structure by employing high voltage electron microscope (HVEM which has excellent tilting capability, atomic resolution as well as higher penetration power. First, the allowed sample thickness for CaMoO4 crystal was evaluated by examining the existence of forbidden reflections in FFT data of HREM images obtained at various sample thickness. The kinematical scattering conditions were satisfied up to a sample thickness of about 28.2 nm. Next, we tried to extract the crystallographic data and determine the atomic structure of CaMoO4 crystal by FFT analysis of HREM images obtained from 15 different zone axes. Consequently, its cell parameters and space group were a = 5.24(3 Å, c = 11.50(8 Å and I41/a (#88, respectively. These values were coincided with X-ray crystallography results within 0.002 ~ 0.080 Å. Finally, the atomic structure could be determined with an accuracy of 0.16 Å.

  7. High-efficiency screening of monoclonal antibodies for membrane protein crystallography.

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lim

    Full Text Available Determination of crystal structures of membrane proteins is often limited by difficulties obtaining crystals diffracting to high resolution. Co-crystallization with Fab fragments of monoclonal antibodies has been reported to improve diffraction of membrane proteins crystals. However, it is not simple to generate useful monoclonal antibodies for membrane protein crystallography. In this report, we present an optimized process for efficient screening from immunization to final validation of monoclonal antibody for membrane protein crystallography.

  8. Preparation of 2D crystals of membrane proteins for high-resolution electron crystallography data collection.

    Science.gov (United States)

    Abeyrathne, Priyanka D; Chami, Mohamed; Pantelic, Radosav S; Goldie, Kenneth N; Stahlberg, Henning

    2010-01-01

    Electron crystallography is a powerful technique for the structure determination of membrane proteins as well as soluble proteins. Sample preparation for 2D membrane protein crystals is a crucial step, as proteins have to be prepared for electron microscopy at close to native conditions. In this review, we discuss the factors of sample preparation that are key to elucidating the atomic structure of membrane proteins using electron crystallography.

  9. High-throughput plasmid construction using homologous recombination in yeast: its mechanisms and application to protein production for X-ray crystallography.

    Science.gov (United States)

    Mizutani, Kimihiko

    2015-01-01

    Homologous recombination is a system for repairing the broken genomes of living organisms by connecting two DNA strands at their homologous sequences. Today, homologous recombination in yeast is used for plasmid construction as a substitute for traditional methods using restriction enzymes and ligases. This method has various advantages over the traditional method, including flexibility in the position of DNA insertion and ease of manipulation. Recently, the author of this review reported the construction of plasmids by homologous recombination in the methanol-utilizing yeast Pichia pastoris, which is known to be an excellent expression host for secretory proteins and membrane proteins. The method enabled high-throughput construction of expression systems of proteins using P. pastoris; the constructed expression systems were used to investigate the expression conditions of membrane proteins and to perform X-ray crystallography of secretory proteins. This review discusses the mechanisms and applications of homologous recombination, including the production of proteins for X-ray crystallography.

  10. Macromolecular crowding for tailoring tissue-derived fibrillated matrices.

    Science.gov (United States)

    Magno, Valentina; Friedrichs, Jens; Weber, Heather M; Prewitz, Marina C; Tsurkan, Mikhail V; Werner, Carsten

    2017-06-01

    Tissue-derived fibrillated matrices can be instrumental for the in vitro reconstitution of multiphasic extracellular microenvironments. However, despite of several advantages, the obtained scaffolds so far offer a rather narrow range of materials characteristics only. In this work, we demonstrate how macromolecular crowding (MMC) - the supplementation of matrix reconstitution media with synthetic or natural macromolecules in ways to create excluded volume effects (EVE) - can be employed for tailoring important structural and biophysical characteristics of kidney-derived fibrillated matrices. Porcine kidneys were decellularized, ground and the obtained extracellular matrix (ECM) preparations were reconstituted under varied MMC conditions. We show that MMC strongly influences the fibrillogenesis kinetics and impacts the architecture and the elastic modulus of the reconstituted matrices, with diameters and relative alignment of fibrils increasing at elevated concentrations of the crowding agent Ficoll400, a nonionic synthetic polymer of sucrose. Furthermore, we demonstrate how MMC modulates the distribution of key ECM molecules within the reconstituted matrix scaffolds. As a proof of concept, we compared different variants of kidney-derived fibrillated matrices in cell culture experiments referring to specific requirements of kidney tissue engineering approaches. The results revealed that MMC-tailored matrices support the morphogenesis of human umbilical vein endothelial cells (HUVECs) into capillary networks and of murine kidney stem cells (KSCs) into highly branched aggregates. The established methodology is concluded to provide generally applicable new options for tailoring tissue-specific multiphasic matrices in vitro. Tissue-derived fibrillated matrices can be instrumental for the in vitro reconstitution of multiphasic extracellular microenvironments. However, despite of several advantages, the obtained scaffolds so far offer a rather narrow range of materials

  11. Does mathematical crystallography still have a role in the XXI century?

    Science.gov (United States)

    Nespolo, Massimo

    2008-01-01

    Mathematical crystallography is the branch of crystallography dealing specifically with the fundamental properties of symmetry and periodicity of crystals, topological properties of crystal structures, twins, modular and modulated structures, polytypes and OD structures, as well as the symmetry aspects of phase transitions and physical properties of crystals. Mathematical crystallography has had its most evident success with the development of the theory of space groups at the end of the XIX century; since then, it has greatly enlarged its applications, but crystallographers are not always familiar with the developments that followed, partly because the applications sometimes require some additional background that the structural crystallographer does not always possess (as is the case, for example, in graph theory). The knowledge offered by mathematical crystallography is at present only partly mirrored in International Tables for Crystallography and is sometimes still enshrined in more specialist texts and publications. To cover this communication gap is one of the tasks of the IUCr Commission on Mathematical and Theoretical Crystallography (MaThCryst).

  12. NMR RELAXIVITY AND IMAGING OF NEUTRAL MACROMOLECULAR POLYESTER GADOLINIUM (Ⅲ) COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Kai-chao Yu; Hong-bing Hu; Mai-li Liu; Han-zhen Yuan; Chao-hui Ye; Ren-xi Zhuo

    1999-01-01

    Five neutral macromolecular polyester gadolinium (Ⅲ) complexes with pendant hydrophobic alkyl and aromatic functional groups were prepared. The longitudinal relaxation rates of these complexes were measured. One of these Gd (Ⅲ) complexes was chosen for the acute toxicity test and T1-weighted imaging measurement. Preliminary results showed that. compared with Gd-DTPA, the neutral macromolecular gadolinium (Ⅲ) complexes provide higher T1 relaxivity enhancement and longer function duration.

  13. A versatile microparticle-based immunoaggregation assay for macromolecular biomarker detection and quantification.

    Directory of Open Access Journals (Sweden)

    Haiyan Wu

    Full Text Available The rapid, sensitive and low-cost detection of macromolecular biomarkers is critical in clinical diagnostics, environmental monitoring, research, etc. Conventional assay methods usually require bulky, expensive and designated instruments and relative long assay time. For hospitals and laboratories that lack immediate access to analytical instruments, fast and low-cost assay methods for the detection of macromolecular biomarkers are urgently needed. In this work, we developed a versatile microparticle (MP-based immunoaggregation method for the detection and quantification of macromolecular biomarkers. Antibodies (Abs were firstly conjugated to MP through streptavidin-biotin interaction; the addition of macromolecular biomarkers caused the aggregation of Ab-MPs, which were subsequently detected by an optical microscope or optical particle sizer. The invisible nanometer-scale macromolecular biomarkers caused detectable change of micrometer-scale particle size distributions. Goat anti-rabbit immunoglobulin and human ferritin were used as model biomarkers to demonstrate MP-based immunoaggregation assay in PBS and 10% FBS to mimic real biomarker assay in the complex medium. It was found that both the number ratio and the volume ratio of Ab-MP aggregates caused by biomarker to all particles were directly correlated to the biomarker concentration. In addition, we found that the detection range could be tuned by adjusting the Ab-MP concentration. We envision that this novel MP-based immunoaggregation assay can be combined with multiple detection methods to detect and quantify macromolecular biomarkers at the nanogram per milliliter level.

  14. Patch-clamp detection of macromolecular translocation along nuclear pores

    Directory of Open Access Journals (Sweden)

    Bustamante J.O.

    1998-01-01

    Full Text Available The present paper reviews the application of patch-clamp principles to the detection and measurement of macromolecular translocation along the nuclear pores. We demonstrate that the tight-seal 'gigaseal' between the pipette tip and the nuclear membrane is possible in the presence of fully operational nuclear pores. We show that the ability to form a gigaseal in nucleus-attached configurations does not mean that only the activity of channels from the outer membrane of the nuclear envelope can be detected. Instead, we show that, in the presence of fully operational nuclear pores, it is likely that the large-conductance ion channel activity recorded derives from the nuclear pores. We conclude the technical section with the suggestion that the best way to demonstrate that the nuclear pores are responsible for ion channel activity is by showing with fluorescence microscopy the nuclear translocation of ions and small molecules and the exclusion of the same from the cisterna enclosed by the two membranes of the envelope. Since transcription factors and mRNAs, two major groups of nuclear macromolecules, use nuclear pores to enter and exit the nucleus and play essential roles in the control of gene activity and expression, this review should be useful to cell and molecular biologists interested in understanding how patch-clamp can be used to quantitate the translocation of such macromolecules into and out of the nucleus

  15. New concepts and applications in the macromolecular chemistry of fullerenes.

    Science.gov (United States)

    Giacalone, Francesco; Martín, Nazario

    2010-10-08

    A new classification on the different types of fullerene-containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. Because of their interest and novelty, water-soluble and biodegradable C(60)-polymers are discussed first, followed by polyfullerene-based membranes where unprecedented supramolecular structures are presented. Next are compounds that involve hybrid materials formed from fullerenes and other components such as silica, DNA, and carbon nanotubes (CNTs) where the most recent advances have been achieved. A most relevant topic is still that of C(60)-based donor-acceptor (D-A) polymers. Since their application in photovoltaics D-A polymers are among the most realistic applications of fullerenes in the so-called molecular electronics. The most relevant aspects in these covalently connected fullerene/polymer hybrids as well as new concepts to improve energy conversion efficiencies are presented.The last topics disccused relate to supramolecular aspects that are in involved in C(60)-polymer systems and in the self-assembly of C(60)-macromolecular structures, which open a new scenario for organizing, by means of non-covalent interactions, new supramolecular structures at the nano- and micrometric scale, in which the combination of the hydrofobicity of fullerenes with the versatility of the noncovalent chemistry afford new and spectacular superstructures.

  16. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography.

    Science.gov (United States)

    Liu, Wei; Ishchenko, Andrii; Cherezov, Vadim

    2014-09-01

    We have recently established a procedure for serial femtosecond crystallography (SFX) in lipidic cubic phase (LCP) for protein structure determination at X-ray free-electron lasers (XFELs). LCP-SFX uses the gel-like LCP as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room-temperature high-resolution data with minimal effects of radiation damage from sub-10-μm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared with SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2-3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3-5 d, including the time required for the crystals to grow.

  17. Integration of imaging into clinical practice to assess the delivery and performance of macromolecular and nanotechnology-based oncology therapies.

    Science.gov (United States)

    Spence, Tara; De Souza, Raquel; Dou, Yannan; Stapleton, Shawn; Reilly, Raymond M; Allen, Christine

    2015-12-10

    Functional and molecular imaging has become increasingly used to evaluate interpatient and intrapatient tumor heterogeneity. Imaging allows for assessment of microenvironment parameters including tumor hypoxia, perfusion and proliferation, as well as tumor metabolism and the intratumoral distribution of specific molecular markers. Imaging information may be used to stratify patients for targeted therapies, and to define patient populations that may benefit from alternative therapeutic approaches. It also provides a method for non-invasive monitoring of treatment response at earlier time-points than traditional cues, such as tumor shrinkage. Further, companion diagnostic imaging techniques are becoming progressively more important for development and clinical implementation of targeted therapies. Imaging-based companion diagnostics are likely to be essential for the validation and FDA approval of targeted nanotherapies and macromolecular medicines. This review describes recent clinical advances in the use of functional and molecular imaging to evaluate the tumor microenvironment. Additionally, this article focuses on image-based assessment of distribution and anti-tumor effect of nano- and macromolecular systems.

  18. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents.

    Science.gov (United States)

    De Souza, Raquel; Spence, Tara; Huang, Huang; Allen, Christine

    2015-12-10

    The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.

  19. High-resolution three-dimensional quantitative map of the macromolecular proton fraction distribution in the normal rat brain

    Directory of Open Access Journals (Sweden)

    Anna V. Naumova

    2017-02-01

    Full Text Available The presented dataset provides a normative high-resolution three-dimensional (3D macromolecular proton fraction (MPF map of the healthy rat brain in vivo and source images used for its reconstruction. The images were acquired using the protocol described elsewhere (Naumova, et al. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage (2016 doi: 10.1016/j.neuroimage.2016.09.036. The map was reconstructed from three source images with different contrast weightings (proton density, T1, and magnetization transfer using the single-point algorithm with a synthetic reference image. Source images were acquired from a living animal on an 11.7 T small animal MRI scanner with isotropic spatial resolution of 170 µm3 and total acquisition time about 1.5 h. The 3D dataset can be used for multiple purposes including interactive viewing of rat brain anatomy, measurements of reference MPF values in various brain structures, and development of image processing techniques for the rodent brain segmentation. It also can serve as a gold standard image for implementation and optimization of rodent brain MRI protocols.

  20. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    Science.gov (United States)

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  1. In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes.

