WorldWideScience

Sample records for macrochirus foraging behavior

  1. Evolution of foraging behavior in Drosophilid larvae

    Science.gov (United States)

    Rivera-Alba, Marta; Kabra, Mayank; Branson, Kristin; Mirth, Christen

    2015-03-01

    Drosophilids, like other insects, go through a larval phase before metamorphosing into adults. Larvae increase their body weight by several orders of magnitude in a few days. We therefore hypothesized that foraging behavior is under strong evolutionary pressure to best fit the larval environment. To test our hypothesis we used a multidisciplinary approach to analyze foraging behavior across species and larval stages. First, we recorded several videos of larvae foraging for each of 47 Drosophilid species. Then, using a supervised machine learning approach, we automatically annotated the video collection for the foraging sub-behaviors, including crawling, turning, head casting or burrowing. We also computed over 100 features to describe the posture and dynamics of each animal in each video frame. From these data, we fit models to the behavior of each species. The models each had the same parametric form, but differed in the exact parameters. By simulating larva behavior in virtual arenas we can infer which properties of the environments are better for each species. Comparisons between these inferred environments and the actual environments where these animals live will give us a deeper understanding about the evolution of foraging behavior in Drosophilid larvae.

  2. Foraging Behavior of Odontomachus bauri on Barro Colorado Island, Panama

    Directory of Open Access Journals (Sweden)

    Birgit Ehmer

    1995-01-01

    Full Text Available Foraging behavior and partitioning of foraging areas of Odonomachus bauri were investigated on Barro Colorado Island in Panama. The activity of the ants did not show any daily pattern; foragers were active day and night. The type of prey captured by O. bauri supports the idea that in higher Odontomachus and Anochetus species, the high speed of mandible closure serves more for generating power than capturing elusive prey. Polydomous nests may enable O. bauri colonies to enlarge their foraging areas.

  3. Complex scaling behavior in animal foraging patterns

    Science.gov (United States)

    Premachandra, Prabhavi Kaushalya

    This dissertation attempts to answer questions from two different areas of biology, ecology and neuroscience, using physics-based techniques. In Section 2, suitability of three competing random walk models is tested to describe the emergent movement patterns of two species of primates. The truncated power law (power law with exponential cut off) is the most suitable random walk model that characterizes the emergent movement patterns of these primates. In Section 3, an agent-based model is used to simulate search behavior in different environments (landscapes) to investigate the impact of the resource landscape on the optimal foraging movement patterns of deterministic foragers. It should be noted that this model goes beyond previous work in that it includes parameters such as spatial memory and satiation, which have received little consideration to date in the field of movement ecology. When the food availability is scarce in a tropical forest-like environment with feeding trees distributed in a clumped fashion and the size of those trees are distributed according to a lognormal distribution, the optimal foraging pattern of a generalist who can consume various and abundant food types indeed reaches the Levy range, and hence, show evidence for Levy-flight-like (power law distribution with exponent between 1 and 3) behavior. Section 4 of the dissertation presents an investigation of phase transition behavior in a network of locally coupled self-sustained oscillators as the system passes through various bursting states. The results suggest that a phase transition does not occur for this locally coupled neuronal network. The data analysis in the dissertation adopts a model selection approach and relies on methods based on information theory and maximum likelihood.

  4. On methodology of foraging behavior of pollinating insects

    OpenAIRE

    Yanbing Gong; Shuangquan Huang

    2007-01-01

    Foraging behavior of pollinating insects can directly influence plant–pollinator interactions in many aspects, thus studies on pollinator behavior are important for understanding plant diversity and ecological processes of plant reproduction. In this paper, we describe the characteristics of major pollinating insects and discuss the methods for studying foraging behavior of pollinating insects and factors potentially influencing pollinator behaviors. We also suggest some practical methods for...

  5. Suboptimal foraging behavior: a new perspective on gambling.

    Science.gov (United States)

    Addicott, Merideth A; Pearson, John M; Kaiser, Nicole; Platt, Michael L; McClernon, F Joseph

    2015-10-01

    Why do people gamble? Conventional views hold that gambling may be motivated by irrational beliefs, risk-seeking, impulsive temperament, or dysfunction within the same reward circuitry affected by drugs of abuse. An alternate, unexplored perspective is that gambling is an extension of natural foraging behavior to a financial environment. However, when these foraging algorithms are applied to stochastic gambling outcomes, undesirable results may occur. To test this hypothesis, we recruited participants based on their frequency of gambling-yearly (or less), monthly, and weekly-and investigated how gambling frequency related to irrational beliefs, risk-taking/impulsivity, and foraging behavior. We found that increased gambling frequency corresponded to greater gambling-related beliefs, more exploratory choices on an explore/exploit foraging task, and fewer points earned on a Patchy Foraging Task. Gambling-related beliefs negatively related to performance on the Patchy Foraging Task, indicating that individuals with more gambling-related cognitions tended to leave a patch too quickly. This indicates that frequent gamblers have reduced foraging ability to maximize rewards; however, gambling frequency -and by extension, poor foraging ability- was not related to risk-taking or impulsive behavior. These results suggest that gambling reflects the application of a dysfunctional foraging process to financial outcomes.

  6. Mercury Concentrations of Bluegill (Lepomis macrochirus) Vary by Sex

    OpenAIRE

    Madenjian, Charles P.; James T. Francis; Jeffrey J. Braunscheidel; Joseph R. Bohr; Matthew J. Geiger; G. Mark Knottnerus

    2015-01-01

    Patterns in relative differences in contaminant concentrations between the sexes across many species of fish may reveal clues for important behavioral and physiological differences between the sexes, and may also be useful in developing fish consumption advisories and efficient designs for programs meant to monitor contaminant levels in fish. We determined skin-off fillet and whole-fish total mercury (Hg) concentrations of 28 adult female and 26 adult male bluegills (Lepomis macrochirus) from...

  7. Ant Foraging Behavior for Job Shop Problem

    Directory of Open Access Journals (Sweden)

    Mahad Diyana Abdul

    2016-01-01

    Full Text Available Ant Colony Optimization (ACO is a new algorithm approach, inspired by the foraging behavior of real ants. It has frequently been applied to many optimization problems and one such problem is in solving the job shop problem (JSP. The JSP is a finite set of jobs processed on a finite set of machine where once a job initiates processing on a given machine, it must complete processing and uninterrupted. In solving the Job Shop Scheduling problem, the process is measure by the amount of time required in completing a job known as a makespan and minimizing the makespan is the main objective of this study. In this paper, we developed an ACO algorithm to minimize the makespan. A real set of problems from a metal company in Johor bahru, producing 20 parts with jobs involving the process of clinching, tapping and power press respectively. The result from this study shows that the proposed ACO heuristics managed to produce a god result in a short time.

  8. Chaos-order transition in foraging behavior of ants.

    Science.gov (United States)

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-06-10

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.

  9. Chaos–order transition in foraging behavior of ants

    Science.gov (United States)

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-01-01

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159

  10. Threshold foraging behavior of baleen whales

    Science.gov (United States)

    Piatt, John F.; Methven, David A.

    1992-01-01

    We conducted hydroacoustic surveys for capelin Mallotus villosus in Witless Bay, Newfoundland, Canada, on 61 days during the summers of 1983 to 1985. On 32 of those days in whlch capelin surveys were conducted, we observed a total of 129 baleen whales - Including 93 humpback Megaptera novaeangliae, 31 minke Balaenoptera acutorostrata and 5 fin whales B. phvsalus. Although a few whales were observed when capelin schools were scarce, the majority (96%) of whales were observed when mean daily capelin densities exceeded 5 schools per linear km surveyed (range of means over 3 yr: 0.0 to 14.0 schools km-1). Plots of daily whale abundance (no. h-1 surveyed) vs daily capelin school density (mean no. schools km-1 surveyed) in each summer revealed that baleen whales have a threshold foraging response to capelin density. Thresholds were estimated using a simple itterative step-function model. Foraging thresholds of baleen whales (7.3, 5.0, and 5.8 schools km-1) varied between years in relation to the overall abundance of capelin schools in the study area during summer (means of 7.2, 3.3, and 5.3 schools km-1, respectively).

  11. Modeling of Habitat and Foraging Behavior of Beaked Whales in the Southern California Bight

    Science.gov (United States)

    2015-09-30

    whale distribution and foraging behavior and to describe inter -specific differences. We investigated spatio-temporal patterns for Cuvier’s beaked whale...distribution and foraging behavior and to describe inter -specific differences. Knowledge about foraging behavior and habitat preference and...Foraging bouts (buzzes) were automatically detected by an algorithm that searched for consecutive low inter -click intervals (5-10 ms) and low received

  12. Fine-scale variability in harbor seal foraging behavior.

    Directory of Open Access Journals (Sweden)

    Kenady Wilson

    Full Text Available Understanding the variability of foraging behavior within a population of predators is important for determining their role in the ecosystem and how they may respond to future ecosystem changes. However, such variability has seldom been studied in harbor seals on a fine spatial scale (<30 km. We used a combination of standard and Bayesian generalized linear mixed models to explore how environmental variables influenced the dive behavior of harbor seals. Time-depth recorders were deployed on harbor seals from two haul-out sites in the Salish Sea in 2007 (n = 18 and 2008 (n = 11. Three behavioral bout types were classified from six dive types within each bout; however, one of these bout types was related to haul-out activity and was excluded from analyses. Deep foraging bouts (Type I were the predominant type used throughout the study; however, variation in the use of bout types was observed relative to haul-out site, season, sex, and light (day/night. The proportional use of Type I and Type II (shallow foraging/traveling bouts differed dramatically between haul-out sites, seasons, sexes, and whether it was day or night; individual variability between seals also contributed to the observed differences. We hypothesize that this variation in dive behavior was related to habitat or prey specialization by seals from different haul-out sites, or individual variability between seals in the study area. The results highlight the potential influence of habitat and specialization on the foraging behavior of harbor seals, and may help explain the variability in diet that is observed between different haul-out site groups in this population.

  13. Temporal effects of hunting on foraging behavior of an apex predator: Do bears forego foraging when risk is high?

    Science.gov (United States)

    Hertel, Anne G; Zedrosser, Andreas; Mysterud, Atle; Støen, Ole-Gunnar; Steyaert, Sam M J G; Swenson, Jon E

    2016-12-01

    Avoiding predators most often entails a food cost. For the Scandinavian brown bear (Ursus arctos), the hunting season coincides with the period of hyperphagia. Hunting mortality risk is not uniformly distributed throughout the day, but peaks in the early morning hours. As bears must increase mass for winter survival, they should be sensitive to temporal allocation of antipredator responses to periods of highest risk. We expected bears to reduce foraging activity at the expense of food intake in the morning hours when risk was high, but not in the afternoon, when risk was low. We used fine-scale GPS-derived activity patterns during the 2 weeks before and after the onset of the annual bear hunting season. At locations of probable foraging, we assessed abundance and sugar content, of bilberry (Vaccinium myrtillus), the most important autumn food resource for bears in this area. Bears decreased their foraging activity in the morning hours of the hunting season. Likewise, they foraged less efficiently and on poorer quality berries in the morning. Neither of our foraging measures were affected by hunting in the afternoon foraging bout, indicating that bears did not allocate antipredator behavior to times of comparably lower risk. Bears effectively responded to variation in risk on the scale of hours. This entailed a measurable foraging cost. The additive effect of reduced foraging activity, reduced forage intake, and lower quality food may result in poorer body condition upon den entry and may ultimately reduce reproductive success.

  14. Testing a bioenergetics-based habitat choice model: bluegill (Lepomis macrochirus) responses to food availability and temperature

    Science.gov (United States)

    2011-01-01

    Using an automated shuttlebox system, we conducted patch choice experiments with 32, 8–12 g bluegill sunfish (Lepomis macrochirus) to test a behavioral energetics hypothesis of habitat choice. When patch temperature and food levels were held constant within patches but different between patches, we expected bluegill to choose patches that maximized growth based on the bioenergetic integration of food and temperature as predicted by a bioenergetics model. Alternative hypotheses were that bluegill may choose patches based only on food (optimal foraging) or temperature (behavioral thermoregulation). The behavioral energetics hypothesis was not a good predictor of short-term (from minutes to weeks) patch choice by bluegill; the behavioral thermoregulation hypothesis was the best predictor. In the short-term, food and temperature appeared to affect patch choice hierarchically; temperature was more important, although food can alter temperature preference during feeding periods. Over a 19-d experiment, mean temperatures occupied by fish offered low rations did decline as predicted by the behavioral energetics hypothesis, but the decline was less than 1.0 °C as opposed to a possible 5 °C decline. A short-term, bioenergetic response to food and temperature may be precluded by physiological costs of acclimation not considered explicitly in the behavioral energetics hypothesis.

  15. Game-Theoretic Methods for Functional Response and Optimal Foraging Behavior: e88773

    National Research Council Canada - National Science Library

    Ross Cressman; Vlastimil Krivan; Joel S Brown; József Garay

    2014-01-01

    ... the corresponding functional response. It is shown that the optimal foraging behavior that maximizes predator energy intake per unit time is a Nash equilibrium of the underlying optimal foraging game...

  16. The FGLamide-allatostatins influence foraging behavior in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Christine Wang

    Full Text Available Allatostatins (ASTs are multifunctional neuropeptides that generally act in an inhibitory fashion. ASTs were identified as inhibitors of juvenile hormone biosynthesis. Juvenile hormone regulates insect metamorphosis, reproduction, food intake, growth, and development. Drosophila melanogaster RNAi lines of PheGlyLeu-amide-ASTs (FGLa/ASTs and their cognate receptor, Dar-1, were used to characterize roles these neuropeptides and their respective receptor may play in behavior and physiology. Dar-1 and FGLa/AST RNAi lines showed a significant reduction in larval foraging in the presence of food. The larval foraging defect is not observed in the absence of food. These RNAi lines have decreased for transcript levels which encodes cGMP- dependent protein kinase. A reduction in the for transcript is known to be associated with a naturally occurring allelic variation that creates a sitter phenotype in contrast to the rover phenotype which is caused by a for allele associated with increased for activity. The sitting phenotype of FGLa/AST and Dar-1 RNAi lines is similar to the phenotype of a deletion mutant of an AST/galanin-like receptor (NPR-9 in Caenorhabditis elegans. Associated with the foraging defect in C. elegans npr-9 mutants is accumulation of intestinal lipid. Lipid accumulation was not a phenotype associated with the FGLa/AST and Dar-1 RNAi lines.

  17. Memory Effects on Movement Behavior in Animal Foraging.

    Directory of Open Access Journals (Sweden)

    Chloe Bracis

    Full Text Available An individual's choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk. We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems.

  18. Memory Effects on Movement Behavior in Animal Foraging.

    Science.gov (United States)

    Bracis, Chloe; Gurarie, Eliezer; Van Moorter, Bram; Goodwin, R Andrew

    2015-01-01

    An individual's choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems.

  19. [Study on foraging behaviors of honeybee Apis mellifera based on RFID technology].

    Science.gov (United States)

    Tian, Liu-Qing; He, Xu-Jiang; Wu, Xiao-Bo; Gan, Hai-Yan; Han, Xu; Liu, Hao; Zeng, Zhi-Jiang

    2014-03-01

    Honeybee foragers can flexibly adjust their out-hive activities to ensure growth and reproduction of the colony. In order to explore the characteristics of honey bees foraging behaviors, in this study, their flight activities were monitored 24 hours per day for a duration of 38 days, using an radio frequency identification (RFID) system designed and manufactured by the Honeybee Research Institute of Jiangxi Agricultural University in cooperation with the Guangzhou Invengo Information Technology Co., Ltd. Our results indicated that 63.4% and 64.5% of foragers were found rotating more than one day off during the foraging period in two colonies, and 22.5% and 26.4% of the total foraging days were used for rest respectively. Further, although the total foraging time between rotating day-off foragers and continuously working foragers was equal, the former had a significant longer lifespan than the latter. Additionally, the lifespan of the early developed foragers was significantly lower than that of the normally developed foragers. This study enriched the content of foraging behaviors of honey bees, and it could be used as the basis for the further explorations on evolutionary mechanism of foraging behaviors of eusocial insects.

  20. A FPGA Architecture for Foraging Behavior in Simulation and Colonies

    Directory of Open Access Journals (Sweden)

    Cristian David Rodríguez Rodríguez

    2015-08-01

    Full Text Available This paper presents some results regarding the desing and implementation of an architecture that supports an experimental platform for simulating the foraging process of ant colonies. Both the Ant-System and the Ant-Cycle algorithms model the behavior of ants. The platform allows to change parameters like the quantity and speed of ants, the amount and location of food and the ratio and difussion frequency of ant pheromone. These parameters are visualized through a VGA interface. The hardware implementation is carried out over FPGA Xilinx© technology. Theory behind this design considers that complex behaviors can emerge from systems with simple structure. This work confronts the question about global complexity emerging from a system whose structural complexity is minimal or inexistent.

  1. Testing the habituation assumption underlying models of parasitoid foraging behavior

    Science.gov (United States)

    Abram, Katrina; Colazza, Stefano; Peri, Ezio

    2017-01-01

    Background Habituation, a form of non-associative learning, has several well-defined characteristics that apply to a wide range of physiological and behavioral responses in many organisms. In classic patch time allocation models, habituation is considered to be a major mechanistic component of parasitoid behavioral strategies. However, parasitoid behavioral responses to host cues have not previously been tested for the known, specific characteristics of habituation. Methods In the laboratory, we tested whether the foraging behavior of the egg parasitoid Trissolcus basalis shows specific characteristics of habituation in response to consecutive encounters with patches of host (Nezara viridula) chemical contact cues (footprints), in particular: (i) a training interval-dependent decline in response intensity, and (ii) a training interval-dependent recovery of the response. Results As would be expected of a habituated response, wasps trained at higher frequencies decreased their behavioral response to host footprints more quickly and to a greater degree than those trained at low frequencies, and subsequently showed a more rapid, although partial, recovery of their behavioral response to host footprints. This putative habituation learning could not be blocked by cold anesthesia, ingestion of an ATPase inhibitor, or ingestion of a protein synthesis inhibitor. Discussion Our study provides support for the assumption that diminishing responses of parasitoids to chemical indicators of host presence constitutes habituation as opposed to sensory fatigue, and provides a preliminary basis for exploring the underlying mechanisms. PMID:28321365

  2. Consumption and foraging behaviors for common stimulants (nicotine, caffeine).

    Science.gov (United States)

    Phillips, James G; Currie, Jonathan; Ogeil, Rowan P

    2016-01-01

    Models are needed to understand the emerging capability to track consumers' movements. Therefore, we examined the use of legal and readily available stimulants that vary in their addictive potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the number of times and locations stimulants were purchased and used. On average, nicotine dependent individuals made their purchases from 2 locations, while caffeine dependent individuals consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use. Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency. The finding has implications for attempts to control substance use.

  3. Influence of poisoned prey on foraging behavior of ferruginous hawks

    Science.gov (United States)

    Vyas, Nimish B.; Kuncir, Frank; Clinton, Criss C.

    2017-01-01

    We recorded 19 visits by ferruginous hawks (Buteo regalis) over 6 d at two black–tailed prairie dog (Cynomys ludovicianus) subcolonies poisoned with the rodenticide Rozol® Prairie Dog Bait (0.005% chlorophacinone active ingredient) and at an adjacent untreated subcolony. Before Rozol® application ferruginous hawks foraged in the untreated and treated subcolonies but after Rozol® application predation by ferruginous hawks was only observed in the treated subcolonies. We suggest that ferruginous hawks' preference for hunting in the treated subcolonies after Rozol® application was influenced by the availability of easy-to-capture prey, presumably due to Rozol® poisoning. The energetically beneficial behavior of favoring substandard prey may increase raptor encounters with rodenticide exposed animals if prey vulnerability has resulted from poisoning.

  4. Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators.

    Directory of Open Access Journals (Sweden)

    Stella Villegas-Amtmann

    Full Text Available Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus (CSL whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki (GSL whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in

  5. Hauling out and foraging behavior of walruses at St. Matthew Island, Alaska: Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Hauling out behavior and foraging behavior of walruses on St. Matthew Island were investigated. Walruses hauled out at two sites on St. Matthew throughout the summer...

  6. Differential regulation of the foraging gene associated with task behaviors in harvester ants.

    Science.gov (United States)

    Ingram, Krista K; Kleeman, Lindsay; Peteru, Swetha

    2011-08-10

    The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor), we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among social insect species are likely due to differences in gene

  7. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  8. Study of single-electron information-processing circuit mimicking foraging behavior of honeybee swarm

    Science.gov (United States)

    Tanabe, Toshihiko; Oya, Takahide

    2017-06-01

    A new single-electron (SE) circuit mimicking the foraging behavior of a honeybee swarm is proposed. Recently, a “nature-inspired” or “biomimetic” technology has been attracting attention for developing innovative functional systems applying emerging nanoscale devices. In particular, the foraging behavior of honeybees is focused on as an architecture for a SE circuit. Honeybees show two foraging behaviors, namely, a probability search and a “waggle dance” (sharing information). By combining these behaviors, it can be considered that the foraging behavior is a unique information-processing act. For constructing a new system, a SE circuit mimicking the behavior was designed, constructed, and simulated. The SE circuit was constructed by assuming that the information that honeybees share corresponds to the operation of the circuit. The results of the simulation confirmed that the SE circuit mimics the information-sharing behavior of honeybees. Namely, the proposed honeybee-inspired SE circuit can perform functional information processing.

  9. Optimal foraging or predator avoidance: why does the Amazon spider Hingstepeira folisecens (Araneae: Araneidae adopt alternative foraging behaviors?

    Directory of Open Access Journals (Sweden)

    Kátia F. Rito

    Full Text Available ABSTRACT Strategies that increase foraging efficiency may also increase predation risk. We investigated how individuals of Hingstepeira folisecens Hingston, 1932, which build shelters at the orb hub, modulate their foraging behaviors in response to the trade-off between capturing prey and becoming exposed by leaving their shelters. We evaluated whether the position of the prey on the web alters the frequency at which spiders leave their shelters. Hingstepeira folisecens spiders were more likely to capture prey positioned below than above the entrance of the shelter. Moreover, when the prey was near the entrance of the shelter, the spider pulled the threads with the entangled prey without leaving the shelter. Conversely, when the prey was distant from the entrance of the shelter, an "attack" behavior (leaving the shelter was favored. We argue that the "pulling behavior" may be an adaptation to reduce exposure to predators.

  10. Effects of predator chemical cues and behavioral biorhythms on foraging activity of terrestrial salamanders.

    Science.gov (United States)

    Maerz, J C; Panebianco, N L; Madison, D M

    2001-07-01

    Red-backed salamanders, Plethodon cinereus, show a variety of alarm responses to chemical cues from eastern garter snakes, Thamnophis sirtalis. We measured the foraging activity of red-backed salamanders exposed to water soiled by a garter snake (fed P. cinereus) or to unsoiled water. Salamanders exposed to snake-soiled water showed less foraging activity than salamanders exposed to unsoiled water; therefore, predators could have nonlethal effects on salamander populations. Our results also show additional factors influenced salamander foraging activity. Salamander foraging activity and responsiveness to chemical cues do not appear to have been affected by sex or food deprivation. Salamander foraging activity does appear to have been influenced by activity biorhythms. Foraging activity of animals in both treatments showed a bimodal periodicity that is consistent with natural activity patterns controlled by internal biorhythms. Exposure to snake-soiled water significantly reduced foraging activity during periods of peak foraging activity, but had a subtler effect on foraging activity during natural lulls in activity. We suggest that both activity biorhythms and exposure to chemical cues are important factors affecting salamander foraging behavior.

  11. Foraging behavior and physiological changes in precocial quail chicks in response to low temperatures

    NARCIS (Netherlands)

    Krijgsveld, KL; Visser, GH; Daan, S

    2003-01-01

    We examined whether low ambient temperatures influence foraging behavior of precocial Japanese quail chicks and alter the balance between investment in growth and thermogenic function. To test this, one group of chicks was exposed to 7 degreesC and one group to 24 degreesC during foraging throughout

  12. Foraging behavior of three passerines in mature bottomland hardwood forests during summer.

    Energy Technology Data Exchange (ETDEWEB)

    Buffington, J., Matthew; Kilgo, John, C.; Sargent, Robert, A.; Miller, Karl, V.; Chapman, Brian, R.

    2001-08-01

    Attention has focused on forest management practices and the interactions between birds and their habitat, as a result of apparent declines in populations of many forest birds. Although avian diversity and abundance have been studied in various forest habitats, avian foraging behavior is less well known. Although there are published descriptions of avian foraging behaviors in the western United States descriptions from the southeastern United States are less common. This article reports on the foraging behavior of the White-eyed Vireo, Northern Parula, and Hooded Warbler in mature bottomland hardwood forests in South Carolina.

  13. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Science.gov (United States)

    Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  14. Quasi-planktonic behavior of foraging top marine predators.

    Science.gov (United States)

    Della Penna, Alice; De Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; d'Ovidio, Francesco

    2015-12-15

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  15. Behavioral suites mediate group-level foraging dynamics in communities of tropical stingless bees.

    Science.gov (United States)

    Lichtenberg, E M; Imperatriz-Fonseca, V L; Nieh, J C

    2010-02-01

    Competition for floral resources is a key force shaping pollinator communities, particularly among social bees. The ability of social bees to recruit nestmates for group foraging is hypothesized to be a major factor in their ability to dominate rich resources such as mass-flowering trees. We tested the role of group foraging in attaining dominance by stingless bees, eusocial tropical pollinators that exhibit high diversity in foraging strategies. We provide the first experimental evidence that meliponine group foraging strategies, large colony sizes and aggressive behavior form a suite of traits that enable colonies to improve dominance of rich resources. Using a diverse assemblage of Brazilian stingless bee species and an array of artificial "flowers" that provided a sucrose reward, we compared species' dominance and visitation under unrestricted foraging conditions and with experimental removal of group-foraging species. Dominance does not vary with individual body size, but rather with foraging group size. Species that recruit larger numbers of nestmates (Scaptotrigona aff. depilis, Trigona hyalinata, Trigona spinipes) dominated both numerically (high local abundance) and behaviorally (controlling feeders). Removal of group-foraging species increased feeding opportunities for solitary foragers (Frieseomelitta varia, Melipona quadrifasciata and Nannotrigona testaceicornis). Trigona hyalinata always dominated under unrestricted conditions. When this species was removed, T. spinipes or S. aff. depilis controlled feeders and limited visitation by solitary-foraging species. Because bee foraging patterns determine plant pollination success, understanding the forces that shape these patterns is crucial to ensuring pollination of both crops and natural areas in the face of current pollinator declines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00040-009-0055-8) contains supplementary material, which is available to authorized

  16. Social and Behavioral Science: Monitoring Social Foraging Behavior in a Biological Model System

    Science.gov (United States)

    2016-10-12

    ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...Social Foraging Behavior in a Biological Model System" The views, opinions and/or findings contained in this report are those of the author(s) and...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  17. Size-dependent foraging gene expression and behavioral caste differentiation in Bombus ignitus

    Directory of Open Access Journals (Sweden)

    Yokoyama Jun

    2009-09-01

    Full Text Available Abstract Background In eusocial hymenopteran insects, foraging genes, members of the cGMP-dependent protein kinase family, are considered to contribute to division of labor through behavioral caste differentiation. However, the relationship between foraging gene expression and behavioral caste in honeybees is opposite to that observed in ants and wasps. In the previously examined eusocial Hymenoptera, workers behave as foragers or nurses depending on age. We reasoned that examination of a different system of behavioral caste determination might provide new insights into the relationship between foraging genes and division of labor, and accordingly focused on bumblebees, which exhibit size-dependent behavioral caste differentiation. We characterized a foraging gene (Bifor in bumblebees (Bombus ignitus and examined the relationship between Bifor expression and size-dependent behavioral caste differentiation. Findings A putative open reading frame of the Bifor gene was 2004 bp in length. It encoded 668 aa residues and showed high identity to orthologous genes in other hymenopterans (85.3-99.0%. As in ants and wasps, Bifor expression levels were higher in nurses than in foragers. Bifor expression was negatively correlated with individual body size even within the same behavioral castes (regression coefficient = -0.376, P P = 0.018, within foragers. Conclusion These findings indicate that Bifor expression is size dependent and support the idea that Bifor expression levels are related to behavioral caste differentiation in B. ignitus. Thus, the relationship between foraging gene expression and behavioral caste differentiation found in ants and wasps was identified in a different system of labor determination.

  18. Mercury concentrations of bluegill (Lepomis macrochirus) vary by sex

    Science.gov (United States)

    Madenjian, Charles P.; Francis, James T.; Braunscheidel, Jeffrey J.; Bohr, Joseph R.; Geiger, Matthew J.; Knottnerus, G. Mark

    2015-01-01

    Patterns in relative differences in contaminant concentrations between the sexes across many species of fish may reveal clues for important behavioral and physiological differences between the sexes, and may also be useful in developing fish consumption advisories and efficient designs for programs meant to monitor contaminant levels in fish. We determined skin-off fillet and whole-fish total mercury (Hg) concentrations of 28 adult female and 26 adult male bluegills (Lepomis macrochirus) from Squaw Lake, Oakland County, Michigan (MI), USA. Bioenergetics modeling was used to quantify the effect of growth dilution on the difference in Hg concentrations between the sexes. On average, skin-off fillet and whole-fish Hg concentrations were 25.4% higher and 26.6% higher, respectively, in females compared with males. Thus, the relative difference in Hg concentrations between the sexes for skin-off fillets was nearly identical to that for whole fish. However, mean skin-off fillet Hg concentration (363 ng/g) was 2.3 times greater than mean whole-fish Hg concentration (155 ng/g). Males grew substantially faster than females, and bioenergetics modeling results indicated that the growth dilution effect could account for females having 14.4% higher Hg concentrations than males. Our findings should be useful in revising fish consumption advisories.

  19. Clark's Nutcracker Breeding Season Space Use and Foraging Behavior.

    Directory of Open Access Journals (Sweden)

    Taza D Schaming

    Full Text Available Considering the entire life history of a species is fundamental to developing effective conservation strategies. Decreasing populations of five-needle white pines may be leading to the decline of Clark's nutcrackers (Nucifraga columbiana. These birds are important seed dispersers for at least ten conifer species in the western U.S., including whitebark pine (Pinus albicaulis, an obligate mutualist of Clark's nutcrackers. For effective conservation of both Clark's nutcrackers and whitebark pine, it is essential to ensure stability of Clark's nutcracker populations. My objectives were to examine Clark's nutcracker breeding season home range size, territoriality, habitat selection, and foraging behavior in the southern Greater Yellowstone Ecosystem, a region where whitebark pine is declining. I radio-tracked Clark's nutcrackers in 2011, a population-wide nonbreeding year following a low whitebark pine cone crop, and 2012, a breeding year following a high cone crop. Results suggest Douglas-fir (Pseudotsuga menziesii communities are important habitat for Clark's nutcrackers because they selected it for home ranges. In contrast, they did not select whitebark pine habitat. However, Clark's nutcrackers did adjust their use of whitebark pine habitat between years, suggesting that, in some springs, whitebark pine habitat may be used more than previously expected. Newly extracted Douglas-fir seeds were an important food source both years. On the other hand, cached seeds made up a relatively lower proportion of the diet in 2011, suggesting cached seeds are not a reliable spring food source. Land managers focus on restoring whitebark pine habitat with the assumption that Clark's nutcrackers will be available to continue seed dispersal. In the Greater Yellowstone Ecosystem, Clark's nutcracker populations may be more likely to be retained year-round when whitebark pine restoration efforts are located adjacent to Douglas-fir habitat. By extrapolation, whitebark

  20. The effects of chlorpyrifos on cholinesterase activity and foraging behavior in the dragonfly, Anax junius (Odonata)

    Science.gov (United States)

    Brewer, S.K.; Atchison, G.J.

    1999-01-01

    We examined head capsule cholinesterase (ChE) and foraging behavior in nymphs of the dragonfly, Anax junius, exposed for 24 h to 0.2, 0.6 and 1.0 ??g l-1 of the organophosphorus (OP) insecticide, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate]. The invertebrate community is an important component of the structure and function of wetland ecosystems, yet the potential effects of insecticides on wetland ecosystems are largely unknown. Our objectives were to determine if exposure to environmentally realistic concentrations of chlorpyrifos affected foraging behavior and ChE activity in head capsules of dragonfly nymphs. Nymphs were exposed to different concentrations of chlorpyrifos and different prey densities in a factorial design. ChE activities and foraging behaviors of treated nymphs were not statistically different (p ??? 0.05) from control groups. Prey density effects exerted a greater effect on dragonfly foraging than toxicant exposures. Nymphs offered higher prey densities exhibited more foraging behaviors but also missed their prey more often. High variability in ChE activities within the control group and across treated groups precluded determination of relationships between ChE and foraging behaviors. It appears that A. junius is relatively tolerant of chlorpyrifos, although the concentrations we tested have been shown in other work to adversely affect the prey base; therefore the introduction of this insecticide may have indirect adverse affects on top invertebrate predators such as Odonata.

  1. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    Directory of Open Access Journals (Sweden)

    Annette eDenzinger

    2013-07-01

    Full Text Available Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats’ echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies pattern of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning.

  2. Foraging behavior and virulence of some entomopathogenic nematodes

    Directory of Open Access Journals (Sweden)

    Manana A. Lortkipanidze

    2016-06-01

    Full Text Available At present the biological control as a pest control technology is becoming more desirable. Biological formulations on basis of entomopathogenic nematodes are one of the effective means for the protection of agricultural and forest plants from harmful insects. Nowadays, the use of entomopathogenic nematodes as biological control agents is a key component in IPM system. The foraging strategies of entomopathogenic nematodes (EPNs vary between species. This variation is consistent with use of different foraging strategies between ambush, cruise and intermediate to find their host insects. In order to ambush prey, some species of EPNs nictate, or raise their bodies of the soil surface so they are better poised to attach passing insects, other species adopt a cruising strategy and rarely nictate. Some species adopt an intermediate strategy between ambush and cruise. We compared in laboratory the foraging strategies of the entomopathogenic nematode species: Steinernema carpocapsae, Heterorhabditis bacteriophora and the recently described species Steinernema tbilisiensis and assessed their virulence against mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae. The tests showed that S. tbilisiensis adopts both foraging strategies.

  3. Social Differentiation in Common Bottlenose Dolphins (Tursiops truncatus) that Engage in Human-Related Foraging Behaviors.

    Science.gov (United States)

    Kovacs, Carolyn J; Perrtree, Robin M; Cox, Tara M

    2017-01-01

    Both natural and human-related foraging strategies by the common bottlenose dolphin (Tursiops truncatus) have resulted in social segregation in several areas of the world. Bottlenose dolphins near Savannah, Georgia beg at an unprecedented rate and also forage behind commercial shrimp trawlers, providing an opportunity to study the social ramifications of two human-related foraging behaviors within the same group of animals. Dolphins were photo-identified via surveys conducted throughout estuarine waterways around Savannah in the summers of 2009-2011. Mean half-weight indices (HWI) were calculated for each foraging class, and community division by modularity was used to cluster animals based on association indices. Pairs of trawler dolphins had a higher mean HWI (0.20 ± 0.07) than pairs of non-trawler dolphins (0.04 ± 0.02) or mixed pairs (0.02 ± 0.02). In contrast, pairs of beggars, non-beggars, and mixed pairs all had similar means, with HWI between 0.05-0.07. Community division by modularity produced a useful division (0.307) with 6 clusters. Clusters were predominately divided according to trawler status; however, beggars and non-beggars were mixed throughout clusters. Both the mean HWI and social clusters revealed that the social structure of common bottlenose dolphins near Savannah, Georgia was differentiated based on trawler status but not beg status. This finding may indicate that foraging in association with trawlers is a socially learned behavior, while the mechanisms for the propagation of begging are less clear. This study highlights the importance of taking into account the social parameters of a foraging behavior, such as how group size or competition for resources may affect how the behavior spreads. The positive or negative ramifications of homophily may influence whether the behaviors are exhibited by individuals within the same social clusters and should be considered in future studies examining social relationships and foraging behaviors.

  4. A Detailed Study about Foraging Behavior of Artificial Bee Colony (ABC and its Extensions

    Directory of Open Access Journals (Sweden)

    S.Santhosh Kumar

    2013-04-01

    Full Text Available Swam intelligence is an emerging field in Artificial Intelligence. The living nature and life style of animals, birds and other living organisms can be inherited and applied to solve many real worldproblems. ABC is a recently developed swam intelligence algorithm developed by Dervis Karaboga in the year 2005.In ABC, foraging is one of the behavior of honey bees to search, collect food from its foodresources. Many research works has undergone about foraging behavior and it is applied to solve variety of optimization problems. This paper discusses the detailed study of different types of extensions offoraging behavior of honey bees.

  5. Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest

    Science.gov (United States)

    Newell, P.; King, Sammy L.; Kaller, Michael D.

