WorldWideScience

Sample records for macrocyclic molecular systems

  1. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  2. Molecular Rearrangement of an Aza-Scorpiand Macrocycle Induced by pH: A Computational Study

    Directory of Open Access Journals (Sweden)

    Jesus Vicente De Julián-Ortiz

    2016-07-01

    Full Text Available Rearrangements and their control are a hot topic in supramolecular chemistry due to the possibilities that these phenomena open in the design of synthetic receptors and molecular machines. Macrocycle aza-scorpiands constitute an interesting system that can reorganize their spatial structure depending on pH variations or the presence of metal cations. In this study, the relative stabilities of these conformations were predicted computationally by semi-empirical and density functional theory approximations, and the reorganization from closed to open conformations was simulated by using the Monte Carlo multiple minimum method.

  3. Comprehensive computational design of ordered peptide macrocycles

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram K.; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fatima; Rettie, Stephan A.; Kim, David E.; Silva, Daniel A.; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David

    2017-12-14

    Mixed chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to-date, but there is currently no way to systematically search through the structural space spanned by such compounds for new drug candidates. Natural proteins do not provide a useful guide: peptide macrocycles lack regular secondary structures and hydrophobic cores and have different backbone torsional constraints. Hence the development of new peptide macrocycles has been approached by modifying natural products or using library selection methods; the former is limited by the small number of known structures, and the latter by the limited size and diversity accessible through library-based methods. To overcome these limitations, here we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L and D amino acids. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. We synthesize and characterize by NMR twelve 7-10 residue macrocycles, 9 of which have structures very close to the design models in solution. NMR structures of three 11-14 residue bicyclic designs are also very close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide based macrocycles unparalleled for other molecular systems, and vastly increase the available starting scaffolds for both rational drug design and library selection methods.

  4. Novel macrocyclic carriers for proton-coupled liquid membrane transport. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J.D.; Izatt, R.M.; Bradshaw, J.S.; Shirts, R.B.

    1996-08-24

    The objective of this research program is to elucidate the chemical principles which are responsible for the cation selectivity and permeability of liquid membranes containing macrocyclic carriers. Several new macrocyclic carriers were synthesized during the last three year period. In addition, new, more convenient synthetic routes were achieved for several nitrogen-containing bicyclic and tricyclic macrocycles. The cation binding properties of these macrocycles were investigated by potentiometric titration, calorimetric titration, solvent extraction and NMR techniques. In addition, hydrophobic macrocycles were incorporated into dual hollow fiber and other membrane systems to investigate their membrane performance, especially in the proton-coupled transport mode. A study of the effect of methoxyalkyl macrocycle substituents on metal ion transport was completed. A new calorimeter was constructed which made it possible to study the thermodynamics of macrocycle-cation binding to very high temperatures. Measurements of thermodynamic data for the interaction of crown ethers with alkali and alkaline earth cations were achieved to 473 K. Molecular modeling work was begun for the first time on this project and fundamental principles were identified and developed for the establishment of working models in the future.

  5. Quantum chemical DFT study of the interaction between molecular oxygen and FeN₄ complexes, and effect of the macrocyclic ligand.

    Science.gov (United States)

    Silva, Adilson Luís Pereira; de Almeida, Luciano Farias; Marques, Aldaléa Lopes Brandes; Costa, Hawbertt Rocha; Tanaka, Auro Atsushi; da Silva, Albérico Borges Ferreira; de Jesus Gomes Varela, Jaldyr

    2014-03-01

    Density functional theory (DFT) was used to examine the interaction between molecular oxygen (O₂) and macrocyclic iron complexes of the type FeN₄ during the formation of FeN₄--O₂ adducts. In order to understand how this interaction is affected by different macrocyclic ligands, O₂ was bonded to iron-tetraaza[14]annulene (FeTAA), iron-tetramethyl-tetraaza[14]annulene (FeTMTAA), iron-hexamethyl-tetraaza[14]annulene (FeHMTAA), iron dibenzotetraaza[14]annulene (FeDBTAA), and two iron-tetramethyl-dibenzotetraaza[14]annulene complexes (FeTMDBTAA1, FeTMDBTAA2). The ground state for FeN₄-O₂ adducts was the open-shell singlet. Analysis of the factors influencing the O₂ bonding process showed that different macrocyclic ligands yielded adducts with differences in O--O and Fe--O₂ bond lengths, total charge over the O₂ fragment, O--O vibrational frequency, and spin density in the O₂ fragment. A smaller energy gap between the α-HOMO of the FeN₄ complexes and the β-LUMO of O₂ increased the interaction between the complex and the O₂ molecule. The order of activity was FeDBTAA < FeTMDBTAA2 < FeTMDBTAA1 < FeTAA < FeTMTAA < FeHMTAA.

  6. Multicomponent Syntheses of Macrocycles

    Science.gov (United States)

    Masson, Géraldine; Neuville, Luc; Bughin, Carine; Fayol, Aude; Zhu, Jieping

    How to access efficiently the macrocyclic structure remained to be a challenging synthetic topic. Although many elegant approaches/reactions have been developed, construction of diverse collection of macrocycles is still elusive. This chapter summarized the recently emerged research area dealing with multicomponent synthesis of macrocycles, with particular emphasis on the approach named "multiple multicomponent reaction using two bifunctional building blocks".

  7. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    Potts, K.T.

    1991-04-01

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd 0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  8. Macrocyclic fragrance materials

    DEFF Research Database (Denmark)

    Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen

    2011-01-01

    A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a “group approach” is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds....../L and for macrocyclic lactones/lactides is 2.7 μg/L. The results of this screening-level aquatic ecological risk assessment indicate that at their current tonnage, often referred to as volumes of use, macrocyclic fragrance materials in Europe and North America, pose a negligible risk to aquatic biota; with no PEC...... for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required...

  9. Squaraine rotaxanes with boat conformation macrocycles.

    Science.gov (United States)

    Fu, Na; Baumes, Jeffrey M; Arunkumar, Easwaran; Noll, Bruce C; Smith, Bradley D

    2009-09-04

    Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C(4)O(2) core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye's brightness by a factor of 6. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes.

  10. Isotopic shifts in chemical exchange systems. 1. Large isotope effects in the complexation of Na+ isotopes by macrocyclic polyethers

    International Nuclear Information System (INIS)

    Knoechel, A.; Wilken, R.D.

    1981-01-01

    The complexation of 24 Na + and 22 Na + by 18 of the most widely used macrocyclic polyethers (crown ethers and monocyclic and bicyclic aminopolyethers) has been investigated in view of possible equilibrium isotope shifts. Solvated salts and polyether complexes were distributed differently into two phases and isotope ratios determined in both phases. Chloroform/water systems were shown to be particularly suitable to the investigations allowing favorable distribution for Na + and 13 of the 18 polyethers employed. With crown ethers 24 Na + enrichment varied from nonsignficant values (for large crown ethers) up to 3.1 +- 0.4% (18-crown-6). In the case of bicyclic aminopolyethers, ligands with cages of optimum size to accommodate Na + showed 24 Na + enrichment between O (nonsignificant) (2.2/sub B/2./sub B/) and 5.2 +- 1.8% (2.2.1). In contrast, for 2.2.2. and its derivatives, being too large for Na + , 22 Na + enrichment varying from O (nonsignificant) (2.2.2.p) up to 5.4 +- 0.5% (2.2.2.) has been observed. These values are remarkably high. They are explained by different bonding in solvate structure and polyether complex by using the theoretical approach of Bigeleisen

  11. Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.

    Science.gov (United States)

    Vlasceanu, Alexandru; Frandsen, Benjamin N; Skov, Anders B; Hansen, Anne Schou; Rasmussen, Mads Georg; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2017-10-06

    Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.

  12. Kinetic investigation of uranyl-uranophile complexation. 1. Macrocyclic kinetic effect and macrocyclic protection effect

    International Nuclear Information System (INIS)

    Tabushi, I.; Yoshizawa, A.

    1986-01-01

    Equilibria and rates of ligand-exchange reactions between uranyl tricarbonate and dithiocarbamates and between uranyl tris-(dithiocarbamates) and carbonate were studied under a variety of conditions. The dithiocarbamates used were acyclic diethyl-dithiocarbamate and macrocyclic tris(dithiocarbamate). The acyclic ligand showed a triphasic (successive three-step) equilibrium with three different equilibrium constants while the macrocyclic ligand showed a clear monophasic (one-step) equilibrium with a much larger stability constant for the dithiocarbamate-uranyl complex. The macrocyclic ligand showed the S/sub N/2-type ligand-exchange rate in the forward as well as reverse process, while the first step of the acyclic ligand-exchange reaction proceeded via the S/sub N/1-type mechanism. This kinetic macrocyclic effect on molecularity is interpreted as the result of a unique topological requirement of uranyl complexation. The macrocyclic ligand also exhibited a clear protection effect, leading to the large stability constant. 19 references, 10 figures, 2 tables

  13. Structural basis of nonribosomal peptide macrocyclization in fungi.

    Science.gov (United States)

    Zhang, Jinru; Liu, Nicholas; Cacho, Ralph A; Gong, Zhou; Liu, Zhu; Qin, Wenming; Tang, Chun; Tang, Yi; Zhou, Jiahai

    2016-12-01

    Nonribosomal peptide synthetases (NRPSs) in fungi biosynthesize important pharmaceutical compounds, including penicillin, cyclosporine and echinocandin. To understand the fungal strategy of forging the macrocyclic peptide linkage, we determined the crystal structures of the terminal condensation-like (C T ) domain and the holo thiolation (T)-C T complex of Penicillium aethiopicum TqaA. The first, to our knowledge, structural depiction of the terminal module in a fungal NRPS provides a molecular blueprint for generating new macrocyclic peptide natural products.

  14. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds.

    Science.gov (United States)

    Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R J D; Giacomini, Elisa; Hansen, Mette R; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F; Spring, David R

    2015-04-21

    Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.

  15. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    Science.gov (United States)

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A strategy for the diversity-oriented synthesis of macrocyclic scaffolds using multidimensional coupling

    DEFF Research Database (Denmark)

    Beckmann, Henning S G; Nie, Feilin; Hagerman, Caroline E

    2013-01-01

    the coupling reaction. We applied this step-efficient approach in a DOS of a library that consisted of 73 macrocyclic compounds based around 59 discrete scaffolds. The macrocycles prepared cover a broad range of different molecular shapes, as illustrated by principal moment-of-inertia analysis...

  17. Third Symposium on Macrocyclic Compounds

    International Nuclear Information System (INIS)

    1979-01-01

    At the Third Symposium on Macrocyclic Compounds there were sessions on facilitated transport, analytical applications, organic synthesis and reactions, phase transfer catalysis, and metal complexation. Abstracts of the individual presentations are included

  18. Fourth symposium on macrocyclic compounds

    International Nuclear Information System (INIS)

    Christensen, J.J.; Izatt, R.M.

    1980-01-01

    Both theoretical and experimental aspects of the properties and behavior of synthetic and naturally occurring macrocyclic compounds are covered in this symposium. This document contains abstracts of the papers

  19. Use of macrocycle- or hemisepulcrand-type poly(oxygen) compounds in nuclear hydrometallurgy. Study of the diluent effect: supra-molecular approach

    International Nuclear Information System (INIS)

    Bethmont, Valerie

    1997-01-01

    Liquid/liquid extraction has been used for many years to obtain high purity nuclear fuels (uranium salts and plutonium salts), notably with the Purex process which allows 99 per cent of uranium and plutonium contained by spent nuclear fuels to be recovered. This research thesis deals with the search for new and steadier extracting agents, and focuses on macro-cycle or hemisepulcrand type poly(oxygenated) compounds which have excellent properties in nuclear hydrometallurgy. The author thus first discusses the synthesis of oxygenated tripodands (bibliographical study and development of a catalytic method to synthesise ethers). Then, she reports the use of poly(oxygenated) compounds in liquid/liquid extraction, and the experimental study of the effect of the diluting agent by using a supramolecular approach [fr

  20. Synergetics of molecular systems

    CERN Document Server

    Lupichev, Lev N; Kadantsev, Vasiliy N

    2014-01-01

    Synergetics is the quantitative study of multicomponent systems that exhibit nonlinear dynamics and cooperativity. This book specifically considers basic models of the nonlinear dynamics of molecular systems and discusses relevant applications in biological physics and the polymer sciences.Emphasis is placed on specific solutions to the dynamical equations that correspond to the coherent formation of spatial-temporal structures, such as solitons, kinks and breathers, in particular. The emergence of these patterns in molecular structures provides a variety of information on their structural pro

  1. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    are macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  2. Schiff base oligopyrrolic macrocycles as ligands for lanthanides and actinides

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.; Melfi, Patricia J.; Tomat, Elisa; Callaway, Wyeth; Huggins, Michael T.; Gordon, Pamela L.; Webster Keogh, D.; Date, Richard W.; Bruce, Duncan W.; Donnio, Bertrand

    2006-01-01

    The coordination of f-block cations with Schiff base oligopyrrolic macrocycles is discussed. Analysis of the mesophase of a uranyl 2,5-diformylpyrrole-derived expanded porphyrin complex through temperature-dependent X-ray diffraction (XRD) methods has provided evidence for liquid-crystalline properties, and for molecular stacking into columns, arranged in a 2D hexagonal lattice. In separate studies, UV-vis spectral analysis has indicated the formation of three new f-block oligopyrrolic complexes. Addition of neptunyl ([NpO 2 ] 2+ ) or plutonyl ([PuO 2 ] 2+ ) chloride salts to the free base of a dipyrromethane-derived Schiff base macrocycle induces an immediate spectral change, namely the growth of a Q-like band at 630 nm. Such changes in the absorption spectra cause a dramatic color change from pale yellow to blue. It is postulated that oxidation of this macrocycle, stimulated by reduction of the metal center, leads to the observed spectral changes. An immediate visible and spectral change is also observed with the reaction of lutetium silylamide (Lu[N(Si(CH 3 ) 3 ) 2 ] 3 ), with a different, tetrapyrrole-containing Schiff base macrocycle. In this case, the formation of a complex with 1:1 metal-to-ligand binding stoichiometry is further supported by MALDI-TOF mass spectrometry

  3. On-Surface Synthesis and Characterization of Honeycombene Oligophenylene Macrocycles.

    Science.gov (United States)

    Chen, Min; Shang, Jian; Wang, Yongfeng; Wu, Kai; Kuttner, Julian; Hilt, Gerhard; Hieringer, Wolfgang; Gottfried, J Michael

    2017-01-24

    We report the on-surface formation and characterization of [30]-honeycombene, a cyclotriacontaphenylene, which consists of 30 phenyl rings (C 180 H 120 ) and has a diameter of 4.0 nm. This shape-persistent, conjugated, and unsubstituted hexagonal hydrocarbon macrocycle was obtained by solvent-free synthesis on a silver (111) single-crystal surface, making solubility-enhancing alkyl side groups unnecessary. Side products include strained macrocycles with square, pentagonal, and heptagonal shape. The molecules were characterized by scanning tunneling microscopy and density functional theory (DFT) calculations. On the Ag(111) surface, the macrocycles act as molecular quantum corrals and lead to the confinement of surface-state electrons inside the central cavity. The energy of the confined surface state correlates with the size of the macrocycle and is well described by a particle-in-the-box model. Tunneling spectroscopy suggests conjugation within the planar rings and reveals influences of self-assembly on the electronic structure. While the adsorbed molecules appear to be approximately planar, the free molecules have nonplanar conformation, according to DFT.

  4. Schiff base oligopyrrolic macrocycles as ligands for lanthanides and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Jonathan L. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States)]. E-mail: sessler@mail.utexas.edu; Melfi, Patricia J. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States); Tomat, Elisa [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States); Callaway, Wyeth [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States); Huggins, Michael T. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, 1 University Station A5300, University of Texas at Austin, Austin, TX 78712-0165 (United States); Gordon, Pamela L. [C-Chemistry and NMT-Nuclear Materials Technology Divisions, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Webster Keogh, D. [C-Chemistry and NMT-Nuclear Materials Technology Divisions, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Date, Richard W. [Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Bruce, Duncan W. [Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Department of Chemistry, University of York, Heslington, YORK YO10 5DD (United Kingdom); Donnio, Bertrand [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), Groupe des Materiaux Organiques (GMO), CNRS-ULP - UMR 7504, 23 rue du Loess BP 43, F-67034 Strasbourg Cedex 2 (France)

    2006-07-20

    The coordination of f-block cations with Schiff base oligopyrrolic macrocycles is discussed. Analysis of the mesophase of a uranyl 2,5-diformylpyrrole-derived expanded porphyrin complex through temperature-dependent X-ray diffraction (XRD) methods has provided evidence for liquid-crystalline properties, and for molecular stacking into columns, arranged in a 2D hexagonal lattice. In separate studies, UV-vis spectral analysis has indicated the formation of three new f-block oligopyrrolic complexes. Addition of neptunyl ([NpO{sub 2}]{sup 2+}) or plutonyl ([PuO{sub 2}]{sup 2+}) chloride salts to the free base of a dipyrromethane-derived Schiff base macrocycle induces an immediate spectral change, namely the growth of a Q-like band at 630 nm. Such changes in the absorption spectra cause a dramatic color change from pale yellow to blue. It is postulated that oxidation of this macrocycle, stimulated by reduction of the metal center, leads to the observed spectral changes. An immediate visible and spectral change is also observed with the reaction of lutetium silylamide (Lu[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 3}), with a different, tetrapyrrole-containing Schiff base macrocycle. In this case, the formation of a complex with 1:1 metal-to-ligand binding stoichiometry is further supported by MALDI-TOF mass spectrometry.

  5. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    Science.gov (United States)

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Clinical, biological, and skin histopathologic effects of ionic macrocyclic and nonionic linear gadolinium chelates in a rat model of nephrogenic systemic fibrosis.

    Science.gov (United States)

    Fretellier, Nathalie; Idée, Jean-Marc; Guerret, Sylviane; Hollenbeck, Claire; Hartmann, Daniel; González, Walter; Robic, Caroline; Port, Marc; Corot, Claire

    2011-02-01

    the purpose of this study was to compare the clinical, pathologic, and biochemical effects of repeated administrations of ionic macrocyclic or nonionic linear gadolinium chelates (GC) in rats with impaired renal function. rats submitted to subtotal nephrectomy were allocated to single injections of 2.5 mmol/kg of gadodiamide (nonionic linear chelate), nonformulated gadodiamide (ie, without the free ligand caldiamide), gadoterate (ionic macrocyclic chelate), or saline for 5 consecutive days. Blinded semi-quantitative histopathologic and immunohistochemical examinations of the skin were performed, as well as clinical, hematological, and biochemical follow-up. Rats were killed at day 11. Long-term (up to day 32) follow-up of rats was also performed in an auxiliary study. epidermal lesions (ulcerations and scabs) were found in 4 of the 10 rats treated with nonformulated gadodiamide. Two rats survived the study period. Inflammatory signs were observed in this group. No clinical, hematological, or biochemical signs were observed in the saline and gadoterate- or gadodiamide-treated groups. Plasma fibroblast growth factor-23 levels were significantly higher in the gadodiamide group than in the gadoterate group (day 11). Decreased plasma transferrin-bound iron levels were measured in the nonformulated gadodiamide group. Histologic lesions were in the range: nonformulated gadodiamide (superficial epidermal lesions, inflammation, necrosis, and increased cellularity in papillary dermis) > gadodiamide (small superficial epidermal lesions and signs of degradation of collagen fibers in the dermis) > gadoterate (very few pathologic lesions, similar to control rats). repeated administration of the nonionic linear GC gadodiamide to renally impaired rats is associated with more severe histologic lesions and higher FGF-23 plasma levels than the macrocyclic GC gadoterate.

  7. New Macrocyclic Diamide from Rauvolfia Yunnanensis Tsiang

    Institute of Scientific and Technical Information of China (English)

    GENG Chang-an; LIU Xi-kui

    2008-01-01

    A new macrocyclic diamide, 22-membered macrocyclic diamide, named cyciodicaprylamide(2), and five known compounds, bis(2-ethylhexyl) phthalate(1), ethyl 3,4,5-trimethoxybenzoate(3), ethyl 3,4,5-trimethoxycinnamate (4), (+)-syringaresinol(5), loliolide(6), were isolated from the roots of Rauvolfia yunnanensis Tsiang. Their structures were elucidated based on NMR, 2D NMR, and MS spectrum, respectively. They were obtained from it for the first time.

  8. Comprehensive computational design of ordered peptide macrocycles

    Science.gov (United States)

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fátima; Rettie, Stephen A.; Kim, David E.; Silva, Daniel-Adriano; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David

    2018-01-01

    Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods. PMID:29242347

  9. Macrocyclic extractants for separating Am(III)/Ln(III)

    International Nuclear Information System (INIS)

    Ludwig, R.; Nguyen, T.K.D.; Kunogi, K.; Tachimori, Shoichi

    1999-01-01

    The extraction of trivalent f-elements by calix(n)arene-type macrocyclic ligands increases in the order n=4, 8, 6 corresponding to the balance between cavity size, molecular flexibility, and number of donor atoms. Introduction of mixed functionalities into calix(6)arenes, e.g. carboxylic acid and amide groups, results in better extractability of actinides compared with lanthanides. For calix(4)arenes, such a different extractability could not be observed. Furthermore, the effects of solvent composition with respect to a modifier and of the aqueous phase composition were investigated. (author)

  10. Phosphorus-containing macrocyclic compounds: synthesis and properties

    International Nuclear Information System (INIS)

    Knyazeva, I R; Burilov, Alexander R; Pudovik, Michael A; Habicher, Wolf D

    2013-01-01

    Main trends in the development of methods for the synthesis of phosphorus-containing macrocyclic compounds in the past 15 years are considered. Emphasis is given to reactions producing macrocyclic structures with the participation of a phosphorus atom and other functional groups involved in organophosphorus molecules and to modifications of macrocycles by phosphorus compounds in different valence states. Possibilities of the practical application of phosphorus-containing macrocyclic compounds in difference areas of science and engineering are discussed. The bibliography includes 205 references.

  11. Technetium complexation by macrocyclic compounds

    International Nuclear Information System (INIS)

    Li Fan Yu.

    1983-01-01

    Research in nuclear medicine are directed towards the labelling of biological molecules, however, sup(99m)Tc does not show sufficient affinity for these molecules. The aim of this study was to evaluate the ability of macrocyclic compounds to bind strongly technetium in order to be used as complexation intermediate. The reducing agents used were a stannous complex and sodium dithionite. Cryptates and polyesters are not good complexing agents. They form two complexes: a 2:1 sandwich complex or 3:2 and a 1:1 complex. Cyclams are good complexing agents for technetium their complexations strength was determined by competition with pyrophosphate, gluconate and DTPA. Using the method of ligand exchange, the oxidation state of technetium in the Tc-cyclam complex was IV or V. They are 1:1 cationic complexes, the complex charge is +1. The biodistribution in rats of labelling solutions containing (cyclam 14 ane N 4 ) C 12 H 25 shows a good urinary excretion without intoxication risks [fr

  12. MacroEvoLution: A New Method for the Rapid Generation of Novel Scaffold-Diverse Macrocyclic Libraries.

    Science.gov (United States)

    Saupe, Jörn; Kunz, Oliver; Haustedt, Lars Ole; Jakupovic, Sven; Mang, Christian

    2017-09-04

    Macrocycles are a structural class bearing great promise for future challenges in medicinal chemistry. Nevertheless, there are few flexible approaches for the rapid generation of structurally diverse macrocyclic compound collections. Here, an efficient method for the generation of novel macrocyclic peptide-based scaffolds is reported. The process, named here as "MacroEvoLution", is based on a cyclization screening approach that gives reliable access to novel macrocyclic architectures. Classification of building blocks into specific pools ensures that scaffolds with orthogonally addressable functionalities are generated, which can easily be used for the generation of structurally diverse compound libraries. The method grants rapid access to novel scaffolds with scalable synthesis (multi gram scale) and the introduction of further diversity at a late stage. Despite being developed for peptidic systems, the approach can easily be extended for the synthesis of systems with a decreased peptidic character. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. An antilock molecular braking system.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.

  14. A toxicological and dermatological assessment of macrocyclic lactone and lactide derivatives when used as fragrance ingredients

    DEFF Research Database (Denmark)

    Belsito, D.; Bickers, D.; Bruze, M.

    2011-01-01

    The Macrocyclic Lactone and Lactide derivative (ML) group of fragrance ingredients was critically evaluated for safety following a complete literature search. For high end users, calculated maximum dermal exposures vary from 0.47% to 11.15%; systemic exposures vary from 0.0008 to 0.25 mg/kg/day. ......The Macrocyclic Lactone and Lactide derivative (ML) group of fragrance ingredients was critically evaluated for safety following a complete literature search. For high end users, calculated maximum dermal exposures vary from 0.47% to 11.15%; systemic exposures vary from 0.0008 to 0.25 mg...

  15. Exploring the Binding of Barbital to a Synthetic Macrocyclic Receptor; a Charge Density Study

    DEFF Research Database (Denmark)

    Du, Jonathan J.; Hanrahan, Jane Rouse; Solomon, V. Raja

    2018-01-01

    Experimental charge density distribution studies, complemented by quantum mechanical theoretical calculations, of a host-guest system comprised of a macrocycle (1) and barbital (2) in a 1:1 ratio (3) have been carried out via high resolution single crystal X-ray diffraction. The data was modelled...... molecule. Visual comparison of the conformations of the macrocyclic ring shows the rotation by 180° of an amide bond attributed to competitive hydrogen bonding. It was found the intraannular and extraannular molecules inside were orientated to maximise the number of hydrogen bonds present...

  16. Rapid synthesis of macrocycles from diol precursors

    DEFF Research Database (Denmark)

    Wingstrand, Magnus; Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2009-01-01

    A method for the formation of synthetic macrocycles with different ring sizes from diols is presented. Reacting a simple diol precursor with electrophilic reagents leads to a cyclic carbonate, sulfite or phosphate in a single step in 25-60% yield. Converting the cyclization precursor to a bis-ele...

  17. Concise Synthesis of Macrocycles by Multicomponent Reactions

    NARCIS (Netherlands)

    Abdelraheem, Eman M. M.; Khaksar, Samad; Dömling, Alexander

    2018-01-01

    A short reaction pathway was devised to synthesize a library of artificial 18-27-membered macrocycles. The five-step reaction sequence involves ring opening of a cyclic anhydride with a diamine, esterification, coupling with an amino acid isocyanide, saponification, and, finally, macro-ring closure

  18. Information theory of molecular systems

    CERN Document Server

    Nalewajski, Roman F

    2006-01-01

    As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information ""distance"" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory

  19. Macrocyclic complexes of radionuclides in nuclear medicine

    International Nuclear Information System (INIS)

    Majkowska, A.; Bilewicz, A.

    2008-01-01

    The use of radiometal-labeled small complexes and biomolecules as diagnostic and therapeutic agents is a relatively new area of medical research. Radiopharmaceuticals are radiolabeled molecules designed to deliver ionizing radiation doses to specific disease sites. Between the targeting biomolecule and a radionuclide a bifunctional ligand is inserted, one end of which is covalently attached to the targeting molecule either directly or through a linker whereas the other strongly coordinates a metallic radionuclide. Selection of a bifunctional ligand is largely determined by the nature and oxidation state of a metal ion. The metal chelate can significantly affect the tumor uptake and biodistribution of radiopharmaceuticals based on small biomolecules. This is because in many cases the metal chelate contributes greatly to the overall size and lipophilicity of the radiopharmaceutical. Therefore, the design and selection of the ligand is very important for the development of a clinically useful therapeutic agent. The requirement for high thermodynamic and kinetic stability of the metal complex is often achieved through the use of macrocyclic ligands with a functionalized arm for covalent bonding to the biomolecule. In this review synthesis of bifunctional macrocyclic ligands and properties of radionuclide macrocyclic complexes used in nuclear medicine are presented. We describe results in two areas: substituted macrocyclic aza ligands for chelation of hard metal cations, and macrocycles containing sulphur for complexation of soft metal cations. Special attention was paid to stability of the complexes as well as to their lipophilicity, which affect biological properties of the formed radiopharmaceuticals. We also include a forecast of the near-term opportunities that are likely to determine practice in the next few years. (authors)

  20. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds† †Electronic supplementary information (ESI) available: Experimental procedures, characterization data and details of the computational analyses. See DOI: 10.1039/c5ob00371g Click here for additional data file.

    Science.gov (United States)

    Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R. J. D.; Giacomini, Elisa; Hansen, Mette R.; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F.

    2015-01-01

    Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity. PMID:25778821

  1. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  2. Dimetal Complexes of a Bibrachial 2+2 Thiolate-based Macrocycle

    DEFF Research Database (Denmark)

    Lennartson, Anders; McKee, Vickie; Nelson, Jane

    2012-01-01

    Protocols for accessing the [2+3] and [2+2] tren + thiophenolate-based cryptands and macrocycles, respectively, have been devised; however, a propensity towards incomplete crypt formation is clear: Cd(II)2, Mn(II)2, Ni(II)2 and Pd(II)2 complexes of the [2+2] bibrachial systems in which one arm of...

  3. Convergent Synthesis of Rigid Macrocycles Containing One and Two Tetrathiafulvalene Units

    DEFF Research Database (Denmark)

    Simonsen, Klaus B.; Thorup, Niels; Becher, Jan

    1997-01-01

    The synthesis of rigid tetrathiafulvalenophanes containing one or two tetrathiafulvalene units is presented, together with a stepwise convergent synthesis of macrocyclic bis-tetrathiafulvalenes via several open dimeric tetrathiafulvalenes. These systems were investigated by cyclic voltammetry...... and by X-ray crystallography....

  4. Total synthesis of complestatin: development of a Pd(0)-mediated indole annulation for macrocyclization.

    Science.gov (United States)

    Shimamura, Hiroyuki; Breazzano, Steven P; Garfunkle, Joie; Kimball, F Scott; Trzupek, John D; Boger, Dale L

    2010-06-09

    Full details of the initial development and continued examination of a powerful intramolecular palladium(0)-mediated indole annulation for macrocyclization closure of the strained 16-membered biaryl ring system found in complestatin (1, chloropeptin II) and the definition of factors impacting its intrinsic atropodiastereoselectivity are described. Its examination and use in an alternative, second-generation total synthesis of complestatin are detailed in which the order of the macrocyclization reactions was reversed from our first-generation total synthesis. In this approach and with the ABCD biaryl ether ring system in place, the key Larock cyclization was conducted with substrate 36 (containing four phenols, five secondary amides, one carbamate, and four labile aryl chlorides) and provided the product 37 (56%) exclusively as a single atropisomer (>20:1, detection limits) possessing the natural (R)-configuration. In this instance, the complexity of the substrate and the reverse macrocyclization order did not diminish the atropodiastereoselectivity; rather, it provided an improvement over the 4:1 selectivity that was observed with the analogous substrate used to provide the isolated DEF ring system in our first-generation approach. Just as significant, the atroposelectivity represents a complete reversal of the diasteroselectivity observed with analogous macrocyclizations conducted using a Suzuki biaryl coupling.

  5. Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.

    Science.gov (United States)

    Sowden, Rebecca J; Trotter, Katherine D; Dunbar, Lynsey; Craig, Gemma; Erdemli, Omer; Spickett, Corinne M; Reglinski, John

    2013-02-01

    A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.

  6. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    Directory of Open Access Journals (Sweden)

    Margherita De Rosa

    2018-04-01

    Full Text Available In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs, we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under “on-water” conditions with a significant selectivity toward the reactants. Under “on-water conditions” the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of

  7. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    Science.gov (United States)

    De Rosa, Margherita; La Manna, Pellegrino; Talotta, Carmen; Soriente, Annunziata; Gaeta, Carmine; Neri, Placido

    2018-04-01

    In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs), we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under "on-water" conditions with a significant selectivity toward the reactants. Under "on-water conditions" the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of common organic reactions.

  8. Ring strain and total syntheses of modified macrocycles of the isoplagiochin type

    Directory of Open Access Journals (Sweden)

    Andreas Speicher

    2009-12-01

    Full Text Available Macrocycles of the bisbibenzyl-type are natural products that are found exclusively in bryophytes (liverworts. The molecular framework of the subtype “isoplagiochin” is of substantial structural interest because of the chirality of the entire molecule, which arises from two biaryl axes in combination with two helical two-carbon units in a cyclic arrangement. From a structural as well as a synthetic point of view we report on the total synthesis of compounds which possess more rigid two-carbon biaryl bridges like stilbene (E or Z or even tolane moieties which were introduced starting with a Sonogashira protocol. The McMurry method proved to be a powerful tool for the cyclization to these considerably ring-strained macrocycles.

  9. Two-Step Macrocycle Synthesis by Classical Ugi Reaction

    NARCIS (Netherlands)

    Abdelraheem, Eman M M; Khaksar, Samad; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Shaabani, Shabnam; Dömling, Alexander

    2018-01-01

    The direct nonpeptidic macrocycle synthesis of α-isocyano-ω-amines via the classical Ugi four-component reaction (U-4CR) is introduced. Herein an efficient and flexible two-step procedure to complex macrocycles is reported. In the first step, the reaction between unprotected diamines and

  10. Selective Extraction of Perrhenate and Pertechnetate by New Macrocyclic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Paviet-Hartmann, Patricia; Horkley, Jared; Wolfrom, Earle [Idaho State University/Idaho National Laboratory, 1776 Science Center Drive, Idaho Falls, ID 83402 (United States); Pak, Joshua [Idaho State University, 921 S. 8th Avenue, Pocatello, ID 83209 (United States)

    2008-07-01

    The long half-life of technetium-99 and its ability to form an anionic species makes it a major concern when considering long-term disposal of high-level radioactive waste. Furthermore, as its most stable species in the environment, the pertechnetate ion, TcO{sub 4}{sup -} is highly mobile and is considered as a long-term hazard in nuclear waste disposal. There is a need for the development of new extractant systems, such as systems based on crown ethers that may serve to selectively extract and separate this long lived radionuclide from different streams for potential industrial application. In this paper, we are reporting the design and synthesis of new macrocyclic compounds to selectively extract technetium and rhenium from complex mixtures. Preliminary tests performed for the selective extraction of pertechnetate and perrhenate are presented. (authors)

  11. Selective Extraction of Perrhenate and Pertechnetate by New Macrocyclic Compounds

    International Nuclear Information System (INIS)

    Paviet-Hartmann, Patricia; Horkley, Jared; Wolfrom, Earle; Pak, Joshua

    2008-01-01

    The long half-life of technetium-99 and its ability to form an anionic species makes it a major concern when considering long-term disposal of high-level radioactive waste. Furthermore, as its most stable species in the environment, the pertechnetate ion, TcO 4 - is highly mobile and is considered as a long-term hazard in nuclear waste disposal. There is a need for the development of new extractant systems, such as systems based on crown ethers that may serve to selectively extract and separate this long lived radionuclide from different streams for potential industrial application. In this paper, we are reporting the design and synthesis of new macrocyclic compounds to selectively extract technetium and rhenium from complex mixtures. Preliminary tests performed for the selective extraction of pertechnetate and perrhenate are presented. (authors)

  12. Design, Properties and Recent Application of Macrocycles in Medicinal Chemistry.

    Science.gov (United States)

    Ermert, Philipp

    2017-10-25

    Macrocyclic compounds have recently received increasing attention in drug discovery as these compounds offer the potential to modulate difficult targets and to access novel chemotypes. Approaches towards libraries of macrocyclic compounds based on modular organic synthesis and applications of these technology platforms to find and improve biologically active compounds are introduced in this minireview. Alternatively, lead compounds may be obtained by truncation and modification of macrocyclic natural products. Selected medicinal chemistry programs are discussed, illustrating a macrocyclization approach toward ligands with improved properties. The design of such ligands is often informed by X-ray crystal structures of protein-ligand complexes. Efforts to understand cellular permeability and oral bioavailability of cyclic peptides and non-peptidic macrocycles are summarized.

  13. Synthesis of New Macrocyclic Polyamides as Antimicrobial Agent Candidates

    Directory of Open Access Journals (Sweden)

    Osama I. Abd El-Salam

    2012-12-01

    Full Text Available A series of macrocyclic imides and Schiff-bases have been prepared via the cyclocondensation of pyridine-2,6-dicarbonyl dichloride (1 with L-ornithine methyl ester to give the corresponding macrocyclic bisester 2. Treatment of 2 with hydrazine hydrate gave macrocyclic bisacid hydrazide 3, which was used as starting material. Condensation of bishydrazide 3 with diacid anhydrides or aromatic aldehydes in refluxing acetic acid or ethanol gave the corresponding macrocyclic bisimides 4, 5a,b and macrocyclic bis- hydrazones 6a–j, respectively. The structure assignments of the new compounds were based on chemical and spectroscopic evidence. The antimicrobial screening showed that many of these newly synthesized compounds have good antimicrobial activities, comparable to ampicillin and ketaconazole used as reference drugs.

  14. A Macrocyclic Peptide that Serves as a Cocrystallization Ligand and Inhibits the Function of a MATE Family Transporter

    Directory of Open Access Journals (Sweden)

    Hiroaki Suga

    2013-08-01

    Full Text Available The random non-standard peptide integrated discovery (RaPID system has proven to be a powerful approach to discover de novo natural product-like macrocyclic peptides that inhibit protein functions. We have recently reported three macrocyclic peptides that bind to Pyrococcus furiosus multidrug and toxic compound extrusion (PfMATE transporter and inhibit the transport function. Moreover, these macrocyclic peptides were successfully employed as cocrystallization ligands of selenomethionine-labeled PfMATE. In this report, we disclose the details of the RaPID selection strategy that led to the identification of these three macrocyclic peptides as well as a fourth macrocyclic peptide, MaD8, which is exclusively discussed in this article. MaD8 was found to bind within the cleft of PfMATE’s extracellular side and blocked the path of organic small molecules being extruded. The results of an ethidium bromide efflux assay confirmed the efflux inhibitory activity of MaD8, whose behavior was similar to that of previously reported MaD5.

  15. Molecular motor assembly of a biomimetic system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Active biological molecules and functional structures can be fabricated into a bio-mimetic system by using molecular assembly method. Such materials can be used for the drug delivery, disease diagnosis and therapy, and new nanodevice construction.

  16. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    Science.gov (United States)

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical

  17. Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles

    Science.gov (United States)

    Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu

    2017-06-01

    Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.

  18. Synthesis of several tetraaza macrocyclic amine ligands and the biodistribution of their Tc-complexes

    International Nuclear Information System (INIS)

    Ketring, A.R.

    1982-01-01

    Several macrocyclic tetraaza ligands were synthesized and their /sup 99m/Tc-complexes prepared. The biological distribution of these complexes was examined to determine their possible utility as radiodiagnostic agents. The simplest of the macrocyclic tetraaza ligands studied, cyclam, forms a very stable cationic complex with Tc when pertechnetate is reduced with stannous ion in an aqueous solution of the ligand. When injected intravenously into mice Tc-cyclam was excreted predominantly by the urinary system. Derivatives of cyclam which were synthesized contained aromatic or aliphatic substituents and formed more lipophilic complexes with Tc. The complexes were formed in high yield as determined by paper chromatography, thin layer chromatography, electrophoresis and/or high performance liquid chromatography. Relative lipophilicities were determined for the complexes by octanol-to-water extractions. Animal studies using mice indicated there was an inverse relationship between the octanol-to-water extraction ratio and urinary excretion. Two of the complexes having relatively high octanol-to-water extraction ratios were significantly excreted by the hepatobiliary system with localization in the gall bladder. The complex having the highest octanol-to-water ratio was not excreted significantly by the hepatobiliary system, but cleared very slowly from the blood and localized in the liver, lungs, spleen and to some extent the heart. Derivatization of cyclam can be performed without greatly reducing its ability to complex Tc but greatly influencing the biological distribution of its Tc complex. This indicates that there is a potential for preparing radiodiagnostic agents using macrocyclic tetraaza ligands

  19. Synthesis of novel symmetrical macrocycle via oxidative homocoupling of bisalkyne

    Energy Technology Data Exchange (ETDEWEB)

    Kamalulazmy, Nurulain; Hassan, Nurul Izzaty [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    A novel symmetrical macrocycle has been synthesised via oxidative homocoupling of bisalkyne, diprop-2-ynyl pyridine-2,6-dicarboxylate mediated by copper (I) iodide (CuI) and 4-dimethylaminopyridine (DMAP). The precursor compound was synthesised from 2,6-pyridine dicarbonyl dichloride and propargyl alcohol in the presence of triethylamine. The reaction mixture was stirred overnight and further purified via column chromatograpy with 76% yield. Single crystal for X-ray study was obtained by recrystallization from acetone. Subsequently, a symmetrical macrocycle was synthesised from oxidative homocoupling of precursor compound in open atmosphere. The crude product was purified by column chromatography to furnish macrocycle compound with 5% yield. Both compounds were characterised by IR, {sup 1}H and {sup 13}C NMR and mass spectral techniques. The unusual conformation of the bisalkyne and twisted conformation of designed macrocycle has influence the percentage yield. This has been studied thoroughly by X-ray crystallography and electronic structure calculations.

  20. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    Science.gov (United States)

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D.

    2016-01-01

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides whose members target proteases with potent reversible inhibition. The product structure is constructed by three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here, we describe the detailed structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases, MdnC and MdnB, interact with a conserved α-helix of the precursor peptide using a novel precursor peptide recognition mechanism. The results provide insight into the unique protein/protein interactions key to the chemistry, suggest an origin of the natural combinatorial synthesis of microviridin peptides and provide a framework for future engineering efforts to generate designed compounds. PMID:27669417

  1. Structural basis for precursor protein-directed ribosomal peptide macrocyclization.

    Science.gov (United States)

    Li, Kunhua; Condurso, Heather L; Li, Gengnan; Ding, Yousong; Bruner, Steven D

    2016-11-01

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight into the unique protein-protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.

  2. Macrocyclic 2,7-Anthrylene Oligomers.

    Science.gov (United States)

    Yamamoto, Yuta; Wakamatsu, Kan; Iwanaga, Tetsuo; Sato, Hiroyasu; Toyota, Shinji

    2016-05-06

    A macrocyclic compound consisting of six 2,7-anthrylene units was successfully synthesized by Ni-mediated coupling of the corresponding dibromo precursor as a novel π-conjugated compound. This compound was sufficiently stable and soluble in organic solvents due to the presence of mesityl groups. X-ray analysis showed that the molecule had a nonplanar and hexagonal wheel-shaped framework of approximately S6 symmetry. The dynamic process between two S6 structures was observed by using the dynamic NMR technique, the barrier being 58 kJ mol(-1) . The spectroscopic properties of the hexamer were compared with those of analogous linear oligomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reaction dynamics in polyatomic molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  4. Selective CO2 gas adsorption in the narrow crystalline cavities of flexible peptide metallo-macrocycles.

    Science.gov (United States)

    Miyake, Ryosuke; Kuwata, Chika; Masumoto, Yui

    2015-02-21

    Crystalline peptide Ni(ii)-macrocycles (BF4(-) salt) exhibited moderate CO2 gas adsorption (ca. 6-7 CO2 molecules per macrocycle) into very narrow cavities (narrowest part gas in preference to CH4 and N2 gases.

  5. Biosynthesis of macrocyclic diterpenoids in Euphorbia lathyris L

    DEFF Research Database (Denmark)

    Luo, Dan

    documents the investigation of the biosynthetic pathways of macrocyclic diterpenoids known as Euphorbia factors in Euphorbia lathyris L. (caper spurge). These macrocyclic diterpenoids are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis...

  6. Scalable Molecular Dynamics for Large Biomolecular Systems

    Directory of Open Access Journals (Sweden)

    Robert K. Brunner

    2000-01-01

    Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.

  7. The coordination chemistry of macrocyclic ligands II

    International Nuclear Information System (INIS)

    Klimes, J.; Knoechel, A.; Rudolph, G.

    1977-01-01

    Compounds of UO 2 (NO 3 ) 2 .6H 2 0 or Th(NO 3 ) 4 .5H 2 0 with five selected crown ethers were prepared according to the method described in Knoeckel et al., Inorg.Nucl.Chem.Lett.; 11:787 (1975). The products were characterized by chemical analysis, NMR, IR and Raman spectroscopy. The results are analyzed and discussed. It is shown that the NO 3 groups remain free after combination, and the H 2 0 groups form the bonds to the polyether. It is concluded that the polyether molecule is attached to two units of UO 2 (NO 3 ) 2 .2H 2 0 (or Th(NO 3 ) 4 .3H 2 0), one each side of the polyether. This would be contrary to the assumption in previous publications, that the U0 2 2+ and Th 4+ ions were coordinated inside the macrocyclic ligand structure. The present hypothesis, however, agrees with a recently published x-ray structure for the uranium compound. In view of the new proposed structure it is suggested that the compounds should be regarded as adducts rather than complexes. (U.K.)