    Science.gov (United States)

    Wu, Yanning; Wang, Shuo; Li, Chunying

    2012-08-13

    Cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel located primarily at the apical membranes of epithelial cells, plays a crucial role in transepithelial fluid homeostasis(1-3). CFTR has been implicated in two major diseases: cystic fibrosis (CF)(4) and secretory diarrhea(5). In CF, the synthesis or functional activity of the CFTR Cl- channel is reduced. This disorder affects approximately 1 in 2,500 Caucasians in the United States(6). Excessive CFTR activity has also been implicated in cases of toxin-induced secretory diarrhea (e.g., by cholera toxin and heat stable E. coli enterotoxin) that stimulates cAMP or cGMP production in the gut(7). Accumulating evidence suggest the existence of physical and functional interactions between CFTR and a growing number of other proteins, including transporters, ion channels, receptors, kinases, phosphatases, signaling molecules, and cytoskeletal elements, and these interactions between CFTR and its binding proteins have been shown to be critically involved in regulating CFTR-mediated transepithelial ion transport in vitro and also in vivo(8-19). In this protocol, we focus only on the methods that aid in the study of the interactions between CFTR carboxyl terminal tail, which possesses a protein-binding motif [referred to as PSD95/Dlg1/ZO-1 (PDZ) motif], and a group of scaffold proteins, which contain a specific binding module referred to as PDZ domains. So far, several different PDZ scaffold proteins have been reported to bind to the carboxyl terminal tail of CFTR with various affinities, such as NHERF1, NHERF2, PDZK1, PDZK2, CAL (CFTR-associated ligand), Shank2, and GRASP(20-27). The PDZ motif within CFTR that is recognized by PDZ scaffold proteins is the last four amino acids at the C terminus (i.e., 1477-DTRL-1480 in human CFTR)(20). Interestingly, CFTR can bind more than one PDZ domain of both NHERFs and PDZK1, albeit with varying affinities(22). This multivalency with respect to CFTR binding

  2. Solid-state NMR in macromolecular systems: insights on how molecular entities move.

    Science.gov (United States)

    Hansen, Michael Ryan; Graf, Robert; Spiess, Hans Wolfgang

    2013-09-17

    The function of synthetic and natural macromolecularsystems critically depends on the packing and dynamics of the individual components of a given system. Not only can solid-state NMR provide structural information with atomic resolution, but it can also provide a way to characterize the amplitude and time scales of motions over broad ranges of length and time. These movements include molecular dynamics, rotational and translational motions of the building blocks, and also the motion of the functional species themselves, such as protons or ions. This Account examines solid-state NMR methods for correlating dynamics and function in a variety of chemical systems. In the early days, scientists thought that the rotationalmotions reflected the geometry of the moving entities. They described these phenomena as jumps about well-defined axes, such as phenyl flips, even in amorphous polymers. Later, they realized that conformational transitions in macromolecules happen in a much more complex way. Because the individual entities do not rotate around well-defined axes, they require much less space. Only recently researchers have appreciated the relative importance of large angle fluctuations of polymers over rotational jumps. Researchers have long considered that cooperative motions might be at work, yet only recently they have clearly detected these motions by NMR in macromolecular and supramolecular systems. In correlations of dynamics and function, local motions do not always provide the mechanism of long-range transport. This idea holds true in ion conduction but also applies to chain transport in polymer melts and semicrystalline polymers. Similar chain motions and ion transport likewise occur in functional biopolymers, systems where solid-state NMR studies are also performed. In polymer science, researchers have appreciated the unique information on molecular dynamics available from advanced solid-state NMR at times, where their colleagues in the biomacromolecular

  3. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  4. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    Energy Technology Data Exchange (ETDEWEB)

    Beyerlein, K. R.; Heymann, M.; Kirian, R. [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Adriano, L.; Bajt, S., E-mail: sasa.bajt@desy.de [Photon Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Knoška, J. [Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg (Germany); Wilde, F. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht (Germany); Chapman, H. N. [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg (Germany); Centre for Ultrafast Imaging, Notkestraße 85, 22607 Hamburg (Germany)

    2015-12-15

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.

  5. An improved cosmic crystallography method to detect holonomies in flat spaces

    CERN Document Server

    Fujii, Hirokazu

    2011-01-01

    A new, improved version of cosmic crystallography method for constraining cosmic topology is introduced. Like the circles-in-the-sky method using CMB data, we work in a thin, shell-like region containing plenty of objects. Two pairs of objects (quadruplet) linked by a holonomy show a specific distribution pattern, and three filters of \\emph{separation, vectorial condition}, and \\emph{lifetime of objects} extract such quadruplets. Each object $P_i$ is assigned an integer $s_i$, which is the number of candidate quadruplets including $P_i$ as their members. Then an additional device of $s_i$-histogram is used to extract topological ghosts; they tend to have a large value of $s_i$. In this paper we consider flat spaces with Euclidean geometry, and the filters are designed to constrain their holonomies; as the second filter, we have prepared five types which are specialized for constraining specific holonomies: one for translation, one for half-turn corkscrew motion and glide reflection, and three for $n$-th turn ...

  6. Systemic structural modular generalization of the crystallography of bound water applied to study the mechanisms of processes in biosystems at the atomic and molecular level

    Science.gov (United States)

    Bulienkov, N. A.

    2011-07-01

    The main reasons of the modern scientific revolution, one of the consequences of which are nanotechnologies and the development of interdisciplinary overall natural science (which can build potentially possible atomic structures and study the mechanisms of the processes occurring in them), are considered. The unifying role of crystallography in the accumulation of interdisciplinary knowledge is demonstrated. This generalization of crystallography requires the introduction of a new concept: a module which reflects the universal condition for stability of all real and potential and equilibrium and nonequilibrium structures of matter (their connectivity). A modular generalization of crystallography covers all forms of solids, including the structure of bound water (a system-forming matrix for the self-organization and morphogenesis of hierarchical biosystems which determines the metric selection of all other structural components of these systems). A dynamic model of the water surface layer, which serves as a matrix in the formation of Langmuir monolayers and plays a key role in the occurrence of life on the Earth, is developed.

  7. Designs for the self-assembly of open and closed macromolecular structures and a molecular switch using DNA methyltransferases to order proteins on nucleic acid scaffolds

    Science.gov (United States)

    Smith, Steven S.

    2002-06-01

    The methyltransferase-directed addressing of fusion proteins to DNA scaffolds offers an approach to the construction of protein/nucleic acid biostructures with potential in a variety of applications. The technology is currently only limited by the yield of high occupancy structures. However, current evidence shows that DNA scaffolds that contain three or four targeted proteins can be reliably constructed. This permits a variety of macromolecular designs, several of which are given in this paper. Designs for open and closed two-dimensional and three-dimensional assemblies and a design for a molecular switch are discussed. The closed two-dimensional assembly takes the form of a square, and could find application as a component of other systems including a macromolecular rotaxane. The closed three-dimensional system takes the form of a trigonal bipyramid and could find application as a macromolecular carcerand. The molecular switch could find application as a peptide biosensor. Guidelines for the construction and structural verification of these designs are reported.

  8. Detection of Macromolecular Fractions in HCN Polymers Using Electrophoretic and Ultrafiltration Techniques.

    Science.gov (United States)

    Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta

    2017-02-01

    Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed.

  9. Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability.

    Science.gov (United States)

    LaMack, Jeffrey A; Himburg, Heather A; Li, Xue-Mei; Friedman, Morton H

    2005-04-01

    Large spatial shear stress gradients have anecdotally been associated with early atherosclerotic lesion susceptibility in vivo and have been proposed as promoters of endothelial cell dysfunction in vitro. Here, experiments are presented in which several measures of the fluid dynamic shear stress, including its gradient, at the walls of in vivo porcine iliac arteries, are correlated against the transendothelial macromolecular permeability of the vessels. The fluid dynamic measurements are based on postmortem vascular casts, and permeability is measured from Evans blue dye (EBD) uptake. Time-averaged wall shear stress (WSS), as well as a new parameter termed maximum gradient stress (MGS) that describes the spatial shear stress gradient due to flow acceleration at a given point, are mapped for each artery and compared on a point-by-point basis to the corresponding EBD patterns. While there was no apparent relation between MGS and EBD uptake, a composite parameter, WSS(-0.11) MGS(0.044), was highly correlated with permeability. Notwithstanding the small exponents, the parameter varied widely within the region of interest. The results suggest that sites exposed to low wall shear stresses are more likely to exhibit elevated permeability, and that this increase is exacerbated in the presence of large spatial shear stress gradients.

  10. A graph theoretical approach for assessing bio-macromolecular complex structural stability.

    Science.gov (United States)

    Del Carpio, Carlos Adriel; Iulian Florea, Mihai; Suzuki, Ai; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Ichiishi, Eiichiro; Miyamoto, Akira

    2009-11-01

    Fast and proper assessment of bio macro-molecular complex structural rigidity as a measure of structural stability can be useful in systematic studies to predict molecular function, and can also enable the design of rapid scoring functions to rank automatically generated bio-molecular complexes. Based on the graph theoretical approach of Jacobs et al. [Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flexibility predictions using graph theory. Proteins: Struct Funct Genet 44:150-165] for expressing molecular flexibility, we propose a new scheme to analyze the structural stability of bio-molecular complexes. This analysis is performed in terms of the identification in interacting subunits of clusters of flappy amino acids (those constituting regions of potential internal motion) that undergo an increase in rigidity at complex formation. Gains in structural rigidity of the interacting subunits upon bio-molecular complex formation can be evaluated by expansion of the network of intra-molecular inter-atomic interactions to include inter-molecular inter-atomic interaction terms. We propose two indices for quantifying this change: one local, which can express localized (at the amino acid level) structural rigidity, the other global to express overall structural stability for the complex. The new system is validated with a series of protein complex structures reported in the protein data bank. Finally, the indices are used as scoring coefficients to rank automatically generated protein complex decoys.

  11. A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1.

    Directory of Open Access Journals (Sweden)

    Matthew C Clifton

    Full Text Available Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.

  12. Ink-jet printer heads for ultra-small-drop protein crystallography.

    Science.gov (United States)

    Howard, E I; Cachau, R E

    2002-12-01

    Mass-produced automated piezoelectric driven picoliter delivery systems (printer heads) are fast, inexpensive, and reliable devices that are capable of delivering a very large range of volumes and are ideally suited for high-throughput protein crystallography studies. We used this technology to set up under-oil crystallization experiments with drop sizes from the 200-nL to 3-microL volume range, commonly used in protein crystallography, and show its application in setting ultra-small (2 nL) drops, the smallest drop volume reported to date for this type of assay.

  13. Synthesis and characterization of miktoarm star copolymer of styrene and butadiene using multifunctional macromolecular initiator

    Institute of Scientific and Technical Information of China (English)

    Hai Yan Zhang; Xing Ying Zhang

    2009-01-01

    A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization.At first,polydiene-stannum chloride(PD-SnCl3)was prepared by the reaction of n-butyl-Li(n-BuLi),stannic chloride(SnCl4)and diene.Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators.The result suggested that the initiators had a remarkable yield by GPC,nearly 90%.By using these multifunctional macromolecular initiators,styrene and butadiene were effectively polymerized via anionic polymerization,which gave birth to novel miktoarm star copolymers.The relative molecular weight and polydispersity index,microstructure contents,copolymerization components,glass transition temperature(Tg)and morphology of the miktoarm star copolymers were investigated by GPC-UV,1H NMR,DSC and TEM,respectively.

  14. Macromolecular Hydrogen Sulfide Donors Trigger Spatiotemporally Confined Changes in Cell Signaling.

    Science.gov (United States)

    Ercole, Francesca; Mansfeld, Friederike M; Kavallaris, Maria; Whittaker, Michael R; Quinn, John F; Halls, Michelle L; Davis, Thomas P

    2016-01-11

    Hydrogen sulfide (H2S) is involved in a myriad of cell signaling processes that trigger physiological events ranging from vasodilation to cell proliferation. Moreover, disturbances to H2S signaling have been associated with numerous pathologies. As such, the ability to release H2S in a cellular environment and stimulate signaling events is of considerable interest. Herein we report the synthesis of macromolecular H2S donors capable of stimulating cell signaling pathways in both the cytosol and at the cell membrane. Specifically, copolymers having pendent oligo(ethylene glycol) and benzonitrile groups were synthesized, and the benzonitrile groups were subsequently transformed into primary aryl thioamide groups via thionation using sodium hydrosulfide. These thioamide moieties could be incorporated into a hydrophilic copolymer or a block copolymer (i.e., into either the hydrophilic or hydrophobic domain). An electrochemical sensor was used to demonstrate release of H2S under simulated physiological conditions. Subsequent treatment of HEK293 cells with a macromolecular H2S donor elicited a slow and sustained increase in cytosolic ERK signaling, as monitored using a FRET-based biosensor. The macromolecular donor was also shown to induce a small, fast and sustained increase in plasma membrane-localized PKC activity immediately following addition to cells. Studies using an H2S-selective fluorescent probe in live cells confirmed release of H2S from the macromolecular donor over physiologically relevant time scales consistent with the signaling observations. Taken together, these results demonstrate that by using macromolecular H2S donors it is possible to trigger spatiotemporally confined cell signaling events. Moreover, the localized nature of the observed signaling suggests that macromolecular donor design may provide an approach for selectively stimulating certain cellular biochemical pathways.

  15. Aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes as revealed by microscopic radioautography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuji [Shinshu University, Matsumoto (Japan). Dept. of Anatomy and Cell Biology

    2007-07-01

    This mini-review reports aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes. We have observed the macromolecular synthesis, such as DNA, RNA and proteins, in the mitochondria of various mammalian cells by means of electron microscopic radioautography technique developed in our laboratory. The number of mitochondria per cell, number of labeled mitochondria per cell with 3H-thymidine, 3H-uridine and 3H-leucine, precursors for DNA, RNA and proteins, respectively, were counted and the labeling indices at various ages, from fetal to postnatal early days and several months to 1 and 2 years in senescence, were calculated, which showed variations due to aging. (author)

  16. THE STEADY/PULSATILE FLOW AND MACROMOLECULAR TRANSPORT IN T-BIFURCATION BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    李丁; 温功碧

    2003-01-01

    A numerical analysis of the steady and pulsatile, macromolecular( such as lowdensity lipopotein ( LDL ), Albumin ) transport in T-bifurcation was proposed. Theinfluence of Reynolds number and mass flow ratio etc. parameters on the velocity field andmass transport were calculated. The computational results predict that the blood flow factorsaffect the macromolecular distribution and the transport across the wall, it shows thathemodynamic play an important role in the process of atherosclerosis . The LDL and Albuminconcentration on the wall varies most greatly in flow bifurcation area where the wall shearstress varies greatly at the branching vessel and the atherosclerosis often appears there.

  17. Accounting for large amplitude protein deformation during in silico macromolecular docking.

    Science.gov (United States)

    Bastard, Karine; Saladin, Adrien; Prévost, Chantal

    2011-02-22

    Rapid progress of theoretical methods and computer calculation resources has turned in silico methods into a conceivable tool to predict the 3D structure of macromolecular assemblages, starting from the structure of their separate elements. Still, some classes of complexes represent a real challenge for macromolecular docking methods. In these complexes, protein parts like loops or domains undergo large amplitude deformations upon association, thus remodeling the surface accessible to the partner protein or DNA. We discuss the problems linked with managing such rearrangements in docking methods and we review strategies that are presently being explored, as well as their limitations and success.