    2009-01-01

    In bottomland hardwood forests, partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife like Louisiana black bear (Ursus americanus luteolus), white-tailed deer (Odocoileus virginianus), and Neotropical migrants. Although partial cutting may be beneficial to some species, those that use dead wood may be negatively affected since large diameter and poor quality trees (deformed, moribund, or dead) are rare, but normally targeted for removal. On the other hand, partial cutting can create dead wood if logging slash is left on-site. We studied foraging behavior of pileated woodpeckers (Dryocopus pileatus) in one- and two-year-old partial cuts designed to benefit priority species and in uncut forest during winter, spring, and summer of 2006 and 2007 in Louisiana. Males and females did not differ in their use of tree species, dbh class, decay class, foraging height, use of foraging tactics or substrate types; however, males foraged on larger substrates than females. In both partial cut and uncut forest, standing live trees were most frequently used (83% compared to 14% for standing dead trees and 3% for coarse woody debris); however, dead trees were selected (i.e. used out of proportion to availability). Overcup oak (Quercus lyrata) and bitter pecan (Carya aquatica) were also selected and sugarberry (Celtis laevigata) avoided. Pileated woodpeckers selected trees >= 50 cm dbh and avoided trees in smaller dbh classes (10-20 cm). Density of selected foraging substrates was the same in partial cut and uncut forest. Of the foraging substrates, woodpeckers spent 54% of foraging time on live branches and boles, 37% on dead branches and boles, and 9% on vines. Of the foraging tactics, the highest proportion of foraging time was spent excavating (58%), followed by pecking (14%), gleaning (14%), scaling (7%), berry-eating (4%), and probing (3%). Woodpecker use of foraging tactics and substrates, and foraging height and substrate

  6. Forage choice in pasturelands: influence on cattle foraging behavior and production

    Science.gov (United States)

    We determined if trinary combinations of plants led to complementary relationships that influenced animal behavior and performance over combinations of lower diversity (monocultures). Grazing bouts, behavioral levels of activity, blood urea nitrogen, chemical composition of feces, body weight, and h...

  7. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats.

    Science.gov (United States)

    Norazlimi, Nor Atiqah; Ramli, Rosli

    2015-01-01

    A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Whimbrel (Numenius phaeopus), and Little heron (Butorides striata)) and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder). The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R = 0.443, p birds (mm) and species (H = 15.96, p = 0.0012). Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  8. The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.

    Directory of Open Access Journals (Sweden)

    Jordanna D H Sprayberry

    Full Text Available Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.

  9. Sex-specific foraging behavior in response to fishing activities in a threatened seabird.

    Science.gov (United States)

    García-Tarrasón, Manuel; Bécares, Juan; Bateman, Santiago; Arcos, José Manuel; Jover, Lluís; Sanpera, Carolina

    2015-06-01

    Some seabird species have learnt to efficiently exploit fishing discards from trawling activities. However, a discard ban has been proposed as necessary in Europe to ensure the sustainability of the seas. It is of crucial importance for the management and conservation purposes to study the potential consequences of a discard ban on the foraging ecology of threatened seabirds. We assessed the influence of fishing activities on the feeding habits of 22 male and 15 female Audouin's gulls (Larus audouinii) from the Ebro Delta (Mediterranean Sea) during the breeding period using GPS loggers together with Stable Isotope Analysis (SIA), which provided new insights into their foraging behavior and trophic ecology, respectively. GPS data revealed different sex-specific foraging patterns between workdays and weekends. Females were highly consistent in that they foraged at sea throughout the week even though discarding stops at weekends. In contrast, males switched from foraging at sea during the week (when discards are produced) to an increased use of rice field habitats at weekends (when fishermen do not work). This sex-specific foraging behavior could be related to specific nutritional requirements associated with previous egg production, an energetically demanding period for females. However, on a broader time scale integrated by the SIA, both sexes showed a high degree of individual specialization in their trophic ecology. The need to obtain detailed information on the dependence and response of seabirds to fishing activities is crucial in conservation sciences. In this regard, sex-specific foraging behavior in relation to fisheries has been overlooked, despite the ecological and conservation implications. For instance, this situation may lead to sex differentiation in bycatch mortality in longlines when trawlers do not operate. Moreover, any new fisheries policy will need to be implemented gradually to facilitate the adaptation of a specialized species to a discard ban

  10. Foraging behavior of the queenless ant Dinoponera quadriceps Santschi (Hymenoptera: Formicidae).

    Science.gov (United States)

    Araújo, Arrilton; Rodrigues, Zenilde

    2006-01-01

    The search for and ingestion of food are essential to all animals, which spend most of their lives looking for nutritional sources, more than other activities such as mating, intra-specific disputes or escaping from predators. The present study aims to describe and quantify several aspects of foraging behavior, diet and food transport in the queenless ant Dinoponera quadriceps Santschi in a secondary Atlantic forest, Northeastern Brazil. Three colonies were randomly selected at a distance of at least 50 m from one another. On leaving the colony, worker ants were followed until their return, with no nutritional provision or interference with their activities. Activities were recorded using focal time sampling with instantaneous recording every minute for 10 consecutive minutes. Each colony was observed 1 day/week, for at least 6 h/day resulting in 53.8h of direct observation of the workers. Foraging activities, success in transporting food, type of food, cleaning and interaction among the workers were recorded. Foraging was always individual, with no occurrence of recruitment. Diet was composed mainly of arthropods, mostly insects. The collection of small fruits (Eugenia sp.) was also observed. Foraging time was greater when workers transported food to the colony, the return time being shorter than the foraging period, suggesting the use of chemical and visual cues for orientation during their foraging and food-collecting activities.

  11. Foraging behavior related to habitat characteristics in the invasive wasp Vespula germanica

    Institute of Scientific and Technical Information of China (English)

    PAOLA D'ADAMO; MARIANA LOZADA

    2007-01-01

    the feeding site until depleting the resource. In the present study we analyzed how environmental cues affect wasps' behavior when re-locating a protein food source. We studied this behavior in two different natural habitats: closed and open habitats.As closed habitats have more references to orient wasps to the feeding site than open habitats,we hypothesized that they would return to the foraging site more frequently in closed habitats than in open ones. We tested this hypothesis by studying wasp behavior in three different natural habitat conditions: (i) closed habitats, (ii) open habitats, and (iii) open habitats artificially modified by adding five sticks with flagging. Experiments consisted of training individual wasps to feed from a certain array, and at the testing phase we removed food and displaced the array by 60 cm. Therefore, we recorded wasps' choices when returning to the training area, by counting both the wasps' first approaches and the number of visits to the original feeding site and the displaced array. Wasps' behavior while re-locating a protein food source was different if foraging at open or closed habitats. Wasps more frequently revisited a previous feeding location when foraging in closed habitats than when foraging in open ones. Furthermore, wasps more frequently visited the displaced array than the original feeding site in all three treatments. Nevertheless, when wasps were trained in closed habitats,they returned to the original feeding site more frequently than if trained in open ones.Interestingly, when five sticks with flagging were added in open habitats, wasps responded similarly as in closed habitats without these references. The results show that foraging behavior in V. germanica seems to be different in closed and open habitats, probably associated with the existence of references that guide foragers when re-locating undepleted resources.

  12. Foraging behavior links climate variability and reproduction in North Pacific albatrosses.

    Science.gov (United States)

    Thorne, Lesley H; Hazen, Elliott L; Bograd, Steven J; Foley, David G; Conners, Melinda G; Kappes, Michelle A; Kim, Hyemi M; Costa, Daniel P; Tremblay, Yann; Shaffer, Scott A

    2015-01-01

    Climate-driven environmental change in the North Pacific has been well documented, with marked effects on the habitat and foraging behavior of marine predators. However, the mechanistic linkages connecting climate-driven changes in behavior to predator populations are not well understood. We evaluated the effects of climate-driven environmental variability on the reproductive success and foraging behavior of Laysan and Black-footed albatrosses breeding in the Northwest Hawaiian Islands during both brooding and incubating periods. We assessed foraging trip metrics and reproductive success using data collected from 2002-2012 and 1981-2012, respectively, relative to variability in the location of the Transition Zone Chlorophyll Front (TZCF, an important foraging region for albatrosses), sea surface temperature (SST), Multivariate ENSO Index (MEI), and the North Pacific Gyre Oscillation index (NPGO). Foraging behavior for both species was influenced by climatic and oceanographic factors. While brooding chicks, both species traveled farther during La Niña conditions, when NPGO was high and when the TZCF was farther north (farther from the breeding site). Models showed that reproductive success for both species showed similar trends, correlating negatively with conditions observed during La Niña events (low MEI, high SST, high NPGO, increased distance to TZCF), but models for Laysan albatrosses explained a higher proportion of the variation. Spatial correlations of Laysan albatross reproductive success and SST anomalies highlighted strong negative correlations (>95 %) between habitat use and SST. Higher trip distance and/or duration during brooding were associated with decreased reproductive success. Our findings suggest that during adverse conditions (La Niña conditions, high NPGO, northward displacement of the TZCF), both Laysan and Black-footed albatrosses took longer foraging trips and/or traveled farther during brooding, likely resulting in a lower reproductive

  13. Dissecting the role of Kr-h1 brain gene expression in foraging behavior in honey bees (Apis mellifera).

    Science.gov (United States)

    Fussnecker, B; Grozinger, C

    2008-09-01

    Expression of Krüppel homolog-1 (Kr-h1) in the honey bee brain is strongly associated with foraging behavior. We performed a series of studies to determine if Kr-h1 expression correlates with specific aspects of foraging. We found that Kr-h1 expression is unaffected by flight experience in male bees. Expression was unaffected by behavioral reversion of workers from foraging to brood care, suggesting that expression is not associated with the active performance of foraging, but rather with stable physiological changes. Kr-h1 expression is increased by cGMP treatment in workers, and the Kr-h1 promoter contains a conserved potential cGMP response element. Since cGMP treatment causes precocious foraging, our results suggest that Kr-h1 expression is associated with cGMP-mediated changes in the brain that occur early in the transition to foraging behavior.

  14. Evolving and Controlling Perimeter, Rendezvous, and Foraging Behaviors in a Computation-Free Robot Swarm

    Science.gov (United States)

    2016-04-01

    FORAGING BEHAVIORS IN A COMPUTATION-FREE ROBOT SWARM 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER NA 5c. PROGRAM ELEMENT NUMBER 62788F 6...States. 14. ABSTRACT Designing and controlling simple collective robot behaviors often requires complex range and bearing sensors and peer- to-peer...communication strategies. Recent work studying swarms robots that have no computational power has shown that complex behaviors such as aggregation and

  15. A simple method for detection of food foraging behavior in the rat: involvement of NMDA and dopamine receptors in the behavior.

    Science.gov (United States)

    Li, F; Cao, W Y; Li, M B; Xu, Y; Zhang, J W; Zhang, J Y; Luo, X G; Dai, R P; Zhou, X F; Li, C Q

    2012-03-15

    Food foraging behavior involves food removing, hoarding, and competitive preying upon other animals. It is also associated with high cognitive functions such as investing effort into decision making, but no established laboratory model is available to detect the behaviors. In the present study, we have developed a novel laboratory rodent model to detect competitive, non-competitive, and no-hurdle foraging conditions that can mimic the corresponding environment in nature. We found that normal rats consistently foraged the food from a food container to the field and spread food into piles in the open field. There was no difference between male and female rats in the amount of foraged food in the competitive, non-competitive, and no-hurdle food foraging tests. The amount of foraged food was consistent each day for five consecutive days with a slight increase in following days. There was no significant difference in the amount of food foraged in the presence or absence of bedding materials. A dramatic decrease of foraged food was found in the rats after administration of haloperidol (dopamine D2 receptor antagonist) in the competitive, non-competitive, and no-hurdle food foraging tests. Treatment with MK-801 (non-competitive N-methy-D-aspartate receptor antagonist) reduced the foraged food in the competitive food foraging test, but did not affect the foraged food in the non-competitive and no-hurdle food foraging tests. Our study provides a simple but consistent analogue of natural food foraging behavior. Our study also suggests that dopaminergic and glutaminergic systems are differentially involved in the food foraging behaviors.

  16. Forage and breed effects on behavior and temperament of pregnant beef heifers

    Science.gov (United States)

    Integration of behavioral observations with traditional selection schemes may lead to enhanced animal well-being and more profitable forage-based cattle production systems. Brahman-influenced (BR; n=64) and Gelbvieh x Angus (GA; n=64) heifers consumed either toxic endophyte-infected tall fescue (E+)...

  17. Relating disparity in competitive foraging behavior between two populations of fiddler crabs to the subcellular partitioning of metals.

    Science.gov (United States)

    Khoury, Jacques N; Powers, Evelyn; Patnaik, Pradyot; Wallace, William G

    2009-04-01

    Behavioral changes in aquatic organisms such as reduced prey capture and decreased mobility have been linked to exposure to contaminants in the field. The purpose of this study was to compare competitive foraging and dominance behaviors of two populations of the fiddler crab, Uca pugnax, and to examine the relationship between tissue metal residues and observed differences in behavior. Foraging behavior (number of total scoops and scoops on a protein-rich patch) and dominance behavior (percentage of successful attacks) of fiddler crabs from an impacted site (Meredith Creek, New York) and a reference site (Tuckerton, New Jersey) were compared in the laboratory. Tuckerton (Tk) crabs were found to have twice the number of total scoops (70 vs. 38 scoops, p competitive foraging behavior in fiddler crabs. Additionally, this study shows that when compared with dominance behavior, foraging behavior is a more sensitive indicator of metal exposure and might be used as an end point in ecotoxicology studies.

  18. Sea otter foraging behavior and hydrocarbon levels in prey

    Science.gov (United States)

    Doroff, Angela M.; Bodkin, James L.; Loughlin, Thomas R.

    1994-01-01

    Following the Exxon Valdez oil spill (EVOS), Prudhoe Bay crude oil from the vessel spread on the sea surface and covered coastal shores from western Prince William Sound (PWS) to the Alaska Peninsula. In PWS alone. acute mortality of sca otters at the time of the spill was estimated to be greater than 2000 (Doroff et al. 1993; Garrott et al. 1993).Shoreline oiling was observed on approximately 24% of the 1891 km of coastline surveyed within PWS (Exxon Valdez Oil Spill Damage Assessment Geoprocessing Group 1991). The effect of oil on the abundance of nearshore marine invertebrate populations is unclear, and the concentration and persistence of hydrocarbons present in tissues of most of these invertebrate species still remains unknown. What is known is that marine bivalves can accumulate petroleum hydrocarbons from both chronic and acute sources (Blumer et al. 1970; Ehrhardt 1972; Boehun and Quinn 1977). Potential long-term chronic effects of oiled intertidal and subtidal prey on the sea otter population are of concern.Sea otters prey on a wide variety of benthic marine invertebrates (Riedman and Estes 1990) and forage in shallow coastal waters (Wild and Arnes 1974), which vary widely in exposure to the open ocean, substrate type, and community composition. Sea otters have high metabolic demands relative to other marine mammals and can consume 20-25% of their body weight per day in invertebrate prey (Kenyon 1969: Costa and Kooyman 1984). Sca otters have occupied southwestern PWS since at least the early 1950s (Lensink 1962; Garshelis et al. 1986). The sea otter population in the PWS spill region was likely near equilibrium density and limited by prey availability before the oil spill (xcurrel (Estes et al. 1981; Garshelis et al. 1986; Johnson 1987). Sea otters in this region spent 59% of the daylight hours foraging, while otters in recently reoccupied habitats of eastern PWS spent only 27%. (Garshelis et al. 1986). Therefore, small differences in abundance of prey

  19. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    Science.gov (United States)

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on

  20. Performance and goats behavior in pasture of Andropogon grass under different forage allowances

    Directory of Open Access Journals (Sweden)

    Daniel Louçana da Costa Araújo

    2015-07-01

    Full Text Available This study was accomplished to evaluate the behavior and performance of goats in to grazing on grass Andropogon gayanus Kunth var. Bisquamulatus (Hochst Hack. cv. Planaltina submitted to three forage allowances: 11, 15 and 19% BW/day, under continuous grazing. The experimental design to assess the grazing behaviour was randomized blocks in a split-plot with five replicates within the block. In the plots, we evaluated the effect of forage allowances and in the subplots, the months May and June. While for evaluation of animal performance was in complete block design with five replicates within the block. The different forage allowance did not cause structural changes in the pasture, except in height. However, there was an increase of dead material, leaf/stem ratio and reducing of height during the grazing period. The behavioral variables were not affected by forage allowance, except for the time of displacement, whereby goats spent more time in pastures with offer of 11% BW. The goats remained most part of the time in grazing and idle, corresponding to 89% and 5% of the evaluation time, respectively. Higher bit rate was observed in June, among the offerings, and 15 and 19% BW. The ingestive and grazing behaviour in goats is changed by the accumulation of dead material and stem in pasture from Andropogon grass during at rainy season. The forage supply 11% of BW increases the time of displacement of goats grazing on Andropogon grass. The management of grazing Andropogon grass with forage allowance being 11 and 19% of BW provides low weight gains in goats during the rainy season.

  1. Colony-level behavioral variation correlates with differences in expression of the foraging gene in red imported fire ants.

    Science.gov (United States)

    Bockoven, Alison A; Coates, Craig J; Eubanks, Micky D

    2017-09-13

    Among social insects, colony-level variation is likely to be widespread and have significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behavior at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behavior. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony-level behavioral variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity, and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging versus working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behavior. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony-level behavioral variation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Importance of the 2014 Colorado River Delta pulse flow for migratory songbirds: Insights from foraging behavior

    Science.gov (United States)

    Darrah, Abigail J.; Greeney, Harold F.; Van Riper, Charles

    2017-01-01

    The Lower Colorado River provides critical riparian areas in an otherwise arid region and is an important stopover site for migrating landbirds. In order to reverse ongoing habitat degradation due to drought and human-altered hydrology, a pulse flow was released from Morelos Dam in spring of 2014, which brought surface flow to dry stretches of the Colorado River in Mexico. To assess the potential effects of habitat modification resulting from the pulse flow, we used foraging behavior of spring migrants from past and current studies to assess the relative importance of different riparian habitats. We observed foraging birds in 2000 and 2014 at five riparian sites along the Lower Colorado River in Mexico to quantify prey attack rates, prey attack maneuvers, vegetation use patterns, and degree of preference for fully leafed-out or flowering plants. Prey attack rate was highest in mesquite (Prosopis spp.) in 2000 and in willow (Salix gooddingii) in 2014; correspondingly, migrants predominantly used mesquite in 2000 and willow in 2014 and showed a preference for willows in flower or fruit in 2014. Wilson’s warbler (Cardellina pusilla) used relatively more low-energy foraging maneuvers in willow than in tamarisk (Tamarix spp.) or mesquite. Those patterns in foraging behavior suggest native riparian vegetation, and especially willow, are important resources for spring migrants along the lower Colorado River. Willow is a relatively short-lived tree dependent on spring floods for dispersal and establishment and thus spring migrants are likely to benefit from controlled pulse flows.

  3. Optimization of Power Utilization in Multimobile Robot Foraging Behavior Inspired by Honeybees System

    Directory of Open Access Journals (Sweden)

    Faisul Arif Ahmad

    2014-01-01

    Full Text Available Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.

  4. Do behavioral foraging responses of prey to predators function similarly in restored and pristine foodwebs?

    Directory of Open Access Journals (Sweden)

    Elizabeth M P Madin

    Full Text Available Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure--herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves.

  5. Effect of the natural pesticide spinosad (GF-120 formulation) on the foraging behavior of Plebeia moureana (Hymenoptera: Apidae).

    Science.gov (United States)

    Sánchez, D; De J Solórzano, E; Liedo, P; Vandame, R

    2012-08-01

    In this study we evaluated the effects of the biorational pesticide, Spinosad (GF-120 formulation), on foraging behavior in the stingless bee Plebeia moureana (Ayala). Several foragers were individually trained to collect an unscented 1.0 M sucrose solution (31% sucrose wt:wt) from a blue plate in one arm of a Y-tube maze. The other arm offered plain water on a yellow plate. After 20-30 visits to the setup, the sucrose solution was exchanged for a sucrose solution mixed with one of five concentrations of GF-120 and 30 consecutive choices of each bee were recorded. Interestingly, the foragers collected the sucrose solution with GF-120 at all concentrations. Our results show that: 1) the GF-120 formulation, when applied at the recommended concentration and mixed with food, does not discourage engaged foragers and, 2) foraging behavior over time is not significantly impaired by the continuous collection of GF-120.

  6. Testing the habituation assumption underlying models of parasitoid foraging behavior

    NARCIS (Netherlands)

    Abram, Paul K.; Cusumano, Antonino; Abram, Katrina; Colazza, Stefano; Peri, Ezio

    2017-01-01

    Background. Habituation, a form of non-associative learning, has several well-defined characteristics that apply to a wide range of physiological and behavioral responses in many organisms. In classic patch time allocation models, habituation is considered to be a major mechanistic component of para

  7. Niche dynamics of shorebirds in Delaware Bay: Foraging behavior, habitat choice and migration timing

    Science.gov (United States)

    Novcic, Ivana

    2016-08-01

    Niche differentiation through resource partitioning is seen as one of the most important mechanisms of diversity maintenance contributing to stable coexistence of different species within communities. In this study, I examined whether four species of migrating shorebirds, dunlins (Calidris alpina), semipalmated sandpipers (Calidris pusilla), least sandpipers (Calidris minutilla) and short-billed dowitchers (Limnodromus griseus), segregate by time of passage, habitat use and foraging behavior at their major stopover in Delaware Bay during spring migration. I tested the prediction that most of the separation between morphologically similar species will be achieved by differential migration timing. Despite the high level of overlap along observed niche dimensions, this study demonstrates a certain level of ecological separation between migrating shorebirds. The results of analyses suggest that differential timing of spring migration might be the most important dimension along which shorebird species segregate while at stopover in Delaware Bay. Besides differences in time of passage, species exhibited differences in habitat use, particularly least sandpipers that foraged in vegetated areas of tidal marshes more frequently than other species, as well as short-billed dowitchers that foraged in deeper water more often than small sandpipers did. Partitioning along foraging techniques was less prominent than segregation along temporal or microhabitat dimensions. Such ranking of niche dimensions emphasizes significance of temporal segregation of migratory species - separation of species by time of passage may reduce the opportunity for interspecific aggressive encounters, which in turn can have positive effects on birds' time and energy budget during stopover period.

  8. Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci

    OpenAIRE

    Hagler, James R.; Charles G. Jackson; Rufus Isaacs; Machtley, Scott A.

    2004-01-01

    The sweetpotato whitefly, Bemisia tabaci (Gennadius) is fed on by a wide variety of generalist predators, but there is little information on these predator-prey interactions. A laboratory investigation was conducted to quantify the foraging behavior of the adults of five common whitefly predators presented with a surfeit of whitefly eggs, nymphs, and adults. The beetles, Hippodamia convergens Guérin-Méneville and Collops vittatus (Say) fed mostly on whitefly eggs, but readily and rapidly prey...

  9. Right Whale Diving and Foraging Behavior in the Southwestern Gulf of Maine

    Science.gov (United States)

    2011-09-30

    by a video plankton recorder is shown as the color background (cool colors indicate low copepod abundance, warm colors indicate high abundance...archival tags, video plankton recorder). In 2005-2007, we conducted research on the diving and foraging behavior of North Atlantic right whales in the...locations. Upon resurfacing after each long dive, the whale’s exact resurfacing position is recorded by the tagging boat using a global positioning

  10. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats

    OpenAIRE

    Simone Götze; Jens C Koblitz; Annette Denzinger; Hans-Ulrich Schnitzler

    2016-01-01

    Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be ...

  11. Facilitation and Dominance in a Schooling Predator: Foraging Behavior of Florida Pompano, Trachinotus carolinus.

    Directory of Open Access Journals (Sweden)

    Meagan N Schrandt

    Full Text Available Presumably an individual's risk of predation is reduced by group membership and this 'safety in numbers' concept has been readily applied to investigations of schooling prey; however, foraging in groups may also be beneficial. We tested the hypothesis that, when feeding in groups, foraging of a coastal fish (Florida Pompano, Trachinotus carolinus on a benthic prey source would be facilitated (i.e. fish feeding in groups will consume more prey items. Although this question has been addressed for other fish species, it has not been previously addressed for Florida Pompano, a fish known to exhibit schooling behavior and that is used for aquaculture, where understanding the feeding ecology is important for healthy and efficient grow-out. In this experiment, juvenile Florida Pompano were offered a fixed number of coquina clams (Donax spp. for one hour either in a group or as individuals. The following day they were tested in the opposite configuration. Fish in groups achieved greater consumption (average of 26 clams consumed by the entire group than the individuals comprising the group (average of 14 clams consumed [sum of clams consumed by all individuals of the group]. Fish in groups also had fewer unsuccessful foraging attempts (2.75 compared to 4.75 hr(-1 and tended to have a shorter latency until the first feeding activity. Our results suggest fish in groups were more comfortable feeding and more successful in their feeding attempts. Interestingly, the consumption benefit of group foraging was not shared by all--not all fish within a group consumed equal numbers of clams. Taken together, the results support our hypothesis that foraging in a group provides facilitation, but the short-term benefits are not equally shared by all individuals.

  12. Ethanol concentration in food and body condition affect foraging behavior in Egyptian fruit bats ( Rousettus aegyptiacus)

    Science.gov (United States)

    Sánchez, Francisco; Korine, Carmi; Kotler, Burt P.; Pinshow, Berry

    2008-06-01

    Ethanol occurs in fleshy fruit as a result of sugar fermentation by both microorganisms and the plant itself; its concentration [EtOH] increases as fruit ripens. At low concentrations, ethanol is a nutrient, whereas at high concentrations, it is toxic. We hypothesized that the effects of ethanol on the foraging behavior of frugivorous vertebrates depend on its concentration in food and the body condition of the forager. We predicted that ethanol stimulates food consumption when its concentration is similar to that found in ripe fruit, whereas [EtOH] below or above that of ripe fruit has either no effect, or else deters foragers, respectively. Moreover, we expected that the amount of food ingested on a particular day of feeding influences the toxic effects of ethanol on a forager, and consequently shapes its feeding decisions on the following day. We therefore predicted that for a food-restricted forager, ethanol-rich food is of lower value than ethanol-free food. We used Egyptian fruit bats ( Rousettus aegyptiacus) as a model to test our hypotheses, and found that ethanol did not increase the value of food for the bats. High [EtOH] reduced the value of food for well-fed bats. However, for food-restricted bats, there was no difference between the value of ethanol-rich and ethanol-free food. Thus, microorganisms, via their production of ethanol, may affect the patterns of feeding of seed-dispersing frugivores. However, these patterns could be modified by the body condition of the animals because they might trade-off the costs of intoxication against the value of nutrients acquired.

  13. Digesting or swimming? Integration of the postprandial metabolism, behavior and locomotion in a frequently foraging fish.

    Science.gov (United States)

    Nie, Li-Juan; Cao, Zhen-Dong; Fu, Shi-Jian

    2017-02-01

    Fish that are active foragers usually perform routine activities while digesting their food; thus, their postprandial swimming capacity and related behavior adjustments might be ecologically important. To test whether digestion affect swimming performance and the relationships of digestion with metabolism and behavior in an active forager, we investigated the postprandial metabolic response, spontaneous swimming activities, critical swimming speed (Ucrit), and fast-start escape performance of both fasted and digesting (3h after feeding to satiation) juvenile rose bitterling (Rhodeus ocellatus). Feeding to satiation elicited a 50% increase in the oxygen consumption rate, which peaked at 3h after feeding and returned to the prefeeding state after another 3h. However, approximately 50% and 90% of individuals resumed feeding behavior at 2 and 3h postfeeding, respectively, although the meal size varied substantially. Digestion showed no effect on either steady swimming performance as suggested by the Ucrit or unsteady swimming performance indicated by the maximum linear velocity in fast-start escape movement. However, digesting fish showed more spontaneous activity as indicated by the longer total distance traveled, mainly through an increased percentage of time spent moving (PTM). A further analysis found that fasting individuals with high swimming speed were more inclined to increase their PTM during digestive processes. The present study suggests that as an active forager With a small meal size and hence limited postprandial physiological and morphological changes, the swimming performance of rose bitterling is maintained during digestion, which might be crucial for its active foraging mode and anti-predation strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior.

    Directory of Open Access Journals (Sweden)

    Alison A Bockoven

    Full Text Available Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.

  15. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior.

    Science.gov (United States)

    Bockoven, Alison A; Wilder, Shawn M; Eubanks, Micky D

    2015-01-01

    Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.

  16. Shallow food for deep divers: Dynamic foraging behavior of male sperm whales in a high latitude habitat

    DEFF Research Database (Denmark)

    Teloni, Valeria; Johnson, M.P.; Miller, P.J.O.

    2008-01-01

    Groups of female and immature sperm whales live at low latitudes and show a stereotypical diving and foraging behavior with dives lasting about 45 min to depths of between 400 and 1200 m. In comparison, physically mature male sperm whales migrate to high latitudes where little is known about...... their foraging behavior and ecology. Here we use acoustic recording tags to study the diving and acoustic behavior of male sperm whales foraging off northern Norway. Sixty-five hours of tag data provide detailed information about the movements and sound repertoire of four male sperm whales performing 83 dives...... epipelagic prey, is consistent with the hypothesis that male sperm whales may migrate to high latitudes to access a productive, multi-layered foraging habitat....

  17. Foraging behavior of selected insectivorous birds in Cauvery Delta region of Nagapattinam District, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    S. Asokan

    2010-02-01

    Full Text Available This paper reports the foraging behavior of five insectivorous birds, namely White-breasted Kingfisher Halcyon smyrnensis, Small Bee-eater Merops orientalis, Indian Roller Coracias benghalensis, Common Myna Acridotheres tristis and Black Drongo Dicrurus macrocercus in Nagapattinam District of Tamil Nadu, India. The birds used a variety of perch types for hunting insect prey; in general the electric power line was a common perch type used by all species except the Common Myna. The perching and foraging height used by birds were classified into 3 meter categories, up to 12m. Aerial feeding or hawking in Bee-eaters and ground feeding in Common Mynas were major feeding techniques, recorded 68% and 86% of the time respectively. The other three species used gleaning as a feeding technique. The highest niche overlap was recorded between Indian Rollers and Black Drongos and between White-breasted Kingfishers and Indian Rollers.

  18. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta at a foraging ground

    Directory of Open Access Journals (Sweden)

    Samir Harshad Patel

    2016-12-01

    Full Text Available Assessing sea turtle behavior at the foraging grounds has been primarily limited to the interpretation of remotely-sensed data. As a result, there is a general lack of detailed understanding regarding the habitat use of sea turtles during a phase that accounts for a majority of their lives. Thus, this study aimed to fill these data gaps by providing detailed information about the feeding habits, prey availability, buoyancy control and water column usage by 73 loggerhead turtles across 45.7 hours of video footage obtained from a remotely operated vehicle (ROV from 2008 – 2014. We developed an ethogram to account for 27 potential environmental and behavioral parameters. Turtles were filmed through the entire water column and we quantified the frequency of behaviors such as flipper beats, breaths, defecations, feedings and reactions to the ROV. We used the ROV’s depth sensor and visible cues (i.e. water surface or benthic zone in view to distinguish depth zones and assess the turtles’ use of the water column. We also quantified interactions with sympatric biota, including potential gelatinous and non-gelatinous prey species, fish (including sharks, marine mammals and other sea turtles. We discovered that turtles tended to remain within the near surface and surface zones of the water column through the majority of the footage. During benthic dives, turtles consistently exhibited negative buoyancy and some turtles exhibited a dichotomous foraging behavior, first foraging within the water column, then diving to the benthic environment. Videography allowed us to combine behavioral observations and habitat features that cannot be captured by traditional telemetry methods, resulting in a broader understanding of loggerheads’ ecological role in the U.S. Mid-Atlantic.

  19. Humpback whale song and foraging behavior on an antarctic feeding ground.

    Science.gov (United States)

    Stimpert, Alison K; Peavey, Lindsey E; Friedlaender, Ari S; Nowacek, Douglas P

    2012-01-01

    Reports of humpback whale (Megaptera novaeangliae) song chorusing occurring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animals or close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and to prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations.

  20. Foraging behavior under starvation conditions is altered via photosynthesis by the marine gastropod, Elysia clarki.

    Directory of Open Access Journals (Sweden)

    Michael L Middlebrooks

    Full Text Available It has been well documented that nutritional state can influence the foraging behavior of animals. However, photosynthetic animals, those capable of both heterotrophy and symbiotic photosynthesis, may have a delayed behavioral response due to their ability to photosynthesize. To test this hypothesis we subjected groups of the kleptoplastic sea slug, Elysia clarki, to a gradient of starvation treatments of 4, 8, and 12 weeks plus a satiated control. Compared to the control group, slugs starved 8 and 12 weeks displayed a significant increase in the proportion of slugs feeding and a significant decrease in photosynthetic capability, as measured in maximum quantum yield and [chl a]. The 4 week group, however, showed no significant difference in feeding behavior or in the metrics of photosynthesis compared to the control. This suggests that photosynthesis in E. clarki, thought to be linked to horizontally-transferred algal genes, delays a behavioral response to starvation. This is the first demonstration of a link between photosynthetic capability in an animal and a modification of foraging behavior under conditions of starvation.

  1. Humpback whale song and foraging behavior on an antarctic feeding ground.

    Directory of Open Access Journals (Sweden)

    Alison K Stimpert

    Full Text Available Reports of humpback whale (Megaptera novaeangliae song chorusing occurring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animals or close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and to prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations.

  2. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats

    Directory of Open Access Journals (Sweden)

    Nor Atiqah Norazlimi

    2015-01-01

    Full Text Available A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus, Common redshank (Tringa totanus, Whimbrel (Numenius phaeopus, and Little heron (Butorides striata and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder. The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R=0.443, p<0.05, bill size and prey size (R=-0.052, p<0.05, bill size and probing depth (R=0.42, p=0.003, and leg length and water/mud depth (R=0.706, p<0.005. A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm and species (H=15.96, p=0.0012. Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  3. Several New Aspects of the Foraging Behavior of Osmia cornifrons in an Apple Orchard

    Directory of Open Access Journals (Sweden)

    Shogo Matsumoto

    2010-01-01

    Full Text Available We investigated the foraging behavior of Osmia cornifrons Radoszkowski, which is a useful pollinator in apple orchards consisting of only one kind of commercial cultivars such as “Fuji”, and of different types of pollinizers, such as the red petal type, “Maypole” or “Makamik”. It was confirmed that, in terms of the number of foraging flowers per day, visiting flowers during low temperatures, strong wind, and reduced sunshine in an apple orchard, O. cornifrons were superior to honeybees. We indicated that O. cornifrons seemed to use both petals and anthers as foraging indicator, and that not only female, but also males contributed to apple pollination and fertilization by the pollen grains attached to them from visiting flowers, including those at the balloon stage. It was confirmed that O. cornifrons acts as a useful pollinator in an apple orchard consisting of one kind of cultivar with pollinizers planted not more than 10 m from commercial cultivars.

  4. Divergence in foraging behavior of foliage-gleaning birds of Canadian and Russian boreal forests.

    Science.gov (United States)

    Greenberg, Russell; Pravosudov, Vladimir; Sterling, John; Kozlenko, Anna; Kontorschikov, Vitally

    1999-08-01

    We compared foraging behavior of foliage-gleaning birds of the boreal forest of two Palaearctic (central Siberia and European Russia) and two Nearctic (Mackenzie and Ontario, Canada) sites. Using discriminant function analysis on paired sites we were able to distinguish foliage-gleaning species from the Nearctic and Palaearctic with few misclassifications. The two variables that most consistently distinguished species of the two avifaunas were the percentage use of conifer foliage and the percentage use of all foliage. Nearctic foliage-gleaner assemblages had more species that foraged predominantly from coniferous foliage and displayed a greater tendency to forage from foliage, both coniferous and broad-leafed, rather than twigs, branches, or other substrates. The greater specialization on foliage and, in particular, conifer foliage by New World canopy foliage insectivores is consistent with previously proposed hypotheses regarding the role of Pleistocene vegetation history on ecological generalization of Eurasian species. Boreal forest, composed primarily of spruce and pine, was widespread in eastern North America, whereas pockets of forest were scattered in Eurasia (mostly the mountains of southern Europe and Asia). This may have affected the populations of birds directly or indirectly through reduction in the diversity and abundance of defoliating outbreak insects. Loss of habitat and resources may have selected against ecological specialization on these habitats and resources.

  5. Acoustic and foraging behavior of a Baird's beaked whale, Berardius bairdii, exposed to simulated sonar.

    Science.gov (United States)

    Stimpert, A K; DeRuiter, S L; Southall, B L; Moretti, D J; Falcone, E A; Goldbogen, J A; Friedlaender, A; Schorr, G S; Calambokidis, J

    2014-11-13

    Beaked whales are hypothesized to be particularly sensitive to anthropogenic noise, based on previous strandings and limited experimental and observational data. However, few species have been studied in detail. We describe the underwater behavior of a Baird's beaked whale (Berardius bairdii) from the first deployment of a multi-sensor acoustic tag on this species. The animal exhibited shallow (23 ± 15 m max depth), intermediate (324 ± 49 m), and deep (1138 ± 243 m) dives. Echolocation clicks were produced with a mean inter-click interval of approximately 300 ms and peak frequency of 25 kHz. Two deep dives included presumed foraging behavior, with echolocation pulsed sounds (presumed prey capture attempts) associated with increased maneuvering, and sustained inverted swimming during the bottom phase of the dive. A controlled exposure to simulated mid-frequency active sonar (3.5-4 kHz) was conducted 4 hours after tag deployment, and within 3 minutes of exposure onset, the tagged whale increased swim speed and body movement, and continued to show unusual dive behavior for each of its next three dives, one of each type. These are the first data on the acoustic foraging behavior in this largest beaked whale species, and the first experimental demonstration of a response to simulated sonar.

  6. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem.

    Science.gov (United States)

    Johnson, Matthew D; De León, Yesenia L

    2015-01-01

    Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the 'giving up density' of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila) providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own.

  7. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem.