  8. Design and synthesis of binucleating macrocyclic clefts derived from Schiff-base calixpyrroles.

    Science.gov (United States)

    Givaja, Gonzalo; Volpe, Manuel; Leeland, James W; Edwards, Michael A; Young, Thomas K; Darby, S Barnie; Reid, Stuart D; Blake, Alexander J; Wilson, Claire; Wolowska, Joanna; McInnes, Eric J L; Schröder, Martin; Love, Jason B

    2007-01-01

    The syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).2 EtOH and H(4)L(6).H2O confirm that [2+2] cyclisation has occurred, with either EtOH or H2O hydrogen-bonded within the macrocyclic cleft. A series of complexation reactions generate the dipalladium [Pd2(L)] (L=L(1) to L(5)), dinickel [Ni2(L(1))] and dicopper [Cu2(L)] (L=L(1) to L(3)) complexes. All of these complexes have been structurally characterised in the solid state and are found to adopt wedged structures that are enforced by the rigidity of the aryl backbone to give a cleft reminiscent of the structures of Pacman porphyrins. The binuclear nickel complexes [Ni2(mu-OMe)2Cl2(HOMe)2(H(4)L(1))] and [Ni2(mu-OH)2Cl2(HOMe)(H(4)L(5))] have also been prepared, although in these cases the solid-state structures show that the macrocyclic ligand remains protonated at the pyrrolic nitrogen atoms, and the Ni(II) cations are therefore co-ordinated by the imine nitrogen atoms only to give an open conformation for the complex. The dicopper complex [Cu2(L(3))] was crystallised in the presence of pyridine to form the adduct [Cu2(py)(L(3))], in which, in the solid state, the pyridine ligand is bound within the binuclear molecular cleft. Reaction between H(4)L(1) and [Mn(thf){N(SiMe(3))2}2] results in clean formation of the dimanganese complex [Mn2(L(1))], which, upon crystallisation, formed the mixed-valent complex [Mn2(mu-OH)(L(1))] in which the hydroxo ligand bridges the metal centres within the molecular cleft.

  9. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...... developments in the synthesis of macrocycles, with an emphasis on chemistry developed to generate libraries of putative biologically active compounds....

  10. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    Science.gov (United States)

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  11. High sensitivity optical molecular imaging system

    Science.gov (United States)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  12. Highly selective and sensitive macrocycle-based dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water.

    Science.gov (United States)

    Rhaman, Md Mhahabubur; Hasan, Mohammad H; Alamgir, Azmain; Xu, Lihua; Powell, Douglas R; Wong, Bryan M; Tandon, Ritesh; Hossain, Md Alamgir

    2018-01-10

    The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.

  13. Derivatized Pentadentate Macrocyclic Ligands and Their Transition Metal Complexes

    Directory of Open Access Journals (Sweden)

    Muhammad S. Khan

    2002-06-01

    Full Text Available The reaction of the pendant hydroxyethyl group in the planar pentadentate macrocyclic ligand,1,11-bis(2’-hydroxyethyl-4,8;12,16;17,21-trinitrilo-1,2,10,11-tetraazacyclohenicosa- 2,4,6,9,12,14,18,20-octaene (L2, derived from the condensation of 2,6-pyridinedialdehyde with 6,6’-bis(2’ hydroxyethylhydrazino -2,2’-bipyridine (L1, has been investigated. Esterification reactions are facile, and the reaction of the hydroxyethyl-substituted macrocycle with thionyl chloride yields a chloroethyl derivative. Metal complexes of the new derivatized macrocyclic ligands L3-6having general formula ML3-6X2.nH2O (M = Mn, Fe, Co, Ni, Cu, Zn are readily prepared.

  14. Mono- and multilayers of molecular spoked carbazole wheels on graphite.

    Science.gov (United States)

    Jester, Stefan-S; Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd

    2014-01-01

    Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes - depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.

  15. Mono- and multilayers of molecular spoked carbazole wheels on graphite

    Directory of Open Access Journals (Sweden)

    Stefan-S. Jester

    2014-11-01

    Full Text Available Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system and its synthetic precursor are investigated by scanning tunneling microscopy (STM at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs, where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.

  16. Design and synthesis of chalcone-based macrocyclic polyethers

    Directory of Open Access Journals (Sweden)

    Subrata Jana

    2015-12-01

    Full Text Available A series of chalcone-based macrocyclic ethers have been synthesized. These macrocyclic ethers contain polyether as well as extended conjugation to the benzene ring to function as fluorescent sensor for cations. The modeling studies show that the chalcone part of the receptors remains partially out of plane from the polyether part and the keto moiety of the receptors always directed outwardly in the receptor itself. This may be changed during the recognition of metal ions. The tendency of the fluorophore, to be out of plane, increases with increasing the ring size.

  17. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand

    International Nuclear Information System (INIS)

    Martinez M, V.; Padilla, J.; Ramirez, F.M.

    1992-04-01

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H 2 TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac) 3 . H 2 0] and trihydrated [Dy(acac) 3 .3 H 2 0], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP) 2 ] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP) 3 . 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP) 2- (TFP) 1- ] for the Dy(TFP) 2 as a result of the existence of the free radical (TFP' 1- and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  18. Nuclear molecular structure in heavy mass systems

    International Nuclear Information System (INIS)

    Arctaedius, T.; Bargholtz, C.

    1989-04-01

    A study is made of nuclear molecular configurations involving one heavy mass partner. The stability of these configurations to mass flow and to fission is investigated as well as their population in fusion reactions. It is concluded that shell effects in combination with the effects of angular momentum may be important in stabilizing certain configurations. A possible relation of these configurations to the so called superdeformed states is pointed out. The spectrum of rotational and vibrational trasitions within molecular configurations is investigated. For sufficiently mass-asymmetric systems the engergies of vibrational transitions are comparable to the neutron separation energy. Gamma radiation from such transitions may then be observable above the background of statistical transitions. The gamma spectrum and the directional distribution of the radioation following fusion reactions with 12 C and 16 O are calculated. (authors)

  19. Molecular Simulation of Reacting Systems; TOPICAL

    International Nuclear Information System (INIS)

    THOMPSON, AIDAN P.

    2002-01-01

    The final report for a Laboratory Directed Research and Development project entitled, Molecular Simulation of Reacting Systems is presented. It describes efforts to incorporate chemical reaction events into the LAMMPS massively parallel molecular dynamics code. This was accomplished using a scheme in which several classes of reactions are allowed to occur in a probabilistic fashion at specified times during the MD simulation. Three classes of reaction were implemented: addition, chain transfer and scission. A fully parallel implementation was achieved using a checkerboarding scheme, which avoids conflicts due to reactions occurring on neighboring processors. The observed chemical evolution is independent of the number of processors used. The code was applied to two test applications: irreversible linear polymerization and thermal degradation chemistry

  20. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  1. Microelectromechanical systems integrating molecular spin crossover actuators

    Energy Technology Data Exchange (ETDEWEB)

    Manrique-Juarez, Maria D. [LCC, CNRS and Université de Toulouse, UPS, INP, F-31077 Toulouse (France); LAAS, CNRS and Université de Toulouse, INSA, UPS, F-31077 Toulouse (France); Rat, Sylvain; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine, E-mail: liviu.nicu@laas.fr, E-mail: azzedine.bousseksou@lcc-toulouse.fr [LCC, CNRS and Université de Toulouse, UPS, INP, F-31077 Toulouse (France); Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu, E-mail: liviu.nicu@laas.fr, E-mail: azzedine.bousseksou@lcc-toulouse.fr [LAAS, CNRS and Université de Toulouse, INSA, UPS, F-31077 Toulouse (France)

    2016-08-08

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H{sub 2}B(pz){sub 2}){sub 2}(phen)] (H{sub 2}B(pz){sub 2} = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δf{sub r} = −0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  2. The Optical Bichromatic Force in Molecular Systems

    Science.gov (United States)

    Aldridge, Leland; Galica, Scott; Eyler, E. E.

    2015-05-01

    The optical bichromatic force has been demonstrated to be useful for slowing atomic beams much more rapidly than radiative forces. Through numerical simulations, we examine several aspects of applying the bichromatic force to molecular beams. One is the unavoidable existence of out-of-system radiative decay, requiring one or more repumping beams. We find that the average deceleration varies strongly with the repumping intensity, but when using optimal parameters, the force approaches the limiting value allowed by population statistics. Another consideration is the effect of fine and hyperfine structure. We examine a simplified multlevel model based on the B X transition in calcium monofluoride. To circumvent optical pumping into coherent dark states, we include two possible schemes: (1) a skewed dc magnetic field, and (2) rapid optical polarization switching. Our results indicate that the bichromatic force remains a viable option for creating large forces in molecular beams, with a reduction in the peak force by approximately an order of magnitude compared to a two-level atom, but little effect on the velocity range over which the force is effective. We also describe our progress towards experimental tests of the bichromatic force on a molecular beam of CaF. Supported by the National Science Foundation.

  3. Molecular marker systems for Oenothera genetics.

    Science.gov (United States)

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  4. Biomechanical Assessment of the Strength of Volleyball Players in Different Stages of the Training Macrocycle

    Directory of Open Access Journals (Sweden)

    Śliwa Marcin

    2015-09-01

    Full Text Available Introduction. In order to help volleyball players achieve superior results, their coaches are constantly seeking new training methods. One of the methods used to improve the effectiveness of the training that is being implemented is conducting tests which make it possible to assess the player’s locomotor system in terms of its motor and biomechanical functions. The aim of the study was to determine the torque of the knee flexor and extensor muscles of volleyball players in three stages of the annual macrocycle.

  5. Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State

    Directory of Open Access Journals (Sweden)

    Vicente Martí-Centelles

    2012-01-01

    competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes.

  6. New architectures for molecular materials

    International Nuclear Information System (INIS)

    Arico, Fabio

    2002-01-01

    The work described in this thesis is concerned mainly with the synthesis of novel macrocyclic and macropolycyclic oligomers by nucleophilic aromatic substitution under pseudo-high dilution conditions. The cyclic nature of the compounds obtained has been investigated by a range of different analytical techniques, including in some cases single crystal X-ray diffraction. Ring-opening polymerisation of selected macrocycles, in the melt or in solution, was studied as a route to high molecular weight aromatic polymers. In one case the reverse reaction, ring-closing depolymerisation has also been explored for application in the recovery and recycling of a high-value condensation polymer. A potential application of cyclic systems in sub-micron polymer fabrication has been demonstrated using microporous alumina membranes as template for the production of nanoscale polymeric fibrils and tubules. In the present work it is also shown that the previously studied relationship between macrocycles and polymer chains can be extended to a third dimension. Thus, polycondensations involving trifunctional monomers, which would normally afford highly branched or even fully crosslinked polymers, are here shown also to give, under pseudo-high dilution conditions, a series of very large aromatic cage-type molecules. Chemical modification of these macropolycycles was investigated by reducing the carbonyl groups within the cage structures to methylene linkages. The reduced cages so obtained were more tractable and soluble due to the less polar and less rigid methylene groups and the crystals obtained for the latter compounds proved suitable for X-ray crystallographic analysis in order to confirm their macropolycyclic structures. Exploratory studies have shown that a cage-type ether-ketone may be used as a crosslinking agent macrocyclic ring-opening polymerisation. Finally a project, carried out at the University of Strasbourg, under the EU 'Socrates' exchange programme, resulted in the

  7. Characterization and crystal structures of new Schiff base macrocyclic compounds

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Ghoran, S.H.; Pojarová, Michaela; Dušek, Michal

    2015-01-01

    Roč. 56, č. 7 (2015), s. 1410-1414 ISSN 0022-4766 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : synthesis * macrocyclic Schiff base * single crystal structure analysis * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.536, year: 2015

  8. Kinetics of oxidation of nickel(II) aza macrocycles by ...

    Indian Academy of Sciences (India)

    The kinetics of the oxidation of nickel (II) hexaaza and nickel (II) pentaaza macrocycles by the peroxydisulphate anion, S2O8 2-, were studied in aqueous media. Effect of H on reaction rate was also studied. The rate increases with increase of S2OO8 2- concentration. Rates are almost independent of acid between H 4 ...

  9. A macrocyclic ellagitannin trimer, oenotherin T(1), from Oenothera species.

    Science.gov (United States)

    Taniguchi, Shoko; Imayoshi, Yoko; Yabu-uchi, Ryoko; Ito, Hideyuki; Hatano, Tsutomu; Yoshida, Takashi

    2002-01-01

    Oenotherin T(1) was isolated from leaves of Oenothera tetraptera as a major ellagitannin. Its structure, that of a macrocyclic trimer with a new acyl group, an isodehydrovaloneoyl group, was established. This compound was also produced by callus tissues induced from O. laciniata leaves.

  10. Molecular Imaging with Activatable Reporter Systems

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes, the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.

  11. Energy transformation in molecular electronic systems

    International Nuclear Information System (INIS)

    Kasha, M.

    1985-01-01

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species 1 Δ/sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on π-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs

  12. Systems Pharmacology in Small Molecular Drug Discovery

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-02-01

    Full Text Available Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity, target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level.

  13. A Focus on Triazolium as a Multipurpose Molecular Station for pH-Sensitive Interlocked Crown-Ether-Based Molecular Machines.

    Science.gov (United States)

    Coutrot, Frédéric

    2015-10-01

    The control of motion of one element with respect to others in an interlocked architecture allows for different co-conformational states of a molecule. This can result in variations of physical or chemical properties. The increase of knowledge in the field of molecular interactions led to the design, the synthesis, and the study of various systems of molecular machinery in a wide range of interlocked architectures. In this field, the discovery of new molecular stations for macrocycles is an attractive way to conceive original molecular machines. In the very recent past, the triazolium moiety proved to interact with crown ethers in interlocked molecules, so that it could be used as an ideal molecular station. It also served as a molecular barrier in order to lock interlaced structures or to compartmentalize interlocked molecular machines. This review describes the recently reported examples of pH-sensitive triazolium-containing molecular machines and their peculiar features.

  14. Studies of flerovium and element 115 homologs with macrocyclic extractants

    Science.gov (United States)

    Despotopulos, John Dustin

    Study of the chemistry of the heaviest elements, Z ? 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores both extraction chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies. Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 were obtained by proton activation of high purity metal foils at the Lawrence Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n)113Sn, natSn(p,n)124Sb, and Au(p,n)197m,gHg. The carrier-free activity was separated from the foils by novel separation schemes based on ion exchange and extraction chromatography techniques. Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi. Crown ethers show high selectivity for metal ions based on their size compared to the negatively charged cavity of the ether. Extraction by crown ethers occur based on electrostatic ion-dipole interactions between the negatively charged ring atoms (oxygen, sulfur, etc.) and the positively

  15. Binding of carbon dioxide to metal macrocycles: Toward a mechanistic understanding of electrochemical and photochemical carbon dioxide reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, E.

    1993-01-01

    Efforts were made to find effective catalysts for photochemical and electrochemical reduction of CO[sub 2]. We are studying the factors controlling excited-state lifetimes, electron-transfer rates to mediators/catalysts, properties of reduced mediators, binding of small molecules to reduced mediators, and reactivity of the mediators to yield the desired products. This document describes some of the results of binding on CO[sub 2] to metal macrocycles. The electrocatalytic activity of cobalt macrocycle complexes in reduction of CO[sub 2] in CO[sub 2]-saturated water at the Hg electrode is being studied. We are ready to study the mechanism and kinetics of the photochemical CO[sub 2] reduction in order to design more efficient photo-energy conversion systems. 19 refs.

  16. Binding of carbon dioxide to metal macrocycles: Toward a mechanistic understanding of electrochemical and photochemical carbon dioxide reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, E.

    1993-07-01

    Efforts were made to find effective catalysts for photochemical and electrochemical reduction of CO{sub 2}. We are studying the factors controlling excited-state lifetimes, electron-transfer rates to mediators/catalysts, properties of reduced mediators, binding of small molecules to reduced mediators, and reactivity of the mediators to yield the desired products. This document describes some of the results of binding on CO{sub 2} to metal macrocycles. The electrocatalytic activity of cobalt macrocycle complexes in reduction of CO{sub 2} in CO{sub 2}-saturated water at the Hg electrode is being studied. We are ready to study the mechanism and kinetics of the photochemical CO{sub 2} reduction in order to design more efficient photo-energy conversion systems. 19 refs.

  17. Tunable photophysical processes of porphyrin macrocycles on the surface of ZnO nanoparticles

    KAUST Repository

    Parida, Manas R.

    2015-01-23

    We investigated the impact of the molecular structure of cationic porphyrins on the degree of electrostatic interactions with zinc oxide nanoparticles (ZnO NPs) using steady-state and time-resolved fluorescence and transient absorption spectroscopy. Our results demonstrate that the number of cationic pyridinium units has a crucial impact on the photophysics of the porphyrin macrocycle. Fluorescence enhancement, relative to initial free porphyrin fluorescence, was found to be tuned from 3.4 to 1.3 times higher by reducing the number of cationic substituents on the porphyrin from 4 to 2. The resulting enhancement of the intensity of the fluorescence is attributed to the decrease in the intramolecular charge transfer (ICT) character between the porphyrin cavity and its meso substituent. The novel findings reported in this work provide an understanding of the key variables involved in nanoassembly, paving the way toward optimizing the interfacial chemistry of porphyrin-ZnO NP assembly for photodynamic therapy and energy conversion.

  18. Through-Space Paramagnetic NMR Effects in Host-Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers.

    Science.gov (United States)

    Chyba, Jan; Novák, Martin; Munzarová, Petra; Novotný, Jan; Marek, Radek

    2018-04-05

    The potential of paramagnetic ruthenium(III) compounds for use as anticancer metallodrugs has been investigated extensively during the past several decades. However, the means by which these ruthenium compounds are transported and distributed in living bodies remain relatively unexplored. In this work, we prepared several novel ruthenium(III) compounds with the general structure Na + [ trans-Ru III Cl 4 (DMSO)(L)] - (DMSO = dimethyl sulfoxide), where L stands for pyridine or imidazole linked with adamantane, a hydrophobic chemophore. The supramolecular interactions of these compounds with macrocyclic carriers of the cyclodextrin (CD) and cucurbit[ n]uril (CB) families were investigated by NMR spectroscopy, X-ray diffraction analysis, isothermal titration calorimetry, and relativistic DFT methods. The long-range hyperfine NMR effects of the paramagnetic guest on the host macrocycle are related to the distance between them and their relative orientation in the host-guest complex. The CD and CB macrocyclic carriers being studied in this account can be attached to a vector that attracts the drug-carrier system to a specific biological target and our investigation thus introduces a new possibility in the field of targeted delivery of anticancer metallodrugs based on ruthenium(III) compounds.

  19. Stability complexes of lanthanide ions with some macrocyclic polyethers

    International Nuclear Information System (INIS)

    Poluehktov, N.S.; Malinka, E.V.; Meshkova, S.B.; Bel'tyukova, S.V.; Danilkovich, M.M.

    1984-01-01

    Stability of lanthanide complexes with macrocyclic polyethers has been studied versus the number of f-electrons, spin- and orbital angular momenta of the Lu 3+ ion ground states. The following compounds were used as macrocyclic complexones: 12-crown-4 (12C4), tert-bulylbenzo-15-crown-5(BB15C5), 18-crown-6 (18C6), ditert-butylbenzo-18-crown-6(DBB18C6), dibenzo-30-crown-10 (DB30C10), cryptand [2, 2, 1] (Cr[2, 2, 1]). It is shoWn that the stability constants of the studied lanthanide complexes can be described rather satisfactorily by an expression suggested earlier that relates their values with the number of 4f-electrons and the S and L quantum numbers of the ground states of the lantharide ions

  20. A new spermidine macrocyclic alkaloid isolated from Gymnosporia arenicola leaf.

    Science.gov (United States)

    da Silva, Gustavo; Martinho, Ana; Soengas, Raquel González; Duarte, Ana Paula; Serrano, Rita; Gomes, Elsa Teixeira; Silva, Olga

    2015-10-01

    The isolation and structural elucidation of a macrocyclic alkaloid, characterized by the presence of a 13-membered macrolactam ring containing a spermidine unit N-linked to a benzoyl group is hereby reported. The structure of this previously unknown spermidine alkaloid isolated from Gymnosporia arenicola (Celastraceae) leaves has been elucidated by (1)H and (13)C NMR spectroscopy (including bidimensional analysis) and further characterized by high-resolution mass spectrometry and polarimetry. A route for the biosynthesis of this new bioactive macrocycle is proposed and the cytotoxicity of the compound was evaluated against two ATCC cell lines - one normal-derived (MCF10A) and one cancer-derived cell line (MCF7) - using the MTT assay. The alkaloid revealed to be non-cytotoxic against both cell lines. The IC50 values from the cells were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets.

    Science.gov (United States)

    Yu, Haoyu S; Deng, Yuqing; Wu, Yujie; Sindhikara, Dan; Rask, Amy R; Kimura, Takayuki; Abel, Robert; Wang, Lingle

    2017-12-12

    Macrocycles have been emerging as a very important drug class in the past few decades largely due to their expanded chemical diversity benefiting from advances in synthetic methods. Macrocyclization has been recognized as an effective way to restrict the conformational space of acyclic small molecule inhibitors with the hope of improving potency, selectivity, and metabolic stability. Because of their relatively larger size as compared to typical small molecule drugs and the complexity of the structures, efficient sampling of the accessible macrocycle conformational space and accurate prediction of their binding affinities to their target protein receptors poses a great challenge of central importance in computational macrocycle drug design. In this article, we present a novel method for relative binding free energy calculations between macrocycles with different ring sizes and between the macrocycles and their corresponding acyclic counterparts. We have applied the method to seven pharmaceutically interesting data sets taken from recent drug discovery projects including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in good agreement with experimental data with an overall root-mean-square error (RMSE) of 0.94 kcal/mol. This is to our knowledge the first time where the free energy of the macrocyclization of linear molecules has been directly calculated with rigorous physics-based free energy calculation methods, and we anticipate the outstanding accuracy demonstrated here across a broad range of target classes may have significant implications for macrocycle drug discovery.

  2. Macrocyclic ligands for uranium complexation: Progress report, August 15, 1987-present

    International Nuclear Information System (INIS)

    Potts, K.T.

    1988-03-01

    The synthesis of several macrocyclic ligands, designed by a computer modeling approach for the complexation of the uranyl ion, has now been completed and their structures established. Preliminary indicate that these macrocycles successfully complex the uranyl ion. Other synthetic efforts have led to a variety of intermediates suitable for final ring closure to the desired macrocycles, providing appreciable potential for variation of the macrocyclic peripheral atoms. A 1:1-uranyl ion complex of one of these precursor products has been shown to undergo a DMSO-induced rearrangement to a 2:1 uranyl ion to ligand complex, both structures having been established by single crystal x-ray data. 10 refs

  3. Searching for a path towards a helicene-based macrocycle

    Czech Academy of Sciences Publication Activity Database

    Houska, Václav; Stará, Irena G.; Starý, Ivo

    2017-01-01

    Roč. 15, č. 1 (2017), s. 9-10 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] R&D Projects: GA ČR(CZ) GA16-08294S Institutional support: RVO:61388963 Keywords : helicenes * macrocycles Subject RIV: CC - Organic Chemistry

  4. Computer modeling of properties of complex molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulkova, E.Yu. [Moscow State University of Technology “STANKIN”, Vadkovsky per., 1, Moscow 101472 (Russian Federation); Khrenova, M.G.; Polyakov, I.V. [Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991 (Russian Federation); Nemukhin, A.V. [Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991 (Russian Federation); N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334 (Russian Federation)

    2015-03-10

    Large molecular aggregates present important examples of strongly nonhomogeneous systems. We apply combined quantum mechanics / molecular mechanics approaches that assume treatment of a part of the system by quantum-based methods and the rest of the system with conventional force fields. Herein we illustrate these computational approaches by two different examples: (1) large-scale molecular systems mimicking natural photosynthetic centers, and (2) components of prospective solar cells containing titan dioxide and organic dye molecules. We demonstrate that modern computational tools are capable to predict structures and spectra of such complex molecular aggregates.

  5. Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Despotopulos, John D. [Univ. of Nevada, Las Vegas, NV (United States)

    2015-03-12

    Study of the chemistry of the heaviest elements, Z ≥ 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores both extraction chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 were obtained by proton activation of high-purity metal foils at the Lawrence Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n)113Sn, natSn(p,n)124Sb, and Au(p,n)197m,gHg. The carrier-free activity was separated from the foils by novel separation schemes based on ion exchange and extraction chromatography techniques. Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies; crown ethers show high selectivity for metal ions. Finally. a potential chemical system for Fl was established based on the Eichrom Pb resin, and insight to an improved system based on thiacrown ethers is

  6. Fabrication of reduced graphene oxide/macrocyclic cobalt complex nanocomposites as counter electrodes for Pt-free dye-sensitized solar cells

    Science.gov (United States)

    Tsai, Chih-Hung; Shih, Chun-Jyun; Wang, Wun-Shiuan; Chi, Wen-Feng; Huang, Wei-Chih; Hu, Yu-Chung; Yu, Yuan-Hsiang

    2018-03-01

    In this study, macrocyclic Co complexes were successfully grafted onto graphene oxide (GO) to produce GO/Co nanocomposites with a large surface area, high electrical conductivity, and excellent catalytic properties. The novel GO/Co nanocomposites were applied as counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Various ratios of macrocyclic Co complexes were used as the reductant to react with the GO, with which the surface functional groups of the GO were reduced and the macrocyclic ligand of the Co complexes underwent oxidative dehydrogenation, after which the conjugated macrocyclic Co systems were grafted onto the surface of the reduced GO to form GO/Co nanocomposites. The surface morphology, material structure, and composition of the GO/Co composites and their influences on the power-conversion efficiency of DSSC devices were comprehensively investigated. The results showed that the GO/Co (1:10) counter electrode (CE) exhibited an optimal power conversion efficiency of 7.48%, which was higher than that of the Pt CE. The GO/Co (1:10) CE exhibited superior electric conductivity, catalytic capacity, and redox capacity. Because GO/Co (1:10) CEs are more efficient and cheaper than Pt CEs, they could potentially be used as a replacement for Pt electrodes.

  7. Molecular communications and nanonetworks from nature to practical systems

    CERN Document Server

    Atakan, Barış

    2014-01-01

    In this book, the concepts of molecular communications and nanonetworks are introduced. Throughout the book, the existing molecular communication paradigms are categorized into two main groups. The first group includes the Passive Molecular Communication (PMC) paradigms in which molecules freely diffuse to transfer information from a transmitter to a receiver. The second group includes the Active Molecular Communication (AMC) paradigms in which molecules are carried or guided by some mediators such as molecular motors, gap junction channels and bacteria. In the book, after briefly discussing why molecular communication is needed for the sophisticated nano and biotechnology applications, the existing molecular communication systems are first presented. Then, the principles of diffusion phenomena and molecular reception with absorbers and the ligand-receptor binding mechanism are introduced. Based on these principles, the communication theories and techniques are given for the PMC. Then, the physical dynamics o...

  8. Synthesis of a pH-Sensitive Hetero[4]Rotaxane Molecular Machine that Combines [c2]Daisy and [2]Rotaxane Arrangements.

    Science.gov (United States)

    Waelès, Philip; Riss-Yaw, Benjamin; Coutrot, Frédéric

    2016-05-10

    The synthesis of a novel pH-sensitive hetero[4]rotaxane molecular machine through a self-sorting strategy is reported. The original tetra-interlocked molecular architecture combines a [c2]daisy chain scaffold linked to two [2]rotaxane units. Actuation of the system through pH variation is possible thanks to the specific interactions of the dibenzo-24-crown-8 (DB24C8) macrocycles for ammonium, anilinium, and triazolium molecular stations. Selective deprotonation of the anilinium moieties triggers shuttling of the unsubstituted DB24C8 along the [2]rotaxane units. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems.

    Science.gov (United States)

    Fujita, Takatoshi; Mochizuki, Yuji

    2018-04-19

    We developed the fragment-based method for calculating nonlocal excitations in large molecular systems. This method is based on the multilayer fragment molecular orbital method and the configuration interaction single (CIS) wave function using localized molecular orbitals. The excited-state wave function for the whole system is described as a superposition of configuration state functions (CSFs) for intrafragment excitations and for interfragment charge-transfer excitations. The formulation and calculations of singlet excited-state Hamiltonian matrix elements in the fragment CSFs are presented in detail. The efficient approximation schemes for calculating the matrix elements are also presented. The computational efficiency and the accuracy were evaluated using the molecular dimers and molecular aggregates. We confirmed that absolute errors of 50 meV (relative to the conventional calculations) are achievable for the molecular systems in their equilibrium geometries. The perturbative electron correlation correction to the CIS excitation energies is also demonstrated. The present theory can compute a large number of excited states in large molecular systems; in addition, it allows for the systematic derivation of a model exciton Hamiltonian. These features are useful for studying excited-state dynamics in condensed molecular systems based on the ab initio electronic structure theory.

  10. Co-N-macrocyclic modified graphene with excellent electrocatalytic activity for lithium-thionyl chloride batteries

    International Nuclear Information System (INIS)

    Li, Bimei; Yuan, Zhongzhi; Xu, Ying; Liu, Jincheng

    2016-01-01

    Highlights: • A Co-N-graphene catalyst composed of CoN 4 -macrocyclic-like (CoN x ) structure is synthesized. • Co-N x -Graphene has effective electrocatalytic activity for Li/SOCl 2 batteries. • The storage stability of the catalyst is attributed to its insolubility in electrolyte. - Abstract: A mixture of cobalt phthalocyanine (CoPc) and graphene is thermally decomposed at 800 °C to synthesize a novel catalyst. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) show that the catalyst retains the lamellar structure of graphene. X-ray diffraction (XRD) reveals that the catalyst is no longer composed of CoPc and high-resolution TEM (HRTEM), X-ray photoelectron spectra (XPS) prove that Co and N elements have entered the graphene molecular structure, thus forming a Co-N x -graphene (Co-N x -G) catalyst composed of a CoN 4 -macrocyclic-like structure. This catalyst serves as an excellent catalyst of thionyl chloride (SOCl 2 ) reduction. Cyclic voltammetry and battery discharge tests reveal that Co-N x -G-800 substantially increases the discharge voltage and capacity of a Li/SOCl 2 battery. Moreover, Co-N x -G-800 exhibits stable catalytic activity during battery storage. Ultraviolet–visible spectroscopy shows that CoPc is soluble in a SOCl 2 electrolyte solution, whereas Co-N x -G-800 is not, this characteristic contributes to the stable catalytic property of Co-N x -G.

  11. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  12. Remote Laser Evaporative Molecular Absorption Spectroscopy Sensor System

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a sensor system capable of remotely probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons), such as from a...

  13. Logic circuits based on molecular spider systems.

    Science.gov (United States)

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: a theoretical study.

    Science.gov (United States)

    Sun, Yong; Chen, Kexian; Jia, Lu; Li, Haoran

    2011-08-14

    In an effort to examine the interaction between dioxygen and iron-macrocyclic complexes, and to understand how this interaction was affected by those different macrocyclic ligands, dioxygen binding with iron-porphyrin, iron-phthalocyanine, iron-dibenzotetraaza[14]annulene, and iron-salen complexes is investigated by means of quantum chemical calculations utilizing Density Functional Theory (DFT). Based on the analysis of factors influencing the corresponding dioxygen binding process, it showed that different macrocyclic ligands possess different O-O bond distances, and different electronic configurations for the bound O(2) and non-aromatic macrocyclic ligands favor dioxygen activation. Furthermore, the smaller the energy gap between the HOMO of iron-macrocyclic complexes and the LUMO of dioxygen, the more active the bound O(2) becomes, with a longer O-O bond distance and a shorter Fe-O bond length.

  15. STABILIZATION OF UNUSUAL SUBSTRATE COORDINATION MODES IN DINUCLEAR MACROCYCLIC COMPLEXES

    Directory of Open Access Journals (Sweden)

    Vasile Lozan

    2010-06-01

    Full Text Available The steric protection offered by the macrobinucleating hexaazaditiophenolate ligand (L allows for the preparation of the first stable dinuclear nickel(II borohydride bridged complex, which reacts rapidly with elemental sulphur producing a tetranuclear nickel(II complex [{(LNi2}2(μ-S6]2+ bearing a helical μ4-hexa- sulfide ligand. The [(LCoII 2]2+ fragment have been able to trap a monomethyl orthomolybdate in the binding pocket. Unusual coordination modes of substrate in dinuclear macrocyclic compounds was demonstrated.

  16. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes

    DEFF Research Database (Denmark)

    Maolanon, Alex; Kristensen, Helle; Leman, Luke

    2017-01-01

    Inhibition of histone deacetylase (HDAC) enzymes has emerged as a target for development of cancer chemotherapy. Four compounds have gained approval for clinical use by the Food and Drug Administration (FDA) in the US, and several are currently in clinical trials. However, none of these compounds...... HDAC enzymes may hold an advantage over traditional hydroxamic acid-containing inhibitors, which rely on chelation to the conserved active site zinc ion. Here, we review the literature on macrocyclic HDAC inhibitors obtained from natural sources and structure-activity relationship studies inspired...

  17. Safety and clinical efficacy of tenvermectin, a novel antiparasitic 16-membered macrocyclic lactone antibiotics.

    Science.gov (United States)

    Fei, Chenzhong; She, Rufeng; Li, Guiyu; Zhang, Lifang; Fan, Wushun; Xia, Suhan; Xue, Feiqun

    2018-05-30

    Tenvermectin (TVM) is a novel 16-membered macrocyclic lactone antibiotics, which contains component TVM A and TVM B. However there is not any report on safety and clinical efficacy of TVM for developing as a potential drug. In order to understand the part of safety and clinical efficacy of TVM, we conducted the acute toxicity test, the standard bacterial reverse mutation (Ames) test and the clinical deworming test. In the acute toxicity studies, TVM, TVM A and ivermectin (IVM) were administrated once by oral gavage to mice and rats. Results showed that the oral LD 50 values of TVM, TVM A and IVM in mice were 74.41, 106.95 and 53.06 mg/kg respectively. The oral LD 50 values of TVM and TVM A in rats were determined to be 164.22 and 749.34 mg/kg respectively. TVM and IVM are moderately toxic substances, meanwhile the TVM A belongs to low toxic compounds, implying that the acute toxicity is highly related to the length of side chain of TVM at position C25. In the Ames test, results showed that TVM did not induce mutagenicity in Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 with and without metabolic activation system, speculating that the mutagenicity is probably not related to the side chain at position C25 of 16-membered macrocyclic lactone antibiotics. In the efficacy trail of TVM against swine nematodes, growing pigs natural infection of Ascaris suum and Trichuris suis were treated with a single subcutaneous injection 0.3 mg/kg b.w.. Results showed that TVM and IVM had excellent effect in expelling Ascaris suum, and TVM had potential efficacy against Trichuris suis, however IVM had no effect on Trichuris suis. This study suggests that the side chain of TVM at position C25 may have important biological functions, which is one of the key sites of the studies on structure-activity relationship of 16-membered macrocyclic lactone compounds. TVM is a new compound exhibited some advantages worthy of developing. Copyright © 2018 Elsevier B.V. All

  18. Advances in study of molecular imaging reporte gene systems

    International Nuclear Information System (INIS)

    Wu Tao; An Rui

    2010-01-01

    The use of molecular imaging reporter gene systems has allowed gene therapy to move from the laboratory to the clinical application, which provides methodology to monitor the expression of therapeutic gene noninvasively and achieve quantitative outcome in vivo. Recently, the radionuclide reporter gene still is the focus many studies, but MRI and optical reporter gene have gradually played a important part in reporter gene systems. On the basis of combination of multi-subject, for example applied chemistry and molecular biology, more and more new modified reporter genes and molecular probes have spread out. This paper mainly introduces the advantages and disadvantages of reporter gene system and development trends. (authors)

  19. A New Molecular Surveillance System for Leishmaniasis

    Science.gov (United States)

    Pandey, Kishor; Pandey, Basu Dev; Mallik, Arun Kumar; Acharya, Jyoti; Kato, Kentaro; Kaneko, Osamu; Ferreira, Pedro Eduardo

    2014-01-01

    Abstract. Presently, global efforts are being made to control and eradicate the deadliest tropical diseases through the improvement of adequate interventions. A critical point for programs to succeed is the prompt and accurate diagnosis in endemic regions. Rapid diagnostic tests (RDTs) are being massively deployed and used to improve diagnosis in tropical countries. In the present report, we evaluated the hypothesis of, after use for diagnosis, the reuse of the Leishmania RDT kit as a DNA source, which can be used downstream as a molecular surveillance and/or quality control tool. As a proof of principle, a polymerase chain reaction-based method was used to detect Leishmania spp. minicircle kinetoplast DNA from leishmaniasis RDT kits. Our results show that Leishmania spp. DNA can be extracted from used RDTs and may constitute an important, reliable, and affordable tool to assist in future leishmaniasis molecular surveillance methods. PMID:24752687

  20. Electron-nuclear dynamics of molecular systems

    International Nuclear Information System (INIS)

    Diz, A.; Oehrn, Y.

    1994-01-01

    The content of an ab initio time-dependent theory of quantum molecular dynamics of electrons and atomic nuclei is presented. Employing the time-dependent variational principle and a family of approximate state vectors yields a set of dynamical equations approximating the time-dependent Schroedinger equation. These equations govern the time evolution of the relevant state vector parameters as molecular orbital coefficients, nuclear positions, and momenta. This approach does not impose the Born-Oppenheimer approximation, does not use potential energy surfaces, and takes into account electron-nuclear coupling. Basic conservation laws are fully obeyed. The simplest model of the theory employs a single determinantal state for the electrons and classical nuclei and is implemented in the computer code ENDyne. Results from this ab-initio theory are reported for ion-atom and ion-molecule collisions

  1. Great isotope effects in compounding of sodium isotopes by macrocyclic polyether

    International Nuclear Information System (INIS)

    Knoechel, A.; Wilken, R.D.

    1978-01-01

    Isotope effects appear in the compounding of the two sodium isotopes 24 Na + and 22 Na + with macrocyclic polyethers, whose value was determined for the 13 best known polyethers. A radiometric process was used for determining the different half life periods of the nuclides used. To separate the compound and non-compound types, these were distributed between water and chloroform. The isotope ratio in the chloroform phase was compared with the output isotope ratio and the separation facfor determined from this. When using crown ethers, there was enrichment of 24 Na + by a significant amount (large crown ether) up to 3.1 +- 0.4% for 18 crown 6. The remarkably high results can be correlated by Biegeleisen's theory with other chemical conditions. There is a report on the first results of transferring these conditions to the H + /T + system. (orig.) [de

  2. Macrocyclic ligands and their use in chemical separations

    International Nuclear Information System (INIS)

    Izatt, R.M.; Bradshaw, J.S.; Bruening, R.L.; Krakowiak, K.E.; Tarbet, B.J.

    1993-01-01

    Macrocyclic chemistry has had a phenomenal growth curve during the past three decades (Izatt et al.). Interest in this field was catalyzed by Pedersen's report of the synthesis and partial characterization of a large number of novel cyclic polyethers. The unusual affinity of these new compounds for and selectivity among alkali metal cations was noted (Pedersen) and quantitated (Izatt et al.). A 1987 National Academy of Science publication on separations listed three high priority needs in the separations field (King). These were to develop highly selective reagents capable of discriminating among similar chemical species, reagents capable of concentrating trace amounts of solutes even in the presence of large excesses of matrix solutes, and reagents capable of removing solutes from large quantities of solvent. Certain macrocycles offer the promise of being successful in achieving all three of these goals. This promise arises from their high selectivity for particular cations in various series of closely related cations, their large affinities for particular cations, and the ease with which they can be modified to meet particular needs inherent to chemical separations

  3. DNA-Enabled Integrated Molecular Systems for Computation and Sensing

    Science.gov (United States)

    2014-05-21

    Computational devices can be chemically conjugated to different strands of DNA that are then self-assembled according to strict Watson − Crick binding rules... DNA -Enabled Integrated Molecular Systems for Computation and Sensing Craig LaBoda,† Heather Duschl,† and Chris L. Dwyer*,†,‡ †Department of...guided folding of DNA , inspired by nature, allows designs to manipulate molecular-scale processes unlike any other material system. Thus, DNA can be

  4. Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases.

    Science.gov (United States)

    Fernandes, Carla; Tiritan, Maria Elizabeth; Cass, Quezia; Kairys, Visvaldas; Fernandes, Miguel Xavier; Pinto, Madalena

    2012-06-08

    A chiral HPLC method using four macrocyclic antibiotic chiral stationary phases (CSPs) has been investigated for determination of the enantiomeric purity of fourteen new chiral derivatives of xanthones (CDXs). The separations were performed with the CSPs Chirobiotic T, Chirobiotic TAG, Chirobiotic V and Chirobiotic R under multimodal elution conditions (normal-phase, reversed-phase and polar ionic mode). The analyses were performed at room temperature in isocratic mode and UV and CD detection at a wavelength of 254 nm. The best enantioselectivity and resolution were achieved on Chirobiotic R and Chirobiotic T CSPs, under normal elution conditions, with R(S) ranging from 1.25 to 2.50 and from 0.78 to 2.06, respectively. The optimized chromatographic conditions allowed the determination of the enantiomeric ratio of eight CDXs, always higher than 99%. In order to better understand the chromatographic behavior at a molecular level, and the structural features associated with the chiral recognition mechanism, computational studies by molecular docking were carried out using VDock. These studies shed light on the mechanisms involved in the enantioseparation for this important class of chiral compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  6. Probing Interactions in Complex Molecular Systems through Ordered Assembly

    International Nuclear Information System (INIS)

    De Yoreo, J.J.; Bartelt, M.C.; Orme, C.A.; Villacampa, A.; Weeks, B.L.; Miller, A.E.

    2002-01-01

    Emerging from the machinery of epitaxial science and chemical synthesis, is a growing emphasis on development of self-organized systems of complex molecular species. The nature of self-organization in these systems spans the continuum from simple crystallization of large molecules such as dendrimers and proteins, to assembly into large organized networks of nanometer-scale structures such as quantum dots or nanoparticles. In truth, self-organization in complex molecular systems has always been a central feature of many scientific disciplines including fields as diverse as structural biology, polymer science and geochemistry. But over the past decade, changes in those fields have often been marked by the degree to which researchers are using molecular-scale approaches to understand the hierarchy of structures and processes driven by this ordered assembly. At the same time, physical scientists have begun to use their knowledge of simple atomic and molecular systems to fabricate synthetic self-organized systems. This increasing activity in the field of self-organization is testament to the success of the physical and chemical sciences in building a detailed understanding of crystallization and epitaxy in simple atomic and molecular systems, one that is soundly rooted in thermodynamics and chemical kinetics. One of the fundamental challenges of chemistry and materials science in the coming decades is to develop a similarly well-founded physical understanding of assembly processes in complex molecular systems. Over the past five years, we have successfully used in situ atomic force microscopy (AFM) to investigate the physical controls on single crystal epitaxy from solutions for a wide range of molecular species. More recently, we have combined this method with grazing incidence X-ray diffraction and kinetic Monte Carlo modeling in order to relate morphology to surface atomic structure and processes. The purpose of this proposal was to extend this approach to assemblies

  7. Phthalocyanine-nanocarbon ensembles: from discrete molecular and supramolecular systems to hybrid nanomaterials.

    Science.gov (United States)

    Bottari, Giovanni; de la Torre, Gema; Torres, Tomas

    2015-04-21

    Phthalocyanines (Pcs) are macrocyclic and aromatic compounds that present unique electronic features such as high molar absorption coefficients, rich redox chemistry, and photoinduced energy/electron transfer abilities that can be modulated as a function of the electronic character of their counterparts in donor-acceptor (D-A) ensembles. In this context, carbon nanostructures such as fullerenes, carbon nanotubes (CNTs), and, more recently, graphene are among the most suitable Pc "companions". Pc-C60 ensembles have been for a long time the main actors in this field, due to the commercial availability of C60 and the well-established synthetic methods for its functionalization. As a result, many Pc-C60 architectures have been prepared, featuring different connectivities (covalent or supramolecular), intermolecular interactions (self-organized or molecularly dispersed species), and Pc HOMO/LUMO levels. All these elements provide a versatile toolbox for tuning the photophysical properties in terms of the type of process (photoinduced energy/electron transfer), the nature of the interactions between the electroactive units (through bond or space), and the kinetics of the formation/decay of the photogenerated species. Some recent trends in this field include the preparation of stimuli-responsive multicomponent systems with tunable photophysical properties and highly ordered nanoarchitectures and surface-supported systems showing high charge mobilities. A breakthrough in the Pc-nanocarbon field was the appearance of CNTs and graphene, which opened a new avenue for the preparation of intriguing photoresponsive hybrid ensembles showing light-stimulated charge separation. The scarce solubility of these 1-D and 2-D nanocarbons, together with their lower reactivity with respect to C60 stemming from their less strained sp(2) carbon networks, has not meant an unsurmountable limitation for the preparation of variety of Pc-based hybrids. These systems, which show improved

  8. Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network

    KAUST Repository

    Ji, Xiaofan; Wu, Ren-Tsung; Long, Lingliang; Guo, Chenxing; Khashab, Niveen M.; Huang, Feihe; Sessler, Jonathan L.

    2018-01-01

    Reported here is a hydrogel-forming polymer network that contains a water-soluble tetracationic macrocycle. Upon immersion of this polymer network in aqueous solutions containing various inorganic and organic salts, changes in the physical

  9. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids

    NARCIS (Netherlands)

    Liao, George P; Abdelraheem, Eman M M; Neochoritis, Constantinos G; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; McGowan, David C; Dömling, Alexander

    2015-01-01

    The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.