  18. Influence of protein crowder size on hydration structure and dynamics in macromolecular crowding

    Science.gov (United States)

    Wang, Po-hung; Yu, Isseki; Feig, Michael; Sugita, Yuji

    2017-03-01

    We investigate the effects of protein crowder sizes on hydration structure and dynamics in macromolecular crowded systems by all-atom MD simulations. The crowded systems consisting of only small proteins showed larger total surface areas than those of large proteins at the same volume fractions. As a result, more water molecules were trapped within the hydration shells, slowing down water diffusion. The simulation results suggest that the protein crowder size is another factor to determine the effect of macromolecular crowding and to explain the experimental kinetic data of proteins and DNAs in the presence of crowding agents.

  19. Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking

    Science.gov (United States)

    Bastard, Karine; Saladin, Adrien; Prévost, Chantal

    2011-01-01

    Rapid progress of theoretical methods and computer calculation resources has turned in silico methods into a conceivable tool to predict the 3D structure of macromolecular assemblages, starting from the structure of their separate elements. Still, some classes of complexes represent a real challenge for macromolecular docking methods. In these complexes, protein parts like loops or domains undergo large amplitude deformations upon association, thus remodeling the surface accessible to the partner protein or DNA. We discuss the problems linked with managing such rearrangements in docking methods and we review strategies that are presently being explored, as well as their limitations and success. PMID:21541061

  20. Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking

    Directory of Open Access Journals (Sweden)

    Chantal Prévost

    2011-02-01

    Full Text Available Rapid progress of theoretical methods and computer calculation resources has turned in silico methods into a conceivable tool to predict the 3D structure of macromolecular assemblages, starting from the structure of their separate elements. Still, some classes of complexes represent a real challenge for macromolecular docking methods. In these complexes, protein parts like loops or domains undergo large amplitude deformations upon association, thus remodeling the surface accessible to the partner protein or DNA.We discuss the problems linked with managing such rearrangements in docking methods and we review strategies that are presently being explored, as well as their limitations and success.

  1. Phase Sensitive X-Ray Diffraction Imaging of Defects in Biological Macromolecular Crystals

    Science.gov (United States)

    Hu, Z. W.; Lai, B.; Chu, Y. S.; Cai, Z.; Mancini, D. C.; Thomas, B. R.; Chernov, A. A.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Characterization of defects and/or disorder in biological macromolecular crystals presents much greater challenges than in conventional small-molecule crystals. The lack of sufficient contrast of defects is often a limiting factor in x-ray diffraction topography of protein crystals. This has seriously hampered efforts to understand mechanisms and origins of formation of imperfections, and the role of defects as essential entities in the bulk of macromolecular crystals. In this report, we employ a phase sensitive x-ray diffraction imaging approach for augmenting the contrast of defects in protein crystals.

  2. Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra.

    Science.gov (United States)

    Chen, Teng-Hao; Wang, Le; Trueblood, Jonathan V; Grassian, Vicki H; Cohen, Seth M

    2016-08-03

    A new strategy was developed by using a polymer ligand, poly(isophthalic acid)(ethylene oxide), to modulate the growth of metal-organic polyhedra (MOP) crystals. This macromolecular modulator can effectively control the crystal habit of several different Cu24L24 (L = isophthalic acid derivatives) MOPs. The polymer also directed the formation of MOP structures under reaction conditions that only produce metal-organic frameworks in the absence of modulator. Moreover, the polymer also enabled the deposition of MOP crystals on glass surfaces. This macromolecular modulator strategy provides an innovative approach to control the morphology and assembly of MOP particles.

  3. Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction

    Indian Academy of Sciences (India)

    Manish Agrawal; S B Santra; Rajat Anand; Rajaram Swaminathan

    2008-08-01

    The cytoplasm of a living cell is crowded with several macromolecules of different shapes and sizes. Molecular diffusion in such a medium becomes anomalous due to the presence of macromolecules and diffusivity is expected to decrease with increase in macromolecular crowding. Moreover, many cellular processes are dependent on molecular diffusion in the cell cytosol. The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model qualitatively explains some of the experimental observations.

  4. Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling.

    Science.gov (United States)

    Grishaev, Alexander; Guo, Liang; Irving, Thomas; Bax, Ad

    2010-11-10

    A new procedure, AXES, is introduced for fitting small-angle X-ray scattering (SAXS) data to macromolecular structures and ensembles of structures. By using explicit water models to account for the effect of solvent, and by restricting the adjustable fitting parameters to those that dominate experimental uncertainties, including sample/buffer rescaling, detector dark current, and, within a narrow range, hydration layer density, superior fits between experimental high resolution structures and SAXS data are obtained. AXES results are found to be more discriminating than standard Crysol fitting of SAXS data when evaluating poorly or incorrectly modeled protein structures. AXES results for ensembles of structures previously generated for ubiquitin show improved fits over fitting of the individual members of these ensembles, indicating these ensembles capture the dynamic behavior of proteins in solution.

  5. Neutron protein crystallography hydrogen protons and hydration in bio-macromolecules

    CERN Document Server

    Niimura, Nobuo

    2011-01-01

    This text is dedicated to the emerging field of neutron protein crystallography (NPC). It covers all of the practical aspects of NPC and demonstrates how NPC can explore protein features such as hydrogen bonds, protonation and deprotonation of amino acid residues, and hydration structures.

  6. Frontiers of Crystallography: A Project-Based Research-Led Learning Exercise

    Science.gov (United States)

    Wilson, Chick C.; Parkin, Andrew; Thomas, Lynne H.

    2012-01-01

    A highly interactive research-led learning session for chemistry undergraduates is described, which aims to lead students to an awareness of the applications of crystallography technique through a mentored hands-on crystal structure solution and refinement session. The research-based environment is inherent throughout the 4.5 h program and is…

  7. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  8. Using the Plan View to Teach Basic Crystallography in General Chemistry

    Science.gov (United States)

    Cushman, Cody V.; Linford, Matthew R.

    2015-01-01

    The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…

  9. Celebrating the International Year of Crystallography with a Wisconsin High School Crystal Growing Competition

    Science.gov (United States)

    Guzei, Ilia A.

    2014-01-01

    In honor of the 2014 International Year of Crystallography, the first Wisconsin Crystal Growing Competition was successfully organized and conducted. High school students from 26 schools across the state competed for prizes by growing large crystals of CuSO[subscript4]·5(H[subscript2]O). This paper describes how the event was planned and carried…

  10. Crystallographic and dynamic aspects of solid-state NMR calibration compounds: towards ab initio NMR crystallography

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Tapmeyer, Lukas; Bolte, Michael

    2016-01-01

    The excellent results of dispersion-corrected density functional theory (DFT-D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT-D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss...

  11. Time-resolved structural studies with serial crystallography: A new light on retinal proteins

    Directory of Open Access Journals (Sweden)

    Valérie Panneels

    2015-07-01

    Full Text Available Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron Lasers (X-FELs for tracking the dynamics of light-triggered processes by pump-probe serial femtosecond crystallography has been demonstrated using 3D-micron-sized crystals. In addition, X-FELs provide new opportunities for protein 2D-crystal diffraction, which would allow to observe the course of conformational changes of membrane proteins in a close-to-physiological lipid bilayer environment. Here, we describe the strategies towards structural dynamic studies of retinal proteins at room temperature, using injector or fixed-target based serial femtosecond crystallography at X-FELs. Thanks to recent progress especially in sample delivery methods, serial crystallography is now also feasible at synchrotron X-ray sources, thus expanding the possibilities for time-resolved structure determination.

  12. Using the Plan View to Teach Basic Crystallography in General Chemistry

    Science.gov (United States)

    Cushman, Cody V.; Linford, Matthew R.

    2015-01-01

    The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…

  13. Celebrating the International Year of Crystallography with a Wisconsin High School Crystal Growing Competition

    Science.gov (United States)

    Guzei, Ilia A.

    2014-01-01

    In honor of the 2014 International Year of Crystallography, the first Wisconsin Crystal Growing Competition was successfully organized and conducted. High school students from 26 schools across the state competed for prizes by growing large crystals of CuSO[subscript4]·5(H[subscript2]O). This paper describes how the event was planned and carried…

  14. Present and future of membrane protein structure determination by electron crystallography.

    Science.gov (United States)

    Ubarretxena-Belandia, Iban; Stokes, David L

    2010-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins.

  15. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal.

    Science.gov (United States)

    Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W

    2016-07-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.

  16. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography

    Science.gov (United States)

    Stagno, J. R.; Liu, Y.; Bhandari, Y. R.; Conrad, C. E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D. R.; White, T. A.; Coe, J. D.; Wiedorn, M. O.; Knoska, J.; Oberthuer, D.; Tuckey, R. A.; Yu, P.; Dyba, M.; Tarasov, S. G.; Weierstall, U.; Grant, T. D.; Schwieters, C. D.; Zhang, J.; Ferré-D'Amaré, A. R.; Fromme, P.; Draper, D. E.; Liang, M.; Hunter, M. S.; Boutet, S.; Tan, K.; Zuo, X.; Ji, X.; Barty, A.; Zatsepin, N. A.; Chapman, H. N.; Spence, J. C. H.; Woodson, S. A.; Wang, Y.-X.

    2017-01-01

    Riboswitches are structural RNA elements that are generally located in the 5‧ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.

  17. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography

    Science.gov (United States)

    Stagno, J. R.; Liu, Y.; Bhandari, Y. R.; Conrad, C. E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D. R.; White, T. A.; Coe, J. D.; Wiedorn, M. O.; Knoska, J.; Oberthuer, D.; Tuckey, R. A.; Yu, P.; Dyba, M.; Tarasov, S. G.; Weierstall, U.; Grant, T. D.; Schwieters, C. D.; Zhang, J.; Ferré-D'Amaré, A. R.; Fromme, P.; Draper, D. E.; Liang, M.; Hunter, M. S.; Boutet, S.; Tan, K.; Zuo, X.; Ji, X.; Barty, A.; Zatsepin, N. A.; Chapman, H. N.; Spence, J. C. H.; Woodson, S. A.; Wang, Y.-X.

    2016-11-01

    Riboswitches are structural RNA elements that are generally located in the 5‧ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.

  18. Interplay between the bacterial nucleoid protein H-NS and macromolecular crowding in compacting DNA

    NARCIS (Netherlands)

    Wintraecken, C.H.J.M.

    2012-01-01

      In this dissertation we discuss H-NS and its connection to nucleoid compaction and organization. Nucleoid formation involves a dramatic reduction in coil volume of the genomic DNA. Four factors are thought to influence coil volume: supercoiling, DNA charge neutralization, macromolecular crow

  19. A kinetic type extended model for dense gases and macromolecular fluids

    Directory of Open Access Journals (Sweden)

    M. Cristina Carrisi

    2005-05-01

    Full Text Available Extended thermodynamics is an important theory which is appreciated from mathematicians and physicists. Following its ideas and considering the macroscopic approach with suggestions from the kinetic one, we find in this paper, the solution of an interesting model: the model for dense gases and macromolecular fluids.

  20. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DEFF Research Database (Denmark)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.

    2017-01-01

    Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many...

  1. Isolation and chemical characterization of resistant macromolecular constituents in microalgae and marine sediments

    NARCIS (Netherlands)

    Gelin, F.

    1996-01-01

    The recognition of novel, insoluble and non-hydrolysable macromolecular constituents in protective tissues of fresh-water algae and higher plants has had a major impact on our understanding of the origin and fate of sedimentary organic matter (OM) in terrestrial and lacustrine deposits. The investig

  2. Synergy of DNA-bending nucleoid proteins and macromolecular crowd-condensing DNA

    NARCIS (Netherlands)

    Bessa Ramos, E.; Wintraecken, C.H.J.M.; Geerling, A.C.M.; Vries, de R.J.

    2007-01-01

    Many prokaryotic nucleoid proteins bend DNA and form extended helical protein-DNA fibers rather than condensed structures. On the other hand, it is known that such proteins (such as bacterial HU) strongly promote DNA condensation by macromolecular crowding. Using theoretical arguments, we show that

  3. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980

    Directory of Open Access Journals (Sweden)

    Kunst, B.

    2008-07-01

    Full Text Available The postgraduate study of macromolecular sciences (PSMS was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study comprised basic fields of macromolecular sciences: organic chemistry of synthetic macromolecules, physical chemistry of macromolecules, physics of macromolecules, biological macromolecules and polymer engineering with polymer application and processing, and teaching was performed in 29 lecture courses lead by 30 professors with their collaborators. PSMS ceased to exist with the change of legislation in Croatia in 1980, when the attitude prevailed to render back postgraduate studies to the university schools. During 9 years of existence of PSMS the MSci grade was awarded to 37 macromolecular experts. It was assessed that the PSMS some thirty years ago was an important example of modern postgraduate education as compared with the international postgraduate development. In concordance with the recent introduction of similar interdisciplinary studies in macromolecular sciences elsewhere in the world, the establishment of a modern interdisciplinary study in the field would be of importance for further development of these sciences in Croatia.

  4. Macromolecular Crowding Modulates Folding Mechanism of α/β Protein Apoflavodoxin

    Science.gov (United States)

    Homouz, D.; Stagg, L.; Wittungstafshede, P.; Cheung, M.

    2009-01-01

    Protein dynamics in cells may be different from that in dilute solutions in vitro since the environment in cells is highly concentrated with other macromolecules. This volume exclusion due to macromolecular crowding is predicted to affect both equilibrium and kinetic processes involving protein conformational changes. To quantify macromolecular crowding effects on protein folding mechanisms, here we have investigated the folding energy landscape of an alpha/beta protein, apoflavodoxin, in the presence of inert macromolecular crowding agents using in silico and in vitro approaches. By coarse-grained molecular simulations and topology-based potential interactions, we probed the effects of increased volume fraction of crowding agents (phi_c) as well as of crowding agent geometry (sphere or spherocylinder) at high phi_c. Parallel kinetic folding experiments with purified Desulfovibro desulfuricans apoflavodoxin in vitro were performed in the presence of Ficoll (sphere) and Dextran (spherocylinder) synthetic crowding agents. In conclusion, we have identified in silico crowding conditions that best enhance protein stability and discovered that upon manipulation of the crowding conditions, folding routes experiencing topological frustrations can be either enhanced or relieved. The test-tube experiments confirmed that apoflavodoxin's time-resolved folding path is modulated by crowding agent geometry. We propose that macromolecular crowding effects may be a tool for manipulation of protein folding and function in living cells.

  5. Prospects for simulating macromolecular surfactant chemistry at the ocean-atmosphere boundary

    Science.gov (United States)

    Elliott, S.; Burrows, S. M.; Deal, C.; Liu, X.; Long, M.; Ogunro, O.; Russell, L. M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  6. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  7. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  8. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules.

    Science.gov (United States)

    Miyaguchi, Katsuyuki

    2014-10-01

    Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.