    Directory of Open Access Journals (Sweden)

    Matthew D Johnson

    Full Text Available Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the 'giving up density' of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own.

  8. California Least Tern Foraging Ecology in Southern California: A Review of Foraging Behavior Relative to Proposed Dredging Locations

    Science.gov (United States)

    2016-05-01

    freshwater species, including killifish (Fundulus parvipinnis) and mosquito fish (Gambusia affinis) (Atwood and ERDC/EL CR-16-3 2 Kelly 1984...event of oil spill. Three portable pools with mosquito fish provided near Pier 400 nesting site. Included surveys at 3 preferred foraging areas...review summarized available information on CLT biology , ecology, and predators in the first four sections; Section 5 is entitled “Known Effects of

  9. Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    James R. Hagler

    2004-01-01

    Full Text Available The sweetpotato whitefly, Bemisia tabaci (Gennadius is fed on by a wide variety of generalist predators, but there is little information on these predator-prey interactions. A laboratory investigation was conducted to quantify the foraging behavior of the adults of five common whitefly predators presented with a surfeit of whitefly eggs, nymphs, and adults. The beetles, Hippodamia convergens Guérin-Méneville and Collops vittatus (Say fed mostly on whitefly eggs, but readily and rapidly preyed on all of the whitefly lifestages. The true bugs, Geocoris punctipes (Say and Orius tristicolor (Say preyed almost exclusively on adult whiteflies, while Lygus hesperus Knight preyed almost exclusively on nymphs. The true bugs had much longer prey handling times than the beetles and spent much more of their time feeding (35-42% than the beetles (6-7%. These results indicate that generalist predators vary significantly in their interaction with this host, and that foraging behavior should be considered during development of a predator-based biological control program for B. tabaci.

  10. Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci.

    Science.gov (United States)

    Hagler, James R; Jackson, Charles G; Isaacs, Rufus; Machtley, Scott A

    2004-01-01

    The sweetpotato whitefly, Bemisia tabaci (Gennadius) is fed on by a wide variety of generalist predators, but there is little information on these predator-prey interactions. A laboratory investigation was conducted to quantify the foraging behavior of the adults of five common whitefly predators presented with a surfeit of whitefly eggs, nymphs, and adults. The beetles, Hippodamia convergens Guerin-Meneville and Collops vittatus (Say) fed mostly on whitefly eggs, but readily and rapidly preyed on all of the whitefly lifestages. The true bugs, Geocoris punctipes (Say) and Orius tristicolor (Say) preyed almost exclusively on adult whiteflies, while Lygus hesperus Knight preyed almost exclusively on nymphs. The true bugs had much longer prey handling times than the beetles and spent much more of their time feeding (35-42%) than the beetles (6-7%). These results indicate that generalist predators vary significantly in their interaction with this host, and that foraging behavior should be considered during development of a predator-based biological control program for B. tabaci.

  11. [Activity patterns and foraging behavior of Apis cerana cerana in the urban gardens in winter].

    Science.gov (United States)

    Chen, Fa-jun; Yang, Qing-qing; Long, Li; Hu, Hong-mei; Duan, Bin; Chen, Wen-nian

    2016-01-01

    Bees and other pollinating insects are the important parts of biodiversity due to their great role in plant reproduction and crop production. To explore the role of city garden in native bees conservation, activity patterns, visiting behaviors and flowering plants with nectar or pollen were recorded in south Sichuan in winter. The results showed that, worker bees (Apis cerana cerana) were active to collect food out hive under suitable weather conditions, the duration of working was long. Peaks of the number of outgoing, entrance and foragers without pollen appeared at 14:00-15:00, and bimodal patterns were observed. While, peak of bees with pollen appeared at 11:00, and a unimodal pattern was observed. Time significantly affected the activity of workers. The workload of honey bees on nectar and pollen collection were different, just less than twenty percent foragers carrying pollen. Temperature and humidity also affected flights of bees to some degree, and bee activities showed similar patterns on different days. However, the activities had diverse characteristics in some time. Though a less number of plants were in flowering, most of them could be utilized by A. cerana cerana, and colonies could effectively get the food resource by behavior adjustment. In addition, visiting activities of bees on the flowers of main garden plants, such as Camellia japonica, showed obvious rhythm. Increasing the flowering plants with nectar and pollen in winter by scientific management of urban gardens would facilitate the creation of suitable habitats for A. cerana cerana and maintaining the wild population.

  12. Foraging, Mating, and Thermoregulatory Behavior of Cyrtopogon willistoni Curran (Diptera: Asilidae

    Directory of Open Access Journals (Sweden)

    Kevin M. O'Neill

    1995-01-01

    Full Text Available The robber fly Cyrtopogon willistoni Curran was studied in SW Montana, where it was an opportunistic predator of relatively small insects from 25 families in 7 orders. The most common prey were Diptera (44% and Homoptera (21%, with Cicadellidae, Bibionidae, and Formicidae comprising 44% of the prey. The elaborate courtship behavior of males included audible airborne visual displays that made use of silvery-white combs of hairs on the males' foretarsi. While perching, the flies exhibited both lateral and dorsal basking postures, and were apparently capable of strong flight only when direct sunlight was available. I compare the foraging and courtship behaviors of C. willistoni to those of other Cyrtopogon, and their thermal responses to those of other robber flies in the same habitat.

  13. Model-based passive acoustic tracking of sperm whale foraging behavior in the Gulf of Alaska

    Science.gov (United States)

    Tiemann, Christopher; Thode, Aaron; Straley, Jan; Folkert, Kendall; O'Connell, Victoria

    2005-09-01

    In 2004, the Southeast Alaska Sperm Whale Avoidance Project (SEASWAP) introduced the use of passive acoustics to help monitor the behavior of sperm whales depredating longline fishing operations. Acoustic data from autonomous recorders mounted on longlines provide the opportunity to demonstrate a tracking algorithm based on acoustic propagation modeling while providing insight into whales' foraging behavior. With knowledge of azimuthally dependent bathymetry, a 3D track of whale motion can be obtained using data from just one hydrophone by exploiting multipath arrival information from recorded sperm whale clicks. The evolution of multipath arrival patterns is matched to range-, depth-, and azimuth-dependent modeled arrival patterns to generate an estimate of whale motion. This technique does not require acoustic ray identification (i.e., direct path, surface reflected, etc.) while still utilizing individual ray arrival information, and it can also account for all waveguide propagation physics such as interaction with range-dependent bathymetry and ray refraction.

  14. Distribution, foraging behavior, and capture results of the spotted bat (Euderma maculatum) in central Oregon

    Science.gov (United States)

    Rodhouse, T.J.; McCaffrey, M.F.; Wright, R.G.

    2005-01-01

    The spotted bat (Euderma maculatum) has been virtually unknown in Oregon despite the existence of potential habitat in many areas of the state. In 2002 and 2003 we searched for spotted bats along the John Day, Deschutes, and Crooked Rivers and at a remote dry canyon southeast of the city of Bend in central Oregon. The species was documented through the use of mist-nets, a bat detector, and recognition of audible spotted bat calls. Spotted bats were found at 11 locations in 6 Oregon counties. Nightly activity patterns of spotted bats were unpredictable. Spotted bats were found in 78% of search areas but on only 48% of survey nights. We observed spotted bats foraging above fields and low upland slopes adjacent to rivers and creeks and along the rims of cliffs. Estimated flying heights of spotted bats ranged from 3 m to 50 m aboveground. The species was difficult to capture and was captured only after considerable experimentation with methods and materials. Three spotted bats were captured toward the end of the project in 2003 and accounted for only 0.5% of all bats captured during the study. Although we attached radio transmitters to 2 spotted bats, we found no roost locations. We believe additional spotted bat surveys in Oregon are warranted, especially in higher-elevation habitats, but recommend that to increase their effectiveness, surveys accommodate the unique foraging behavior of the species.

  15. Whistles of small groups of Sotalia fluviatilis during foraging behavior in southeastern Brazil

    Science.gov (United States)

    Pivari, Daniela; Rosso, Sergio

    2005-10-01

    Whistle emissions were recorded from small groups of marine tucuxi dolphins (Sotalia fluviatilis) in two beaches located in an important biological reserve in the Cananéia estuary (25°03'S, 47°58'W), southeastern Brazil. A total of 17 h of acoustic data was collected when dolphins were engaged in a specific feeding foraging activity. The amount of 3235 whistles was recorded and 40% (n=1294) were analyzed. Seven acoustic whistle parameters were determined: duration (ms), number of inflection points, start and end frequency (kHz), minimum and maximum frequency (kHz), and frequency range (kHz). Whistles with up to four inflection points were found. Whistles with no inflection points and rising frequency corresponded to 85% (n=1104) of all analyzed whistles. Whistle duration varied from 38 to 627 ms (mean=229.6+/-109.9 ms), with the start frequency varying between 1 and 16 kHz (mean=8.16+/-3.0 kHz) and the end frequency between 2 and 18 kHz (mean=14.35+/-3.0 kHz). The importance of this study requires an accurate measurement of the whistles' emissions in an unusual foraging feeding behavior situation on two beaches where several tucuxis, mostly mother-calf pairs, are frequently present. These two beaches are located in a federal and state environment Environmental Protected Area threatened by the progressive increase of tourism.

  16. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    LÚCIA H.P. KIILL

    2014-12-01

    Full Text Available The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 – ‘Yellow melon’ and Sancho -‘Piel de Sapo’ in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p <0.0001, floral type (F = 47.25, p <0.0001 and resource foraged (F = 239.14, p <0.0001. The flowers of Sancho were more attractive to A. mellifera when compared with hybrid 10:00, which may be correlated to the morphology and floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types.

  17. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil.

    Science.gov (United States)

    Kiill, Lúcia H P; Siqueira, Kátia M M; Coelho, Márcia S; Silva, Tamires A; Gama, Diego R S; Araújo, Diego C S; Pereira Neto, Joaquim

    2014-12-01

    The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 - 'Yellow melon' and Sancho -'Piel de Sapo') in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p <0.0001), floral type (F = 47.25, p <0.0001) and resource foraged (F = 239.14, p <0.0001). The flowers of Sancho were more attractive to A. mellifera when compared with hybrid 10:00, which may be correlated to the morphology and floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types.

  18. Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata, Tropiduridae in a caatinga area of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo B. Ribeiro

    2011-09-01

    Full Text Available This study aimed to analyze the seasonal variation in diet composition and foraging behavior of Tropidurus hispidus (Spix, 1825 and T. semitaeniatus (Spix, 1825, as well as measurement of the foraging intensity (number of moves, time spent stationary, distance traveled and number of attacks on prey items in a caatinga patch on the state of Rio Grande do Norte, Brazil. Hymenoptera/Formicidae and Isoptera predominated in the diet of both species during the dry season. Opportunistic predation on lepidopteran larvae, coleopteran larvae and adults, and orthopteran nymphs and adults occurred in the wet season; however, hymenopterans/Formicidae were the most important prey items. The number of food items was similar between lizard species in both seasons; however the overlap for number of prey was smaller in the wet season. Preys ingested by T. hispidus during the wet season were also larger than those consumed by T. semitaeniatus. Seasonal comparisons of foraging intensity between the two species differed, mainly in the wet season, when T. hispidus exhibited less movement and fewer attacks on prey, and more time spent stationary if compared to T. semitaeniatus. Although both lizards are sit-and-wait foragers, T. semitaeniatus is more active than T. hispidus. The diet and foraging behavior of T. hispidus and T. semitaeniatus overlap under limiting conditions during the dry season, and are segregative factors that may contribute to the coexistence of these species in the wet season.

  19. Flexibility and persistence of chimpanzee (Pan troglodytes) foraging behavior in a captive environment.

    Science.gov (United States)

    Bonnie, Kristin E; Milstein, Marissa S; Calcutt, Sarah E; Ross, Stephen R; Wagner, Kathy E; Lonsdorf, Elizabeth V

    2012-07-01

    As a result of environmental variability, animals may be confronted with uncertainty surrounding the presence of, or accessibility to, food resources at a given location or time. While individuals can rely on personal experience to manage this variability, the behavior of members of an individual's social group can also provide information regarding the availability or location of a food resource. The purpose of the present study was to measure how captive chimpanzees individually and collectively adjust their foraging strategies at an artificial termite mound, as the availability of resources provided by the mound varied over a number of weeks. As predicted, fishing activity at the mound was related to resource availability. However, chimpanzees continued to fish at unbaited locations on the days and weeks after a location had last contained food. Consistent with previous studies, our findings show that chimpanzees do not completely abandon previously learned habits despite learning individually and/or socially that the habit is no longer effective.

  20. Foraging Behavior in Golden Hamsters (Mesocricetus Auratus: Effect of the Distance among Multiple Patches

    Directory of Open Access Journals (Sweden)

    Felipe Cabrera

    2008-05-01

    Full Text Available The pattern of travel and the efficiency in foraging behavior was evaluated in four hamsters searching for food within an enclosure with multiple patches. Two different distances among patches were randomly arranged: Near-Patches (10 cm separation and Distant-Patches (21.5 cm separation. Subjects obtained the food by mounting over the cylinders (stations placed in the enclosure of 110 cm2. Results showed that in both, Near and Distant conditions, the distance between responses was longer in late stages of the trials then in early stages. Nonetheless, the most choices to adjacent stations were in Distant-Patches condition, while skips and diagonal-station choices were more frequently showed in the Near-Patches condition.

  1. Foraging behavior of Long-tailed Ducks in a ferry wake

    Science.gov (United States)

    Perry, Matthew C.

    2012-01-01

    Clangula hyemalis (Long-tailed Ducks) were observed diving in the wake of the Nantucket Island ferry during December over a 5-year period (2005–2009). The unusual diving behavior appeared to be related to foraging, but could not be confirmed. Long-tailed Ducks typically feed on more mobile prey than most other diving ducks, and it is speculated that the propeller wash in shallow water dislodged or disturbed prey and provided an enhanced feeding opportunity. Long-tailed Ducks collected while feeding in a disturbed area near a clamming boat not far from the ferry channel were feeding predominantly on Crangon septemspinosa (Sand Shrimp) that apparently had been dislodged by the clamming operation.

  2. Ant larvae regulate worker foraging behavior and ovarian activity in a dose-dependent manner.

    Science.gov (United States)

    Ulrich, Yuko; Burns, Dominic; Libbrecht, Romain; Kronauer, Daniel J C

    2016-07-01

    Division of labor in insect societies relies on simple behavioral rules, whereby individual colony members respond to dynamic signals indicating the need for certain tasks to be performed. This in turn gives rise to colony-level phenotypes. However, empirical studies quantifying colony-level signal-response dynamics are lacking. Here, we make use of the unusual biology and experimental amenability of the queenless clonal raider ant Cerapachys biroi, to jointly quantify the behavioral and physiological responses of workers to a social signal emitted by larvae. Using automated behavioral quantification and oocyte size measurements in colonies of different sizes and with different worker to larvae ratios, we show that the workers in a colony respond to larvae by increasing foraging activity and inhibiting ovarian activation in a progressive manner, and that these responses are stronger in smaller colonies. This work adds to our knowledge of the processes that link plastic individual behavioral/physiological responses to colony-level phenotypes in social insect colonies.

  3. Effect of sociality and season on gray wolf (Canis lupus foraging behavior: implications for estimating summer kill rate.

    Directory of Open Access Journals (Sweden)

    Matthew C Metz

    Full Text Available BACKGROUND: Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. METHODOLOGY/PRINCIPAL FINDINGS: For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging. We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf decreased from 8.4±0.9 kg (mean ± SE in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  4. Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre

    Directory of Open Access Journals (Sweden)

    Julieta Grajales-Conesa

    2012-03-01

    Full Text Available Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre. Stingless bees have an important role as pollinators of many wild and cultivated plant species in tropical regions. Little is known, however, about the interaction between floral fragrances and the foraging behavior of meliponine species. Thus we investigated the chemical composition of the extracts of citric (lemon and orange flowers and their effects on the foraging behavior of the stingless bee Scaptotrigona pectoralis. We found that each type of flower has its own specific blend of major compounds: limonene (62.9% for lemon flowers, and farnesol (26.5%, (E-nerolidol (20.8%, and linalool (12.7% for orange flowers. In the foraging experiments the S. pectoralis workers were able to use the flower extracts to orient to the food source, overlooking plates baited with hexane only. However, orange flower extracts were seemingly more attractive to these worker bees, maybe because of the particular blend present in it. Our results reveal that these fragrances are very attractive to S. pectoralis, so we can infer that within citric orchards they could be important visitors in the study area; however habitat destruction, overuse of pesticides and the competitive override by managed honeybees might have put at risk their populations and thus the ecological services they provide to us.

  5. Toxicity and bioaccumulation of waterborne and dietary selenium in juvenile bluegill (Lepomis macrochirus)

    Science.gov (United States)

    Cleveland, Laverne; Little, Edward E.; Buckler, Denny R.; Wiedmeyer, Raymond H.

    1993-01-01

    Juvenile bluegill (Lepomis macrochirus) were exposed to waterborne selenium as a 6:1 mixture of selenate to selenite (as Se) for 60 d and to dietary seleno-l-methionine for 90 d. Measured concentrations of total selenium in the waterborne exposure ranged from 0.16 to 2.8 mg/l, and concentrations of seleno-l-methionine in the test diet ranged from 2.3 to 25.0 mg/kg wet weight. Mortality, body weight, condition factor, swimming and feeding behavior, aggression, and selenium tissue residues were monitored during the tests. Increased mortality at measured concentrations of 0.64 mg Se/l and greater was the primary adverse effect of waterborne selenium on the juvenile bluegill. Bluegill exposed to 2.8 mg/l of waterborne Se for 30 d exhibited a significant reduction in condition factor (K), whereas dietary exposure of bluegill to 25 mg Se/kg for 30 d and 13 mg Se/kg or greater for 90 d elicited significant reductions in K. Mortality and swimming activity of bluegill were not affected in the dietary exposure. Net accumulation of Se from both water and diet was directly related to exposure concentration. Bioconcentration factors ranged from 5 to 7 for bluegill exposed to waterborne Se and from 0.5 to 1.0 for fish exposed to dietary Se. Results of these laboratory tests indicate that survival of bluegill may be impaired in natural waters with elevated Se concentrations.

  6. Foraging behavior of Melipona rufiventris Lepeletier (Apinae; Meliponini in Ubatuba, SP, Brazil

    Directory of Open Access Journals (Sweden)

    AO. Fidalgo

    Full Text Available This study describes how the foraging activity of Melipona rufiventris is influenced by the environment and/or by the state of a colony. Two colonies were studied in Ubatuba, SP (44° 48’ W and 23° 22’ S from July/2000 to June/2001. These colonies were classified as strong (Colony 1 and intermediate (Colony 2 according to their general conditions: population and brood comb size and number of food pots. The bees were active from dawn to dusk. The number of pollen loads presented a positive correlation with relative humidity (r s = 0.401; p <0.01 and was highest between 70 and 90%. However, it was negatively correlated with temperature (r s = -0.228; p <0.01 showing a peak between 18 and 23 °C. The number of nectar loads presented a positive correlation with temperature (r s = 0.244; p <0.01 and light intensity (r s = 0.414; p <0.01; it was greater between 50 and 90% of relative humidity and 20 and 30 °C of temperature. They collected more nectar than pollen throughout the day, and were more active between 6 and 9 hours. Workers from Colony 1 (strong collected nectar in greater amounts and earlier than those from Colony 2 (intermediate. The number of pollen, nectar and resin loads varied considerably between the study days. Peaks of pollen collection occurred earlier in months with longer days and in a hotter and more humid climate. The foraging behavior of M. rufiventris is probably affected by the state of the colony and by environmental conditions, notably temperature, relative humidity, light intensity and length of the day.

  7. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica

    Science.gov (United States)

    Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.

    2011-01-01

    We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins, Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.

  8. Predator avoidance, microhabitat shift, and risk-sensitive foraging in larval dragonflies.

    Science.gov (United States)

    Pierce, C L

    1988-10-01

    Dragonfly larvae (Odonata: Anisoptera) are often abundant in shallow freshwater habitats and frequently co-occur with predatory fish, but there is evidence that they are underutilized as prey. This suggests that species which successfully coexist with fish may exhibit behaviors that minimize their risk of predation. I conducted field and laboratory experiments to determine whether: 1) dragonfly larvae actively avoid fish, 2) microhabitat use and foraging success of larvae are sensitive to predation risk, and 3) vulnerability of larvae is correlated with microhabitat use. I experimentally manipulated the presence of adult bluegills (Lepomis macrochirus) in defaunated patches of littoral substrate in a small pond to test whether colonizing dragonfly larvae would avoid patches containing fish. The two dominant anisopteran species, Tetragoneuria cynosura and Ladona deplanata (Odonata: Libellulidae), both strongly avoided colonizing patches where adult bluegills were present. Laboratory experiments examined the effects of diel period and bluegills on microhabitat use and foraging success, using Tetragoneuria, Ladona and confamilial Sympetrum semicictum, found in a nearby fishless pond. Tetragoneuria and Ladona generally occupied microhabitats offering cover, whereas Sympetrum usually occupied exposed locations. Bluegills induced increased use of cover in all three species, and use of cover also tended to be higher during the day than at night. Bluegills depressed foraging in Tetragoneuria and to a lesser extent in Ladona, but foraging in Sympetrum appeared unaffected. Other laboratory experiments indicated that Sympetrum were generally more vulnerable than Tetragoneuria or Ladona to bluegill predation, and that vulnerability was positively correlated with use of exposed microhabitats. Both fixed (generally low use of exposed microhabitats, diel microhabitat shifts) and reactive (predator avoidance, predator-sensitive microhabitat shifts) behavioral responses appear to

  9. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats.

    Science.gov (United States)

    Götze, Simone; Koblitz, Jens C; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2016-08-09

    Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat's attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1-11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls.

  10. Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite.

    Science.gov (United States)

    Henderson, Gregg; Gautam, Bal K; Wang, Cai

    2016-08-26

    We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%-4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study.

  11. Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite

    Directory of Open Access Journals (Sweden)

    Gregg Henderson

    2016-08-01

    Full Text Available We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month, fipronil had the lowest percentage of survival (3%–4% at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study.

  12. Behavioral thermal tolerances of free-ranging rattlesnakes (Crotalus oreganus) during the summer foraging season.

    Science.gov (United States)

    Putman, Breanna J; Clark, Rulon W

    2017-04-01

    Increasing temperature due to climate change is one of the greatest challenges for wildlife worldwide. Behavioral data on free-ranging individuals is necessary to determine at what temperatures animals modify activity as this would determine their capacity to continue to move, forage, and mate under altered thermal regimes. In particular, high temperatures could limit available surface activity time and time spent on fitness-related activities. Conversely, performance, such as feeding rate, can increase with temperature potentially having positive fitness effects. Here, we examine how the hunting behaviors of free-ranging Northern Pacific Rattlesnakes (Crotalus oreganus) associate with air temperature and body temperature. We continuously recorded snakes in the field using videography, capturing behaviors rarely considered in past studies such as movements in and out of refuge and strikes on prey. We found that as mean daily air temperature increased, hunting activity and the likelihood of hunting at night decreased, while the number of movements and distance moved per day increased. Snakes typically retreated to refuge before body temperatures reached 31°C. Body temperatures of snakes hunting on the surface were lower compared to temperatures of non-hunting snakes in refuge in the morning, while this relationship was inverted in the afternoon. Snake body size influenced the disparity of these temperatures. Finally, strike initiation and success occurred across a wide range of body temperatures, indicating hunting performance may not be strongly constrained by temperature. These results on the temperatures at which free-ranging rattlesnakes exhibit fitness-related behaviors could be valuable for understanding their vulnerabilities to future climates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Moving evidence into practice: cost analysis and assessment of macaques' sustained behavioral engagement with videogames and foraging devices.

    Science.gov (United States)

    Bennett, Allyson J; Perkins, Chaney M; Tenpas, Parker D; Reinebach, Alma L; Pierre, Peter J

    2016-12-01

    Environmental enrichment plans for captive nonhuman primates often include provision of foraging devices. The rationale for using foraging devices is to promote species-typical activity patterns that encourage physical engagement and provide multi-sensory stimulation. However, these devices have been shown to be ineffective at sustaining manipulation over long periods of time, and often produce minimal cognitive engagement. Here we use an evidence-based approach to directly compare the amount of object-directed behavior with a foraging device and a computer-based videogame system. We recorded 11 adult male rhesus monkeys' interactions with a foraging device and two tasks within a joystick videogame cognitive test battery. Both techniques successfully produced high levels of engagement during the initial 20 min of observation. After 1 hr the monkeys manipulated the foraging device significantly less than the joystick, F(2,10) = 43.93, P < 0.0001. Subsequent testing showed that the monkeys engaged in videogame play for the majority of a 5 hr period, provided that they received a 94 mg chow pellet upon successful completion of trials. Using a model approach, we developed previously as a basis for standardized cost:benefit analysis to inform facility decisions, we calculated the comprehensive cost of incorporating a videogame system as an enrichment strategy. The videogame system has a higher initial cost compared to widely-used foraging devices, however, the ongoing labor and supply costs are relatively low. Our findings add to two decades of empirical studies by a number of laboratories that have demonstrated the successful use of videogame-based systems to promote sustained non-social cognitive engagement for macaques. The broader significance of the work lies in the application of a systematic approach to compare and contrast enrichment strategies and encourage evidence-based decision making when choosing an enrichment strategy in a manner that

  14. Assessing herbivore foraging behavior with GPS collars in a semiarid grassland

    Science.gov (United States)

    Advances in global positioning system (GPS) technology have dramatically enhanced the ability to track and study distributions of free-ranging livestock. However, understanding factors controlling livestock foraging distribution requires the ability to assess when and where they are foraging. We col...

  15. Social facilitation of exploratory foraging behavior in capuchin monkeys (Cebus apella).

    Science.gov (United States)

    Dindo, Marietta; Whiten, Andrew; de Waal, Frans B M

    2009-05-01

    Much of the research on animal social learning focuses on complex cognitive functions such as imitation and emulation. When compelling evidence for such processes is not forthcoming, simpler processes are often assumed but rarely directly tested for. In this study we address the phenomenon of social facilitation, whereby the presence of a feeding conspecific is hypothesized to affect the motivation and behavior of the subject, elevating the likelihood of exploration and discovery in relation to the task at hand. Using a novel foraging task, sufficiently challenging that only just over half the subjects successfully gained food from it, we compared the performance of capuchin monkeys working either alone, or in a "social" condition where an actively feeding conspecific was in an adjacent chamber. Although similar numbers of subjects in these conditions were eventually successful during the 20 trials presented, the latency to successful solution of the task was over three times faster for monkeys in the social condition. The minority of monkeys that failed to learn (9/23) were then exposed to a proficient model. Only those older than 5 years provided evidence of learning from this. Accordingly, we obtained evidence for the social facilitation the study was designed to test for, and limited supplementary evidence for social learning in the older individuals who had not learned individually. These results are discussed in relation to other recent evidence for social learning in monkeys. (c) 2009 Wiley-Liss, Inc.

  16. Odors influencing foraging behavior of the California spiny lobster, Panulirus interruptus, and other decapod crustacea

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer-Faust, R.K.; Case, J.F.

    1982-01-01

    Trapping experiments were conducted in the More Mesa coastal area of Santa Barbara, California, 4 km east of the U.C. Santa Barbara campus. Live intact and injured prey and excised tissues were placed in traps, in containers allowing odor release but preventing contacts with entering animals. Individuals of six prey species failed to attract lobsters when alive and intact, but some became attractive once injured. Excised tissues were the most effective baits. Abalone and mackerel muscle were attractive to lobsters but relatively nonattractive to crabs, while angel shark muscle was attractive to crabs but not to lobsters. Shrimp cephalothoraces were repellant to lobsters. Naturally occurring attractant and repellent tissues are thus identified and chemosensory abilities of lobsters and sympatric crabs are demonstrated to differ. Abalone muscle increased in attractivity following 1-2 days field exposure. Molecular weights of stimulants released by both weathered and fresh abalone were < 10,000 daltons with evidence suggesting that the 1000-10,000 dalton fraction may contribute significantly to attraction. Concentrations of total primary amines released from abalone muscle failed to differ from background levels, following an initial three (0-3h) period. Primary amines thus appear not to contribute directly to captures of lobsters, since animals were usually caught greater than or equal to 7 h after baits were positioned. Amino acids were the dominant contributors to present measurements of total primary amines, suggesting that these molecules may not direct lobster foraging behavior in the present experiments. 41 references, 4 figures, 8 tables.

  17. The influence of past experience on wasp choice related to foraging behavior.

    Science.gov (United States)

    Sabrina, Moreyra; D'Adamo, Paola; Lozada, Mariana

    2014-12-01

    Memory has been little studied in social wasps. Vespula germanica (Fab.) (Hymenoptera: Vespidae) frequently revisits nondepleted food sources, making several trips between the resource and the nest. In this study, we analyzed this relocating behavior in order to evaluate whether this species is capable of remembering an established association after 1 h. To this end, we trained wasps to feed from a certain array. Then it was removed, setting it up again 1 h later, but this time 2 baited feeders were put in place, one at the original feeding site and the other opposite the first. We recorded the proportion of returning foragers, and their choice of feeder, after either 1 or 4 feeding trials. After 1 h, 78% of wasps trained with 4 feeding trials and 65% trained with 1, returned to the experimental area. Furthermore, during the testing phase, wasps trained with 4 feeding trials collected food from the previously learned feeder significantly more frequently than from the nonlearned one (P food on 4 consecutive occasions, but not after only 1. To our knowledge, this is the first study showing that V. germanica is capable of remembering an association 1 h after the last associative event, demonstrating that 1 h does not impair memory retention if 4 feeding experiences have occurred. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  18. Foraging behavior of redheads (Aythya americana) wintering in Texas and Louisiana

    Science.gov (United States)

    Woodin, M.C.; Michot, T.C.

    2006-01-01

    Redheads, Aythya americana, concentrate in large numbers annually in traditional wintering areas along the western and northern rim of the Gulf of Mexico. Two of these areas are the Laguna Madre of Texas and Chandeleur Sound of Louisiana. We collected data on 54,340 activities from 103 redhead flocks in Texas and 51,650 activities from 57 redhead flocks in Louisiana. Males and females fed similarly, differing neither in levels of feeding (percent of all birds in flock that were feeding) (p>0.90) nor in percentages of birds feeding by diving, tipping, dipping, or gleaning from the surface (p>0.10). The foraging level of redheads in the upper Laguna Madre region was relatively constant throughout two winters. Foraging of redheads in early winter in Louisiana was significantly greater than redhead foraging in the upper Laguna Madre, but by late winter, foraging by redheads in Louisiana had declined to the same level as that shown by redheads foraging in the upper Laguna Madre. The overall foraging level of redheads from Chandeleur Sound was greater (41%) than that of redheads in the upper Laguna Madre (26%), yet it was quite similar to the 46% foraging level reported for redheads from the lower Laguna Madre. Redheads in the upper Laguna Madre region of Texas fed more by diving than did those in the Chandeleur Sound and the lower Laguna Madre. Diving increased in frequency in late winter. Greater reliance by redheads on diving in January and February indicates that the birds altered their foraging to feed in deeper water, suggesting that the large concentrations of redheads staging at this time for spring migration may have displaced some birds to alternative foraging sites. Our results imply that the most likely period for food resources to become limiting for wintering redheads is when they are staging in late winter. ?? Springer 2006.

  19. Temporal and Spatial Foraging Behavior of the Larvae of the Fall Webworm Hyphantria cunea

    Directory of Open Access Journals (Sweden)

    Terrence D. Fitzgerald

    2015-01-01

    Full Text Available During their first three larval stadia, caterpillars of Hyphantria cunea (Lepidoptera: Arctiidae are patch-restricted foragers, confining their activity to a web-nest they construct in the branches of the host tree. Activity recordings of eight field colonies made over 46 colony-days showed that the later instars become central place foragers, leaving their nests at dusk to feed at distant sites and then returning to their nests in the morning. Colonies maintained in the laboratory showed that same pattern of foraging. In Y-choice laboratory experiments, caterpillars were slow to abandon old, exhausted feeding sites in favor of new food finds. An average of approximately 40% of the caterpillars in five colonies still selected pathways leading to exhausted sites at the onset of foraging bouts over those leading to new sites after feeding exclusively at the new sites on each of the previous four days. On returning to their nests in the morning, approximately 23% of the caterpillars erred by selecting pathways that led them away from the nest rather than toward it and showed no improvement over the course of the study. The results of these Y-choice studies indicate that, compared to other previously studied species of social caterpillars, the webworm employs a relatively simple system of collective foraging.

  20. Effect of early weaning and concentrate supplementation at forage intake and ingestive behavior of sheep grazing Tifton 85 (Cynodon spp.

    Directory of Open Access Journals (Sweden)

    Marina Gabriela Berchiol da Silva

    2012-12-01

    Full Text Available The objective of this study was to evaluate then early weaning and concentrate supplementation effect at pasture characteristics, forage intake and ingestive behavior of lambs grazing Tifton 85 (Cynodon spp.. A randomized block design was used with four treatments, three replications and five lambs per replicate. A total of 60 Suffolk lambs, that 36 were females and 24 steers. The treatments had corresponded to the combinations between early weaning precocious and concentrate supplementation strategies, that resulted in the following ones finishing systems: 1 lambs kept with mothers without supplementation; 2 lambs kept with mothers supplemented with concentrate in creep feeding at 2% of body weigh (BW in DM/day; 3 weaned lambs at 45 ± 5 days without supplementation and 4 weaned lambs at 45 ± 5 days and supplemented with concentrate at 2% of BW in DM/day. Grazing utilization method was continuous stocking with adjustment every 21 days, to maintain forage offer at 12% of BW in DM/day. To characterize the pastoral environment was assessed: morphological composition of pasture. There were made four observations the behavioral activities for individually lambs per 24 hours, such as: grazing, ruminating, suckling, supplementation, and others activities. The intake rate was measured using the technique of double sampling and determination of bite rate was made by visual observation of the number of bits made for animal. The behavior and the distribution of daily activities made by the lambs are influenced for the strategies evaluated. The exclusive presence of milk or supplement concentrate in the diet are important modulators of grazing activity, and the absence of these nutrient sources were offset per an increase in grazing time. This response considered the decrease in nutritional support and lower efficiency in harvesting the forage by lambs. The weaning influenced the morphological characteristics of the pasture, which showed favored the

  1. Record and foraging behavior of ants (Hymenoptera, Formicidae in vertebrate carcasses

    Directory of Open Access Journals (Sweden)

    Tatiane Tagliatti Maciel

    2016-12-01

    Full Text Available Knowing the importance of participation by insects at cadaverous decomposition processes, and the limited use of the family Formicidae in criminal investigations, this study aims to record the foraging activity of four genera of ants in carcasses of birds and mammals. Observations occurred accidentally in two locations in the State of Minas Gerais, Brazil. In total, seven species of ants foraging in eight vertebrate carcasses were recorded. In addition, the study reported for the first time the presence of Wasmannia in carcasses in Brazil.

  2. Foraging behavior of lactating South American sea lions (Otaria flavescens) and spatial-temporal resource overlap with the Uruguayan fisheries

    Science.gov (United States)

    Riet-Sapriza, Federico G.; Costa, Daniel P.; Franco-Trecu, Valentina; Marín, Yamandú; Chocca, Julio; González, Bernardo; Beathyate, Gastón; Louise Chilvers, B.; Hückstadt, Luis A.

    2013-04-01

    Resource competition between fisheries and marine mammal continue to raise concern worldwide. Understanding this complex conflict requires data on spatial and dietary overlap of marine mammal and fisheries. In Uruguay the South American sea lions population has been dramatically declining over the past decade. The reasons for this population decline are unknown but may include the following: (1) direct harvesting; (2) reduced prey availability and distribution as a consequence of environmental change; or (3) biological interaction with fisheries. This study aims to determine resource overlap and competition between South American sea lions (SASL, Otaria flavescens, n=10) and the artisanal fisheries (AF), and the coastal bottom trawl fisheries (CBTF). We integrated data on sea lions diet (scat analysis), spatial and annual consumption estimates; and foraging behavior-satellite-tracking data from lactating SASL with data on fishing effort areas and fisheries landings. We found that lactating SASL are benthic divers and forage in shallow water within the continental shelf. SASL's foraging areas overlapped with CBTF and AF fisheries operational areas. Dietary analysis indicated a high degree of overlap between the diet of SASL and the AF and CBTF fisheries catch. The results of our work show differing degrees of spatial resource overlap with AF and CBTF, highlighting that there are differences in potential impact from each fishery; and that different management/conservation approaches may need to be taken to solve the fisheries-SASL conflict.

  3. Comparative Foraging Behavior of Apis Cerana F. and Apis Mellifera L. in Rapeseed under Cage Condition in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Rameshwor Pudasaini

    2014-12-01

    Full Text Available An experiment was conducted to determine the foraging behavior of Apis mellifera L. and Apis cerana F. in rapeseed under cage condition in Chitwan, Nepal during 2012-2013. This experiment showed that Apis cerana F. foraged extra 42 minute per day as compared to Apis mellifera L. Apis cerana F. were more attracted to nectar, whereas Apis mellifera L. were more attracted to pollen collection throughout the day. The activities, in into hives and out from hives, for both species were recorded more at 2:00 pm and least at 8:00 am. The highest in-out were observed at 2:00 pm on both species as Apis mellifera L. 44.33 bees entered into hives and 49.66 bees went out of hives, whereas lower number of Apis cerana F. 43.66 bees entered into hives and 48.16 bees were out of hives. Apis mellifera L. collect 1.22:1 and 0.41:1 pollen nectar ratio at 10:00 am and 4:00 am whereas at same hours Apis cerana collect 1.16:1 and 0.30:1 pollen nectar ratio. Apis cerana F. foraged significantly higher number of rapeseed flowers and plants as compared to Apis mellifera L. under caged condition. It shows that Apis cerana F. was more efficient pollinator as compared to Apis mellifera L. under caged condition.