  10. Towards tumour targeting with copper-radiolabelled macrocycle-antibody conjugates

    International Nuclear Information System (INIS)

    Morphy, J.R.; Parker, David; Kataky, Ritu

    1989-01-01

    Tetraaza-macrocycles covalently attached to a monoclonal antibody may be efficiently radiolabelled with 64 Cu or 67 Cu at pH4, minimising non-specific binding to the protein, giving a kinetically stable conjugate in vivo. (author)

  11. Complexation of the strontium cation with a macrocyclic lactam receptor: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Záliš, Stanislav; Vaňura, P.

    2016-01-01

    Roč. 214, FEB 2016 (2016), s. 171-174 ISSN 0167-7322 Institutional support: RVO:61388955 Keywords : strontium cation * macrocyclic lactam receptor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.648, year: 2016

  12. Energy conservation in molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren; Heilmann, Ole; Dyre, J. C.

    2012-01-01

    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...

  13. Macrocyclic bis(ureas as ligands for anion complexation

    Directory of Open Access Journals (Sweden)

    Claudia Kretschmer

    2014-08-01

    Full Text Available Two macrocyclic bis(ureas 1 and 2, both based on diphenylurea, have been synthesized. Compound 1 represents the smaller ring with two ethynylene groups as linkers and 2 the larger ring with two butadiynylene groups. On thermal treatment to 130 °C molecule 1 splits up into two dihydroindoloquinolinone (3 molecules. Both compounds 1 and 2 form adducts with polar molecules such as dimethyl sulfoxide (DMSO and dimethylformamide (DMF and act as complexing agents towards a series of anions (Cl−, Br−, I−, NO3−, HSO4−. The crystal structures of 3, 2·2DMSO, 2·2DMF, and of the complex NEt4[Br·2] have been determined. Quantitative investigations of the complexation equilibria were performed via 1H NMR titrations. While 1 is a rather weak complexing agent, the large ring of 2 binds anions with association constants up to log K = 7.93 for chloride ions.

  14. On solvent extraction of metals by macrocyclic polyethers

    International Nuclear Information System (INIS)

    Ionov, V.P.

    1984-01-01

    The Ksub(γ) parameter characterizing effective ion charges in ionic associates of metal salts is suggested; these charges parallel with other factors determine the metals extraction by macrocyclic polyethers (crown-ethers). The dependence of metal extraction constant on the Ksub(γ) parameter is discussed. It is shown that the less effective cation charge of alkali metal ionic associates, the more probable its entering the crown-ether cavity. The synergetic crown-ethers extraction is bound as well with Ksub(γ) of metal salts. The differences in the cation extraction constants having the same ionic radius are explained with account of different values of Ksub(γ) parameters of these salts

  15. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    Science.gov (United States)

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  16. C-84 Selective Porphyrin Macrocycle with an Adaptable Cavity Constructed Through Alkyne Metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. X.; Long, H.; Zhang, W.

    2012-06-21

    A bisporphyrin macrocycle was constructed from a porphyrin-based diyne monomer in one step through alkyne metathesis. The fullerene binding studies (C{sub 60}, C{sub 70} and C{sub 84}) showed the highest binding affinity of the macrocycle for C{sub 84}, which is in great contrast to its bisporphyrin four-armed cage analogue that showed the strongest binding with C{sub 70}.

  17. Template Syntheses, Crystal Structures and Supramolecular Assembly of Hexaaza Macrocyclic Copper(II) Complexes

    International Nuclear Information System (INIS)

    Kim, Taehyung; Kim, Ju Chang; Lough, Alan J.

    2013-01-01

    Two new hexaaza macrocyclic copper(II) complexes were prepared by a template method and structurally characterized. In the solid state, they were self-assembled by intermolecular interactions to form the corresponding supramolecules 1 and 2, respectively. In the structure of 1, the copper(II) macrocycles are bridged by a tp ligand to form a macrocyclic copper(II) dimer. The dimer extends its structure by intermolecular forces such as hydrogen bonds and C-H···π interactions, resulting in the formation of a double stranded 1D supramolecule. In 2, the basic structure is a monomeric copper(II) macrocycle with deprotonated imidazole pendants. An undulated 1D hydrogen bonded array is achieved through hydrogen bonds between imidazole pendants and secondary amines, where the imidazole pendants act as a hydrogen bond acceptor. The 1D hydrogen bonded supramolecular chain is supported by C-H···π interactions between the methyl groups of acetonitrile ligands and imidazole pendants of the copper(II) macrocycles. In both complexes, the introduction of imidazoles to the macrocycle as a pendant plays an important role for the formation of supramolecules, where they act as intermolecular hydrogen bond donors and/or acceptors, C-H···π and π-π interactions

  18. Macrocyclic Gd(3+) complexes with pendant crown ethers designed for binding zwitterionic neurotransmitters.

    Science.gov (United States)

    Oukhatar, Fatima; Meudal, Hervé; Landon, Céline; Logothetis, Nikos K; Platas-Iglesias, Carlos; Angelovski, Goran; Tóth, Éva

    2015-07-27

    A series of Gd(3+) complexes exhibiting a relaxometric response to zwitterionic amino acid neurotransmitters was synthesized. The design concept involves ditopic interactions 1) between a positively charged and coordinatively unsaturated Gd(3+) chelate and the carboxylate group of the neurotransmitters and 2) between an azacrown ether appended to the chelate and the amino group of the neurotransmitters. The chelates differ in the nature and length of the linker connecting the cyclen-type macrocycle that binds the Ln(3+) ion and the crown ether. The complexes are monohydrated, but they exhibit high proton relaxivities (up to 7.7 mM(-1)  s(-1) at 60 MHz, 310 K) due to slow molecular tumbling. The formation of ternary complexes with neurotransmitters was monitored by (1) H relaxometric titrations of the Gd(3+) complexes and by luminescence measurements on the Eu(3+) and Tb(3+) analogues at pH 7.4. The remarkable relaxivity decrease (≈80 %) observed on neurotransmitter binding is related to the decrease in the hydration number, as evidenced by luminescence lifetime measurements on the Eu(3+) complexes. These complexes show affinity for amino acid neurotransmitters in the millimolar range, which can be suited to imaging concentrations of synaptically released neurotransmitters. They display good selectivity over non-amino acid neurotransmitters (acetylcholine, serotonin, and noradrenaline) and hydrogenphosphate, but selectivity over hydrogencarbonate was not achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural, spectral, DFT and biological studies on macrocyclic mononuclear ruthenium (II) complexes

    Science.gov (United States)

    Muthukkumar, M.; Kamal, C.; Venkatesh, G.; Kaya, C.; Kaya, S.; Enoch, Israel V. M. V.; Vennila, P.; Rajavel, R.

    2017-11-01

    Macrocyclic mononuclear ruthenium (II) complexes have been synthesized by condensation method [Ru (L1, L2, L3) Cl2] L1 = (C36 H31 N9), L2= (C42H36N8), L3= (C32H32 N8)]. These ruthenium complexes have been established by elemental analyses and spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR), 1H- nuclear magnetic resonance (NMR), 13C- NMR and Electrospray ionization mass spectrometry (ESI-MS)). The coordination mode of the ligand has been confirmed and the octahedral geometry around the ruthenium ion has been revealed. Binding affinity and binding mode of ruthenium (II) complexes with Bovine serum Albumin (BSA) have been characterized by Emission spectra analysis. UV-Visible and fluorescence spectroscopic techniques have also been utilized to examine the interaction between ligand and its complexes L1, L2, & L3 with BSA. Chemical parameters and molecular structure of Ru (II) complexes L1H, L2H, & L3H have been determined by DFT coupled with B3LYP/6-311G** functional in both the gaseous and aqueous phases.

  20. Potent Inhibitors of the Hepatitis C Virus NS3 Protease: Design and Synthesis of Macrocyclic Substrate-Based [beta]-Strand Mimics

    Energy Technology Data Exchange (ETDEWEB)

    Goudreau, Nathalie; Brochu, Christian; Cameron, Dale R.; Duceppe, Jean-Simon; Faucher, Anne-Marie; Ferland, Jean-Marie; Grand-Maître, Chantal; Poirier, Martin; Simoneau, Bruno; Tsantrizos, Youla S. (Boehringer)

    2008-06-30

    The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring {beta}-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.

  1. An artificial molecular machine that builds an asymmetric catalyst

    Science.gov (United States)

    De Bo, Guillaume; Gall, Malcolm A. Y.; Kuschel, Sonja; De Winter, Julien; Gerbaux, Pascal; Leigh, David A.

    2018-05-01

    Biomolecular machines perform types of complex molecular-level tasks that artificial molecular machines can aspire to. The ribosome, for example, translates information from the polymer track it traverses (messenger RNA) to the new polymer it constructs (a polypeptide)1. The sequence and number of codons read determines the sequence and number of building blocks incorporated into the biomachine-synthesized polymer. However, neither control of sequence2,3 nor the transfer of length information from one polymer to another (which to date has only been accomplished in man-made systems through template synthesis)4 is easily achieved in the synthesis of artificial macromolecules. Rotaxane-based molecular machines5-7 have been developed that successively add amino acids8-10 (including β-amino acids10) to a growing peptide chain by the action of a macrocycle moving along a mono-dispersed oligomeric track derivatized with amino-acid phenol esters. The threaded macrocycle picks up groups that block its path and links them through successive native chemical ligation reactions11 to form a peptide sequence corresponding to the order of the building blocks on the track. Here, we show that as an alternative to translating sequence information, a rotaxane molecular machine can transfer the narrow polydispersity of a leucine-ester-derivatized polystyrene chain synthesized by atom transfer radical polymerization12 to a molecular-machine-made homo-leucine oligomer. The resulting narrow-molecular-weight oligomer folds to an α-helical secondary structure13 that acts as an asymmetric catalyst for the Juliá-Colonna epoxidation14,15 of chalcones.

  2. High yielding synthesis of 2,2′-bipyridine macrocycles, versatile intermediates in the synthesis of rotaxanes

    OpenAIRE

    Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli, M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M.

    2016-01-01

    We present an operationally simple approach to 2,2?-bipyridine macrocycles. Our method uses simple starting materials to produce these previously hard to access rotaxane precursors in remarkable yields (typically >65%) across a range of scales (0.1–5 mmol). All of the macrocycles reported are efficiently converted (>90%) to rotaxanes under AT-CuAAC conditions. With the requisite macrocycles finally available in sufficient quantities, we further demonstrate their long term utility throug...

  3. Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

    Science.gov (United States)

    Song, Xiao; Lu, Lu-Yi; Passioura, Toby; Suga, Hiroaki

    2017-06-21

    Ebola virus infection leads to severe hemorrhagic fever in human and non-human primates with an average case fatality rate of 50%. To date, numerous potential therapies are in development, but FDA-approved drugs or vaccines are yet unavailable. Ebola viral protein 24 (VP24) is a multifunctional protein that plays critical roles in the pathogenesis of Ebola virus infection, e.g. innate immune suppression by blocking the interaction between KPNA and PY-STAT1. Here we report macrocyclic peptide inhibitors of the VP24-KPNA5 protein-protein interaction (PPI) by means of the RaPID (Random non-standard Peptides Integrated Discovery) system. These macrocyclic peptides showed remarkably high affinity to recombinant Zaire Ebola virus VP24 (eVP24), with a dissociation constant in the single digit nanomolar range, and could also successfully disrupt the eVP24-KPNA interaction. This work provides for the first time a chemical probe capable of modulating this PPI interaction and is the starting point for the development of unique anti-viral drugs against the Ebola virus.

  4. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  5. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle.

    Science.gov (United States)

    Waelès, Philip; Fournel-Marotte, Karine; Coutrot, Frédéric

    2017-08-25

    This paper reports on the synthesis of a tri-stable [2]rotaxane molecular shuttle, in which the motion of the macrocycle is triggered by either selective protonation/deprotonation or specific carbamoylation/decarbamoylation of an alkylbenzylamine. The threaded axle is surrounded by a dibenzo[24]crown[8] (DB24C8) macrocycle and contains three sites of different binding affinities towards the macrocycle. An N-methyltriazolium moiety acts as a molecular station that has weak affinity for the DB24C8 macrocycle and is located in the centre of the molecular axle. Two other molecular stations, arylammonium and alkylbenzylammonium moieties, sit on either side of the triazolium moiety along the molecular axle and have stronger affinities for the DB24C8 macrocycle. These two ammonium moieties are covalently linked to two different stopper groups at each extremity of the thread: a tert-butylphenyl group and a substituted DB24C8 unit. Owing to steric hindrance, the former does not allow any π-π stacking interactions with the encircling DB24C8 macrocycle, whereas the latter residue does; therefore, this allows the discrimination of the two ammonium stations by the surrounding DB24C8 macrocycle in the fully protonated state. In the deprotonated state, the contrasting reactivity of the amine functional groups, as either a base or a nucleophile, allows for selective reactions that trigger the controlled shuttling of the macrocycle around the three molecular stations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System.

    Science.gov (United States)

    Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D; Brust, Rachael D; Hennessy, Morgan L; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N; Dymecki, Susan M

    2015-11-18

    Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    Science.gov (United States)

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  8. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1979-01-01

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation

  9. Electron transfer reactions of macrocyclic compounds of cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1978-08-01

    The kinetics and mechanisms of reduction of H/sub 2/O/sub 2/, Br/sub 2/, and I/sub 2/ by various macrocyclic tetraaza complexes of cobalt(II), including Vitamin B/sub 12r/, were studied. The synthetic macrocycles studied were all 14-membered rings which varied in the degree of unsaturation,substitution of methyl groups on the periphery of the ring, and substitution within the ring itself. Scavenging experiments demonstrated that the reductions of H/sub 2/O/sub 2/ produce free hydroxyl radicals only in the case of Co((14)ane)/sup 2 +/ but with none of the others. In the latter instances apparently H/sub 2/O/sub 2/ simultaneously oxidizes the metal center and the ligand. The reductions of Br/sub 2/ and I/sub 2/ produce an aquohalocobalt(III) product for all reductants (except B/sub 12r/ + Br/sub 2/, which was complicated by bromination of the corrin ring). The mechanism of halogen reduction was found to involve rate-limiting inner-sphere electron transfer from cobalt to halogen to produce a dihalide anion coordinated to the cobalt center. This intermediate subsequently decomposes in rapid reactions to halocobalt(III) and halogen atom species or reacts with another cobalt(II) center to give two molecules of halocobalt(III). The reductions of halomethylcobaloximes and related compounds and diamminecobaloxime by Cr/sup 2 +/ were also studied. The reaction was found to be biphasic in all cases with the reaction products being halomethane (for the halomethylcobaloximes), Co/sup 2 +/ (in less than 100 percent yield), a Cr(III)-dimethylglyoxime species, a small amount of free dmgH/sub 2/, and a highly-charged species containing both cobalt and chromium. The first-stage reaction occurs with a stoichiometry of 1:1 producing an intermediate with an absorption maximum at 460 nm for all starting reagents. The results were interpreted in terms of inner-sphere coordination of the cobaloxime to the Cr(II) and electron transfer through the oxime N-O bond.

  10. [Tl(III)(dota)](-): An Extraordinarily Robust Macrocyclic Complex.

    Science.gov (United States)

    Fodor, Tamás; Bányai, István; Bényei, Attila; Platas-Iglesias, Carlos; Purgel, Mihály; Horváth, Gábor L; Zékány, László; Tircsó, Gyula; Tóth, Imre

    2015-06-01

    The X-ray structure of {C(NH2)3}[Tl(dota)]·H2O shows that the Tl(3+) ion is deeply buried in the macrocyclic cavity of the dota(4-) ligand (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) with average Tl-N and Tl-O distances of 2.464 and 2.365 Å, respectively. The metal ion is directly coordinated to the eight donor atoms of the ligand, which results in a twisted square antiprismatic (TSAP') coordination around Tl(3+). A multinuclear (1)H, (13)C, and (205)Tl NMR study combined with DFT calculations confirmed the TSAP' structure of the complex in aqueous solution, which exists as the Λ(λλλλ)/Δ(δδδδ) enantiomeric pair. (205)Tl NMR spectroscopy allowed the protonation constant associated with the protonation of the complex according to [Tl(dota)](-) + H(+) ⇆ [Tl(Hdota)] to be determined, which turned out to be pK(H)Tl(dota) = 1.4 ± 0.1. [Tl(dota)](-) does not react with Br(-), even when using an excess of the anion, but it forms a weak mixed complex with cyanide, [Tl(dota)](-) + CN(-) ⇆ [Tl(dota)(CN)](2-), with an equilibrium constant of Kmix = 6.0 ± 0.8. The dissociation of the [Tl(dota)](-) complex was determined by UV-vis spectrophotometry under acidic conditions using a large excess of Br(-), and it was found to follow proton-assisted kinetics and to take place very slowly (∼10 days), even in 1 M HClO4, with the estimated half-life of the process being in the 10(9) h range at neutral pH. The solution dynamics of [Tl(dota)](-) were investigated using (13)C NMR spectroscopy and DFT calculations. The (13)C NMR spectra recorded at low temperature (272 K) point to C4 symmetry of the complex in solution, which averages to C4v as the temperature increases. This dynamic behavior was attributed to the Λ(λλλλ) ↔ Δ(δδδδ) enantiomerization process, which involves both the inversion of the macrocyclic unit and the rotation of the pendant arms. According to our calculations, the arm-rotation process limits the Λ(λλλλ) ↔

  11. Atomic and Molecular Systems in Intense Ultrashort Laser Pulses

    Science.gov (United States)

    Saenz, A.

    2008-07-01

    The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some

  12. Hybrid Metaheuristic Approach for Nonlocal Optimization of Molecular Systems.

    Science.gov (United States)

    Dresselhaus, Thomas; Yang, Jack; Kumbhar, Sadhana; Waller, Mark P

    2013-04-09

    Accurate modeling of molecular systems requires a good knowledge of the structure; therefore, conformation searching/optimization is a routine necessity in computational chemistry. Here we present a hybrid metaheuristic optimization (HMO) algorithm, which combines ant colony optimization (ACO) and particle swarm optimization (PSO) for the optimization of molecular systems. The HMO implementation meta-optimizes the parameters of the ACO algorithm on-the-fly by the coupled PSO algorithm. The ACO parameters were optimized on a set of small difluorinated polyenes where the parameters exhibited small variance as the size of the molecule increased. The HMO algorithm was validated by searching for the closed form of around 100 molecular balances. Compared to the gradient-based optimized molecular balance structures, the HMO algorithm was able to find low-energy conformations with a 87% success rate. Finally, the computational effort for generating low-energy conformation(s) for the phenylalanyl-glycyl-glycine tripeptide was approximately 60 CPU hours with the ACO algorithm, in comparison to 4 CPU years required for an exhaustive brute-force calculation.

  13. Dissociation kinetics of acyclic and macrocyclic polyaminopolycarboxylate complexes of yttrium

    International Nuclear Information System (INIS)

    Pathak, P.N.; Manchanda, V.K.

    2000-01-01

    Dissociation kinetics of Y III complexes of a linear as well as two macrocyclic polyaminopolycarboxylates, ethylenediamine diacetic acid (EDDA), 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid (K21DA) and 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N'-diacetic acid (K22DA) have been studied at a constant ionic strength (0.1 M) under varying (H + ) and temperatures. Cu II ion acts as the scavenger of the free ligand. Dissociation rate of Y III -K21DA is insensitive to Cu II and acetate (used as buffer anion) concentrations. Kinetic stability of the three complexes follow the order : Y III -K22DA>Y III -K21DA>Y III -EDDA. Enthalpies of activation for K21DA and K22DA complexes of Y III are also evaluated. Thermodynamic stability constant (log K) for Y III -K22DA complex is 10.81 ± 0.04. (author)

  14. Molecular mechanisms of aging and immune system regulation in Drosophila.

    Science.gov (United States)

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  15. Selective excitation, relaxation, and energy channeling in molecular systems

    International Nuclear Information System (INIS)

    Rhodes, W.C.

    1993-08-01

    Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems

  16. Theoretical studies on the possible sensitizers of DSSC: Nanocomposites of graphene quantum dot hybrid phthalocyanine/tetrabenzoporphyrin/tetrabenzotriazaporphyrins/cis-tetrabenzodiazaporphyrins/tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles

    Science.gov (United States)

    Gao, Feng; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2018-04-01

    The feasibility of nanocomposites of cir-coronene graphene quantum dot (GQD) with phthalocyanine, tetrabenzoporphyrin, tetrabenzotriazaporphyrins, cis-tetrabenzodiazaporphyrins, tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles as a sensitizer of dye-sensitized solar cells (DSSC) are investigated. Based on the first principles density functional theory (DFT), the geometrical structures of the separate GQD and 10 macrocycles, and their hybridized nanocomposites are fully optimized. The energy stabilities of the obtained structures are confirmed by harmonic frequency analysis. The optical absorptions of the optimized structures are calculated with time-dependent DFT. The feasibility of the nanocomposites as the sensitizer of DSSC is examined by the charge spatial separation, the electron transfer, the molecular orbital energy levels of the nanocomposites and the electrolyte, and the conduction band minimum of TiO2 electrode. The results demonstrate that all the nanocomposites have enhanced absorptions in the visible light range, and their molecular orbital energies satisfy the requirement of sensitizers. However, only two of the ten considered nanocomposites demonstrate significantly charge spatial separation. The GQD-Cu-TBP is identified as the most favorable candidate sensitizer of DSSC by the most enhanced in optical absorption, obvious charge spatial separation, suitable LUMO energy levels and driving force for electron transfer, and low recombination rate of electron and hole.

  17. Assembly, destruction and manipulation of atomic, molecular and complex systems

    International Nuclear Information System (INIS)

    Le Padellec, Arnaud Pierre Frederic

    2003-04-01

    In this report for Accreditation to Supervise Researches (HDR), the author first indicates his professional curriculum (diplomas, teaching activities, responsibilities in the field of education and research, publications), and then proposes a presentation of his scientific works and researches. He notably proposes an overview of the different experimental techniques he implemented: CRYRING storage ring, confluent beams, flow post-discharge with mass spectrometry and Langmuir probe, crossed beams, and so on. He reports works dealing with the manipulation and destruction of atomic, molecular and complex systems: detachment of atomic anions by electronic impact, detachment and dissociation of small carbon aggregates by electronic impact, dissociative recombination, dissociative ionisation and excitation, creation of pairs of ions, manipulation of sodium fluoride aggregates. He finally presents research projects regarding the assembly of molecular and complex systems

  18. Interactive display of molecular models using a microcomputer system

    Science.gov (United States)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  19. Catecholaminergic systems in stress: structural and molecular genetic approaches.

    Science.gov (United States)

    Kvetnansky, Richard; Sabban, Esther L; Palkovits, Miklos

    2009-04-01

    Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct

  20. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    Science.gov (United States)

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  1. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism

    Directory of Open Access Journals (Sweden)

    Joscha Vollmeyer

    2014-11-01

    Full Text Available Three shape-persistent naphthylene–phenylene–acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  2. Zn2+ -Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles.

    Science.gov (United States)

    Ullmann, Steve; Schnorr, René; Handke, Marcel; Laube, Christian; Abel, Bernd; Matysik, Jörg; Findeisen, Matthias; Rüger, Robert; Heine, Thomas; Kersting, Berthold

    2017-03-17

    A macrocyclic ligand (H 2 L) containing two o,o'-bis(iminomethyl)phenol and two calix[4]arene head units has been synthesized and its coordination chemistry towards divalent Ni and Zn investigated. The new macrocycle forms complexes of composition [ML] (M=Zn, M=Ni) and [ZnL(py) 2 ], which were characterized by elemental analysis; IR, UV/Vis, and NMR spectroscopy; electrospray ionization mass spectrometry (ESI-MS); and X-ray crystallography (for [ZnL(py) 2 ] and [NiL]). H 2 L allows the sensitive optical detection of Zn 2+ among a series of biologically relevant metal ions by a dual fluorescence enhancement/quenching effect in solution. The fluorescence intensity of the macrocycle increases by a factor of ten in the presence of Zn 2+ with a detection limit in the lower nanomolar region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Macrocyclic ligands for uranium complexation. Final report, August 1, 1986--March 31, 1993

    International Nuclear Information System (INIS)

    Potts, K.T.

    1993-01-01

    Macrocycles, designed for complexation of the uranyl ion by computer modeling studies and utilizing six ligating atoms in the equatorial plane of the uranyl ions, have been prepared and their complexation of the uranyl ions evaluated. The ligating atoms, either oxygen or sulfur, were part of acylurea, biuret or thiobiuret subunits with alkane chains or pyridine units completing the macrocyclic periphery. These macrocycles with only partial preorganization formed uranyl complexes in solution but no crystalline complexes were isolated. Refinement of the cavity diameter by variation of the peripheral functional groups is currently studied to achieve an optimized cavity diameter of 4.7--5.2 angstrom. Acyclic ligands containing the same ligating atoms in equivalent functional entities were found to form a crystalline 1:1 uranyl-ligand complex (stability constant log K = 10.7) whose structure was established by X-ray data. This complex underwent a facile, DMSO-induced rearrangement to a 2:1 uranyl-ligand complex whose structure was also established by X-ray data. The intermediates to the macrocycles all behaved as excellent ligands for the complexation of transition metals. Acylthiourea complexes of copper and nickel as well as intermolecular, binuclear copper and nickel complexes of bidentate carbonyl thioureas formed readily and their structures were established in several representative instances by X-ray structural determinations. Tetradentate bis(carbonylthioureas) were found to be very efficient selective reagents for the complexation of copper in the presence of nickel ions. Several preorganized macrocycles were also prepared but in most instances these macrocycles underwent ring-opening under complexation conditions

  4. Evaluation of the larval migration inhibition assay for detecting macrocyclic lactone resistance in Dirofilaria immitis.

    Science.gov (United States)

    Evans, Christopher C; Moorhead, Andrew R; Storey, Bobby E; Blagburn, Byron L; Wolstenholme, Adrian J; Kaplan, Ray M

    2017-11-15

    Anthelmintics of the macrocyclic lactone (ML) drug class are widely used as preventives against the canine heartworm (Dirofilaria immitis). Over the past several years, however, reports of ML lack of efficacy (LOE) have emerged, in which dogs develop mature heartworm infection despite the administration of monthly prophylactics. More recently, isolates from LOE cases have been used to infect laboratory dogs and the resistant phenotype has been confirmed by the establishment of adult worms in the face of ML treatment at normally preventive dosages. Testing for and monitoring resistance in D. immitis requires a validated biological or molecular diagnostic assay. In this study, we assessed a larval migration inhibition assay (LMIA) that we previously optimized for use with D. immitis third-stage larvae (L 3 ). We used this assay to measure the in vitro ML susceptibilities of a known-susceptible laboratory strain of D. immitis and three highly suspected ML-resistant isolates originating from three separate LOE cases; progeny from two of these isolates have been confirmed ML-resistant by treatment of an infected dog in a controlled setting. A nonlinear regression model was fit to the dose-response data, from which IC 50 values were calculated. The D. immitis LMIA yielded consistent and reproducible dose-response data; however, no statistically significant differences in drug susceptibility were observed between control and LOE parasites. Additionally, the drug concentrations needed to paralyze the L 3 were much higher than those third- and fourth-stage larvae would experience in vivo. IC 50 values ranged from 1.57 to 5.56μM (p≥0.19). These data could suggest that ML resistance in this parasite is not mediated through a reduced susceptibility of L 3 to the paralytic effects of ML drugs, and therefore motility-based assays are likely not appropriate for measuring the effects of MLs against D. immitis in this target stage. Published by Elsevier B.V.

  5. Development of an in vitro bioassay for measuring susceptibility to macrocyclic lactone anthelmintics in Dirofilaria immitis.

    Science.gov (United States)

    Evans, Christopher C; Moorhead, Andrew R; Storey, Bobby E; Wolstenholme, Adrian J; Kaplan, Ray M

    2013-12-01

    For more than 20 years, anthelmintics of the macrocyclic lactone (ML) drug class have been widely and effectively used as preventives against the canine heartworm, Dirofilaria immitis. However, in recent years an increased number of lack of efficacy (LOE) cases are being reported, in which dogs develop mature heartworm infections despite receiving monthly prophylactic doses of ML drugs. While this situation is raising concerns that heartworms may be developing resistance to MLs, compelling evidence for this is still lacking. Resolution of this dilemma requires validated biological or molecular diagnostic assays, but, unfortunately, no such tests currently exist. To address this need, we developed and optimized a larval migration inhibition assay (LMIA) for use with D. immitis third-stage larvae. The LMIA was used to measure the in vitro dose-response of two ML drugs (ivermectin and eprinomectin) on a known ML-susceptible laboratory strain of D. immitis. A nonlinear regression model was fit to the dose-response data, from which IC50 values were calculated; the mean IC50 and 95% confidence interval for IVM was 4.56 μM (1.26-16.4 μM), greater than that for EPR at 2.02 μM (1.68-2.42 μM), and this difference was significant (p = 0.0428). The R (2) value for EPR assays (0.90) was also greater than that for IVM treatment (0.71). The consistency and reproducibility of the dose-response data obtained with this assay suggests that it may be a useful technique for investigating the relative susceptibilities to ML drugs in other D. immitis populations.

  6. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-06-22

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  7. Use of a macrocyclic antibiotic as the chiral selector for enantiomeric separations by TLC

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.W.; Zhou, Y. (Univ. of Missouri, Rolla, MO (United States). Dept. of Chemistry)

    1994-01-01

    The macrocyclic antibiotic, vancomycin, was used as a chiral mobile phase additive for the thin layer chromatographic (TLC) resolution of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatized amino acids, racemic drugs and dansyl-amino acids. Excellent separations were achieved for most of these compounds in the reversed phase mode. Both the nature of the stationary phase and the composition of the mobile phase strongly influenced enantiomeric resolution. The best results were obtained using diphenyl stationary phases. Acetonitrile was the organic modifier that produced the most effective separations with the shortest development times. It is highly likely that macrocyclic antibiotics will play a major role in future enantiomeric separations.

  8. Olfactory memory formation in Drosophila: from molecular to systems neuroscience.

    Science.gov (United States)

    Davis, Ronald L

    2005-01-01

    The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have continued to expand the range of molecular processes known to underlie memory formation. Recent research has also broadened the neuroanatomical areas thought to mediate olfactory learning to include the antennal lobes in addition to a previously accepted and central role for the mushroom bodies. The roles for neurons extrinsic to the mushroom body neurons are becoming better defined. Finally, the genes identified to participate in Drosophila olfactory learning have conserved roles in mammalian organisms, highlighting the value of Drosophila for gene discovery.

  9. Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.

    Science.gov (United States)

    Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H

    2016-01-01

    Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles.

  10. The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles

    Science.gov (United States)

    Taniguchi, Masahiko; Ptaszek, Marcin; Chandrashaker, Vanampally; Lindsey, Jonathan S.

    2017-03-01

    Attempts to develop a credible prebiotic route to tetrapyrroles have relied on enzyme-free recapitulation of the extant biosynthesis, but this process has foundered from the inability to form the pyrrole porphobilinogen ( PBG) in good yield by self-condensation of the precursor δ-aminolevulinic acid ( ALA). PBG undergoes robust oligomerization in aqueous solution to give uroporphyrinogen (4 isomers) in good yield. ALA, PBG, and uroporphyrinogen III are universal precursors to all known tetrapyrrole macrocycles. The enzymic formation of PBG entails carbon-carbon bond formation between the less stable enolate/enamine of one ALA molecule (3-position) and the carbonyl/imine (4-position) of the second ALA molecule; without enzymes, the first ALA reacts at the more stable enolate/enamine (5-position) and gives the pyrrole pseudo-PBG. pseudo-PBG cannot self-condense, yet has one open α-pyrrole position and is proposed to be a terminator of oligopyrromethane chain-growth from PBG. Here, 23 analogues of ALA have been subjected to density functional theoretical (DFT) calculations, but no motif has been identified that directs reaction at the 3-position. Deuteriation experiments suggested 5-(phosphonooxy)levulinic acid would react preferentially at the 3- versus 5-position, but a hybrid condensation with ALA gave no observable uroporphyrin. The results suggest efforts toward a biomimetic, enzyme-free route to tetrapyrroles from ALA should turn away from structure-directed reactions and focus on catalysts that orient the two aminoketones to form PBG in a kinetically controlled process, thereby avoiding formation of pseudo-PBG.

  11. Example of uranium(IV) insertion within a macrocyclic crown ether with coexistence of the metal in two oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Bombieri, G; De Paoli, G [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Immirzi, A

    1978-01-01

    Reaction of UCl/sub 4/ with 18-crown-6 in tetrahydrofuran yields (UCl/sub 4/)/sub 3/ (18-crown-6)/sub 2/ which on recrystallization in nitromethane, gives a partially oxidized and hydrolyzed product whose structure has been investigated by X-ray diffraction. The compound crystallizes in the orthorhombic system. The cell contains eight UCl/sub 3//sup +/ cations each inserted within a crown molecule and four (UO/sub 2/Cl/sub 3/(OH)(H/sub 2/O))/sup 2 -/anions having a pentagonal bipyramidal structure. Four solvated nitromethane molecules are also present. The compound represents one of the very few examples in which uranium exists in two oxidation states, and the first example in which its insertion within a crown macrocycle has been proved by an X-ray diffraction study.

  12. A new parallel molecular dynamics algorithm for organic systems

    International Nuclear Information System (INIS)

    Plimpton, S.; Hendrickson, B.; Heffelfinger, G.

    1993-01-01

    A new parallel algorithm for simulating bonded molecular systems such as polymers and proteins by molecular dynamics (MD) is presented. In contrast to methods that extract parallelism by breaking the spatial domain into sub-pieces, the new method does not require regular geometries or uniform particle densities to achieve high parallel efficiency. For very large, regular systems spatial methods are often the best choice, but in practice the new method is faster for systems with tens-of-thousands of atoms simulated on large numbers of processors. It is also several times faster than the techniques commonly used for parallelizing bonded MD that assign a subset of atoms to each processor and require all-to-all communication. Implementation of the algorithm in a CHARMm-like MD model with many body forces and constraint dynamics is discussed and timings on the Intel Delta and Paragon machines are given. Example calculations using the algorithm in simulations of polymers and liquid-crystal molecules will also be briefly discussed

  13. DNA barcode-based molecular identification system for fish species.

    Science.gov (United States)

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  14. DCMS: A data analytics and management system for molecular simulation.

    Science.gov (United States)

    Kumar, Anand; Grupcev, Vladimir; Berrada, Meryem; Fogarty, Joseph C; Tu, Yi-Cheng; Zhu, Xingquan; Pandit, Sagar A; Xia, Yuni

    Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data volumes and their intensive interactions impose significant challenges for data accessing, managing, and analysis. To date, existing MS software systems fall short on storage and handling of MS data, mainly because of the missing of a platform to support applications that involve intensive data access and analytical process. In this paper, we present the database-centric molecular simulation (DCMS) system our team developed in the past few years. The main idea behind DCMS is to store MS data in a relational database management system (DBMS) to take advantage of the declarative query interface ( i.e. , SQL), data access methods, query processing, and optimization mechanisms of modern DBMSs. A unique challenge is to handle the analytical queries that are often compute-intensive. For that, we developed novel indexing and query processing strategies (including algorithms running on modern co-processors) as integrated components of the DBMS. As a result, researchers can upload and analyze their data using efficient functions implemented inside the DBMS. Index structures are generated to store analysis results that may be interesting to other users, so that the results are readily available without duplicating the analysis. We have developed a prototype of DCMS based on the PostgreSQL system and experiments using real MS data and workload show that DCMS significantly outperforms existing MS software systems. We also used it as a platform to test other data management issues such as security and compression.

  15. Grafting of aza-macrocyclic ligands onto organic fibres for the sequestering of radioelements and cadmium: application to industrial waste water treatment

    International Nuclear Information System (INIS)

    Rascalou, Frederic

    2003-01-01

    Within the frame of a preparation to the industrial transfer of a decontamination process for the processing of low-activity radioactive effluents of the Valduc nuclear centre, this research thesis reports research works which aimed at developing a new support for macrocyclic molecules in replacement of silica, in order to obtain a material which is steady in process conditions, can be incinerated at the end of the process, and could result in a higher production capacity. It also aimed at elaborating a sequestering material specific to cadmium. After a general presentation of challenges related to waste management and a presentation of the specific case of Valduc, the author gives an overview of earlier works, and discusses the validation of the selective solid-liquid extraction as additional technique to those provided by the existing processing plant. He justifies the selection of organic fibres as a new support. He reports the study of the grafting of macrocyclic molecules on viscose and polypropylene fibres, and describes ways of modification of these supports and the synthesis of the different molecular entities. The last part addresses the study of the performance of these new materials: results in static mode, performance in dynamic mode on pilot installations [fr

  16. Selective extraction of lithium with a macrocyclic trinuclear complex of (1,3,5-trimethylbenzene)ruthenium(II) bridged by 2,3-dioxopyridine.

    Science.gov (United States)

    Katsuta, Shoichi; Imoto, Takahiro; Kudo, Yoshihiro; Takeda, Yasuyuki

    2008-10-01

    A macrocyclic trinuclear complex of (1,3,5-trimethylbenzene)ruthenium(II) bridged by 2,3-dioxopyridine was synthesized, and the extraction properties for lithium and sodium picrates were investigated in a dichloromethane/water system at 25 degrees C. The complex was found to have extremely high extractability and selectivity for lithium picrate; the logarithmic values of the extraction constants are 5.86 and 2.63 for Li(+) and Na(+), respectively. By using this complex as an extractant, nearly quantitative extraction and separation of Li(+) from Na(+) could be achieved by a single extraction.

  17. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R

    2011-01-01

    A previously unreported 26-membered polyene macrocyclic lactam, sceliphrolactam, was isolated from an actinomycete, Streptomyces sp., associated with the mud dauber, Sceliphron caementarium. Sceliphrolactam's structure was determined by 1D- and 2D-NMR, MS, UV, and IR spectral analysis. Sceliphrol...

  18. Study of behaviour of Ni(III) macrocyclic complexes in acidic ...

    Indian Academy of Sciences (India)

    The Cu(II) ion-catalysed kinetics of oxidation of H2O2 by [NiIIIL] [where L ... The rate of the reaction of both complexes with hydrogen peroxide shows contrasting ... enhanced kinetic and thermodynamic stabilities. The redox chemistry of synthetic poly-aza macrocycles explores the properties of nickel containing enzymes.1.

  19. Design and synthesis of macrocyclic peptidyl hydroxamates as peptide deformylase inhibitors.

    Science.gov (United States)

    Shen, Gang; Zhu, Jinge; Simpson, Anthony M; Pei, Dehua

    2008-05-15

    Macrocyclic peptidyl hydroxamates were designed, synthesized, and evaluated as peptide deformylase (PDF) inhibitors. The most potent compound exhibited tight, slow-binding inhibition of Escherichia coli PDF (K(I)(*)=4.4 nM) and had potent antibacterial activity against Gram-positive bacterium Bacillus subtilis (MIC=2-4 microg/mL).

  20. Synthesis and extended activity of triazole-containing macrocyclic protease inhibitors

    DEFF Research Database (Denmark)

    Pehere, A.D.; Pietsch, M.; Gütschow, M.

    2013-01-01

    of their activity against a panel of proteases. Acyclic azidoalkyne-based aldehydes are also evaluated for comparison. The macrocyclic peptidomimetics showed considerable activity towards calpain II, cathepsin L and S, and the 20S proteasome chymotrypsin-like activity. Some of the first examples of highly potent...

  1. Towards tumour targeting with copper-radiolabelled macrocycle-antibody conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Morphy, J.R.; Parker, David; Kataky, Ritu; Harrison, Alice; Walker, Carole; Eaton, M.A.W.; Millican, Andrew; Phipps, Alison

    1989-06-15

    Tetraaza-macrocycles covalently attached to a monoclonal antibody may be efficiently radiolabelled with /sup 64/Cu or /sup 67/Cu at pH4, minimising non-specific binding to the protein, giving a kinetically stable conjugate in vivo. (author).

  2. Macrocyclic Peptoid–Peptide Hybrids as Inhibitors of Class I Histone Deacetylases

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Montero, Ana; Leman, Luke J.

    2012-01-01

    We report the design, synthesis, and biological evaluation of the first macrocyclic peptoid-containing histone deacetylase (HDAC) inhibitors. The compounds selectively inhibit human class I HDAC isoforms in vitro, with no inhibition of the tubulin deacetylase activity associated with class IIb HDAC...

  3. Metacridamides A and B, bioactive macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum

    Science.gov (United States)

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A (1) and B (2), which consist of a Phe unit condensed with a nonaketide....

  4. Experimental and DFT study on complexation of Eu3+ with a macrocyclic lactam receptor

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Záliš, Stanislav; Vaňura, P.; Sedláková, Zdeňka

    2013-01-01

    Roč. 24, č. 6 (2013), s. 2149-2153 ISSN 1040-0400 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : europium * macrocyclic lactam receptor * complexation Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 1.900, year: 2013

  5. Complexation of Eu3+ with a macrocyclic lactam receptor: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Záliš, Stanislav; Sedláková, Zdeňka; Vaňura, P.

    2013-01-01

    Roč. 1038, APR 2013 (2013), s. 216-219 ISSN 0022-2860 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : europium * macrocyclic lactam receptor * complexation Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 1.599, year: 2013

  6. International Conference on Intelligent Systems for Molecular Biology (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Debra; Hibbs, Matthew; Kall, Lukas; Komandurglayavilli, Ravikumar; Mahony, Shaun; Marinescu, Voichita; Mayrose, Itay; Minin, Vladimir; Neeman, Yossef; Nimrod, Guy; Novotny, Marian; Opiyo, Stephen; Portugaly, Elon; Sadka, Tali; Sakabe, Noboru; Sarkar, Indra; Schaub, Marc; Shafer, Paul; Shmygelska, Olena; Singer, Gregory; Song, Yun; Soumyaroop, Bhattacharya; Stadler, Michael; Strope, Pooja; Su, Rong; Tabach, Yuval; Tae, Hongseok; Taylor, Todd; Terribilini, Michael; Thomas, Asha; Tran, Nam; Tseng, Tsai-Tien; Vashist, Akshay; Vijaya, Parthiban; Wang, Kai; Wang, Ting; Wei, Lai; Woo, Yong; Wu, Chunlei; Yamanishi, Yoshihiro; Yan, Changhui; Yang, Jack; Yang, Mary; Ye, Ping; Zhang, Miao

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on "intelligent systems" and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  7. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  8. Radiolytic and photochemical reduction of carbon dioxide in solution catalyzed by transition metal complexes with some selected macrocycles

    International Nuclear Information System (INIS)

    Grodkowski, J.

    2004-01-01

    The main goal of the work presented in this report is an explanation of the mechanism of carbon dioxide (CO 2 ) reduction catalyzed by transition metal complexes with some selected macrocycles. The catalytic function of two electron exchange centers in the reduction of CO 2 , an inner metal and a macrocycle ring, was defined. Catalytic effects of rhodium, iron and cobalt porphyrins, cobalt and iron phthalocyanines and corroles as well as cobalt corrins have been investigated. CO 2 reduction by iron ions without presence of macrocycles and also in presence of copper compounds in aqueous solutions have been studied as well

  9. Electronic structure, transport, and collective effects in molecular layered systems

    Directory of Open Access Journals (Sweden)

    Torsten Hahn

    2017-10-01

    Full Text Available The great potential of organic heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc and a flourinated copper phthalocyanine–manganese phthalocyanine (F16CoPc/MnPc heterostructure, are investigated by means of density functional theory (DFT and the non-equilibrium Green’s function (NEGF approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT. We describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach.

  10. Stability of molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2012-01-01

    The existence of a shadow Hamiltonian for discrete classical dynamics, obtained by an asymptotic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dynamics....... The investigation is based on the stability of the shadow energy, obtained by including the first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency ω gives a criterion...... for the limit of stability h ⩽ 2/ω. Simulations of the Lennard-Jones system and the viscous Kob-Andersen system show that one can use the limit of stability of the shadow energy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to determine the limit of stability of MD...

  11. Intermolecular thermoelectric-like effects in molecular nano electronic systems

    International Nuclear Information System (INIS)

    Sabzyan, H.; Safari, R.

    2012-01-01

    Intramolecular thermoelectric-like coefficients are introduced and computed of a single molecule nano electronic system. Values of the electronic Intramolecular thermoelectric-like coefficients are calculated based on the density and energy transfers between different parts of the molecule using quantum theory of atoms in molecule. Since, Joule and Peltier heating are even (symmetrical) and odd (antisymmetric) functions of the external bias, it is possible to divide Intramolecular thermoelectric-like coefficients into two components, symmetrical and antisymmetrical Intramolecular thermoelectric-like coefficients, which describe the intramolecular Joule-like and Peltier-like effects, respectively. In addition, a semiclassical temperature model is presented to describe intramolecular temperature mapping (intramolecular energy distributions) in molecular nano electronic systems.

  12. Encounters of The Solar System With Molecular Clouds

    International Nuclear Information System (INIS)

    Wickramasinghe, J. T.

    2008-01-01

    The solar system has penetrated about 5 -- 10 giant molecular clouds over its history, and passes within 5 parsecs of a star-forming nebula every 100 million years or so. Numerical simulations of the effect of such encounters in perturbing the Oort cloud of comets are carried out using standard n-body computational techniques. It is found that the ingress of comets into the inner planetary system during such encounters amounts to factors of ∼100 over the average. During an encounter the impact rate of comets onto Earth increases by a comparable factor. The of ages of impact craters on the Earth is shown to be consistent with predictions from the model

  13. m-Diethynylbenzene macrocycles: syntheses and self-association behavior in solution.