  9. THE INDIAN WIZARD OF BIOPHYSICS : REMEMBERING G. N. RAMACHANDRAN IN THE INTERNATIONAL YEAR OF CRYSTALLOGRAPHY

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Dey

    2014-03-01

    Full Text Available An Indian soldier of science who had implanted deep foot prints in the biophysical world of peptides, proteins and imaging is none other than G.N. Ramachandran. Hardly has another Indian biophysicist received such world wide acclaim. The year 2013 marked the 50th year of his much lauded and used Ramachandran map and has been celebrated in India with gusto, worthy of his remarkable contribution. As the year passed by, it is imperative that we salute the great soul yet again. It is no mere coincidence with respect to G.N. Ramachandran that after the year long celebrations of 2013, the year 2014 will be celebrated world-wide as the International Year of Crystallography. It is essential to emphasize that any celebration with respect to crystallography is incomplete without remembering Ramachandran. His life and contributions are now widely known, but a recount of the tales will alway

  10. Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography

    KAUST Repository

    Zhang, Daliang

    2011-12-01

    High resolution electron microscopy (HRTEM) has unique advantages for structural determination of nano-sized porous materials compared to X-ray diffraction, because it provides the important structure factor phase information which is lost in diffraction. Here we demonstrate the structure determination of the first tri-continuous mesoporous silica IBN-9 by electron crystallography. IBN-9 has a hexagonal unit cell with the space group P6 3/mcm and a = 88.4 , c = 84.3 . HRTEM images taken along three main directions, [0 0 1], [11̄0] and [1 0 0] were combined to reconstruct the 3D electrostatic potential map, from which the tri-continuous pore structure of IBN-9 was discovered. The different steps of structure determination of unknown mesoporous structures by electron crystallography are described in details. Similar procedures can also be applied for structure determination of other porous and nonporous crystalline materials. © 2011 Elsevier Inc. All rights reserved.

  11. Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.

    Science.gov (United States)

    Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A; White, Thomas A; Spence, John C H; Chapman, Henry N; Barty, Anton

    2014-07-17

    Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies.

  12. Towards an integrative structural biology approach: combining Cryo-TEM, X-ray crystallography, and NMR.

    Science.gov (United States)

    Lengyel, Jeffrey; Hnath, Eric; Storms, Marc; Wohlfarth, Thomas

    2014-09-01

    Cryo-transmission electron microscopy (Cryo-TEM) and particularly single particle analysis is rapidly becoming the premier method for determining the three-dimensional structure of protein complexes, and viruses. In the last several years there have been dramatic technological improvements in Cryo-TEM, such as advancements in automation and use of improved detectors, as well as improved image processing techniques. While Cryo-TEM was once thought of as a low resolution structural technique, the method is currently capable of generating nearly atomic resolution structures on a routine basis. Moreover, the combination of Cryo-TEM and other methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and molecular dynamics modeling are allowing researchers to address scientific questions previously thought intractable. Future technological developments are widely believed to further enhance the method and it is not inconceivable that Cryo-TEM could become as routine as X-ray crystallography for protein structure determination.

  13. An exponential modeling algorithm for protein structure completion by X-ray crystallography.

    Science.gov (United States)

    Shneerson, V L; Wild, D L; Saldin, D K

    2001-03-01

    An exponential modeling algorithm is developed for protein structure completion by X-ray crystallography and tested on experimental data from a 59-residue protein. An initial noisy difference Fourier map of missing residues of up to half of the protein is transformed by the algorithm into one that allows easy identification of the continuous tube of electron density associated with that polypeptide chain. The method incorporates the paradigm of phase hypothesis generation and cross validation within an automated scheme.

  14. Distributed control of protein crystallography beamline 5.0 using CORBA

    OpenAIRE

    Timossi, Chris

    1999-01-01

    The Protein Crystallography Beamline at Berkeley Lab's Advanced Light Source is a facility that is being used to solve the structure of proteins. The software that is being used to control this beamline uses Java for user interface applications which communicate via CORBA with workstations that control the beamline hardware. We describe the software architecture for the beamline and our experiences after two years of operation.

  15. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; Dao, E. Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S.; Young, Iris D.; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S.; Koglin, Jason E.; Boutet, Sébastien; Junco, Elia A.; Hayes, Brandon; Bogan, Michael J.; Hampton, Christina Y.; Puglisi, Elisabetta V.; Sauter, Nicholas K.; Stan, Claudiu A.; Zouni, Athina; Yano, Junko; Yachandra, Vittal K.; Soltis, S. Michael; Puglisi, Joseph D.; DeMirci, Hasan

    2015-11-30

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  16. X-ray crystallography and its impact on understanding bacterial cell wall remodeling processes.

    Science.gov (United States)

    Büttner, Felix Michael; Renner-Schneck, Michaela; Stehle, Thilo

    2015-02-01

    The molecular structure of matter defines its properties and function. This is especially true for biological macromolecules such as proteins, which participate in virtually all biochemical processes. A three dimensional structural model of a protein is thus essential for the detailed understanding of its physiological function and the characterization of essential properties such as ligand binding and reaction mechanism. X-ray crystallography is a well-established technique that has been used for many years, but it is still by far the most widely used method for structure determination. A particular strength of this technique is the elucidation of atomic details of molecular interactions, thus providing an invaluable tool for a multitude of scientific projects ranging from the structural classification of macromolecules over the validation of enzymatic mechanisms or the understanding of host-pathogen interactions to structure-guided drug design. In the first part of this review, we describe essential methodological and practical aspects of X-ray crystallography. We provide some pointers that should allow researchers without a background in structural biology to assess the overall quality and reliability of a crystal structure. To highlight its potential, we then survey the impact X-ray crystallography has had on advancing an understanding of a class of enzymes that modify the bacterial cell wall. A substantial number of different bacterial amidase structures have been solved, mostly by X-ray crystallography. Comparison of these structures highlights conserved as well as divergent features. In combination with functional analyses, structural information on these enzymes has therefore proven to be a valuable template not only for understanding their mechanism of catalysis, but also for targeted interference with substrate binding.

  17. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II.

    Science.gov (United States)

    Sierra, Raymond G; Gati, Cornelius; Laksmono, Hartawan; Dao, E Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S; Young, Iris D; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S; Koglin, Jason E; Boutet, Sébastien; Junco, Elia A; Hayes, Brandon; Bogan, Michael J; Hampton, Christina Y; Puglisi, Elisabetta V; Sauter, Nicholas K; Stan, Claudiu A; Zouni, Athina; Yano, Junko; Yachandra, Vittal K; Soltis, S Michael; Puglisi, Joseph D; DeMirci, Hasan

    2016-01-01

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  18. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    Science.gov (United States)

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  19. An introduction to computational crystallography: the relationship between aluminum-based spinel structures and their morphologies

    Institute of Scientific and Technical Information of China (English)

    施尔畏; 元如林; 陈之战; 郑燕青; 童怀水; 李汶军; 仲维卓

    2003-01-01

    The computational crystallography is proposed. Its basic concept and research method are systematically introduced, with aluminum-based spinel (ABS) as an example, through (ⅰ) selecting basic crystal structural unit, (ⅱ) determining the mathematical expression of crystal structure, (ⅲ) computing the stability energy of growth unit and finding out which is (are) favorable one(s), and (ⅳ) describing the formation process of crystal morphology. The morphology of ABS deduced from the computation is in excellent agreement with that from hydrothermal experiments.

  20. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  1. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    Energy Technology Data Exchange (ETDEWEB)

    Coquelle, Nicolas [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Burghammer, Manfred, E-mail: burgham@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Ghent University, Ghent B-9000 (Belgium); Colletier, Jacques-Philippe, E-mail: burgham@esrf.fr [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France)

    2015-05-01

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  2. Integrated Controlling System and Unified Database for High Throughput Protein Crystallography Experiments

    Science.gov (United States)

    Gaponov, Yu. A.; Igarashi, N.; Hiraki, M.; Sasajima, K.; Matsugaki, N.; Suzuki, M.; Kosuge, T.; Wakatsuki, S.

    2004-05-01

    An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view, create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments.

  3. The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

    Science.gov (United States)

    Edlund, Petra; Takala, Heikki; Claesson, Elin; Henry, Léocadie; Dods, Robert; Lehtivuori, Heli; Panman, Matthijs; Pande, Kanupriya; White, Thomas; Nakane, Takanori; Berntsson, Oskar; Gustavsson, Emil; Båth, Petra; Modi, Vaibhav; Roy-Chowdhury, Shatabdi; Zook, James; Berntsen, Peter; Pandey, Suraj; Poudyal, Ishwor; Tenboer, Jason; Kupitz, Christopher; Barty, Anton; Fromme, Petra; Koralek, Jake D.; Tanaka, Tomoyuki; Spence, John; Liang, Mengning; Hunter, Mark S.; Boutet, Sebastien; Nango, Eriko; Moffat, Keith; Groenhof, Gerrit; Ihalainen, Janne; Stojković, Emina A.; Schmidt, Marius; Westenhoff, Sebastian

    2016-01-01

    Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX. PMID:27756898

  4. Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography.

    Science.gov (United States)

    Oghbaey, Saeed; Sarracini, Antoine; Ginn, Helen M; Pare-Labrosse, Olivier; Kuo, Anling; Marx, Alexander; Epp, Sascha W; Sherrell, Darren A; Eger, Bryan T; Zhong, Yinpeng; Loch, Rolf; Mariani, Valerio; Alonso-Mori, Roberto; Nelson, Silke; Lemke, Henrik T; Owen, Robin L; Pearson, Arwen R; Stuart, David I; Ernst, Oliver P; Mueller-Werkmeister, Henrike M; Miller, R J Dwayne

    2016-08-01

    The advent of ultrafast highly brilliant coherent X-ray free-electron laser sources has driven the development of novel structure-determination approaches for proteins, and promises visualization of protein dynamics on sub-picosecond timescales with full atomic resolution. Significant efforts are being applied to the development of sample-delivery systems that allow these unique sources to be most efficiently exploited for high-throughput serial femtosecond crystallography. Here, the next iteration of a fixed-target crystallography chip designed for rapid and reliable delivery of up to 11 259 protein crystals with high spatial precision is presented. An experimental scheme for predetermining the positions of crystals in the chip by means of in situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure, giving a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage and allowing the method to be applied to systems where the number of crystals is limited.

  5. Advances in electron microscopy: A qualitative view of instrumentation development for macromolecular imaging and tomography.

    Science.gov (United States)

    Schröder, Rasmus R

    2015-09-01

    Macromolecular imaging and tomography of ice embedded samples has developed into a mature imaging technology, in structural biology today widely referred to simply as cryo electron microscopy.(1) While the pioneers of the technique struggled with ill-suited instruments, state-of-the-art cryo microscopes are now readily available and an increasing number of groups are producing excellent high-resolution structural data of macromolecular complexes, of cellular organelles, or the morphology of whole cells. Instrumentation developers, however, are offering yet more novel electron optical devices, such as energy filters and monochromators, aberration correctors or physical phase plates. Here we discuss how current instrumentation has already changed cryo EM, and how newly available instrumentation - often developed in other fields of electron microscopy - may further develop the use and applicability of cryo EM to the imaging of single isolated macromolecules of smaller size or molecules embedded in a crowded cellular environment.

  6. Optimal cytoplasmatic density and flux balance model under macromolecular crowding effects.

    Science.gov (United States)

    Vazquez, Alexei

    2010-05-21

    Macromolecules occupy between 34% and 44% of the cell cytoplasm, about half the maximum packing density of spheres in three dimension. Yet, there is no clear understanding of what is special about this value. To address this fundamental question we investigate the effect of macromolecular crowding on cell metabolism. We develop a cell scale flux balance model capturing the main features of cell metabolism at different nutrient uptakes and macromolecular densities. Using this model we show there are two metabolic regimes at low and high nutrient uptakes. The latter regime is characterized by an optimal cytoplasmatic density where the increase of reaction rates by confinement and the decrease by diffusion slow-down balance. More important, the predicted optimal density is in the range of the experimentally determined density of Escherichia coli.

  7. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, S.B.; Harrison, B.

    1987-05-01

    Macromolecular crowding extends the range of ionic conditions supporting high DNA polymerase reaction rates. Reactions tested were nick translation and gap-filling by DNA polymerase I of E. coli, nuclease and polymerase activities of the large fragment of that polymerase, and polymerization by the T4 DNA polymerase. For all of these reactions, high concentrations of nonspecific polymers increased enzymatic activity under otherwise inhibitory conditions resulting from relatively high ionic strength. The primary mechanism of the polymer effect seems to be to increase the binding of polymerase to DNA. They suggest that this effect of protein-DNA complexes is only one example of a general metabolic buffering action of crowded solutions on a variety of macromolecular interactions.

  8. Romp: The Method of Choice for Precise Macromolecular Engineering and Synthesis of Smart Materials

    Science.gov (United States)

    Khosravi, Ezat; Castle, Thomas C.; Kujawa, Margaret; Leejarkpai, Jan; Hutchings, Lian R.; Hine, Peter J.

    The recent advances in olefin metathesis highlight the impact of Ring Opening Metathesis Polymerisation (ROMP) as a powerful technique for macromolecular engineering and synthesis of smart materials with well-defined structures. ROMP has attracted a considerable research attention recently particularly by industry largely due to the development of well-defined metal complexes as initiators and also because of the award of the Noble Prize for Chemistry in 2005 to three scientists (Chauvin, Grubbs, Schrock) for their contributions in this area. This chapter discusses several interesting examples in order to demonstrate that ROMP is a power tool in macromolecular engineering and that it allows the design and synthesis of polymers with novel topologies.

  9. 3DEM Loupe: Analysis of macromolecular dynamics using structures from electron microscopy.

    Science.gov (United States)

    Nogales-Cadenas, R; Jonic, S; Tama, F; Arteni, A A; Tabas-Madrid, D; Vázquez, M; Pascual-Montano, A; Sorzano, C O S

    2013-07-01

    Electron microscopy (EM) provides access to structural information of macromolecular complexes in the 3-20 Å resolution range. Normal mode analysis has been extensively used with atomic resolution structures and successfully applied to EM structures. The major application of normal modes is the identification of possible conformational changes in proteins. The analysis can throw light on the mechanism following ligand binding, protein-protein interactions, channel opening and other functional macromolecular movements. In this article, we present a new web server, 3DEM Loupe, which allows normal mode analysis of any uploaded EM volume using a user-friendly interface and an intuitive workflow. Results can be fully explored in 3D through animations and movies generated by the server. The application is freely available at http://3demloupe.cnb.csic.es.