  4. Behavior and foraging technique of the Ingram's squirrel Guerlinguetus ingrami (Sciuridae: Rodentia in an Araucaria moist forest fragment

    Directory of Open Access Journals (Sweden)

    Calebe Pereira Mendes

    2014-06-01

    Full Text Available This work describes the foraging techniques, body positions and behavior of free-ranging Ingram's squirrel Guerlinguetus ingrami Thomas, 1901 in a region of the Araucaria moist forest, in the Atlantic Forest of southern Brazil. The animals were observed using the "all occurrence sampling" method with the aid of binoculars and a digital camcorder. All behaviors were described in diagrams and an ethogram. We recorded five basic body positions, 24 behaviors, two food choices, and three feeding strategies utilized to open fruits of Syagrus romanzoffiana (Cham., the main food source of Ingram's squirrels. We also observed a variance in the animals' stance, which is possibly influenced by predation risk, and discuss the causes of some behaviors.

  5. Foraging behavior of larval cod ( Gadus morhua ) influenced by prey density and hunger

    DEFF Research Database (Denmark)

    Munk, Peter

    1995-01-01

    Fish larvae meet diverse environmental conditions at sea, and larval growth and chance of survival depend on a flexible response to environmental variability. The present study focuses on the flexibility of the foraging behaviour of larval cod in a series of laboratory experiments on larval search...

  6. Optimal foraging behavior and the thermal neutral zone of Peromyscus leucopus during winter: A test using natural and controlled ambient temperatures.

    Science.gov (United States)

    St Juliana, Justin R; Mitchell, William A

    2016-02-01

    Endotherms foraging at temperatures outside of their thermal neutral zone (TNZ) pay an increased energetic cost. We asked if thermally-induced changes in foraging costs influence quitting harvest rate (QHR) of mice. We predicted that mice foraging during the winter would have a higher QHR in more costly colder conditions. We conducted our study with wild caught Peromyscus leucopus in an enclosure located in West Terre Haute, Indiana. We assayed changes in QHR using the forager's giving up density (GUD), which is the amount of uneaten seeds reaming in a tray after foraging activity. Each night from January 12th to March 13th, we assigned 4 trays as "cold trays" (at ambient temperature), and 4 trays as "hot trays" (trays with a ceramic heat element that increased the temperatures of feeding trays ca. 10-15°C). GUDs (and therfore QHRs) increased as a function of decreasing ambient temperature. Furthermore there was an interaction between tray temperature and ambient temperature; namely, on cool nights mice had lower GUDs in the "hot trays", but on warm nights mice had lower GUDs in the "cold trays". The TNZ for P. leucopus actively foraging during winter may be closer to the environmental average temperature than typically measured in the laboratory. Overall, these results support the idea that QHR is related to an animal's foraging in thermally challenged conditions. We present a unique way of measuring an animal's TNZ in the field using behavioral indicators.

  7. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision.

    Science.gov (United States)

    Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Ghaffari, M H

    2017-02-01

    The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage

  8. Growth, life history, and species interactions of bluegill sunfish (Lepomis macrochirus) under heavy predation

    Energy Technology Data Exchange (ETDEWEB)

    Belk, M.C. [Georgia Univ., Athens, GA (United States)

    1992-12-31

    The purpose of this study was, first, to compare growth and life history characteristics of an unfished population of bluegill sunfish (Lepomis macrochirus) in the presence of an abundant predator population to characteristic exhibited by bluegills in typical southeastern US reservoirs where the abundance of predators is reduced, but fishing is increased. The second objective was to determine if differences observed between populations were determined genetically or environmentally.

  9. Influence of vegetation on the nocturnal foraging behaviors and vertebrate prey capture by endangered Burrowing Owls

    Directory of Open Access Journals (Sweden)

    Alan Marsh

    2014-06-01

    Full Text Available Restrictions in technology have limited past habitat selection studies for many species to the home-range level, as a finer-scale understanding was often not possible. Consequently, these studies may not identify the true mechanism driving habitat selection patterns, which may influence how such results are applied in conservation. We used GPS dataloggers with digital video recorders to identify foraging modes and locations in which endangered Burrowing Owls (Athene cunicularia captured prey. We measured the coarse and fine-scale characteristics of vegetation at locations in which owls searched for, versus where they caught, vertebrate prey. Most prey items were caught using hover-hunting. Burrowing Owls searched for, and caught, vertebrate prey in all cover types, but were more likely to kill prey in areas with sparse and less dense vegetative cover. Management strategies designed to increase Burrowing Owl foraging success in the Canadian prairies should try to ensure a mosaic of vegetation heights across cover types.

  10. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge.

    Science.gov (United States)

    Goldbogen, Jeremy A; Calambokidis, John; Croll, Donald A; Harvey, James T; Newton, Kelly M; Oleson, Erin M; Schorr, Greg; Shadwick, Robert E

    2008-12-01

    Lunge feeding in rorqual whales is a drag-based feeding mechanism that is thought to entail a high energetic cost and consequently limit the maximum dive time of these extraordinarily large predators. Although the kinematics of lunge feeding in fin whales supports this hypothesis, it is unclear whether respiratory compensation occurs as a consequence of lunge-feeding activity. We used high-resolution digital tags on foraging humpback whales (Megaptera novaengliae) to determine the number of lunges executed per dive as well as respiratory frequency between dives. Data from two whales are reported, which together performed 58 foraging dives and 451 lunges. During one study, we tracked one tagged whale for approximately 2 h and examined the spatial distribution of prey using a digital echosounder. These data were integrated with the dive profile to reveal that lunges are directed toward the upper boundary of dense krill aggregations. Foraging dives were characterized by a gliding descent, up to 15 lunges at depth, and an ascent powered by steady swimming. Longer dives were required to perform more lunges at depth and these extended apneas were followed by an increase in the number of breaths taken after a dive. Maximum dive durations during foraging were approximately half of those previously reported for singing (i.e. non-feeding) humpback whales. At the highest lunge frequencies (10 to 15 lunges per dive), respiratory rate was at least threefold higher than that of singing humpback whales that underwent a similar degree of apnea. These data suggest that the high energetic cost associated with lunge feeding in blue and fin whales also occurs in intermediate sized rorquals.

  11. Generalist Behavior Describes Pollen Foraging for Perceived Oligolectic and Polylectic Bees.

    Science.gov (United States)

    Ritchie, Alan D; Ruppel, Rebecca; Jha, Shalene

    2016-08-01

    Native bees provide essential pollination services to cultivated and wild plants worldwide. Despite the need to conserve pollinators, the foraging patterns of native bees are poorly understood. Classic concepts of resource use have typically categorized bee species as specialists or generalists based on floral visitation patterns. While intraspecific variation in bee foraging likely depends on local land use, sex, and phenological period, among other factors, these potential drivers of floral visitation are rarely explicitly investigated. In this study, we explore the potential for inter- and intra-specific variation in floral visitation by investigating the pollen loads of two solitary, similarly sized, ground-nesting native bee species within the Apinae, Melissodes tepaneca (Cresson) and Diadasia rinconis (Cockerell), categorized as generalist and specialist based on past floral visitation studies, respectively. Our analyses reveal generalist foraging and indicate that natural habitat availability significantly drives pollen load composition for both species. The putative specialist, D. rinconis, exhibited significant differences in pollen load composition between males and females, between pan and net collection methods, and between the different phenological periods. The putative generalist, M. tepaneca, exhibited significant differences in pollen load composition between the sexes, but only in the late season. Both species exhibited significant preference levels for multiple native plant species across the study region. Given that pollen collection is essential for native bee population persistence across natural and human-dominated habitats, our findings suggest consideration of both pollen collection and floral visitation patterns to holistically describe floral usage and develop pollinator conservation strategies.

  12. Behavior of dusky dolphins foraging on the deep-scattering layer in Kaikoura Canyon, New Zealand

    Science.gov (United States)

    Benoit-Bird, Kelly; Wursig, Bernd; McFadden, Cynthia

    2003-04-01

    Little is known of foraging habits of sound-scattering layer consumers. A 200-kHz echosounder was used to survey dusky dolphins and the sound-scattering layer in winter 2002, in Kaikoura Canyon, New Zealand. Visual observations of dolphin surfacings occurred 84% of the time that dolphins were acoustically detected, confirming identifications from the acoustic data. Dusky dolphins were within the layer at 2000 h (about 1.5 h after dusk), within 125 m of the surface. As the layer rose to within 30 m of the surface at 0100 h, the observed depth of dolphins decreased presumably as the dolphins followed the vertical migration of their prey. The mean depth of dolphins was within the scattering layer except when the top of the layer was deeper than 125 m. Dusky dolphins often forage within large groups. Acoustically identified subgroups of coordinated animals ranged from 1 to 5 dolphins. Subgroup size varied with time of night, minimum depth of the scattering layer, and the variance of the food resource. The largest subgroups occurred when the scattering layer was closest to the surface, and when the layer was most heterogeneous. Time, depth of layer, and layer variance contributed significantly to predicting foraging dusky dolphin subgroup size.

  13. Ramet population ecology of Panicum virgatum in the field - Competitively random growth of ramets and foraging behavior of ramet populations

    Institute of Scientific and Technical Information of China (English)

    Xinguo Yang; Tianlong Wu; Xu Cheng

    2008-01-01

    The authors investigated the heterogeneous size patterns and dynamic growth of the ramet population of Panicum virgatum, a clonal caespitose plant, limited to the space occupied by a ramet bunch and the time of the ramet yearly life cycle, to understand the ecology of clonal caespitose plants in the field, where the ramet bunch generally consisted of more than one genet. Dynamic life tables for ramet populations were established by the replacement of living ramets at the present time with "dead" ones in past time. These tables revealed stable coexisting patterns of isometric and allometric growing processes of ramets in mass and height respectively, which approximately followed the historic trajectory of a density-independent population. The ecology of clonal caespitose plants is further discussed based on the competitively random growth of ramet individuals, including the scale of foraging behavior. In the field, the ramet population ecol-ogy of switchgrass may be a statistical result of competitively random growth of ramet individuals. The foraging behavior of a ramet population could then be presented as a process in which ramet individuals competed with each other for light and grew randomly, whileat the same time a relatively stable dynamic growth pattern was apparent at the level of the ramet population, and the functional leaves were placed properly in time and space.

  14. The bottlenose dolphin Tursiops truncatus foraging around a fish farm: Effects of prey abundance on dolphins’ behavior

    Directory of Open Access Journals (Sweden)

    Bruno Díaz LÓPEZ

    2009-08-01

    Full Text Available The extent to which prey abundance influences both bottlenose dolphin foraging behavior and group size in the presence of human activities has not previously been studied. The primary aim of this study was to identify and quantify how wild bottlenose dolphins respond, individually and as groups, to the relative abundance of prey around a fish farm. Detailed views of dolphins’ behavior were obtained by focal following individual animals whilst simultaneously collecting surface and underwater behavioral data. A total of 2150 dive intervals were analyzed, corresponding to 342 focal samples, lasting over 34 hours. Bottlenose dolphins remained submerged for a mean duration of 46.4 seconds and a maximum of 249 seconds. This study provides the first quantified data on bottlenose dolphin diving behavior in a marine fin-fish farm area. This study’s results indicate that within a fish farm area used intensively by bottlenose dolphins for feeding, dolphins did not modify dive duration. Additionally, underwater observations confirmed that dolphins find it easier to exploit a concentrated food source and it appears that hunting tactic and not group size plays an important role during feeding activities. Thus, bottlenose dolphins appear capable of modifying their hunting tactics according to the abundance of prey. When top predators display behavioral responses to activities not directed at them, the task of studying all possible effects of human activities can become even more challenging [Current Zoology 55(4: 243–248, 2009].

  15. The influence of oceanographic features on the foraging behavior of the olive ridley sea turtle Lepidochelys olivacea along the Guiana coast

    Science.gov (United States)

    Chambault, Philippine; de Thoisy, Benoît; Heerah, Karine; Conchon, Anna; Barrioz, Sébastien; Dos Reis, Virginie; Berzins, Rachel; Kelle, Laurent; Picard, Baptiste; Roquet, Fabien; Le Maho, Yvon; Chevallier, Damien

    2016-03-01

    The circulation in the Western Equatorial Atlantic is characterized by a highly dynamic mesoscale activity that shapes the Guiana continental shelf. Olive ridley sea turtles (Lepidochelys olivacea) nesting in French Guiana cross this turbulent environment during their post-nesting migration. We studied how oceanographic and biological conditions drove the foraging behavior of 18 adult females, using satellite telemetry, remote sensing data (sea surface temperature, sea surface height, current velocity and euphotic depth), simulations of micronekton biomass (pelagic organisms) and in situ records (water temperature and salinity). The occurrence of foraging events throughout migration was located using Residence Time analysis, while an innovative proxy of the hunting time within a dive was used to identify and quantify foraging events during dives. Olive ridleys migrated northwestwards using the Guiana current and remained on the continental shelf at the edge of eddies formed by the North Brazil retroflection, an area characterized by low turbulence and high micronekton biomass. They performed mainly pelagic dives, hunting for an average 77% of their time. Hunting time within a dive increased with shallower euphotic depth and with lower water temperatures, and mean hunting depth increased with deeper thermocline. This is the first study to quantify foraging activity within dives in olive ridleys, and reveals the crucial role played by the thermocline on the foraging behavior of this carnivorous species. This study also provides novel and detailed data describing how turtles actively use oceanographic structures during post-nesting migration.

  16. The effects of flower, floral display, and reward sizes on bumblebee foraging behavior when pollen is the reward and plants are dichogamous

    Science.gov (United States)

    Insect-pollinated plants have developed showy flowers and floral displays that attract pollinators. Pollinators, in turn, show preferences for specific floral traits and their foraging behavior is influenced by floral traits. In this study, we examined the preference of bumble bees for flower size, ...

  17. Anticipatory and foraging behaviors in response to palatable food reward in chickens: effects of dopamine D2 receptor blockade and domestication.

    Science.gov (United States)

    Moe, Randi Oppermann; Nordgreen, Janicke; Janczak, Andrew M; Bakken, Morten; Spruijt, Berry M; Jensen, Per

    2014-06-22

    Behaviors associated with anticipation and search for palatable food may provide information about dopaminergic reward processes and positive motivational affect in animals. The overall aim was to investigate the involvement of dopamine signaling in the regulation of cue-induced anticipation and search for palatable food reward in chicken, and whether domestication has affected expression of reward-related behaviors. The specific aims were to describe effects of mealworms (palatable food for hens) and haloperidol (a dopamine D2 antagonist) on foraging behaviors and cue-induced anticipatory behaviors in Red Junglefowl (RJF; the wild ancestor of modern laying hens) and a white layer hybrid (LSL). RJF (n=26) and LSL (n=20) were initially trained on a conditioning schedule to anticipate mealworms (unconditioned stimulus; US) 25s after exposure to a red light (conditioned stimulus; CS). For the experiment, hens received haloperidol or saline injections 30 min before exposure to one CS+US combination. Behavior was registered 10 min before CS and 10 min after US (foraging behaviors), and during the CS-US interval (anticipatory behaviors). Higher frequencies of CS-induced anticipatory head movements, faster approach to rewards, and higher frequency of foraging behaviors were found in LSL compared to RJF. Haloperidol suppressed CS-induced head movements in both breeds, and the frequency of foraging behaviors after reward delivery. The results support a role of dopamine signaling in the regulation of reward processes in chickens, and suggest that domestication has changed the threshold for perceiving food incentives and/or for expressing reward-related behaviors that may be indicative of positive motivational affect in hens. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Foraging Behavior in Guppies: Do Size and Color of Prey Make a Difference?

    Science.gov (United States)

    Rop, Charles J.

    2001-01-01

    Describes an animal behavior experiment using guppies. Students observe the behavior of a guppy as it feeds on prey and make observations, collect and analyze data, draw conclusions, and design their own experiments. (SAH)

  19. Effects of natural and synthetic alarm pheromone and individual pheromone components on foraging behavior of the giant Asian honey bee, Apis dorsata.

    Science.gov (United States)

    Li, Jianjun; Wang, Zhengwei; Tan, Ken; Qu, Yufeng; Nieh, James C

    2014-10-01

    Social pollinators such as honey bees face attacks from predators not only at the nest, but also during foraging. Pollinating honey bees can therefore release alarm pheromones that deter conspecifics from visiting dangerous inflorescences. However, the effect of alarm pheromone and its chemical components upon bee avoidance of dangerous food sources remains unclear. We tested the responses of giant honey bee foragers, Apis dorsata, presented with alarm pheromone at a floral array. Foragers investigated the inflorescence with natural alarm pheromone, but 3.3-fold more foragers preferred to land on the 'safe' inflorescence without alarm pheromone. Using gas chromatography-mass spectrometry analysis, we identified eight chemical components in the alarm pheromone, of which three components (1-octanol, decanal and gamma-octanoic lactone) have not previously been reported in this species. We bioassayed six major compounds and found that a synthetic mixture of these compounds elicited behaviors statistically indistinguishable from responses to natural alarm pheromone. By testing each compound separately, we show that gamma-octanoic lactone, isopentyl acetate and (E)-2-decen-1-yl acetate are active compounds that elicit significant alarm responses. Gamma-octanoic lactone elicited the strongest response to a single compound and has not been previously reported in honey bee alarm pheromone. Isopentyl acetate is widely found in the alarm pheromones of sympatric Asian honey bee species, and thus alarmed A. dorsata foragers may produce information useful for conspecifics and heterospecifics, thereby broadening the effects of alarm information on plant pollination.

  20. Animal-borne imaging reveals novel insights into the foraging behaviors and Diel activity of a large-bodied apex predator, the American alligator (Alligator mississippiensis.

    Directory of Open Access Journals (Sweden)

    James C Nifong

    Full Text Available Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour as well as the probability of prey-capture success (mean = 0.52 per attack were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals' experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal

  1. Animal-Borne Imaging Reveals Novel Insights into the Foraging Behaviors and Diel Activity of a Large-Bodied Apex Predator, the American Alligator (Alligator mississippiensis)

    Science.gov (United States)

    Nifong, James C.; Nifong, Rachel L.; Silliman, Brian R.; Lowers, Russell H.; Guillette, Louis J.; Ferguson, Jake M.; Welsh, Matthew; Abernathy, Kyler; Marshall, Greg

    2014-01-01

    Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales) can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam) to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis) in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour) as well as the probability of prey-capture success (mean = 0.52 per attack) were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals’ experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal

  2. Feed intake, ruminal fermentation, and animal behavior of beef heifers fed forage free diets containing nonforage fiber sources.

    Science.gov (United States)

    Iraira, S P; Ruíz de la Torre, J L; Rodríguez-Prado, M; Calsamiglia, S; Manteca, X; Ferret, A

    2013-08-01

    Eight Simmental heifers (initial BW 313.4 ± 13.2 kg) were randomly assigned to 1 of 4 experimental treatments in a 4 × 4 double Latin square design. The experiment was performed in four 28-d periods. Treatments tested were a control diet in which barley straw (BS) was used as a fiber source and 3 diets where the main difference was the nonforage fiber source used: soybean hulls (SH), beet pulp (BP) in pellets, and whole cottonseed (WCS). All ingredients, except the fiber sources, were ground through a 3-mm screen. Fiber ingredients were incorporated at 10, 17, 17, and 16% (on DM basis) in BS, SH, BP, and WCS, respectively. All diets were offered ad libitum as total mixed ration and designed to be isoenergetic (2.95 Mcal ME/kg DM), isonitrogenous (15% CP, DM basis), and with a NDF content of 20% (on DM basis) although there was a discrepancy between the theoretical and the actual chemical composition of the diets. Particle size separation was performed using the 3-screen Penn State Particle Separator. Animals were allotted in 8 individual roofed concrete pens equipped with a feedbunk and water trough. Intake was recorded over 7 d in the last week of each experimental period. Behavior was recorded for 24-h on d 2 and d 6 of each experimental week using a digital video recording device. A digital color camera was set up in front of each pen. Data recorded, except behavioral activities, were statistically analyzed using the MIXED procedure of SAS. To test treatment effect for each behavioral activity, analysis was performed using the GLIMMIX procedure of SAS. Diets ranked from greater to lesser proportion of particles of less than 1.18 mm as follows: SH, BS, WCS, and BP. Dry matter intake of heifers fed WCS was greater than the remaining treatments (P = 0.049). The greatest average ruminal pH was registered in heifers fed BS (6.4) and BP (6.3) whereas the smallest was recorded in SH diet (5.9), with WCS (6.2) occupying an intermediate position (P = 0.006). Total

  3. Phylogeography of the bluegill sunfish, Lepomis macrochirus, in the Mississippi River Basin.

    Science.gov (United States)

    Kawamura, Kouichi; Yonekura, Ryuji; Katano, Osamu; Taniguchi, Yoshinori; Saitoh, Kenji

    2009-01-01

    The Mississippi River Basin supports the richest fish fauna in eastern North America and has played a key role in the maintenance of fish biodiversity, especially as a refuge for freshwater fishes during glaciations. In this study, we investigated the phylogeography of the bluegill sunfish, Lepomis macrochirus, in eastern North America, using complete sequence of the mitochondrial ND1 gene from 369 samples collected at 15 sites. Phylogenetic analysis revealed two major lineages (northern and southern clades) in a parsimony network. A sympatric distribution of the lineages was widely observed in the Mississippi Basin. Sequence diversity in the two lineages was significantly lower in glaciated regions around the Great Lakes than in unglaciated regions. The two lineages were estimated to have diverged in the Kansan glaciation, and refugia for both existed around the Ouachita Highlands. The southern clade dispersed during the Yasmouth Interglacial, prior to the dispersal of the northern clade during the Sangamon Interglacial. In the northern clade, low genetic diversity and population fragmentation inferred by nested clade analysis (NCA) were considered due to bottleneck events in the Wisconsin glaciation, while the southern clade showed isolation by distance in a Mantel test. A difference in demographic fluctuation suggests that sympatry of the two lineages has resulted from recent secondary admixture through the range expansion of the northern clade in the post-Pleistocene. Large-scale admixture of multiple mtDNA lineages in L. macrochirus, which has not been recorded in other fishes in the Mississippi River Basin, may result from their high vagility.

  4. Behavioral evidence of hunting and foraging techniques by a top predator suggests the importance of scavenging for preadults.

    Science.gov (United States)

    Margalida, Antoni; Colomer, MªÀngels; Sánchez, Roberto; Sánchez, Francisco Javier; Oria, Javier; González, Luis Mariano

    2017-06-01

    Scavenging may be a regular feeding behavior for some facultative raptor species occupying low quality habitats and/or with little experience in hunting techniques. However, its importance has been largely underestimated due to methodological limitations in identifying the real proportion in the diet. Here, through direct observations, we assessed the hunting and foraging success of the threatened Spanish imperial eagle Aquila adalberti determining the influence of age, sex, breeding status, habitat quality, prey type, and landscape characteristics. From 465 observations, Spanish imperial eagles used hunting in flight (42%), scavenging (30%), hunting from a perch (16%) and kleptoparasitism (12%). Our model suggests that Prey size and Prey type best explain hunting success, followed by Landscape and Sex. Our findings suggest that Spanish imperial eagles increase hunting success with age, with scavenging and kleptoparasitism regularly used as juveniles. The absence of relationships with any of the variables considered suggests that kleptoparasitism is an opportunistic behavior used sporadically. Scavenging is also independent of habitat quality and landscape characteristics. Accordingly, low prey density is not a driver of carrion use for preadult individuals, suggesting that a lack of hunting ability obliges this age-class to use this alternative feeding technique regularly. As a result, the threatened Spanish imperial eagle population is also prone to mortality related to the illegal use of poison baits and, potentially, veterinary drugs (i.e., diclofenac).

  5. The use of pelvic fins for benthic locomotion during foraging behavior in Potamotrygon motoro (Chondrichthyes: Potamotrygonidae

    Directory of Open Access Journals (Sweden)

    Akemi Shibuya

    2015-06-01

    Full Text Available Synchronized bipedal movements of the pelvic fins provide propulsion (punting during displacement on the substrate in batoids with benthic locomotion. In skates (Rajidae this mechanism is mainly generated by the crural cartilages. Although lacking these anatomical structures, some stingray species show modifications of their pelvic fins to aid in benthic locomotion. This study describes the use of the pelvic fins for locomotory performance and body re-orientation in the freshwater stingray Potamotrygon motoro (Müller & Henle, 1841 during foraging. Pelvic fin movements of juvenile individuals of P. motoro were recorded in ventral view by a high-speed camera at 250-500 fields/s-1. Potamotrygon motoro presented synchronous, alternating and unilateral movements of the pelvic fins, similar to those reported in skates. Synchronous movements were employed during straightforward motion for pushing the body off the substrate as well as for strike feeding, whereas unilateral movements were used to maneuver the body to the right or left during both locomotion and prey capture. Alternating movements of the pelvic fins are similar to bipedal movements in terrestrial and semi-aquatic tetrapods. The pelvic fins showed coordinated movements during feeding even when stationary, indicating that they have an important function in maintaining body posture (station holding during prey capture and manipulation. The use of pelvic fins during prey stalking may be advantageous because it results in less substrate disturbance when compared to movements generated by pectoral fin undulation. The range of pelvic fin movements indicates more complex control and coordination of the pelvic radial muscles.

  6. The importance of the cost of swimming to the foraging behavior and ecology of larval cod ( Gadus morhua) on Georges Bank

    Science.gov (United States)

    Ruzicka, James J.; Gallager, Scott M.

    2006-11-01

    Energy expenditure by larval cod, Gadus morhua, during foraging was quantified based upon laboratory observations of search behavior and measurements of the cost of swimming. A large-volume (250-L) observation system employing stereo-paired video cameras was developed to record foraging behavior in three dimensions, and a respirometry system was developed to measure the cost of swimming of individual larvae. Application of the derived cost of swimming model to activity levels observed within the large observation tank showed that activity was a substantial and variable component of a larval cod's total bioenergetic budget. The estimated routine metabolic rate of the freely swimming larvae was 3.8-5 times greater than the measured basal rate depending upon their activity level. This is greater than the range of routine factorial scopes previously reported for larval fish in general. Future trophodynamic models developed for small marine fish larvae should consider these greater scaling factors when estimating the active metabolic rate of larvae foraging in the ocean. A trophodynamic model for larval cod on Georges Bank was developed incorporating observed foraging behavior, measured swimming costs, and the theoretical effect of turbulence on predator-prey contact rates. This model was used to estimate the prey density required to meet the estimated minimum daily metabolic demand. The estimated nauplius and copepodite concentrations required for the survival of small larvae were within the range of mean homogeneous springtime concentrations observed on Georges Bank. However, for the smallest post-yolk-sac larvae (5 mm), favorable low-turbulence foraging conditions, encountering patches of high prey density, or exploitation of alternative prey sources such as protozoans may be necessary.

  7. The Dynamics of Foraging Ants

    Science.gov (United States)

    Baxter, G. William

    2009-03-01

    We experimentally study the foraging of small black ants, Formicinae lasius flavus, in order to describe their foraging behavior mathematically. Individual ants are allowed to forage on a two-dimensional surface in the absence of any food sources. The position of the ant as a function of time is determined using a high-resolution digital camera. Analysis of the average square displacements of many ants suggests that the foraging strategy is a non-reversing random walk. Moreover, the ants do not retrace their steps to return home but instead continue the random walk until it brings them back near their starting point.

  8. Studying Behavioral Ecology on High School & College Campuses: A Practical Guide to Measuring Foraging Behavior Using Urban Wildlife

    Science.gov (United States)

    Baker, Mohammad A. Abu; Emerson, Sara E.; Brown, Joel S.

    2015-01-01

    We present a practical field exercise for ecology and animal behavior classes that can be carried out on campus, using urban wildlife. Students document an animal's feeding behavior to study its interactions with the surrounding environment. In this approach, an animal's feeding behavior is quantified at experimental food patches placed within its…

  9. Studying Behavioral Ecology on High School & College Campuses: A Practical Guide to Measuring Foraging Behavior Using Urban Wildlife

    Science.gov (United States)

    Baker, Mohammad A. Abu; Emerson, Sara E.; Brown, Joel S.

    2015-01-01

    We present a practical field exercise for ecology and animal behavior classes that can be carried out on campus, using urban wildlife. Students document an animal's feeding behavior to study its interactions with the surrounding environment. In this approach, an animal's feeding behavior is quantified at experimental food patches placed within its…

  10. Effect of chemical cues on the foraging and tunneling behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae)

    Science.gov (United States)

    Wood rot fungi can cause directional tunneling, aggregation behavior and increased wood consumption by subterranean termites. Because vanillin and guaiacol are byproducts of lignin degradation, these chemicals were tested as potential attractants to Formosan subterranean termites, Coptotermes formo...

  11. Foraging and ingestive behaviors of whale sharks, Rhincodon typus, in response to chemical stimulus cues.

    Science.gov (United States)

    Dove, Alistair D M

    2015-02-01

    Whale sharks, Rhincodon typus, display a number of behaviors that suggest these animals can locate food from afar, as well as identify and discriminate between food items. However, their intractably large size and relative rarity in the field has so far prevented direct studies of their behavior and sensory capability. A small population of aquarium-held whale sharks facilitated direct studies of behavior in response to chemical stimulus plumes. Whale sharks were exposed to plumes composed of either homogenized krill or simple aqueous solutions of dimethyl sulfide (DMS), which is associated with krill aggregations and is used by several pelagic species as a food-finding stimulus. Whale sharks exhibited pronounced ingestive and search behaviors when exposed to both types of stimuli, compared to control trials. Ingestive behaviors included open mouth swimming and active surface feeding (gulping). These behaviors were stronger and more prevalent in response to krill homogenate plumes than to DMS plumes. Both chemical stimuli also increased visitation rate, and krill homogenate plumes additionally affected swimming speed. Whale sharks use chemosensory cues of multiple types to locate and identify palatable food, suggesting that chemical stimuli can help direct long-range movements and allow discrimination of different food items. There appears to be a hierarchy of responses: krill metabolites directly associated with food produced more frequent and intense feeding responses relative to DMS, which is indirectly associated with krill. DMS is used to find food by a number of pelagic species and may be an important signaling molecule in pelagic food webs.

  12. Role of olfaction in the foraging behavior and trial-and-error learning in short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Zhang, Wei; Zhu, Guangjian; Tan, Liangjing; Yang, Jian; Chen, Yi; Liu, Qi; Shen, Qiqi; Chen, Jinping; Zhang, Libiao

    2014-03-01

    We observed the foraging behavior of short-nosed fruit bats, Cynopterus sphinx, in captivity. The role of olfaction in their foraging behavior was examined using real fruit, mimetic fruit, and mimetic fruit soaked in the juice of real fruit. The results showed that C. sphinx visited the real fruit more often than the mimetic fruit, but they had no preference between real fruit and treated mimetic fruit. Our experiment indicates that this bat has the ability to find and identify fruit by olfaction. We also tested for behavior of trial-and-error learning. Our observations revealed that the bats could form a sensory memory of the olfactory cue (cedar wood oil) after five days of training because they responded to the olfactory cues. Our results provide the evidence that C. sphinx can establish the connection between the fruit and a non-natural odor through learning and memory with the assistance of olfaction, and can thus recognize a variety of odors by trial-and-error learning. This behavioral flexibility based on olfactory cues will be beneficial for the short-nosed fruit bat in foraging.

  13. The Effects of Biodiesel and Crude Oil on the Foraging Behavior of Rusty Crayfish, Orconectes rusticus.

    Science.gov (United States)

    Jurcak, Ana M; Gauthier, Steven J; Moore, Paul A

    2015-11-01

    Environmental pollutants, such as crude oil and other petroleum-based fuels, inhibit and limit an organism's ability to perceive a chemical stimulus. Despite the increased use of alternative fuels, such as biodiesel, there have been few studies investigating the impact of these chemicals on the behavior of aquatic organisms. The purpose of this study was to compare the sublethal effects of biodiesel and crude oil exposure on chemically mediated behaviors in a freshwater keystone species. Crayfish (Orconectes rusticus) were tested on their ability to respond appropriately to a positive chemical stimulus within a Y-maze choice paradigm. Behavior was quantified by measuring time spent finding an odor source, duration of time spent at the odor source, percentage of crayfish that found the odor source, and percentage of crayfish that chose the correct arm of the arena. Results indicated negative impacts of both biodiesel and crude oil on the ability of crayfish to locate the food source. However, there were no significant differences between behavioral performances when crayfish were exposed to crude oil compared with biodiesel. Thus, biodiesel and crude oil have equally negative effects on the chemosensory behavior of crayfish. These findings indicate that biodiesel has the potential to have similar negative ecological impacts as other fuel source toxins.

  14. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  15. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.A.; Robinson, G.E. [Univ. of Illinois, Urbana, IL (United States); Conner, J.K. [Univ. of Illinois, Champaign, IL (United States)

    1997-01-01

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount of solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.

  16. Sublethal effect of imidacloprid on Solenopsis invicta (Hymenoptera: Formicidae) feeding, digging, and foraging behavior

    Science.gov (United States)

    There is increasing evidence that exposure to neonicotinoid insecticides at sublethal levels impairs colonies of honeybee and other pollinators. Recently, it was found that sublethal contamination with neonicotinoids also affect growth and behavior of ants. In this study, we exposed red imported fi...

  17. Stress Impairs Optimal Behavior in a Water Foraging Choice Task in Rats

    Science.gov (United States)

    Graham, Lauren K.; Yoon, Taejib; Kim, Jeansok J.

    2010-01-01

    Stress is a biologically significant social-environmental factor that plays a pervasive role in influencing human and animal behaviors. While stress effects on various types of memory are well characterized, its effects on other cognitive functions are relatively unknown. Here, we investigated the effects of acute, uncontrollable stress on…

  18. The role of root architecture in foraging behavior of entomopathogenic nematodes

    Science.gov (United States)

    1. As obligate parasites, entomopathogenic nematodes (EPN) rely on insect hosts to complete their development. In insect pest management, EPN infectiousness has varied a lot. A better understanding of their host-finding behavior in the rhizosphere is therefore crucial to enhance EPN potential in bio...

  19. Plasticity of Daily Behavioral Rhythms in Foragers and Nurses of the Ant Camponotus rufipes: Influence of Social Context and Feeding Times

    Science.gov (United States)

    Mildner, Stephanie; Roces, Flavio

    2017-01-01

    Daily activities within an ant colony need precise temporal organization, and an endogenous clock appears to be essential for such timing processes. A clock drives locomotor rhythms in isolated workers in a number of ant species, but its involvement in activities displayed in the social context is unknown. We compared locomotor rhythms in isolated individuals and behavioral rhythms in the social context of workers of the ant Camponotus rufipes. Both forager and nurse workers exhibited circadian rhythms in locomotor activity under constant conditions, indicating the involvement of an endogenous clock. Activity was mostly nocturnal and synchronized with the 12:12h light-dark-cycle. To evaluate whether rhythmicity was maintained in the social context and could be synchronized with non-photic zeitgebers such as feeding times, daily behavioral activities of single workers inside and outside the nest were quantified continuously over 24 hours in 1656 hours of video recordings. Food availability was limited to a short time window either at day or at night, thus mimicking natural conditions of temporally restricted food access. Most foragers showed circadian foraging behavior synchronized with food availability, either at day or nighttime. When isolated thereafter in single locomotor activity monitors, foragers mainly displayed arrhythmicity. Here, high mortality suggested potential stressful effects of the former restriction of food availability. In contrast, nurse workers showed high overall activity levels in the social context and performed their tasks all around the clock with no circadian pattern, likely to meet the needs of the brood. In isolation, the same individuals exhibited in turn strong rhythmic activity and nocturnality. Thus, endogenous activity rhythms were inhibited in the social context, and timing of daily behaviors was flexibly adapted to cope with task demands. As a similar socially-mediated plasticity in circadian rhythms was already shown in honey

  20. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.

    Science.gov (United States)

    Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J

    2015-12-01

    Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures.

  1. Deep-diving by narwhals Monodon monoceros: differences in foraging behavior between wintering areas?

    DEFF Research Database (Denmark)

    Laidre, K. L.; Heide-Jørgensen, M. P.; Dietz, R.

    2003-01-01

    -depth recorders (SLTDRs) were used to examine differences in narwhal Monodon monoceros diving behavior and habitat selection among 3 sub-populations in Canada and West Greenland (n = 16 individuals). The number of dives to different depths and time allocation within the water column was investigated in 3 seasons...... between summer and winter. Clear differences were observed between 2 wintering grounds. Whales occupying one wintering ground spent most of their time diving to between 200 and 400 m (25 dives per day, SE 3), confirmed by both depth and temperature recording tags. In contrast, narwhals in a separate...

  2. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.

    Science.gov (United States)

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F

    2014-12-15

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment.

  3. Role of trail pheromone in foraging and processionary behavior of pine processionary caterpillars Thaumetopoea pityocampa.