    Science.gov (United States)

    Tobe, Yoshito; Utsumi, Naoto; Kawabata, Kazuya; Nagano, Atsushi; Adachi, Kiyomi; Araki, Shunji; Sonoda, Motohiro; Hirose, Keiji; Naemura, Koichiro

    2002-05-15

    m-Diethynylbenzene macrocycles (DBMs), buta-1,3-diyne-bridged [4(n)]metacyclophanes, have been synthesized and their self-association behaviors in solution were investigated. Cyclic tetramers, hexamers, and octamers of DBMs having exo-annular octyl, hexadecyl, and 3,6,9-trioxadecyl ester groups were prepared by intermolecular oxidative coupling of dimer units or intramolecular cyclization of the corresponding open-chain oligomers. The aggregation properties were investigated by two methods, the (1)H NMR spectra and the vapor pressure osmometry (VPO). Although some discrepancies were observed between the association constants obtained from the two methods, the qualitative view was consistent with each other. The analysis of self-aggregation by VPO revealed unique aggregation behavior of DBMs in acetone and toluene, which was not elucidated by the NMR method. Namely, the association constants for infinite association are several times larger than the dimerization constant, suggesting that the aggregation is enhanced by the formation of dimers (a nucleation mechanism). In polar solvents, DBMs aggregate more strongly than in chloroform due to the solvophobic interactions between the macrocyclic framework and the solvents. Moreover, DBMs self-associate in aromatic solvents such as toluene and o-xylene more readily than in chloroform. In particular, the hexameric DBM having a large macrocyclic cavity exhibits extremely large association constants in aromatic solvents. By comparing the aggregation properties of DBMs with the corresponding acyclic oligomers, the effect of the macrocyclic structure on the aggregation propensity was clarified. Finally, it turned out that DBMs tend to aggregate more readily than the corresponding phenylacetylene macrocycles, acetylene-bridged [2(n)]metacyclophanes, owing to the withdrawal of the electron density from the aromatic rings by the butadiyne linkages which facilitates pi-pi stacking interactions.

  14. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene glycol ...

  15. Phase equilibria and molecular interaction studies on (naphthols + vanillin) systems

    International Nuclear Information System (INIS)

    Gupta, Preeti; Agrawal, Tanvi; Das, Shiva Saran; Singh, Nakshatra Bahadur

    2012-01-01

    Highlights: ► Phase equilibria of (naphthol + vanillin) systems have been studied for the first time. ► Eutectic type phase diagrams are obtained. ► Eutectic mixtures show nonideal behaviour. ► There is a weak molecular interaction between the components in the eutectic mixtures. ► α-Naphthol–vanillin eutectic is more stable as compared to β-naphthol–vanillin. - Abstract: Phase equilibria between (α-naphthol + vanillin) and (β-naphthol + vanillin) systems have been studied by thaw-melt method and the results show the formation of simple eutectic mixtures. Crystallization velocities of components and eutectic mixtures were determined at different stages under cooling. With the help of differential scanning calorimeter (DSC), the enthalpy of fusion of components and eutectic mixtures was determined and from the values excess thermodynamic functions viz., excess Gibbs free energy (G E ), excess entropy (S E ), excess enthalpy (H E ) of hypo-, hyper- and eutectic mixtures were calculated. Flexural strength measurements were made in order to understand the non-ideal nature of eutectics. FT-IR spectral studies indicate the formation of hydrogen bond in the eutectic mixture. Anisotropic and isotropic microstructural studies of components, hypo-, hyper- and eutectic mixtures were made. Jackson’s roughness parameter was calculated and found to be greater than 2 suggesting the faceted morphology with irregular structures. The overall results have shown that there is a weak molecular interaction between the components in the eutectic mixtures and the (α-naphthol + vanillin) eutectic is more stable as compared to the (β-naphthol + vanillin) eutectic system.

  16. Charge migration and charge transfer in molecular systems

    Directory of Open Access Journals (Sweden)

    Hans Jakob Wörner

    2017-11-01

    Full Text Available The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.

  17. Evidence for systems-level molecular mechanisms of tumorigenesis

    Directory of Open Access Journals (Sweden)

    Capellá Gabriel

    2007-06-01

    Full Text Available Abstract Background Cancer arises from the consecutive acquisition of genetic alterations. Increasing evidence suggests that as a consequence of these alterations, molecular interactions are reprogrammed in the context of highly connected and regulated cellular networks. Coordinated reprogramming would allow the cell to acquire the capabilities for malignant growth. Results Here, we determine the coordinated function of cancer gene products (i.e., proteins encoded by differentially expressed genes in tumors relative to healthy tissue counterparts, hereafter referred to as "CGPs" defined as their topological properties and organization in the interactome network. We show that CGPs are central to information exchange and propagation and that they are specifically organized to promote tumorigenesis. Centrality is identified by both local (degree and global (betweenness and closeness measures, and systematically appears in down-regulated CGPs. Up-regulated CGPs do not consistently exhibit centrality, but both types of cancer products determine the overall integrity of the network structure. In addition to centrality, down-regulated CGPs show topological association that correlates with common biological processes and pathways involved in tumorigenesis. Conclusion Given the current limited coverage of the human interactome, this study proposes that tumorigenesis takes place in a specific and organized way at the molecular systems-level and suggests a model that comprises the precise down-regulation of groups of topologically-associated proteins involved in particular functions, orchestrated with the up-regulation of specific proteins.

  18. Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems

    Science.gov (United States)

    Stanton, L. G.; Glosli, J. N.; Murillo, M. S.

    2018-04-01

    Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.

  19. Molecular dynamic simulations of the sputtering of multilayer organic systems

    CERN Document Server

    Postawa, Z; Piaskowy, J; Krantzman, K; Winograd, N; Garrison, B J

    2003-01-01

    Sputtering of organic overlayers has been modeled using molecular dynamics computer simulations. The investigated systems are composed of benzene molecules condensed into one, two and three layers on an Ag left brace 1 1 1 right brace surface. The formed organic overlayers were bombarded with 4 keV Ar projectiles at normal incidence. The development of the collision cascade in the organic overlayer was investigated. The sputtering yield, mass, internal and kinetic energy distributions of ejected particles have been analyzed as a function of the thickness of the organic layer. The results show that all emission characteristics are sensitive to the variation of layer thickness. Although most of the ejected intact benzene molecules originate from the topmost layer, the emission of particles located initially in second and third layers is significant. The analysis indicates that the metallic substrate plays a dominant role in the ejection of intact organic molecules.

  20. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  1. Isolating strong-field dynamics in molecular systems

    Science.gov (United States)

    Orenstein, Gal; Pedatzur, Oren; Uzan, Ayelet J.; Bruner, Barry D.; Mairesse, Yann; Dudovich, Nirit

    2017-05-01

    Strong-field ionization followed by recollision provides a unique pump-probe measurement which reveals a range of electronic processes, combining sub-Angstrom spatial and attosecond temporal resolution. A major limitation of this approach is imposed by the coupling between the spatial and temporal degrees of freedom. In this paper we focus on the study of high harmonic generation and demonstrate the ability to isolate the internal dynamics—decoupling the temporal information from the spatial one. By applying an in situ approach we reveal the universality of the intrinsic pump-probe measurement and establish its validity in molecular systems. When several orbitals are involved we identify the fingerprint of the transition from the single-channel case into the multiple-channel dynamics, where complex multielectron phenomena are expected to be observed.

  2. Synergistic extraction of some divalent metal cations into nitrobenzene by using strontium dicarbollylcobaltate and electroneutral macrocyclic lactam receptor

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Sedláková, Zdeňka; Vaňura, P.; Selucký, P.

    2013-01-01

    Roč. 295, č. 3 (2013), s. 2263-2266 ISSN 0236-5731 Institutional support: RVO:61389013 Keywords : divalent metal cations * macrocyclic lactam receptor * complexation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.415, year: 2013

  3. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  4. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    Science.gov (United States)

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  5. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia; Chazirakis, A.; Tsourtis, A.; Katsoulakis, M. A.; Plechá č, P.; Harmandaris, V.

    2016-01-01

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  6. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia

    2016-10-18

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  7. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities

    DEFF Research Database (Denmark)

    Kitir, Betül; Maolanon, Alex R.; Ohm, Ragnhild G.

    2017-01-01

    medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30...... natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important...

  8. Molecular tailoring of interfaces for thin film on substrate systems

    Science.gov (United States)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  9. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase.

    Science.gov (United States)

    Gajiwala, Ketan S; Grodsky, Neil; Bolaños, Ben; Feng, Junli; Ferre, RoseAnn; Timofeevski, Sergei; Xu, Meirong; Murray, Brion W; Johnson, Ted W; Stewart, Al

    2017-09-22

    The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  11. Switchable host-guest systems on surfaces.

    Science.gov (United States)

    Yang, Ying-Wei; Sun, Yu-Long; Song, Nan

    2014-07-15

    CONSPECTUS: For device miniaturization, nanotechnology follows either the "top-down" approach scaling down existing larger-scale devices or the "bottom-up' approach assembling the smallest possible building blocks to functional nanoscale entities. For synthetic nanodevices, self-assembly on surfaces is a superb method to achieve useful functions and enable their interactions with the surrounding world. Consequently, adaptability and responsiveness to external stimuli are other prerequisites for their successful operation. Mechanically interlocked molecules such as rotaxanes and catenanes, and their precursors, that is, molecular switches and supramolecular switches including pseudorotaxanes, are molecular machines or prototypes of machines capable of mechanical motion induced by chemical signals, biological inputs, light or redox processes as the external stimuli. Switching of these functional host-guest systems on surfaces becomes a fundamental requirement for artificial molecular machines to work, mimicking the molecular machines in nature, such as proteins and their assemblies operating at dynamic interfaces such as the surfaces of cell membranes. Current research endeavors in material science and technology are focused on developing either a new class of materials or materials with novel/multiple functionalities by shifting host-guest chemistry from solution phase to surfaces. In this Account, we present our most recent attempts of building monolayers of rotaxanes/pseudorotaxanes on surfaces, providing stimuli-induced macroscopic effects and further understanding on the switchable host-guest systems at interfaces. Biocompatible versions of molecular machines based on synthetic macrocycles, such as cucurbiturils, pillararenes, calixarenes, and cyclodextrins, have been employed to form self-assembled monolayers of gates on the surfaces of mesoporous silica nanoparticles to regulate the controlled release of cargo/drug molecules under a range of external stimuli

  12. Simple Syntheses of Two New Benzo-Fused Macrocycles Incorporating Chalcone Moiety.

    Science.gov (United States)

    Mondal, Rina; Samanta, Swati; Sarkar, Saheli; Mallik, Asok K

    2014-01-01

    Simple syntheses of the benzo-fused 26-membered macrocyclic bischalcone (19E,43E)-2.11.27.36-tetroxaheptacyclo[44.4.0.0(4,9).0(12,17).0(21,26).0(29,34).0(37,42)]pentaconta-1(46),4(9),5,7,12(17),13,15,19,21,23,25,29,31,33,37,39,41,43,47,49-icosaene-18,45-dione (3) and the benzo-fused 13-membered macrocyclic chalcone (19E)-2.11-dioxatetracyclo[19.4.0.0(4,9).0(12,17)]pentacosa-1(25),4(9),5,7,12(17),13,15,19,21,23-decaen-18-one (5) using very common starting materials and reagents are described. The compounds are new and they have been characterized from their analytical and spectral data.

  13. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes.

    Science.gov (United States)

    Eisenberg, David; Shenhar, Roy; Rabinovitz, Mordecai

    2010-08-01

    This tutorial review discusses synthetic strategies towards aromatic belts, defined here as double-stranded conjugated macrocycles, such as [n]cyclacenes, [n]cyclophenacenes, Schlüter belt, and Vögtle belt. Their appeal stems, firstly, from the unique nature of their conjugation, having p orbitals oriented radially rather than perpendicular to the plane of the macrocycle. Secondly, as aromatic belts are model compounds of carbon nanotubes of different chiralities, a synthetic strategy towards the buildup of structural strain in these compounds could finally open a route towards rational chemical synthesis of carbon nanotubes. The elusiveness of these compounds has stimulated fascinating and ingenious synthetic strategies over the last decades. The various strategies are classified here by their approach to the buildup of structural strain, which is the main obstacle in the preparation of these curved polyarenes.

  14. Synthesis and anion recognition properties of shape-persistent binaphthyl-containing chiral macrocyclic amides

    Directory of Open Access Journals (Sweden)

    Marco Caricato

    2012-06-01

    Full Text Available We report on the synthesis and characterization of novel shape-persistent, optically active arylamide macrocycles, which can be obtained using a one-pot methodology. Resolved, axially chiral binol scaffolds, which incorporate either methoxy or acetoxy functionalities in the 2,2' positions and carboxylic functionalities in the external 3,3' positions, were used as the source of chirality. Two of these binaphthyls are joined through amidation reactions using rigid diaryl amines of differing shapes, to give homochiral tetraamidic macrocycles. The recognition properties of these supramolecular receptors have been analyzed, and the results indicate a modulation of binding affinities towards dicarboxylate anions, with a drastic change of binding mode depending on the steric and electronic features of the functional groups in the 2,2' positions.

  15. Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network

    KAUST Repository

    Ji, Xiaofan

    2018-02-13

    Reported here is a hydrogel-forming polymer network that contains a water-soluble tetracationic macrocycle. Upon immersion of this polymer network in aqueous solutions containing various inorganic and organic salts, changes in the physical properties are observed that are consistent with absorption of the constituent anions into the polymer network. This absorption is ascribed to host-guest interactions involving the tetracationic macrocyclic receptor. Removal of the anions may then be achieved by lifting the resulting hydrogels out of the aqueous phase. Treating the anion-containing hydrogels with dilute HCl leads to the protonation-induced release of the bound anions. This allows the hydrogels to be recycled for reuse. The present polymer network thus provides a potentially attractive approach to removing undesired anions from aqueous environments.

  16. The influence of intraannular templates on the liquid crystallinity of shape-persistent macrocycles

    Directory of Open Access Journals (Sweden)

    Joscha Vollmeyer

    2014-04-01

    Full Text Available A series of shape-persistent phenylene–ethynylene–naphthylene–butadiynylene macrocycles with different extraannular alkyl groups and intraannular bridges is synthesized by oxidative Glaser-coupling of the appropriate precursors. The intraannular bridges serve in this case as templates that reduce the oligomerization even when the reaction is not performed under pseudo high-dilution conditions. The extraannular as well as the intraannular substituents have a strong influence on the thermal behavior of the compounds. With branched alkyl chains at the periphery, the macrocycles exhibit liquid crystalline (lc phases when the interior is empty or when the length of the alkyl bridge is just right to cross the ring. With a longer alkyl or an oligoethylene oxide bridge no lc phase is observed, most probably because the mesogene is no longer planar.

  17. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    International Nuclear Information System (INIS)

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.; Vincent, J.S.

    1984-01-01

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoic acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging

  18. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    Science.gov (United States)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  19. Stability and kinetics of uranyl ion complexation by macrocycles in propylene carbonate

    International Nuclear Information System (INIS)

    Fux, P.

    1984-06-01

    A thermodynamic study of uranyl ion complexes formation with different macrocyclic ligands was realized in propylene carbonate as solvent using spectrophotometric and potentiometric techniques. Formation kinetics of two UO 2 complexes: a crown ether (18C6) and a coronand (22) was studied by spectrophotometry in propylene carbonate with addition of tetraethylammonium chlorate 0.1M at 25 0 C. Possible structures of complexes in solution are discussed [fr

  20. Lead Diversification through a Prins-Driven Macrocyclization Strategy: Application to C13-Diversified Bryostatin Analogues.

    Science.gov (United States)

    Wender, Paul A; Billingsley, Kelvin L

    2013-01-01

    The design, synthesis, and biological evaluation of a novel class of C13-diversified bryostatin analogues are described. An innovative and general strategy based on a Prins macrocyclization-nucleophilic trapping cascade was used to achieve late-stage diversification. In vitro analysis of selected library members revealed that modification at the C13 position of the bryostatin scaffold can be used as a diversification handle to regulate biological activity.

  1. A method for the preparation of lipophilic macrocyclic technetium-99m complexes

    International Nuclear Information System (INIS)

    Troutner, D.E.; Volkert, W.A.

    1991-01-01

    A procedure for the preparation of technetium complexes applicable as diagnostic radiopharmaceuticals is suggested and documented with 27 examples. Technetium-99m is reacted with a suitable complexant selected from the class of alkylenamine oximes containing 2 or 3 carbon atoms in the alkylene group. The lipophilic macrocyclic complexes possess an amine, amide, carboxy, carboxy ester, hydroxy or alkoxy group or a suitable electron acceptor group. (M.D.). 7 tabs

  2. Total synthesis of haterumalides NA and NC via a chromium-mediated macrocyclization.

    Science.gov (United States)

    Schomaker, Jennifer M; Borhan, Babak

    2008-09-17

    The syntheses of haterumalides NA and NC were accomplished via the macrocyclization of a chlorovinylidene chromium carbenoid onto a pendant aldehyde to generate the C8-C9 bond with the desired stereoisomer as the major product. Utilizing the latter chemistry enables access to both C9 hydroxylated (haterumalides NC and ND) and C9 deoxygenated forms (haterumalides NA, NB, and NE; via deoxygenation of the C9-hydroxyl).

  3. Synthesis and characterization of two new tetrapyrazolic macrocycles for the selective extraction of cesium cation

    Czech Academy of Sciences Publication Activity Database

    Harit, T.; Malek, F.; El Bali, B.; Dušek, Michal; Kučeráková, Monika

    2016-01-01

    Roč. 72, č. 27-28 (2016), s. 3966-3973 ISSN 0040-4020 R&D Projects: GA MŠk LO1603; GA ČR(CZ) GA14-03276S EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : cesium cation * liquid–liquid extraction * macrocycle * pyrazole * crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.651, year: 2016

  4. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    Science.gov (United States)

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  5. Histology and Gadolinium Distribution in the Rodent Brain After the Administration of Cumulative High Doses of Linear and Macrocyclic Gadolinium-Based Contrast Agents

    Science.gov (United States)

    Lohrke, Jessica; Frisk, Anna-Lena; Frenzel, Thomas; Schöckel, Laura; Rosenbruch, Martin; Jost, Gregor; Lenhard, Diana Constanze; Sieber, Martin A.; Nischwitz, Volker; Küppers, Astrid; Pietsch, Hubertus

    2017-01-01

    Objectives Retrospective studies in patients with primary brain tumors or other central nervous system pathologies as well as postmortem studies have suggested that gadolinium (Gd) deposition occurs in the dentate nucleus (DN) and globus pallidus (GP) after multiple administrations of primarily linear Gd-based contrast agents (GBCAs). However, this deposition has not been associated with any adverse effects or histopathological alterations. The aim of this preclinical study was to systematically examine differences between linear and macrocyclic GBCAs in their potential to induce changes in brain and skin histology including Gd distribution in high spatial resolution. Materials and Methods Fifty male Wistar-Han rats were randomly allocated into control (saline, n = 10 rats) and 4 GBCA groups (linear GBCAs: gadodiamide and gadopentetate dimeglumine, macrocyclic GBCAs: gadobutrol and gadoteridol; n = 10 rats per group). The animals received 20 daily intravenous injections at a dose of 2.5 mmol Gd/kg body weight. Eight weeks after the last GBCA administration, the animals were killed, and the brain and skin samples were histopathologically assessed (hematoxylin and eosin; cresyl violet [Nissl]) and by immunohistochemistry. The Gd concentration in the skin, bone, brain, and skeletal muscle samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS, n = 4). The spatial Gd distribution in the brain and skin samples was analyzed in cryosections using laser ablation coupled with ICP-MS (LA-ICP-MS, n = 3). For the ultra-high resolution of Gd distribution, brain sections of rats injected with gadodiamide or saline (n = 1) were assessed by scanning electron microscopy coupled to energy dispersive x-ray spectroscopy and transmission electron microscopy, respectively. Results No histological changes were observed in the brain. In contrast, 4 of 10 animals in the gadodiamide group but none of the animals in other groups showed macroscopic and histological

  6. Histology and Gadolinium Distribution in the Rodent Brain After the Administration of Cumulative High Doses of Linear and Macrocyclic Gadolinium-Based Contrast Agents.

    Science.gov (United States)

    Lohrke, Jessica; Frisk, Anna-Lena; Frenzel, Thomas; Schöckel, Laura; Rosenbruch, Martin; Jost, Gregor; Lenhard, Diana Constanze; Sieber, Martin A; Nischwitz, Volker; Küppers, Astrid; Pietsch, Hubertus

    2017-06-01

    Retrospective studies in patients with primary brain tumors or other central nervous system pathologies as well as postmortem studies have suggested that gadolinium (Gd) deposition occurs in the dentate nucleus (DN) and globus pallidus (GP) after multiple administrations of primarily linear Gd-based contrast agents (GBCAs). However, this deposition has not been associated with any adverse effects or histopathological alterations. The aim of this preclinical study was to systematically examine differences between linear and macrocyclic GBCAs in their potential to induce changes in brain and skin histology including Gd distribution in high spatial resolution. Fifty male Wistar-Han rats were randomly allocated into control (saline, n = 10 rats) and 4 GBCA groups (linear GBCAs: gadodiamide and gadopentetate dimeglumine, macrocyclic GBCAs: gadobutrol and gadoteridol; n = 10 rats per group). The animals received 20 daily intravenous injections at a dose of 2.5 mmol Gd/kg body weight. Eight weeks after the last GBCA administration, the animals were killed, and the brain and skin samples were histopathologically assessed (hematoxylin and eosin; cresyl violet [Nissl]) and by immunohistochemistry. The Gd concentration in the skin, bone, brain, and skeletal muscle samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS, n = 4). The spatial Gd distribution in the brain and skin samples was analyzed in cryosections using laser ablation coupled with ICP-MS (LA-ICP-MS, n = 3). For the ultra-high resolution of Gd distribution, brain sections of rats injected with gadodiamide or saline (n = 1) were assessed by scanning electron microscopy coupled to energy dispersive x-ray spectroscopy and transmission electron microscopy, respectively. No histological changes were observed in the brain. In contrast, 4 of 10 animals in the gadodiamide group but none of the animals in other groups showed macroscopic and histological nephrogenic systemic fibrosis-like skin

  7. Fast electronic structure methods for strongly correlated molecular systems

    International Nuclear Information System (INIS)

    Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung

    2005-01-01

    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given

  8. On-Surface Pseudo-High-Dilution Synthesis of Macrocycles: Principle and Mechanism.

    Science.gov (United States)

    Fan, Qitang; Wang, Tao; Dai, Jingya; Kuttner, Julian; Hilt, Gerhard; Gottfried, J Michael; Zhu, Junfa

    2017-05-23

    Macrocycles have attracted much attention due to their specific "endless" topology, which results in extraordinary properties compared to related linear (open-chain) molecules. However, challenges still remain in their controlled synthesis with well-defined constitution and geometry. Here, we report the successful application of the (pseudo-)high-dilution method to the conditions of on-surface synthesis in ultrahigh vacuum. This approach leads to high yields (up to 84%) of cyclic hyperbenzene ([18]-honeycombene) via an Ullmann-type reaction from 4,4″-dibromo-meta-terphenyl (DMTP) as precursor on a Ag(111) surface. The mechanism of macrocycle formation was explored in detail using scanning tunneling microscopy and X-ray photoemission spectroscopy. We propose that the dominant pathway for hyperbenzene (MTP) 6 formation is the stepwise desilverization of an organometallic (MTP-Ag) 6 macrocycle, which forms via cyclization of (MTP-Ag) 6 chains under pseudo-high-dilution conditions. The high probability of cyclization on the stage of the organometallic phase results from the reversibility of the C-Ag bond. The case is different from that in solution, in which cyclization typically occurs on the stage of a covalently bonded open-chain precursor. This difference in the cyclization mechanism on a surface compared to that in solution stems mainly from the 2D confinement exerted by the surface template, which hinders the flipping of chain segments necessary for cyclization.

  9. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides

    International Nuclear Information System (INIS)

    Alexander, V.

    1995-01-01

    A review article which covers the various design and synthetic strategies developed to synthesize macrocyclic complexes of lanthanides and actinides, their structural features, quantitative studies on the stabilities of these complexes, their applications, and the structure-reactivity principle would be an asset for those who are actively engaged in this area of research. This review is also purported to give a comprehensive view of the current status of this area of research to the beginners and to highlight the application of this chemical research to emerging nonchemical applications to lure the potential workers. The coordination template effect provides a general strategy for the synthesis of a wide variety of discrete metal complexes. The principal conceptual and experimental development that have established and exploited this strategy are briefly outlined. A brief review of the coordination template effect and subsequent developments in the design of macrocyclic complexes of alkali, alkaline earth, and transition metal ions is presented as an essential basis for the rational design of new macrocyclic complexes of lanthanides and actinides. The exciting aspect of this chemistry is that in the majority of cases the molecules meet the design criteria very well. It is evident that in an increasing number of cases the driving force behind the synthetic effort is the desire to create a molecule which will enable the user to make specific applications. 506 refs

  10. Hydrolyzable tannins of tamaricaceous plants. III. Hellinoyl- and macrocyclic-type ellagitannins from Tamarix nilotica.

    Science.gov (United States)

    Orabi, Mohamed A A; Taniguchi, Shoko; Yoshimura, Morio; Yoshida, Takashi; Kishino, Kaori; Sakagami, Hiroshi; Hatano, Tsutomu

    2010-05-28

    Three new hellinoyl-type ellagitannins, nilotinins M4 (7), D7 (8), and D8 (9), and a new macrocyclic-type, nilotinin D9 (10), together with eight known tannins, hirtellins B (2), C (11), and F (12), isohirtellin C (13), tamarixinin A (3), tellimagrandins I and II, and 1,2,6-tri-O-galloyl-beta-d-glucose (14), were isolated from an aqueous acetone extract of Tamarix nilotica dried leaves. Nilotinin M4 (7) is a monomeric tannin possessing a hellinoyl moiety. The structure of 8 demonstrated replacement of one of the HHDP groups at the glucose core O-4/O-6 in ordinary dimeric tannins with a galloyl moiety at O-6. This is a new structural feature among the tamaricaceous ellagitannins. On the basis of the results, reported spectroscopic assignments for 2, 3, and the macrocyclic tannins 11-13 were revised. Unusual shifts in the NMR spectra of these macrocyclic tannins are also discussed in relation to their conformations. Several tannins isolated from T. nilotica were assessed for possible cytotoxic activity against four human tumor cell lines, and nilotinin D8 (9) and hirtellin A (1) showed high cytotoxic effects.

  11. Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hao; Dranchak, Patricia; Li, Zhiru; MacArthur, Ryan; Munson, Matthew S.; Mehzabeen, Nurjahan; Baird, Nathan J.; Battalie, Kevin P.; Ross, David; Lovell, Scott; Carlow, Clotilde K.S.; Suga, Hiroaki; Inglese, James (U of Tokyo); (NEB); (Kansas); (NIH); (NIST); (HHMI)

    2017-04-03

    Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.

  12. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure

    Directory of Open Access Journals (Sweden)

    Takashi Yoshida

    2018-03-01

    Full Text Available In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric–heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1 the structural characteristics of oenothein B and related dimers; (2 the oxidative metabolites of oenothein B up to heptameric oligomers; (3 the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4 the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.

  13. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)

    1982-06-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.

  14. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    International Nuclear Information System (INIS)

    Kashiwagi, H.

    1982-01-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)

  15. Structure-Activity Relationship and Molecular Mechanics Reveal the Importance of Ring Entropy in the Biosynthesis and Activity of a Natural Product.

    Science.gov (United States)

    Tran, Hai L; Lexa, Katrina W; Julien, Olivier; Young, Travis S; Walsh, Christopher T; Jacobson, Matthew P; Wells, James A

    2017-02-22

    Macrocycles are appealing drug candidates due to their high affinity, specificity, and favorable pharmacological properties. In this study, we explored the effects of chemical modifications to a natural product macrocycle upon its activity, 3D geometry, and conformational entropy. We chose thiocillin as a model system, a thiopeptide in the ribosomally encoded family of natural products that exhibits potent antimicrobial effects against Gram-positive bacteria. Since thiocillin is derived from a genetically encoded peptide scaffold, site-directed mutagenesis allows for rapid generation of analogues. To understand thiocillin's structure-activity relationship, we generated a site-saturation mutagenesis library covering each position along thiocillin's macrocyclic ring. We report the identification of eight unique compounds more potent than wild-type thiocillin, the best having an 8-fold improvement in potency. Computational modeling of thiocillin's macrocyclic structure revealed a striking requirement for a low-entropy macrocycle for activity. The populated ensembles of the active mutants showed a rigid structure with few adoptable conformations while inactive mutants showed a more flexible macrocycle which is unfavorable for binding. This finding highlights the importance of macrocyclization in combination with rigidifying post-translational modifications to achieve high-potency binding.

  16. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    Science.gov (United States)

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  17. Molecular photoionization studies of nucleobases and correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Poliakoff, Erwin D. [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  18. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    CERN Document Server

    Sasaki, Y C; Adachi, S; Suzuki, Y; Yagi, N

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements.

  19. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    International Nuclear Information System (INIS)

    Sasaki, Y.C.; Okumura, Y.; Adachi, S.; Suzuki, Y.; Yagi, N.

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements

  20. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  1. Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials

    OpenAIRE

    Bottari, Giovanni; De La Torre, Gema; Torres, Tomas

    2015-01-01

    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Accounts of Chemical Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/ar5004384 Conspectus Phthalocyanines (Pcs) are macrocyclic and aromatic compounds that present unique electronic features such as high molar absorption coefficients, rich redox chemistry, and...

  2. Ion-molecular equilibria and activity determination in the RbF-ZrF4 system

    International Nuclear Information System (INIS)

    Skokan, E.V.; Nikitin, M.I.; Sorokin, I.D.; Korenev, Yu.M.; Sidorov, L.N.

    1983-01-01

    Activity of zirconium tetrofluoride in 100-33.3 mol % ZrF 4 concentration range was determined during isothermal evaporation of samples of different initial composition of RbF-ZrF 4 system, using ion-molecular equilibrium method. It became possible, using the exchange ion-molecular reactions to determine ZrF 4 activity approximately 10 -10 in the region of state diagram of RbF-ZrF 4 system, adjoining to rubidium fluoride. The comparative analysis of results, obtained by the methods of isothermal evaporation, ion-molecular equilibria is given; the advantages and restrictions of ion-molecular equilibrium method are presented

  3. Optimization of fuel ethanol recovery systems using molecular sieves

    International Nuclear Information System (INIS)

    Scheller, W.A.

    1989-01-01

    The use of molecular sieves for the dehydration of rectified fuel ethanol requires only about 58% of the energy required by azeotropic distillation, the usual commercial process. Recently molecular sieve prices have become low enough that their use can be economically competitive with azeotropic distillation. This paper contains results of mass and energy balances to determine the water content of the rectified ethanol (6.15 weight percent) that will result in the minimum energy requirement for producing anhydrous ethanol with the molecular sieve process and byproduct distillers soluble syrup from fermented corn mash containing 7.23 weight percent ethanol. In this paper results of economic evaluations to determine the water content of the rectified ethanol (7.58 weight percent) which results in a minimum investment and operating cost are presented

  4. Subtle Monte Carlo Updates in Dense Molecular Systems

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Boomsma, Wouter; Johansson, Kristoffer E.

    2012-01-01

    Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce...... as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results...... suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions....

  5. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  6. Peptide Macrocycles Featuring a Backbone Secondary Amine: A Convenient Strategy for the Synthesis of Lipidated Cyclic and Bicyclic Peptides on Solid Support

    DEFF Research Database (Denmark)

    Oddo, Alberto; Münzker, Lena; Hansen, Paul Robert

    2015-01-01

    A convenient strategy for the on-resin synthesis of macrocyclic peptides (3- to 13-mers) via intramolecular halide substitution by a diamino acid is described. The method is compatible with standard Fmoc/tBu SPPS and affords a tail-to-side-chain macrocyclic peptide featuring an endocyclic secondary...

  7. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  8. FROM ATOMISTIC TO SYSTEMATIC COARSE-GRAINED MODELS FOR MOLECULAR SYSTEMS

    KAUST Repository

    Harmandaris, Vagelis

    2017-10-03

    The development of systematic (rigorous) coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of methods for obtaining optimal parametrized coarse-grained models, starting from detailed atomistic representation for high dimensional molecular systems. Different methods are described based on (a) structural properties (inverse Boltzmann approaches), (b) forces (force matching), and (c) path-space information (relative entropy). Next, we present a detailed investigation concerning the application of these methods in systems under equilibrium and non-equilibrium conditions. Finally, we present results from the application of these methods to model molecular systems.

  9. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  10. Molecular materials and devices: developing new functional systems based on the coordination chemistry approach

    Directory of Open Access Journals (Sweden)

    Toma Henrique E.

    2003-01-01

    Full Text Available At the onset of the nanotechnology age, molecular designing of materials and single molecule studies are opening wide possibilities of using molecular systems in electronic and photonic devices, as well as in technological applications based on molecular switching or molecular recognition. In this sense, inorganic chemists are privileged by the possibility of using the basic strategies of coordination chemistry to build up functional supramolecular materials, conveying the remarkable chemical properties of the metal centers and the characteristics of the ancillary ligands. Coordination chemistry also provides effective self-assembly strategies based on specific metal-ligand affinity and stereochemistry. Several molecular based materials, derived from inorganic and metal-organic compounds are focused on this article, with emphasis on new supramolecular porphyrins and porphyrazines, metal-clusters and metal-polyimine complexes. Such systems are also discussed in terms of their applications in catalysis, sensors and molecular devices.

  11. Selective Nitrate Recognition by a Halogen‐Bonding Four‐Station [3]Rotaxane Molecular Shuttle

    Science.gov (United States)

    Barendt, Timothy A.; Docker, Andrew; Marques, Igor; Félix, Vítor

    2016-01-01

    Abstract The synthesis of the first halogen bonding [3]rotaxane host system containing a bis‐iodo triazolium‐bis‐naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo‐triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion–rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the 1H NMR anion binding results. PMID:27436297

  12. Electrochemistry of single molecules and biomolecules, molecular scale nanostructures, and low-dimensional systems

    DEFF Research Database (Denmark)

    Nazmutdinov, Renat R.; Zinkicheva, Tamara T.; Zinkicheva, Tamara T.

    2018-01-01

    Electrochemistry at ultra-small scales, where even the single molecule or biomolecule can be characterized and manipulated, is on the way to a consolidated status. At the same time molecular electrochemistry is expanding into other areas of sophisticated nano- and molecular scale systems includin...... molecular scale metal and semiconductor nanoparticles (NPs) and other nanostructures, e.g. nanotubes, “nanoflowers” etc.. The new structures offer both new electronic properties and highly confined novel charge transfer environments....

  13. The Physics of Coupled Atomic-Molecular Condensate System

    Science.gov (United States)

    2010-10-09

    electric dipoles represents a novel state of matter with long-range and anisotropic dipole-dipole interactions, that are highly amenable to the...free-bound FC factor. Simultaneously, a series of laser �elds of (molecular) Rabi frequency i (i 2) are applied to move the molecules from the

  14. Use of tetraaza-macrocycles for complexation of actinides in aqueous solutions. Validation of the process for the treatment of waste waters

    International Nuclear Information System (INIS)

    Chollet, Herve

    1994-01-01

    This report makes one's contribution to the study of the reactivity of free or fixed tetraaza-macrocycles. The major interest of this work concerns the following key-points: - Synthesis, spectral characterization and X-ray diffraction study of tetraaza-macrocycles N-tetra-functionalized, - Synthesis, physicochemical, chemicals and X-ray studies of macrocyclic complex in lanthanides and actinides series, - Synthesis and characterization of tetraaza-macrocycles grafted on organic and inorganic polymers, - Reactivity of macrocyclic ligands grafted on Merrifield's resin or silica gel in cerium, europium, uranium, plutonium and americium series, - Extraction of heavy metals in a solid-liquid process and measurements of a pilot. (author) [fr

  15. Copper(I)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes.

    Science.gov (United States)

    Berrocal, José Augusto; Nieuwenhuizen, Marko M L; Mandolini, Luigi; Meijer, E W; Di Stefano, Stefano

    2014-08-28

    Olefin cross-metathesis of diluted dichloromethane solutions (≤0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The composition of the libraries is strongly dependent on the monomer concentration, but independent of whether C1 or 1 is used as feedstock, as expected for truly equilibrated systems. Accordingly, the limiting value 0.022 M approached by the equilibrium concentration of C1 when the total monomer concentration approaches the critical value, as predicted by the Jacobson-Stockmayer theory, provides a reliable estimate of the thermodynamically effective molarity. Catenand 1 behaves as a virtual component of the dynamic libraries, in that there is no detectable trace of its presence in the equilibrated mixtures, but becomes the major component - in the form of its copper(I) complex - when olefin cross-metathesis is carried out in the presence of a copper(I) salt.

  16. Unusual nanosized associates of carboxy-calix[4]resorcinarene and cetylpyridinium chloride: the macrocycle as a glue for surfactant micelles.

    Science.gov (United States)

    Morozova, Ju E; Syakaev, V V; Shalaeva, Ya V; Ermakova, A M; Nizameev, I R; Kadirov, M K; Voloshina, A D; Zobov, V V; Antipin, I S; Konovalov, A I

    2017-03-08

    The association of cetylpyridinium chloride (CPC) micelles in the presence of octaacetated tetraphenyleneoxymethylcalix[4]resorcinarene (CR) leads to the formation of unusual spherical supramolecular nanoparticles (SNPs). Within the range of CR/CPC molar ratios from 10/1 to 1/10 (except for 1/8), CR, acting as a counterion, decreases the critical micelle concentration of CPC by one order of magnitude and leads to the formation of SNPs with an average hydrodynamic radius of 164 nm and an average zeta potential of -60 mV. The formation of SNPs was studied by NMR FT-PGSE and 2D NOESY, DLS, TEM, fluorimetry, and UV-Vis methods. The stability of SNPs at different temperatures and pH values and in the presence of electrolytes was investigated. The specificity of the interactions of the SNPs with substrates that were preferentially bound by a macrocycle or CPC micelle was studied. The enhancement of cation dye binding in the presence of SNPs is shown. The presented supramolecular system may serve as a nanocapsule for water-soluble and water-insoluble compounds.

  17. Intraindividual, randomized comparison of the macrocyclic contrast agents gadobutrol and gadoterate meglumine in breast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fallenberg, Eva M.; Renz, Diane M.; Hamm, Bernd [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Department of Radiology, Berlin (Germany); Karle, Bettina [Clinic of Radiation Therapy, Helios Clinics, Berlin (Germany); Schwenke, Carsten [SCOSSIS Statistical Consulting, Berlin (Germany); Ingod-Heppner, Barbara [Charite Universitaetsmedizin, Campus Charite Mitte, Institute of Pathology, Berlin (Germany); Reles, Angela [Charite Universitaetsmedizin, Charite-Partner-Practice, Interdisciplinary Breast Center, Berlin (Germany); Engelken, Florian J. [Charite - Universitaetsmedizin Berlin, Charite Campus Mitte, Department of Radiology, Berlin (Germany); Huppertz, Alexander; Taupitz, Matthias [Charite - Universitaetsmedizin Berlin, Campus Benjamin Franklin, Department of Radiology, Berlin (Germany)

    2014-09-25

    To compare intraindividually two macrocyclic contrast agents - gadobutrol and gadoterate meglumine (Gd-DOTA) - for dynamic and quantitative assessment of relative enhancement (RE) in benign and malignant breast lesions. This was an ethically approved, prospective, single-centre, randomized, crossover study in 52 women with suspected breast lesions referred for magnetic resonance imaging (MRI). Each patient underwent one examination with gadobutrol and one with Gd-DOTA (0.1 mmol/kg BW) on a 1.5 T system 1 - 7 days apart. Dynamic, T1-weighted, 3D gradient echo sequences were acquired under identical conditions. Quantitative evaluation with at least three regions of interest (ROI) per lesion was performed. Primary endpoint was RE during the initial postcontrast phase after the first and second dynamic acquisition, and peak RE. All lesions were histologically proven; differences between the examinations were evaluated. Forty-five patients with a total of 11 benign and 34 malignant lesions were assessed. Mean RE was significantly higher for gadobutrol than Gd-DOTA (p < 0.0001). Gadobutrol showed significantly less washout (64.4 %) than Gd-DOTA (75.4 %) in malignant lesions (p = 0.048) Gadobutrol has higher RE values compared with Gd-DOTA, whereas Gd-DOTA shows more marked washout in malignant lesions. This might improve the detection of breast lesions and influence the specificity of breast MRI-imaging. (orig.)

  18. Integrative pathway knowledge bases as a tool for systems molecular medicine.

    Science.gov (United States)

    Liang, Mingyu

    2007-08-20

    There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.

  19. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Xiu-zhen WU; Ai-xia CHENG; Ling-mei SUN; Hong-xiang LOU

    2008-01-01

    Aim: To investigate the effect of plagiochin E (PLE), an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L, on cell wall chitin synthesis in Candida albicans. Methods: The effect of PLE on chitin synthesis in Candida albicans was investigated at the cellular and molecular lev-els. First, the ultrastructural changes were observed under transmission electron microscopy (TEM). Second, the effects of PLE on chitin synthetase (Chs) activi-ties in vitro were assayed using 6-O-dansyl-N-acetylglucosamine as a fluorescent substrate, and its effect on chitin synthesis in situ was assayed by spheroplast regeneration. Finally, real-time RT-PCR was performed to assay its effect on the expression of Chs genes (CHS). Results: Observation under TEM showed that the structure of the cell wall in Candida albicans was seriously damaged, which suggested that the antifungal activity of PLE was associated with its effect on the cell wail. Enzymatic assays and spheroplast regeneration showed that PLE inhibited chitin synthesis in vitro and in situ. The results of the PCR showed that PLE significantly downregulated the expression of CHS1, and upregulated the expression of CHS2 and CHS3. Because different Chs is regulated at different stages of transcription and post-translation, the downregulation of CHS1 would decrease the level of Chs 1 and inhibit its activity, and the inhibitory effects of PLE on Chs2 and Chs3 would be at the post-translational level or by the inhibi-tion on the enzyme-active center. Conclusion: These results indicate that the antifungal activity of PLE would be attributed to its inhibitory effect on cell wall chitin synthesis in Candida albicans.

  20. The Synthesis, Structures and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    International Nuclear Information System (INIS)

    Clearfield, Abraham

    2003-01-01

    OAK-B135 The immobilization of crown ethers tends to limit the leveling effect of solvents making the macrocycles more selective. In addition immobilization has the added advantage of relative ease of recovery of the otherwise soluble crown. We have affixed CH2PO3H2 groups to azacrown ethers. The resultant phosphorylated macrocycles may spontaneously aggregate into crystalline supramolecular linear arrays or contacted with cations produce layered or linear polymers. In the linear polymers the metal and phosphonic acids covalently bond into a central stem with the macrocyclic rings protruding from the stem as leaves on a twig. Two types of layered compounds were obtained with group 4 metals. Monoaza-crown ethers form a bilayer where the M4+ plus phosphonic acid groups build the layer and the rings fill the interlayer space. 1, 10-diazadiphosphonic acids cross-link the metal phosphonate layers forming a three-dimensional array of crown ethers. In order to improve diffusion into these 3-D arrays they are spaced by inclusion of phosphate or phosphate groups. Two series of azamacrocylic crown ethers were prepared containing rings with 20 to 32 atoms. These larger rings can complex two cations per ring. Methylene phosphonic acid groups have been bonded to the aza ring atoms to increase the complexing ability of these ligands. Our approach is to carry out acid-base titrations in the absence and presence of cations to determine the pKa values of the protons, both those bonded to aza groups and those associated with the phosphonic acid groups. From the differences in the titration curves obtained with and without the cations present we obtain the stoichiometry of complex formation and the complex stability constants. Some of the applications we are targeting include phase transfer catalysis, separation of cations and the separation of radioisotopes for diagnostic and cancer therapeutic purposes

  1. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tarlani, Aliakbar, E-mail: Tarlani@ccerci.ac.ir [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Narimani, Khashayar [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Mohammadipanah, Fatemeh; Hamedi, Javad [Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14155-6455 (Iran, Islamic Republic of); University of Tehran Biocompound Collection (UTBC), Microbial Technology and Products Research Center, University of Tehran, Tehran (Iran, Islamic Republic of); Tahermansouri, Hasan [Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of); Amini, Mostafa M. [Department of Chemistry, Shahid Behshti University, 1983963113, Tehran (Iran, Islamic Republic of)

    2015-06-30

    Graphical abstract: In an antibacterial test, grafted copper(II) macrocyclic complex on the surface of MWCNT showed higher antibacterial activity against Bacillus subtilis compared to the individual MWCNT-COOH and the complex. - Highlights: • Copper(II) tetraaza macrocyclic complex covalently bonded to modified MWCNT. • Grafting of the complex carried out via an interaction between −C(=O)Cl group and NH of the ligand. • The samples were subjected in an antibacterial assessment to compare their activity. • Immobilized complex showed higher antibacterial activity against Bacillus subtilis ATCC 6633 compared to separately MWCNT-C(C=O)-OH and CuTAM. - Abstract: In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the I{sub D}/I{sub G} ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  2. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    Science.gov (United States)

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  3. Exploring coherent transport through π-stacked systems for molecular electronic devices

    DEFF Research Database (Denmark)

    Li, Qian; Solomon, Gemma

    2014-01-01

    Understanding electron transport across π-stacked systems can help to elucidate the role of intermolecular tunneling in molecular junctions and potentially with the design of high-efficiency molecular devices. Here we show how conjugation length and substituent groups influence the electron trans...