  10. A NASA Recipe for Protein Crystallography. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses growing protein crystals. Protein crystals can be very difficult to grow. This activity for grades 9-12 provides a simple recipe for growing protein crystals from Brazil nuts. Included are a history of protein crystals, a discussion of microgravity effects on growth, connections to academic standards, and lab sheets. (MVL)

  11. Matrix Representation of Symmetry Operators in Elementary Crystallography

    Science.gov (United States)

    Cody, R. D.

    1972-01-01

    Presents the derivation of rotation and reflection matrix representation of symmetry operators as used in the initial discussion of crystal symmetry in elementary mineralogy at Iowa State University. Includes references and an appended list of matrix representations of the important crystallographic symmetry operators, excluding the trigonal and…

  12. In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?

    Science.gov (United States)

    Gallat, François-Xavier; Matsugaki, Naohiro; Coussens, Nathan P; Yagi, Koichiro J; Boudes, Marion; Higashi, Tetsuya; Tsuji, Daisuke; Tatano, Yutaka; Suzuki, Mamoru; Mizohata, Eiichi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Park, Jaehyun; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nango, Eriko; Itoh, Kohji; Coulibaly, Fasséli; Tobe, Stephen; Ramaswamy, S; Stay, Barbara; Iwata, So; Chavas, Leonard M G

    2014-07-17

    The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography.

  13. STUDIES ON PAN MACROMOLECULAR SEMICONDUCTING FIBER 1. PREPARATION OF PAN CONDUCTING FIBER TREATED BY STANNIC CHLORIDE AND ITS SEMICONDUCTING BEHAVIOUR

    Institute of Scientific and Technical Information of China (English)

    WANG Dexi; CUI Dayuan; LUO Boliang; WANG Xiugang; WU Renjie

    1984-01-01

    The PAN fiber treated by Lewis acid (e.g. stannic chloride) could be transformed into a macromolecular conducting fiber by further thermal treatment. Depending on thermal treatment condition the resistance of the fiber varied from 103 to 1012 Ω and kept stable after hydrolysis. The fiber has enough strength to be processed by various means. This is a new kind of macromolecular semiconducting fiber having some characteristics similar to those of organic semiconductors.

  14. STUDY ON HYDROLYSIS OF MACROMOLECULAR GELATIN WITH ENZYMES IN COMBINATION MODE

    Institute of Scientific and Technical Information of China (English)

    Ya-qin Huang; Rui Guan; Ming-zhi Huang

    2004-01-01

    The enzymatic hydrolysis of macromolecular gelatin with AS1.398 neutral protease, bromelain and their combinations was studied by estimating the molecular weights of their hydrolytic products. It was discovered that the products hydrolyzed by using combination enzymes had lower molecular weight than those obtained by using single ones,and the kind of enzymes, their combination mode and addition sequence are effective ways to control the molecular weights of gelatin hydrolyzates.

  15. Porphyrin-Cored Polymer Nanoparticles: Macromolecular Models for Heme Iron Coordination.

    Science.gov (United States)

    Rodriguez, Kyle J; Hanlon, Ashley M; Lyon, Christopher K; Cole, Justin P; Tuten, Bryan T; Tooley, Christian A; Berda, Erik B; Pazicni, Samuel

    2016-10-03

    Porphyrin-cored polymer nanoparticles (PCPNs) were synthesized and characterized to investigate their utility as heme protein models. Created using collapsible heme-centered star polymers containing photodimerizable anthracene units, these systems afford model heme cofactors buried within hydrophobic, macromolecular environments. Spectroscopic interrogations demonstrate that PCPNs display redox and ligand-binding reactivity similar to that of native systems and thus are potential candidates for modeling biological heme iron coordination.

  16. CplexA: a Mathematica package to study macromolecular-assembly control of gene expression

    OpenAIRE

    Vilar, J. M. G.; Saiz, L

    2010-01-01

    Summary: Macromolecular assembly vertebrates essential cellular processes, such as gene regulation and signal transduction. A major challenge for conventional computational methods to study these processes is tackling the exponential increase of the number of configurational states with the number of components. CplexA is a Mathematica package that uses functional programming to efficiently compute probabilities and average properties over such exponentially large number of states from the en...

  17. In Vitro and In Vivo Evaluation of Microparticulate Drug Delivery Systems Composed of Macromolecular Prodrugs

    Directory of Open Access Journals (Sweden)

    Yoshiharu Machida

    2008-08-01

    Full Text Available Macromolecular prodrugs are very useful systems for achieving controlled drug release and drug targeting. In particular, various macromolecule-antitumor drug conjugates enhance the effectiveness and improve the toxic side effects. Also, polymeric micro- and nanoparticles have been actively examined and their in vivo behaviors elucidated, and it has been realized that their particle characteristics are very useful to control drug behavior. Recently, researches based on the combination of the concepts of macromolecular prodrugs and micro- or nanoparticles have been reported, although they are limited. Macromolecular prodrugs enable drugs to be released at a certain controlled release rate based on the features of the macromolecule-drug linkage. Micro- and nanoparticles can control in vivo behavior based on their size, surface charge and surface structure. These merits are expected for systems produced by the combination of each concept. In this review, several micro- or nanoparticles composed of macromolecule-drug conjugates are described for their preparation, in vitro properties and/or in vivo behavior.

  18. Macromolecular (pro)drugs with concurrent direct activity against the hepatitis C virus and inflammation.

    Science.gov (United States)

    Wohl, Benjamin M; Smith, Anton A A; Jensen, Bettina E B; Zelikin, Alexander N

    2014-12-28

    Macromolecular prodrugs (MPs) are a powerful tool to alleviate side-effects and improve the efficacy of the broad-spectrum antiviral agent ribavirin. In this work, we sought an understanding of what makes an optimal formulation within the macromolecular parameter space--nature of the polymer carrier, average molar mass, drug loading, or a good combination thereof. A panel of MPs based on biocompatible synthetic vinylic and (meth)acrylic polymers was tested in an anti-inflammatory assay with relevance to alleviating inflammation in the liver during hepatitis C infection. Pristine polymer carriers proved to have a pronounced anti-inflammatory activity, a notion which may prove significant in developing MPs for antiviral and anticancer treatments. With conjugated ribavirin, MPs revealed enhanced activity but also higher toxicity. Therapeutic windows and therapeutic indices were determined and discussed to reveal the most potent formulation and those with optimized safety. Polymers were also tested as inhibitors of replication of the hepatitis C viral RNA using a subgenomic viral replicon system. For the first time, negatively charged polymers are revealed to have an intracellular activity against hepatitis C virus replication. Concerted activity of the polymer and ribavirin afforded MPs which significantly increased the therapeutic index of ribavirin-based treatment. Taken together, the systematic investigation of the macromolecular space identified lead candidates with high efficacy and concurrent direct activity against the hepatitis C virus and inflammation.

  19. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics

    Science.gov (United States)

    Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth

    2016-01-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts. PMID:27124275

  20. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.

    Directory of Open Access Journals (Sweden)

    Tatiana Maximova

    2016-04-01

    Full Text Available Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.

  1. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase.

    Science.gov (United States)

    Mueller, Leonard J; Dunn, Michael F

    2013-09-17

    NMR crystallography--the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry--offers unprecedented insight into three-dimensional, chemically detailed structure. Initially, researchers used NMR crystallography to refine diffraction data from organic and inorganic solids. Now we are applying this technique to explore active sites in biomolecules, where it reveals chemically rich detail concerning the interactions between enzyme site residues and the reacting substrate. Researchers cannot achieve this level of detail from X-ray, NMR,or computational methodologies in isolation. For example, typical X-ray crystal structures (1.5-2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate but do not directly identify the protonation states. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but they rely on researcher-specified chemical details. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which scientists can develop models of the active site using computational chemistry; they can then distinguish these models by comparing calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at the highest possible resolution. In this Account, we detail our first steps in the development of

  2. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred

    2002-07-30

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  3. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  4. The effect of macromolecular crowding on the structure of the protein complex superoxide dismutase

    Science.gov (United States)

    Rajapaksha Mudalige, Ajith Rathnaweera

    Biological environments contain between 7 - 40% macromolecules by volume. This reduces the available volume for macromolecules and elevates the osmotic pressure relative to pure water. Consequently, biological macromolecules in their native environments tend to adopt more compact and dehydrated conformations than those in vitro. This effect is referred to as macromolecular crowding and constitutes an important physical difference between native biological environments and the simple solutions in which biomolecules are usually studied. We used small angle scattering (SAS) to measure the effects of macromolecular crowding on the size of a protein complex, superoxide dismutase (SOD). Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl-alpha-glucoside (alpha-MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. SAS coupled with osmotic pressure measurements allowed us to estimate a compressibility modulus for SOD. We believe this to be the first time the osmotic compressibility of a protein complex was measured. Molecular Dynamics (MD) simulations are widely used to obtain insights on biomolecular processes. However, it is not clear whether MD is capable of predicting subtle effects of macromolecular crowding. We used our experimentally observed compressibility of SOD to evaluate the ability of MD to predict macromolecular crowding. Effects of macromolecular crowding due to PEG on SOD were modeled using an all atom MD simulation with the CHARMM forcefield and the crystallographically resolved structures of SOD and PEG. Two parallel MD simulations were performed for SOD in water and SOD in 40% PEG for over 150~ns. Over the period of the simulation the SOD structure in 40

  5. Performance of detectors for x-ray crystallography

    Science.gov (United States)

    Stanton, Martin J.; Phillips, Walter C.

    1993-12-01

    The performance of a detector can be characterized by its efficiency for measuring individual x-rays or for measuring Bragg peak intensities. The performance for detecting individual x- rays or for measuring Bragg peak intensities. The performance for detecting individual x-rays is well modeled by the DQE. The performance for measuring Bragg peak intensities in the presence of an x-ray background can be modeled by an expanded definition of the DQE which allows inclusion of experimental constraints, the XDCE. These constraints include the observation that by increasing the crystal-to-detector distance and using a larger detector, Bragg peaks can be better resolved and the x-ray background reduced. Calculation of the XDCE for a detector consisting of a fiberoptic taper with a phosphor x-ray convertor deposited on the large end and a CCD bonded to the small end demonstrate the need to make the detector area relatively large, possibly at the expense of a decrease in the DQE.

  6. Synthesis of RNAs with up to 100 Nucleotides Containing Site-Specific 2-methylseleno Labels for use in X-ray Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Hobartner,C.; Rieder, R.; Kreutz, C.; Puffer, B.; Lang, K.; Polonskaia, A.; Serganov, A.; Micura, R.

    2005-01-01

    The derivatization of nucleic acids with selenium is a new and highly promising approach to facilitate their three-dimensional structure determination by X-ray crystallography. Here, we report a comprehensive study on the chemical and enzymatic syntheses of RNAs containing 2'-methylseleno (2'-Se-methyl) nucleoside labels. Our approach includes the first synthesis of an appropriate purine nucleoside phosphoramidite building block. Most importantly, a substantially changed RNA solid-phase synthesis cycle, comprising treatment with threo-1, 4-dimercapto-2, 3-butanediol (DTT) after the oxidation step, is required for a reliable strand elongation. This novel operation allows for the chemical syntheses of multiple Se-labeled RNAs in sizes that can typically be achieved only for nonmodified RNAs. In combination with enzymatic ligation, biologically important RNA targets become accessible for crystallography. Exemplarily, this has been demonstrated for the Diels-Alder ribozyme and the add adenine riboswitch sequences. We point out that the approach documented here has been the chemical basis for the very recent structure determination of the Diels-Alder ribozyme which represents the first novel RNA fold that has been solved via its Se-derivatives.

  7. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  8. Crystallography of Representative MOFs Based on Pillared Cyanonickelate (PICNIC Architecture

    Directory of Open Access Journals (Sweden)

    Winnie Wong-Ng

    2016-09-01

    Full Text Available The pillared layer motif is a commonly used route to porous coordination polymers or metal organic frameworks (MOFs. Materials based on the pillared cyano-bridged architecture, [Ni’(LNi(CN4]n (L = pillar organic ligands, also known as PICNICs, have been shown to be especially diverse where pore size and pore functionality can be varied by the choice of pillar organic ligand. In addition, a number of PICNICs form soft porous structures that show reversible structure transitions during the adsorption and desorption of guests. The structural flexibility in these materials can be affected by relatively minor differences in ligand design, and the physical driving force for variations in host-guest behavior in these materials is still not known. One key to understanding this diversity is a detailed investigation of the crystal structures of both rigid and flexible PICNIC derivatives. This article gives a brief review of flexible MOFs. It also reports the crystal structures of five PICNICS from our laboratories including three 3-D porous frameworks (Ni-Bpene, NI-BpyMe, Ni-BpyNH2, one 2-D layer (Ni-Bpy, and one 1-D chain (Ni-Naph compound. The sorption data of BpyMe for CO2, CH4 and N2 is described. The important role of NH3 (from the solvent of crystallization as blocking ligands which prevent the polymerization of the 1-D chains and 2-D layers to become 3D porous frameworks in the Ni-Bpy and Ni-Naph compounds is also addressed.

  9. Exploiting fast detectors to enter a new dimension in room-temperature crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Paterson, Neil; Axford, Danny; Aishima, Jun [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Schulze-Briese, Clemens [Dectris Ltd, Neuenhofer Strasse 107, 5400 Baden (Switzerland); Ren, Jingshan; Fry, Elizabeth E. [University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2014-05-01

    A departure from a linear or an exponential decay in the diffracting power of macromolecular crystals is observed and accounted for through consideration of a multi-state sequential model. A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first time to high frame-rate room-temperature data collection.

  10. Stabilization of helical macromolecular phases by confined bending

    CERN Document Server

    Williams, Matthew J

    2015-01-01

    By means of extensive replica-exchange simulations of generic coarse-grained models for helical polymers, we systematically investigate the structural transitions into all possible helical phases for flexible and semiflexible elastic polymers with self-interaction under the influence of torsion barriers. The competing interactions lead to a variety of conformational phases including disordered helical arrangements, single helices, and ordered, tertiary helix bundles. Most remarkably, we find that a bending restraint entails a clear separation and stabilization of the helical phases. This aids in understanding why semiflexible polymers such as double-stranded DNA tend to form pronounced helical structures and proteins often exhibit an abundance of helical structures, such as helix bundles, within their tertiary structure.

  11. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions.