    Science.gov (United States)

    Fitzgerald, T D

    2003-03-01

    Although caterpillars of Thaumetopoea pityocamnpa may mark their pathways with silk, this study shows that the material is essential to neither the elicitation nor maintenance of trail-following or processionary behavior. Trail following is dependent upon a pheromone the caterpillars deposit by brushing the ventral surfaces of the tips of their abdomens against the substate. Earlier instars are strongly bound to their trail system; in the laboratory, caterpillars followed circular trails continuously for as long as 12 hr before breaking away from them. The trail pheromone is long-lived and soluble in nonpolar solvents, but its volatilization or degradation allows the caterpillars to distinguish new from aged trails. In contrast to trail following, processionary behavior, the head-to-tail, single-file movement of the caterpillars is dependent on neither silk nor the trail pheromone. Stimuli associated with setae found on the tip of the abdomen of the precedent caterpillar serve to hold processions together, and such stimuli take priority over those associated with either the trail pheromone or silk. Although the caterpillars discern trail strength and choose stronger over weaker trails, the trail marking system of the processionary caterpillar appears less sophisticated than those of other, previously studied species of social caterpillars, and colonies are relatively inefficient in abandoning exhausted feeding sites in favor of new food finds. In laboratory studies, females were more likely to lead processions than males, and leaders, regardless of gender, expended more energy in locomotion than followers.

  4. Foraging behaviors of two sympatric ant species in response to lizard eggs.

    Science.gov (United States)

    Huang, Wen-San

    2010-03-01

    The trade-off between behavioral dominance and resource discovery ability represents a mechanism which could facilitate the coexistence of species, but evidence of the existence of this trade-off is limited and is often derived from experiments using artificial bait. In this study, I performed a field experiment to investigate the outcome of potential food competition between an encounter species (Paratrechina longicornis) and an exploitative one (Pheidole taivanensis) and to examine the factors that may explain the behavior of P. taivanensis when obtaining food (lizard eggs) without being attacked by P. longicornis. When P. longicornis was experimentally introduced to eggs occupied by P. taivanensis for 1 day, it displaced P. taivanensis. However, P. longicornis ignored lizard eggs which had been occupied by P. taivanensis for 2 or more days, and did not displace P. taivanensis, because by that time the eggshells had been damaged by P. taivanensis so they could no longer be used by P. longicornis. Eggshells were damaged more quickly by P. taivanensis at Santimen, southwestern Taiwan, than at four other study sites where there were lower intensities of food competition between P. taivanensis and P. longicornis. The displacement percentage was higher at Santimen which had higher ant population densities. The present study shows that lizard eggs may constitute a natural, ephemeral resource for which ants compete in space and time. Comparisons between study sites with and without ants suggest the existence of a trade-off between resource discovery and territorial defense.

  5. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  6. From foraging to operant conditioning: a new computer-controlled Skinner box to study free-flying nectar gathering behavior in bees.

    Science.gov (United States)

    Sokolowski, Michel B C; Abramson, Charles I

    2010-05-15

    The experimental study of nectar foraging behavior in free-flying bees requires the use of automated devices to control solution delivery and measure dependent variables associated with nectar gathering. We describe a new computer-controlled artificial flower and provide calibration data to measure the precision of the apparatus. Our device is similar to a "Skinner box" and we present data of an experiment where various amounts of a 50% sugar solution are presented randomly to individual bees. These data show large individual variations among subjects across several dependent variables. Finally, we discuss possible applications of our device to problems in behavioral sciences.

  7. Spatial memory in foraging games.

    Science.gov (United States)

    Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T

    2016-03-01

    Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging.

  8. The foraging behavior of the Large-headed Flatbill, Ramphotrigon megacephalum and the Dusky-tailed Flatbill, Ramphotrigon fuscicauda (Aves: Tyrannidae

    Directory of Open Access Journals (Sweden)

    Tomaz Nascimento de Melo

    Full Text Available ABSTRACT Southwestern Amazonia has great bird diversity which includes birds specialized in bamboo forests. In this region, bamboo is considered a key element of the landscape. The objective of this study was to investigate and describe the foraging behavior of the Large-headed Flatbill, Ramphotrigon megacephalum (Swainson, 1835 and the Dusky-tailed Flatbill, Ramphotrigon fuscicauda Chapman, 1925, which occur sympatrically in the region and are considered bamboo specialists. This study was conducted between November 2013 and September 2014, within two fragments in the eastern portion of the state of Acre: Fazenda Experimental Catuaba, in the municipality of Senador Guiomard; and Reserva Florestal Humaitá, in Porto Acre. A total of 109 and 97 foraging events were registered, for the Large-headed Flatbill and the Dusky-tailed Flatbill, respectively. The two species frequently used bamboos for searching and capturing their prey. However, the large-headed Flatbill was more specialized in bamboo substrates. Both species use similar foraging techniques and the differences found between the two are minor, but when taken together, these differences may explain their ability to co-exist.

  9. Influence of Food Patch Quality on the Foraging Behavior of Great Spotted Woodpecker in Winter%斑块质量对大斑啄木鸟冬季觅食行为的影响

    Institute of Scientific and Technical Information of China (English)

    邢茂卓; 付林巨; 温俊宝

    2012-01-01

    为了解大斑啄木鸟(Dendrocoposmajor)冬季对食物斑块的利用对策,2011年1月和2012年2~3月,在内蒙古乌拉特前旗的农田防护林中,采用目标动物取样法和全事件记录法,观察了大斑啄木鸟在食物斑块的觅食行为,利用主成分分析方法对斑块质量进行评价,通过比较不同质量斑块中大斑啄木鸟的觅食频次、停留时间、觅食成功频次及觅食成功率等指标,分析斑块质量对其觅食行为的影响.结果显示,在不同质量斑块中大斑啄木鸟的觅食频次、停留时间、觅食成功频次差异都极显著,但觅食成功率差异不显著;除停留时间外,不同性别间觅食差异不显著.大斑啄木鸟的觅食频次、停留时间、觅食成功频次与斑块质量呈显著正相关,觅食成功率与斑块质量相关性不显著.大斑啄木鸟倾向于在质量水平高的斑块觅食,表现为在这些斑块停留时间更长、往返次数更频繁;但觅食成功率不受斑块质量影响,这可能是大斑啄木鸟适应不同觅食环境的一种生存本能.%In order to investigate how the Great Spotted Woodpecker ( Dendrocopos major) utilizing feeding patches in winter, we carried out field survey on the farmland shelterbelt in Wulateqianqi County, Inner Mongolia, in January 2011 and from February to March in 2012. Focal sampling and all-occurrences recording methods were undertaken to determine the foraging behaviors of Great Spotted Woodpecker in foraging patches. Principal component analysis was used to evaluate the patch quality. Correlation analysis between the patch quality and foraging behavior items, such as foraging times, residence time, successful foraging times and successful foraging rate was undertaken to reveal the affection of patch quality on the foraging behaviors of the birds. The results showed that there were significant differences in the birds' foraging times, residence time, successful foraging times among different

  10. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    Science.gov (United States)

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.

  11. Sympatric cattle grazing and desert bighorn sheep foraging

    Science.gov (United States)

    Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2015-01-01

    Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by

  12. Relationships between postweaning residual feed intake in heifers and forage use, body composition, feeding behavior, physical activity, and heart rate of pregnant beef females.

    Science.gov (United States)

    Hafla, A N; Carstens, G E; Forbes, T D A; Tedeschi, L O; Bailey, J C; Walter, J T; Johnson, J R

    2013-11-01

    The objectives of this study were to determine if residual feed intake (RFI) classification of beef heifers affected efficiency of forage utilization, body composition, feeding behavior, heart rate, and physical activity of pregnant females. Residual feed intake was measured in growing Bonsmara heifers for 2 yr (n=62 and 53/yr), and heifers with the lowest (n=12/yr) and highest (n=12/yr) RFI were retained for breeding. Of the 48 heifers identified as having divergent RFI, 19 second-parity and 23 first-parity females were used in the subsequent pregnant-female trial. Pregnant females were fed a chopped hay diet (ME=2.11 Mcal kg(-1) DM) in separate pens equipped with GrowSafe bunks to measure individual intake and feeding behavior. Body weights were measured at 7-d intervals and BCS and ultrasound measurements of 12th-rib fat depth, rump fat depth, and LM area obtained on d 0 and 77. Heart rate and physical activity were measured for 7 consecutive d. First-parity females had lower (PResidual feed intake classification did not affect bunk visit frequency, but low-RFI females spent 26% less time (Presidual gain were positively correlated with forage intake (r=0.38) and RFI (r=0.42) of pregnant females. Results indicate that heifers identified as having low postweaning RFI have greater efficiency of forage utilization as pregnant females, with minimal impacts on growth, body composition, calving date, and calf birth BW, compared to their high-RFI counterparts.

  13. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, LEPOMIS MACROCHIRUS, AND VIBRO FISCHERI

    Science.gov (United States)

    The research presented here is a continuation of work designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (W...

  14. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, LEPOMIS MACROCHIRUS, AND VIBRIO FISCHERI TO TOLUENE

    Science.gov (United States)

    The research presented here is a continuation of work designed to further the science of available and developing online toxicity monitors(OTMs) and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system. Source waters o...

  15. A new simplex approach to highlight multi-scale feeding behaviors in forager species from stomach contents: application to insectivore lizard population.

    Science.gov (United States)

    Semmar, Nabil; Roux, Maurice

    2014-04-01

    Stomach contents represent complex mixture systems which depend on feeding mode and level of forager species (carnivores, herbivores) as well as on natural availability/distribution of food resources (preys, plants). Such mixture systems can be considered as small black boxes condensing wide ecological information on (i) feeding behaviors of predator (or herbivore) and (ii) local diversity of preys (or host plants). Feeding behaviors of a hunter species toward different prey taxa show a complex variability whose investigation requires multivariate statistical tools. This paper presents a new computational approach which statistically analyzes stomach contents' variability in a predator population to graphically highlight different feeding behaviors. It is a simulation approach iteratively combining the variability of different diet patterns by using a simplex mixture design. Average combinatorial results are graphically visualized to highlight scale-dependent relationships between consumption rates of different food types found in the stomachs. The simplex approach was applied on different subpopulations of Phrynosoma douglassi brevirostre, an insectivore lizard species. These subpopulations were initially defined by different criteria including statistical clusters, gender and sampling periods. Results highlighted successive trade-offs over months of captured potential preys switching from small and less mobile preys to large and flying ones. In these dietary transitions, P. douglassi manifested a systematic memorization of previous preys and a gradual foraging learning of the next ones. These results highlighted lightness on dietary flexibility helping this specialist predator to switch between diets based on different potential preys. Adult male and adult female lizards showed different feeding behaviors due to some predation lag-time between them and different dietary ratios toward the same considered preys.

  16. Foraging behavior of the mangrove sesarmid crab Neosarmatium trispinosum enhances food intake and nutrient retention in a low-quality food environment

    Science.gov (United States)

    Harada, Yota; Lee, S. Y.

    2016-06-01

    The large sesarmid crab Neosarmatium trispinosum has been reported to actively collect freshly fallen mangrove leaves and store them in its burrow where they are assumed to age prior to consumption. This leaf-catching behavior was hypothesized to improve the palatability and nutritional quality of leaves through leaching of feeding deterrent and microbial enrichment during storage. Earlier studies also hypothesized that N. trispinosum feeds on sediment or animal material to meet their N needs. A series of experiments was carried out to investigate the foraging behavior of N. trispinosum against these hypotheses. Study of foraging behavior using remotely operated cameras indicated that this crab spends the far majority of time (97.5 ± 2.5%, SD) underground and only a small percentage of time outside its burrow foraging (2.2 ± 2.3%). Collection of fresh mangrove litter was swift but no record of predation was evident over 31 h of video records. A field leaf tethering experiment showed that this crab started to consume the leaves immediately after collection rather than storing whole leaves, refuting the leaf-aging hypothesis. N. trispinosum also showed a preference for senescent yellow leaves over decaying brown leaves. This behavior may only aim to stock leaves (i.e. to ensure food availability) rather than conditioning them through decay (i.e. to improve food quality). Analysis of gut contents showed that vascular plant material was the dominant food item (83.3 ± 4.6%), followed by sediment (9.2 ± 4.6%) but no animal materials were recorded. N. trispinosum therefore relies minimally on animal food but are capable of removing 50% of the daily leaf litter production. Elemental C, N analysis shows that sediment inside the burrow is a sufficient potential food source (C/N = 13 to 15). While having a lower C/N ratio than fresh green or yellow leaves, the N content of sediment (∼0.1%) was significantly lower than those of mangrove leaves (0.3-0.9%), and may thus

  17. Optimal foraging and beyond : How starlings cope with changes in food availability

    NARCIS (Netherlands)

    Bautista, LM; Tinbergen, J; Wiersma, P; Kacelnik, A; Bautista, Luis M.; Byers, John A.

    1998-01-01

    Foraging adaptations include behavioral and physiological responses, but most optimal foraging models deal exclusively with behavioral decision variables, taking other dimensions as constraints. To overcome this limitation, we measured behavioral and physiological responses of European starlings Stu

  18. Interactions Increase Forager Availability and Activity in Harvester Ants.

    Science.gov (United States)

    Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  19. Interactions Increase Forager Availability and Activity in Harvester Ants.

    Directory of Open Access Journals (Sweden)

    Evlyn Pless

    Full Text Available Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  20. Optimal forager against ideal free distributed prey.

    Science.gov (United States)

    Garay, József; Cressman, Ross; Xu, Fei; Varga, Zoltan; Cabello, Tomás

    2015-07-01

    The introduced dispersal-foraging game is a combination of prey habitat selection between two patch types and optimal-foraging approaches. Prey's patch preference and forager behavior determine the prey's survival rate. The forager's energy gain depends on local prey density in both types of exhaustible patches and on leaving time. We introduce two game-solution concepts. The static solution combines the ideal free distribution of the prey with optimal-foraging theory. The dynamical solution is given by a game dynamics describing the behavioral changes of prey and forager. We show (1) that each stable equilibrium dynamical solution is always a static solution, but not conversely; (2) that at an equilibrium dynamical solution, the forager can stabilize prey mixed patch use strategy in cases where ideal free distribution theory predicts that prey will use only one patch type; and (3) that when the equilibrium dynamical solution is unstable at fixed prey density, stable behavior cycles occur where neither forager nor prey keep a fixed behavior.

  1. Is individual consistency in body mass and reproductive decisions linked to individual specialization in foraging behavior in a long-lived seabird?

    Science.gov (United States)

    Dehnhard, Nina; Eens, Marcel; Sturaro, Nicolas; Lepoint, Gilles; Demongin, Laurent; Quillfeldt, Petra; Poisbleau, Maud

    2016-07-01

    Individual specialization in diet or foraging behavior within apparently generalist populations has been described for many species, especially in polar and temperate marine environments, where resource distribution is relatively predictable. It is unclear, however, whether and how increased environmental variability - and thus reduced predictability of resources - due to global climate change will affect individual specialization. We determined the within- and among-individual components of the trophic niche and the within-individual repeatability of δ(13)C and δ(15)N in feathers and red blood cells of individual female southern rockhopper penguins (Eudyptes chrysocome) across 7 years. We also investigated the effect of environmental variables (Southern Annular Mode, Southern Oscillation Index, and local sea surface temperature anomaly) on the isotopic values, as well as the link between stable isotopes and female body mass, clutch initiation dates, and total clutch mass. We observed consistent red blood cell δ(13)C and δ(15)N values within individuals among years, suggesting a moderate degree of within-individual specialization in C and N during the prebreeding period. However, the total niche width was reduced and individual specialization not present during the premolt period. Despite significant interannual differences in isotope values of C and N and environmental conditions, none of the environmental variables were linked to stable isotope values and thus able to explain phenotypic plasticity. Furthermore, neither the within-individual nor among-individual effects of stable isotopes were found to be related to female body mass, clutch initiation date, or total clutch mass. In conclusion, our results emphasize that the degree of specialization within generalist populations can vary over the course of 1 year, even when being consistent within the same season across years. We were unable to confirm that environmental variability counteracts individual

  2. Host generated cues alter the foraging behavior of Cabbage butterfly, Pieris brassicae and its larval parasitoids, Cotesia glomerata and Hyposoter ebeninus

    OpenAIRE

    M. Debarma; Firake, D. M.

    2013-01-01

    Effect of host-generated cues on foraging speed of herbivore as well as its natural enemies was studied under net house conditions in Meghalaya, India. Foraging speed of P. brassicae was significantly higher towards the healthy plants, whereas it was lowest towards the damaged plants along with herbivore cues. In contrast foraging speed of parasitoids H. ebeninus and C. glomerata was highest towards damaged plants along with herbivore cues and lowest towards healthy plants. It indicates that ...

  3. Effects of oil pollution at Kuwait's Greater Al-Burgan oil field on the timing of morning emergence, basking and foraging behaviors by the sand lizard Acanthodactylus scutellatus.

    Science.gov (United States)

    Al-Hashem, M Abdulla; Brain, P F; Omar, S Ahmad

    2008-02-15

    An attempt was made to study the effects of oil pollution in a desert location (the Greater Al-Burgan oil fields, an area damaged in the second Gulf War) in Kuwait on the behaviour of the Sand lizard A. scutellatus. Polluted sites with apparently different degrees of contamination (namely tar mat, soot and clear sites) were compared with control areas outside this region. Between 2002 and 2003, ten lizards (5 of each sex) on each polluted and each control site were observed in the field at a time of the year when they were highly active. Air, substrate and burrow temperatures were recorded and lizards were monitored for their morning emergence times, as well as their basking and foraging activities. The present study confirmed that the morning emergence times and the basking behavior varied in sand lizards among the different pollution site categories. Physical changes in the tar mat sites caused the substrate temperatures in these locations to rise more quickly in the morning in response to solar gain than was the case in the other sites. This gives lizards in these locations the opportunity to emerge earlier and to start eating more quickly, giving them an energetic advantage (perhaps, in turn, influencing their rates of growth and fecundity). The clear sites had the next earliest emergence and were the next hottest but it is difficult to account for this in terms of the physical characteristics of this site. The basking times were clearly shorter on the dark soot and tar mat sites that appeared to have higher solar gain than control or clear sites. There did not appear to be any obvious differences in foraging activity of lizards in the different locations. It appears that some aspects of simple behaviour in these lizards provides a reliable, noninvasive indices for assessing oil pollution in desert locations. The precise impact of these changes in these reptiles on their long-term viability needs to be evaluated.

  4. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    Science.gov (United States)

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  5. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    Directory of Open Access Journals (Sweden)

    Zhenghua Xie

    Full Text Available Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L. and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover and a low amount of natural habitats (≤ 12% of land cover in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  6. Foraging behavior of parasitoid chalcid to the essential oil from bark of Populus pseudo-simonii×P. Nigra and Quadraspidiotus gigas

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Four-armed airflow olfactometer was used to determining the foraging behavior of Pteroptrix longgiclava (Girault) (Hymenoptera: Aphelinidae) and Encar siagigas (Tshumakova) (Hymenoptera: Aphelinidae) to the essential oils which em itted from the healthy bark of Populus pseudo-simonii ×P. Nigra, the infested b ark injured by Quadraspidiotus gigas (Thiem & Gerneck), the body and scale of fi xed 1st-instar-nymph of Q. Gigas. The results from these experiments showed that the volatile oils produced from the injured bark and from the scale of fixed 1s t-instar-nymph had a higher attractive ability to female adults of the two species of wasps. The essential oil produced from the scale of the pest at dosages of 3-7μL and the essential oil emitted by injured bark at dosages of 5-9 Μl had a stronger alluring effect on the host searching behavior of Pteroptrix longgiclava. The essential oil from the body of fixed 1st-instar-nymph of Q. Gigas also had certain effect on the host locating effort of Pteroptrix longgiclava and Encar siagigas. Those two wasps did not shown any reaction to the essential oil produced by the healthy bark of poplar.

  7. Universality classes of foraging with resource renewal

    Science.gov (United States)

    Chupeau, M.; Bénichou, O.; Redner, S.

    2016-03-01

    We determine the impact of resource renewal on the lifetime of a forager that depletes its environment and starves if it wanders too long without eating. In the framework of a minimal starving random-walk model with resource renewal, there are three universal classes of behavior as a function of the renewal time. For sufficiently rapid renewal, foragers are immortal, while foragers have a finite lifetime otherwise. In the specific case of one dimension, there is a third regime, for sufficiently slow renewal, in which the lifetime of the forager is independent of the renewal time. We outline an enumeration method to determine the mean lifetime of the forager in the mortal regime.

  8. Examining the joint toxicity of chlorpyrifos and atrazine in the aquatic species: Lepomis macrochirus, Pimephales promelas and Chironomus tentans

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Mehler, W.; Schuler, Lance J. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University at Carbondale, Carbondale, IL 62901-6511 (United States); Lydy, Michael J. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University at Carbondale, Carbondale, IL 62901-6511 (United States)], E-mail: mlydy@siu.edu

    2008-03-15

    The joint toxicity of chlorpyrifos and atrazine was compared to that of chlorpyrifos alone to discern any greater than additive response using both acute toxicity testing and whole-body residue analysis. In addition, acetylcholinesterase (AChE) inhibition and biotransformation were investigated to evaluate the toxic mode of action of chlorpyrifos in the presence of atrazine. The joint toxicity of atrazine and chlorpyrifos exhibited no significant difference in Lepomis macrochirus compared to chlorpyrifos alone; while studies performed with Pimephales promelas and Chironomus tentans, did show significant differences. AChE activity and biotransformation showed no significant differences between the joint toxicity of atrazine and chlorpyrifos and that of chlorpyrifos alone. From the data collected, the combination of atrazine and chlorpyrifos pose little additional risk than that of chlorpyrifos alone to the tested fish species. - The joint toxicity between atrazine and chlorpyrifos caused greater than additive responses in invertebrates, but the interactions in vertebrates was less pronounced.

  9. The bottlenose dolphin Tursiops truncatus foraging around a fish farm: Effects of prey abundance on dolphins' behavior

    Institute of Scientific and Technical Information of China (English)

    Bruno D(I)AZ L(O)PEZ

    2009-01-01

    ing tactics according to the abundance of prey. When top predators display behavioral responses to activities not directed at them, the task of studying all possible effects of human activities can become even more challenging .

  10. Temporal and spatial variations in microclimate influence the larval foraging behaviors and performance of a conifer-feeding sawfly.

    Science.gov (United States)

    Johns, R C; Boone, J; Leggo, J J; Smith, S; Carleton, D; Quiring, D T

    2012-06-01

    Herbivorous insects are often exposed to broad temporal and spatial variations in microclimate conditions within their host plants and have adapted a variety of behaviors, such as avoidance or basking, to either offset or benefit from such variation. Field experiments were carried out to investigate the influence of daily and intratree variations in microclimate on the behaviors (feeding, resting, dispersal, and hiding) and associated performance of late-instar larvae of the yellowheaded spruce sawfly, Pikonema alaskensis (Rohwer) (Hymenoptera: Tenthredinidae) within crowns of 1.25-1.5 m tall black spruce (Picea mariana [Miller] Britton Sterns Poggenburg); late instars feed on developing shoots of young spruce and are often exposed to microclimatic extremes with unknown effects on performance. Larvae fed diurnally from just after dawn (0800 h) until dusk (2000 h) and rested throughout the night, with brief periods of dispersal occurring in the morning and evening. Neither larval behavior nor abiotic conditions differed significantly between the upper and lower crowns of trees. Temperature, humidity, and solar insolation all explained >90% of variation in feeding; however, sunrise and sunset were the most likely cues influencing diurnal behavior. Most larvae (94%) fed on the bottom, shaded side of shoots, and field experiments indicated that this behavior is adaptive with respect to microclimate, probably reducing hygrothermal stress. Thus, behavioral adaptations by P. alaskensis to daily and within-shoot microclimatic variation may reduce the risk of hygrothermal stress during dispersal or feeding, while still allowing larvae to feed on the preferred and highly nutritious upper crown foliage of young spruce.

  11. Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal.

    Directory of Open Access Journals (Sweden)

    Patrick W Robinson

    Full Text Available The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species' range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean.

  12. Supplementation of corn dried distillers grains plus solubles to gestating beef cows fed low-quality forage: I. Altered intake behavior, body condition, and reproduction.

    Science.gov (United States)

    Kennedy, V C; Bauer, M L; Swanson, K C; Vonnahme, K A

    2016-01-01

    To investigate the effects of corn dried distillers grains plus solubles (DDGS) supplementation to cows fed corn stover and silage during late gestation, 27 multiparous beef cows (674 ± 17 kg; BCS, 5.6 ± 0.1) were divided randomly into 2 pens equipped with electronic feeders. For 10 wk, both groups were fed the basal diet for ad libitum intake while 1 group was supplemented (SUP; = 12) with DDGS at 0.3% of BW (DM basis). Following parturition, all cows received the same diet for an additional 8 wk. During gestation, SUP cows gained BW ( time spent consuming forage ( meals than SUP cows ( = 0.06) from d 201 to 218 of gestation. Supplemented cows tended ( = 0.09) to consume larger meals than CON cows and spent more ( time eating than CON cows around d 240 of gestation. Calves born to SUP cows tended ( = 0.06) to be heavier than calves born to CON cows. During lactation, both groups gained ( time but was not influenced ( = 0.44) by treatment. Supplemented cows spent more time ( meals increased with advancing lactation ( meals daily than SUP cows ( = 0.01). Conversely, meal size decreased as lactation advanced ( meals than CON cows ( = 0.05). Supplementation with DDGS during gestation influenced intake behavior during gestation and lactation as well as the maintenance of maternal BW and BCS and calf birth BW.

  13. Host generated cues alter the foraging behavior of Cabbage butterfly, Pieris brassicae and its larval parasitoids, Cotesia glomerata and Hyposoter ebeninus

    Directory of Open Access Journals (Sweden)

    M. Debarma

    2013-09-01

    Full Text Available Effect of host-generated cues on foraging speed of herbivore as well as its natural enemies was studied under net house conditions in Meghalaya, India. Foraging speed of P. brassicae was significantly higher towards the healthy plants, whereas it was lowest towards the damaged plants along with herbivore cues. In contrast foraging speed of parasitoids H. ebeninus and C. glomerata was highest towards damaged plants along with herbivore cues and lowest towards healthy plants. It indicates that herbivore and its parasitoids respond to the volatiles generated by their host. In addition to host plants natural enemies also utilize herbivore-generated cues for their detection.

  14. Canopy characteristics, animal behavior and forage intake by goats grazing on Tanzania-grass pasture with different heights - doi: 10.4025/actascianimsci.v34i4.14544

    Directory of Open Access Journals (Sweden)

    Maurílio Souza dos Santos

    2012-10-01

    Full Text Available This study evaluated the influence of Tanzania-grass sward height (30, 50, 70 and 90 cm on the morphological characteristics of the canopy, grazing behavior and forage intake by adult Anglo Nubian female goats. A completely randomized experimental design was employed, with two replicates in space and two replicates in time. Six animals were used to assess the grazing behavior, and four, the ingestion process. The rise in sward height increased the forage and leaf mass, the percentages of stem and dead material, and reduced the leaf stem-1 ratio. Above 50 cm there was an increase in grazing time and a decrease in leisure time. A positive linear correlation was detected between sward height and bite depth. The consumed forage mass, ingestion rate and daily intake were higher at 50 cm, indicating that the other heights reduced the intake process. The sward height was negatively correlated to the bite rate and positively to the bite time. The sward height of 50 cm presents the best combination of features, favoring the grazing and ingestive behavior of female adult goats.

  15. Harvester ant colony variation in foraging activity and response to humidity.

    Science.gov (United States)

    Gordon, Deborah M; Dektar, Katherine N; Pinter-Wollman, Noa

    2013-01-01

    Collective behavior is produced by interactions among individuals. Differences among groups in individual response to interactions can lead to ecologically important variation among groups in collective behavior. Here we examine variation among colonies in the foraging behavior of the harvester ant, Pogonomyrmex barbatus. Previous work shows how colonies regulate foraging in response to food availability and desiccation costs: the rate at which outgoing foragers leave the nest depends on the rate at which foragers return with food. To examine how colonies vary in response to humidity and in foraging rate, we performed field experiments that manipulated forager return rate in 94 trials with 17 colonies over 3 years. We found that the effect of returning foragers on the rate of outgoing foragers increases with humidity. There are consistent differences among colonies in foraging activity that persist from year to year.

  16. Harvester ant colony variation in foraging activity and response to humidity.

    Directory of Open Access Journals (Sweden)

    Deborah M Gordon

    Full Text Available Collective behavior is produced by interactions among individuals. Differences among groups in individual response to interactions can lead to ecologically important variation among groups in collective behavior. Here we examine variation among colonies in the foraging behavior of the harvester ant, Pogonomyrmex barbatus. Previous work shows how colonies regulate foraging in response to food availability and desiccation costs: the rate at which outgoing foragers leave the nest depends on the rate at which foragers return with food. To examine how colonies vary in response to humidity and in foraging rate, we performed field experiments that manipulated forager return rate in 94 trials with 17 colonies over 3 years. We found that the effect of returning foragers on the rate of outgoing foragers increases with humidity. There are consistent differences among colonies in foraging activity that persist from year to year.

  17. The Dynamics of Infant Visual Foraging

    Science.gov (United States)

    Robertson, Steven S.; Guckenheimer, John; Masnick, Amy M.; Bacher, Leigh F.

    2004-01-01

    Human infants actively forage for visual information from the moment of birth onward. Although we know a great deal about how stimulus characteristics influence looking behavior in the first few postnatal weeks, we know much less about the intrinsic dynamics of the behavior. Here we show that a simple stochastic dynamical system acts…

  18. Spatiotemporal chemotactic model for ant foraging

    Science.gov (United States)

    Ramakrishnan, Subramanian; Laurent, Thomas; Kumar, Manish; Bertozzi, Andrea L.

    2014-12-01

    In this paper, we present a generic theoretical chemotactic model that accounts for certain emergent behaviors observed in ant foraging. The model does not have many of the constraints and limitations of existing models for ants colony dynamics and takes into account the distinctly different behaviors exhibited in nature by ant foragers in search of food and food ferrying ants. Numerical simulations based on the model show trail formation in foraging ant colonies to be an emergent phenomenon and, in particular, replicate behavior observed in experiments involving the species P. megacephala. The results have broader implications for the study of randomness in chemotactic models. Potential applications include the developments of novel algorithms for stochastic search in engineered complex systems such as robotic swarms.

  19. The regulation of ant colony foraging activity without spatial information.

    Science.gov (United States)

    Prabhakar, Balaji; Dektar, Katherine N; Gordon, Deborah M

    2012-01-01

    Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.

  20. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae)

    Science.gov (United States)

    Lanan, Michele

    2014-01-01

    The distribution of food resources in space and time is likely to be an important factor governing the type of foraging strategy used by ants. However, no previous systematic attempt has been made to determine whether spatiotemporal resource distribution is in fact correlated with foraging strategy across the ants. In this analysis, I present data compiled from the literature on the foraging strategy and food resource use of 402 species of ants from across the phylogenetic tree. By categorizing the distribution of resources reported in these studies in terms of size relative to colony size, spatial distribution relative to colony foraging range, frequency of occurrence in time relative to worker life span, and depletability (i.e., whether the colony can cause a change in resource frequency), I demonstrate that different foraging strategies are indeed associated with specific spatiotemporal resource attributes. The general patterns I describe here can therefore be used as a framework to inform predictions in future studies of ant foraging behavior. No differences were found between resources collected via short-term recruitment strategies (group recruitment, short-term trails, and volatile recruitment), whereas different resource distributions were associated with solitary foraging, trunk trails, long-term trail networks, group raiding, and raiding. In many cases, ant species use a combination of different foraging strategies to collect diverse resources. It is useful to consider these foraging strategies not as separate options but as modular parts of the total foraging effort of a colony. PMID:25525497

  1. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae).

    Science.gov (United States)

    Lanan, Michele

    2014-01-01

    The distribution of food resources in space and time is likely to be an important factor governing the type of foraging strategy used by ants. However, no previous systematic attempt has been made to determine whether spatiotemporal resource distribution is in fact correlated with foraging strategy across the ants. In this analysis, I present data compiled from the literature on the foraging strategy and food resource use of 402 species of ants from across the phylogenetic tree. By categorizing the distribution of resources reported in these studies in terms of size relative to colony size, spatial distribution relative to colony foraging range, frequency of occurrence in time relative to worker life span, and depletability (i.e., whether the colony can cause a change in resource frequency), I demonstrate that different foraging strategies are indeed associated with specific spatiotemporal resource attributes. The general patterns I describe here can therefore be used as a framework to inform predictions in future studies of ant foraging behavior. No differences were found between resources collected via short-term recruitment strategies (group recruitment, short-term trails, and volatile recruitment), whereas different resource distributions were associated with solitary foraging, trunk trails, long-term trail networks, group raiding, and raiding. In many cases, ant species use a combination of different foraging strategies to collect diverse resources. It is useful to consider these foraging strategies not as separate options but as modular parts of the total foraging effort of a colony.

  2. Effect of interactions between harvester ants on forager decisions

    Directory of Open Access Journals (Sweden)

    Jacob D Davidson

    2016-10-01

    Full Text Available Harvester ant colonies adjust their foraging activity to day-to-day changes in food availability and hour-to-hour changes in environmental conditions. This collective behavior is regulated through interactions, in the form of brief antennal contacts, between outgoing foragers and returning foragers with food. Here we consider how an ant, waiting in the entrance chamber just inside the nest entrance, uses its accumulated experience of interactions to decide whether to leave the nest to forage. Using videos of field observations, we tracked the interactions and foraging decisions of ants in the entrance chamber. Outgoing foragers tended to interact with returning foragers at higher rates than ants that returned to the deeper nest and did not forage. To provide a mechanistic framework for interpreting these results, we develop a decision model in which ants make decisions based upon a noisy accumulation of individual contacts with returning foragers. The model can reproduce core trends and realistic distributions for individual ant interaction statistics, and suggests possible mechanisms by which foraging activity may be regulated at an individual ant level.

  3. Examining the role of foraging and malvolio in host-finding behavior in the honey bee parasite, Varroa destructor (Anderson & Trueman)

    Science.gov (United States)

    When a female varroa mite, Varroa destructor (Anderson & Trueman), invades a honey bee brood cell, the physiology rapidly changes from the feeding phoretic to reproductive. Changes in the foraging and malvolio transcript levels in the brain have been associated with modulated intra-specific food sea...

  4. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    Science.gov (United States)

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Determinants of spatial behavior of a tropical forest seed predator: The roles of optimal foraging, dietary diversification, and home range defense.

    Science.gov (United States)

    Palminteri, Suzanne; Powell, George V N; Peres, Carlos A

    2016-05-01

    Specialized seed predators in tropical forests may avoid seasonal food scarcity and interspecific feeding competition but may need to diversify their daily diet to limit ingestion of any given toxin. Seed predators may, therefore, adopt foraging strategies that favor dietary diversity and resource monitoring, rather than efficient energy intake, as suggested by optimal foraging theory. We tested whether fine-scale space use by a small-group-living seed predator-the bald-faced saki monkey (Pithecia irrorata)-reflected optimization of short-term foraging efficiency, maximization of daily dietary diversity, and/or responses to the threat of territorial encroachment by neighboring groups. Food patches across home ranges of five adjacent saki groups were widely spread, but areas with higher densities of stems or food species were not allocated greater feeding time. Foraging patterns-specifically, relatively long daily travel paths that bypassed available fruiting trees and relatively short feeding bouts in undepleted food patches-suggest a strategy that maximizes dietary diversification, rather than "optimal" foraging. Travel distance was unrelated to the proportion of seeds in the diet. Moreover, while taxonomically diverse, the daily diets of our study groups were no more species-rich than randomly derived diets based on co-occurring available food species. Sakis preferentially used overlapping areas of their HRs, within which adjacent groups shared many food trees, yet the density of food plants or food species in these areas was no greater than in other HR areas. The high likelihood of depletion by neighboring groups of otherwise enduring food sources may encourage monitoring of peripheral food patches in overlap areas, even if at the expense of immediate energy intake, suggesting that between-group competition is a key driver of fine-scale home range use in sakis.

  6. Trace element content of fish feed and bluegill sunfish (Lepomis macrochirus) from aquaculture and wild source in Missouri.

    Science.gov (United States)

    Ikem, Abua; Egilla, Jonathan

    2008-09-15

    Trace element content of fish feed and bluegill sunfish muscles (Lepomis macrochirus) from aquaculture and natural pond in Missouri were determined using the inductively coupled-plasma optical emission spectrometer (ICP-OES) and the direct mercury analyzer (DMA). Dietary intake rates of trace elements were estimated. Dogfish muscle (DORM-2) and lobster hepatopancreas (TORT-2) reference standards were used in trace element recovery and method validations. The average elemental concentrations (mg/kg diet, dry wt.) of fish feed were: As 1.81, Cd 2.37, Co 0.10, Cr 1.42, Cu 8.0, Fe 404, Mn 35.9, Ni 0.51, Pb 9.16, Se 1.71, Sn 20.7, V 0.09, Zn 118 and Hg 0.07. The mean elemental concentrations (μg/kg wet wt.) in bluegill muscles from both aquaculture and wild (in parenthesis) sources were: As 0.36 (0.06), Cd 0.28 (0.01), Co 0.0 (0.0), Cr 0.52 (0.05), Cu 0.38 (0.18), Fe 17.5 (2.43), Mn 0.18 (0.24), Ni 0.18 (0.04), Pb 1.03 (0.04), Se 0.34 (0.30), Sn 0.66 (0.42), V 0.02 (0.01), Zn 6.97 (9.13) and Hg 0.06 (0.24). Kruskal-Wallis chi square indicated significant differences in As, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sn, V, Zn and Hg (Paquaculture and wild bluegills, posed no health risks for approximately 85% of all samples.