  4. Molecular Dynamics Simulations of displacement cascades in metallic systems

    International Nuclear Information System (INIS)

    Doan, N.V.; Tietze, H.

    1995-01-01

    We use Molecular Dynamics Computer Simulations to investigate defect production induced by energetic displacement cascades up to 10 keV in pure metals (Cu, Ni) and in ordered intermetallic alloys NiAl, Ni 3 Al. Various model potentials were employed to describe the many-body nature of the interactions: the RGL (Rosato-Guillope-Legrand) model was used in pure Cu and Ni simulations; the modified version of the Vitek, Ackland and Cserti potentials (due to Gao, Bacon and Ackland) in Ni 3 Al and the EAM potentials of Foiles and Daw modified by Rubini and Ballone in NiAl, Ni 3 Al were used in alloy simulations. Atomic mixing and disordering were studied into details owing to imaging techniques and determined at different phases of the cascades. Some mixing mechanisms were identified. Our results were compared with existing data and those obtained by similar Molecular Dynamics Simulations available in the literature. (orig.)

  5. Molecular and supramolecular speciation of monoamide extractant systems

    International Nuclear Information System (INIS)

    Ferru, G.

    2012-01-01

    DEHiBA (N,N-di-(ethyl-2-hexyl)isobutyramide, a monoamide, was chosen as selective extractant for the recovery of uranium in the first cycle of the GANEX process, which aims to realize the grouped extraction of actinides in the second step of the process. The aim of this work is an improved description of monoamide organic solutions in alkane diluent after solutes extraction: water, nitric acid and uranyl nitrate. A parametric study was undertaken to characterize species at molecular scale (by IR spectroscopy, UV-visible spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and electro-spray ionisation mass spectrometry) and at supramolecular scale (by vapor pressure osmometry and small angle X-ray scattering coupled to molecular dynamic simulations). Extraction isotherms were modelled taking into account the molecular and supramolecular speciation. These works showed that the organization of the organic solution depends on the amide concentration, the nature and the concentration of the extracted solute. Three regimes can be distinguished. 1/For extractant concentration less than 0.5 mol/L, monomers are predominate species. 2/ For extractant concentrations between 0.5 and 1 mol/L, small aggregates are formed containing 2 to 4 molecules of monoamide. 3/ For more concentrated solutions (greater than 1 mol/L), slightly larger species can be formed after water or nitric acid extraction. Concerning uranyl nitrate extraction, an important and strong organization of the organic phase is observed, which no longer allows the formation of well spherical defined aggregates. At molecular scale, complexes are not sensitive to the organization of the solution: the same species are observed, regardless of the solute and extractant concentrations in organic phase. (author) [fr

  6. Cyclooctane metathesis catalyzed by silica-supported tungsten pentamethyl [(ΞSiO)W(Me)5]: Distribution of macrocyclic alkanes

    KAUST Repository

    Riache, Nassima

    2014-10-03

    Metathesis of cyclic alkanes catalyzed by the new surface complex [(ΞSiO)W(Me)5] affords a wide distribution of cyclic and macrocyclic alkanes. The major products with the formula CnH2n are the result of either a ring contraction or ring expansion of cyclooctane leading to lower unsubstituted cyclic alkanes (5≤n≤7) and to an unprecedented distribution of unsubstituted macrocyclic alkanes (12≤n≤40), respectively, identified by GC/MS and by NMR spectroscopies.

  7. Molecular structure design and soft template synthesis of aza-, oxaaza- and thiaazamacrocyclic metal chelates in the gelatin matrix

    Directory of Open Access Journals (Sweden)

    Oleg V. Mikhailov

    2017-01-01

    Full Text Available The data about of soft template synthesis proceeding in gelatin matrices in [3d-element M(II ion – (N,S- or (N,O,S-ambidentate ligson – mono- or dicarbonyl ligson] systems, have been considered and discussed. The chemical nature of the final products of template synthesis formed under these specific conditions, has been compared with the chemical nature of the final products formed by template synthesis in solutions. It has been noted that in many cases, the nature and chemical composition of these products differ substantially. Specific features of the DFT calculated molecular structures of the macrocyclic compounds that can be formed due to the template synthesis in the systems indicated above, have been discussed, too. The review covers the period 1990–2015.

  8. Application of Calixarenes as Macrocyclic Ligands for Uranium(VI: A Review

    Directory of Open Access Journals (Sweden)

    Katarzyna Kiegiel

    2013-01-01

    Full Text Available Calixarenes represent a well-known family of macrocyclic molecules with broad range of potential applications in chemical, analytical, and engineering materials fields. This paper covers the use of calixarenes as complexing agents for uranium(VI. The high effectiveness of calix[6]arenes in comparison to other calixarenes in uranium(VI separation process is also presented. Processes such as liquid-liquid extraction (LLE, liquid membrane (LM separation, and ion exchange are considered as potential fields for application of calixarenes as useful agents for binding UO22+ for effective separation from aqueous solutions containing other metal components.

  9. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Wen-Jian [National Cancer Inst., Frederick, MD (United States); Park, Jung-Eun [National Cancer Inst., Bethesda, MD (United States); Grant, Robert [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lai, Christopher C. [National Cancer Inst., Frederick, MD (United States); Kelley, James A. [National Cancer Inst., Frederick, MD (United States); Yaffe, Michael B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lee, Kyung S. [National Cancer Inst., Bethesda, MD (United States); Burke, Terrence R. [National Cancer Inst., Frederick, MD (United States)

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  10. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes.

    Science.gov (United States)

    Reddy, P Muralidhar; Shanker, K; Srinivas, V; Krishna, E Ravi; Rohini, R; Srikanth, G; Hu, Anren; Ravinder, V

    2015-03-15

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Macrocyclic ligand decorated ordered mesoporous silica with large-pore and short-channel characteristics for effective separation of lithium isotopes: synthesis, adsorptive behavior study and DFT modeling.

    Science.gov (United States)

    Liu, Yuekun; Liu, Fei; Ye, Gang; Pu, Ning; Wu, Fengcheng; Wang, Zhe; Huo, Xiaomei; Xu, Jian; Chen, Jing

    2016-10-18

    Effective separation of lithium isotopes is of strategic value which attracts growing attention worldwide. This study reports a new class of macrocyclic ligand decorated ordered mesoporous silica (OMS) with large-pore and short-channel characteristics, which holds the potential to effectively separate lithium isotopes in aqueous solutions. Initially, a series of benzo-15-crown-5 (B15C5) derivatives containing different electron-donating or -withdrawing substituents were synthesized. Extractive separation of lithium isotopes in a liquid-liquid system was comparatively studied, highlighting the effect of the substituent, solvent, counter anion and temperature. The optimal NH 2 -B15C5 ligands were then covalently anchored to a short-channel SBA-15 OMS precursor bearing alkyl halides via a post-modification protocol. Adsorptive separation of the lithium isotopes was fully investigated, combined with kinetics and thermodynamics analysis, and simulation by using classic adsorption isotherm models. The NH 2 -B15C5 ligand functionalized OMSs exhibited selectivity to lithium ions against other alkali metal ions including K(i). Additionally, a more efficient separation of lithium isotopes could be obtained at a lower temperature in systems with softer counter anions and solvents with a lower dielectric constant. The highest value separation factor (α = 1.049 ± 0.002) was obtained in CF 3 COOLi aqueous solution at 288.15 K. Moreover, theoretical computation based on the density functional theory (DFT) was performed to elucidate the complexation interactions between the macrocyclic ligands and lithium ions. A suggested mechanism involving an isotopic exchange equilibrium was proposed to describe the lithium isotope separation by the functionalized OMSs.

  12. Molecular-beam epitaxial growth and ion-beam analysis systems for functional materials research

    International Nuclear Information System (INIS)

    Takeshita, H.; Aoki, Y.; Yamamoto, S.; Naramoto, H.

    1992-01-01

    Experimental systems for molecular beam epitaxial growth and ion beam analysis have been designed and constructed for the research of inorganic functional materials such as thin films and superlattices. (author)

  13. Materials learning from life: concepts for active, adaptive and autonomous molecular systems.

    Science.gov (United States)

    Merindol, Rémi; Walther, Andreas

    2017-09-18

    Bioinspired out-of-equilibrium systems will set the scene for the next generation of molecular materials with active, adaptive, autonomous, emergent and intelligent behavior. Indeed life provides the best demonstrations of complex and functional out-of-equilibrium systems: cells keep track of time, communicate, move, adapt, evolve and replicate continuously. Stirred by the understanding of biological principles, artificial out-of-equilibrium systems are emerging in many fields of soft matter science. Here we put in perspective the molecular mechanisms driving biological functions with the ones driving synthetic molecular systems. Focusing on principles that enable new levels of functionalities (temporal control, autonomous structures, motion and work generation, information processing) rather than on specific material classes, we outline key cross-disciplinary concepts that emerge in this challenging field. Ultimately, the goal is to inspire and support new generations of autonomous and adaptive molecular devices fueled by self-regulating chemistry.

  14. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1976--October 1977

    International Nuclear Information System (INIS)

    Dorfman, L.M.

    1977-01-01

    Results from research in the following two areas are given: formation, properties, and reactivity of molecular ionic species in irradiated liquid systems; and pulse radiolysis of elementary reactions in protein function

  15. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  16. FROM ATOMISTIC TO SYSTEMATIC COARSE-GRAINED MODELS FOR MOLECULAR SYSTEMS

    KAUST Repository

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plechac, Petr

    2017-01-01

    The development of systematic (rigorous) coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of methods for obtaining optimal parametrized coarse-grained models, starting from

  17. Molecular quenching and relaxation in a plasmonic tunable system

    Science.gov (United States)

    Baffou, Guillaume; Girard, Christian; Dujardin, Erik; Colas Des Francs, Gérard; Martin, Olivier J. F.

    2008-03-01

    Molecular fluorescence decay is significantly modified when the emitting molecule is located near a plasmonic structure. When the lateral sizes of such structures are reduced to nanometer-scale cross sections, they can be used to accurately control and amplify the emission rate. In this Rapid Communication, we extend Green’s dyadic method to quantitatively investigate both radiative and nonradiative decay channels experienced by a single fluorescent molecule confined in an adjustable dielectric-metal nanogap. The technique produces data in excellent agreement with current experimental work.

  18. Mixed 2D molecular systems: Mechanic, thermodynamic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Beno, Juraj [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Weis, Martin [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)], E-mail: Martin.Weis@stuba.sk; Dobrocka, Edmund [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 841 04-SK Bratislava (Slovakia); Hasko, Daniel [International Laser Centre, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)

    2008-08-15

    Study of Langmuir monolayers consisting of stearic acid (SA) and dipalmitoylphosphatidylcholine (DPPC) molecules was done by surface pressure-area isotherms ({pi}-A), the Maxwell displacement current (MDC) measurement, X-ray reflectivity (XRR) and atomic force microscopy (AFM) to investigate the selected mechanic, thermodynamic and dielectric properties based on orientational structure of monolayers. On the base of {pi}-A isotherms analysis we explain the creation of stable structures and found optimal monolayer composition. The dielectric properties represented by MDC generated monolayers were analyzed in terms of excess dipole moment, proposing the effect of dipole-dipole interaction. XRR and AFM results illustrate deposited film structure and molecular ordering.

  19. Raman spectroscopy on simple molecular systems at very high density

    International Nuclear Information System (INIS)

    Schiferl, D.; LeSar, R.S.; Moore, D.S.

    1988-01-01

    We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoretical understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs

  20. Complexes of macrocyclic dibenzo-18-crown-6 polyether with nitrates of some rare earths

    International Nuclear Information System (INIS)

    Gren', A.I.; Zakhariya, N.F.; Vityuk, N.V.; Kalishevich, V.S.

    1984-01-01

    The purpose of the investigation is to obtain and study the structure of complexes of macrocyclic polyether dibenzo-18-crown-6(D-18-C-6) with REE nitrates (Ln, Pr, Nd, Er). Synthesis has been realized by mixing the solutions 2 mol Ln(NO 3 ) 3 and 2 mmol D-18-C-6 into 30-50 ml acetonitrile and boiling during 40-60 minutes. Study on the prepared compounds by means of UV- and IR-spectroscopy proved formation of D-18-C-6 complexes with lanthanide nitrates-Ln(NO 3 ) 3 D-18-C-6. Based on studying IR-spectra a conclusion is made on deformation of D-18-C-6 structure under complexing. Distortion of the ring structure of macrocyclic polyether manifests itself in increase of CH 2 -O-CH 2 bond lengths with simultaneous reduction of four other types of bonds C 6 H 5 -O-CH 2 . Synthesized complexes are stated to have different solubility in acetonitrile which increases in the La 3 ) 3 xD-18-C-6 is noted

  1. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  2. Water activity in liquid food systems: A molecular scale interpretation.

    Science.gov (United States)

    Maneffa, Andrew J; Stenner, Richard; Matharu, Avtar S; Clark, James H; Matubayasi, Nobuyuki; Shimizu, Seishi

    2017-12-15

    Water activity has historically been and continues to be recognised as a key concept in the area of food science. Despite its ubiquitous utilisation, it still appears as though there is confusion concerning its molecular basis, even within simple, single component solutions. Here, by close examination of the well-known Norrish equation and subsequent application of a rigorous statistical theory, we are able to shed light on such an origin. Our findings highlight the importance of solute-solute interactions thus questioning traditional, empirically based "free water" and "water structure" hypotheses. Conversely, they support the theory of "solute hydration and clustering" which advocates the interplay of solute-solute and solute-water interactions but crucially, they do so in a manner which is free of any estimations and approximations. Copyright © 2017. Published by Elsevier Ltd.

  3. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    International Nuclear Information System (INIS)

    Christensen, J.J.

    1981-01-01

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used

  4. Online molecular image repository and analysis system: A multicenter collaborative open-source infrastructure for molecular imaging research and application.

    Science.gov (United States)

    Rahman, Mahabubur; Watabe, Hiroshi

    2018-05-01

    Molecular imaging serves as an important tool for researchers and clinicians to visualize and investigate complex biochemical phenomena using specialized instruments; these instruments are either used individually or in combination with targeted imaging agents to obtain images related to specific diseases with high sensitivity, specificity, and signal-to-noise ratios. However, molecular imaging, which is a multidisciplinary research field, faces several challenges, including the integration of imaging informatics with bioinformatics and medical informatics, requirement of reliable and robust image analysis algorithms, effective quality control of imaging facilities, and those related to individualized disease mapping, data sharing, software architecture, and knowledge management. As a cost-effective and open-source approach to address these challenges related to molecular imaging, we develop a flexible, transparent, and secure infrastructure, named MIRA, which stands for Molecular Imaging Repository and Analysis, primarily using the Python programming language, and a MySQL relational database system deployed on a Linux server. MIRA is designed with a centralized image archiving infrastructure and information database so that a multicenter collaborative informatics platform can be built. The capability of dealing with metadata, image file format normalization, and storing and viewing different types of documents and multimedia files make MIRA considerably flexible. With features like logging, auditing, commenting, sharing, and searching, MIRA is useful as an Electronic Laboratory Notebook for effective knowledge management. In addition, the centralized approach for MIRA facilitates on-the-fly access to all its features remotely through any web browser. Furthermore, the open-source approach provides the opportunity for sustainable continued development. MIRA offers an infrastructure that can be used as cross-boundary collaborative MI research platform for the rapid

  5. Characterization and crystal structure of a 17-membered macrocyclic Schiff base compound MeO-sal-pn-bn

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Ghoran, S.H.; Rohlíček, Jan; Dušek, Michal

    2015-01-01

    Roč. 56, č. 2 (2015), s. 259-265 ISSN 0022-4766 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : macrocyclic * Schiff base * spectroscopy * powder diffraction * orthorhombic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.536, year: 2015

  6. Copper(i)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes

    NARCIS (Netherlands)

    Berrocal, J.A.; Nieuwenhuizen, M.M.L.; Mandolini, L.; Meijer, E.W.; Di Stefano, S.

    2014-01-01

    Olefin cross-metathesis of diluted dichloromethane solutions (=0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The

  7. Organic carbonates as solvents in macrocyclic Mn(III) salen catalyzed asymmetric epoxidation of non-functionalized olefins

    Czech Academy of Sciences Publication Activity Database

    Maity, N. Ch.; Rao, G. V. S.; Prathap, Kaniraj Jeya; Abdi, S. H. R.; Kureshy, R. I.; Khan, N. H.; Bajaj, H. C.

    2013-01-01

    Roč. 366, January (2013), s. 380-389 ISSN 1381-1169 Institutional support: RVO:61388963 Keywords : asymmetric epoxidation * organic carbonate * macrocyclic Mn(III) salen complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2013

  8. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    Science.gov (United States)

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  9. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Science.gov (United States)

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  10. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Directory of Open Access Journals (Sweden)

    Nikunj B Bhatt

    Full Text Available The development of bifunctional chelators (BFCs for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2 as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  11. The rise of a novel classification system for endometrial carcinoma; integration of molecular subclasses.

    Science.gov (United States)

    McAlpine, Jessica; Leon-Castillo, Alicia; Bosse, Tjalling

    2018-04-01

    Endometrial cancer is a clinically heterogeneous disease and it is becoming increasingly clear that this heterogeneity may be a function of the diversity of the underlying molecular alterations. Recent large-scale genomic studies have revealed that endometrial cancer can be divided into at least four distinct molecular subtypes, with well-described underlying genomic aberrations. These subtypes can be reliably delineated and carry significant prognostic as well as predictive information; embracing and incorporating them into clinical practice is thus attractive. The road towards the integration of molecular features into current classification systems is not without obstacles. Collaborative studies engaging research teams from across the world are working to define pragmatic assays, improve risk stratification systems by combining molecular features and traditional clinicopathological parameters, and determine how molecular classification can be optimally utilized to direct patient care. Pathologists and clinicians caring for women with endometrial cancer need to engage with and understand the possibilities and limitations of this new approach, because integration of molecular classification of endometrial cancers is anticipated to become an essential part of gynaecological pathology practice. This review will describe the challenges in current systems of endometrial carcinoma classification, the evolution of new molecular technologies that define prognostically distinct molecular subtypes, and potential applications of molecular classification as a step towards precision medicine and refining care for individuals with the most common gynaecological cancer in the developed world. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. Calculation on uranium carbon oxygen system molecular structure by DFT

    International Nuclear Information System (INIS)

    Zhang Guangfeng; Wang Xiaolin; Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Hongyan

    2001-01-01

    The authors study on the possible molecular structures U-C-O, U-O-C, C-U-O (angular structure C a nd linear structure C ∞υ ) of carbon monoxide interacting on uranium metal surface by Density functional theory (DFT). The uranium atom is used RECP (Relativistic Effective Core Potential) and contracted valence basis sets (6s5p2d4f)/[3s3p2d2f], and for carbon and oxygen atoms all are 6-311G basis sets. The author presents the results of energy optimum which shows that triple and quintuple state are more stable. The authors get the electronic state, geometry structure, energy, harmonic frequency, mechanical property, etc. of these twelve triple and quintuple state relative stable structures. The normal vibrational analytical figure of angular structure (C s ) and linear structure (C ∞υ ) is given at the same time. It is indicated that angular structure has lower energy than linear structure, moreover the angular structure of U-C-O( 3 A ) has the lowest energy. The bond strength between uranium atom and carbon monoxide is weak and between uranium atom and oxygen atom is slightly stronger than between uranium atom and carbon atom which the authors can know by superposition population and bond energy analysis among atoms

  13. Molecular characterization of the thioredoxin system from Methanosarcina acetivorans

    OpenAIRE

    McCarver, Addison C.; Lessner, Daniel J.

    2014-01-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR) and thioredoxin (Trx), is widely distributed in nature, where it serves key roles in electron transfer and in defense against oxidative stress. Although recent evidence reveals Trx homologues are almost universally present among the methane-producing archaea (methanogens), a complete thioredoxin system has not been characterized from any methanogen. We examined the phylogeny of Trx homologues among methanogens and characterized ...

  14. Molecular spectral imaging system for quantitative immunohistochemical analysis of early diabetic retinopathy.

    Science.gov (United States)

    Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng

    2009-12-01

    A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.

  15. Systems theoretic analysis of the central dogma of molecular biology: some recent results.

    Science.gov (United States)

    Gao, Rui; Yu, Juanyi; Zhang, Mingjun; Tarn, Tzyh-Jong; Li, Jr-Shin

    2010-03-01

    This paper extends our early study on a mathematical formulation of the central dogma of molecular biology, and focuses discussions on recent insights obtained by employing advanced systems theoretic analysis. The goal of this paper is to mathematically represent and interpret the genetic information flow at the molecular level, and explore the fundamental principle of molecular biology at the system level. Specifically, group theory was employed to interpret concepts and properties of gene mutation, and predict backbone torsion angle along the peptide chain. Finite state machine theory was extensively applied to interpret key concepts and analyze the processes related to DNA hybridization. Using the proposed model, we have transferred the character-based model in molecular biology to a sophisticated mathematical model for calculation and interpretation.

  16. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    Science.gov (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    International Nuclear Information System (INIS)

    Li, King C.P.

    2009-01-01

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  18. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    Science.gov (United States)

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reaction-diffusion systems in intracellular molecular transport and control.

    Science.gov (United States)

    Soh, Siowling; Byrska, Marta; Kandere-Grzybowska, Kristiana; Grzybowski, Bartosz A

    2010-06-07

    Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.

  20. Simulation of Molecular Transport in Systems Containing Mobile Obstacles.

    Science.gov (United States)

    Polanowski, Piotr; Sikorski, Andrzej

    2016-08-04

    In this paper, we investigate the movement of molecules in crowded environments with obstacles undergoing Brownian motion by means of extensive Monte Carlo simulations. Our investigations were performed using the dynamic lattice liquid model, which was based on the cooperative movement concept and allowed to mimic systems at high densities where the motion of all elements (obstacles as well as moving particles) were highly correlated. The crowded environments are modeled on a two-dimensional triangular lattice containing obstacles (particles whose mobility was significantly reduced) moving by a Brownian motion. The subdiffusive motion of both elements in the system was analyzed. It was shown that the percolation transition does not exist in such systems in spite of the cooperative character of the particles' motion. The reduction of the obstacle mobility leads to the longer caging of liquid particles by mobile obstacles.

  1. Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours

    International Nuclear Information System (INIS)

    Good, Stephan; Wang, Xuejuan; Maecke, Helmut R.; Walter, Martin A.; Mueller-Brand, Jan; Waser, Beatrice; Reubi, Jean-Claude; Behe, Martin P.

    2008-01-01

    Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available β-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using 111 In-labelled derivatives. Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using 111 In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the nat In-metallated compounds were determined by receptor autoradiography using 125 I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the 111 In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. IC 50 values of the nat In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC 50 between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All 111 In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All 111 In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to 111 In-DTPA-minigastrin 0(0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic

  2. Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours

    Energy Technology Data Exchange (ETDEWEB)

    Good, Stephan; Wang, Xuejuan; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Walter, Martin A.; Mueller-Brand, Jan [University Hospital, Institute of Nuclear Medicine, Basel (Switzerland); Waser, Beatrice; Reubi, Jean-Claude [University of Berne, Department of Pathology, Bern (Switzerland); Behe, Martin P. [Philipps-University of Marburg, Department of Nuclear Medicine, Marburg (Germany)

    2008-10-15

    Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available {beta}-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using {sup 111}In-labelled derivatives. Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using {sup 111}In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the {sup nat}In-metallated compounds were determined by receptor autoradiography using {sup 125}I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the {sup 111}In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. IC{sub 50} values of the {sup nat}In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC{sub 50} between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All {sup 111}In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All {sup 111}In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to {sup 111}In-DTPA-minigastrin 0(0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in

  3. Synthesis and optoelectronic properties of a monodispersed macrocycle oligomer consisting of three triarylamine units

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Qinggang, E-mail: gangq0172@163.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Pukou District, Nanjing 210044 (China); Qian, Haiyan, E-mail: qianhaiy@163.com [College of Material Science and Technology, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China); Zhou, Yonghui; Li, Jun; Xiao, Huining [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Pukou District, Nanjing 210044 (China)

    2012-08-15

    A monodispersed macrocyclic oligomer constructed by three triarylmine units ((TPAT){sub 3}) was designed and readily synthesized from the monomer of 3-(4 Prime -(phenyl(4 Double-Prime -methylphenyl)amino)-phenyl)pentan-3-ol (TPAT) by means of a simple Friedel-Crafts alkylation reaction. The structure of the resultant macrocycle was examined using FT-IR, NMR and MALDI-TOF mass spectroscopy. Compared with 1,10-bis(di-4-tolylaminophenyl) cyclohexane (TAPC) and tri-p-tolylamine (TTA), (TPAT){sub 3} possesses the three-dimensional chair conformation and the higher T{sub g}. In the photoluminescence (PL) spectrum of (TPAT){sub 3} film, there are no excimer emission peaks in the range of 400-550 nm region as those of TAPC and TTA. Besides an EL peak at 386 nm, the single-layer device occured only the 438 nm excimer emission peak, whose intensity increased with the excitation voltage increase. Using 1,3,5-Tris(N-phenylbenzimidazol-2-yl)-benzene (TPBI) as the electron-transporting layer, the resulting double-layer device ITO/(TPAT){sub 3} (40 nm)/TPBI (40 nm)/Mg:Ag (10:1; 50 nm)/Ag (100 nm) only exhibited a 438 nm maximum symmetrical emission peak under an excitation voltage of 14 V. However, as the applied voltage was increased from 14 V to 19 V, the intensity of the symmetrical curve with a 468 nm peak from exciplex emission gets stronger and stronger. In fact, the resultant emission curve was asymmetrical, due to the overlap of two symmetrical curves with 438 nm and 468 nm peaks, respectively. The maximum luminance and luminous efficiency are 2240 cd m{sup -2} at 18.8 V and 1.73 cd A{sup -1} at 1878 cd m{sup -2} (13.9 V). Highlights: Black-Right-Pointing-Pointer The monodispersed macrocyclic oligomer constructed by three triarylamine units was synthesized and characterized. Black-Right-Pointing-Pointer The PL of (TPAT){sub 3} film does not emerge TAPC and TTA's emission peaks of over 400 nm region. Black-Right-Pointing-Pointer The 438 nm emission peak was found from

  4. A Strategy to Suppress Phonon Transport in Molecular Junctions Using pi-Stacked Systems

    DEFF Research Database (Denmark)

    Li, Qian; Strange, Mikkel; Duchemin, Ivan

    2017-01-01

    to suppress phonon transport in graphene-based molecular junctions preserving high electronic power factor, using nonbonded pi-stackal systems. Using first-principles calculations, we find that the thermal conductance of pi-stacked systems can be reduced by about 95%, compared with that of a covalently bonded...

  5. Fulminant hepatic failure following marijuana drug abuse: Molecular adsorbent recirculation system therapy

    Directory of Open Access Journals (Sweden)

    G Swarnalatha

    2013-01-01

    Full Text Available Marijuana is used for psychoactive and recreational purpose. We report a case of fulminant hepatic failure following marijuana drug abuse who recovered following artificial support systems for acute liver failure. There is no published literature of management of marijuana intoxication with molecular adsorbent recirculation system (MARS. MARS is effective and safe in patients with fulminant hepatic failure following marijuana intoxication.

  6. Relativistic Green function for atomic and molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, P.F.; Sherstyuk, A.I.

    1981-12-01

    The problem on Green function construction of Dirac equation is solved for a wide class of single electron potentials in the atom and molecule theory. The solution is obtained in the form of a spectrum analysis according to the total system of eigenfuctions of the generalized Dirac problem for eigenvalues. The problem possesses a purely discrete spectrum.

  7. The chloroplast thylakoid membrane system is a molecular conveyor belt.

    Science.gov (United States)

    Critchley, C

    1988-10-01

    Light drives photosynthesis, but paradoxically light is also the most variable environmental factor influencing photosynthesis both qualitatively and quantitatively. The photosynthetic apparatus of higher plants is adaptable in the extreme, as exemplified by its capacity for acclimation to very bright sunny or deeply shaded conditions. It can also respond to rapid changes in light such as sunflecks. In this paper I offer a model that i) explains the thylakoid membrane organisation into grana stacks and stroma lamellae, ii) proposes a role for rapid D1 protein turnover and LHCII phosphorylation, and iii) suggests a mechanism for photoinhibition. I argue that the photosynthetic membrane system is dynamic in three dimensions, so much so that, in the light, it is in constant motion and operates in a manner somewhat analogous to a conveyor belt. D1 protein degradation is proposed to be the motor that drives this system. Photoinhibition is suggested to be due to the arrest of D1 protein turnover.

  8. Molecular pathology of systemic lupus erythematosus in Asians

    OpenAIRE

    Chai, Hwa Chia

    2017-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease affecting various parts of the body. Polymorphisms in genes involved in toll-like receptor (TLR)/interferon (IFN) signalling pathways have been reported previously to be associated with SLE in many populations. This study aimed to investigate the role of seven single nucleotide polymorphisms (SNPs) within TNFAIP3 (rs2230936 and rs3757173), STAT4 (rs7574865, rs10168266, and rs7601754), and IRF5 (rs4728142 and rs729302), that...

  9. Bound states and molecular structure of systems with hyperons

    International Nuclear Information System (INIS)

    Akaishi, Y.

    1992-01-01

    Microscopic calculations are done for Σ-hypernuclear few-body systems by a method named ATMS. Among two- to five-body systems, only the Σ 4 He(0 + ) and Σ 4 H(0 + ) hypernuclei are expected to be bound: The binding energy and the width of the former are calculated to be 3.7 ∼ 4.6 MeV and 4.5 ∼ 7.9 MeV, respectively. The observation of Σ 4 He at KEK is in good agreement with the above prediction. The nucleus-Σ potential has a strong Lane term and a repulsive bump at short distance. The Lane term makes the system bound and the bump suppresses the ΣN → ΛN conversion. X-ray measurement of level shifts in the 4 He-Σ - , 3 He-Σ - and 3 H-Σ - atoms can provide another information on the Lane term. In 208 Pb, there may exist a peculiar state, Coulomb-assisted (atomnucleus) hybrid state, where Σ - is trapped in the surface region by the strong interaction with the aid of the inner centrifugal repulsion and the outer Coulomb attraction. An analysis is given for new data of Ξ -.12 C atomic or nuclear systems from the emulsion-counter experiment at KEK. The double-Λ hypernucleus formation rate is calculated for a stopped Ξ - on 4 He. A high branching ratio of 37% is obtained for the ΛΛ 4 H formation from a Ξ -.4 He atom. The detection of about 2.3 MeV neutron is proposed to search for lightest double-Λ hypernucleus ΛΛ 4 H. (author)

  10. Biomedical wellness monitoring system based upon molecular markers

    Science.gov (United States)

    Ingram, Whitney

    2012-06-01

    We wish to assist caretakers with a sensor monitoring systems for tracking the physiological changes of homealone patients. One goal is seeking biomarkers and modern imaging sensors like stochastic optical reconstruction microscopy (STORM), which has achieved visible imaging at the nano-scale range. Imaging techniques like STORM can be combined with a fluorescent functional marker in a system to capture the early transformation signs from wellness to illness. By exploiting both microscopic knowledge of genetic pre-disposition and the macroscopic influence of epigenetic factors we hope to target these changes remotely. We adopt dual spectral infrared imaging for blind source separation (BSS) to detect angiogenesis changes and use laser speckle imaging for hypertension blood flow monitoring. Our design hypothesis for the monitoring system is guided by the user-friendly, veteran-preferred "4-Non" principles (noninvasive, non-contact, non-tethered, non-stop-to-measure) and by the NIH's "4Ps" initiatives (predictive, personalized, preemptive, and participatory). We augment the potential storage system with the recent know-how of video Compressive Sampling (CSp) from surveillance cameras. In CSp only major changes are saved, which reduces the manpower cost of caretakers and medical analysts. This CSp algorithm is based on smart associative memory (AM) matrix storage: change features and detailed scenes are written by the outer-product and read by the inner product without the usual Harsh index for image searching. From this approach, we attempt to design an effective household monitoring approach to save healthcare costs and maintain the quality of life of seniors.

  11. Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1'-P2' ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Sean Fyvie, W.; Brindisi, Margherita; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2017-11-01

    Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1'-P2' tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.

  12. Fast and versatile microwave-assisted intramolecular Heck reaction in peptide macrocyclization using microwave energy.

    Science.gov (United States)

    Byk, Gerardo; Cohen-Ohana, Mirit; Raichman, Daniel

    2006-01-01

    We have revisited the intramolecular Heck reaction and investigated the microwave-assisted macrocyclization on preformed peptides using a model series of ring-varying peptides acryloyl-Gly-[Gly](n)-Phe(4-I)NHR; n = 0-4. The method was applied to both solution and solid supported cyclizations. We demonstrate that the intramolecular Heck reaction can be performed in peptides both in solution and solid support using a modified domestic microwave within 1 to 30 minutes in DMF under reflux with moderate yields ranging from 15 to 25% for a scale between 2-45 mg of linear precursors. The approach was applied to the synthesis of a constrained biologically relevant peptidomimetic bearing an Arg-Gly-Asp (RGD) sequence. These results make the microwave-assisted Heck reaction an attractive renovated approach for peptidomimetics. Copyright 2006 Wiley Periodicals, Inc.

  13. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold

    Science.gov (United States)

    Li, Yizhou; De Luca, Roberto; Cazzamalli, Samuele; Pretto, Francesca; Bajic, Davor; Scheuermann, Jörg; Neri, Dario

    2018-03-01

    In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.

  14. tetrapyrrole macrocycle

    African Journals Online (AJOL)

    ... 3(1), 17-24 (1989). CATALYTIC OXIDATION OF 3,5-DI-TERTBUTYL CATECHOL (3,5-DTBC) .... (C13) in 25 ml of methanol. To the stirred .... and electrochemical properties (15) since these properties are very similar for all the complexes.

  15. Virtual libraries of tetrapyrrole macrocycles. Combinatorics, isomers, product distributions, and data mining.

    Science.gov (United States)

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2011-09-26

    A software program (PorphyrinViLiGe) has been developed to enumerate the type and relative amounts of substituted tetrapyrrole macrocycles in a virtual library formed by one of four different classes of reactions. The classes include (1) 4-fold reaction of n disubstituted heterocycles (e.g., pyrroles or diiminoisoindolines) to form β-substituted porphyrins, β-substituted tetraazaporphyrins, or α- or β-substituted phthalocyanines; (2) combination of m aminoketones and n diones to form m × n pyrroles, which upon 4-fold reaction give β-substituted porphyrins; (3) derivatization of an 8-point tetrapyrrole scaffold with n reagents, and (4) 4-fold reaction of n aldehydes and pyrrole to form meso-substituted porphyrins. The program accommodates variable ratios of reactants, reversible or irreversible reaction (reaction classes 1 and 2), and degenerate modes of formation. Pólya's theorem (for enumeration of cyclic entities) has also been implemented and provides validation for reaction classes 3 and 4. The output includes the number and identity of distinct reaction-accessible substituent combinations, the number and identity of isomers thereof, and the theoretical mass spectrum. Provisions for data mining enable assessment of the number of products having a chosen pattern of substituents. Examples include derivatization of an octa-substituted phthalocyanine with eight reagents to afford a library of 2,099,728 members (yet only 6435 distinct substituent combinations) and reversible reaction of six distinct disubstituted pyrroles to afford 2649 members (yet only 126 distinct substituent combinations). In general, libraries of substituted tetrapyrrole macrocycles occupy a synthetically accessible region of chemical space that is rich in isomers (>99% or 95% for the two examples, respectively).

  16. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth.

    Science.gov (United States)

    Mukhopadhyay, Archana; Hanold, Laura E; Thayele Purayil, Hamsa; Gisemba, Solomon A; Senadheera, Sanjeewa N; Aldrich, Jane V

    2017-08-03

    The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC 50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.

  17. Supra-molecular Association and Polymorphic Behaviour In Systems Containing Bile Acid Salts

    Directory of Open Access Journals (Sweden)

    Camillo La Mesa

    2007-08-01

    Full Text Available A wide number of supra-molecular association modes are observed in mixtures containing water and bile salts, BS, (with, eventually, other components. Molecular or micellar solutions transform into hydrated solids, fibres, lyotropic liquid crystals and/or gels by raising the concentration, the temperature, adding electrolytes, surfactants, lipids and proteins. Amorphous or ordered phases may be formed accordingly. The forces responsible for this very rich polymorphism presumably arise from the unusual combination of electrostatic, hydrophobic and hydrogen-bond contributions to the system stability, with subsequent control of the supra-molecular organisation modes. The stabilising effect due to hydrogen bonds does not occur in almost all surfactants or lipids and is peculiar to bile acids and salts. Some supra-molecular organisation modes, supposed to be related to malfunctions and dis-metabolic diseases in vivo, are briefly reported and discussed.

  18. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    Science.gov (United States)

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis

    International Nuclear Information System (INIS)

    Large, T.H.; Cho, N.J.; De Mello, F.G.; Klein, W.L.

    1985-01-01

    Biochemical properties of the muscarinic acetylcholine receptor system of the avian retina were found to change during the period when synapses form in ovo. Comparison of ligand binding to membranes obtained before and after synaptogenesis showed a significant increase in the affinity, but not proportion, of the high affinity agonist-binding state. There was no change in receptor sensitivity to antagonists during this period. Pirenzepine binding, which can discriminate muscarinic receptor subtypes, showed the presence of a single population of low affinity sites (M2) before and after synaptogenesis. The change in agonist binding was not due to the late development of receptor function. However, detergent-solubilization of membranes eliminated differences in agonist binding between receptors from embryos and hatched chicks, suggesting a developmental change in interactions of the receptor with functionally related membrane components. A possible basis for altered interactions was obtained from isoelectric point data showing that the muscarinic receptor population underwent a transition from a predominantly low pI form (4.25) in 13 day embryos to a predominantly high pI form (4.50) in newly hatched chicks. The possibility that biochemical changes in the muscarinic receptor play a role in differentiation of the system by controlling receptor position on the surface of nerve cells is discussed

  20. Chapter 5: Quantum Dynamics in Dissipative Molecular Systems

    Science.gov (United States)

    Zhang, Hou-Dao; Xu, J.; Xu, Rui-Xue; Yan, Y. J.

    2014-04-01

    The following sections are included: * Introduction * HEOM versus Path Integral Formalism: Background * Generic form and terminology of HEOM * Statistical mechanics description of bath influence * Feynman-Vernon influence functional formalism * General comments * Memory-Frequency Decomposition of Bath Correlation Functions * PSD of Bose function * Brownian oscillators decomposition of bath spectral density function * Optimized HEOM Theory With Accuracy Control * Construction of HEOM via path integral formalism * Accuracy control on white-noise residue ansatz * Efficient HEOM propagator: Numerical filtering and indexing algorithm * HEOM in Quantum Mechanics for Open Systems * The HEOM space and the Schrödinger picture * HEOM in the Heisenberg picture * Mixed Heisenberg-Schrödinger block-matrix dynamics in nonlinear optical response functions * Two-Dimensional Spectroscopy: Model Calculations * Concluding Remarks * Acknowledgments * References

  1. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    Science.gov (United States)

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Molecular dynamics coupled with a virtual system for effective conformational sampling.

    Science.gov (United States)

    Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi

    2018-07-15

    An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Phases of polymer systems in solution studied via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Joshua Allen [Iowa State Univ., Ames, IA (United States)

    2009-05-01

    Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

  4. Templated synthesis of cyclic [4]rotaxanes consisting of two stiff rods threaded through two bis-macrocycles with a large and rigid central plate as spacer.

    Science.gov (United States)

    Collin, Jean-Paul; Durola, Fabien; Frey, Julien; Heitz, Valérie; Reviriego, Felipe; Sauvage, Jean-Pierre; Trolez, Yann; Rissanen, Kari

    2010-05-19

    Two related cyclic [4]rotaxanes consisting of double macrocycles and rigid rods incorporating two bidentate chelates have each been prepared in high yield. The first step is a multigathering and threading reaction driven by coordination of two different bidentate chelates (part of either the rings or the rods) to each copper(I) center so as to afford the desired precursor. In both cases, the assembly step is done under very mild conditions, and it is quantitative. The second key reaction is the stopper-attaching reaction, based on click chemistry. Even if the quadruple stoppering reaction is not quantitative, it is relatively high-yielding (60% and 95%), and the copper-driven assembly process is carried out at room temperature without any aggressive reagent. The final copper-complexed [4]rotaxanes obtained contain two aromatic plates roughly parallel to one another located at the center of each bis-macrocycle. In the most promising case in terms of host-guest properties, the plates are zinc(II) porphyrins of the tetra-aryl series. The compounds have been fully characterized by various spectroscopic techniques ((1)H NMR, mass spectrometry, and electronic absorption spectroscopy). Unexpectedly, the copper-complexed porphyrinic [4]rotaxane could be crystallized as its 4PF(6)(-) salt to afford X-ray quality crystals. The structure obtained is in perfect agreement with the postulated chemical structure of the compound. It is particularly attractive in terms of symmetry and molecular aesthetics. The distance between the zinc atoms of the two porphyrins is 8.673 A, which is sufficient to allow insertion between the two porphyrinic plates of small ditopic basic substrates able to interact with the central porphyrinic Zn atoms. This prediction has been confirmed by absorption spectroscopy measurements in the presence of various organic substrates. However, large substrates cannot be introduced in the corresponding recognition site and are thus complexed mostly in an exo

  5. Modulated molecular beam mass spectrometry: A generalized expression for the ''reaction product vector'' for linear systems

    International Nuclear Information System (INIS)

    Chang, H.; Weinberg, W.H.

    1977-01-01

    A generalized expression is developed that relates the ''reaction product vector'', epsilon exp(-iphi), to the kinetic parameters of a linear system. The formalism is appropriate for the analysis of modulated molecular beam mass spectrometry data and facilitates the correlation of experimental results to (proposed) linear models. A study of stability criteria appropriate for modulated molecular beam mass spectrometry experiments is also presented. This investigation has led to interesting inherent limitations which have not heretofore been emphasized, as well as a delineation of the conditions under which stable chemical oscillations may occur in the reacting system

  6. Potentiometric investigations of molecular heteroconjugation equilibria of substituted phenol+n-butylamine systems in dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Czaja, MaIgorzata; Baginska, Katarzyna; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech

    2005-01-01

    Molecular heteroconjugation constants, K BHA DMSO and K AHB DMSO , expressed as their logarithms, have been determined by potentiometric titration for eleven substituted phenol+n-butylamine systems in a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO). An increasing tendency towards molecular heteroconjugation in these systems without proton transfer has been found with increasing pK a DMSO (HA), i.e., with decreasing phenol acidity. Moreover, a linear correlation has been established between the determined lgK BHA DMSO values and pK a DMSO (HA). Furthermore, overall stability constants, lgK o DMSO , could be correlated linearly with pK a DMSO (HA) values

  7. Low molecular mass chitosan as carrier for hydrodynamically balanced system for sustained delivery of ciprofloxacin hydrochloride

    OpenAIRE

    VERMA, ANURAG; BANSAL, ASHOK K.; GHOSH, AMITAVA; PANDIT, JAYANTA K.

    2012-01-01

    Chitosan has become a focus of major interest in recent years due to its excellent biocompatibility, biodegradability and non-toxicity. Although this material has already been extensively investigated in the design of different types of drug delivery systems, it is still little explored for stomach specific drug delivery systems. The objective of the present investigation was to explore the potential of low molecular mass chitosan (LMCH) as carrier for a hydrodynamically balanced system (HBS)...