    Science.gov (United States)

    Franke, D; Petoukhov, M V; Konarev, P V; Panjkovich, A; Tuukkanen, A; Mertens, H D T; Kikhney, A G; Hajizadeh, N R; Franklin, J M; Jeffries, C M; Svergun, D I

    2017-08-01

    ATSAS is a comprehensive software suite for the analysis of small-angle scattering data from dilute solutions of biological macromolecules or nanoparticles. It contains applications for primary data processing and assessment, ab initio bead modelling, and model validation, as well as methods for the analysis of flexibility and mixtures. In addition, approaches are supported that utilize information from X-ray crystallography, nuclear magnetic resonance spectroscopy or atomistic homology modelling to construct hybrid models based on the scattering data. This article summarizes the progress made during the 2.5-2.8 ATSAS release series and highlights the latest developments. These include AMBIMETER, an assessment of the reconstruction ambiguity of experimental data; DATCLASS, a multiclass shape classification based on experimental data; SASRES, for estimating the resolution of ab initio model reconstructions; CHROMIXS, a convenient interface to analyse in-line size exclusion chromatography data; SHANUM, to evaluate the useful angular range in measured data; SREFLEX, to refine available high-resolution models using normal mode analysis; SUPALM for a rapid superposition of low- and high-resolution models; and SASPy, the ATSAS plugin for interactive modelling in PyMOL. All these features and other improvements are included in the ATSAS release 2.8, freely available for academic users from https://www.embl-hamburg.de/biosaxs/software.html.

  12. Time-of-flight 3D Neutron Diffraction for Multigrain Crystallography

    DEFF Research Database (Denmark)

    Cereser, Alberto

    detector systems facilitated two versions of ToF 3DND. The first version, restricted to imaging data, enables reconstruction of the position and shape of the individual grains without the use of crystallography. Afterwards, the orientations of the individual grains are indexed. The algorithms for both...... comparison with electron backscatter diffraction (EBSD). In the Iron rod, 107 grains were indexed from the SENJU data. As a comparison, 108 grains were reconstructed from the nearfield data alone. This constitutes roughly 10 times as many grains as previously reported using a continuous neutron source...

  13. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  14. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, P.A. [ILL, Grenoble (France); Pebay-Peyroula, E. [IBS-UJF Grenoble (France)

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  15. Electron crystallography applied to the structure determination of Nb(Cu,Al,X) Laves phases.

    Science.gov (United States)

    Gigla, M; Lelatko, J; Krzelowski, M; Morawiec, H

    2006-09-01

    The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

  16. A revised version of the program VEC (visual computing in electron crystallography)

    Institute of Scientific and Technical Information of China (English)

    Li Xue-Ming; Li Fang-Hua; Fan Hai-Fu

    2009-01-01

    The program package VEC (Visual computing in Electron Crystallography) has been revised such that (i) a program converting one-line symbols to two-line symbols of (3+1)-dimensional superspace groups has been incorporated into VEC so that the latter can interpret both kinds of symbols; (ii) a bug in calculating structure factors of one-dimensionally incommensurate modulated crystals has been fixed. The correction has been verified by successfully matching the experimental electron microscopy image of an incommensurate crystal with a series of simulated images.The precompiled revised version of VEC and relevant materials are available on the Web at http://cryst.iphy.ac.cn.

  17. Preparation, X-ray crystallography, and thermal decomposition of some transition metal perchlorate complexes of hexamethylenetetramine.

    Science.gov (United States)

    Singh, Gurdip; Baranwal, B P; Kapoor, I P S; Kumar, Dinesh; Fröhlich, Roland

    2007-12-20

    The perchlorate complexes of manganese, nickel, and zinc with hexamethylenetetramine (HMTA) of the general formula [M(H2O-HMTA-H2O)2(H2O-ClO4)2(H2O)2] (where M=Mn, Ni, and Zn) have been prepared and characterized by X-ray crystallography. Thermal studies were undertaken using thermogravimetry (TG), differential thermal analysis (DTA), and explosion delay (DE) measurements. The kinetics of thermal decomposition of these complexes was investigated using isothermal TG data by applying isoconversional method. The decomposition pathways of the complexes have also been proposed. These were found to explode when subjected to higher temperatures.

  18. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    Directory of Open Access Journals (Sweden)

    Arjen J. Jakobi

    2016-03-01

    Full Text Available The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  19. Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals

    Science.gov (United States)

    Gipson, Bryant R.; Masiel, Daniel J.; Browning, Nigel D.; Spence, John; Mitsuoka, Kaoru; Stahlberg, Henning

    2011-07-01

    Electron crystallography of 2D protein crystals provides a powerful tool for the determination of membrane protein structure. In this method, data is acquired in the Fourier domain as randomly sampled, uncoupled, amplitudes and phases. Due to physical constraints on specimen tilting, those Fourier data show a vast un-sampled “missing cone” of information, producing resolution loss in the direction perpendicular to the membrane plane. Based on the flexible language of projection onto sets, we provide a full solution for these problems with a projective constraint optimization algorithm that, for sufficiently oversampled data, produces complete recovery of unmeasured data in the missing cone. We apply this method to an experimental data set of Bacteriorhodopsin and show that, in addition to producing superior results compared to traditional reconstruction methods, full, reproducible, recovery of the missing cone from noisy data is possible. Finally, we present an automatic implementation of the refinement routine as open source, freely distributed, software that will be included in our 2dx software package.

  20. 2dx_automator: implementation of a semiautomatic high-throughput high-resolution cryo-electron crystallography pipeline.

    Science.gov (United States)

    Scherer, Sebastian; Kowal, Julia; Chami, Mohamed; Dandey, Venkata; Arheit, Marcel; Ringler, Philippe; Stahlberg, Henning

    2014-05-01

    The introduction of direct electron detectors (DED) to cryo-electron microscopy has tremendously increased the signal-to-noise ratio (SNR) and quality of the recorded images. We discuss the optimal use of DEDs for cryo-electron crystallography, introduce a new automatic image processing pipeline, and demonstrate the vast improvement in the resolution achieved by the use of both together, especially for highly tilted samples. The new processing pipeline (now included in the software package 2dx) exploits the high SNR and frame readout frequency of DEDs to automatically correct for beam-induced sample movement, and reliably processes individual crystal images without human interaction as data are being acquired. A new graphical user interface (GUI) condenses all information required for quality assessment in one window, allowing the imaging conditions to be verified and adjusted during the data collection session. With this new pipeline an automatically generated unit cell projection map of each recorded 2D crystal is available less than 5 min after the image was recorded. The entire processing procedure yielded a three-dimensional reconstruction of the 2D-crystallized ion-channel membrane protein MloK1 with a much-improved resolution of 5Å in-plane and 7Å in the z-direction, within 2 days of data acquisition and simultaneous processing. The results obtained are superior to those delivered by conventional photographic film-based methodology of the same sample, and demonstrate the importance of drift-correction.

  1. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement.

    Science.gov (United States)

    Borbulevych, Oleg; Martin, Roger I; Tickle, Ian J; Westerhoff, Lance M

    2016-04-01

    Gaining an understanding of the protein-ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  2. KinImmerse: Macromolecular VR for NMR ensembles

    Directory of Open Access Journals (Sweden)

    Vinson E Claire

    2009-02-01

    Full Text Available Abstract Background In molecular applications, virtual reality (VR and immersive virtual environments have generally been used and valued for the visual and interactive experience – to enhance intuition and communicate excitement – rather than as part of the actual research process. In contrast, this work develops a software infrastructure for research use and illustrates such use on a specific case. Methods The Syzygy open-source toolkit for VR software was used to write the KinImmerse program, which translates the molecular capabilities of the kinemage graphics format into software for display and manipulation in the DiVE (Duke immersive Virtual Environment or other VR system. KinImmerse is supported by the flexible display construction and editing features in the KiNG kinemage viewer and it implements new forms of user interaction in the DiVE. Results In addition to molecular visualizations and navigation, KinImmerse provides a set of research tools for manipulation, identification, co-centering of multiple models, free-form 3D annotation, and output of results. The molecular research test case analyzes the local neighborhood around an individual atom within an ensemble of nuclear magnetic resonance (NMR models, enabling immersive visual comparison of the local conformation with the local NMR experimental data, including target curves for residual dipolar couplings (RDCs. Conclusion The promise of KinImmerse for production-level molecular research in the DiVE is shown by the locally co-centered RDC visualization developed there, which gave new insights now being pursued in wider data analysis.

  3. Enhanced delivery of the RAPTA-C macromolecular chemotherapeutic by conjugation to degradable polymeric micelles.

    Science.gov (United States)

    Blunden, Bianca M; Lu, Hongxu; Stenzel, Martina H

    2013-12-09

    Macromolecular ruthenium complexes are a promising avenue to better and more selective chemotherapeutics. We have previously shown that RAPTA-C [RuCl2(p-cymene)(PTA)], with the water-soluble 1,3,5-phosphaadamantane (PTA) ligand, could be attached to a polymer moiety via nucleophilic substitution of an available iodide with an amide in the PTA ligand. To increase the cell uptake of this macromolecule, we designed an amphiphilic block copolymer capable of self-assembling into polymeric micelles. The block copolymer was prepared by ring-opening polymerization of d,l-lactide (3,6-dimethyl-1,4-dioxane-2,5-dione) using a RAFT agent with an additional hydroxyl functionality, followed by the RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and 2-chloroethyl methacrylate (CEMA). The Finkelstein reaction and reaction with PTA led to polymers that can readily react with the dimer of RuCl2(p-cymene) to create a macromolecular RAPTA-C drug. RAPTA-C conjugation, micellization, and subsequent cytotoxicity and cell uptake of these polymeric moieties was tested on ovarian cancer A2780, A2780cis, and Ovcar-3 cell lines. Confocal microscopy images confirmed cell uptake of the micelles into the lysosome of the cells, indicative of an endocytic pathway. On average, a 10-fold increase in toxicity was found for the macromolecular drugs when compared to the RAPTA-C molecule. Furthermore, the cell uptake of ruthenium was analyzed and a significant increase was found for the micelles compared to RAPTA-C. Notably, micelles prepared from the polymer containing fewer HEA units had the highest cytotoxicity, the best cell uptake of ruthenium and were highly effective in suppressing the colony-forming ability of cells.

  4. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Coquel

    2013-04-01

    Full Text Available Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian. Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on

  5. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.

    Science.gov (United States)

    Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel; Lindner, Ariel B; Berry, Hugues

    2013-04-01

    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on macromolecular

  6. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    Science.gov (United States)

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm(-2)  day(-1) (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Review of Two Multiscale Methods for the Simulation of Macromolecular Assemblies: Multiscale Perturbation and Multiscale Factorization

    Directory of Open Access Journals (Sweden)

    Stephen Pankavich

    2015-02-01

    Full Text Available Many mesoscopic N-atom systems derive their structural and dynamical properties from processes coupled across multiple scales in space and time. That is, they simultaneously deform or display collective behaviors, while experiencing atomic scale vibrations and collisions. Due to the large number of atoms involved and the need to simulate over long time periods of biological interest, traditional computational tools, like molecular dynamics, are often infeasible for such systems. Hence, in the current review article, we present and discuss two recent multiscale methods, stemming from the N-atom formulation and an underlying scale separation, that can be used to study such systems in a friction-dominated regime: multiscale perturbation theory and multiscale factorization. These novel analytic foundations provide a self-consistent approach to yield accurate and feasible long-time simulations with atomic detail for a variety of multiscale phenomena, such as viral structural transitions and macromolecular self-assembly. As such, the accuracy and efficiency of the associated algorithms are demonstrated for a few representative biological systems, including satellite tobacco mosaic virus (STMV and lactoferrin.

  8. The "macromolecular tourist": universal temperature dependence of thermal diffusion in aqueous colloidal suspensions.

    Science.gov (United States)

    Iacopini, S; Rusconi, R; Piazza, R

    2006-01-01

    By performing measurements on a large class of macromolecular and colloidal systems, we show that thermophoresis (particle drift induced by thermal gradients) in aqueous solvents displays a distinctive universal dependence on temperature. For systems of particles interacting via temperature-independent forces, this behavior is strictly related to the solvent thermal expansivity, while an additional, T-independent term is needed to account for the behavior of "thermophilic" (migrating to the warmth) particles. The former relation between thermophoresis and thermal expansion may be exploited to envisage other fruitful studies of colloidal diffusion in inhomogeneous fluids.

  9. Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique

    Science.gov (United States)

    Peters, J. H.; Klein, R.; Delle Site, L.

    2016-08-01

    We extend the application of the adaptive resolution technique (AdResS) to liquid systems composed of alkane chains of different lengths. The aim of the study is to develop and test the modifications of AdResS required in order to handle the change of representation of large molecules. The robustness of the approach is shown by calculating several relevant structural properties and comparing them with the results of full atomistic simulations. The extended scheme represents a robust prototype for the simulation of macromolecular systems of interest in several fields, from material science to biophysics.

  10. INFLUENCE OF THE SOLVENT SWELLING ON MACROMOLECULAR CHOLESTERIC LIQUID CRYSTALLINE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Jia Zeng; Yong Huang

    1999-01-01

    Ethyl-cyanoethyl cellulose [(E-CE)C]/cross-linked polyacrylic acid [PAA] molecular composites with cholesteric order were prepared. It was found that the macromolecular cholesteric structure was changed with the swelling of PAA in the composites. The selective reflection of the cholesteric phase shifted to the longer wavelength and the X-ray diffraction angle shifted to the high angle direction during swelling, which suggested that the cholesteric pitch and the number of the layers of ordered (E-CE)C chains in the cholesteric phase were increased.

  11. A vibrating membrane bioreactor (VMBR): Macromolecular transmission-influence of extracellular polymeric substances

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2009-01-01

    The vibrating membrane bioreactor (VMBR) system facilitates the possibility of conducting a separation of macromolecules (BSA) from larger biological components (yeast cells) with a relatively high and stable macromolecular transmission at sub-critical flux. This is not possible to achieve...... for a static non-vibrating membrane module. A BSA transmission of 74% has been measured in the separation of 4g/L BSA from 8 g/L dry weight yeast cells in suspension at sub-critical flux (20L/(m(2) h)). However, this transmission is lower than the 85% BSA transmission measured for at pure 4g/L BSA solution...

  12. Chirality as a physical aspect of structure formation in biological macromolecular systems

    Science.gov (United States)

    Malyshko, E. V.; Tverdislov, V. A.

    2016-08-01

    A novel regularity of hierarchical structures is found in the formation of chiral biological macromolecular systems. The formation of structures with alternating chirality (helical structures) serves as an instrument of stratification. The ability of a carbon atom to form chiral compounds is an important factor that determined the carbon basis of living systems on the Earth as well as their development through a series of chiral bifurcations. In the course of biological evolution, the helical structures became basic elements of the molecular machines in the cell. The discreteness of structural levels allowed the mechanical degrees of freedom formation in the molecular machines in the cell.