  7. Foraging Experiences with Children

    Science.gov (United States)

    Russell, Helen Ross

    1976-01-01

    Provided are foraging experiences and wild foods information for utilization in the urban school curriculum. Food uses are detailed for roses, dandelions, wild onions, acorns, cattails, violets and mints. (BT)

  8. From foraging to autonoetic consciousness: The primal self as a consequence of embodied prospective foraging

    Institute of Scientific and Technical Information of China (English)

    Thomas T.HILLS; Stephen BUTTERFILL

    2015-01-01

    The capacity to adapt to resource distributions by modulating the frequency of exploratory and exploitative behaviors is common across metazoans and is arguably a principal selective force in the evolution of cognition.Here we (1) review recent work investigating behavioral and biological commonalities between external foraging in space and internal foraging over environmcnts specified by cognitive representations,and (2) explore the implications of these commonalities for understanding the origins of the self.Behavioural commonalities include the capacity for what is known as area-restricted search in the ecological literature:this is search focussed around locations where resources have been found in the past,but moving away from locations where few resources are found,and capable of producing movement patterns mimicking Lévy flights.Area-restricted search shares a neural basis across metazoans,and these biological commonalities in vertebrates suggest an evolutionary homology between external and internal foraging.Internal foraging,and in particular a form we call embodied prospective foraging,makes available additional capacities for prediction based on search through a cognitive representation of the external environment,and allows predictions about outcomes of possible future actions.We demonstrate that cognitive systems that use embodied prospective foraging require a primitive sense of self,needed to distinguish actual from simulated action.This relationship has implications for understanding the evolution of autonoetic consciousness and self-awareness [Current Zoology 61 (2):368-381,2015].

  9. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, AND LEPOMIS MACROCHIRUS TO COPPER AND CYANIDE

    Science.gov (United States)

    The research presented here was designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (WQEWS). Source waters ...

  10. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, AND LEPOMIS MACROCHIRUS TO COPPER AND CYANIDE

    Science.gov (United States)

    The research presented here was designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (WQEWS). Source waters ...

  11. Harvester Ant Colony Variation in Foraging Activity and Response to Humidity

    OpenAIRE

    Gordon, Deborah M.; Dektar, Katherine N.; Noa Pinter-Wollman

    2013-01-01

    Collective behavior is produced by interactions among individuals. Differences among groups in individual response to interactions can lead to ecologically important variation among groups in collective behavior. Here we examine variation among colonies in the foraging behavior of the harvester ant, Pogonomyrmex barbatus. Previous work shows how colonies regulate foraging in response to food availability and desiccation costs: the rate at which outgoing foragers leave the nest depends on the ...

  12. Dieta e comportamento de forrageamento de Suiriri affinis e S. islerorum (Aves, Tyrannidae em um cerrado do Brasil central Diet and foraging behavior of Suiriri affinis and S. islerorum (Aves, Tyrannidae in a central Brazilian cerrado

    Directory of Open Access Journals (Sweden)

    Leonardo E. Lopes

    2005-12-01

    Full Text Available Foi estudado o comportamento de forrageamento de Suiriri affinis (suiriri-do-cerrado e S. islerorum (suiriri-da-chapada, duas espécies de Tyrannidae que ocorrem em sintopia nos cerrados do Brasil central. Durante o ano de 2003 foram registradas 188 observações de forrageamento para S. affinis e 150 para S. islerorum. Foram encontradas diferenças significativas entre as duas espécies em relação à altura e substrato de forrageamento, fitofisionomia utilizada e densidade da folhagem no local do ataque. O comportamento e a direção do ataque, a espécie de planta e a distância de vôo não diferiram entre as espécies. A análise de 26 conteúdos estomacais de membros do gênero revelou o consumo exclusivo de artrópodes. A baixa porcentagem de observações de forrageamento direcionadas a frutos (apenas 7% e 9%, respectivamente confirmou o caráter insetívoro do gênero.The foraging behavior of Suiriri affinis (Campo Suiriri and S. islerorum (Chapada Flycatcher, two sintopic Tyrant Flycatchers in the Central Brazilian Cerrado (tropical savanna was studied. During 2003, 188 feeding bouts of S. affinis and 150 of S. islerorum were registered. Differences between the two species in the feeding height, foraging substrate, phytophysiognomy used, and foliage density at the point of foraging observation were found. The attack methods, attack direction, distance of flight, and plant species used did not differ between both species. The analysis of 26 stomach contents of members of this genus revealed only arthropods. The low percentage of feeding bouts directed to fruits (only 7% and 9%, respectively confirmed the insectivorous character of this genus.

  13. Linking foraging decisions to residential yard bird composition.

    Directory of Open Access Journals (Sweden)

    Susannah B Lerman

    Full Text Available Urban bird communities have higher densities but lower diversity compared with wildlands. However, recent studies show that residential urban yards with native plantings have higher native bird diversity compared with yards with exotic vegetation. Here we tested whether landscape designs also affect bird foraging behavior. We estimated foraging decisions by measuring the giving-up densities (GUD; amount of food resources remaining when the final forager quits foraging on an artificial food patch, i.e seed trays in residential yards in Phoenix, AZ, USA. We assessed how two yard designs (mesic: lush, exotic vegetation; xeric: drought-tolerant and native vegetation differed in foraging costs. Further, we developed a statistical model to calculate GUDs for every species visiting the seed tray. Birds foraging in mesic yards depleted seed trays to a lower level (i.e. had lower GUDs compared to birds foraging in xeric yards. After accounting for bird densities, the lower GUDs in mesic yards appeared largely driven by invasive and synanthropic species. Furthermore, behavioral responses of individual species were affected by yard design. Species visiting trays in both yard designs had lower GUDs in mesic yards. Differences in resource abundance (i.e., alternative resources more abundant and of higher quality in xeric yards contributed to our results, while predation costs associated with foraging did not. By enhancing the GUD, a common method for assessing the costs associated with foraging, our statistical model provided insights into how individual species and bird densities influenced the GUD. These differences we found in foraging behavior were indicative of differences in habitat quality, and thus our study lends additional support for native landscapes to help reverse the loss of urban bird diversity.

  14. Linking foraging decisions to residential yard bird composition.

    Science.gov (United States)

    Lerman, Susannah B; Warren, Paige S; Gan, Hilary; Shochat, Eyal

    2012-01-01

    Urban bird communities have higher densities but lower diversity compared with wildlands. However, recent studies show that residential urban yards with native plantings have higher native bird diversity compared with yards with exotic vegetation. Here we tested whether landscape designs also affect bird foraging behavior. We estimated foraging decisions by measuring the giving-up densities (GUD; amount of food resources remaining when the final forager quits foraging on an artificial food patch, i.e seed trays) in residential yards in Phoenix, AZ, USA. We assessed how two yard designs (mesic: lush, exotic vegetation; xeric: drought-tolerant and native vegetation) differed in foraging costs. Further, we developed a statistical model to calculate GUDs for every species visiting the seed tray. Birds foraging in mesic yards depleted seed trays to a lower level (i.e. had lower GUDs) compared to birds foraging in xeric yards. After accounting for bird densities, the lower GUDs in mesic yards appeared largely driven by invasive and synanthropic species. Furthermore, behavioral responses of individual species were affected by yard design. Species visiting trays in both yard designs had lower GUDs in mesic yards. Differences in resource abundance (i.e., alternative resources more abundant and of higher quality in xeric yards) contributed to our results, while predation costs associated with foraging did not. By enhancing the GUD, a common method for assessing the costs associated with foraging, our statistical model provided insights into how individual species and bird densities influenced the GUD. These differences we found in foraging behavior were indicative of differences in habitat quality, and thus our study lends additional support for native landscapes to help reverse the loss of urban bird diversity.

  15. Substituição do milho por palma forrageira: comportamento ingestivo de vacas mestiças em lactação - DOI: 10.4025/actascianimsci.v25i2.2029 Replacement of the corn by forage cactus: Ingestive behavior of crossbreed lactating cows - DOI: 10.4025/actascianimsci.v25i2.2029

    Directory of Open Access Journals (Sweden)

    Maria Adélia Oliveira Monteiro Cruz

    2003-04-01

    Full Text Available O objetivo deste trabalho foi estudar o efeito da substituição do milho por palma forrageira sobre o comportamento ingestivo de 8 vacas 5/8 Holandês-Zebu, distribuídas em 2 quadrados latinos 4 x 4. Os tratamentos consistiram na combinação fatorial de 2 cultivares de palma (miúda e gigante e 2 níveis de milho (com e sem. Não houve interação entre palma e milho (p > 0,05. As vacas que consumiram palma gigante gastaram mais tempo para se alimentar e as que consumiram palma miúda permanecerem maior tempo descansando (p The aim of this work was to evaluate the effects of replacement of corn by forage cactus on the ingestive behavior of eight crossbreed cows, assigned to a two 4 x 4 Latin square design. The treatments were a factorial 2 x 2 arrangement (two cultivars of forage cactus and two corn levels, with and without. There wasn’t interaction between forage cactus and corn (p > 0,05. The cows that consumed giant forage cactus spent more time eating and those that consumed small forage cactus spent more time resting (p < 0,01. The intake of water was lower for the animals that consumed diets with giant forage cactus and without corn (p < 0,01.

  16. The effects of acute temperature change on swimming performance in bluegill sunfish Lepomis macrochirus.

    Science.gov (United States)

    Jones, Emily A; Jong, Arianne S; Ellerby, David J

    2008-05-01

    Many fish change gait within their aerobically supported range of swimming speeds. The effects of acute temperature change on this type of locomotor behavior are poorly understood. Bluegill sunfish swim in the labriform mode at low speeds and switch to undulatory swimming as their swimming speed increases. Maximum aerobic swimming speed (U(max)), labriform-undulatory gait transition speed (U(trans)) and the relationships between fin beat frequency and speed were measured at 14, 18, 22, 26 and 30 degrees C in bluegill acclimated to 22 degrees C. At temperatures below the acclimation temperature (T(a)), U(max), U(trans) and the caudal and pectoral fin beat frequencies at these speeds were reduced relative to the acclimation level. At temperatures above T(a) there was no change in these variables relative to the acclimation level. Supplementation of oxygen levels at 30 degrees C had no effect on swimming performance. The mechanical power output of the abductor superficialis, a pectoral fin abductor muscle, was measured in vitro at the same temperatures used for the swimming experiments. At and below T(a), maximal power output was produced at a cycle frequency approximately matching the in vivo pectoral fin beat frequency. At temperatures above T(a) muscle power output and cycle frequency could be increased above the in vivo levels at U(trans). Our data suggest that the factors triggering the labriform-undulatory gait transition change with temperature. Muscle mechanical performance limited labriform swimming speed at T(a) and below, but other mechanical or energetic factors limited labriform swimming speed at temperatures above T(a).

  17. Redesigning forages with condensed tannins

    Science.gov (United States)

    Maximizing protein content in forages and minimizing protein loss during silage fermentation and rumen digestion are concerns for livestock and dairy producers. Substantial amounts of forage protein undergo proteolysis (breakdown) during the ensiling process and during rumen fermentation, transforme...

  18. Optimal Foraging in Semantic Memory

    Science.gov (United States)

    Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.

    2012-01-01

    Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…

  19. Nutritional status influences socially regulated foraging ontogeny in honey bees.

    Science.gov (United States)

    Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E

    2005-12-01

    In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.

  20. Identifying robustness in the regulation of collective foraging of ant colonies using an interaction-based model with backward bifurcation.

    Science.gov (United States)

    Udiani, Oyita; Pinter-Wollman, Noa; Kang, Yun

    2015-02-21

    Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response to their environment. We propose a set of differential equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as baseline number of foragers, interactions among foragers, food discovery rates, successful forager return rates, and foraging duration might influence collective foraging dynamics, while maintaining functional robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical) bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case, foraging activity persists when the average number of recruits per successful returning forager is larger than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and fate of foraging activity depends on the distribution of the foraging workforce among the model's compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Conducta de forrajeo del gastrópodo Acanthina monodon Pallas, 1774 (Gastropoda: Muricidae en el intermareal rocoso de Chile central Foraging behavior of the gastropod Acanthina monodon Pallas, 1774 (Gastropoda: Muricidae in the intertidal rocky shores of central Chile

    Directory of Open Access Journals (Sweden)

    RUBÉN E. SOTO

    2004-03-01

    Full Text Available En el presente trabajo investigamos aspectos de la ecología y conducta de forrajeo de Acanthina monodon, un gastrópodo murícido que habita en el intermareal rocoso de Chile central. En terreno, estudiamos las variaciones temporales en su distribución, densidad y dieta. En el laboratorio, cuantificamos la tasa de consumo, las preferencias alimentarias, el tiempo de ingestión y la rentabilidad energética obtenida con distintos tipos de presas mediante experimentos y registros en video. Las mayores densidades de individuos de A. monodon fueron observadas en la franja intermareal cercana al nivel cero de marea. En terreno, A. monodon realiza sus actividades de forrajeo principalmente durante la noche y su dieta consistió principalmente de mitílidos (95 % y cirripedios (5 %. La composición de la dieta de A. monodon en terreno presentó variaciones temporales las cuales dependerían principalmente de cambios en la oferta de los distintos tipos de mitílidos presentes en terreno durante los dos años de muestreo. En el laboratorio, los individuos de Acanthina presentaron preferencias alimentarias significativas por el mitílido Semimytilus algosus. En general, A. monodon bajo condiciones de laboratorio presentó una conducta de forrajeo en la cual maximizó la ganancia neta de energía, mediante la selección de las especies y tamaños de presas que le retribuyen la mayor rentabilidad energéticaWe investigated the ecology and foraging behavior of Acanthina monodon, a muricid gastropod that inhabits in the intertidal rocky shores of central Chile. In the field, we studied temporal variation of their spatial distribution, density, and diet composition. While in the laboratory, we quantified the consumption rate, alimentary preferences, ingestion times and energy profitability obtained with different types of prey using experiments and video recording. High densities of A. monodon individuals were observed in the intertidal fringe near at the

  2. Intersexual and temporal variation in foraging ecology of prothonotary warblers during the breeding season

    Science.gov (United States)

    Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.

    1990-01-01

    We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.

  3. Experimental Study of the Dynamics of Foraging Ants

    Science.gov (United States)

    Walker, J. I.; Fetzner, R. P.; Baxter, G. W.

    2006-03-01

    We study the search paths of foraging ants in order to describe their behavior mathematically. Ants have become popular as simple agents in models of artificial life. Here, the ant is presented the problem of finding food when no food cues are present. In this experiment, individual ants (Formicinae lasius flavus) are allowed to forage on a two-dimensional textured surface in the absence of a food source. The position of the ant as a function of time is determined with a high resolution digital camera. The scaling properties of the resulting foraging paths compare favorably with those of certain types of random walk.

  4. Traffic noise reduces foraging efficiency in wild owls

    Science.gov (United States)

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D.; Nakamura, Futoshi

    2016-08-01

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls’ ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls’ ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.

  5. Uncovering the complexity of ant foraging trails.

    Science.gov (United States)

    Czaczkes, Tomer J; Grüter, Christoph; Jones, Sam M; Ratnieks, Francis L W

    2012-01-01

    The common garden ant Lasius niger use both trail pheromones and memory of past visits to navigate to and from food sources. In a recent paper we demonstrated a synergistic effect between route memory and trail pheromones: the presence of trail pheromones results in experienced ants walking straighter and faster. We also found that experienced ants leaving a pheromone trail deposit less pheromone. Here we focus on another finding of the experiment: the presence of cuticular hydrocarbons (CHCs), which are used as home range markers by ants, also affects pheromone deposition behavior. When walking on a trail on which CHCs are present but trail pheromones are not, experienced foragers deposit less pheromone on the outward journey than on the return journey. The regulatory mechanisms ants use during foraging and recruitment behavior is subtle and complex, affected by multiple interacting factors such as route memory, travel direction and the presence trail pheromone and home-range markings.

  6. Balancing organization and flexibility in foraging dynamics.

    Science.gov (United States)

    Tabone, Michaelangelo; Ermentrout, Bard; Doiron, Brent

    2010-10-07

    Proper pattern organization and reorganization are central problems facing many biological networks which thrive in fluctuating environments. However, in many cases the mechanisms that organize system activity oppose those that support behavioral flexibility. Thus, a balance between pattern organization and pattern flexibility is critically important for overall biological fitness. We study this balance in the foraging strategies of ant colonies exploiting food in dynamic environments. We present discrete time and space simulations of colony activity that uses a pheromone-based recruitment strategy biasing foraging towards a food source. After food relocation, the pheromone must evaporate sufficiently before foraging can shift colony attention to a new food source. The amount of food consumed within the dynamic environment depends non-monotonically on the pheromone evaporation time constant-with maximal consumption occurring at a time constant which balances trail formation and trail flexibility. A deterministic, 'mean field' model of pheromone and foragers on trails mimics our colony simulations. This reduced framework captures the essence of the flexibility-organization balance, and relates optimal pheromone evaporation to the timescale of the dynamic environment. We expect that the principles exposed in our study will generalize and motivate novel analysis across a broad range systems biology.

  7. 长距离迁徙鸟类对应于能量积累状态的取食行为调整%Long-distance bird migrants adjust their foraging behavior in relation to energy stores

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; Frank R.MOORE

    2005-01-01

    Migratory birds can anticipate heightened energy demand and increased uncertainty that energy demands will be satisfied during their annual migration phase.Optimal migration theory predicted that stopover decisions could be affected by energetic condition,foraging opportunity,and timing of migration.Using the stopover migratory thrushes following spring passage across the Gulf of Mexico,we examined the interactions of foraging behavior,energetic condition,and rate of fat deposit.Birds were mist-netted,weighted,estimated for fat storage,and released after being banded with a unique numbered aluminum leg band.For behavioral observation,birds were separated to two groups:"lean day birds" when daily average body mass of captured birds was near or below fat free mass and "fat day birds" when daily average body mass of captured birds was above fat free mass.A subsample of birds with known fat condition was banded with unique combination of color-band(s) for re-sight and confirmation of relationship between energetic condition and foraging behavior.Nearly 50% of the migrants had no visible fat left upon crossing the Gulf of Mexico and were near fat-free mass.Lean birds expanded their foraging repertoire,broadened their use of substrate,and foraged at a faster pace than did birds with fat stores remaining following arrival.Lean migrants tended to gain more mass and gain mass at a faster rate.Our data suggest that the energetic condition upon arrival at a stopover site affects foraging behavior and physiological conditions upon departure,which may further affect stopover length and the decisions of stopover en route[Acta Zoologica Sinica 51(1):12-23,2005].%迁徙鸟类能够预计到迁徙过程中对能量需求的增加和迁徙途中获得能量的不确定性.最佳迁徙理论指出:迁徙停留期的一系列决策受到体内能量状态、取食机会和迁徙时间的影响.利用刚完成春季跨越墨西哥湾迁徙的鸫类,我们研究了取食行为、体内

  8. Analysis of adaptive foraging in an intraguild predation system

    Directory of Open Access Journals (Sweden)

    T. Okuyama

    2003-09-01

    Full Text Available An intraguild predation (IGP system with adaptive foraging behavior was analyzed using a simple mathematical model. The main aim was to explore how the adaptive behavior affects species interactions as well as how such interactions derived from adaptive behavior affect community stability. The focal system contained top predators, intermediate predators, and basal prey. Intermediate predators exhibit antipredator behavior and balance costs (e.g. perceived predation risk and benefits (e.g. resource intake to determine their foraging effort. Density-dependent foraging behavior with the unique connectance of the IGP food web created unusual species interactions. Notably, increased prey density can transmit negative indirect effects to top predators while increased top predator density transmits positive indirect effects to prey population. The nature of these interactions is density-dependent. The results suggest that both IGP (as opposed to linear food chain and adaptive foraging behaviors may strongly influence community dynamics due to emergent interactions among direct effects and indirect effects. Furthermore, the adaptive foraging of intermediate predators may stabilize the community as a whole.

  9. Foraging Behavior of the Blue Morpho and Other Tropical Butterflies: The Chemical and Electrophysiological Basis of Olfactory Preferences and the Role of Color

    Directory of Open Access Journals (Sweden)

    Alexandra Sourakov

    2012-01-01

    Full Text Available Inside a live butterfly exhibit, we conducted bioassays to determine whether the presence of color would facilitate the location of attractants by the butterflies. It was found that color facilitated odor attraction in some species that feed on flowers (Parthenos silvia, Heraclides thoas, Dryas julia, and Idea leuconoe, but not in the exclusively fruit-feeding species, such as Morpho helenor, hence demonstrating that species with different natural diets use different foraging cues. Green, ripe, and fermented bananas were evaluated for their attractiveness to butterflies together with honey and mangoes. The fermented bananas were determined to be the most attractive bait, and the electrophysiological responses to their volatiles were studied in Morpho helenor and Caligo telamonius. During GC-EAD evaluation, fifteen different aliphatic esters, such as isobutyl isobutyrate, butyl acetate, ethyl butanoate, and butyl butanoate (both fermentation products and fruit semiochemicals were shown to be detected by the butterflies’ sensory apparatus located in the forelegs, midlegs, proboscis, labial palpi, and antennae. Legs, proboscis, and antennae of Morpho helenor and Caligo telamonius showed similar sensitivity, reacting to 11 chemicals, while labial palpi had a lower signal-to-noise ratio and responded to seven chemicals, only three of which produced responses in other organs.

  10. Predation Risk Perception, Food Density and Conspecific Cues Shape Foraging Decisions in a Tropical Lizard.

    Directory of Open Access Journals (Sweden)

    Maximilian Drakeley

    Full Text Available When foraging, animals can maximize their fitness if they are able to tailor their foraging decisions to current environmental conditions. When making foraging decisions, individuals need to assess the benefits of foraging while accounting for the potential risks of being captured by a predator. However, whether and how different factors interact to shape these decisions is not yet well understood, especially in individual foragers. Here we present a standardized set of manipulative field experiments in the form of foraging assays in the tropical lizard Anolis cristatellus in Puerto Rico. We presented male lizards with foraging opportunities to test how the presence of conspecifics, predation-risk perception, the abundance of food, and interactions among these factors determines the outcome of foraging decisions. In Experiment 1, anoles foraged faster when food was scarce and other conspecifics were present near the feeding tray, while they took longer to feed when food was abundant and when no conspecifics were present. These results suggest that foraging decisions in anoles are the result of a complex process in which individuals assess predation risk by using information from conspecific individuals while taking into account food abundance. In Experiment 2, a simulated increase in predation risk (i.e., distance to the feeding tray confirmed the relevance of risk perception by showing that the use of available perches is strongly correlated with the latency to feed. We found Puerto Rican crested anoles integrate instantaneous ecological information about food abundance, conspecific activity and predation risk, and adjust their foraging behavior accordingly.

  11. Colony variation in the collective regulation of foraging by harvester ants

    Science.gov (United States)

    Guetz, Adam; Greene, Michael J.; Holmes, Susan

    2011-01-01

    This study investigates variation in collective behavior in a natural population of colonies of the harvester ant, Pogonomyrmex barbatus. Harvester ant colonies regulate foraging activity to adjust to current food availability; the rate at which inactive foragers leave the nest on the next trip depends on the rate at which successful foragers return with food. This study investigates differences among colonies in foraging activity and how these differences are associated with variation among colonies in the regulation of foraging. Colonies differ in the baseline rate at which patrollers leave the nest, without stimulation from returning ants. This baseline rate predicts a colony's foraging activity, suggesting there is a colony-specific activity level that influences how quickly any ant leaves the nest. When a colony's foraging activity is high, the colony is more likely to regulate foraging. Moreover, colonies differ in the propensity to adjust the rate of outgoing foragers to the rate of forager return. Naturally occurring variation in the regulation of foraging may lead to variation in colony survival and reproductive success. PMID:22479133

  12. Predation Risk Perception, Food Density and Conspecific Cues Shape Foraging Decisions in a Tropical Lizard.

    Science.gov (United States)

    Drakeley, Maximilian; Lapiedra, Oriol; Kolbe, Jason J

    2015-01-01

    When foraging, animals can maximize their fitness if they are able to tailor their foraging decisions to current environmental conditions. When making foraging decisions, individuals need to assess the benefits of foraging while accounting for the potential risks of being captured by a predator. However, whether and how different factors interact to shape these decisions is not yet well understood, especially in individual foragers. Here we present a standardized set of manipulative field experiments in the form of foraging assays in the tropical lizard Anolis cristatellus in Puerto Rico. We presented male lizards with foraging opportunities to test how the presence of conspecifics, predation-risk perception, the abundance of food, and interactions among these factors determines the outcome of foraging decisions. In Experiment 1, anoles foraged faster when food was scarce and other conspecifics were present near the feeding tray, while they took longer to feed when food was abundant and when no conspecifics were present. These results suggest that foraging decisions in anoles are the result of a complex process in which individuals assess predation risk by using information from conspecific individuals while taking into account food abundance. In Experiment 2, a simulated increase in predation risk (i.e., distance to the feeding tray) confirmed the relevance of risk perception by showing that the use of available perches is strongly correlated with the latency to feed. We found Puerto Rican crested anoles integrate instantaneous ecological information about food abundance, conspecific activity and predation risk, and adjust their foraging behavior accordingly.

  13. Colony variation in the collective regulation of foraging by harvester ants.

    Science.gov (United States)

    Gordon, Deborah M; Guetz, Adam; Greene, Michael J; Holmes, Susan

    2011-03-01

    This study investigates variation in collective behavior in a natural population of colonies of the harvester ant, Pogonomyrmex barbatus. Harvester ant colonies regulate foraging activity to adjust to current food availability; the rate at which inactive foragers leave the nest on the next trip depends on the rate at which successful foragers return with food. This study investigates differences among colonies in foraging activity and how these differences are associated with variation among colonies in the regulation of foraging. Colonies differ in the baseline rate at which patrollers leave the nest, without stimulation from returning ants. This baseline rate predicts a colony's foraging activity, suggesting there is a colony-specific activity level that influences how quickly any ant leaves the nest. When a colony's foraging activity is high, the colony is more likely to regulate foraging. Moreover, colonies differ in the propensity to adjust the rate of outgoing foragers to the rate of forager return. Naturally occurring variation in the regulation of foraging may lead to variation in colony survival and reproductive success.

  14. Collective foraging in heterogeneous landscapes

    CERN Document Server

    Bhattacharya, Kunal

    2013-01-01

    Animals foraging alone are hypothesized to optimize the encounter rates with resources through L\\'evy walks. However, the issue of how the interactions between multiple foragers influence their search efficiency is still not completely understood. To address this, we consider a model to study the optimal strategy for a group of foragers searching for targets distributed heterogeneously. In our model foragers move on a square lattice containing immobile but regenerative targets. At any instant a forager is able to detect only those targets that happen to be in the same site. However, we allow the foragers to have information about the state of other foragers. A forager who has not detected any target walks towards the nearest location, where another forager has detected a target, with probability $\\exp{\\left(-\\alpha d\\right)}$, where $d$ is the distance and $\\alpha$ is a parameter. The model reveals that neither overcrowding ($\\alpha\\to 0$) nor independent searching ($\\alpha\\to\\infty$) is beneficial for the gr...

  15. Individual foraging strategies reveal niche overlap between endangered galapagos pinnipeds.

    Directory of Open Access Journals (Sweden)

    Stella Villegas-Amtmann

    Full Text Available Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis and sea lions (Zalophus wollebaeki share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0-80 m depth and mostly at 19-22 h. Most sea lion dives also occurred at night (63%, between 0-40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19-22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0-30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h, depth during overlapping time (21-24 m, and foraging range (37.7%. Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging "hot spot" for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during

  16. Foraging Behavior of Squirrels on Walnut Trees and Damage to Walnuts in Baihualing, Gaoligong Mountain%高黎贡山百花岭松鼠取食核桃的行为及其危害

    Institute of Scientific and Technical Information of China (English)

    陈桂首; 崔亮伟; 范朋飞

    2016-01-01

    In order to understand the foraging behavior of squirrels on walnut trees and walnuts damaged caused by squirrels, this paper collected foraging data using all-occurrence method and interviewed 200 walnut farmers to estimate walnut damages after walnut harvesting. The results showed that, three species of squirrel(Dremomys rufigenis, Ratufa bicolor and Callosciurus erythraeus)fed on and damaged the walnuts. Among them, C. erythraeus caused the most server damage. In order to keep walnut away from damage, farmers chose to kill squirrels in the study site. Consequently, squirrels showed anti-predation behavior during foraging on walnut trees. A significant positive relation was found between feeding time length and feeding height. The squirrels damaged 12.20%walnuts in the study site. The damage rates of 51 walnut trees were negatively correlated with the distance between the walnut tree and the boundary of the natural forests. Based on our interviews, it is estimated that squirrels caused RMB 100 000 losses in 150 hm2 walnut farms. In order to reduce economical loss, this paper suggested that farmers should strengthen management rather than expanding the planted area blind, and then take more scientific and effective protective actions based on the feeding behavior of squirrels.%为了解松鼠取食核桃的规律以及松鼠危害核桃所造成的损失,采用全事件记录法收集松鼠取食核桃数据并对200核桃种植户进行了访查。结果显示,取食核桃的松鼠有赤腹松鼠、红颊长吻松鼠和巨松鼠,其中赤腹松鼠的危害最严重。为了守护核桃,研究地的种植户经常猎杀松鼠,因此,赤腹松鼠取食核桃时表现出了明显的反捕食行为,取食核桃的时间与取食高度正相关。研究地松鼠造成的核桃损失率达12.20%,监测的51棵核桃树核桃损失率与核桃树到自然林距离负相关。访问调查150 hm2的核桃林因松鼠造成的经济损失达10万元之多

  17. Simple cellular automata to mimic foraging ants submitted to abduction

    CERN Document Server

    Tejera, F

    2015-01-01

    Many species of ants forage by building up two files: an outbound one moving from the nest to the foraging area, and a nestbound one, returning from it to the nest. Those files are eventually submitted to different threats. If the danger is concentrated at one point of the file, one might expect that ants returning to the nest will pass danger information to their nestmates moving in the opposite direction towards the danger area. In this paper, we construct simple cellular automata models for foraging ants submitted to localized abduction, were danger information is transmitted using different protocols, including the possibility of no transmission. The parameters we have used in the simulations have been estimated from actual experiments under natural conditions. So, it would be easy to test our information-transmission hypothese in real experiments. Preliminary experimental results published elsewhere suggest that the behavior of foraging ants of the species Atta insularis is best described using the hypot...

  18. The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats - A Review.

    Science.gov (United States)

    Sunagawa, Katsunori; Nagamine, Itsuki

    2016-02-01

    The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of NaHCO3 due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h feeding period most

  19. Breeding tropical forages

    Directory of Open Access Journals (Sweden)

    L Jank

    2011-01-01

    Full Text Available Brazil has the largest commercial beef cattle herd and is the main beef exporter in the world. Cultivated pastures arethe basis for the Brazilian beef production, and occupy an area of 101.4 million hectares. However, very few forage cultivars arecommercially available, and the majority of these are of apomictic reproduction, thus genetically homogeneous. Tropical foragebreeding is at its infancy, but much investment and efforts have been applied in the last three decades and some new cultivars havebeen released. In this paper, origin of different species, modes of reproduction, breeding programs and targets are discussed andthe resulting new cultivars released are presented.

  20. The organization of foraging in the fire ant, Solenopsis invicta.

    Science.gov (United States)

    Tschinkel, Walter R

    2011-01-01

    Although natural selection in ants acts most strongly at the colony, or superorganismal level, foraging patterns have rarely been studied at that level, focusing instead on the behavior of individual foragers or groups of foragers. The experiments and observations in this paper reveal in broad strokes how colonies of the fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), allocate their available labor to foraging, how they disperse that force within their territory, and how this force changes with colony size, season and worker age. Territory area is positively related to colony size and the number of foragers, more so during the spring than fall. Changes of colony size and territory area are driven by seasonal variation of sexual and worker production, which in turn drive seasonal variation of worker age-distribution. During spring sexual production, colonies shrink because worker production falls below replacement. This loss is proportional to colony size, causing forager density in the spring to be negatively related to colony and territory size. In the fall, colonies emphasize worker production, bringing colony size back up. However, because smaller colonies curtailed spring worker production less than larger ones, their fall forager populations are proportionally greater, causing them to gain territory at the expense of large colonies. Much variation of territory area remains unexplained and can probably be attributed to pressure from neighboring colonies. Boundaries between territories are characterized by "no ants' zones" mostly devoid of fire ants. The forager population can be divided into a younger group of recruitable workers that wait for scouts to activate them to help retrieve large food finds. About one-third of the recruits wait near openings in the foraging tunnels that underlie the entire territory, while two-thirds wait in the nest. Recruitment to food is initially very rapid and local from the foraging tunnels, while sustained

  1. Comportamento ingestivo, consumo de forragem e desempenho de cabritas alimentadas com diferentes níveis de suplementação Ingestive behavior, forage intake and performance of goats fed with different levels of supplementation

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Adami

    2013-02-01

    behavior; besides forage intake. Supplementation decreased forage intake - 2.4, 1.45, 1.43, and 1.05% of body weight, in treatments with 0, 0.5, 1 and 1.5%, respectively -, daily grazing time, and the individual weight gain. The supplementation levels did not change total dry matter intake (forage + concentrate neither the rumination time, but they increased resting time, which allowed greater animal performance per area.

  2. Anticipatory and foraging behaviors in response to palatable food reward in chickens: Effects of dopamine D2 receptor blockade and domestication

    NARCIS (Netherlands)

    Moe, R.O.; Nordgreen, J.; Janczak, A.M.; Bakken, M.; Spruijt, Berry; Jensen, P.

    2014-01-01

    Behaviors associated with anticipation and search for palatable food may provide information about dopaminergic reward processes and positive motivational affect in animals. The overall aim was to investigate the involvement of dopamine signaling in the regulation of cue-induced anticipation and

  3. Anticipatory and foraging behaviors in response to palatable food reward in chickens: Effects of dopamine D2 receptor blockade and domestication

    NARCIS (Netherlands)

    Moe, R.O.; Nordgreen, J.; Janczak, A.M.; Bakken, M.; Spruijt, Berry; Jensen, P.

    2014-01-01

    Behaviors associated with anticipation and search for palatable food may provide information about dopaminergic reward processes and positive motivational affect in animals. The overall aim was to investigate the involvement of dopamine signaling in the regulation of cue-induced anticipation and sea

  4. ABEJAS VISITANTES DE Mimosa pigra L. (MIMOSACEAE: COMPORTAMIENTO DE PECOREO Y CARGAS POLÍNICAS Bees visiting Mimosa pigra L. (Mimosaceae: foraging behavior and pollen loads

    Directory of Open Access Journals (Sweden)

    CLARA ISABEL AGUILAR SIERRA

    several groups: one of them, includes seven species of bees whose pollen loads are in a high porcentaje of M. pigra (86% of pollen grains or above; another group of bees with high percentage (more than 94% of pollen grains of Mimosa species (M. pigra and M. pudica; and the other two groups that include the bee species: Trigona dorsalis (who collected more than half of their pollen resources from M. pigra (59.4% in addition to a high percentage of S. diversifolium (37.8%; the last kind of foragers includes Lasioglossum sp.113 who collected mostly pollen from species different to Mimosa (including P. aduncum with 61.8% of pollen grains, and W. coccinea with 36,4% and only a small percentage of M. pigra (1,3%. In terms of the species of bees that collected a highest diversity of pollen grains, two species: Trigona muzoensis (12 pollen types and T. dorsalis (10 pollen types outstand other species of bees on on feeding niche and question either the bees capacity of cleaning or their floral constancy.

  5. Attention in Urban Foraging

    Directory of Open Access Journals (Sweden)

    Malcolm McCullough

    2013-05-01

    Full Text Available This position paper argues how there has to be much more to smart city learning than just wayshowing, and something better as augmented reality than covering the world with instructions. Attention has become something for many people to know better in an age of information superabundance. Embodied cognition explains how the work-ings of attention are not solely a foreground task, as if attention is something to pay. As digital media appear in ever more formats and contexts, their hybrids with physical form increasing influence how habitual engagement with persistent situations creates learning. Ambient information can just add to the distraction by multitasking, or it can support more favorable processes of shifting among different kinds of information with a particular intent. As one word for this latter process, foraging deserves more consideration in smart city learning

  6. Linkage between fishes'foraging, market and fish stocks density: Examples from some North Sea fisheries

    NARCIS (Netherlands)

    Marchal, P.; Poos, J.J.; Quirijns, F.J.

    2007-01-01

    This study has investigated some properties of fishermen's foraging, using Levy flights theory. The case studies examined were a selection of North Sea Dutch and French vessels, for which catch and effort data were collected on a haul-by-haul basis. Foraging behavior could reasonably be represented

  7. Patch densities determines movement patterns and foraging efficiency of large herbivores

    NARCIS (Netherlands)

    Knegt, de H.J.; Hengeveld, G.M.; Langevelde, van F.; Boer, de W.F.; Kirkman, K.P.

    2007-01-01

    Few experimental studies have tested theoretical predictions regarding the movement strategies of large herbivores and their consequences for foraging efficiency. We therefore analyze how the movement and foraging behavior of goats are related to patch density, with patches being trees and bushes. W

  8. Snag Condition and Woodpecker Foraging Ecology in a Bottomland Hardwood Forest

    Science.gov (United States)

    Richard N. Conner; Stanley D. Jones; Gretchen D. Jones

    1994-01-01

    We studied woodpecker foraging behavior, snag quality, and surrounding habitat in a bottomland hardwood forest in the Stephen F. Austin Experimental Forest from December 1984 through November 1986. The amount and location of woodpecker foraging excavations indicated that woodpeckers excavated mainly at the well-decayed tops and bases of snags. Woodpeckers preferred to...