  8. Molecular evolution of peptidergic signaling systems in bilaterians

    Science.gov (United States)

    Mirabeau, Olivier; Joly, Jean-Stéphane

    2013-01-01

    Peptide hormones and their receptors are widespread in metazoans, but the knowledge we have of their evolutionary relationships remains unclear. Recently, accumulating genome sequences from many different species have offered the opportunity to reassess the relationships between protostomian and deuterostomian peptidergic systems (PSs). Here we used sequences of all human rhodopsin and secretin-type G protein-coupled receptors as bait to retrieve potential homologs in the genomes of 15 bilaterian species, including nonchordate deuterostomian and lophotrochozoan species. Our phylogenetic analysis of these receptors revealed 29 well-supported subtrees containing mixed sets of protostomian and deuterostomian sequences. This indicated that many vertebrate and arthropod PSs that were previously thought to be phyla specific are in fact of bilaterian origin. By screening sequence databases for potential peptides, we then reconstructed entire bilaterian peptide families and showed that protostomian and deuterostomian peptides that are ligands of orthologous receptors displayed some similarity at the level of their primary sequence, suggesting an ancient coevolution between peptide and receptor genes. In addition to shedding light on the function of human G protein-coupled receptor PSs, this work presents orthology markers to study ancestral neuron types that were probably present in the last common bilaterian ancestor. PMID:23671109

  9. Bridging the gap: linking molecular simulations and systemic descriptions of cellular compartments.

    Directory of Open Access Journals (Sweden)

    Tihamér Geyer

    Full Text Available Metabolic processes in biological cells are commonly either characterized at the level of individual enzymes and metabolites or at the network level. Often these two paradigms are considered as mutually exclusive because concepts from neither side are suited to describe the complete range of scales. Additionally, when modeling metabolic or regulatory cellular systems, often a large fraction of the required kinetic parameters are unknown. This even applies to such simple and extensively studied systems like the photosynthetic apparatus of purple bacteria. Using the chromatophore vesicles of Rhodobacter sphaeroides as a model system, we show that a consistent kinetic model emerges when fitting the dynamics of a molecular stochastic simulation to a set of time dependent experiments even though about two thirds of the kinetic parameters in this system are not known from experiment. Those kinetic parameters that were previously known all came out in the expected range. The simulation model was built from independent protein units composed of elementary reactions processing single metabolites. This pools-and-proteins approach naturally compiles the wealth of available molecular biological data into a systemic model and can easily be extended to describe other systems by adding new protein or nucleic acid types. The automated parameter optimization, performed with an evolutionary algorithm, reveals the sensitivity of the model to the value of each parameter and the relative importances of the experiments used. Such an analysis identifies the crucial system parameters and guides the setup of new experiments that would add most knowledge for a systemic understanding of cellular compartments. The successful combination of the molecular model and the systemic parametrization presented here on the example of the simple machinery for bacterial photosynthesis shows that it is actually possible to combine molecular and systemic modeling. This framework can now

  10. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2011-12-01

    Full Text Available Structural parameters of a range of over 100 meso-substituted zinc porphyrins were reviewed and compared to show how far the nature of the functional group may affect the interatomic distances and bond angles within the porphyrin core. It was proved that even despite evident deformations of the molecular structure, involving twisting of the porphyrin's central plane, the coupled π-bonding system remains flexible and stable. DFT calculations were applied to a number of selected porphyrins representative for the reviewed compounds to emphasize the relevance of theoretical methods in structural investigations of complex macrocyclic molecular systems. Experimental and DFT-simulated IR spectral data were reported and analyzed in context of the individual molecular features introduced by the meso substituents into the porphyrin moiety base. Raw experimental spectral data, including 1H- and 13C-NMR, UV-Vis, FTIR, XRD, and other relevant physicochemical details have been provided for a specially chosen reference zinc porphyrin functionalized by tert-butylphenyl groups.

  11. Coherent Rabi oscillations in a molecular system and sub-diffraction-limited pattern generation

    International Nuclear Information System (INIS)

    Liao, Zeyang; Al-Amri, M; Zubairy, M Suhail

    2015-01-01

    The resolution of a photolithography and optical imaging system is restricted by the diffraction limit. Coherent Rabi oscillations have been shown to be able to overcome the diffraction limit in a simple two-level atomic system (Z Liao, M Al-amri, and M S Zubairy 2010 Phys. Rev. Lett. 105 183601). In this paper, we numerically calculate the wave packet dynamics of a molecular system interacting with an ultrashort laser pulse and show that coherent Rabi oscillations in a molecular system are also possible. Moreover, a sub-diffraction-limited pattern can be generated in this system by introducing spatially modulated Rabi oscillations. We also discuss several techniques to improve the visibility of the sub-diffraction-limited pattern. Our result may have important applications in super-resolution optical lithography and optical imaging. (paper)

  12. A neural network approach to the study of dynamics and structure of molecular systems

    International Nuclear Information System (INIS)

    Getino, C.; Sumpter, B.G.; Noid, D.W.

    1994-01-01

    Neural networks are used to study intramolecular energy flow in molecular systems (tetratomics to macromolecules), developing new techniques for efficient analysis of data obtained from molecular-dynamics and quantum mechanics calculations. Neural networks can map phase space points to intramolecular vibrational energies along a classical trajectory (example of complicated coordinate transformation), producing reasonably accurate values for any region of the multidimensional phase space of a tetratomic molecule. Neural network energy flow predictions are found to significantly enhance the molecular-dynamics method to longer time-scales and extensive averaging of trajectories for macromolecular systems. Pattern recognition abilities of neural networks can be used to discern phase space features. Neural networks can also expand model calculations by interpolation of costly quantum mechanical ab initio data, used to develop semiempirical potential energy functions

  13. Large-scale molecular dynamics simulations of self-assembling systems.

    Science.gov (United States)

    Klein, Michael L; Shinoda, Wataru

    2008-08-08

    Relentless increases in the size and performance of multiprocessor computers, coupled with new algorithms and methods, have led to novel applications of simulations across chemistry. This Perspective focuses on the use of classical molecular dynamics and so-called coarse-grain models to explore phenomena involving self-assembly in complex fluids and biological systems.

  14. Origami: A Versatile Modeling System for Visualising Chemical Structure and Exploring Molecular Function

    Science.gov (United States)

    Davis, James; Leslie, Ray; Billington, Susan; Slater, Peter R.

    2010-01-01

    The use of "Origami" is presented as an accessible and transferable modeling system through which to convey the intricacies of molecular shape and highlight structure-function relationships. The implementation of origami has been found to be a versatile alternative to conventional ball-and-stick models, possessing the key advantages of being both…

  15. Molecular subtypes of systemic sclerosis in association with anti-centromere antibodies and digital ulcers

    NARCIS (Netherlands)

    Bos, C. L.; van Baarsen, L. G. M.; Timmer, T. C. G.; Overbeek, M. J.; Basoski, N. M.; Rustenburg, F.; Baggen, J. M. C.; Thiesen, H. J.; Dijkmans, B. A. C.; van der Pouw Kraan, T. C. T. M.; Voskuyl, A. E.; Verweij, C. L.

    2009-01-01

    The objective of this study was to identify molecular profiles that may distinguish clinical subtypes in systemic sclerosis (SSc). Large-scale gene expression profiling was performed on peripheral blood (PB) from 12 SSc patients and 6 healthy individuals. Significance analysis of microarrays,

  16. On the effects of transforming the vibrational spectra of molecular systems under microwave radiation

    International Nuclear Information System (INIS)

    Serikov, A.A.

    1993-01-01

    This problem is analyzed within the quantum-classical theory of molecular spectra. It is shown that the above-mentioned spectrum transformation could be, in principle, realized in macromolecular systems with strong interaction, and attention is drawn to the resonance character of the effect. (author). 19 refs., 1 fig

  17. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System.

    Science.gov (United States)

    Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin

    2016-01-20

    The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.

  18. Structure and properties of simple molecular systems at very high density

    International Nuclear Information System (INIS)

    LeSar, R.

    1989-01-01

    The use of computer simulations in the study of molecular systems at very high density is reviewed. Applications to the thermodynamics of dense fluid nitrogen and phase transitions in solid oxygen are presented. The effects of changes in the atomic electronic structure on the equation of state of very dense helium are discussed. 19 refs., 2 figs

  19. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon; Choi, Eun Seo

    2009-01-01

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  20. Dinuclear Silver(I) and Copper(II) Complexes of Hexadentate Macrocyclic Ligands Containing p-Xylyl Spacers

    DEFF Research Database (Denmark)

    McKenzie, Christine J.; Nielsen, Lars Preuss; Søtofte, Inger

    1998-01-01

    The cyclocondensation of terephthalic aldehyde with N,N-bis(3-aminopropyl)-methylamine in the presence of silver(I) gives the dinuclear tetramine Schiff base macrocyclic complex, [Ag2L1](NO3)2 (L1=7,22-N,N'-dimethyl-3,7,11,18, 22,26-hexaazatricyclo[26.2.21.18.213.16]-tetratricosa-2,11,13,15,1 7...

  1. Tools for Chemical Biology: New Macrocyclic Compounds from Diversity-Oriented Synthesis and Toward Materials from Silver(I) Acetylides

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie

    Part I The formation of a library of diverse macrocyclic compounds with different functionalities and ring sizes in a few steps from two easily accessible α,ω-diol building blocks is presented. The building blocks are combined by esteriffcations in four different ways leading to the formation of ...... of uoro-iodoadamantanes. However, overall the results provide a good starting point for the synthesis of new triptycene and adamantane-containing molecules that can interact with carbon nanotubes....

  2. Green chemistry for preparation of oligopyrrole macrocycles precursors: Novel methodology for dipyrromethanes and tripyrromethanes synthesis in water

    Czech Academy of Sciences Publication Activity Database

    Král, Vladimír; Vašek, P.; Dolenský, B.

    2004-01-01

    Roč. 69, č. 5 (2004), s. 1126-1136 ISSN 0010-0765 R&D Projects: GA ČR GA203/02/0933; GA ČR GA203/02/0420; GA ČR GP203/03/D049 Grant - others:QLRT(XE) 2000-02360 Keywords : oligopyrrole macrocycles * porphyrins * calixpyrrols Subject RIV: CC - Organic Chemistry Impact factor: 1.062, year: 2004

  3. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  4. Elucidation of molecular kinetic schemes from macroscopic traces using system identification.

    Directory of Open Access Journals (Sweden)

    Miguel Fribourg

    2017-02-01

    Full Text Available Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic processes from the overall (macroscopic response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE. SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology

  5. Investigation of the potential of silica-bonded macrocyclic ligands for separation of metal ions from nuclear waste

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Colton, N.G.; Bruening, R.L.

    1992-01-01

    This report describes the testing of some novel separations materials known as SuperLig trademark materials for their ability to separate efficiently and selectively certain metal ions from a synthetic, nonradioactive nuclear waste solution. The materials, developed and patented by IBC Advanced Technologies, are highly selective macrocyclic ligands that have been covalently bonded to silica gel. The SuperLig trademark materials that were tested are: (1) SuperLig trademark 601 for barium (Ba 2+ ) and strontium (Sr 2+ ) separation, (2) SuperLig trademark 602 for cesium (Cs + ) and rubidium (Rb + ) separation, (3) SuperLig trademark 27 for palladium (Pd 2+ ) separation, and (4) SuperLig trademark II for silver (Ag + ) and ruthenium (Ru 3+ ) separation. Our observations show that the technology for separating metal ions using silica-bonded macrocycles is essentially sound and workable to varying degrees of success that mainly depend on the affinity of the macrocycle for the metal ion of interest. It is expected that ligands will be discovered or synthesized that are amenable to separating metal ions of interest using this technology. Certainly more development, testing, and evaluation is warranted. 3 figs., 11 tabs

  6. Dinuclear Silver(I) and Copper(II) Complexes of Hexadentate Macrocyclic Ligands Containing p-Xylyl Spacers

    DEFF Research Database (Denmark)

    McKenzie, Christine J.; Nielsen, Lars Preuss; Søtofte, Inger

    1998-01-01

    The cyclocondensation of terephthalic aldehyde with N,N-bis(3-aminopropyl)-methylamine in the presence of silver(I) gives the dinuclear tetramine Schiff base macrocyclic complex, [Ag2L1](NO3)2 (L1=7,22-N,N'-dimethyl-3,7,11,18, 22,26-hexaazatricyclo[26.2.21.18.213.16]-tetratricosa-2,11,13,15,1 7......,26,28,30,31,33-decaene). [Ag2L1](NO3)2 crystallizes in the monoclinic space group P21/c, with a=14.153(6), b=12.263(4), c=9.220(2) Å, beta=97.52(3) Å and Z=2. The silver ions are strongly coordinated at each end of the macrocycle by the two imine nitrogen atoms [2.177(3) and 2.182(3) Å] with close interatomic...... interactions to an oxygen atom of a nitrate ion and an amine nitrogen atom [2.580(2) and 2.690(2) Å]. The Ag...Ag distance is 6.892(3) Å. The free tetraimine macrocycle, L1, was obtained by treatment of [Ag2L1](NO3)2 with an excess of iodide, and the reduced derivative 7,22-N,N'-dimethyl-3...

  7. Spectroscopic and electrochemical investigation with coordination stabilities: Mononuclear manganese(II) complexes derived from different constituents macrocyclic ligands

    Science.gov (United States)

    Kumar, Rajiv; Chnadra, S.; Mishra, Parashuram

    2007-12-01

    Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L 1: 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N 2O 2]ane; L 2: 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N 4]ane; and two more different form first one viz.—L 3: 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N 2O 2S]ane and L 4: 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N 4O 2]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.

  8. Studies of isotopic effects in the excited electronic states of molecular systems

    International Nuclear Information System (INIS)

    1982-01-01

    Rare gas halogen (RGH) lasers serve as convenient tools for a range of photophysical processes which exhibit isotope effects. This document summarizes progress in the production of molecular systems in their electronic excited states with the aid of RGH lasers, and the various isotopic effects one can study under these conditions. We conclude that the basic physical mechanisms involved in the isotopically sensitive characteristics of excited molecular electronic states are sufficiently selective to be useful in both the detection and separation of many atomic materials

  9. Advanced in study of cellular and molecular mechanisms of radiation effects on central nervous system

    International Nuclear Information System (INIS)

    Zhang Wei; Tu Yu; Wang Lili

    2008-01-01

    Along with radiation treatment extensively applied, radiation injury also is valued gradually. The effect of radiation to the cellular and molecular of central nervous system (CNS) is a complicated and moderately advanced process and the mechanism is remains incompletely clear yet. Inquiring into the possible mechanism of the CNS including the injury and the restoration of neuron, neuroglia cells, endotheliocyte cell and blood-brain barrier and the molecular level of change induced by radiation, so as to provide beneficial thought for preventing and curing radiation injury clinically. Some neuroprotective strategies are also addressed in the review. (authors)

  10. Energy transformation in molecular electronic systems: Comprehensive progress report, 1986--1989

    International Nuclear Information System (INIS)

    Kasha, M.

    1989-01-01

    Our research focuses on discovering the fundamental issues in proton-transfer and charge-transfer excitations in model systems, with an eye on which molecular systems will serve as the best guide to biological systems. This report addresses an intramolecular proton transfer classification system, proton-transfer potentials, proton-transfer spectroscopy of benzanilides, proton-transfer in aminosalicylates, proton-transfer in lumichrome, development of proton-transfer lasers, and triplet excitation enhancement via proton-transfer tunneling. 6 refs., 2 figs

  11. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    Energy Technology Data Exchange (ETDEWEB)

    Li, King C.P. [Department of Radiology, Methodist Hospital, Weill Cornell Medical College, 6565 Fannin Street, D280 Houston, TX 77030 (United States)], E-mail: kli@tmhs.org

    2009-05-15

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  12. Dynamic analysis of electron density in the course of the internal motion of molecular system

    International Nuclear Information System (INIS)

    Tachibana, A.; Hori, K.; Asai, Y.; Yamabe, T.

    1984-01-01

    The general dynamic aspect of electron density of a molecular system is studied on the basis of the general equation of the electron orbital which is formulated for the dynamic study of electronic motion. The newly defined electron orbital incorporates the dynamics of molecular vibration into the electronic structures. In this scheme, the change of electron distribution caused by excitation of vibrational state is defined as the ''dynamic electron transfer.'' The dynamic electron density is found to have the remarkable ''additive'' property. The time-dependent aspect of the dynamic electron redistribution is also analyzed on the basis of the ''coherent state.'' The new method relates the classical vibrational amplitude to the quantum number of the vibrational state. As a preliminary application of the present treatment, the dynamic electron densities of H 2 , HD, HT, HF, and HCl molecules are calculated by use of ab initio molecular orbital method

  13. Computing molecular fluctuations in biochemical reaction systems based on a mechanistic, statistical theory of irreversible processes.

    Science.gov (United States)

    Kulasiri, Don

    2011-01-01

    We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.

  14. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.

    Science.gov (United States)

    Tanaka, Shigenori; Mochizuki, Yuji; Komeiji, Yuto; Okiyama, Yoshio; Fukuzawa, Kaori

    2014-06-14

    Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.

  15. A macrocyclic ligand as receptor and Zn(II)-complex receptor for anions in water: binding properties and crystal structures.

    Science.gov (United States)

    Ambrosi, Gianluca; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Pontellini, Roberto; Rossi, Patrizia

    2011-02-01

    Binding properties of 24,29-dimethyl-6,7,15,16-tetraoxotetracyclo[19.5.5.0(5,8).0(14,17)]-1,4,9,13,18,21,24,29-octaazaenatriaconta-Δ(5,8),Δ(14,17)-diene ligand L towards Zn(II) and anions, such as the halide series and inorganic oxoanions (phosphate (Pi), sulfate, pyrophosphate (PPi), and others), were investigated in aqueous solution; in addition, the Zn(II)/L system was tested as a metal-ion-based receptor for the halide series. Ligand L is a cryptand receptor incorporating two squaramide functions in an over-structured chain that connects two opposite nitrogen atoms of the Me(2)[12]aneN(4) polyaza macrocyclic base. It binds Zn(II) to form mononuclear species in which the metal ion, coordinated by the Me(2)[12]aneN(4) moiety, lodges inside the three-dimensional cavity. Zn(II)-containing species are able to bind chloride and fluoride at the physiologically important pH value of 7.4; the anion is coordinated to the metal center but the squaramide units play the key role in stabilizing the anion through a hydrogen-bonding network; two crystal structures reported here clearly show this aspect. Free L is able to bind fluoride, chloride, bromide, sulfate, Pi, and PPi in aqueous solution. The halides are bound at acidic pH, whereas the oxoanions are bound in a wide range of pH values ranging from acidic to basic. The cryptand cavity, abundant in hydrogen-bonding sites at all pH values, allows excellent selectivity towards Pi to be achieved mainly at physiological pH 7.4. By joining amine and squaramide moieties and using this preorganized topology, it was possible, with preservation of the solubility of the receptor, to achieve a very wide pH range in which oxoanions can be bound. The good selectivity towards Pi allows its discrimination in a manner not easily obtainable with nonmetallic systems in aqueous environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An analytic approach to 2D electronic PE spectra of molecular systems

    International Nuclear Information System (INIS)

    Szoecs, V.

    2011-01-01

    Graphical abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems using direct calculation from electronic Hamiltonians allows peak classification from 3P-PE spectra dynamics. Display Omitted Highlights: → RWA approach to electronic photon echo. → A straightforward calculation of 2D electronic spectrograms in finite molecular systems. → Importance of population time dynamics in relation to inter-site coherent coupling. - Abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the δ-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3P-PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.

  17. Biomechanical Assessment of Motor Abilities in Male Handball Players During the Annual Training Macrocycle

    Directory of Open Access Journals (Sweden)

    Sacewicz Tomasz

    2016-12-01

    Full Text Available Introduction. The aim of the study was to determine the torque of the knee extensors and flexors of the lead lower limb, the torque of the shoulder extensors and flexors of the dominant upper limb, and the torque generated by the muscles of the kinematic chain going from the trail lower limb to the hand of the dominant limb in male handball players during the annual training macrocycle. Changes in jump height and throwing velocity were also investigated. Material and methods. The study involved 13 handball players from a Polish second-league team. The measurements were performed four times: at the beginning of the preparation period, at the beginning of the season, at the end of the first part of the season, and at the end of the second part of the season. Torque was measured in isokinetic and isometric conditions. Jumping ability was tested using a piezoelectric platform, and throwing velocity was measured with a speed radar gun. Results. The study found statistically significant differences between the relative torque values of the knee extensors (p < 0.002 and flexors (p < 0.003 of the lead leg measured in isokinetic conditions between the first three measurements and the final one. Isokinetic measurement of the torque of the muscles of the kinematic chain going from the trail leg to the hand of the dominant arm decreased in a statistically significant way at the end of the season. As for the results of the measurement of the torque of the shoulder extensors and flexors in static conditions, no statistically significant differences were observed between the four measurements. However, statistically significant differences were noted in jumping ability and throwing velocity in the annual training macrocycle. Conclusions. The results of the study indicate that there is a need to perform regular assessments of players’ strength and jumping ability during the competition period. There is a need to modify the training methods used during the

  18. Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems

    International Nuclear Information System (INIS)

    Deumens, E.; Diz, A.; Longo, R.; Oehrn, Y.

    1994-01-01

    An overview is presented of methods for time-dependent treatments of molecules as systems of electrons and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses many aspects found in other formulations and can serve as a didactic device for clarifying many of the principles and approximations relevant in time-dependent treatments of molecular systems. The END equations are derived from the time-dependent variational principle applied to a chosen family of efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The approach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including nuclear dynamics. The nonlinear END equations with the ab initio Coulomb Hamiltonian have been implemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is discussed as a route to large molecular systems. The linearized END equations at this level of theory are shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The qualitative features of the general nonlinear solution are analyzed using the results of the linearized equations as a first approximation. Some specific applications of END are presented, and the comparison with experiment and other theoretical approaches is discussed

  19. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems.

    Directory of Open Access Journals (Sweden)

    Sophie S Abby

    Full Text Available Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose.Macromolecular System Finder (MacSyFinder provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate "Cas-finder" using publicly available protein profiles.MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher. It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The "Cas-finder" (models and HMM profiles is distributed as a compressed tarball archive as Supporting Information.

  20. Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production

    Science.gov (United States)

    Jin, Tong

    Solar fuel generation via carbon dioxide (CO2) reduction is a promising approach to meet the increasing global demand for energy and to minimize the impact of energy consumption on climate change. However, CO2 is thermodynamically stable; its activation often requires the use of appropriate catalysts. In particular, molecular catalysts with well-defined structures and tunability have shown excellent activity in photochemical CO2 reduction. These homogenous catalysts, however, suffer from poor stability under photochemical conditions and difficulty in recycling from the reaction media. Heterogenized molecular catalysts, particularly those prepared by coupling molecular catalysts with solid-state surfaces, have attracted more attention in recent years as potential solutions to address the issues associated with molecular catalysts. In this work, solar CO2 reduction is investigated using systems coupling molecular catalysts with robust nanostructured surfaces. In Chapter 2, heterogenization of macrocyclic cobalt(III) and nickel (II) complexes on mesoporous silica surface was achieved by different methods. Direct ligand derivatization significantly lowered the catalytic activity of Co(III) complex, while grafting the Co(III) complex onto silica surface through Si-O-Co linkage resulted in hybrid catalysts with excellent activity in CO2 reduction in the presence of p-terphenyl as a molecular photosensitizer. An interesting loading effect was observed, in which the optimal activity was achieved at a medium Co(III) surface density. Heterogenization of the Ni(II) complex on silica surface has also been implemented, the poor photocatalytic activity of the hybrid catalyst can be attributed to the intrinsic nature of the homogeneous analogue. This study highlighted the importance of appropriate linking strategies in preparing functional heterogenized molecular catalysts. Coupling molecular complexes with light-harvesting surfaces could avoid the use of expensive molecular

  1. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    Science.gov (United States)

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.

  2. A molecular beam/quadrupole mass spectrometer system with synchronized beam modulation and digital waveform analysis

    Science.gov (United States)

    Pellett, G. L.; Adams, B. R.

    1983-01-01

    A performance evaluation is conducted for a molecular beam/mass spectrometer (MB/MS) system, as applied to a 1-30 torr microwave-discharge flow reactor (MWFR) used in the formation of the methylperoxy radical and a study of its subsequent destruction in the presence or absence of NO(x). The modulated MB/MS system is four-staged and differentially pumped. The results obtained by the MWFR study is illustrative of overall system performance, including digital waveform analysis; significant improvements over previous designs are noted in attainable S/N ratio, detection limit, and accuracy.

  3. Radiopharmaceuticals: nanoparticles like multi-functional systems for the obtaining in vivo of molecular images

    International Nuclear Information System (INIS)

    Ferro F, G.; Ramirez de la Cruz, F. M.; Ocampo G, B. E.; Morales A, E.; Santos C, C. L.; Mendoza S, A. N.

    2010-01-01

    The techniques of obtaining direct or indirect molecular images detect and register the space-temporary distribution of molecular or cellular processes for biochemical, biological, diagnostic and therapeutic applications. The advanced techniques of image like the nuclear magnetic resonance, the single photon emission computed tomography, the positron emission tomography and the images of optic fluorescence have been used successfully to detect these processes. On the other hand, the utility of the nanoparticles for any application is dependent of the physicochemical properties that present, being possible to modify their surface when making them react with different biomolecules what allows the formation of conjugates with specific molecular recognition. The joint of various protein molecules, peptides or oligonucleotides to the surface of a nanoparticle produce a multi-functional system able to increase the multivalent joints from the nanoparticles-biomolecules to their receivers for the obtaining of molecular images in vivo. The peptides stimulate, regulate or inhibit numerous functions of the life, acting mainly as information transmitters and activity coordinators of several tissues in the organism. The receivers of regulator peptides are over represented in numerous types of cancer cells and they are protein structures. These receivers have been used as white molecular of marked peptides, to locate primary malignant tumors and their metastasis, using the diagnostic techniques of molecular image mentioned above, which consist basically on the radio peptides use and conjugated peptides to fluoro chromes, to metallic nanoparticles and nano crystals. A summary of the work is presented carried out by the personnel of the Radio-active Materials and Chemistry Departments of the Instituto Nacional de Investigaciones Nucleares in this field. (Author)

  4. Large-Scale Quantum Many-Body Perturbation on Spin and Charge Separation in the Excited States of the Synthesized Donor-Acceptor Hybrid PBI-Macrocycle Complex.

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-03-17

    The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    Energy Technology Data Exchange (ETDEWEB)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y. [Gulbarga University (India). Dept. of Chemistry]. E-mail: bhmmswamy53@rediffmail.com

    2005-07-15

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  6. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy

    International Nuclear Information System (INIS)

    Thiele, Nikki A.; MacMillan, Samantha N.; Wilson, Justin J.; Rodriguez-Rodriguez, Cristina

    2017-01-01

    The 18-membered macrocycle H 2 macropa was investigated for 225 Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all 225 Ac (26 kBq) in 5 min at RT. [ 225 Ac(macropa)] + remained intact over 7 to 8 days when challenged with either excess La 3+ ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled 225 Ac in just minutes at RT, and macropa-Tmab retained >99 % of its 225 Ac in human serum after 7 days. In LNCaP xenograft mice, 225 Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free 225 Ac over 96 h. These findings establish macropa to be a highly promising ligand for 225 Ac chelation that will facilitate the clinical development of 225 Ac TAT for the treatment of soft-tissue metastases. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Grafted chromium 13-membered dioxo-macrocyclic complex into aminopropyl-based nanoporous SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Tarlani, Aliakbar, E-mail: Tarlani@ccerci.ac.ir [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of); Joharian, Monika; Narimani, Khashayar [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of); Muzart, Jacques [Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Fallah, Mahtab [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of)

    2013-07-15

    In a new approach, chromium (III) tetraaza dioxo ligand was grafted onto functionalized SBA-15 after four step reactions by using coordinating ability of anchored amino functionalized SBA-15. After the termination of each step, the obtained product was characterized by FT-IR, low-angle X-ray diffraction (LA-XRD), N{sub 2} adsorption–desorption isotherms (Brunauer–Emmett–Teller (BET)–Barret–Joyner–Halenda (BJH)) and thermogravimetric analysis (TGA), and used as catalyst for the efficient and regioselective alcoholysis of styrene oxide to 2-alkoxy-1-phenylethanol product at ambient temperature. - Graphical abstract: Chromium (III) tetraaza dioxo ligand was grafted onto functionalized SBA-15 using coordinating ability of anchored amino functionalized SBA-15. Preparation of the catalyst is depicted in Scheme 1. - Highlights: • Dioxo tetraazachromium macrocyclic complex grafted into the SBA-15-NH{sub 2} channels. • The bond is created by coordinating ability of anchored amino functionalized SBA-15. • The prepared nanocatalyst has superior activity in the alcoholysis of styrene oxide. • The catalyst is reusable at ambient temperature for the mentioned reaction.

  8. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10-x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10-x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5).

  9. Tetraazacyclohexadeca Macrocyclic Ligand as a Neutral Carrier in a Cr Ion-selective Electrode

    Directory of Open Access Journals (Sweden)

    Puja Saxena

    2004-12-01

    Full Text Available Abstract: A polystyrene-based membrane of 2,10-dimethyl-4,12-diphenyl-1,5,9,13-tetraazacyclohexadeca-1,4,9,12-tetraene macrocyclic ionophore was prepared and investigated as Cr(III-selective electrode. The best performance was observed with the membrane having the polystyrene-ligand-dibutylphthalate-sodiumtetraphenyl borate composition 1:4:1:1 with a Nernstian slope of 19.0 mV per decade of concentration between pH 3.0 and 6.5. This electrode has been found to be chemically inert and of adequate stability with a response time of 20 s and was used over a period of 100 d with good reproducibility (S= 0.3 mV. The membrane works satisfactorily in a partially non-aqueous medium up to a maximum 30% (v/v content of methanol and ethanol. The potentiometric selectivity coefficient values indicate that the membrane sensor is highly selective for Cr(III ions over a number of monovalent, divalent and trivalent cations. The membrane electrode has also been successfully used to determine Cr3+ in various food materials.

  10. Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-01-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10−x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10−x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd–Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd–Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5). PMID:29308263

  11. Some aspects of the extraction separation of actinides by macrocyclic crown compounds

    International Nuclear Information System (INIS)

    Kumar, Anil; Singh, R.K.; Bajpai, D.D.; Shukla, J.P.

    1994-01-01

    Selective and effective extraction-separation of U(VI) and Pu(IV) from aqueous nitric acid media by several crown ethers have been investigated in detail. The critical study of various parameters namely aqueous phase acidity, reagent concentration, diluent, period of equilibration, aqueous to organic phase ratio, strippant and diverse ions, have established the conditions for their optimum extraction. Influence of the introduction of sulfur into a crown ether ring forming a mixed sulfur-oxygen containing macrohetrocycle for improved extraction of actinides is also studied. The species extracted appear to be of ion-pair type, UO 2 (CE) 2+ .2NO 3- and Pu(CE) 2 4+ .4NO 3- formed with U(VI) and Pu(IV), respectively. The apparent extraction equilibrium constant, log Kex, into toluene by DC18C6 with U(VI) is 0.44 and 4.44 for Pu(IV). Recovery of actinides from loaded macrocycles is easily accomplished using dilute oxalic acid, perchloric acid, sulphuric acid or sodium carbonate as the strippants. The lack of interference from even appreciable amounts of possible fission product contaminants is a notable feature of this separation procedure. (author). 20 refs., 6 figs., 6 tabs

  12. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Nikki A.; MacMillan, Samantha N.; Wilson, Justin J. [Cornell Univ., Ithaca, NY (United States). Chemistry and Chemical Biology; Brown, Victoria; Jermilova, Una; Ramogida, Caterina F.; Robertson, Andrew K.H.; Schaffer, Paul; Radchenko, Valery [TRIUMF, Vancouver, BC (Canada). Life Science Div.; Kelly, James M.; Amor-Coarasa, Alejandro; Nikolopoulou, Anastasia; Ponnala, Shashikanth; Williams, Clarence Jr.; Babich, John W. [Radiology, Weill Cornell Medicine, New York, NY (United States); Rodriguez-Rodriguez, Cristina [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy and Centre for Comparative Medicine

    2017-11-13

    The 18-membered macrocycle H{sub 2}macropa was investigated for {sup 225}Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all {sup 225}Ac (26 kBq) in 5 min at RT. [{sup 225}Ac(macropa)]{sup +} remained intact over 7 to 8 days when challenged with either excess La{sup 3+} ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled {sup 225}Ac in just minutes at RT, and macropa-Tmab retained >99 % of its {sup 225}Ac in human serum after 7 days. In LNCaP xenograft mice, {sup 225}Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free {sup 225}Ac over 96 h. These findings establish macropa to be a highly promising ligand for {sup 225}Ac chelation that will facilitate the clinical development of {sup 225}Ac TAT for the treatment of soft-tissue metastases. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    Science.gov (United States)

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  14. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    International Nuclear Information System (INIS)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y.

    2005-01-01

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  15. Potentiometric investigations of molecular heteroconjugation equilibria of substituted phenol+n-butylamine systems in dimethyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, MaIgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Baginska, Katarzyna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kozak, Anna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2005-08-15

    Molecular heteroconjugation constants, K{sub BHA}{sup DMSO} and K{sub AHB}{sup DMSO}, expressed as their logarithms, have been determined by potentiometric titration for eleven substituted phenol+n-butylamine systems in a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO). An increasing tendency towards molecular heteroconjugation in these systems without proton transfer has been found with increasing pK{sub a}{sup DMSO} (HA), i.e., with decreasing phenol acidity. Moreover, a linear correlation has been established between the determined lgK{sub BHA}{sup DMSO} values and pK{sub a}{sup DMSO} (HA). Furthermore, overall stability constants, lgK{sub o}{sup DMSO}, could be correlated linearly with pK{sub a}{sup DMSO} (HA) values.

  16. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.

    Science.gov (United States)

    Wen, Fuyu; Li, Can

    2013-11-19

    Solar fuel production through artificial photosynthesis may be a key to generating abundant and clean energy, thus addressing the high energy needs of the world's expanding population. As the crucial components of photosynthesis, the artificial photosynthetic system should be composed of a light harvester (e.g., semiconductor or molecular dye), a reduction cocatalyst (e.g., hydrogenase mimic, noble metal), and an oxidation cocatalyst (e.g., photosystem II mimic for oxygen evolution from water oxidation). Solar fuel production catalyzed by an artificial photosynthetic system starts from the absorption of sunlight by the light harvester, where charge separation takes place, followed by a charge transfer to the reduction and oxidation cocatalysts, where redox reaction processes occur. One of the most challenging problems is to develop an artificial photosynthetic solar fuel production system that is both highly efficient and stable. The assembly of cocatalysts on the semiconductor (light harvester) not only can facilitate the charge separation, but also can lower the activation energy or overpotential for the reactions. An efficient light harvester loaded with suitable reduction and oxidation cocatalysts is the key for high efficiency of artificial photosynthetic systems. In this Account, we describe our strategy of hybrid photocatalysts using semiconductors as light harvesters with biomimetic complexes as molecular cocatalysts to construct efficient and stable artificial photosynthetic systems. We chose semiconductor nanoparticles as light harvesters because of their broad spectral absorption and relatively robust properties compared with a natural photosynthesis system. Using biomimetic complexes as cocatalysts can significantly facilitate charge separation via fast charge transfer from the semiconductor to the molecular cocatalysts and also catalyze the chemical reactions of solar fuel production. The hybrid photocatalysts supply us with a platform to study the

  17. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  18. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of Heteroaromatic Compounds by Oxidative Aromatization Using an Activated Carbon/Molecular Oxygen System

    Directory of Open Access Journals (Sweden)

    Masahiko Hayashi

    2009-08-01

    Full Text Available A variety of heteroaromatic compounds, such as substituted pyridines, pyrazoles, indoles, 2-substituted imidazoles, 2-substituted imidazoles, 2-arylbenzazoles and pyrimidin-2(1H-ones are synthesized by oxidative aromatization using the activated carbon and molecular oxygen system. Mechanistic study focused on the role of activated carbon in the synthesis of 2-arylbenzazoles is also discussed. In the final section, we will disclose the efficient synthesis of substituted 9,10-anthracenes via oxidative aromatization.

  20. AUTOMR: An automatic processing program system for the molecular replacement method

    International Nuclear Information System (INIS)

    Matsuura, Yoshiki

    1991-01-01

    An automatic processing program system of the molecular replacement method AUTMR is presented. The program solves the initial model of the target crystal structure using a homologous molecule as the search model. It processes the structure-factor calculation of the model molecule, the rotation function, the translation function and the rigid-group refinement successively in one computer job. Test calculations were performed for six protein crystals and the structures were solved in all of these cases. (orig.)

  1. Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis.

    Science.gov (United States)

    Shirahata, Mitsuaki; Iwao-Koizumi, Kyoko; Saito, Sakae; Ueno, Noriko; Oda, Masashi; Hashimoto, Nobuo; Takahashi, Jun A; Kato, Kikuya

    2007-12-15

    Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.

  2. A field-deployable mobile molecular diagnostic system for malaria at the point of need.

    Science.gov (United States)

    Choi, Gihoon; Song, Daniel; Shrestha, Sony; Miao, Jun; Cui, Liwang; Guan, Weihua

    2016-11-01

    In response to the urgent need of a field-deployable and highly sensitive malaria diagnosis, we developed a standalone, "sample-in-answer-out" molecular diagnostic system (AnyMDx) to enable quantitative molecular analysis of blood-borne malaria in low resource areas. The system consists of a durable battery-powered analyzer and a disposable microfluidic compact disc loaded with reagents ready for use. A low power thermal module and a novel fluorescence-sensing module are integrated into the analyzer for real-time monitoring of loop-mediated isothermal nucleic acid amplification (LAMP) of target parasite DNA. With 10 μL of raw blood sample, the AnyMDx system automates the nucleic acid sample preparation and subsequent LAMP and real-time detection. Under laboratory conditions with whole-blood samples spiked with cultured Plasmodium falciparum, we achieved a detection limit of ∼0.6 parasite per μL, much lower than those for the conventional microscopy and rapid diagnostic tests (∼50-100 parasites per μL). The turnaround time from sample to answer is less than 40 minutes. The AnyMDx is user-friendly requiring minimal technological training. The analyzer and the disposable reagent compact discs are cost-effective, making AnyMDx a potential tool for malaria molecular diagnosis under field settings for malaria elimination.

  3. Resolution of identity approximation for the Coulomb term in molecular and periodic systems

    Science.gov (United States)

    Burow, Asbjörn M.; Sierka, Marek; Mohamed, Fawzi

    2009-12-01

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 μhartree per atom, for both molecular and periodic systems.

  4. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    Science.gov (United States)

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  5. Molecular machines in living cells. Seibutsu no bunshi kikai to sono system

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, F. (Aichi Inst. of Tech., Nagoya (Japan))

    1992-12-20

    At first, flagellar motors of bacteria are reviewed as a typical example of molecular machines in living cells. A rotational motor is embedded in the cell membrane at the root of the flagellum. The driving power of the rotation is the flow of hydrogen ion from the inside to the outside of the cell. In a normal state of a bacterium, potential difference of about 0.2 V is produced by the ion pump existing in the cell membrane. A molecular motor of sliding motion of muscle attracts the attention on the relation of the input and output of the molecular motor. The mechanism of the smooth motion without fluctuation in the fluctuated environment and the fluctuated input is unknown. Next, the motion of Paramecium is discussed as an example of a system composed of a number of molecular machines. Paramecium moves to a place of a suitable temperature when placed in a water tank with temperature gradient, however, it does not stop the motion at the place of the suitable temperature and increases a probability to change the direction when leaving, that is it takes a method of indirect probabilistic control. 12 refs., 8 figs.

  6. On the theory of frequency-shifted secondary emission of light-harvesting molecular systems

    International Nuclear Information System (INIS)

    Morozov, V.A.

    2001-01-01

    The expressions are obtained for the intensity of the frequency-shifted secondary emission of a chromophore playing the role of a reaction center in the simplest model three-chromophore molecular 'light-harvesting' antenna, which is constructed and oriented in space so that the incident photons coherently excite two of its chromophore pigments. The quantum-field formalism was used, which takes into account the generalized (quantum-electrodynamic) dipole-dipole, as well as radiative and nonradiative dissipative interactions between pigments and the reaction center of the antenna. The special features of the excitation spectrum of the Raman scattering line and the frequency-shifted fluorescence spectrum of the reaction center of the molecular antenna under study are discussed. A comparison of the expressions obtained for the excitation and fluorescence spectra and with the corresponding expressions obtained for a bichromophore molecular system, which differs from a three-chromophore antenna by the absence of one of the pigments, revealed the properties of the mechanism of action of light-harvesting molecular antennas that have not been found earlier. In particular, it is shown that 'the light-harvesting' caused by the collective dissipative interactions of pigments with the reaction center of the antenna can substantially exceed a sum of contributions from separate pigments

  7. An approach towards understanding the structure of complex molecular systems: the case of lower aliphatic alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Vrhovsek, Aleksander; Gereben, Orsolya; Pothoczki, Szilvia; Pusztai, Laszlo [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 49 (Hungary); Tomsic, Matija; Jamnik, Andrej [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1001 Ljubljana (Slovenia); Kohara, Shinji, E-mail: aleksander.vrhovsek@gmail.co [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2010-10-13

    An extensive study of liquid aliphatic alcohols methanol, ethanol, and propanol, applying reverse Monte Carlo modelling as a method of interpretation of diffraction data, is presented. The emphasis is on the evaluation of several computational strategies in view of their suitability to obtain high quality molecular models via the reverse Monte Carlo procedure. A consistent set of distances of closest approach and fixed neighbour constraints applicable to all three investigated systems was developed. An all-atom description is compared with a united-atom approach. The potentialities of employment of neutron diffraction data of completely deuterated and isotopically substituted samples, x-ray diffraction data, and results of either molecular dynamics or Monte Carlo calculations were investigated. Results show that parallel application of x-ray and neutron diffraction data, the latter being from completely deuterated samples, within an all-atom reverse Monte Carlo procedure is the most successful strategy towards attaining reliable, detailed, and well-structured molecular models, especially if the models are subsequently refined with the results of molecular dynamics simulations.

  8. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  9. Characterization of the hydrogen bond in molecular systems of biological interest by neutron scattering

    International Nuclear Information System (INIS)

    Cavillon, F.

    2004-10-01

    This work presents a methodology for the analysis of the scattering spectra of neutrons on molecular liquids. This method is based on the adjustment of the molecular form factor concerning great momentum transfer. The subtraction of the intra-molecular contributions gives access to information on inter-molecular interactions such as the hydrogen bond. 3 systems with increasing levels of difficulty have been studied: the ammonia molecule, the N-methyl-formamide (NMF) and the N-methyl-acetamide (NMA). The value we get for the N-D intermolecular distance of the liquid ammonia molecule is 1.7 angstrom, this value is different from the value generally admitted (2.3 angstrom) but we have validated it by studying the isotopic substitution N 14 /N 15 . The adjustment to the NMF is obtained with a good accuracy but the characterization of the hydrogen bound is more delicate to infer. A preliminary study of the NMA molecule shows that this method can give relevant results on complex molecules

  10. From Molecular Classification to Targeted Therapeutics: The Changing Face of Systemic Therapy in Metastatic Gastroesophageal Cancer

    Directory of Open Access Journals (Sweden)

    Adrian Murphy

    2015-01-01

    Full Text Available Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1 or mismatch repair genes (Lynch syndrome were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician’s therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients.

  11. Intelligent Techniques Using Molecular Data Analysis in Leukaemia: An Opportunity for Personalized Medicine Support System.

    Science.gov (United States)

    Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem

    2017-01-01

    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.

  12. Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data.

    Science.gov (United States)

    Martyanov, Viktor; Whitfield, Michael L

    2016-01-01

    The goal of this review is to summarize recent advances into the pathogenesis and treatment of systemic sclerosis (SSc) from genomic and proteomic studies. Intrinsic gene expression-driven molecular subtypes of SSc are reproducible across three independent datasets. These subsets are a consistent feature of SSc and are found in multiple end-target tissues, such as skin and esophagus. Intrinsic subsets as well as baseline levels of molecular target pathways are potentially predictive of clinical response to specific therapeutics, based on three recent clinical trials. A gene expression-based biomarker of modified Rodnan skin score, a measure of SSc skin severity, can be used as a surrogate outcome metric and has been validated in a recent trial. Proteome analyses have identified novel biomarkers of SSc that correlate with SSc clinical phenotypes. Integrating intrinsic gene expression subset data, baseline molecular pathway information, and serum biomarkers along with surrogate measures of modified Rodnan skin score provides molecular context in SSc clinical trials. With validation, these approaches could be used to match patients with the therapies from which they are most likely to benefit and thus increase the likelihood of clinical improvement.

  13. The effects of ecstasy on neurotransmitter systems: a review on the findings of molecular imaging studies.

    Science.gov (United States)

    Vegting, Yosta; Reneman, Liesbeth; Booij, Jan

    2016-10-01

    Ecstasy is a commonly used psychoactive drug with 3,4-methylenedioxymethamphetamine (MDMA) as the main content. Importantly, it has been suggested that use of MDMA may be neurotoxic particularly for serotonergic (5-hydroxytryptamine (5-HT)) neurons. In the past decades, several molecular imaging studies examined directly in vivo the effects of ecstasy/MDMA on neurotransmitter systems. The objective of the present study is to review the effects of ecstasy/MDMA on neurotransmitter systems as assessed by molecular imaging studies in small animals, non-human primates and humans. A search in PubMed was performed. Eighty-eight articles were found on which inclusion and exclusion criteria were applied. Thirty-three studies met the inclusion criteria; all were focused on the 5-HT or dopamine (DA) system. Importantly, 9 out of 11 of the animal studies that examined the effects of MDMA on 5-HT transporter (SERT) availability showed a significant loss of binding potential. In human studies, this was the case for 14 out of 16 studies, particularly in heavy users. In abstinent users, significant recovery of SERT binding was found over time. Most imaging studies in humans that focused on the DA system did not find any significant effect of ecstasy/MDMA use. Preclinical and clinical molecular imaging studies on the effects of ecstasy/MDMA use/administration on neurotransmitter systems show quite consistent alterations of the 5-HT system. Particularly, in human studies, loss of SERT binding was observed in heavy ecstasy users, which might reflect 5-HT neurotoxicity, although alternative explanations (e.g. down-regulation of the SERT) cannot be excluded.