  13. Analysis of urinary stone composition in Eastern India by X-ray diffraction crystallography

    Directory of Open Access Journals (Sweden)

    Tarun Jindal

    2014-01-01

    Full Text Available Background: Stones in the urinary system are common in our country. This study was done to assess the composition of the urinary stones in eastern part of India. Materials and Methods: A prospective study was done over a period of thirty months. A total of 90 stones were analyzed in this time period by using X-ray diffraction crystallography. Results: Of the 90 stones analyzed, 77 were renal stones, 12 were ureteric stones and one was a bladder stone. Six stones (all renal did not have properties to be represented by X-ray diffraction crystallography. The overall prevalence of the oxalate containing stones was 85.7% with calcium oxalate monohydrate (COM being the major constituent. Calcium oxalate dihydrate (COD was the next most common constituent. Struvite stones constituted 9.5% of the stones analyzed. Pure calcium phosphate stones were found in 4.7% of the cases. Conclusion: Our study reveals that the stone composition in the eastern part of India is different from that in other parts of the country. We have a comparatively lower prevalence of oxalate stones while a higher prevalence of phosphate and struvite stones.

  14. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-08-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  15. Protein crystallography beamline BL2S1 at the Aichi synchrotron

    Science.gov (United States)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. High-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline. PMID:28009576

  16. Protein crystallography beamline BL2S1 at the Aichi synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao (Nagoya); (Photon)

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. Lastly, high-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.

  17. Back-exchange of deuterium in neutron crystallography: characterization by IR spectroscopy

    Science.gov (United States)

    Yee, Ai Woon; Moulin, Martine; Haertlein, Michael; Mitchell, Edward; Forsyth, V. Trevor

    2017-01-01

    The application of IR spectroscopy to the characterization and quality control of samples used in neutron crystallography is described. While neutron crystallography is a growing field, the limited availability of neutron beamtime means that there may be a delay between crystallogenesis and data collection. Since essentially all neutron crystallographic work is carried out using D2O-based solvent buffers, a particular concern for these experiments is the possibility of H2O back-exchange across reservoir or capillary sealants. This may limit the quality of neutron scattering length density maps and of the associated analysis. Given the expense of central facility beamtime and the effort that goes into the production of suitably sized (usually perdeuterated) crystals, a systematic method of exploiting IR spectroscopy for the analysis of back-exchange phenomena in the reservoirs used for crystal growth is valuable. Examples are given in which the characterization of D2O/H2O back-exchange in transthyretin crystals is described. PMID:28381984

  18. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity

    Science.gov (United States)

    2016-01-01

    Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5′-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography—the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry—to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate Cα and positive charge at C4′ of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites. PMID:27779384

  19. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams.

    Science.gov (United States)

    Coquelle, Nicolas; Brewster, Aaron S; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques Philippe

    2015-05-01

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  20. Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography.

    Science.gov (United States)

    Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Murphy, Michael E P; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi

    2016-03-15

    Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.

  1. A 2D smart pixel detector for time-resolved protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Cork, C.; Earnest, T. [and others

    1995-10-01

    A smart pixel detector is being developed for Time Resolved Crystallography for biological and material science applications. Using the Pixel detector presented here, the Laue method will enable the study of the evolution of structural changes that occur within the protein as a function of time. The x-ray pixellated detector is assembled to the integrated circuit through a bump bonding process. Within a pixel size of 150 x 150 {mu}m{sup 2}, a low noise preamplifier-shaper, a discriminator, a 3 bit counter and the readout logic are integrated. The readout, based on the Column Architecture principle, will accept hit rates above 5x10{sup 8}/cm{sup 2}/s with a maximum hit rate per pixel of 1 MHz. This detector will allow time resolved Laue crystallography to be performed in a frameless operation mode, without dead time. Target specifications, architecture, and preliminary results on the 8 x 8 front-end prototype and column readout are presented.

  2. Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP.

    Science.gov (United States)

    Colletier, Jacques-Philippe; Sliwa, Michel; Gallat, François-Xavier; Sugahara, Michihiro; Guillon, Virginia; Schirò, Giorgio; Coquelle, Nicolas; Woodhouse, Joyce; Roux, Laure; Gotthard, Guillaume; Royant, Antoine; Uriarte, Lucas Martinez; Ruckebusch, Cyril; Joti, Yasumasa; Byrdin, Martin; Mizohata, Eiichi; Nango, Eriko; Tanaka, Tomoyuki; Tono, Kensuke; Yabashi, Makina; Adam, Virgile; Cammarata, Marco; Schlichting, Ilme; Bourgeois, Dominique; Weik, Martin

    2016-03-03

    Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.

  3. SASSIE: A program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints

    Science.gov (United States)

    Curtis, Joseph E.; Raghunandan, Sindhu; Nanda, Hirsh; Krueger, Susan

    2012-02-01

    A program to construct ensembles of biomolecular structures that are consistent with experimental scattering data are described. Specifically, we generate an ensemble of biomolecular structures by varying sets of backbone dihedral angles that are then filtered using experimentally determined restraints to rapidly determine structures that have scattering profiles that are consistent with scattering data. We discuss an application of these tools to predict a set of structures for the HIV-1 Gag protein, an intrinsically disordered protein, that are consistent with small-angle neutron scattering experimental data. We have assembled these algorithms into a program called SASSIE for structure generation, visualization, and analysis of intrinsically disordered proteins and other macromolecular ensembles using neutron and X-ray scattering restraints. Program summaryProgram title: SASSIE Catalogue identifier: AEKL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 3 991 624 No. of bytes in distributed program, including test data, etc.: 826 Distribution format: tar.gz Programming language: Python, C/C++, Fortran Computer: PC/Mac Operating system: 32- and 64-bit Linux (Ubuntu 10.04, Centos 5.6) and Mac OS X (10.6.6) RAM: 1 GB Classification: 3 External routines: Python 2.6.5, numpy 1.4.0, swig 1.3.40, scipy 0.8.0, Gnuplot-py-1.8, Tcl 8.5, Tk 8.5, Mac installation requires aquaterm 1.0 (or X window system) and Xcode 3 development tools. Nature of problem: Open source software to generate structures of disordered biological molecules that subsequently allow for the comparison of computational and experimental results is limiting the use of scattering resources. Solution method: Starting with an all atom model of a protein, for example, users can input

  4. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    Science.gov (United States)

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo.

  5. A NEW UNSTEADY THREE DIMENSIONAL MODEL FOR MACROMOLECULAR TRANSPORT AND WATER FILTRATION ACROSS THE ARTERIAL WALL

    Institute of Scientific and Technical Information of China (English)

    黄浩; 温功碧

    2001-01-01

    A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall, the macromolecular transport happens surrounding the leaky cells. The arterial wall was divided into four layers: the endothelial layer, the subendothelial intima, the internal elastic lamina and the media for the convenience of research. The time-dependent concentration growth,the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed. The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained; and concentration distribution of three macromolecules ; LDL,HRP and Albumin, were calculated with numerical simulation method. The new theory predicts, the maximum and distribution areas of time dependent concentration with round shape endothelial cell are both larger than that with ellipse-shape endothelial cell. The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier time growth to the state when macromolecular transfer approaches steadily. These predictions of the new model are in agreement with the experimental observation for the growth and concentration distribution of LDL and Albumin.

  6. Force interacts with macromolecular structure in activation of TGF-β.

    Science.gov (United States)

    Dong, Xianchi; Zhao, Bo; Iacob, Roxana E; Zhu, Jianghai; Koksal, Adem C; Lu, Chafen; Engen, John R; Springer, Timothy A

    2017-02-02

    Integrins are adhesion receptors that transmit force across the plasma membrane between extracellular ligands and the actin cytoskeleton. In activation of the transforming growth factor-β1 precursor (pro-TGF-β1), integrins bind to the prodomain, apply force, and release the TGF-β growth factor. However, we know little about how integrins bind macromolecular ligands in the extracellular matrix or transmit force to them. Here we show how integrin αVβ6 binds pro-TGF-β1 in an orientation biologically relevant for force-dependent release of TGF-β from latency. The conformation of the prodomain integrin-binding motif differs in the presence and absence of integrin binding; differences extend well outside the interface and illustrate how integrins can remodel extracellular matrix. Remodelled residues outside the interface stabilize the integrin-bound conformation, adopt a conformation similar to earlier-evolving family members, and show how macromolecular components outside the binding motif contribute to integrin recognition. Regions in and outside the highly interdigitated interface stabilize a specific integrin/pro-TGF-β orientation that defines the pathway through these macromolecules which actin-cytoskeleton-generated tensile force takes when applied through the integrin β-subunit. Simulations of force-dependent activation of TGF-β demonstrate evolutionary specializations for force application through the TGF-β prodomain and through the β- and not α-subunit of the integrin.

  7. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION.

    Science.gov (United States)

    Bharat, Tanmay A M; Scheres, Sjors H W

    2016-11-01

    Electron cryo-tomography (cryo-ET) is a technique that is used to produce 3D pictures (tomograms) of complex objects such as asymmetric viruses, cellular organelles or whole cells from a series of tilted electron cryo-microscopy (cryo-EM) images. Averaging of macromolecular complexes found within tomograms is known as subtomogram averaging, and this technique allows structure determination of macromolecular complexes in situ. Subtomogram averaging is also gaining in popularity for the calculation of initial models for single-particle analysis. We describe herein a protocol for subtomogram averaging from cryo-ET data using the RELION software (http://www2.mrc-lmb.cam.ac.uk/relion). RELION was originally developed for cryo-EM single-particle analysis, and the subtomogram averaging approach presented in this protocol has been implemented in the existing workflow for single-particle analysis so that users may conveniently tap into existing capabilities of the RELION software. We describe how to calculate 3D models for the contrast transfer function (CTF) that describe the transfer of information in the imaging process, and we illustrate the results of classification and subtomogram averaging refinement for cryo-ET data of purified hepatitis B capsid particles and Saccharomyces cerevisiae 80S ribosomes. Using the steps described in this protocol, along with the troubleshooting and optimization guidelines, high-resolution maps can be obtained in which secondary structure elements are resolved subtomogram.

  8. Importance of gastrointestinal ingestion and macromolecular antigens in the vein for oral tolerance induction

    Science.gov (United States)

    Wakabayashi, Ayako; Kumagai, Yoshihiro; Watari, Eiji; Shimizu, Masumi; Utsuyama, Masanori; Hirokawa, Katsuiku; Takahashi, Hidemi

    2006-01-01

    Oral administration of a certain dose of antigen can generally induce immunological tolerance against the same antigen. In this study, we showed the temporal appearance of ovalbumin (OVA) antigens in both portal and peripheral blood of mice after the oral administration of OVA. Furthermore, we detected 45 000 MW OVA in mouse serum 30 min after the oral administration of OVA. Based on this observation, we examined whether the injection of intact OVA into the portal or peripheral vein induces immunological tolerance against OVA. We found that the intravenous injection of intact OVA did not induce immunological tolerance but rather enhanced OVA-specific antibody production in some subclasses, suggesting that OVA antigens via the gastrointestinal tract but not intact OVA may contribute to establish immunological tolerance against OVA. Therefore, we examined the effects of digesting intact OVA in the gastrointestinal tract on the induction of oral tolerance. When mice were orally administered or injected into various gastrointestinal organs, such as the stomach, duodenum, ileum, or colon and boosted with intact OVA, OVA-specific antibody production and delayed-type hypersensitivity (DTH) response were significantly enhanced in mice injected into the ileum or colon, compared with orally administered mice. These results suggest that although macromolecular OVA antigens are detected after oral administration of OVA in tolerant-mouse serum, injection of intact OVA cannot contribute to tolerance induction. Therefore, some modification of macromolecular OVA in the gastrointestinal tract and ingestion may be essential for oral tolerance induction. PMID:16796692

  9. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    Science.gov (United States)

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties.

  10. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher; Doshi, Pankaj; Lele, Ashish [CSIR-National Chemical Laboratory, Pune, Maharashtra (India); Thete, Sumeet [Purdue University, West Lafayette, Indiana (United States)

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particle tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)

  11. X-ray Diffraction of Cotton Treated with Neutralized Vegetable Oil-based Macromolecular Crosslinkers

    Directory of Open Access Journals (Sweden)

    James W. Rawlins, Ph.D.

    2010-03-01

    Full Text Available Maleinized soybean oil (MSO has been investigated as a flexible, macromolecular crosslinker for cotton fabrics. The ability of MSO to penetrate crystalline cellulose and crosslink aligned cellulose chains upon cure has been in question. This study compares the penetration capability of MSO to dimethyloldihydroxyethyleneurea (DMDHEU, which is the commercial standard for durable press finishing and is an efficient cellulose crosslinker. X-ray diffraction was employed to characterize changes in the crystalline morphology upon heating un-mercerized cotton fabrics treated with aqueous DMDHEU and soybean oil derivatives. Displacement of characteristic interplanar spacings and the genesis/elimination of diffraction intensities from quintessential planes were evidence of structural modification. The penetration of ammonia neutralized MSO (acid value 230.00 mg KOH/g into the microstructure of cotton cellulose is similar to that of DMDHEU in terms of expanding the interplanar spacings of characteristic planes. Moreover, polymorphism of cotton and mercerized cotton occurred upon treatment with aqueous solutions of MSO. These findings suggest that macromolecular reagents can diffuse into cellulose fibrils if they are sufficiently hydrated or enshrouded by more favored penetrants.

  12. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    Directory of Open Access Journals (Sweden)

    Iborra Francisco J

    2007-04-01

    Full Text Available Abstract Background The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. Results The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin scattered within domains rich in fast components (protein/RNA. Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. Conclusion I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

  13. X-ray Structure of Native Scorpion Toxin BmBKTx1 by Racemic Protein Crystallography Using Direct Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Kalyaneswar; Pentelute, Brad L.; Tereshko, Valentina; Kossiakoff, Anthony A.; Kent, Stephen B.H.; (UC)

    2009-04-08

    Racemic protein crystallography, enabled by total chemical synthesis, has allowed us to determine the X-ray structure of native scorpion toxin BmBKTx1; direct methods were used for phase determination. This is the first example of a protein racemate that crystallized in space group I41/a.