  9. Food availability and foraging near human developments by black bears

    Science.gov (United States)

    Merkle, Jerod A.; Robinson, Hugh S.; Krausman, Paul R.; Alaback, Paul B.

    2013-01-01

    Understanding the relationship between foraging ecology and the presence of human-dominated landscapes is important, particularly for American black bears (Ursus americanus), which sometimes move between wildlands and urban areas to forage. The food-related factors influencing this movement have not been explored, but can be important for understanding the benefits and costs to black bear foraging behavior and the fundamental origins of bear conflicts. We tested whether the scarcity of wildland foods or the availability of urban foods can explain when black bears forage near houses, examined the extent to which male bears use urban areas in comparison to females, and identified the most important food items influencing bear movement into urban areas. We monitored 16 collared black bears in and around Missoula, Montana, during 2009 and 2010, while quantifying the rate of change in green vegetation and the availability of 5 native berry-producing species outside the urban area, the rate of change in green vegetation, and the availability of apples and garbage inside the urban area. We used parametric time-to-event models in which an event was a bear location collected within 100 m of a house. We also visited feeding sites located near houses and quantified food items bears had eaten. The probability of a bear being located near a house was 1.6 times higher for males, and increased during apple season and the urban green-up. Fruit trees accounted for most of the forage items at urban feeding sites (49%), whereas wildland foods composed <10%. Black bears foraged on human foods near houses even when wildland foods were available, suggesting that the absence of wildland foods may not influence the probability of bears foraging near houses. Additionally, other attractants, in this case fruit trees, appear to be more important than the availability of garbage in influencing when bears forage near houses.

  10. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Railsback, Steven F; Harvey, Bret C

    2013-02-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can address feedbacks but does not provide foraging theory for unique individuals in variable environments. 'State- and prediction-based theory' (SPT) is a new approach that combines existing trade-off methods with routine updating: individuals regularly predict future food availability and risk from current conditions to optimize a fitness measure. SPT can reproduce a variety of realistic foraging behaviors and trait-mediated trophic interactions with feedbacks, even when the environment is unpredictable.

  11. Dynamic optimal foraging theory explains vertical migrations of bigeye tuna

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Sommer, Lene; Evans, Karen;

    2016-01-01

    Bigeye tuna are known for remarkable daytime vertical migrations between deep water, where food is abundant but the water is cold, and the surface, where water is warm but food is relatively scarce. Here we investigate if these dive patterns can be explained by dynamic optimal foraging theory......, where the tuna maximizes its energy harvest rate. We assume that foraging efficiency increases with body temperature, so that the vertical migrations are thermoregulatory. The tuna's state is characterized by its mean body temperature and depth, and we solve the optimization problem numerically using...... behaves such as to maximize its energy gains. The model therefore provides insight into the processes underlying observed behavioral patterns and allows generating predictions of foraging behavior in unobserved environments...

  12. Forage intake, feeding behavior and bio-climatological indices of pasture grass, under the influence of trees, in a silvopastoral system

    Directory of Open Access Journals (Sweden)

    L.F Sousa

    2015-09-01

    Full Text Available The aim of this study was to compare a silvopastoral system with a control (pasture only in the Brazilian Cerrado. The silvopastoral system consisted of a tropical grass (Brachiaria brizantha cv. Marandu pasture and trees (Zeyheria tuberculosa, while the control was a Marandu pasture without trees. Sheep intake, feeding behavior and microclimatic conditions were the variables evaluated. Temperatures within the silvopastoral system were lower than in the control (maximum temperature of 28 and 33.5 °C, temperature and humidity index of 74.0 and 79.2 for the silvopastoral system and control, respectively. There was increased dry matter intake (88.2 vs. 79.9 g DM/kg0.75 LW/d, P<0.05, organic matter intake (89.6 vs. 81.1 g OM/kg0.75 LW/d, P<0.05 and grazing time (572 vs. 288 min/d, P<0.05, and reduced total water intake (430 vs. 474 mL/kg0.75 LW/d, P<0.05 and walking time (30 vs. 89 min/d, P<0.05 in grazing sheep in the silvopastoral system relative to the control. The results suggest that a silvopastoral system would provide a more favorable environment than a straight pasture for sheep performance in a tropical grazing situation.Keywords: Animal behavior, microclimate, shade, sheep.DOI: 10.17138/TGFT(3129-141

  13. Use of space, activity patterns, and foraging behavior of red howler monkeys (Alouatta seniculus) in an Andean forest fragment in Colombia.

    Science.gov (United States)

    Palma, Ana Cristina; Vélez, Adriana; Gómez-Posada, Carolina; López, Harrison; Zárate, Diego A; Stevenson, Pablo R

    2011-10-01

    Howler monkeys are among the most studied primates in the Neotropics, however, behavioral studies including estimation of food availability in Andean forests are scarce. During 12 months we studied habitat use, behavior, and feeding ecology of two groups of red howler monkeys (Alouatta seniculus) in an isolated fragment in the Colombian Andes. We used a combination of focal animal and instantaneous sampling. We estimated fruit production (FP) using phenology transects, and calculated young leaf abundance by observing marked trees. The home range area used by each group was 10.5 and 16.7 ha and daily distances traveled were 431 ± 228 and 458 ± 259 m, respectively. We found that both groups spent most of their time resting (62-64%). Resting time did not increase with leaf consumption as expected using a strategy of energy minimization. We did not find a relationship between daily distances traveled and leaf consumption. However, howlers consumed fruits according to their availability, and the production of young leaves did not predict feeding time on this resource. Overall, our results are similar to those found on other forest types. We found that despite limited FP in Andean forests, this did not lead to a higher intake of leaves, longer resting periods, or shorter traveling distances for red howlers.

  14. Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent.

    Science.gov (United States)

    Levy, Ofir; Dayan, Tamar; Porter, Warren P; Kronfeld-Schor, Noga

    2016-08-01

    Although animals fine-tune their activity to avoid excess heat, we still lack a mechanistic understanding of such behaviors. As the global climate changes, such understanding is particularly important for projecting shifts in the activity patterns of populations and communities. We studied how foraging decisions vary with biotic and abiotic pressures. By tracking the foraging behavior of diurnal desert spiny mice in their natural habitat and estimating the energy and water costs and benefits of foraging, we asked how risk management and thermoregulatory requirements affect foraging decisions. We found that water requirements had the strongest effect on the observed foraging decisions. In their arid environment, mice often lose water while foraging for seeds and cease foraging even at high energetic returns when water loss is high. Mice also foraged more often when energy expenditure was high and for longer times under high seed densities and low predation risks. Gaining insight into both energy and water balance will be crucial to understanding the forces exerted by changing climatic conditions on animal energetics, behavior, and ecology.

  15. Individual and collective problem-solving in a foraging context in the leaf-cutting ant Atta colombica.

    Science.gov (United States)

    Dussutour, Audrey; Deneubourg, Jean-Louis; Beshers, Samuel; Fourcassié, Vincent

    2009-01-01

    In this paper we investigate the flexibility of foraging behavior in the leaf-cutting ant Atta colombica, both at the individual and collective levels, following a change in the physical properties of their environment. We studied in laboratory conditions the changes occurring in foraging behavior when a height constraint was placed 1 cm above part of the trail linking the nest to the foraging area. We found that the size and shape of the fragments of foraging material brought back to the nest were significantly modified when the constraint was placed on the trail: independent of their size, forager ants cut smaller and rounder fragments in the presence of a height constraint than in its absence. This size adjustment does not require any direct sensory feedback because it occurred when the ants cut fragments in the foraging area; no further cutting was done when they encountered the constraint. This points to the existence of a template that ants store and use as a reference to adjust their reach while cutting. Remarkably, despite the decrease in the foraging material brought to the nest per capita the colony was still able to improve its foraging performance by doubling the number of transporters. This study illustrates the flexibility of foraging behavior exhibited by an ant colony. It provides a rare example of insects finding an intelligent solution to a problem occurring in a foraging context, at both the individual and collective levels.

  16. Differences in the sleep architecture of forager and young honeybees (Apis mellifera).

    Science.gov (United States)

    Eban-Rothschild, Ada D; Bloch, Guy

    2008-08-01

    Honeybee (Apis mellifera) foragers are among the first invertebrates for which sleep behavior has been described. Foragers (typically older than 21 days) have strong circadian rhythms; they are active during the day, and sleep during the night. We explored whether young bees (approximately 3 days of age), which are typically active around-the-clock with no circadian rhythms, also exhibit sleep behavior. We combined 24-hour video recordings, detailed behavioral observations, and analyses of response thresholds to a light pulse for individually housed bees in various arousal states. We characterized three sleep stages in foragers on the basis of differences in body posture, bout duration, antennae movements and response threshold. Young bees exhibited sleep behavior consisting of the same three stages as observed in foragers. Sleep was interrupted by brief awakenings, which were as frequent in young bees as in foragers. Beyond these similarities, we found differences in the sleep architecture of young bees and foragers. Young bees passed more frequently between the three sleep stages, and stayed longer in the lightest sleep stage than foragers. These differences in sleep architecture may represent developmental and/or environmentally induced variations in the neuronal network underlying sleep in honeybees. To the best of our knowledge, this is the first evidence for plasticity in sleep behavior in insects.

  17. Factors affecting forage stand establishment

    Directory of Open Access Journals (Sweden)

    Sulc R.M.

    1998-01-01

    Full Text Available Significant advances have been made in our knowledge of forage seed physiology, technology, and stand establishment practices; however, stand establishment continues to be one of the most common production problems affecting forage crops in the USA. There is a need for research on stand establishment of forage crops under abiotic and biotic stress. Although the forage seed industry produces and markets seed of high quality, new methods of assessing seed vigor are needed and their use should be expanded in the industry to enable matching seed lot performance to specific environmental conditions where performance can be maximized. Seed treatment and seed coating are used in the forage seed industry, and studies have shown they are of benefit in some environments. There is an increase in no-tillage seeding of forage crops, but improvements in the no-tillage planting equipment are needed to make them better suited to small seeds. Other recent developments in seeding techniques include broadcasting seed with dry granular and fluid fertilizers, which improves the efficiency of the seeding operation.

  18. 外界支持物对绞股蓝种群觅养行为和繁殖对策的影响%Effects of external support on the foraging behavior and reproductive strategies in Gynostemma pentaphylum populations

    Institute of Scientific and Technical Information of China (English)

    何维明; 钟章成

    2001-01-01

    G.Pentaphyllum,as a climbing plant,utilizes its surrounding plants as external support for upright growth under natural conditions.To examine the effects of the external support on foraging behavior and reproductive strategies in the G.pentaphyllum populations,two types of treatments,i.e.erect growth with external support,and prostrate growth without external support,were created to simulate their success and failure in encountering support using experimental ecological methods.The results showed as follows:(1)External support could significantly affect blade biomass ratio,tendril biomass ratio,branching ratio,specific leaf area,blade biomass/support biomass,and petiole angle.The influences can embody the ecological adaptation of G.pentaphyllum populations to heterogeneous light environments,and reflect the “research” of the population with prostrate growth for support as well.(2)External support could significantly influence reproductive allocation,reproductive index,reproductive efficiency index,reproductive ratio,and reproductive output.It implies that external support may significantly affect reproductive strategies of the populations.(3)The different characteristics of the populations had various sensitivity to external support.(4)It was through changing their light resource environments and growth means that external support affected foraging behavior and reproductive strategies in the G.pentaphyllum populations.%绞股蓝(Gynostemma pentaphyllum)是一种攀援植物,自然条件下攀附其它植物向上生长。利用实验生态学方法,设置两种处理,即有外界支持物(简称支持物)的直立生长和无支持物的伏地生长(模拟绞股蓝寻找到和找不到支持物的两种生长情况),以探讨支持物对绞股蓝种群觅养行为和繁殖对策的影响。结果表明:(1)支持物能显著影响叶片生物量比、卷须生物量比、分枝率、比叶面积、叶生物量/支持结构生物量比和叶柄角度

  19. The Role of Semantic Clustering in Optimal Memory Foraging

    Science.gov (United States)

    Montez, Priscilla; Thompson, Graham; Kello, Christopher T.

    2015-01-01

    Recent studies of semantic memory have investigated two theories of optimal search adopted from the animal foraging literature: Lévy flights and marginal value theorem. Each theory makes different simplifying assumptions and addresses different findings in search behaviors. In this study, an experiment is conducted to test whether clustering in…

  20. Adaptação e comportamento de pastejo da abelha jandaíra (Melipona subnitida Ducke em ambiente protegido - DOI: 10.4025/actascianimsci.v26i3.1777 Adaptation and foraging behavior of the stingless bee (Melipona subnitida Ducke in a caged environment - DOI: 10.4025/actascianimsci.v26i3.1777

    Directory of Open Access Journals (Sweden)

    Eva Mônica Sarmento da Silva

    2004-04-01

    Full Text Available A influência do ambiente protegido no comportamento de pastejo da abelha sem ferrão jandaíra (Melipona subnitida Ducke foi estudada no Estado do Ceará, região Nordeste do Brasil. Foram investigados aspectos como comportamento, adaptação das abelhas à casa de vegetação e o padrão diário de forrageamento destas na cultura do pimentão (Capsicum annuum L., cultivada em ambiente protegido. Os dados foram analisados estatisticamente por meio de análise de variância, com médias comparadas a posteriori, pelo teste de Tukey. Os resultados obtidos mostraram que M. subnitida Ducke adapta-se bem ao uso em casa de vegetação e realiza vôos de forrageamento durante todo o dia, podendo ser utilizada para polinização de culturas agrícolas, sob cultivo protegido.The effect of caged environment on the foraging behavior of the stingless bee Melipona subnitida Ducke was studied in the state of Ceará, NE Brazil. Species adaptation to enclosures, foraging behavioral aspects and daily foraging pattern were investigated in a greenhouse sweet pepper (Capsicum annuum L. crop. Data were analyzed by Anova and means were compared a posteriori using Tukey test. The results showed that M. subnitida Ducke adapts well to greenhouses and forages throughout the day. It may be concluded that this bee species can be used for crop pollination in protected environments.

  1. Root Foraging Performance and Life-History Traits.

    Science.gov (United States)

    Weiser, Martin; Koubek, Tomáš; Herben, Tomáš

    2016-01-01

    Plants use their roots to forage for nutrients in heterogeneous soil environments, but different plant species vastly differ in the intensity of foraging they perform. This diversity suggests the existence of constraints on foraging at the species level. We therefore examined the relationships between the intensity of root foraging and plant body traits across species in order to estimate the degree of coordination between plant body traits and root foraging as a form of plant behavior. We cultivated 37 perennial herbaceous Central European species from open terrestrial habitats in pots with three different spatial gradients of nutrient availability (steep, shallow, and no gradient). We assessed the intensity of foraging as differences in root placement inside pots with and without a spatial gradient of resource supply. For the same set of species, we retrieved data about body traits from available databases: maximum height at maturity, mean area of leaf, specific leaf area, shoot lifespan, ability to self-propagate clonally, maximal lateral spread (in clonal plants only), realized vegetative growth in cultivation, and realized seed regeneration in cultivation. Clonal plants and plants with extensive vegetative growth showed considerably weaker foraging than their non-clonal or slow-growing counterparts. There was no phylogenetic signal in the amount of expressed root foraging intensity. Since clonal plants foraged less than non-clonals and foraging intensity did not seem to be correlated with species phylogeny, we hypothesize that clonal growth itself (i.e., the ability to develop at least partly self-sustaining ramets) may be an answer to soil heterogeneity. Whereas unitary plants use roots as organs specialized for both resource acquisition and transport to overcome spatial heterogeneity in resource supply, clonal plants separate these two functions. Becoming a clonal plant allows higher specialization at the organ level, since a typical clonal plant can be

  2. Diet Overlap and Foraging Activity between Feral Pigs and Native Peccaries in the Pantanal.

    Science.gov (United States)

    Galetti, Mauro; Camargo, Hiléia; Siqueira, Tadeu; Keuroghlian, Alexine; Donatti, Camila I; Jorge, Maria Luisa S P; Pedrosa, Felipe; Kanda, Claudia Z; Ribeiro, Milton C

    2015-01-01

    Inter-specific competition is considered one of the main selective pressures affecting species distribution and coexistence. Different species vary in the way they forage in order to minimize encounters with their competitors and with their predators. However, it is still poorly known whether and how native species change their foraging behavior in the presence of exotic species, particularly in South America. Here we compare diet overlap of fruits and foraging activity period of two sympatric native ungulates (the white-lipped peccary, Tayassu pecari, and the collared peccary, Pecari tajacu) with the invasive feral pig (Sus scrofa) in the Brazilian Pantanal. We found high diet overlap between white-lipped peccaries and feral pigs, but low overlap between collared peccaries and feral pigs. Furthermore, we found that feral pigs may influence the foraging period of both native peccaries, but in different ways. In the absence of feral pigs, collared peccary activity peaks in the early evening, possibly allowing them to avoid white-lipped peccary activity peaks, which occur in the morning. In the presence of feral pigs, collared peccaries forage mostly in early morning, while white-lipped peccaries forage throughout the day. Our results indicate that collared peccaries may avoid foraging at the same time as white-lipped peccaries. However, they forage during the same periods as feral pigs, with whom they have lower diet overlap. Our study highlights how an exotic species may alter interactions between native species by interfering in their foraging periods.

  3. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Directory of Open Access Journals (Sweden)

    Deborah M Gordon

    Full Text Available The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  4. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Science.gov (United States)

    Gordon, Deborah M

    2012-01-01

    The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  5. Diet Overlap and Foraging Activity between Feral Pigs and Native Peccaries in the Pantanal.

    Directory of Open Access Journals (Sweden)

    Mauro Galetti

    Full Text Available Inter-specific competition is considered one of the main selective pressures affecting species distribution and coexistence. Different species vary in the way they forage in order to minimize encounters with their competitors and with their predators. However, it is still poorly known whether and how native species change their foraging behavior in the presence of exotic species, particularly in South America. Here we compare diet overlap of fruits and foraging activity period of two sympatric native ungulates (the white-lipped peccary, Tayassu pecari, and the collared peccary, Pecari tajacu with the invasive feral pig (Sus scrofa in the Brazilian Pantanal. We found high diet overlap between white-lipped peccaries and feral pigs, but low overlap between collared peccaries and feral pigs. Furthermore, we found that feral pigs may influence the foraging period of both native peccaries, but in different ways. In the absence of feral pigs, collared peccary activity peaks in the early evening, possibly allowing them to avoid white-lipped peccary activity peaks, which occur in the morning. In the presence of feral pigs, collared peccaries forage mostly in early morning, while white-lipped peccaries forage throughout the day. Our results indicate that collared peccaries may avoid foraging at the same time as white-lipped peccaries. However, they forage during the same periods as feral pigs, with whom they have lower diet overlap. Our study highlights how an exotic species may alter interactions between native species by interfering in their foraging periods.

  6. Children on the reef : Slow learning or strategic foraging?

    Science.gov (United States)

    Bird, Douglas W; Bliege Bird, Rebecca

    2002-06-01

    Meriam children are active reef-flat collectors. We demonstrate that while foraging on the reef, children are significantly less selective than adults. This difference and the precise nature of children's selectivity while reef-flat collecting are consistent with a hypothesis that both children and adults attempt to maximize their rate of return while foraging, but in so doing they face different constraints relative to differences in walking speeds while searching. Implications of these results for general arguments about factors that shape differences between child and adult behavior and human life-histories are explored.

  7. Sublethal imidacloprid effects on honey bee flower choices when foraging.

    Science.gov (United States)

    Karahan, Ahmed; Çakmak, Ibrahim; Hranitz, John M; Karaca, Ismail; Wells, Harrington

    2015-11-01

    Neonicotinoids, systemic neuro-active pesticides similar to nicotine, are widely used in agriculture and are being investigated for a role in honey bee colony losses. We examined one neonicotinoid pesticide, imidacloprid, for its effects on the foraging behavior of free-flying honey bees (Apis mellifera anatoliaca) visiting artificial blue and white flowers. Imidacloprid doses, ranging from 1/5 to 1/50 of the reported LD50, were fed to bees orally. The study consisted of three experimental parts performed sequentially without interruption. In Part 1, both flower colors contained a 4 μL 1 M sucrose solution reward. Part 2 offered bees 4 μL of 1.5 M sucrose solution in blue flowers and a 4 μL 0.5 M sucrose solution reward in white flowers. In Part 3 we reversed the sugar solution rewards, while keeping the flower color consistent. Each experiment began 30 min after administration of the pesticide. We recorded the percentage of experimental bees that returned to forage after treatment. We also recorded the visitation rate, number of flowers visited, and floral reward choices of the bees that foraged after treatment. The forager return rate declined linearly with increasing imidacloprid dose. The number of foraging trips by returning bees was also affected adversely. However, flower fidelity was not affected by imidacloprid dose. Foragers visited both blue and white flowers extensively in Part 1, and showed greater fidelity for the flower color offering the higher sugar solution reward in Parts 2 and 3. Although larger samples sizes are needed, our study suggests that imidacloprid may not affect the ability to select the higher nectar reward when rewards were reversed. We observed acute, mild effects on foraging by honey bees, so mild that storage of imidacloprid tainted-honey is very plausible and likely to be found in honey bee colonies.

  8. Does greed help a forager survive?

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  9. Alaska northern fur seal migration and foraging strategies telemetry and environmental data, 2009-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was used for the analysis of adult male and female northern fur seal winter migration and foraging behavior published by Sterling et al. (2014)....

  10. Cadmium, metal-binding proteins, and growth in bluegill (Lepomis macrochirus

    Science.gov (United States)

    Cope, W. Gregory; Wiener, James G.; Steingraeber, Mark T.; Atchison, Gary J.

    1994-01-01

    We exposed juvenile bluegill (Lepomis macrochirus) to ~1000 mg∙L−1 of continuously suspended river sediment in a 28-d test with six treatments (randomized block with one sediment-free control and five sediments ranging from 1.3 to 21.4 μg Cd∙g dry weight−1). Each treatment had three replicates, each with 25 fish. Growth was reduced by exposure to suspended sediment, probably due to physical effects of sediment on feeding and to toxicity in the treatment with the greatest concentrations of metals. Mean whole-body concentrations of cadmium (0.04–0.14 μg∙g wet weight−1) were correlated with cadmium concentration in filtered water (8–72 ng∙L−1), suspended sediment (0.61–16.8 μg∙L−1), and bulk sediment. The concentration of hepatic nonthionein cytosolic cadmium (cadmium not bound by metal-binding proteins, MBP) in fish exposed to the two most contaminated sediments exceeded that in controls. The mean concentration of hepatic MBP was correlated with cadmium concentration in filtered water, suspended sediment, bulk sediment, and whole fish. Whole-body cadmium concentration was the most sensitive indicator of cadmium exposure, with lowest observed effect concentrations of 1.9 μg Cd∙L−1 for suspended sediment and 13 ng Cd∙L−1 for filtered water. Sediment-associated cadmium was less available than waterborne cadmium for uptake by fish.

  11. Annual variation in foraging ecology of prothonotary warblers during the breeding season

    Science.gov (United States)

    Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.

    1990-01-01

    We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) along the Tennessee River in west-central Tennessee during the breeding seasons of 1984-1987. We analyzed seven foraging variables to determine if this population exhibited annual variation in foraging behavior. Based on nearly 3,000 foraging maneuvers, most variables showed significant interyear variation during the four prenestling and three nestling periods we studied. This interyear variation probably was due -to proximate, environmental cues--such as distribution and abundance of arthropods--which, in turn, were influenced by local weather conditions. Researchers should consider the consequences of combining foraging behavior data collected in different years, because resolution of ecological trends may be sacrificed by considering only general patterns of foraging ecology and not the dynamics of those activities. In addition, because of annual variability, foraging data collected in only one year, regardless of the number of observations gathered, may not provide an accurate concept of the foraging ecology in insectivorous birds.

  12. Human disturbance provides foraging opportunities for birds in primary subalpine forest

    DEFF Research Database (Denmark)

    DuBay, Shane G.; Hart Reeve, Andrew; Wu, Yongjie

    2017-01-01

    to species that naturally occur in edge, open, or disturbed habitats. With observations and experiments we provide evidence of insectivorous birds exploiting human disturbance in primary subalpine forest in the mountains of southern China, displaying behavioral flexibility to gain novel foraging...... or Cettia major, and Heteroxenicus stellatus. This behavior is likely a modification of pre-existing interspecific foraging associations with pheasants and large mammals in the region. These larger animals disturb the earth and lower vegetation layers upon passage and while foraging, exposing previously...

  13. A continuous model of ant foraging with pheromones and trail formation

    OpenAIRE

    Amorim, Paulo

    2014-01-01

    We propose and numerically analyze a PDE model of ant foraging behavior. Ant foraging is a prime example of individuals following simple behavioral rules based on local information producing complex, organized and ``intelligent'' strategies at the population level. One of its main aspects is the widespread use of pheromones, which are chemical compounds laid by the ants used to attract other ants to a food source. In this work, we consider a continuous description of a population of ants and ...

  14. Modeling ant foraging: A chemotaxis approach with pheromones and trail formation.

    Science.gov (United States)

    Amorim, Paulo

    2015-11-21

    We consider a continuous mathematical description of a population of ants and simulate numerically their foraging behavior using a system of partial differential equations of chemotaxis type. We show that this system accurately reproduces observed foraging behavior, especially spontaneous trail formation and efficient removal of food sources. We show through numerical experiments that trail formation is correlated with efficient food removal. Our results illustrate the emergence of trail formation from simple modeling principles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Optimal foraging, not biogenetic law, predicts spider orb web allometry

    Science.gov (United States)

    Gregorič, Matjaž; Kiesbüy, Heine C.; Quiñones Lebrón, Shakira G.; Rozman, Alenka; Agnarsson, Ingi; Kuntner, Matjaž

    2013-03-01

    The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.

  16. Density-dependent prey mortality is determined by the spatial scale of predator foraging.

    Science.gov (United States)

    McCarthy, Erin K; White, J Wilson

    2016-02-01

    Foraging theory predicts which prey patches predators should target. However, in most habitats, what constitutes a 'patch' and how prey density is calculated are subjective concepts and depend on the spatial scale at which the predator (or scientist) is observing. Moreover, the predator's 'foraging scale' affects prey population dynamics: predators should produce directly density-dependent (DDD) prey mortality at the foraging scale, but inversely density-dependent (IDD) mortality (safety-in-numbers) at smaller scales. We performed the first experimental test of these predictions using behavioral assays with guppies (Poecilia reticulata) feeding on bloodworm 'prey' patches. The guppy's foraging scale had already been estimated in a prior study. Our experimental results confirmed theoretical predictions: predation was IDD when prey were aggregated at a scale smaller than the foraging scale, but not when prey were aggregated at larger scales. These results could be used to predict outcomes of predator-prey interactions in continuous, non-discrete habitats in the field.

  17. Foraging task specialisation and foraging labour allocation in stingless bees

    NARCIS (Netherlands)

    Hofstede, Frouke Elisabeth

    2006-01-01

    Social bees collect nectar and pollen from flowering plants for energy of the adult bees and for feeding the larvae in the colony. The flowering patterns of plants imply that periods of high food availability are often followed by periods of meagre foraging conditions. Being dependent on such a dyna

  18. Phylogenetic meta-analysis of the functional traits of clonal plants foraging in changing environments.

    Science.gov (United States)

    Xie, Xiu-Fang; Song, Yao-Bin; Zhang, Ya-Lin; Pan, Xu; Dong, Ming

    2014-01-01

    Foraging behavior, one of the adaptive strategies of clonal plants, has stimulated a tremendous amount of research. However, it is a matter of debate whether there is any general pattern in the foraging traits (functional traits related to foraging behavior) of clonal plants in response to diverse environments. We collected data from 97 published papers concerning the relationships between foraging traits (e.g., spacer length, specific spacer length, branch intensity and branch angle) of clonal plants and essential resources (e.g., light, nutrients and water) for plant growth and reproduction. We incorporated the phylogenetic information of 85 plant species to examine the universality of foraging hypotheses using phylogenetic meta-analysis. The trends toward forming longer spacers and fewer branches in shaded environments were detected in clonal plants, but no evidence for a relation between foraging traits and nutrient availability was detected, except that there was a positive correlation between branch intensity and nutrient availability in stoloniferous plants. The response of the foraging traits of clonal plants to water availability was also not obvious. Additionally, our results indicated that the foraging traits of stoloniferous plants were more sensitive to resource availability than those of rhizomatous plants. In consideration of plant phylogeny, these results implied that the foraging traits of clonal plants (notably stoloniferous plants) only responded to light intensity in a general pattern but did not respond to nutrient or water availability. In conclusion, our findings on the effects of the environment on the foraging traits of clonal plants avoided the confounding effects of phylogeny because we incorporated phylogeny into the meta-analysis.

  19. Bias to pollen odors is affected by early exposure and foraging experience.

    Science.gov (United States)

    Arenas, A; Farina, W M

    2014-07-01

    In many pollinating insects, foraging preferences are adjusted on the basis of floral cues learned at the foraging site. In addition, olfactory experiences gained at early adult stages might also help them to initially choose food sources. To understand pollen search behavior of honeybees, we studied how responses elicited by pollen-based odors are biased in foraging-age workers according to (i) their genetic predisposition to collect pollen, (ii) pollen related information gained during foraging and (iii) different experiences with pollen gained at early adult ages. Bees returning to the hive carrying pollen loads, were strongly biased to unfamiliar pollen bouquets when tested in a food choice device against pure odors. Moreover, pollen foragers' orientation response was specific to the odors emitted by the pollen type they were carrying on their baskets, which suggests that foragers retrieve pollen odor information to recognize rewarding flowers outside the hive. We observed that attraction to pollen odor was mediated by the exposure to a pollen diet during the first week of life. We did not observe the same attraction in foraging-age bees early exposed to an artificial diet that did not contain pollen. Contrary to the specific response observed to cues acquired during foraging, early exposure to single-pollen diets did not bias orientation response towards a specific pollen odor in foraging-age bees (i.e. bees chose equally between the exposed and the novel monofloral pollen odors). Our results show that pollen exposure at early ages together with olfactory experiences gained in a foraging context are both relevant to bias honeybees' pollen search behavior.

  20. Comportamento ingestivo de equinos e a relação com o aproveitamento das forragens e bem-estar dos animais Equine feeding behavior and its relation with forage use and animal welfare

    Directory of Open Access Journals (Sweden)

    João Ricardo Dittrich

    2010-07-01

    , but it is a complex system which interferes on the horse's decision while it is grazing. The appropriate horse's feeding management depends on the comprehension of their behavior patterns. As the sward is heterogeneous and the plants' structure vary in height, density, types of leaves, stems and reproductive parts, the horses select the sward. This selection allows them to ingest some important nutrients, vital for their maintenance and development. Stocking rate and grazing time, both results of horse management in stables, limit their selectivity. The forages supply nutrients and prevent clinical disorders and behavior stereotypic. Inputs of researches about pasture use are able to show the importance of horses' relationship with environment and the need of appropriate management can provide a better life quality for horses.

  1. Foraging decisions in wild versus domestic Mus musculus: What does life in the lab select for?

    Science.gov (United States)

    Troxell-Smith, Sandra M; Tutka, Michal J; Albergo, Jessica M; Balu, Deebika; Brown, Joel S; Leonard, John P

    2016-01-01

    What does domestication select for in terms of foraging and anti-predator behaviors? We applied principles of patch use and foraging theory to test foraging strategies and fear responses of three strains of Mus musculus: wild-caught, control laboratory, and genetically modified strains. Foraging choices were quantified using giving-up densities (GUDs) under three foraging scenarios: (1) patches varying in microhabitat (covered versus open), and initial resource density (low versus high); (2) daily variation in auditory cues (aerial predators and control calls); (3) patches with varying seed aggregations. Overall, both domestic strains harvested significantly more food than wild mice. Each strain revealed a significant preference for foraging under cover compared to the open, and predator calls had no detectable effects on foraging. Both domestic strains biased their harvest toward high quality patches; wild mice did not. In terms of exploiting favorable and avoiding unfavorable distributions of seeds within patches, the lab strain performed best, the wild strain worst, and the mutant strain in between. Our study provides support for hypothesis that domestic animals have more energy-efficient foraging strategies than their wild counterparts, but retain residual fear responses. Furthermore, patch-use studies can reveal the aptitudes and priorities of both domestic and wild animals.

  2. State dependence, personality, and plants: light-foraging decisions in Mimosa pudica (L.).

    Science.gov (United States)

    Simon, Franz W; Hodson, Christina N; Roitberg, Bernard D

    2016-09-01

    Plants make foraging decisions that are dependent on ecological conditions, such as resource availability and distribution. Despite the field of plant behavioral ecology gaining momentum, ecologists still know little about what factors impact plant behavior, especially light-foraging behavior. We made use of the behavioral reaction norm approach to investigate light foraging in a plant species that exhibits rapid movement: Mimosa pudica. We explored how herbivore avoidance behavior in M. pudica (which closes its leaflets temporarily when disturbed) is affected by an individual's energy state and the quality of the current environment and also repeatedly tested the behavior of individuals from two seed sources to determine whether individuals exhibit a "personality" (i.e., behavioral syndrome). We found that when individuals are in a low-energy state, they adopt a riskier light-foraging strategy, opening leaflets faster, and not closing leaflets as often in response to a disturbance. However, when plants are in a high-energy state, they exhibit a plastic light-foraging strategy dependent on environment quality. Although we found no evidence that individuals exhibit behavioral syndromes, we found that individuals from different seed sources consistently behave differently from each other. Our results suggest that plants are capable of making state-dependent decisions and that plant decision making is complex, depending on the interplay between internal and external factors.

  3. Contrafreeloading in grizzly bears: implications for captive foraging enrichment.

    Science.gov (United States)

    McGowan, Ragen T S; Robbins, Charles T; Alldredge, J Richard; Newberry, Ruth C

    2010-01-01

    Although traditional feeding regimens for captive animals were focused on meeting physiological needs to assure good health, more recently emphasis has also been placed on non-nutritive aspects of feeding. The provision of foraging materials to diversify feeding behavior is a common practice in zoos but selective consumption of foraging enrichment items over more balanced "chow" diets could lead to nutrient imbalance. One alternative is to provide balanced diets in a contrafreeloading paradigm. Contrafreeloading occurs when animals choose resources that require effort to exploit when identical resources are freely available. To investigate contrafreeloading and its potential as a theoretical foundation for foraging enrichment, we conducted two experiments with captive grizzly bears (Ursus arctos horribilis). In Experiment 1, bears were presented with five foraging choices simultaneously: apples, apples in ice, salmon, salmon in ice, and plain ice under two levels of food restriction. Two measures of contrafreeloading were considered: weight of earned food consumed and time spent working for earned food. More free than earned food was eaten, with only two bears consuming food extracted from ice, but all bears spent more time manipulating ice containing salmon or apples than plain ice regardless of level of food restriction. In Experiment 2, food-restricted bears were presented with three foraging choices simultaneously: apples, apples inside a box, and an empty box. Although they ate more free than earned food, five bears consumed food from boxes and all spent more time manipulating boxes containing apples than empty boxes. Our findings support the provision of contrafreeloading opportunities as a foraging enrichment strategy for captive wildlife.

  4. Execution Plans for Cyber Foraging

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø

    2008-01-01

    Cyber foraging helps small devices perform heavy tasks by opportunistically discovering and utilising available resources (such as computation, storage, bandwidth, etc.) held by larger, nearby peers. This offloading is done in an ad-hoc manner, as larger machines will not always be within reach. ...

  5. Expression of the Foraging Gene Is Associated with Age Polyethism, Not Task Preference, in the Ant Cardiocondyla obscurior

    Science.gov (United States)

    Oettler, Jan; Nachtigal, Anna-Lena; Schrader, Lukas

    2015-01-01

    One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL) by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers. PMID:26650238

  6. Expression of the Foraging Gene Is Associated with Age Polyethism, Not Task Preference, in the Ant Cardiocondyla obscurior.

    Science.gov (United States)

    Oettler, Jan; Nachtigal, Anna-Lena; Schrader, Lukas

    2015-01-01

    One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL) by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers.

  7. Expression of the Foraging Gene Is Associated with Age Polyethism, Not Task Preference, in the Ant Cardiocondyla obscurior.

    Directory of Open Access Journals (Sweden)

    Jan Oettler

    Full Text Available One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers.

  8. Foraging ecology of least terns and piping plovers nesting on Central Platte River sandpits and sandbars

    Science.gov (United States)

    Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.

    2012-01-01

    Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.

  9. The effects of spatially heterogeneous prey distributions on detection patterns in foraging seabirds.

    Directory of Open Access Journals (Sweden)

    Octavio Miramontes

    Full Text Available Many attempts to relate animal foraging patterns to landscape heterogeneity are focused on the analysis of foragers movements. Resource detection patterns in space and time are not commonly studied, yet they are tightly coupled to landscape properties and add relevant information on foraging behavior. By exploring simple foraging models in unpredictable environments we show that the distribution of intervals between detected prey (detection statistics is mostly determined by the spatial structure of the prey field and essentially distinct from predator displacement statistics. Detections are expected to be Poissonian in uniform random environments for markedly different foraging movements (e.g. Lévy and ballistic. This prediction is supported by data on the time intervals between diving events on short-range foraging seabirds such as the thick-billed murre (Uria lomvia. However, Poissonian detection statistics is not observed in long-range seabirds such as the wandering albatross (Diomedea exulans due to the fractal nature of the prey field, covering a wide range of spatial scales. For this scenario, models of fractal prey fields induce non-Poissonian patterns of detection in good agreement with two albatross data sets. We find that the specific shape of the distribution of time intervals between prey detection is mainly driven by meso and submeso-scale landscape structures and depends little on the forager strategy or behavioral responses.