  14. Reclamation of a molecular beam epitaxy system and conversion for oxide epitaxy

    International Nuclear Information System (INIS)

    Carver, Alexander G.; Henderson, Walter; Doolittle, W. Alan

    2008-01-01

    An early 1980s vintage molecular beam epitaxy system, a Varian Gen II system, originally used for HgCdTe epitaxy, was converted into a system capable of growing thin-film complex metal oxides. The nature of some of the alternative oxides requires a thorough cleaning and, in some cases, complete replacement of system components. Details are provided regarding the chemistry of the etchants used, safety requirements for properly handling, and disposal of large quantities of etchants and etch by-products, and components that can be reused versus components that require replacement are given. Following the given procedures, an ultimate base pressure of 2x10 -10 Torr was obtained. Films grown in the system after reclamation contained no evidence of previously present materials down to the detection limit of secondary ion mass spectrometry

  15. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  16. Unraveling the effect of the hydration level on the molecular mobility of nanolayered polymeric systems.

    Science.gov (United States)

    Borges, João; Caridade, Sofia G; Silva, Joana M; Mano, João F

    2015-02-01

    This work investigates the influence of the hydration level on the molecular mobility and glass transition dynamics of freestanding chitosan/alginate (CHT/ALG) nanolayered systems. Nonconventional dynamic mechanical analysis identifies two relaxation processes assigned to the α-relaxation of the two biopolymers, respectively, CHT and ALG, when immersed in water/ethanol mixtures. This phenomenon explains the shape memory properties of the multilayered systems induced by hydration, thus constituting promising smart materials that would be of paramount importance in a plethora of research fields, including in the biomedical and biotechnological fields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optical activity of oriented molecular systems in terms of the magnetoelectric tensor of gyrotropy

    International Nuclear Information System (INIS)

    Arteaga, Oriol

    2014-01-01

    The optical activity of oriented molecular systems is investigated using bianisotropic material constitutives for Maxwell's equations. It is shown that the circular birefringence and circular dichroism for an oriented system can be conveniently expressed in terms of the two components of the symmetric magnetoelectric tensor of gyrotropy that are perpendicular to this direction of light propagation. This description establishes a direct link between the optical activity measured at a certain direction and the tensors that describe the oscillating electric and magnetic dipole and electric quadrupole moments induced by the optical wave. (paper)

  18. Experimental and Computational Studies of the Macrocyclic Effect of an Auxiliary Ligand on Electron and Proton Transfers Within Ternary Copper(II)-Histidine Complexes

    International Nuclear Information System (INIS)

    Song, Tao; Lam, Corey; Ng, Dominic C.; Orlova, G.; Laskin, Julia; Fang, De-Cai; Chu, Ivan K.

    2009-01-01

    The dissociation of [Cu II (L)His] -2+ complexes [L = diethylenetriamine (dien) or 1,4,7-triazacyclononane (9-aneN 3 )] bears a strong resemblance to the previously reported behavior of [Cu II (L)GGH] -2+ complexes. We have used low energy collision-induced dissociation experiments and density functional theory (DFT) calculations at the B3LYP/6-31+G(d) level to study the macrocyclic effect of the auxiliary ligands on the formation of His -+ from prototypical [Cu II (L)His] -2+ systems. DFT revealed that the relative energy barriers of the same electron transfer (ET) dissociation pathways of [Cu II (9-aneN 3 )His] -2+ and [Cu II (dien)His] -2+ are very similar, with the ET reactions of [Cu II (9-aneN 3 )His] -2+ leading to the generation of two distinct His -+ species; in contrast, the proton transfer (PT) dissociation pathways of [Cu II (9-aneN 3 )His] -2+ and [Cu II (dien)His] -2+ differ considerably. The PT reactions of [Cu II (9-aneN 3 )His] -2+ are associated with substantially higher barriers (>13 kcal/mol) than those of [Cu II (dien)His] -2+ . Thus, the sterically encumbered auxiliary 9-aneN3 ligand facilitates ET reactions while moderating PT reactions, allowing the formation of hitherto non-observable histidine radical cations.

  19. The extraction of aromatic carboxylic acids by the copper complex with Curtis macrocyclic tetramine and its utilization for photometric determination of nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Zseltvay, Ivan; Zheltvay, Olga; Antonovich, Valerij

    2011-01-01

    Copper complex with Curtis macrocyclic tetramine is offered as reagent for extraction-photometric determination of nonsteroidal anti-inflammatory drugs (NSAIDs), belonging to the class of aromatic carboxylic acids. The studies indicate that this method is suitable for quantitative determination of NSAIDs, which have the constant distribution in the system chloroform/water (log P) no less than 3 and dissolubility in chloroform (S) no less than 10 mg/mL. Under optimum conditions, there are liner relationships between the absorption of chloroform extracts and concentration of NSAID in the range of 0.2-4 mg/mL for indometacin (Ind), 0.2-3 mg/mL for mefenamic acid (Mef) and 0.5-3 mg/mL for diclofenac (Dic). The detection limits (S/N = 3) of Ind, Mef and Dic are 0.2, 0.1 and 0.15 mg/mL, respectively. With the help of calculating method (SPARC V4.2) it was predicted the possibility of utilization of this method for extractive-photometric determination of its detached specimen NSAID.

  20. “One Ring to Bind Them All”—Part I: The Efficiency of the Macrocyclic Scaffold for G-Quadruplex DNA Recognition

    Directory of Open Access Journals (Sweden)

    David Monchaud

    2010-01-01

    Full Text Available Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the “standard” B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding macrocycles described so far (telomestatin-like polyheteroarenes, porphyrins and derivatives, polyammonium cyclophanes, and in addressing both synthetic issues and biological aspects.

  1. Preliminary Design of Molecular Sieve for Removing Organic Iodide in Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tong Kyu; Shin, So Eun; Lee, Byung Chul [Heungdeok IT Valley Bldg., Yongin (Korea, Republic of); Kim, Hong Hyun; Lee, Kyung Jun [Gemvax and KAEL Inc., Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, to increase the DF for gaseous iodine species, especially organic iodide, molecular sieve filled by silver exchanged zeolites is proposed and designed preliminarily. Its aerodynamic analysis is also performed and presented. In order to increase the DF for gaseous organic iodide, deep-bed type molecular sieve was proposed and designed preliminarily. Total 1,620kg of silver exchanged zeolites were filled evenly in 10 beds of the molecular sieve. The safety factor in the case of 20m{sup 3}/s will be smaller than the counterpart of the standard case (6m{sup 3}/s). However, if the adsorption capacity of the zeolites is larger than 3.09mg/g when the residence time is 0.09 second, the designed molecular sieve can be used at 20m3/s of volumetric flow rate. The removal efficiency for organic iodide should be considered as well as economical aspects in the design of molecular sieve. In the event of nuclear power plant (NPP) severe accident, the nuclear reactor containment might suffer damage resulting from overpressure caused by decay heat. In order to prevent this containment damage, containment venting has been considered as one of effective methods. However, since vented gases contain radioactive fission products, they should be filtered to be released to environment. Generally, containment filtered venting system (CFVS) is installed on NPP to achieve this aim. Even though great amount of efforts have been devoted to developing the CFVS using various filtering methods, the decontaminant factor (DF) for radioactive gaseous iodide is still unsatisfactory while DFs for radioactive aerosols and elemental iodine are very high.

  2. Influence of macrocyclic chelators on the targeting properties of (68Ga-labeled synthetic affibody molecules: comparison with (111In-labeled counterparts.

    Directory of Open Access Journals (Sweden)

    Joanna Strand

    Full Text Available Affibody molecules are a class of small (7 kDa non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide (68Ga (T1/2=67.6 min. Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA, 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA and 1-(1,3-carboxypropyl-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with (68Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of (68Ga-DOTA-ZHER2:S1, (68Ga-NOTA-ZHER2:S1 and (68Ga-NODAGA-ZHER2:S1, as well as that of their (111In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for (68Ga-DOTA-ZHER2:S1 (17.9 ± 0.7%IA/g was significantly higher than for both (68Ga-NODAGA-ZHER2:S1 (16.13 ± 0.67%IA/g and (68Ga-NOTA-ZHER2:S1 (13 ± 3%IA/g at 2 h after injection. (68Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60 ± 10 in comparison with both (68Ga-DOTA-ZHER2:S1 (28 ± 4 and (68Ga-NOTA-ZHER2:S1 (42 ± 11. The tumor-to-liver ratio was also higher for (68Ga-NODAGA-ZHER2:S1 (7 ± 2 than the DOTA and NOTA conjugates (5.5 ± 0.6 vs.3.3 ± 0.6. The influence of chelator on the biodistribution and targeting properties was less pronounced for (68Ga than for (111In. The results of this study demonstrate that macrocyclic

  3. Molecular depth profiling of multi-layer systems with cluster ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Juan [Department of Chemistry, Penn State University, University Park, PA 16802 (United States); Winograd, Nicholas [Department of Chemistry, Penn State University, University Park, PA 16802 (United States)]. E-mail: nxw@psu.edu

    2006-07-30

    Cluster bombardment of molecular films has created new opportunities for SIMS research. To more quantitatively examine the interaction of cluster beams with organic materials, we have developed a reproducible platform consisting of a well-defined sugar film (trehalose) doped with peptides. Molecular depth profiles have been acquired with these systems using C{sub 60} {sup +} bombardment. In this study, we utilize this platform to determine the feasibility of examining buried interfaces for multi-layer systems. Using C{sub 60} {sup +} at 20 keV, several systems have been tested including Al/trehalose/Si, Al/trehalose/Al/Si, Ag/trehalose/Si and ice/trehalose/Si. The results show that there can be interactions between the layers during the bombardment process that prevent a simple interpretation of the depth profile. We find so far that the best results are obtained when the mass of the overlayer atoms is less than or nearly equal to the mass of the atoms in buried molecules. In general, these observations suggest that C{sub 60} {sup +} bombardment can be successfully applied to interface characterization of multi-layer systems if the systems are carefully chosen.

  4. Novel insights into systemic autoimmune rheumatic diseases using shared molecular signatures and an integrative analysis.

    Science.gov (United States)

    Hudson, Marie; Bernatsky, Sasha; Colmegna, Ines; Lora, Maximilien; Pastinen, Tomi; Klein Oros, Kathleen; Greenwood, Celia M T

    2017-06-03

    We undertook this study to identify DNA methylation signatures of three systemic autoimmune rheumatic diseases (SARDs), namely rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis, compared to healthy controls. Using a careful design to minimize confounding, we restricted our study to subjects with incident disease and performed our analyses on purified CD4 + T cells, key effector cells in SARD. We identified differentially methylated (using the Illumina Infinium HumanMethylation450 BeadChip array) and expressed (using the Illumina TruSeq stranded RNA-seq protocol) sites between cases and controls, and investigated the biological significance of this SARD signature using gene annotation databases. We recruited 13 seropositive rheumatoid arthritis, 19 systemic sclerosis, 12 systemic lupus erythematosus subjects, and 8 healthy controls. We identified 33 genes that were both differentially methylated and expressed (26 over- and 7 under-expressed) in SARD cases versus controls. The most highly overexpressed gene was CD1C (log fold change in expression = 1.85, adjusted P value = 0.009). In functional analysis (Ingenuity Pathway Analysis), the top network identified was lipid metabolism, molecular transport, small molecule biochemistry. The top canonical pathways included the mitochondrial L-carnitine shuttle pathway (P = 5E-03) and PTEN signaling (P = 8E-03). The top upstream regulator was HNF4A (P = 3E-05). This novel SARD signature contributes to ongoing work to further our understanding of the molecular mechanisms underlying SARD and provides novel targets of interest.

  5. System geometry optimization for molecular breast tomosynthesis with focusing multi-pinhole collimators

    Science.gov (United States)

    van Roosmalen, Jarno; Beekman, Freek J.; Goorden, Marlies C.

    2018-01-01

    Imaging of 99mTc-labelled tracers is gaining popularity for detecting breast tumours. Recently, we proposed a novel design for molecular breast tomosynthesis (MBT) based on two sliding focusing multi-pinhole collimators that scan a modestly compressed breast. Simulation studies indicate that MBT has the potential to improve the tumour-to-background contrast-to-noise ratio significantly over state-of-the-art planar molecular breast imaging. The aim of the present paper is to optimize the collimator-detector geometry of MBT. Using analytical models, we first optimized sensitivity at different fixed system resolutions (ranging from 5 to 12 mm) by tuning the pinhole diameters and the distance between breast and detector for a whole series of automatically generated multi-pinhole designs. We evaluated both MBT with a conventional continuous crystal detector with 3.2 mm intrinsic resolution and with a pixelated detector with 1.6 mm pixels. Subsequently, full system simulations of a breast phantom containing several lesions were performed for the optimized geometry at each system resolution for both types of detector. From these simulations, we found that tumour-to-background contrast-to-noise ratio was highest for systems in the 7 mm-10 mm system resolution range over which it hardly varied. No significant differences between the two detector types were found.

  6. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems.

    Science.gov (United States)

    Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-07-21

    Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques.

  7. A neural network approach to the study of internal energy flow in molecular systems

    International Nuclear Information System (INIS)

    Sumpter, B.G.; Getino, C.; Noid, D.W.

    1992-01-01

    Neural networks are used to develop a new technique for efficient analysis of data obtained from molecular-dynamics calculations and is applied to the study of mode energy flow in molecular systems. The methodology is based on teaching an appropriate neural network the relationship between phase-space points along a classical trajectory and mode energies for stretch, bend, and torsion vibrations. Results are discussed for reactive and nonreactive classical trajectories of hydrogen peroxide (H 2 O 2 ) on a semiempirical potential-energy surface. The neural-network approach is shown to produce reasonably accurate values for the mode energies, with average errors between 1% and 12%, and is applicable to any region within the 24-dimensional phase space of H 2 O 2 . In addition, the generic knowledge learned by the neural network allows calculations to be made for other molecular systems. Results are discussed for a series of tetratomic molecules: H 2 X 2 , X=C, N, O, Si, S, or Se, and preliminary results are given for energy flow predictions in macromolecules

  8. Theoretical study on the molecular tautomerism of the 3-hydroxy-pyridin-4-one system

    Science.gov (United States)

    Zborowski, Krzysztof K.; Mohammadpour, Mehrdad; Sadeghi, Amir; Proniewicz, Leonard M.

    2013-04-01

    3-hydroxy-pyridin-4-one is a parent molecule for the family of hydroxypyridinones that are known in coordination chemistry as efficient metal ions chelators. In this work, relative stabilities of some possible tautomers were investigated using several quantum chemical methods: CBS (complete basis set methods), Gn, DFT (density functional theory), Hartree-Fock and MP2. Performed calculations show that the system under consideration exists as a mixture of two tautomers with comparable energies. Among them, the hydroxypyridinone structure of the studied molecular system seems to be a bit more stable than the o-dihydroxypyridine one, by a few kJ/mol only. Aromaticity and intra-molecular hydrogen bonding are the main effects influencing the stability of the studied tautomeric structures. Consequently, aromatic effects were calculated using several indices of aromaticity: HOMA (harmonic oscillator model of aromaticity), NICS (nucleus independent chemical shift), H, PDI (para delocalisation index), MCI (multi-centre index) and ASE (aromatic stabilisation energy). The strength of possible intra-molecular hydrogen bonds (H-bonds) was determined by means of the AIM (atoms-in-molecules) method and by calculating enthalpies for theoretical reactions that do or do not involve H-bonds. The AIM method was employed to understand how variations in atomic energies influence the stability of different tautomeric structures.

  9. A Protoplast Transient Expression System to Enable Molecular, Cellular, and Functional Studies in Phalaenopsis orchids

    Directory of Open Access Journals (Sweden)

    Hsiang-Yin Lin

    2018-06-01

    Full Text Available The enigmatic nature of the specialized developmental programs of orchids has fascinated plant biologists for centuries. The recent releases of orchid genomes indicate that orchids possess new gene families and family expansions and contractions to regulate a diverse suite of developmental processes. However, the extremely long orchid life cycle and lack of molecular toolkit have hampered the advancement of orchid biology research. To overcome the technical difficulties and establish a platform for rapid gene regulation studies, in this study, we developed an efficient protoplast isolation and transient expression system for Phalaenopsis aphrodite. This protocol was successfully applied to protein subcellular localization and protein–protein interaction studies. Moreover, it was confirmed to be useful in delineating the PaE2F/PaDP-dependent cell cycle pathway and studying auxin response. In summary, the established orchid protoplast transient expression system provides a means to functionally characterize orchid genes at the molecular level allowing assessment of transcriptome responses to transgene expression and widening the scope of molecular studies in orchids.

  10. MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations.

    Science.gov (United States)

    Ohmura, Itta; Morimoto, Gentaro; Ohno, Yousuke; Hasegawa, Aki; Taiji, Makoto

    2014-08-06

    We are developing the MDGRAPE-4, a special-purpose computer system for molecular dynamics (MD) simulations. MDGRAPE-4 is designed to achieve strong scalability for protein MD simulations through the integration of general-purpose cores, dedicated pipelines, memory banks and network interfaces (NIFs) to create a system on chip (SoC). Each SoC has 64 dedicated pipelines that are used for non-bonded force calculations and run at 0.8 GHz. Additionally, it has 65 Tensilica Xtensa LX cores with single-precision floating-point units that are used for other calculations and run at 0.6 GHz. At peak performance levels, each SoC can evaluate 51.2 G interactions per second. It also has 1.8 MB of embedded shared memory banks and six network units with a peak bandwidth of 7.2 GB s(-1) for the three-dimensional torus network. The system consists of 512 (8×8×8) SoCs in total, which are mounted on 64 node modules with eight SoCs. The optical transmitters/receivers are used for internode communication. The expected maximum power consumption is 50 kW. While MDGRAPE-4 software has still been improved, we plan to run MD simulations on MDGRAPE-4 in 2014. The MDGRAPE-4 system will enable long-time molecular dynamics simulations of small systems. It is also useful for multiscale molecular simulations where the particle simulation parts often become bottlenecks.

  11. CAST: a new program package for the accurate characterization of large and flexible molecular systems.

    Science.gov (United States)

    Grebner, Christoph; Becker, Johannes; Weber, Daniel; Bellinger, Daniel; Tafipolski, Maxim; Brückner, Charlotte; Engels, Bernd

    2014-09-15

    The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request. Copyright © 2014 Wiley Periodicals, Inc.

  12. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  13. How Secondary and Tertiary Amide Moieties are Molecular Stations for Dibenzo-24-crown-8 in [2]Rotaxane Molecular Shuttles?

    Science.gov (United States)

    Riss-Yaw, Benjamin; Morin, Justine; Clavel, Caroline; Coutrot, Frédéric

    2017-11-21

    Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules. The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread leads to translational isomers of very different properties. Although many moieties have been used as sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely been envisaged as molecular station. In this article, we report the use of secondary and tertiary amide moieties as efficient secondary molecular station in pH-sensitive molecular shuttles. Depending on the N -substitution of the amide station, and on deprotonation or deprotonation-carbamoylation, the actuation of the molecular machinery differs accordingly to very distinct interactions between the axle and the DB24C8.

  14. Cocomplexation of urea and UO22+ in a Schiff base macrocycle: a mimic of an enzyme binding site

    International Nuclear Information System (INIS)

    van Staveren, C.J.; Fenton, D.E.; Reinhoudt, D.N.; van Eerden, J.; Harkema, S.

    1987-01-01

    As part of the authors work on the complexation of neutral molecules by macrocyclic ligands, they are particularly interested in the complexation of urea. They have shown that urea can form complexes with (aza-)18-crown but the association constants of these complexes in water are very small (18-crown-6-urea, log K/sub s/ = 0.1). Protonation of urea effects stronger binding especially when the crown ether is sufficiently large to form an encapsulated complex (e.g., the complex benzo-27-crown-9-urea-HClO 4 ). Protonation of the weakly basic urea (pK/sub a/ = 0.1, water, 25 0 C) requires strongly acidic conditions and to avoid this they have introduced a covalently linked carboxylic group in the cavity of the macrocycle. A strong hydrogen bond of urea with 2-carboxyl-1,3-xylyl-30-crown-9 results in an encapsulated complex. The concept of using an electrophilic center to bind urea in the cavity of a crown ether proved to be a more general concept. A metal cation can serve as the electrophile as was shown by the isolation and single-crystal X-ray analysis of the 2,6-pyrido-27-crown-9-urea-LiClO 4 (1:2:1) complex in which one of the urea molecules is encapsulated. In an effort to bind an electrophilic metal ion in the crown ethers irreversibly they have concentrated their work on macrocycles of type 1, since the strong binding of quadridentate (salen type) Schiff bases with soft metal ions is well-known

  15. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Du, Yi [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing (China); Lv, Dachao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Ye, Gang, E-mail: yegang@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Wang, Jianchen [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2014-06-01

    Graphical abstract: Macrocyclic receptors grafted to monodisperse porous polymer particles for Sr(II) capture. - Highlights: • Synthesis of novel selective Sr adsorbent grafted with macrocyclic receptors. • New monodisperse porous polymer particles used to promote Sr adsorption. • Comparative study and discussion on adsorption behaviour and mechanism. • A chromatographic process proposed for Sr separation in simulated HLLW. - Abstract: Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO{sub 3} media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW)

  16. Thermodynamic studies of the complexation of plutonium(IV) by linear and macrocyclic poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Burgat, Romain

    2007-01-01

    In the framework of a collaboration between the CEA (Commissariat a l Energie Atomique) of Valduc and the ICMUB (Institut de Chimie Moleculaire de l Universite de Bourgogne), a study platform of the structural and physico-chemical properties of the radioelements U, Pu and Am complexes has been implemented. The plutonium(IV) complexation has been studied in a molar nitrate medium. The affinity of three linear poly-amino-carboxylates (EDTA, CDTA and DTPA) towards plutonium(IV) has then been estimated. For the three ligands, the formation constants of the monoleptic complexes Pu(EDTA), Pu(CDTA) and [Pu(DTPA)] - have been determined in a (H,K)NO 3 1 M medium and then extrapolated at a zero ionic force with the specific interactions theory (SIT). For the three complexes, mono-hydroxylated monoleptic species have been observed. With the EDTA and the CDTA, protonated dileptic complexes of a general formula [Pu(L) 2 H h ] (4-h)- have been revealed too. Nevertheless, the steric hindrance around the metallic center is too important to allow to a second molecule of DTPA to coordinate the Pu 4+ cation. The exclusive formation of the species [Pu(DTPA)] - and [Pu(DTPA)(OH)] 2- has been confirmed by capillary electrophoresis (EC-ICP-MS). On account of the preliminary results obtained during the titration of the cyclame tetraacetic product (TETRA) in presence of plutonium(IV), the adding of a competitive ligand such as EDTA has been considered for the study of the complexation of this radioelement by macrocyclic ligands. At last, the affinity of different macrocyclic ligands containing either four amide functions (TETAMMe 2 and TETAMMEt 2 ) or carboxylate groups (TETA, DOTPr and TETPr) towards lanthanides(III) has been estimated too. Although the complexation reaction be fast with the two first ligands, these complexes are less stable than those formed with the carboxylic macrocycles. (O.M.)

  17. A molecular dynamics simulation of sodium pentadecyl sulphonate (SPDS)/water system

    International Nuclear Information System (INIS)

    Arsenyan, L.H.; Poghosyan, A.H.; Shahinyan, A.A.

    2008-07-01

    We have carried out a molecular dynamics simulation of a sodium pentadecylsulfonate (SPDS)/water system consisting of 64PDS/1200water and 512PDS/9000water molecules, correspondingly. The overall simulation time for both cases reaches up to 60ns and the simulation was performed using the NAMD code with CHARMM27 force field. The main parameters of the system have been calculated and compared with available X-ray diffraction findings. For large system, after a couple of ns, we receive the molecule's hydrocarbon chains tilt in the opposite sense in layers and reducing the system size leads to the decrease of the average angle between bilayer normal and chain vector. At the end of 50ns of a simulation run we achieve the crystalline-like structure of hydrocarbon packing. For both cases, we obtain tilted hydrocarbon chains packing and the average angle between bilayer normal and chain vector is estimated to be about 13 deg. and 10 deg. (author)

  18. Molecular Mechanisms Underlying Renin-Angiotensin-Aldosterone System Mediated Regulation of BK Channels

    Directory of Open Access Journals (Sweden)

    Zhen-Ye Zhang

    2017-09-01

    Full Text Available Large-conductance calcium-activated potassium channels (BK channels belong to a family of Ca2+-sensitive voltage-dependent potassium channels and play a vital role in various physiological activities in the human body. The renin-angiotensin-aldosterone system is acknowledged as being vital in the body's hormone system and plays a fundamental role in the maintenance of water and electrolyte balance and blood pressure regulation. There is growing evidence that the renin-angiotensin-aldosterone system has profound influences on the expression and bioactivity of BK channels. In this review, we focus on the molecular mechanisms underlying the regulation of BK channels mediated by the renin-angiotensin-aldosterone system and its potential as a target for clinical drugs.

  19. DEVELOPMENT OF SEPARATION SYSTEMS FOR POLYNUCLEAR AROMATIC HYDROCARBON ENVIRONMENTAL CONTAMINANTS USING MICELLAR ELECTROKINETIC CHROMATOGRAPHY WITH MOLECULAR MICELLES AND FREE ZONE ELECTROPHORESIS

    Science.gov (United States)

    Of four systems available from the literature, based on cyclodextrins, dioctylsulfosuccinate, bile salts, and molecular micelles consisting of oligomers of undecylenic acid, the most successful separation system in our hands is based on the molecular micelles, oligomers of sodiu...

  20. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    Science.gov (United States)

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ

  1. Macrocyclic trichothecenes are undetectable in kudzu (Pueraria montana) plants treated with a high-producing isolate of Myrothecium verrucaria.

    Science.gov (United States)

    Abbas, H K; Tak, H; Boyette, C D; Shier, W T; Jarvis, B B

    2001-09-01

    Myrothecium verrucaria was found to be an effective pathogen against kudzu grown in the greenhouse and the field. M. verrucaria produced large amounts of macrocyclic trichothecenes when cultured on solid rice medium, including epiroridin E (16.8 mg/g crude extract), epiisororidin E (1 mg/g), roridin E (8.7 mg/g), roridin H (31.3 mg/g), trichoverrin A (0.6 mg/g), trichoverrin B (0.1 mg/g), verrucarin A (37.4 mg/g), and verrucarin J (2.2 mg/g). Most of these toxins were also isolated from M. verrucaria spores and mycelia grown on potato dextrose agar medium, including epiroridin E (32.3 mg/g), epiisororidin E (28.6 mg/g), roridin E (0 mg/g), roridin H (60 mg/g), trichoverrin A (1.3 mg/g), trichoverrin B (1.8 mg/g), verrucarin A (13.8 mg/g), and verrucarin J (131 mg/g). When M. verrucaria was cultured on liquid media, the numbers but not the amounts of toxins decreased. Only epiroridin E (28.3 mg/g), epiisororidin E (29.6 mg/g), verrucarin B (195 mg/g) and verrucarin J (52.6 mg/g) were measured when the fungus was cultured on cornsteep medium. On soyflour-cornmeal broth M. verrucaria produced several toxins, including epiroridin E (58.1 mg/g), epiisororidin E (5.8 mg/g), verrucarin B (29.9 mg/g) and verrucarin J (32 mg/g). In contrast, no macrocyclic trichothecenes were detected by HPLC analysis of plant tissues of kudzu, sicklepod, and soybean treated with aqueous suspensions of M. verrucaria spores formulated with a surfactant. Chloroform-methanol extracts of kudzu leaves and stems treated with M. verrucaria spores were less cytotoxic to four cultured mammalian cell lines than the corresponding extracts from control plants. Purified macrocyclic trichothecenes (verrucarin A and T-2 toxin) were very cytotoxic to the same cell lines (< or = 2 ng/ml). These results show that neither intact macrocyclic trichothecenes nor toxic metabolites could be detected in plant tissues after treatment with M. verrucaria spores. These results argue for both safety and efficacy for the

  2. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  3. Information theory and signal transduction systems: from molecular information processing to network inference.

    Science.gov (United States)

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand; Complejos de disprosio con el ligante macrociclico tetrafenilporfirina

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, V.; Padilla, J.; Ramirez, F.M

    1992-04-15

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H{sub 2}TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac){sub 3}. H{sub 2}0] and trihydrated [Dy(acac){sub 3} .3 H{sub 2}0], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP){sub 2}] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP){sub 3}. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP){sup 2-} (TFP) {sup 1-}] for the Dy(TFP){sub 2} as a result of the existence of the free radical (TFP' {sup 1-} and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  5. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand; Complejos de disprosio con el ligante macrociclico tetrafenilporfirina

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, V; Padilla, J; Ramirez, F M

    1992-04-15

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H{sub 2}TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac){sub 3}. H{sub 2}0] and trihydrated [Dy(acac){sub 3} .3 H{sub 2}0], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP){sub 2}] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP){sub 3}. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP){sup 2-} (TFP) {sup 1-}] for the Dy(TFP){sub 2} as a result of the existence of the free radical (TFP' {sup 1-} and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  6. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    Science.gov (United States)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  7. Proteomic approach toward molecular backgrounds of drug resistance of osteosarcoma cells in spheroid culture system.

    Science.gov (United States)

    Arai, Kazuya; Sakamoto, Ruriko; Kubota, Daisuke; Kondo, Tadashi

    2013-08-01

    Chemoresistance is one of the most critical prognostic factors in osteosarcoma, and elucidation of the molecular backgrounds of chemoresistance may lead to better clinical outcomes. Spheroid cells resemble in vivo cells and are considered an in vitro model for the drug discovery. We found that spheroid cells displayed more chemoresistance than conventional monolayer cells across 11 osteosarcoma cell lines. To investigate the molecular mechanisms underlying the resistance to chemotherapy, we examined the proteomic differences between the monolayer and spheroid cells by 2D-DIGE. Of the 4762 protein species observed, we further investigated 435 species with annotated mass spectra in the public proteome database, Genome Medicine Database of Japan Proteomics. Among the 435 protein species, we found that 17 species exhibited expression level differences when the cells formed spheroids in more than five cell lines and four species out of these 17 were associated with spheroid-formation associated resistance to doxorubicin. We confirmed the upregulation of cathepsin D in spheroid cells by western blotting. Cathepsin D has been implicated in chemoresistance of various malignancies but has not previously been implemented in osteosarcoma. Our study suggested that the spheroid system may be a useful tool to reveal the molecular backgrounds of chemoresistance in osteosarcoma. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    Science.gov (United States)

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  9. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?

    Science.gov (United States)

    Artero, Vincent; Fontecave, Marc

    2013-03-21

    Catalysis is a key enabling technology for solar fuel generation. A number of catalytic systems, either molecular/homogeneous or solid/heterogeneous, have been developed during the last few decades for both the reductive and oxidative multi-electron reactions required for fuel production from water or CO(2) as renewable raw materials. While allowing for a fine tuning of the catalytic properties through ligand design, molecular approaches are frequently criticized because of the inherent fragility of the resulting catalysts, when exposed to extreme redox potentials. In a number of cases, it has been clearly established that the true catalytic species is heterogeneous in nature, arising from the transformation of the initial molecular species, which should rather be considered as a pre-catalyst. Whether such a situation is general or not is a matter of debate in the community. In this review, covering water oxidation and reduction catalysts, involving noble and non-noble metal ions, we limit our discussion to the cases in which this issue has been directly and properly addressed as well as those requiring more confirmation. The methodologies proposed for discriminating homogeneous and heterogeneous catalysis are inspired in part by those previously discussed by Finke in the case of homogeneous hydrogenation reaction in organometallic chemistry [J. A. Widegren and R. G. Finke, J. Mol. Catal. A, 2003, 198, 317-341].

  10. Parametric sensitivity analysis for stochastic molecular systems using information theoretic metrics

    Energy Technology Data Exchange (ETDEWEB)

    Tsourtis, Anastasios, E-mail: tsourtis@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, Crete (Greece); Pantazis, Yannis, E-mail: pantazis@math.umass.edu; Katsoulakis, Markos A., E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, and Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete (Greece)

    2015-07-07

    In this paper, we present a parametric sensitivity analysis (SA) methodology for continuous time and continuous space Markov processes represented by stochastic differential equations. Particularly, we focus on stochastic molecular dynamics as described by the Langevin equation. The utilized SA method is based on the computation of the information-theoretic (and thermodynamic) quantity of relative entropy rate (RER) and the associated Fisher information matrix (FIM) between path distributions, and it is an extension of the work proposed by Y. Pantazis and M. A. Katsoulakis [J. Chem. Phys. 138, 054115 (2013)]. A major advantage of the pathwise SA method is that both RER and pathwise FIM depend only on averages of the force field; therefore, they are tractable and computable as ergodic averages from a single run of the molecular dynamics simulation both in equilibrium and in non-equilibrium steady state regimes. We validate the performance of the extended SA method to two different molecular stochastic systems, a standard Lennard-Jones fluid and an all-atom methane liquid, and compare the obtained parameter sensitivities with parameter sensitivities on three popular and well-studied observable functions, namely, the radial distribution function, the mean squared displacement, and the pressure. Results show that the RER-based sensitivities are highly correlated with the observable-based sensitivities.

  11. Toxicology and drug delivery by cucurbit[n]uril type molecular containers.

    Science.gov (United States)

    Hettiarachchi, Gaya; Nguyen, Duc; Wu, Jing; Lucas, Derick; Ma, Da; Isaacs, Lyle; Briken, Volker

    2010-05-06

    Many drug delivery systems are based on the ability of certain macrocyclic compounds - such as cyclodextrins (CDs) - to act as molecular containers for pharmaceutical agents in water. Indeed beta-CD and its derivatives have been widely used in the formulation of hydrophobic pharmaceuticals despite their poor abilities to act as a molecular container (e.g., weak binding (K(a)containers that bind to a variety of cationic and neutral species with high affinity (K(a)>10(4) M(-1)) and therefore show great promise as a drug delivery system. In this study we investigated the toxicology, uptake, and bioactivity of two cucurbit[n]urils (CB[5] and CB[7]) and three CB[n]-type containers (Pentamer 1, methyl hexamer 2, and phenyl hexamer 3). All five containers demonstrated high cell tolerance at concentrations of up to 1 mM in cell lines originating from kidney, liver or blood tissue using assays for metabolic activity and cytotoxicity. Furthermore, the CB[7] molecular container was efficiently internalized by macrophages indicating their potential for the intracellular delivery of drugs. Bioactivity assays showed that the first-line tuberculosis drug, ethambutol, was as efficient in treating mycobacteria infected macrophages when loaded into CB[7] as when given in the unbound form. This result suggests that CB[7]-bound drug molecules can be released from the container to find their intracellular target. Our study reveals very low toxicity of five members of the cucurbit[n]uril family of nanocontainers. It demonstrates the uptake of containers by cells and intracellular release of container-loaded drugs. These results provide initial proof-of-concept towards the use of CB[n] molecular containers as an advanced drug delivery system.

  12. Improved Fab presentation on phage surface with the use of molecular chaperone coplasmid system.

    Science.gov (United States)

    Loh, Qiuting; Leong, Siew Wen; Tye, Gee Jun; Choong, Yee Siew; Lim, Theam Soon

    2015-05-15

    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Molecular players involved in the interaction between beneficial bacteria and the immune system

    Directory of Open Access Journals (Sweden)

    Arancha eHevia

    2015-11-01

    Full Text Available The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors. This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system.

  14. Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems

    Science.gov (United States)

    Stella, L.; Lorenz, C. D.; Kantorovich, L.

    2014-04-01

    The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e.g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.

  15. Non-linear optical techniques and optical properties of condensed molecular systems

    Science.gov (United States)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  16. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    Science.gov (United States)

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  17. Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2011-01-01

    is based on fundamental thermodynamic relations and group contributions to properties of pure species (solvent, active ingredient and polymer) and their mixtures. The method is intended for pharmaceuticals with complex molecular structures, for which limited experimental information is known. Case studies......A systematic design strategy is given for computer-aided design of microparticle drug-delivery systems produced by solvent evaporation. In particular, design of solvents, polymer material, and external phase composition are considered for the case when the active ingredient is known. The procedure...... of solvent design are given....

  18. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    Science.gov (United States)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  19. TCM grammar systems: an approach to aid the interpretation of the molecular interactions in Chinese herbal medicine.

    Science.gov (United States)

    Yan, Jing; Wang, Yun; Luo, Si-Jun; Qiao, Yan-Jiang

    2011-09-01

    Interpreting the molecular interactions in Chinese herbal medicine will help to understand the molecular mechanisms of Traditional Chinese medicines (TCM) and predict the new pharmacological effects of TCM. Yet, we still lack a method which could integrate the concerned pieces of parsed knowledge about TCM. To solve the problem, a new method named TCM grammar systems was proposed in the present article. The possibility to study the interactions of TCM at the molecular level using TCM grammar systems was explored using Herba Ephedrae Decoction (HED) as an example. A platform was established based on the formalism of TCM grammar systems. The related molecular network of Herba Ephedrae Decoction (HED) can be extracted automatically. The molecular network indicates that Beta2 adrenergic receptor, Glucocorticoid receptor and Interleukin12 are the relatively important targets for the anti-anaphylaxis asthma function of HED. Moreover, the anti-anaphylaxis asthma function of HED is also related with suppressing inflammation process. The results show the feasibility using TCM grammar systems to interpret the molecular mechanism of TCM. Although the results obtained depend on the database absolutely, recombination of existing knowledge in this method provides new insight for interpreting the molecular mechanism of TCM. TCM grammar systems could aid the interpretation of the molecular interactions in TCM to some extent. Moreover, it might be useful to predict the new pharmacological effects of TCM. The method is an in silico technology. In association with the experimental techniques, this method will play an important role in the understanding of the molecular mechanisms of TCM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization.

    Science.gov (United States)

    Huang, Jian-Zhong; E, Zhi-Guo; Zhang, Hua-Li; Shu, Qing-Yao

    2014-12-01

    The exploitation of male sterility systems has enabled the commercialization of heterosis in rice, with greatly increased yield and total production of this major staple food crop. Hybrid rice, which was adopted in the 1970s, now covers nearly 13.6 million hectares each year in China alone. Various types of cytoplasmic male sterility (CMS) and environment-conditioned genic male sterility (EGMS) systems have been applied in hybrid rice production. In this paper, recent advances in genetics, biochemistry, and molecular biology are reviewed with an emphasis on major male sterility systems in rice: five CMS systems, i.e., BT-, HL-, WA-, LD- and CW- CMS, and two EGMS systems, i.e., photoperiod- and temperature-sensitive genic male sterility (P/TGMS). The interaction of chimeric mitochondrial genes with nuclear genes causes CMS, which may be restored by restorer of fertility (Rf) genes. The PGMS, on the other hand, is conditioned by a non-coding RNA gene. A survey of the various CMS and EGMS lines used in hybrid rice production over the past three decades shows that the two-line system utilizing EGMS lines is playing a steadily larger role and TGMS lines predominate the current two-line system for hybrid rice production. The findings and experience gained during development and application of, and research on male sterility in rice not only advanced our understanding but also shed light on applications to other crops.

  1. Template synthesis of poly aza macrocyclic copper(II) and nickel(II) complexes: Spectral characterization and antimicrobial studies

    Energy Technology Data Exchange (ETDEWEB)

    Gurumoorthy, P.; Ravichandran, J.; Kaliur Rahiman, A. [The New College, Chennai (India); Karthikeyan, N.; Palani, P. [Univ. of Madras, Chennai (India)

    2012-07-15

    The template synthesis of copper(II) and nickel(II) complexes derived from 2,6-diformyl-4-methylphenol with diethylenetriamine or 1,2-bis(3-amino propylamino)ethane produce the 12-membered N{sub 3}O and 17-membered N{sub 4}O macrocyclic complexes, respectively. The geometry of the complexes has been determined with the help of electronic and EPR spectroscopic values and found to be five coordinated square pyramidal and, six coordinated distorted tetragonal for 12-membered and 17-membered macrocyclic complexes, respectively. Electrochemical studies of the mononuclear N{sub 3}O and N{sub 4}O copper(II) complexes show one irreversible one electron reduction wave at E{sup pc} = .1.35 and .1.15 V respectively, and the corresponding nickel(II) complexes show irreversible one-electron reduction wave at E{sup pc} = .1.25 and .1.22 V, respectively. The nickel(II) complexes show irreversible one-electron oxidation wave at Epa = +0.84 and +0.82 V, respectively. All the complexes were evaluated for in vitro antimicrobial activity against the human pathogenic bacteria and fungi.

  2. Hydrophobic, Hydrophilic, and Amphiphilic Polyglycocarbonates with Linear and Macrocyclic Architectures from Bicyclic Glycocarbonates Derived from CO2 and Glucoside

    KAUST Repository

    Pati, Debasis

    2017-02-09

    Two bicyclic glycocarbonates were synthesized in five steps from α-methyl-d-glucoside without resorting to phosgene or to its derivatives for the first time. The 4- and 6-positions of glucose were modified to introduce a six-membered carbonate ring, using CO as the carbonylating reagent; the 2- and 3-positions of the same glucoside substrate were first transformed into either methyl or triethylene glycol monomethyl ether groups to protect these positions from undesirable reactions and also to impart hydrophobicity in the first case and hydrophilicity in the second. The polymerization behavior of these bicyclic glycocarbonates was then investigated under different conditions. On the one hand, through ring-opening polymerization of the above monomers, linear polyglycocarbonate homopolymers and diblock copolymers were obtained initiated by p-methylbenzyl alcohol using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst; on the other hand, macrocyclic polyglycocarbonate homopolymers and diblock copolymers were grown using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) which served as zwitterionic initiator. The various architectures derived were all thoroughly characterized by NMR, GPC, and MALDI-tof and shown to exhibit the expected structure. Finally, the self-assembly of linear and macrocyclic amphiphilic copolyglycocarbonates in water was investigated and characterized by cryo-TEM.

  3. Hydrophobic, Hydrophilic, and Amphiphilic Polyglycocarbonates with Linear and Macrocyclic Architectures from Bicyclic Glycocarbonates Derived from CO2 and Glucoside

    KAUST Repository

    Pati, Debasis; Feng, Xiaoshuang; Hadjichristidis, Nikolaos; Gnanou, Yves

    2017-01-01

    Two bicyclic glycocarbonates were synthesized in five steps from α-methyl-d-glucoside without resorting to phosgene or to its derivatives for the first time. The 4- and 6-positions of glucose were modified to introduce a six-membered carbonate ring, using CO as the carbonylating reagent; the 2- and 3-positions of the same glucoside substrate were first transformed into either methyl or triethylene glycol monomethyl ether groups to protect these positions from undesirable reactions and also to impart hydrophobicity in the first case and hydrophilicity in the second. The polymerization behavior of these bicyclic glycocarbonates was then investigated under different conditions. On the one hand, through ring-opening polymerization of the above monomers, linear polyglycocarbonate homopolymers and diblock copolymers were obtained initiated by p-methylbenzyl alcohol using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst; on the other hand, macrocyclic polyglycocarbonate homopolymers and diblock copolymers were grown using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) which served as zwitterionic initiator. The various architectures derived were all thoroughly characterized by NMR, GPC, and MALDI-tof and shown to exhibit the expected structure. Finally, the self-assembly of linear and macrocyclic amphiphilic copolyglycocarbonates in water was investigated and characterized by cryo-TEM.

  4. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    Science.gov (United States)

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  5. Radiopharmaceuticals: nanoparticles like multi-functional systems for the obtaining in vivo of molecular images; Radiofarmacos: nanoparticulas como sistemas multifuncionales para la obtencion in vivo de imagenes moleculares

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G.; Ramirez de la Cruz, F. M.; Ocampo G, B. E.; Morales A, E.; Santos C, C. L.; Mendoza S, A. N., E-mail: guillermina.ferro@inin.gob.m [ININ, Departamento de Materiales Radiactivos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The techniques of obtaining direct or indirect molecular images detect and register the space-temporary distribution of molecular or cellular processes for biochemical, biological, diagnostic and therapeutic applications. The advanced techniques of image like the nuclear magnetic resonance, the single photon emission computed tomography, the positron emission tomography and the images of optic fluorescence have been used successfully to detect these processes. On the other hand, the utility of the nanoparticles for any application is dependent of the physicochemical properties that present, being possible to modify their surface when making them react with different biomolecules what allows the formation of conjugates with specific molecular recognition. The joint of various protein molecules, peptides or oligonucleotides to the surface of a nanoparticle produce a multi-functional system able to increase the multivalent joints from the nanoparticles-biomolecules to their receivers for the obtaining of molecular images in vivo. The peptides stimulate, regulate or inhibit numerous functions of the life, acting mainly as information transmitters and activity coordinators of several tissues in the organism. The receivers of regulator peptides are over represented in numerous types of cancer cells and they are protein structures. These receivers have been used as white molecular of marked peptides, to locate primary malignant tumors and their metastasis, using the diagnostic techniques of molecular image mentioned above, which consist basically on the radio peptides use and conjugated peptides to fluoro chromes, to metallic nanoparticles and nano crystals. A summary of the work is presented carried out by the personnel of the Radio-active Materials and Chemistry Departments of the Instituto Nacional de Investigaciones Nucleares in this field. (Author)

  6. Molecular interactions in a surfactant-water-polyacrylamide system, according to densimetry, viscometry, conductometry, and spectroscopy data

    Science.gov (United States)

    Harutyunyan, R. S.