  14. Teaching with the Case Study Method to Promote Active Learning in a Small Molecule Crystallography Course for Chemistry Students

    Science.gov (United States)

    Campbell, Michael G.; Powers, Tamara M.; Zheng, Shao-Liang

    2016-01-01

    Implementing the case study method in a practical X-ray crystallography course designed for graduate or upper-level undergraduate chemistry students is described. Compared with a traditional lecture format, assigning small groups of students to examine literature case studies encourages more active engagement with the course material and…

  15. Double-flow focused liquid injector for efficient serial femtosecond crystallography

    Science.gov (United States)

    Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.; Beyerlein, Kenneth R.; Bushnell, David A.; Kovaleva, Elena G.; Heymann, Michael; Gumprecht, Lars; Kirian, Richard A.; Barty, Anton; Mariani, Valerio; Tolstikova, Aleksandra; Adriano, Luigi; Awel, Salah; Barthelmess, Miriam; Dörner, Katerina; Xavier, P. Lourdu; Yefanov, Oleksandr; James, Daniel R.; Nelson, Garrett; Wang, Dingjie; Calvey, George; Chen, Yujie; Schmidt, Andrea; Szczepek, Michael; Frielingsdorf, Stefan; Lenz, Oliver; Snell, Edward; Robinson, Philip J.; Šarler, Božidar; Belšak, Grega; Maček, Marjan; Wilde, Fabian; Aquila, Andrew; Boutet, Sébastien; Liang, Mengning; Hunter, Mark S.; Scheerer, Patrick; Lipscomb, John D.; Weierstall, Uwe; Kornberg, Roger D.; Spence, John C. H.; Pollack, Lois; Chapman, Henry N.; Bajt, Saša

    2017-01-01

    Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices. PMID:28300169

  16. Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng

    2011-06-01

    Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.

  17. Two-dimensional crystallization of integral membrane proteins for electron crystallography.

    Science.gov (United States)

    Stokes, David L; Rice, William J; Hu, Minghui; Kim, Changki; Ubarretxena-Belandia, Iban

    2010-01-01

    Although membrane proteins make up 30% of the proteome and are a common target for therapeutic drugs, determination of their atomic structure remains a technical challenge. Electron crystallography represents an alternative to the conventional methods of X-ray diffraction and NMR and relies on the formation of two-dimensional crystals. These crystals are produced by reconstituting purified, detergent-solubilized membrane proteins back into the native environment of a lipid bilayer. This chapter reviews methods for producing two-dimensional crystals and for screening them by negative stain electron microscopy. In addition, we show examples of the different morphologies that are commonly obtained and describe basic image analysis procedures that can be used to evaluate their promise for structure determination by cryoelectron microscopy.

  18. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  19. A neutron image plate quasi-Laue diffractometer for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Cipriani, F.; Castagna, J.C.; Wilkinson, C. [European Molecular Biology Laboratory, Grenoble (France)] [and others

    1994-12-31

    An instrument which is based on image plate technology has been constructed to perform cold neutron Laue crystallography on protein structures. The crystal is mounted at the center of a cylindrical detector which is 400mm long and has a circumference of 1000mm, with gadolinium oxide-containing image plates mounted on its exterior surface. Laue images registered on the plate are read out by rotating the drum and translating a laser read head parallel to the cylinder axis, giving a pixel size of 200{mu}m x 200{mu}m and a total read time of 5 minutes. Preliminary results indicate that it should be possible to obtain a complete data set from a protein crystal to atomic resolution in about two weeks.

  20. Adenovirus Structure as Revealed by X-Ray Crystallography, Electron Microscopy, and Difference Imaging

    Science.gov (United States)

    Stewart, Phoebe L.; Burnett, Roger M.

    1993-03-01

    The three-dimensional structure of human type 2 adenovirus was studied by combining X-ray crystallography and electron microscopy in a novel way. The 2.9 Å crystal structure of the major capsid protein, hexon, was positioned into a three-dimensional image reconstruction of the intact virus that was derived from cryo-electron micrographs. A three-dimensional difference map was generated by subtracting 240 copies of the crystallographic hexon from the density of the intact virus. This map revealed several minor structural proteins acting as “cement” to stabilize the assembly. The current state of structural knowledge concerning the location of the polypeptide components and the viral DNA is presented.

  1. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography

    Science.gov (United States)

    Yang, Ding-Shyue; Zewail, Ahmed H.

    2009-01-01

    Interfacial water has unique properties in various functions. Here, using 4-dimensional (4D), ultrafast electron crystallography with atomic-scale spatial and temporal resolution, we report study of structure and dynamics of interfacial water assembly on a hydrophobic surface. Structurally, vertically stacked bilayers on highly oriented pyrolytic graphite surface were determined to be ordered, contrary to the expectation that the strong hydrogen bonding of water on hydrophobic surfaces would dominate with suppressed interfacial order. Because of its terrace morphology, graphite plays the role of a template. The dynamics is also surprising. After the excitation of graphite by an ultrafast infrared pulse, the interfacial ice structure undergoes nonequilibrium “phase transformation” identified in the hydrogen-bond network through the observation of structural isosbestic point. We provide the time scales involved, the nature of ice-graphite structural dynamics, and relevance to properties related to confined water. PMID:19246378

  2. Automatic Weissenberg data collection system for time-resolved protein crystallography

    CERN Document Server

    Sakabe, N; Higashi, T; Igarashi, N; Suzuki, M; Watanabe, N; Sasaki, K

    2001-01-01

    A totally new type of fully automatic Weissenberg data-collection system called 'Galaxy' was developed and was installed at the Photon Factory. This automatic data collection system consists of a rotated-inclined focusing monochromator, a screenless Weissenberg type camera, an image reader, an eraser, a cassette transportation mechanism, a control console and a safety and high-speed computer network system linking a control console, data processing computers and data servers. The special characteristics of this system are a Weissenberg camera with a fully cylindrical cassette which can be rotated to exchange a frame, a maximum number of 36 images to be recorded in an IP cassette, and a very high speed IP reader with five reading heads. Since the frame exchange time is only a few seconds, this system is applicable for time-resolved protein crystallography at seconds or minutes of time-scale.

  3. Free RCK arrangement in Kch, a putative escherichia coli potassium channel, as suggested by electron crystallography.

    Science.gov (United States)

    Kuang, Qie; Purhonen, Pasi; Jegerschöld, Caroline; Koeck, Philip J B; Hebert, Hans

    2015-01-01

    The ligand-gated potassium channels are stimulated by various kinds of messengers. Previous studies showed that ligand-gated potassium channels containing RCK domains (the regulator of the conductance of potassium ion) form a dimer of tetramer structure through the RCK octameric gating ring in the presence of detergent. Here, we have analyzed the structure of Kch, a channel of this type from Escherichia coli, in a lipid environment using electron crystallography. By combining information from the 3D map of the transmembrane part of the protein and docking of an atomic model of a potassium channel, we conclude that the RCK domains face the solution and that an RCK octameric gating ring arrangement does not form under our crystallization condition. Our findings may be applied to other potassium channels that have an RCK gating ring arrangement.

  4. Structural study of piracetam polymorphs and cocrystals: crystallography redetermination and quantum mechanics calculations.

    Science.gov (United States)

    Tilborg, Anaëlle; Jacquemin, Denis; Norberg, Bernadette; Perpète, Eric; Michaux, Catherine; Wouters, Johan

    2011-12-01

    Pharmaceutical compounds are mostly developed as solid dosage forms containing a single-crystal form. It means that the selection of a particular crystal state for a given molecule is an important step for further clinical outlooks. In this context, piracetam, a pharmaceutical molecule known since the sixties for its nootropic properties, is considered in the present work. This molecule is analyzed using several experimental and theoretical approaches. First, the conformational space of the molecule has been systematically explored by performing a quantum mechanics scan of the two most relevant dihedral angles of the lateral chain. The predicted stable conformations have been compared to all the reported experimental geometries retrieved from the Cambridge Structural Database (CSD) covering polymorphs and cocrystals structures. In parallel, different batches of powders have been recrystallized. Under specific conditions, single crystals of polymorph (III) of piracetam have been obtained, an outcome confirmed by crystallographic analysis. © 2011 International Union of Crystallography. Printed in Singapore – all rights reserved.

  5. Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Keedy, Daniel A.; Kenner, Lillian R.; Warkentin, Matthew; Woldeyes, Rahel A.; Hopkins, Jesse B.; Thompson, Michael C.; Brewster, Aaron S.; Van Benschoten, Andrew H.; Baxter, Elizabeth L.; Uervirojnangkoorn, Monarin; McPhillips, Scott E.; Song, Jinhu; Alonso-Mori, Roberto; Holton, James M.; Weis, William I.; Brunger, Axel T.; Soltis, S. Michael; Lemke, Henrik; Gonzalez, Ana; Sauter, Nicholas K.; Cohen, Aina E.; van den Bedem, Henry; Thorne, Robert E.; Fraser, James S.

    2015-09-30

    Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.

  6. Affinity crystallography reveals the bioactive compounds of industrial juicing byproducts of Punica granatum for glycogen phosphorylase.

    Science.gov (United States)

    Stravodimos, George A; Kantsadi, Anastassia L; Apostolou, Anna; Kyriakis, Efthimios; Kafaski-Kanelli, Vassiliki-Nafsika; Solovou, Theodora G A; Gatzona, Pagona; Liggri, Panagiota Cv; Theofanous, Stavroula; Gorgogietas, Vyron A; Kissa, Apostolia; Psachoula, Chariklia; Chatzileontiadou, Demetra S M; Lemonakis, Angelos; Psarra, Anna-Maria G; Skamnaki, Vassiliki T; Haroutounian, Serkos; Leonidas, Demetres D

    2017-06-18

    Glycogen phosphorylase (GP) is a pharmaceutical target for the discovery of new antihyperglycaemic agents. Punica granatum is a well-known plant for its potent antioxidant and antimicrobial activities but so far has not been examined for antihyperglycaemic activity. To examine the inhibitory potency of eighteen polyphenolic extracts obtained from Punica granatum fruits and industrial juicing byproducts against GP and discover their most bioactive ingredients. Kinetic experiments were conducted to measure the IC50 values of the extracts while affinity crystallography was used to identify the most bioactive ingredient. The inhibitory effect of one of the polyphenolic extracts was also verified ex vivo, in HepG2 cells. All extracts exhibit significant in vitro inhibitory potency (IC50 values in the range of low μg/mL). Affinity crystallography revealed that the most bioactive ingredients of the extracts were chlorogenic and ellagic acids, found bound in the active and the inhibitor site of GP, respectively. While ellagic acid is an established GP inhibitor, the inhibition of chlorogenic acid is reported for the first time. Kinetic analysis indicated that chlorogenic acid is an inhibitor with Ki=2.5 x 10-3 M that acts synergistically with ellagic acid. Our study provides the first evidence for a potential antidiabetic usage of Punica granatum extracts as antidiabetic food supplements. Although, more in vivo studies have to be performed before these extracts reach the stage of antidiabetic food supplements our study provides a first positive step towards this process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Life in the fast lane for protein crystallization and X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D. (UAH); (NASA); (Georgia)

    2010-07-20

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain 'low-hanging fruit' protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area

  8. Life in the fast lane for protein crystallization and X-ray crystallography.

    Science.gov (United States)

    Pusey, Marc L; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, José A; Ng, Joseph D

    2005-07-01

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from

  9. Life in the fast lane for protein crystallization and X-ray crystallography

    Science.gov (United States)

    Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.

    2005-01-01

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from

  10. Accounting for partiality in serial crystallography using ray-tracing principles.

    Science.gov (United States)

    Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet

    2015-09-01

    Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  11. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    Science.gov (United States)

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  12. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    Science.gov (United States)

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-01-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes. PMID:27478033

  13. Errors in macromolecular synthesis after stress : a study of the possible protective role of the small heat shock proteins

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  14. An optimal strategy for X-ray data collection on macromolecular crystals with position-sensitive detectors

    NARCIS (Netherlands)

    Vicković, Ivan; Kalk, Kor H.; Drenth, Jan; Dijkstra, Bauke W.

    1994-01-01

    X-ray data collection on macromolecular crystals is preferably done with minimum exposure time and high completeness. A Fortran procedure - DCS - has been written in the environment of the MADNES program to predict the completeness of data before the start of actual data collection. In addition, the

  15. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    Science.gov (United States)

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  16. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    Science.gov (United States)

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-08-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes.

  17. Proceedings of a one-week course on exploiting anomalous scattering in macromolecular structure determination (EMBO'07)

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.S.; Shepard, W.; Dauter, Z.; Leslie, A.; Diederichs, K.; Evans, G.; Svensson, O.; Schneider, T.; Bricogne, G.; Dauter, Z.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Leslie, A.; Kabsch, W.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Read, R.; Panjikar, S.; Pannu, N.S.; Dauter, Z.; Weiss, M.S.; McSweeney, S

    2007-07-01

    This course, which was directed to young scientists, illustrated both theoretical and practical aspects of macromolecular crystal structure solution using synchrotron radiation. Some software dedicated to data collection, processing and analysis were presented. This document gathers only the slides of the presentations.

  18. Lipase-catalyzed Regioselective Synthesis of Vinyl Ester Derivatives of Thiamphenicol: Novel Thiamphenicol Monomers for Preparation of Macromolecular Antibiotic

    Institute of Scientific and Technical Information of China (English)

    Yu Zhen SHI; Zhi Chun CHEN; Na WANG; Qi WU; Xian Fu LIN

    2005-01-01

    Three polymerizable vinyl thiamphenicol esters with different acyl donor carbon chain length (C4, C6, C10) were regioselectivly synthesized by Lipozyme(R) (immobilized from mucor miehei) in acetone at 50 ℃ for 12 h to give 73%, 81%, 63% yield, respectively. The products were valuable monomers for preparation of macromolecular antibiotic.

  19. Force Spectroscopy of Individual Stimulus-Responsive Poly(ferrocenyldimethylsilane) Chains: Towards a Redox-Driven Macromolecular Motor

    NARCIS (Netherlands)

    Zou, Shan; Hempenius, Mark A.; Schönherr, Holger; Vancso, G. Julius

    2006-01-01

    Progress in the development of a redox-driven macromolecular motor and the characterization of its redox-mechanical cycle using electrochemical AFM-based single-molecule force spectroscopy (SMFS) is described. The elasticities of individual neutral and oxidized poly(ferrocenyldimethylsilane) (PFS) m

  20. Single-crystal X-ray diffraction and NMR crystallography of a 1:1 cocrystal of dithianon and pyrimethanil.

    Science.gov (United States)

    Pöppler, Ann Christin; Corlett, Emily K; Pearce, Harriet; Seymour, Mark P; Reid, Matthew; Montgomery, Mark G; Brown, Steven P

    2017-03-01

    A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile-4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C14H4N2O2S2·C12H13N2]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental (1)H and (13)C chemical shifts are determined from two-dimensional (1)H-(13)C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C-H connectivities and longer-range C...H proximities, whereas H...H proximities are identified in a (1)H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the (1)H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N-H...O and C-H...O hydrogen bonding, while changes of -2.7 and -1.5 ppm are due to ring current effects associated with C-H...π interactions. Even though there is a close intermolecular S...O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small.