    2013-08-01

    Molecular interactions in a surfactant-polyacrylamide-water system are investigated. It is established that the interactions affect such physicochemical parameters of the system as viscosity, density, surface tension, conductivity, and critical micelle concentration. It is shown that in a polyacrylamide-water system, raising the polyacrylamide concentration to 0.02% causes conformational changes in its macromolecule.

  7. Contorted Organic Semiconductors for Molecular Electronics

    Science.gov (United States)

    Zhong, Yu

    Chapter 4, I discuss helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometers in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells. In Chapter 5, I compare analogous cyclic and acyclic pi-conjugated molecules as n-type electronic materials and find that the cyclic molecules have numerous benefits in organic photovoltaics. We designed two conjugated cycles for this study. Each comprises four subunits; one combines four electron-accepting, redox-active, diphenyl-perylenediimide subunits, and the other alternates two electron-donating bithiophene units with two diphenyl-perylenediimide units. We compare the macrocycles to acyclic versions of these molecules and find that, relative to the acyclic analogs, the conjugated macrocycles have bathochromically shifted UV-vis absorbances and are more easily reduced. In blended films, macrocycle-based devices show higher electron mobility and good morphology. All of these factors contribute to the more than doubling of the power conversion efficiency observed in organic photovoltaic devices with these macrocycles as the n-type, electron transporting material. This study highlights the importance of geometric design in creating new molecular semiconductors. In Chapter 6, I describe a new molecular design that enables high performance organic photodetectors. We use a rigid, conjugated macrocycle as the electron acceptor in devices to obtain high photocurrent and low dark current. We directly compare the

  8. Molecular Epidemiologic Typing Systems of Bacterial Pathogens: Current Issues and Perpectives

    Directory of Open Access Journals (Sweden)

    Struelens Marc J

    1998-01-01

    Full Text Available The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s ? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection. Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.

  9. Molecular – genetic variance of RH blood group system within human population of Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Lejla Lasić

    2013-02-01

    Full Text Available There are two major theories for inheritance of Rh blood group system: Fisher - Race theory and Wiener theory. Aim of this study was identifying frequency of RHDCE alleles in Bosnian - Herzegovinian population and introduction of this method in screening for Rh phenotype in B&H since this type of analysis was not used for blood typing in B&H before. Rh blood group was typed by Polymerase Chain Reaction, using the protocols and primers previously established by other authors, then carrying out electrophoresis in 2-3% agarose gel. Percentage of Rh positive individuals in our sample is 84.48%, while the percentage of Rh negative individuals is 15.52%. Inter-rater agreement statistic showed perfect agreement (K=1 between the results of Rh blood system detection based on serological and molecular-genetics methods. In conclusion, molecular - genetic methods are suitable for prenatal genotyping and specific cases while standard serological method is suitable for high-throughput of samples.

  10. Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective

    Science.gov (United States)

    van Heeswijk, Wally C.; Westerhoff, Hans V.

    2013-01-01

    SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575

  11. Thermal characterization of static and dynamical properties of the confined molecular systems interacting through dispersion force.

    Science.gov (United States)

    Ramos, Sergio Luis L M; Ogino, Michihiko; Oguni, Masaharu

    2015-01-28

    We investigated the thermal properties of liquid methylcyclohexane and racemic sec-butylcyclohexane, as representatives of a molecular system with only dispersion-force intermolecular interactions, confined in the pores (thickness/diameter d = 12, 6, 1.1 nm) of silica gels by adiabatic calorimetry. The results imply a heterogeneous picture for molecular aggregate under confinement consisting of an interfacial region and an inner pore one. In the vicinity of a glass-transition temperature T(g,bulk) of bulk liquid, two distinguishable relaxation phenomena were observed for the confined systems and their origins were attributed to the devitrification, namely glass transition, processes of (1) a layer of interfacial molecules adjacent to the pore walls and (2) the molecules located in the middle of the pore. A third glass-transition phenomenon was observed at lower temperatures and ascribed to a secondary relaxation process. The glass transition of the interfacial-layer molecules was found to proceed at temperatures rather above T(g,bulk), whereas that of the molecules located in the inner pore region occurred at temperatures below T(g,bulk). We discuss the reason why the molecules located in different places in the pores reveal the respectively different dynamical properties.

  12. Cocaine and MDMA Induce Cellular and Molecular Changes in Adult Neurogenic Systems: Functional Implications

    Directory of Open Access Journals (Sweden)

    Vivian Capilla-Gonzalez

    2011-06-01

    Full Text Available The capacity of the brain to generate new adult neurons is a recent discovery that challenges the old theory of an immutable adult brain. A new and fascinating field of research now focuses on this regenerative process. The two brain systems that constantly produce new adult neurons, known as the adult neurogenic systems, are the dentate gyrus (DG of the hippocampus and the lateral ventricules/olfactory bulb system. Both systems are involved in memory and learning processes. Different drugs of abuse, such as cocaine and MDMA, have been shown to produce cellular and molecular changes that affect adult neurogenesis. This review summarizes the effects that these drugs have on the adult neurogenic systems. The functional relevance of adult neurogenesis is obscured by the functions of the systems that integrate adult neurons. Therefore, we explore the effects that cocaine and MDMA produce not only on adult neurogenesis, but also on the DG and olfactory bulbs. Finally, we discuss the possible role of new adult neurons in cocaine- and MDMA-induced impairments. We conclude that, although harmful drug effects are produced at multiple physiological and anatomical levels, the specific consequences of reduced hippocampus neurogenesis are unclear and require further exploration.

  13. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    Science.gov (United States)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  14. Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems.

    Science.gov (United States)

    Liu, Xinzijian; Liu, Jian

    2018-03-14

    An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.

  15. Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems

    Directory of Open Access Journals (Sweden)

    Peter Spijker

    2010-06-01

    Full Text Available Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide.

  16. Integrating open-source software applications to build molecular dynamics systems.

    Science.gov (United States)

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  17. Environmental Catastrophes in the Earth's History Due to Solar Systems Encounters with Giant Molecular Clouds

    Science.gov (United States)

    Pavlov, Alexander A.

    2011-01-01

    In its motion through the Milky Way galaxy, the solar system encounters an average density (>=330 H atoms/cubic cm) giant molecular cloud (GMC) approximately every 108 years, a dense (approx 2 x 103 H atoms/cubic cm) GMC every approx 109 years and will inevitably encounter them in the future. However, there have been no studies linking such events with severe (snowball) glaciations in Earth history. Here we show that dramatic climate change can be caused by interstellar dust accumulating in Earth's atmosphere during the solar system's immersion into a dense (approx ,2 x 103 H atoms/cubic cm) GMC. The stratospheric dust layer from such interstellar particles could provide enough radiative forcing to trigger the runaway ice-albedo feedback that results in global snowball glaciations. We also demonstrate that more frequent collisions with less dense GMCs could cause moderate ice ages.

  18. Microscale Synthesis, Reactions, and (Super 1)H NMR Spectroscopic Investigations of Square Planar Macrocyclic, Tetramido-N Co(III) Complexes Relevant to Green Chemistry

    Science.gov (United States)

    Watson, Tanya T.; Uffelman, Erich S.; Lee, Daniel W., III; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen, R.

    2004-01-01

    The microscale preparation, characterization, and reactivity of a square planar Co(III) complex that has grown out of a program to introduce experiments of relevance to green chemistry into the undergraduate curriculum is presented. The given experiments illustrate the remarkable redox and aqueous acid-base stability that make the macrocycles very…

  19. A quantum-mechanics molecular-mechanics scheme for extended systems.

    Science.gov (United States)

    Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A

    2016-08-24

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  20. A quantum-mechanics molecular-mechanics scheme for extended systems

    International Nuclear Information System (INIS)

    Hunt, Diego; Scherlis, Damián A; Sanchez, Veronica M

    2016-01-01

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car–Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO 2 anatase (1 0 1) solid–liquid interface. This investigation suggests that the inclusion of a second monolayer of H 2 O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces. (paper)

  1. Genetic profiles of ten Dirofilaria immitis isolates susceptible or resistant to macrocyclic lactone heartworm preventives

    Directory of Open Access Journals (Sweden)

    Catherine Bourguinat

    2017-11-01

    Full Text Available Abstract Background For dogs and cats, chemoprophylaxis with macrocyclic lactone (ML preventives for heartworm disease is widely used in the United States and other countries. Since 2005, cases of loss of efficacy (LOE of heartworm preventives have been reported in the U.S. More recently, ML-resistant D. immitis isolates were confirmed. Previous work identified 42 genetic markers that could predict ML response in individual samples. For field surveillance, it would be more appropriate to work on microfilarial pools from individual dogs with a smaller subset of genetic markers. Methods MiSeq technology was used to identify allele frequencies with the 42 genetic markers previously reported. Microfilaria from ten well-characterized new isolates called ZoeKY, ZoeMI, ZoeGCFL, ZoeAL, ZoeMP3, ZoeMO, ZoeAMAL, ZoeLA, ZoeJYD-34, and Metairie were extracted from fresh blood from dogs. DNA were extracted and sequenced with MiSeq technology. Allele frequencies were calculated and compared with the previously reported susceptible, LOE, and resistant D. immitis populations. Results The allele frequencies identified in the current resistant and susceptible isolates were in accordance with the allele frequencies previously reported in related phenotypes. The ZoeMO population, a subset of the ZoeJYD-34 population, showed a genetic profile that was consistent with some reversion towards susceptibility compared with the parental ZoeJYD-34 population. The Random Forest algorithm was used to create a predictive model using different SNPs. The model with a combination of three SNPs (NODE_42411_RC, NODE_21554_RC, and NODE_45689 appears to be suitable for future monitoring. Conclusions MiSeq technology provided a suitable methodology to work with the microfilarial samples. The list of SNPs that showed good predictability for ML resistance was narrowed. Additional phenotypically well characterized D. immitis isolates are required to finalize the best set of SNPs to be

  2. Cyanide Scavenging by a Cobalt Schiff-Base Macrocycle: A Cost-Effective Alternative to Corrinoids.

    Science.gov (United States)

    Lopez-Manzano, Elisenda; Cronican, Andrea A; Frawley, Kristin L; Peterson, Jim; Pearce, Linda L

    2016-06-20

    The complex of cobalt(II) with the ligand 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]heptadeca-1(17)2,11,13,15-pentaene (CoN4[11.3.1]) has been shown to bind two molecules of cyanide in a cooperative fashion with an association constant of 2.7 (±0.2) × 10(5). In vivo, irrespective of whether it is initially administered as the Co(II) or Co(III) cation, EPR spectroscopic measurements on blood samples show that at physiological levels of reductant (principally ascorbate) CoN4[11.3.1] becomes quantitatively reduced to the Co(II) form. However, following addition of sodium cyanide, a dicyano Co(III) species is formed, both in blood and in buffered aqueous solution at neutral pH. In keeping with other cobalt-containing cyanide-scavenging macrocycles like cobinamide and cobalt(III) meso-tetra(4-N-methylpyridyl)porphine, we found that CoN4[11.3.1] exhibits rapid oxygen turnover in the presence of the physiological reductant ascorbate. This behavior could potentially render CoN4[11.3.1] cytotoxic and/or interfere with evaluations of the antidotal capability of the complex toward cyanide through respirometric measurements, particularly since cyanide rapidly inhibits this process, adding further complexity. A sublethal mouse model was used to assess the effectiveness of CoN4[11.3.1] as a potential cyanide antidote. The administration of CoN4[11.3.1] prophylactically to sodium cyanide-intoxicated mice resulted in the time required for the surviving animals to recover from "knockdown" (unconsciousness) being significantly decreased (3 ± 2 min) compared to that of the controls (22 ± 5 min). All observations are consistent with the demonstrated antidotal activity of CoN4[11.3.1] operating through a cyanide-scavenging mechanism, which is associated with a Co(II) → Co(III) oxidation of the cation. To test for postintoxication neuromuscular sequelae, the ability of mice to remain in position on a rotating cylinder (RotaRod test) was assessed during and after recovery

  3. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    Science.gov (United States)

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  4. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    Science.gov (United States)

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-03

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches.

  5. Synthesis and photophysical properties of a novel corrole–anthraquinone–corrole molecular system

    International Nuclear Information System (INIS)

    Sudhakar, Kolanu; Kanaparthi, Ravi Kumar; Kumar, Challa Kiran; Giribabu, Lingamallu

    2014-01-01

    A novel molecular triad (AQ-(H 3 ) 2 ) based on tritolylcorrole and anthraquinone having azomethine-bridge at the pyrrole-β position has been designed and synthesized by following a facile one step reaction. The molecular system, AQ-(H 3 ) 2 is characterized by elemental analysis, MALDI-MS, 1 H-NMR, UV–Visible and fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical methods. In absorption spectra, prominent changes such as red-shift (∼7 nm) and broadening of the both Soret and Q-bands with respect to their monomer units were observed. The present study supported by density functional theory calculations manifest that there exists a negligible electronic communication in the ground state between the donor tritolylcorrole and acceptor anthraquinone of the triad. However, interestingly, in the triad AQ-(H 3 ) 2 , fluorescence emission of the tritolylcorrole quenched significantly (17–80%) compared to their monomeric units. The emission quenching is attributed to the excited state intramolecular photoinduced electron transfer from donor tritolylcorrole to acceptor anthraquinone and the electron transfer rates (k ET ) are found in the range 4.1×10 8 to 2.4×10 9 s −1 and are found to be solvent dependent. - Highlights: • Molecular triad based on corrole and anthraquinone having azomethine-bridge at pyrrole-β position. • Ground state properties showed that there exist minimum π–π interactions. • Excited state properties showed intramolecular photoinduced electron transfer from corrole to anthraquinone

  6. Synthesis and photophysical properties of a novel corrole–anthraquinone–corrole molecular system

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Kolanu [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Kanaparthi, Ravi Kumar [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Department of Chemistry, Central University of Kerala, Reverside Transit Campus, Padanakkad, Nileshwar Kasaragod District - 671 314 Kerala (India); Kumar, Challa Kiran [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India); Giribabu, Lingamallu, E-mail: giribabu@iict.res.in [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Andhra Pradesh (India)

    2014-09-15

    A novel molecular triad (AQ-(H{sub 3}){sub 2}) based on tritolylcorrole and anthraquinone having azomethine-bridge at the pyrrole-β position has been designed and synthesized by following a facile one step reaction. The molecular system, AQ-(H{sub 3}){sub 2} is characterized by elemental analysis, MALDI-MS, {sup 1}H-NMR, UV–Visible and fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical methods. In absorption spectra, prominent changes such as red-shift (∼7 nm) and broadening of the both Soret and Q-bands with respect to their monomer units were observed. The present study supported by density functional theory calculations manifest that there exists a negligible electronic communication in the ground state between the donor tritolylcorrole and acceptor anthraquinone of the triad. However, interestingly, in the triad AQ-(H{sub 3}){sub 2}, fluorescence emission of the tritolylcorrole quenched significantly (17–80%) compared to their monomeric units. The emission quenching is attributed to the excited state intramolecular photoinduced electron transfer from donor tritolylcorrole to acceptor anthraquinone and the electron transfer rates (k{sub ET}) are found in the range 4.1×10{sup 8} to 2.4×10{sup 9} s{sup −1} and are found to be solvent dependent. - Highlights: • Molecular triad based on corrole and anthraquinone having azomethine-bridge at pyrrole-β position. • Ground state properties showed that there exist minimum π–π interactions. • Excited state properties showed intramolecular photoinduced electron transfer from corrole to anthraquinone.

  7. Novel PVC-membrane potentiometric sensors based on a recently synthesized sulfur-containing macrocyclic diamide for Cd2+ ion. Application to flow-injection potentiometry.

    Science.gov (United States)

    Shamsipur, Mojtaba; Dezaki, Abbas Shirmardi; Akhond, Morteza; Sharghi, Hashem; Paziraee, Zahra; Alizadeh, Kamal

    2009-12-30

    A new sulfur-containing macrocyclic diamide, 1,15-diaza-3,4,12,13-dibenzo-5,11-dithia-8-oxa-1,15-(2,6-pyrido)cyclooctadecan-2,14-dione, L, was synthesized, characterized and used as an active component for fabrication of PVC-based polymeric membrane (PME), coated graphite (CGE) and coated silver wire electrodes (CWE) for sensing Cd(2+) ion. The electrodes exhibited linear Nernstian responses to Cd(2+) ion in the concentration range of 3.3 x 10(-6) to 3.3 x 10(-1)M (for PME, LOD=1.2 x 10(-6)M), 2.0 x 10(-7) to 3.3 x 10(-1)M (for CWE, LOD=1.3 x 10(-7)M) and 1.6 x 10(-8) to 1.3 x 10(-1)M (for CGE, LOD=1.0 x 10(-8)M). The CGE was used as a proper detection system in flow-injection potentiometry (FIP) with a linear Nernstian range of 3.2 x 10(-8) to 1.4 x 10(-1)M (LOD=1.3 x 10(-8)M). The optimum pH range was 3.5-7.6. The electrodes revealed fairly good discriminating ability towards Cd(2+) in comparison with a large number of alkali, alkaline earth, transition and heavy metal ions. The electrodes found to be chemically inert, showing a fast response time of <5s, and could be used practically over a period of about 2-3 months. The practical utility of the proposed system has also been reported.

  8. Crystal and molecular simulation of high-performance polymers.

    Science.gov (United States)

    Colquhoun, H M; Williams, D J

    2000-03-01

    Single-crystal X-ray analyses of oligomeric models for high-performance aromatic polymers, interfaced to computer-based molecular modeling and diffraction simulation, have enabled the determination of a range of previously unknown polymer crystal structures from X-ray powder data. Materials which have been successfully analyzed using this approach include aromatic polyesters, polyetherketones, polythioetherketones, polyphenylenes, and polycarboranes. Pure macrocyclic homologues of noncrystalline polyethersulfones afford high-quality single crystals-even at very large ring sizes-and have provided the first examples of a "protein crystallographic" approach to the structures of conventionally amorphous synthetic polymers.

  9. Some features of the molecular assembly of copper porphyrazines

    International Nuclear Information System (INIS)

    Valkova, L.; Borovkov, N.; Kopranenkov, V.; Pisani, M.; Bossi, M.; Rustichelli, F.

    2002-01-01

    Floating layers and Langmuir-Blodgett (LB) films of copper porphyrazine (CuPaz) and its tetra-tert-butyl-substituted homologue (CuPaz') are studied. Contrary to phthalocyanines, the monolayer phase in the porphyrazine layers is metastable and transforms directly into the tetralayer one under moderate compression. In diffraction patterns and electronic spectra of the LB films, supramolecular peaks indicating collectivizing of the molecular electron density in direction perpendicular to the main axis of the macrocycle are found. The data obtained indicate the prismatic 3-D supermolecule to be the simplest structural unit of the porphyrazine assembly

  10. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  11. Improvement of the inlet system for the spray-jet technique for use in spectroscopic studies and molecular deposition

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Mashiko, Shinro

    2006-01-01

    We previously developed a molecular beam apparatus with a spray-jet technique in order to produce a molecular beam of non-volatile molecules in vacuum from the sprayed mist of a sample solution. The apparatus is for use in spectroscopic studies or a means of molecular deposition. The spray-jet inlet system consisted of an ultrasonic nebulizer, an inlet chamber and a pulsed nozzle. In the present paper, further improvements to the spray-jet inlet system are reported. The main improvement is the introduction of a pneumatic nebulizer to replace the previous ultrasonic nebulizer. The efficiency of molecular beam generation was evaluated on the basis of the signal intensity of the resonantly enhanced multiphoton ionization time-of-flight mass (REMPI-TOFMS) spectra for a Rhodamine B/methanol solution and the amount of sample consumed. The introduction of the pneumatic nebulizer increased the efficiency by a factor of 20

  12. Performance characteristics of dedicated molecular breast imaging systems at low doses

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zaiyang; Conners, Amy L.; Hunt, Katie N.; Hruska, Carrie B.; O’Connor, Michael K., E-mail: mkoconnor@mayo.edu [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2016-06-15

    Purpose: The purpose of this study was to compare the system performance characteristics and lesion detection capability of two molecular breast imaging (MBI) systems: a multicrystal sodium iodide (NaI)-based single-head system and a cadmium zinc telluride (CZT)-based dual-head system at low administered doses (150–300 MBq) of Tc-99m sestamibi. Methods: System performance characteristics including count sensitivity, uniformity, energy resolution, and spatial resolution were measured using standard NEMA methods, or a modified version thereof in cases where the standard NEMA protocol could not be applied. A contrast-detail phantom with 48 lesions at varying depths from the collimator surface was used to assess lesion contrast-to-noise-ratio (CNR) using background count densities comparable to those observed in patient studies performed with administered doses of 150 MBq Tc-99m sestamibi. Lesions with CNR >3 were deemed to be detectable. Thirty patients undergoing MBI examinations with administered doses of 150–300 MBq were scanned for an additional view on the pixelated NaI system. CNR was calculated for lesions observed on patient images. Background count densities of patient images were measured and compared between the two systems. Results: Over the central field of view, integral and differential uniformity were 6.1% and 4.2%, respectively, for the pixelated NaI system, and 3.8% and 2.7%, respectively, for the CZT system. Count sensitivity was 10.8 kcts/min/MBq for the NaI system and 32.9 kcts/min/MBq for the CZT system. Energy resolution was 13.5% on the pixelated NaI system and 4.5% on the CZT system. Spatial resolution (full-width at half-maximum) for the pixelated NaI detector was 4.2 mm at a distance of 1.2 cm from the collimator and 5.2 mm at 3.1 cm. Spatial resolution of a single CZT detector was 2.9 mm at a distance of 1.2 cm from the collimator and 4.7 mm at 3.1 cm. Effective spatial resolution obtained with dual-head CZT was below 4.7 mm throughout

  13. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.

    Science.gov (United States)

    Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2018-01-01

    In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable

  14. The cobas® 6800/8800 System: a new era of automation in molecular diagnostics.

    Science.gov (United States)

    Cobb, Bryan; Simon, Christian O; Stramer, Susan L; Body, Barbara; Mitchell, P Shawn; Reisch, Natasa; Stevens, Wendy; Carmona, Sergio; Katz, Louis; Will, Stephen; Liesenfeld, Oliver

    2017-02-01

    Molecular diagnostics is a key component of laboratory medicine. Here, the authors review key triggers of ever-increasing automation in nucleic acid amplification testing (NAAT) with a focus on specific automated Polymerase Chain Reaction (PCR) testing and platforms such as the recently launched cobas® 6800 and cobas® 8800 Systems. The benefits of such automation for different stakeholders including patients, clinicians, laboratory personnel, hospital administrators, payers, and manufacturers are described. Areas Covered: The authors describe how molecular diagnostics has achieved total laboratory automation over time, rivaling clinical chemistry to significantly improve testing efficiency. Finally, the authors discuss how advances in automation decrease the development time for new tests enabling clinicians to more readily provide test results. Expert Commentary: The advancements described enable complete diagnostic solutions whereby specific test results can be combined with relevant patient data sets to allow healthcare providers to deliver comprehensive clinical recommendations in multiple fields ranging from infectious disease to outbreak management and blood safety solutions.

  15. New developments in neutron scattering for the study of molecular systems: structure and diffusive motions

    International Nuclear Information System (INIS)

    Volino, F.

    1976-01-01

    After a short review of the main concepts concerning the neutron and its interaction with matter, the authors focus their attention on the study of molecular systems by means of neutron scattering. Instead of reviewing the subject yet again, they limit themselves to the new kind of work which can be done now, with the combined help of high flux reactors and novel instruments. As examples, a few experiments performed at the Institut Laue-Langevin in Grenoble are described: a neutron diffraction study of liquid acetonitrile using a powder diffractometer installed at the hot source; three high-resolution quasi-elastic studies of molecular motions - in an organic solid, (PAA), an organic liquid (C 3 H 6 ) and a liquid crystal (TBBA) - made by combining measurements with high and ultra-high energy resolution spectrometers installed at the cold source. The concept of elastic incoherent structure factor (EISF) is extensively used for the analysis. Finally some prospects on possible future developments are presented. (orig./HK) [de

  16. Analysis of quasielastic neutron scattering (QENS) data of discotic systems using different molecular dynamics (MD) models

    International Nuclear Information System (INIS)

    Kruglova, O.; Mulder, F.M.; Picken, S.J.; Stride, J.; Kearley, G.J.

    2004-01-01

    Discotic molecules are composed of an aromatic core surrounded by aliphatic chains. These molecules are of importance because they can form columns in which the π orbitals of neighbouring molecules overlap leading to conductivity along the column. These materials find applications in molecular electronics and recently--with record quantum efficiencies--in photo voltaics. Because the correlation time of the electron (or hole) hopping is in the picosecond region, molecular dynamics on this timescale is of central importance. We have recently shown that these dynamics, which is easily measured by quasielastic neutron scattering (QENS), can be understood with a rather simple 'short single-column' model via an MD simulation that reproduces the measured QENS spectra. Before progressing to the larger technologically important systems we must understand any fortuitous error cancellations that may cause the simple model to reproduce the experimental signal so well. By taking a very simple discotic, hexamethyltriphenylene (HMT), we are able to compare QENS data with three types of models: simple column, cluster and periodic. It transpires that the cluster model cannot properly accommodate inter column interactions, and a fairly modest periodic model overcomes this problem and the tendency for un-physical harmonic modes along the column

  17. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    Directory of Open Access Journals (Sweden)

    Hussein Traboulsi

    2017-01-01

    Full Text Available Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood, fossil fuels (e.g., cars and trucks, incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene, metals, sulphur and nitrogen oxides, ozone and particulate matter (PM. PM0.1 (ultrafine particles (UFP, those particles with a diameter less than 100 nm (includes nanoparticles (NP are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB and nuclear factor (erythroid-derived 2-like 2 (Nrf2. Epigenetic mechanisms including non-coding RNA (ncRNA may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.

  18. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  19. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    Science.gov (United States)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  20. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Efficient Implementations of Molecular Dynamics Simulations for Lennard-Jones Systems

    KAUST Repository

    Watanabe, H.

    2011-08-01

    Efficient implementations of the classical molecular dynamics (MD) method for Lennard-Jones particle systems are considered. Not only general algorithms but also techniques that are efficient for some specific CPU architectures are also explained. A simple spatialdecomposition-based strategy is adopted for parallelization. By utilizing the developed code, benchmark simulations are performed on a HITACHI SR16000/J2 system consisting of IBM POWER6 processors which are 4.7 GHz at the National Institute for Fusion Science (NIFS) and an SGI Altix ICE 8400EX system consisting of Intel Xeon processors which are 2.93 GHz at the Institute for Solid State Physics (ISSP), the University of Tokyo. The parallelization efficiency of the largest run, consisting of 4.1 billion particles with 8192 MPI processes, is about 73% relative to that of the smallest run with 128 MPI processes at NIFS, and it is about 66% relative to that of the smallest run with 4 MPI processes at ISSP. The factors causing the parallel overhead are investigated. It is found that fluctuations of the execution time of each process degrade the parallel efficiency. These fluctuations may be due to the interference of the operating system, which is known as OS Jitter.

  2. Artificial liver support with the molecular adsorbent recirculating system: activation of coagulation and bleeding complications.

    Science.gov (United States)

    Bachli, Esther B; Schuepbach, Reto A; Maggiorini, Marco; Stocker, Reto; Müllhaupt, Beat; Renner, Eberhard L

    2007-05-01

    Numerous, mostly uncontrolled, observations suggest that artificial liver support with the Molecular Adsorbent Recirculating System (MARS) improves pathophysiologic sequelae and outcome of acute and acute-on-chronic liver failure. MARS is felt to be safe, but extracorporeal circuits may activate coagulation. To assess the frequency of and risk factors for activation of coagulation during MARS treatment. Retrospective analysis of coagulopathy/bleeding complications observed during 83 consecutive MARS sessions in 21 patients (11 men; median age 46 years; median three sessions per patient; median duration of session 8 h). Nine clinically relevant episodes of coagulopathy/bleeding were observed in eight patients, forced to premature cessation of MARS in seven and ended lethal in four. Four complications occurred during the first, five during later (third to seventh) MARS sessions and two bleeders tolerated further sessions without complications. Coagulation parameters worsened significantly also during MARS sessions not associated with bleeding (PMARS therapy, potentially leading to bleeding complications and mortality.

  3. Optimization and performance evaluation of a conical mirror based fluorescence molecular tomography imaging system

    Science.gov (United States)

    Zhao, Yue; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    We performed numerical simulations and phantom experiments with a conical mirror based fluorescence molecular tomography (FMT) imaging system to optimize its performance. With phantom experiments, we have compared three measurement modes in FMT: the whole surface measurement mode, the transmission mode, and the reflection mode. Our results indicated that the whole surface measurement mode performed the best. Then, we applied two different neutral density (ND) filters to improve the measurement's dynamic range. The benefits from ND filters are not as much as predicted. Finally, with numerical simulations, we have compared two laser excitation patterns: line and point. With the same excitation position number, we found that the line laser excitation had slightly better FMT reconstruction results than the point laser excitation. In the future, we will implement Monte Carlo ray tracing simulations to calculate multiple reflection photons, and create a look-up table accordingly for calibration.

  4. Possible signatures of nuclear-molecular formation in O+C systems

    International Nuclear Information System (INIS)

    Tighe, R.J.; Kolata, J.J.; Belbot, M.; Aguilera, E.F.

    1993-01-01

    The interplay between the elastic, quasielastic, and fusion reaction channels at energies from just above to well below the Coulomb barrier is investigated for O+C systems. Elastic-scattering and quasielastic-scattering angular distributions were measured using the kinematic coincidence technique. Fusion yields were obtained by direct detection of the evaporation residues using a time-of-flight energy spectrometer, at energies from just above to well below the Coulomb barrier. The fusion yields differ significantly from previous work, but the present measurements give barrier parameters consistent with systematics. Comparisons with two-center shell model and coupled-channels predictions show possible indications of nuclear-molecular formation in the elastic, inelastic, and single-neutron transfer channels

  5. Acidolysis small molecular phenolic ether used as accelerator in photosensitive diazonaphthaquinone systems

    Science.gov (United States)

    Zhou, Haihua; Zou, Yingquan

    2006-03-01

    The photosensitive compounds in the photosensitive coatings of positive PS plates are the diazonaphthaquinone derivatives. Some acidolysis small molecular phenolic ethers, which were synthesized by some special polyhydroxyl phenols with vinyl ethyl ether, are added in the positive diazonaphthaquinone photosensitive composition to improve its sensitivity, composed with photo-acid-generators. The effects to the photosensitivity, anti-alkali property, anti-isopropyl alcohol property, dot resolution and line resolution of the coatings are studied with different additive percent of the special phenolic ethers. In the conventional photosensitive diazonaphthaquinone systems for positive PS plates, the photosensitivity is improved without negative effects to resolution, anti-alkali and anti-isopropyl alcohol properties when added about 5% of the special acidolysis phenolic ethers, EAAE or DPHE, composed with photo-acid-generators.

  6. First Principles Molecular Dynamics Study of Catalysis for Polyolefins: the Ziegler-Natta Heterogeneous System.

    Directory of Open Access Journals (Sweden)

    Michele Parrinello

    2002-04-01

    Full Text Available Abstract: We review part of our recent ab initio molecular dynamics study on the Ti-based Ziegler-Natta supported heterogeneous catalysis of α-olefins. The results for the insertion of ethylene in the metal-carbon bond are discussed as a fundamental textbook example of polymerization processes. Comparison with the few experimental data available has shown that simulation can reproduce activation barriers and the overall energetics of the reaction with sufficient accuracy. This puts these quantum dynamical simulations in a new perspective as a virtual laboratory where the microscopic picture of the catalysis, which represents an important issue that still escapes experimental probes, can be observed and understood. These results are then discussed in comparison with a V-based catalyst in order to figure out analogies and differences with respect to the industrially more successful Tibased systems.

  7. Molecular dynamics simulations of Na+/Cl--dependent neurotransmitter transporters in a membrane-aqueous system

    DEFF Research Database (Denmark)

    Jørgensen, Anne Marie; Tagmose, L.; Jørgensen, A.M.M.

    2007-01-01

    We have performed molecular dynamics simulations of a homology model of the human serotonin transporter (hSERT) in a membrane environment and in complex with either the natural substrate S-HT or the selective serotonin reuptake inhibitor escitaloprom. We have also included a transporter homologue......, the Aquifex aeolicus leucine transporter (LeuT), in our study to evaluate the applicability of a simple and computationally attractive membrane system. Fluctuations in LeuT extracted from simulations are in good agreement with crystal logrophic B factors. Furthermore, key interactions identified in the X....... Specific interactions responsible for ligand recognition, are identified in the hSERT-5HT and hSERT-escitaloprom complexes. Our finding5 are in good agreement with predictions from mutagenesis studies....

  8. Enhancement of phase-conjugate reflectivity using Zeeman coherence in highly degenerate molecular systems

    International Nuclear Information System (INIS)

    Mukherjee, Nandini

    2010-01-01

    A comprehensive theoretical analysis is developed for the vectorial phase conjugation using resonant four-wave mixing (FWM) in a highly degenerate rotational vibrational molecular system. The dynamic Stark shifts, saturation, and Doppler broadening are included for a realistic analysis. It is shown that the electromagnetically induced multilevel coherence controls the nonlinear wave mixing yielding interesting results for the phase conjugate (PC) reflectivity. It turns out that the efficiency of the PC reflectivity is decided by the relative phase of the Zeeman coherence and the population grating. When these two contributions are aligned in phase by a small detuning of the pump frequency, a large PC reflectivity (∼20%) is obtained with moderate pump intensity (∼500 mW/cm 2 ).

  9. Simple Rules for an Efficient Use of Geographic Information Systems in Molecular Ecology

    Directory of Open Access Journals (Sweden)

    Kevin Leempoel

    2017-04-01

    Full Text Available Geographic Information Systems (GIS are becoming increasingly popular in the context of molecular ecology and conservation biology thanks to their display options efficiency, flexibility and management of geodata. Indeed, spatial data for wildlife and livestock species is becoming a trend with many researchers publishing genomic data that is specifically suitable for landscape studies. GIS uniquely reveal the possibility to overlay genetic information with environmental data and, as such, allow us to locate and analyze genetic boundaries of various plant and animal species or to study gene-environment associations (GEA. This means that, using GIS, we can potentially identify the genetic bases of species adaptation to particular geographic conditions or to climate change. However, many biologists are not familiar with the use of GIS and underlying concepts and thus experience difficulties in finding relevant information and instructions on how to use them. In this paper, we illustrate the power of free and open source GIS approaches and provide essential information for their successful application in molecular ecology. First, we introduce key concepts related to GIS that are too often overlooked in the literature, for example coordinate systems, GPS accuracy and scale. We then provide an overview of the most employed open-source GIS-related software, file formats and refer to major environmental databases. We also reconsider sampling strategies as high costs of Next Generation Sequencing (NGS data currently diminish the number of samples that can be sequenced per location. Thereafter, we detail methods of data exploration and spatial statistics suited for the analysis of large genetic datasets. Finally, we provide suggestions to properly edit maps and to make them as comprehensive as possible, either manually or trough programming languages.

  10. Highly ordered self-assembly of one-dimensional nanoparticles in amphiphilic molecular systems

    International Nuclear Information System (INIS)

    Kim, Tae Hwan

    2009-02-01

    Two kinds of one-dimensional (1D) nanoparticles, stable rod-like nanoparticles with highly controlled surface charge density (cROD) and non-covalently functionalized isolated single wall carbon nanotubes (p-SWNT) that were readily redispersible in water, have been developed. Using these 1D nanoparticles, various highly ordered superstructures of 1D nanoparticles by molecular self-assembling based on electrostatic interaction in amphiphilic molecular systems (two different cationic liposome systems) have been investigated. To our knowledge, this is the first demonstration of highly ordered self-assembly of 1D nanoparticles based on electrostatic interaction between 1D nanoparticles and amphiphilic molecules. The cRODs have been developed by free radical polymerization of a mixture of polymerizable cationic surfactant, cetyltrimethylammonium 4-vinylbenzoate (CTVB), and hydrotropic salt sodium 4-styrenesulfonate (NaSS) in aqueous solution. The surface charge of the cROD was controlled by varying the NaSS concentration during the polymerization process and the charge variation was interpreted in terms of the overcharging effect in colloidal systems. The small angle neutron scattering (SANS) measurements showed that the diameter of cROD is constant at 4 nm and the particle length ranges from 20 nm to 85 nm, depending on the NaSS concentration. The cRODs are longest when the NaSS concentration is 5 mol % which corresponds to the charge inversion or neutral point. The SANS and zeta potential measurements showed that the Coulomb interactions between the particles are strongly dependent on the NaSS concentration and the zeta potential of the cRODs changes from positive to negative (+ 12.8 mV ∼ - 44.2 mV) as the concentration of NaSS increases from 0 mol % to 40 mol %. As the NaSS concentration is further increased, the zeta potential is saturated at approximately - 50 mV. The p-SWNTs have been developed by 1) dispersing single wall carbon nanotubes (SWNTs) in water using

  11. Long-range force and moment calculations in multiresolution simulations of molecular systems

    International Nuclear Information System (INIS)

    Poursina, Mohammad; Anderson, Kurt S.

    2012-01-01

    Multiresolution simulations of molecular systems such as DNAs, RNAs, and proteins are implemented using models with different resolutions ranging from a fully atomistic model to coarse-grained molecules, or even to continuum level system descriptions. For such simulations, pairwise force calculation is a serious bottleneck which can impose a prohibitive amount of computational load on the simulation if not performed wisely. Herein, we approximate the resultant force due to long-range particle-body and body-body interactions applicable to multiresolution simulations. Since the resultant force does not necessarily act through the center of mass of the body, it creates a moment about the mass center. Although this potentially important torque is neglected in many coarse-grained models which only use particle dynamics to formulate the dynamics of the system, it should be calculated and used when coarse-grained simulations are performed in a multibody scheme. Herein, the approximation for this moment due to far-field particle-body and body-body interactions is also provided.

  12. Enzymatic logic calculation systems based on solid-state electrochemiluminescence and molecularly imprinted polymer film electrodes.

    Science.gov (United States)

    Lian, Wenjing; Liang, Jiying; Shen, Li; Jin, Yue; Liu, Hongyun

    2018-02-15

    The molecularly imprinted polymer (MIP) films were electropolymerized on the surface of Au electrodes with luminol and pyrrole (PY) as the two monomers and ampicillin (AM) as the template molecule. The electrochemiluminescence (ECL) intensity peak of polyluminol (PL) of the AM-free MIP films at 0.7V vs Ag/AgCl could be greatly enhanced by AM rebinding. In addition, the ECL signals of the MIP films could also be enhanced by the addition of glucose oxidase (GOD)/glucose and/or ferrocenedicarboxylic acid (Fc(COOH) 2 ) in the testing solution. Moreover, Fc(COOH) 2 exhibited cyclic voltammetric (CV) response at the AM-free MIP film electrodes. Based on these results, a binary 3-input/6-output biomolecular logic gate system was established with AM, GOD and Fc(COOH) 2 as inputs and the ECL responses at different levels and CV signal as outputs. Some functional non-Boolean logic devices such as an encoder, a decoder and a demultiplexer were also constructed on the same platform. Particularly, on the basis of the same system, a ternary AND logic gate was established. The present work combined MIP film electrodes, the solid-state ECL, and the enzymatic reaction together, and various types of biomolecular logic circuits and devices were developed, which opened a novel avenue to construct more complicated bio-logic gate systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Directory of Open Access Journals (Sweden)

    Umberto Tosi

    2017-02-01

    Full Text Available Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  14. Reinforced dynamics for enhanced sampling in large atomic and molecular systems

    Science.gov (United States)

    Zhang, Linfeng; Wang, Han; E, Weinan

    2018-03-01

    A new approach for efficiently exploring the configuration space and computing the free energy of large atomic and molecular systems is proposed, motivated by an analogy with reinforcement learning. There are two major components in this new approach. Like metadynamics, it allows for an efficient exploration of the configuration space by adding an adaptively computed biasing potential to the original dynamics. Like deep reinforcement learning, this biasing potential is trained on the fly using deep neural networks, with data collected judiciously from the exploration and an uncertainty indicator from the neural network model playing the role of the reward function. Parameterization using neural networks makes it feasible to handle cases with a large set of collective variables. This has the potential advantage that selecting precisely the right set of collective variables has now become less critical for capturing the structural transformations of the system. The method is illustrated by studying the full-atom explicit solvent models of alanine dipeptide and tripeptide, as well as the system of a polyalanine-10 molecule with 20 collective variables.

  15. Micelle System Based on Molecular Economy Principle for Overcoming Multidrug Resistance and Inhibiting Metastasis.

    Science.gov (United States)

    Qi, Yan; Qin, Xianya; Yang, Conglian; Wu, Tingting; Qiao, Qi; Song, Qingle; Zhang, Zhiping

    2018-03-05

    The high mortality of cancer is mainly attributed to multidrug resistance (MDR) and metastasis. A simple micelle system was constructed here to codeliver doxorubicin (DOX), adjudin (ADD), and nitric oxide (NO) for overcoming MDR and inhibiting metastasis. It was devised based on the "molecular economy" principle as the micelle system was easy to fabricate and exhibited high drug loading efficiency, and importantly, each component of the micelles would exert one or more active functions. DOX acted as the main cell killing agent supplemented with ADD, NO, and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). MDR was overcome by synergistic effects of mitochondria inhibition agents, TPGS and ADD. A TPGS-based NO donor can be used as a drug carrier, and it can release NO to enhance drug accumulation and penetration in tumor, resulting in a positive cycle of drug delivery. This DOX-ADD conjugate self-assembly system demonstrated controlled drug release, increased cellular uptake and cytotoxicity, enhanced accumulation at tumor site, and improved in vivo metastasis inhibition of breast cancer. The micelles can fully take advantage of the functions of each component, and they provide a potential strategy for nanomedicine design and clinical cancer treatment.

  16. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Science.gov (United States)

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  17. Electromagnetically induced transparency in an open V-type molecular system

    International Nuclear Information System (INIS)

    Lazoudis, A.; Ahmed, E. H.; Qi, P.; Lyyra, A. M.; Kirova, T.; Huennekens, J.

    2011-01-01

    We report the experimental observation of electromagnetically induced transparency (EIT) in an inhomogeneously broadened V-type Na 2 molecular system. The experiment is performed with both co- and counterpropagating arrangements for the propagation directions of the coupling and probe laser beams. In our theoretical model we employ the density matrix formalism, as well as perturbative methods for obtaining the probe field absorption profile for both open and closed systems. Simulations of the experimental data show excellent agreement with the predictions derived from the basic theory. Our fluorescent intensity measurements show that, in the copropagating configuration, the EIT plus saturation window depth is about 95%, while under similar conditions in the counterpropagating geometry we observed 40%-45% reduction in the fluorescence signal around the line center. To separate the two simultaneously occurring mechanisms in a V-type system (i.e., EIT and saturation) that are induced by the coupling field, we have carried out theoretical calculations which show that, in the copropagating case, a significant fraction of the depth of the dip is due to the coherent effect of EIT. When the coupling and probe beams are in the counterpropagating configuration, the dip is mostly due to saturation effects alone.

  18. Molecular system analysis, multidimensional, dynamic, ultra-sensitive exploration of proteomes

    International Nuclear Information System (INIS)

    Scharattenholz, A.; Soski, V.; Stegmann, W.; Schroer, K.; Godovac-Zimmermann, J.; Cabuk, A.; Pejovi, V.; Wozny, W.; Cahill, M.A.; Drukier, A.K.; Volkovitsky, P.

    2001-01-01

    ProteoSys AG's holistic proteomics strategy extends beyond classical proteome research as a new paradigm. Our concept of multidimensional molecular systems analysis of complex model systems employs the innovative ProteoDyn TM approach. This enables us to correlate dynamic changes of proteomes with their biophysical and biochemical environment. Our supersensitive Multi Photon Detection (MPD) technology enables ultra-sensitive detection of proteins, deep into the low abundance domain. Our technology platform includes the affinity analysis of phospho- and glyco-proteomes, and with our 'fish hook' methods we can capture and fully characterize even serpentine G-coupled receptors and associated proteins, including routine comprehensive post-translational analyses performed by a well equipped mass spectrometry group. Throughput and quality is obtained by automation and high end robotics, with data management handled by a dedicated bioinformatics department. Thus ProteoSys AG has a range of state of the art and proprietary tools at its disposal to analyse even the most difficult complex model systems. MPD is an isotopic detection method proprietary to ProteoSys For MPD analysis we have implemented protocols where over 99% of proteins can be iodinated, and where the iodinated proteins can be identified by mass spectrometry. Because MPD measures the energy of detected particles, it can discriminate between signals originating from different isotopes co-electrophoresed by 2D-PAGE. Thus MPD imagers have a 'multicolour' functionality suitable for differential display and improved throughput, eliminating inter-gel variations. Importantly, MPD opens up not only the world of detection of low abundance proteins, but also identification and characterization. Radioactive low abundance protein spots containing less than one attomole of protein can be excised from a 2D-gel, mixed with unlabelled proteins, and 'tracked' by MPD. The identity of the labeled protein is determined by

  19. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

    Science.gov (United States)

    Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang

    2018-04-26

    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.

  20. High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases.

    Science.gov (United States)

    Sipos, László; Ilisz, István; Pataj, Zoltán; Szakonyi, Zsolt; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal

    2010-10-29

    The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10-40°C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and T(iso) values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2010 Elsevier B.V. All rights reserved.