  10. Análisis de las consecuencias del comportamiento adaptativo individual sobre la estabilidad poblacional: El caso del forrajeo óptimo Analysis of the consequences of individual adaptive behavior on population stability: The case of optimal foraging

    Directory of Open Access Journals (Sweden)

    FERNANDA S VALDOVINOS

    2010-06-01

    , we analyze the theoretical advances about the role of optimal foraging (FO as a stabilizing force of population dynamics, in model communities with different levels of structural complexity. Our analysis is organized around three central points: i what is the control system against which it is compared the stability of a population whose indviduals exhibit FO?, ii what stability concept is being used?, and iii how the assumptions of FO are incorporated within the rules governing the dynamics of populations? Based on our analysis, we specify the points that should be addressed for evaluating properly the stabilizing role of FO, as well as other kinds of adaptive behavior that satisfy the assumptions of the Ecological Optimization Theory. Finally, we conjecture that the stabilizing effect of FO will be qualitatively dependent on the level of resources in the system, and the ratio of environmental perturbation rate to the predator's adaptation rate.

  11. Space use by foragers consuming renewable resources

    Science.gov (United States)

    Abramson, Guillermo; Kuperman, Marcelo N.; Morales, Juan M.; Miller, Joel C.

    2014-05-01

    We study a simple model of a forager as a walk that modifies a relaxing substrate. Within it simplicity, this provides an insight on a number of relevant and non-intuitive facts. Even without memory of the good places to feed and no explicit cost of moving, we observe the emergence of a finite home range. We characterize the walks and the use of resources in several statistical ways, involving the behavior of the average used fraction of the system, the length of the cycles followed by the walkers, and the frequency of visits to plants. Preliminary results on population effects are explored by means of a system of two non directly interacting animals. Properties of the overlap of home ranges show the existence of a set of parameters that provides the best utilization of the shared resource.

  12. Corn in consortium with forages

    Directory of Open Access Journals (Sweden)

    Cássia Maria de Paula Garcia

    2013-12-01

    Full Text Available The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was conducted at the Fazenda de Ensino, Pesquisa e Extensão – FEPE  of the Faculdade de Engenharia - UNESP, Ilha Solteira in an Oxisol in savannah conditions and in the autumn winter of 2009. The experimental area was irrigated by a center pivot and had a history of no-tillage system for 8 years. The corn hybrid used was simple DKB 390 YG at distances of 0.90 m. The seeds of grasses were sown in 0.34 m spacing in the amount of 5 kg ha-1, they were mixed with fertilizer minutes before sowing  and placed in a compartment fertilizer seeder and fertilizers were mechanically deposited in the soil at a depth of 0.03 m. The experimental design used was a randomized block with four replications and five treatments: Panicum maximum cv. Tanzania sown during the nitrogen fertilization (CTD of the corn; Panicum maximum cv. Mombaça sown during the nitrogen fertilization (CMD of the corn; Urochloa brizantha cv. Xaraés sown during the occasion of nitrogen fertilization (CBD of the corn; Urochloa ruziziensis cv. Comumsown during the nitrogen fertilization (CRD of the corn and single corn (control. The production components of corn: plant population per hectare (PlPo, number of ears per hectare (NE ha-1, number of rows per ear (NRE, number of kernels per row on the cob (NKR, number of grain in the ear (NGE and mass of 100 grains (M100G were not influenced by consortium with forage. Comparing grain yield (GY single corn and maize intercropped with forage of the genus Panicum

  13. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster.

    Science.gov (United States)

    Allen, Aaron M; Anreiter, Ina; Neville, Megan C; Sokolowski, Marla B

    2017-02-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for(0) null allele, and used recombineering to reintegrate a full copy of the gene, generating the {for(BAC)} rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis. Copyright © 2017 by the Genetics Society of America.

  14. Varying foraging patterns in response to competition? A multicolony approach in a generalist seabird.

    Science.gov (United States)

    Corman, Anna-Marie; Mendel, Bettina; Voigt, Christian C; Garthe, Stefan

    2016-02-01

    Reducing resource competition is a crucial requirement for colonial seabirds to ensure adequate self- and chick-provisioning during breeding season. Spatial segregation is a common avoidance strategy among and within species from neighboring breeding colonies. We determined whether the foraging behaviors of incubating lesser black-backed gulls (Larus fuscus) differed between six colonies varying in size and distance to mainland, and whether any differences could be related to the foraging habitats visited. Seventy-nine incubating individuals from six study colonies along the German North Sea coast were equipped with GPS data loggers in multiple years. Dietary information was gained by sampling food pellets, and blood samples were taken for stable isotope analyses. Foraging patterns clearly differed among and within colonies. Foraging range increased with increasing colony size and decreased with increasing colony distance from the mainland, although the latter might be due to the inclusion of the only offshore colony. Gulls from larger colonies with consequently greater density-dependent competition were more likely to forage at land instead of at sea. The diets of the gulls from the colonies furthest from each other differed, while the diets from the other colonies overlapped with each other. The spatial segregation and dietary similarities suggest that lesser black-backed gulls foraged at different sites and utilized two main habitat types, although these were similar across foraging areas for all colonies except the single offshore island. The avoidance of intraspecific competition results in colony-specific foraging patterns, potentially causing more intensive utilization of terrestrial foraging sites, which may offer more predictable and easily available foraging compared with the marine environment.

  15. Dynamics of foraging trails in the Neotropical termite Velocitermes heteropterus (Isoptera: Termitidae).

    Science.gov (United States)

    Haifig, Ives; Jost, Christian; Fourcassié, Vincent; Zana, Yossi; Costa-Leonardo, Ana Maria

    2015-09-01

    Foraging behavior in termites varies with the feeding habits of each species but often occurs through the formation of well-defined trails that connect the nest to food sources in species that build structured nests. We studied the formation of foraging trails and the change in caste ratio during foraging in the termite Velocitermes heteropterus. This species is widespread in Cerrado vegetation where it builds epigeal nests and forages in open-air at night. Our aim was to understand the processes involved in the formation of foraging trails, from the exploration of new unmarked areas to the recruitment of individuals to food and the stabilization of traffic on the trails, as well as the participation of the different castes during these processes. Foraging trails were videotaped in the laboratory and the videos were then analyzed both manually and automatically to assess the flow of individuals and the caste ratio on the trails as well as to examine the spatial organization of traffic over time. Foraging trails were composed of minor workers, major workers, and soldiers. The flow of individuals on the trails gradually increased from the beginning of the exploration of new areas up to the discovery of the food. The caste ratio remained constant throughout the foraging excursion: major workers, minor workers and soldiers forage in a ratio of 8:1:1, respectively. The speed of individuals was significantly different among castes, with major workers and soldiers being significantly faster than minor workers. Overall, our results show that foraging excursions in V. heteropterus may be divided in three different phases, characterized by individual speeds, differential flows and lane segregation.

  16. Linking animal population dynamics to alterations in foraging behaviour

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Sibly, Richard; Tougaard, Jakob

    Background/Question/Methods The survival of animal populations is strongly influenced by the individuals’ ability to forage efficiently, yet there are few studies of how populations respond when disturbances cause animals to deviate from their natural foraging behavior. Animals that respond...... was not jeopardized even when disturbances were simulated to have a relatively large and persistent effect on the behavior of individual animals. Porpoises were simulated to move away from noisy objects, preventing them from returning to the known food patches in that area. This resulted in decreasing energy reserves...... that are increasingly exposed to noise from ships, wind turbines, etc. In the present study we investigate how the dynamics of the harbor porpoise population (Phocoena phocoena) in the inner Danish waters is influenced by disturbances using an agent- based simulation model. In the model animal movement, and hence...

  17. Adaptive Lévy processes and area-restricted search in human foraging

    OpenAIRE

    Hills, Thomas Trenholm; Kalff, Christopher; Wiener, Jan M.

    2013-01-01

    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come int...

  18. Of hummingbirds and helicopters: Hovering costs, competitive ability, and foraging strategies

    OpenAIRE

    Altshuler, Douglas L.; Stiles, F. Gary; Dudley, Robert

    2004-01-01

    Wing morphology and flight kinematics profoundly influence foraging costs and the overall behavioral ecology of hummingbirds. By analogy with helicopters, previous energetic studies have applied the momentum theory of aircraft propellers to estimate hovering costs from wing disc loading (WDL), a parameter incorporating wingspan (or length) and body mass. Variation in WDL has been used to elucidate differences either among hummingbird species in nectar-foraging strategies (e.g., territoriality...

  19. Air pollutants degrade floral scents and increase insect foraging times

    Science.gov (United States)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  20. Human memory retrieval as Lévy foraging

    Science.gov (United States)

    Rhodes, Theo; Turvey, Michael T.

    2007-11-01

    When people attempt to recall as many words as possible from a specific category (e.g., animal names) their retrievals occur sporadically over an extended temporal period. Retrievals decline as recall progresses, but short retrieval bursts can occur even after tens of minutes of performing the task. To date, efforts to gain insight into the nature of retrieval from this fundamental phenomenon of semantic memory have focused primarily upon the exponential growth rate of cumulative recall. Here we focus upon the time intervals between retrievals. We expected and found that, for each participant in our experiment, these intervals conformed to a Lévy distribution suggesting that the Lévy flight dynamics that characterize foraging behavior may also characterize retrieval from semantic memory. The closer the exponent on the inverse square power-law distribution of retrieval intervals approximated the optimal foraging value of 2, the more efficient was the retrieval. At an abstract dynamical level, foraging for particular foods in one's niche and searching for particular words in one's memory must be similar processes if particular foods and particular words are randomly and sparsely located in their respective spaces at sites that are not known a priori. We discuss whether Lévy dynamics imply that memory processes, like foraging, are optimized in an ecological way.

  1. Potential energetic effects of mountain climbers on foraging grizzly bears

    Science.gov (United States)

    White, D.; Kendall, K.C.; Picton, H.D.

    1999-01-01

    Most studies of the effects of human disturbance on grizzly bears (Ursus arctos horribilis) have not quantified the energetic effects of such interactions. In this study, we characterized activity budgets of adult grizzly bears as they foraged on aggregations of adult army cutworm moths (Euxoa auxiliaris) in the alpine of Glacier National Park, Montana, during 1992, 1994, and 1995. We compared the activity budgets of climber-disturbed bears to those of undisturbed bears to estimate the energetic impact of climber disturbance. When bears detected climbers, they subsequently spent 53% less time foraging on moths, 52% more time moving within the foraging area, and 23% more time behaving aggressively, compared to when they were not disturbed. We estimated that grizzly bears could consume approximately 40,000 moths/day or 1,700 moths/hour. At 0.44 kcal/moth, disruption of moth feeding cost bears approximately 12 kcal/minute in addition to the energy expended in evasive maneuvers and defensive behaviors. To reduce both climber interruption of bear foraging and the potential for aggressive bear-human encounters, we recommend routing climbers around moth sites used by bears or limiting access to these sites during bear-use periods.

  2. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Science.gov (United States)

    Burke, Chantelle M; Montevecchi, William A; Regular, Paul M

    2015-01-01

    Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge), where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15) and males (n = 9) during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  3. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Directory of Open Access Journals (Sweden)

    Chantelle M Burke

    Full Text Available Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge, where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15 and males (n = 9 during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  4. Diving deeper into individual foraging specializations of a large marine predator, the southern sea lion.

    Science.gov (United States)

    Baylis, A M M; Orben, R A; Arnould, J P Y; Peters, K; Knox, T; Costa, D P; Staniland, I J

    2015-12-01

    Despite global declines in the abundance of marine predators, knowledge of foraging ecology, necessary to predict the ecological consequences of large changes in marine predator abundance, remains enigmatic for many species. Given that populations suffering severe declines are of conservation concern, we examined the foraging ecology of southern sea lions (SSL) (Otaria flavescens)-one of the least studied otariids (fur seal and sea lions)-which have declined by over 90% at the Falkland Islands since the 1930s. Using a combination of biologging devices and stable isotope analysis of vibrissae, we redress major gaps in the knowledge of SSL ecology and quantify patterns of individual specialization. Specifically, we revealed two discrete foraging strategies, these being inshore (coastal) and offshore (outer Patagonian Shelf). The majority of adult female SSL (72% or n = 21 of 29 SSL) foraged offshore. Adult female SSL that foraged offshore travelled further (92 ± 20 vs. 10 ± 4 km) and dived deeper (75 ± 23 vs. 21 ± 8 m) when compared to those that foraged inshore. Stable isotope analysis revealed long-term fidelity (years) to these discrete foraging habitats. In addition, we found further specialization within the offshore group, with adult female SSL separated into two clusters on the basis of benthic or mixed (benthic and pelagic) dive behavior (benthic dive proportion was 76 ± 9 vs. 51 ± 8%, respectively). We suggest that foraging specialization in depleted populations such as SSL breeding at the Falkland Islands, are influenced by foraging site fidelity, and could be independent of intraspecific competition. Finally, the behavioral differences we describe are crucial to understanding population-level dynamics, impediments to population recovery, and threats to population persistence.

  5. Comportamento ingestivo e consumo de forragem por cordeiras em pastagem de milheto recebendo ou não suplemento Feeding behavior and forage intake of ewe lambs on pearl millet pasture with or without supplementation

    Directory of Open Access Journals (Sweden)

    Felipe Jochims

    2010-03-01

    Full Text Available Avaliaram-se o comportamento ingestivo e o consumo de matéria seca de cordeiras recebendo diferentes tipos de suplemento em pastagem de milheto (Pennisetum americanum (L. Leeke. Foram utilizadas 24 cordeiras com peso inicial de 30,2 ± 2,6 kg, distribuídas em três estratégias alimentares: pastagem de milheto exclusivamente; pastagem de milheto e suplementação com farinha de mandioca; e pastagem de milheto e suplementação com glúten de milho. Os suplementos foram fornecidos na quantidade de 1% do PV. Foram avaliados, em três datas, os tempos diários (min/dia de pastejo, ruminação e ócio e a taxa de bocados (boc/min das cordeiras. O consumo de matéria seca (CMS foi estimado pela relação entre a produção fecal e a indigestibilidade da matéria seca e a digestibilidade da MS, pelo método in vitro. A estimativa da excreção fecal foi realizada utilizando-se óxido de cromo como marcador externo. O delineamento experimental foi o inteiramente casualizado, com três estratégias alimentares, duas repetições de área e quatro animais-teste por repetição. O fornecimento de suplementos diminuiu o tempo de pastejo diário, a taxa de bocados e a massa de bocado. A ingestão de pasto foi menor entre as cordeiras que receberam glúten de milho que entre aquelas mantidas exclusivamente a pasto, todavia, a ingestão total de MS foi maior quando fornecidos os suplementos (947 g para suplementação com glúten de milho; 907 g para suplementação com farinha de mandioca; e 652 g para pastagem exclusiva. Cordeiras em pastagem de milheto sem suplementação permanecem mais tempo em pastejo.The feeding behavior and dry forage intake of ewe lambs receiving different types of supplementation on pearl millet (Pennisetum americanum (L. Leeke pasture was evaluated. Twenty-four ewe lambs with 30.2 ± 2.6 kg mean initial body weight (BW, distributed in three feeding strategies: grazing on pearl millet pasture; grazing on pearl millet pasture

  6. Starvation dynamics of a greedy forager

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-07-01

    We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.

  7. Foraging currencies, metabolism and behavioural routines.

    Science.gov (United States)

    Houston, Alasdair I; McNamara, John M

    2014-01-01

    A fundamental issue in foraging theory is whether it is possible to find a simple currency that characterizes foraging behaviour. If such a currency exists, then it is tempting to argue that the selective forces that have shaped the evolution of foraging behaviour have been understood. We review previous work on currencies for the foraging behaviour of an animal that maximizes total energy gained. In many circumstances, it is optimal to maximize a suitably modified form of efficiency. We show how energy gain, predation and damage can be combined in a single currency based on reproductive value. We draw attention to the idea that hard work may have an adverse effect on an animal's condition. We develop a model of optimal foraging over a day when a forager's state consists of its energy reserves and its condition. Optimal foraging behaviour in our model depends on energy reserves, condition and time of day. The pattern of optimal behaviour depends strongly on assumptions about the probability that the forager is killed by a predator. If condition is important, no simple currency characterizes foraging behaviour, but behaviour can be understood in terms of the maximization of reproductive value. It may be optimal to adopt a foraging option that results in a rate of energy expenditure that is less than the rate associated with maximizing efficiency.

  8. Geographic profiling and animal foraging.

    Science.gov (United States)

    Le Comber, Steven C; Nicholls, Barry; Rossmo, D Kim; Racey, Paul A

    2006-05-21

    Geographic profiling was originally developed as a statistical tool for use in criminal cases, particularly those involving serial killers and rapists. It is designed to help police forces prioritize lists of suspects by using the location of crime scenes to identify the areas in which the criminal is most likely to live. Two important concepts are the buffer zone (criminals are less likely to commit crimes in the immediate vicinity of their home) and distance decay (criminals commit fewer crimes as the distance from their home increases). In this study, we show how the techniques of geographic profiling may be applied to animal data, using as an example foraging patterns in two sympatric colonies of pipistrelle bats, Pipistrellus pipistrellus and P. pygmaeus, in the northeast of Scotland. We show that if model variables are fitted to known roost locations, these variables may be used as numerical descriptors of foraging patterns. We go on to show that these variables can be used to differentiate patterns of foraging in these two species.

  9. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    Directory of Open Access Journals (Sweden)

    Alexandria Wenninger

    2016-06-01

    Full Text Available Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers, and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  10. Red-cockaded woodpecker male/female foraging differences in young forest stands.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2010-07-01

    ABSTRACT The Red-cockaded Woodpecker (Picoides borealis) is an endangered species endemic to pine (Pinus spp.) forests of the southeastern United States. I examined Red-cockaded Woodpecker foraging behavior to learn if there were male/female differences at the Savannah River Site, South Carolina. The study was conducted in largely young forest stands (,50 years of age) in contrast to earlier foraging behavior studies that focused on more mature forest. The Redcockaded Woodpecker at the Savannah River site is intensively managed including monitoring, translocation, and installation of artificial cavity inserts for roosting and nesting. Over a 3-year period, 6,407 foraging observations covering seven woodpecker family groups were recorded during all seasons of the year and all times of day. The most striking differences occurred in foraging method (males usually scaled [45% of observations] and females mostly probed [47%]),substrate used (females had a stronger preference [93%] for the trunk than males [79%]), and foraging height from the ground (mean 6 SE foraging height was higher for males [11.1 6 0.5 m] than females [9.8 6 0.5 m]). Niche overlap between males and females was lowest for substrate (85.6%) and foraging height (87.8%), and highest for tree species (99.0%), tree condition (98.3%), and tree height (96.4%). Both males and females preferred to forage in older, large pine trees. The habitat available at the Savannah River Site was considerably younger than at most other locations, but the pattern of male/female habitat partitioning observed was similar to that documented elsewhere within the range attesting to the species’ ability to adjust behaviorally.

  11. Developing Cyber Foraging Applications for Portable Devices

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2008-01-01

    This paper presents the Locusts cyber foraging framework. Cyber foraging is the opportunistic use of computing resources available in the nearby environment, and using such resources thus fall into the category of distributed computing. Furthermore, for the resources to be used efficiently......, parallel computing techniques must also be employed. Distributed and parallel computing are two concepts that are both notoriously known for being very hard for developers to grasp. Because of this one might think that techniques such as cyber foraging would have a hard time surviving outside of research...... environments. In this paper a framework is presented that has special focus on making cyber foraging accessible for all developers....

  12. Visual Foraging With Fingers and Eye Gaze.

    Science.gov (United States)

    Jóhannesson, Ómar I; Thornton, Ian M; Smith, Irene J; Chetverikov, Andrey; Kristjánsson, Árni

    2016-03-01

    A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a) The fact that a sizeable number of observers (in particular during gaze foraging) had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b) While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints.

  13. U.S. Dairy Forage Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  14. U.S. DAIRY FORAGE RESEARCH CENTER

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  15. Effect of water level lfuctuations on temporal-spatial patterns of foraging activities by the wintering Hooded Crane (Grus monacha)

    Institute of Scientific and Technical Information of China (English)

    Dongmei Zhang; Lizhi Zhou; Yunwei Song

    2015-01-01

    Background: The Yangtze River lfoodplain provides important wintering habitats for Hooded Cranes (Grus monacha) in China. Fluctuations in the water level change foraging habitat and food availability, affecting their temporal-spatial patterns of foraging activities. It is of considerable importance to investigate the effect of these lfuctuations on food availability for wintering Hooded Cranes and their foraging response to these changes. Understanding their behavior patterns is beneifcial in protecting the wintering crane population and restoring their wintering habitats. Methods: A ifeld survey of the winter behavior of cranes was carried out at Shengjin Lake from November in 2013 to April in 2014. Habitat variables, as well as the spatial distribution and behavior patterns of wintering cranes at their foraging sites during ifve stages of water level lfuctuation were collected. Based on this data we analyzed the relation-ship of foraging behavior relative to water level lfuctuations and habitat types. Results: The foraging habitats used by Hooded Cranes varied at the different water level stages. As the water level decreased, the use of meadows and mudlfats increased. When the water dropped to its lowest level, the use by the Hooded Crane in the mudlfats reached a peak. There were statistically signiifcant differences in time budget in the three types of habitats over the ifve stages of the water level. In the mudlfats, the foraging behavior and maintenance behavior varied signiifcantly with the water level, while the alert behavior showed little variation. Analysis of a general-ized linear model showed that the ifve water level stages and three habitat types had a signiifcant effect on forag- ing behavior, while the combined effect of these two variables was signiifcant on the foraging time budget and the length of foraging activity of the Hooded Crane. Conclusions: With the decrease in the water level, the use of mudlfats by Hooded Cranes increased

  16. Determination of foraging thresholds and effects of application on energetic carrying capacity for waterfowl.

    Science.gov (United States)

    Hagy, Heath M; Kaminski, Richard M

    2015-01-01

    Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated parameters. We demonstrate the complex nature of parameterizing energetic carrying capacity models and use an experimental approach to describe a necessary parameter, a foraging threshold (i.e., density of food at which animals no longer can efficiently forage and acquire energy), for a guild of migratory birds. We created foraging patches with different fixed prey densities and monitored the numerical and behavioral responses of waterfowl (Anatidae) and depletion of foods during winter. Dabbling ducks (Anatini) fed extensively in plots and all initial densities of supplemented seed were rapidly reduced to 10 kg/ha and other natural seeds and tubers combined to 170 kg/ha, despite different starting densities. However, ducks did not abandon or stop foraging in wetlands when seed reduction ceased approximately two weeks into the winter-long experiment nor did they consistently distribute according to ideal-free predictions during this period. Dabbling duck use of experimental plots was not related to initial seed density, and residual seed and tuber densities varied among plant taxa and wetlands but not plots. Herein, we reached several conclusions: 1) foraging effort and numerical responses of dabbling ducks in winter were likely influenced by factors other than total food densities (e.g., predation risk, opportunity costs, forager condition), 2) foraging thresholds may vary among foraging locations, and 3) the numerical response of dabbling ducks may be an inconsistent predictor of habitat quality relative to seed and tuber density. We describe implications on habitat conservation objectives of using different foraging thresholds in energetic carrying capacity models and

  17. Climate-driven sympatry may not lead to foraging competition between congeneric top-predators.

    Science.gov (United States)

    Cimino, Megan A; Moline, Mark A; Fraser, William R; Patterson-Fraser, Donna L; Oliver, Matthew J

    2016-01-06

    Climate-driven sympatry may lead to competition for food resources between species. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. On fine scales, we tested for foraging competition between these species during the chick-rearing period by comparing their foraging behaviors with the distribution of their prey, Antarctic krill. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguins, and found that krill selected for habitats that balance the need to consume food and avoid predation. In overlapping Adélie and gentoo penguin foraging areas, four gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion of Adélie penguins by gentoo penguins. Contrary to a recent theory, which suggests that increased competition for krill is one of the major drivers of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.

  18. Dynamics of intertidal foraging by coastal brown bears in Southwestern Alaska

    Science.gov (United States)

    Smith, T.S.; Partridge, Steven T.

    2004-01-01

    Shoreline areas provide early season foraging opportunities for coastal bears in Alaska. We investigated use by brown bears (Ursus arctos) of soft-shelled (Mya arenaria) and Pacific razor (Siliqua patula) clams at Katmai National Park, Alaska, USA, to identify the potential importance of these clams to bears. We used direct observations of bear foraging behavior in the summers of 1998, 1999, and 2001 to model the nutritional importance of clamming behavior. We also used previously described models to estimate the relative importance of clamming and vegetative foraging in meeting the maintenance requirements of bears. At the harvest rate that we observed (0.69 ?? 0.46 clams/min), bears achieved higher rates of digestible energy intake than those foraging on vegetation. Although clams are available for only a few hours per day, bears could significantly reduce their total daily foraging time by utilizing clams. Smaller single bears and females with dependent young were the most represented groups of bears using intertidal areas. Large male bears, faced with higher energy requirements, likely are unable to efficiently exploit these intertidal resources. Depending on the relationship between clam size and tissue mass, the relative quality of clams differed by species. Bears foraging on Pacific razor clams required the fewest hours to meet maintenance, followed by bears consuming soft-shelled clams. Our findings highlight the significance of intertidal habitats for coastal bears, especially females.

  19. Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers.

    Science.gov (United States)

    Mayack, Christopher; Naug, Dhruba

    2010-11-01

    Parasites by drawing nutrition from their hosts can exert an energetic stress on them. Honeybee foragers with their high metabolic demand due to flight are especially prone to such a stress when they are infected. We hypothesized that infection by the microsporidian gut parasite Nosema ceranae can lower the hemolymph sugar level of an individual forager and uncouple its energetic state from its normally tight correlation with the colony energetic state. We support our hypothesis by showing that free-flying foragers that are infected have lower trehalose levels than uninfected ones but the two do not differ in their trehalose levels when fed until satiation. The trehalose level of infected bees was also found to decline at a faster rate while their glucose level is maintained at a quantity comparable to uninfected bees. These results suggest that infected foragers have lower flying ability and the intriguing possibility that the carbohydrate levels of an individual bee can act as a modulator of its foraging behavior, independent of social cues such as colony demand for nectar. We discuss the importance of such pathophysiological changes on foraging behavior in the context of the recently observed colony collapses.

  20. Foraging strategy of little auks during chick rearing in northwest Greenland

    DEFF Research Database (Denmark)

    Mosbech, Anders; Møller, Eva Friis; Johansen, Kasper Lambert;

    Foraging strategy of little auks during chick rearing in northwest Greenland Anders Mosbech, Kasper Johansen, Eva Friis Møller & Peter Lyngs Department of Biology and Arctic Center, Aarhus University, Denmark An estimated 80 % of the global little auk population breeds in the coastal landscape...... bordering the north water polynya in high Arctic northwest Greenland, and from this main breeding area very little is known on foraging behavior. Little auks are feeding on lipid-rich copepods associated with cold artic waters, and are potentially important for monitoring and assessing the impact...... of the ongoing warming of the Arctic. Here we present the first results from GPS tracking of breeding little auks in northwest Greenland, involving data from four different breeding colonies. We examine time budgets, foraging trip patterns and habitat preferences at foraging areas, including comparison...

  1. Visual Pattern Memory Requires "Foraging" Function in the Central Complex of "Drosophila"

    Science.gov (United States)

    Wang, Zhipeng; Pan, Yufeng; Li, Weizhe; Jiang, Huoqing; Chatzimanolis, Lazaros; Chang, Jianhong; Gong, Zhefeng; Liu, Li

    2008-01-01

    The role of the "foraging" ("for)" gene, which encodes a cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG), in food-search behavior in "Drosophila" has been intensively studied. However, its functions in other complex behaviors have not been well-characterized. Here, we show experimentally in "Drosophila" that the "for"…

  2. Bust economics: foragers choose high quality habitats in lean times

    Directory of Open Access Journals (Sweden)

    Sonny S. Bleicher

    2016-01-01

    Full Text Available In environments where food resources are spatially variable and temporarily impoverished, consumers that encounter habitat patches with different food density should focus their foraging initially where food density is highest before they move to patches where food density is lower. Increasing missed opportunity costs should drive individuals progressively to patches with lower food density as resources in the initially high food density patches deplete. To test these expectations, we assessed the foraging decisions of two species of dasyurid marsupials (dunnarts: Sminthopsis hirtipes and S. youngsoni during a deep drought, or bust period, in the Simpson Desert of central Australia. Dunnarts were allowed access to three patches containing different food densities using an interview chamber experiment. Both species exhibited clear preference for the high density over the lower food density patches as measured in total harvested resources. Similarly, when measuring the proportion of resources harvested within the patches, we observed a marginal preference for patches with initially high densities. Models analyzing behavioral choices at the population level found no differences in behavior between the two species, but models analyzing choices at the individual level uncovered some variation. We conclude that dunnarts can distinguish between habitat patches with different densities of food and preferentially exploit the most valuable. As our observations were made during bust conditions, experiments should be repeated during boom times to assess the foraging economics of dunnarts when environmental resources are high.

  3. Padrão de atividade e comportamento de forrageamento do morcego-pescador Noctilio leporinus (Linnaeus (Chiroptera, Noctilionidae na Baía de Guaratuba, Paraná, Brasil Activity pattern and foraging behavior of bulldog-bat Noctilio leporinus (Linnaeus, (Chiroptera, Noctilionidae in Guaratuba Bay, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo O. Bordignon

    2006-03-01

    Full Text Available Entre 18 de janeiro a 16 de dezembro de 1999 foi estudado o comportamento de forrageamento e o padrão de atividade do morcego-pescador Noctilio leporinus (Linnaeus, 1758, em uma área de manguezal na Baía de Guaratuba, Sul do Brasil. Os grupos de N. leporinus observados permaneceram em atividade ao longo de todo o período noturno, mas com um aparente padrão bimodal. Durante os meses de abril a setembro, N. leporinus inicia a sua atividade geralmente às 18:00 h, uma hora mais cedo do que durante os meses de outubro a março, quando inicia sua atividade geralmente às 19:00 h. O comportamento de predação sobre os cardumes de peixes mostrou variações quanto ao local de forrageamento ao longo do período de atividade. Em baixos níveis de maré, os grupos de morcegos pescaram longe da margem em águas mais profundas, mas nos níveis de maré alta os grupos de morcegos permaneceram pescando sempre junto à margem, em águas mais rasas. Este padrão de comportamento em N. leporinus parece ser determinado pelo padrão de deslocamento dos cardumes de peixes na área de estudo.From January 18 to December 16 of 1999 the foraging behavior and activity pattern of fishing bat Noctilio leporinus (Linnaeus, 1758 were studied in mangrove ecosystem of Guaratuba Bay, southern Brazil. The groups of N. leporinus observed remained active during all nightly period but showed an apparent bimodal pattern. During April and September N. leporinus generally begin their activity at 18:00h, one hour earlier than October to March months, when their activity started at 19:00 h. The foraging behavior on fish shoal varied spatially along all the activity period. During low tide level the bat groups remained fishing distant from margin on deeper water, but during high tide level the bats were always observed fishing close to the margin on flat water. This pattern in foraging behavior of N. leporinus appears to be determined by the fish shoal displacement pattern in

  4. Interactions between shoal size and conformity in guppy social foraging

    NARCIS (Netherlands)

    Day, R.L.; Macdonald, T.; Brown, C.; Laland, K.N.; Reader, S.M.

    2001-01-01

    Previous experimental studies have established that shoaling fish forage more effectively in large than small groups. We investigated how shoal size affects the foraging efficiency of laboratory populations of the guppy, Poecilia reticulata, exposed to different foraging tasks. Experiment 1

  5. Evolution of sustained foraging in 3D environments with physics

    CERN Document Server

    Chaumont, Nicolas

    2011-01-01

    Artificially evolving foraging behavior in simulated legged animals has proved to be a notoriously difficult task. Here, we co-evolve the morphology and controller for virtual organisms in a three-dimensional physically realistic environment to produce goal-directed legged locomotion. We show that following and reaching multiple food sources can evolve de novo, by evaluating each organism on multiple food sources placed on a basic pattern that is gradually randomized across generations. We devised a strategy of evolutionary "staging", where the best organism from a set of evolutionary experiments using a particular fitness function is used to seed a new set, with a fitness function that is progressively altered to better challenge organisms as evolution improves them. We find that an organism's efficiency at reaching the first food source does not predict its ability at finding subsequent ones because foraging efficiency crucially depends on the position of the last food source reached, an effect illustrated ...

  6. A mathematical and experimental study of ant foraging trail dynamics.

    Science.gov (United States)

    Johnson, Katie; Rossi, Louis F

    2006-07-21

    In this article, we present a mathematical model coupled to an experimental study of ant foraging trails. Our laboratory experiments on Tetramorium caespitum do not find a strong relationship between ant densities and velocities, a common assumption in traffic modeling. Rather, we find that higher order effects play a major role in observed behavior, and our model reflects this by including inertial terms in the evolution equation. A linearization of the resulting system yields left- and right-moving waves, in agreement with laboratory measurements. The linearized system depends upon Froude numbers reflecting a ratio of the energy stored in the foraging trail to the kinetic energy of the ants. The model predicts and the measurements support the existence of two distinct phase velocities.

  7. Efeitos da oferta de forragem, do método de pastejo, dos dias de avaliação e da raça no comportamento e temperamento de ovinos Effect of forage supply, methods of grazing, evaluation days and breed on the behavior and the temperament of sheep

    Directory of Open Access Journals (Sweden)

    José Manuel Díaz Gómez

    2010-08-01

    Full Text Available Objetivou-se estudar comportamento e o temperamento de ovinos de três raças (Suffolk, Texel, Ile de France submetidas a dois métodos de pastejo (contínuo e rotacionado, com duas ofertas de forragem (10 e 20 kg de MS de pastagem de azevém/100 kg de peso vivo/dia durante quatro avaliações, entre agosto e novembro de 2006. Utilizou-se o delineamento completamente casualizado em parcelas subsubdivididas, de modo que os métodos de pastejo e as ofertas de forragem constituíram as parcelas, as raças as subparcelas e os dias de avaliação as subsubparcelas. Foram utilizadas 48 fêmeas ovinas com peso médio inicial de 27,59 kg e idade entre 15 e 25 meses. Na avaliação do temperamento, efetuaram-se medidas comportamentais pelo teste de arena, tipo de marcha e tempo de fuga e atributos fisiológicos, como temperatura corporal e frequências cardiorrespiratórias. No método contínuo com baixa oferta de forragem, observou-se maior número de micções. Conforme as avaliações ocorreram, houve aumento da movimentação, das tentativas de fuga, mas menor número de vocalizações durante o isolamento. A raça Ile de France apresentou maior número de tentativas de fuga e de dejeções durante o isolamento. No pastejo rotacionado com alta oferta de forragem, o ganho de peso foi menor. A movimentação no isolamento e na presença do observador foi negativamente relacionada ao ganho de peso. As variáveis descritoras do temperamento apresentaram baixa repetibilidade. O temperamento dos ovinos foi modificado principalmente pelo dia de avaliação e pela raça, ao contrário do sistema de pastejo e da oferta de pasto, embora esses fatores tenham apresentado interação com os dias de avaliação e a raça do animal.This work aimed to study the temperament and the behavior of three sheep breeds (Suffolk, Texel, Ile de France submitted to two grazing methods (continuous and rotational with two forage supplies (10 and 20 kg of Italian ryegrass DM/100

  8. Analysis of differentially expressed genes associated with the behavioral transition between nurses and foragers inApis mellifera ligustica%意大利蜜蜂哺育蜂与采集蜂行为转变相关基因的表达差异研究

    Institute of Scientific and Technical Information of China (English)

    刘芳; 宗超; 余林生; 苏松坤

    2015-01-01

    [Objectives] To examine the mechanism underlying in behavioral transition between nurses and foragers inApis mellifera ligustica, and identify factors that may be associated with that transition.[Methods] We analyzed 22 genes from the heads of nurses and foragers ofA. Mellifera ligustica and extracted total RNAs from these two kinds of worker bees. The Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to detect differential gene expression between nurses and foragers.[Results] The results show that expression of the following genes;mrjp2, mrjp4, mrjp6, mrjp7, LOC406114, Hbg3, Ef-1a-f1, Obp3, Wat, Oa1,andTpnT,was significantly different between nurses and foragers (P<0.01). Other genes;mrjp1, mrjp3, Ache, LOC406142, Mblk-1, TpnCIIIa, Ant, CSP3, Dop1, Jhe, andPer, were also differentially expressed, but the difference in their expression was not as statistically significant as in the previous group of genes (0.01<P<0.05).[Conclusion] These 22 differentially expressed genes may play an important role in the behavioral transition between nurses and foragers. These results help us understand the mechanism underlying this transition and may help identify the transitional mechanism responsible for the division of labor in honeybees.%[目的] 深入了解蜜蜂哺育蜂与采集蜂行为转变机制,寻找与之相关的调控因子.[方法] 我们随机选取了5群意大利蜜蜂Apis mellifera ligustica,分别采集相应的哺育蜂和采集蜂.利用实时荧光定量PCR(RT-qPCR)对哺育蜂和采集蜂头部中的mrjp1、Ache、CSP3、Dop1等22个基因的表达进行了分析.[结果] 实验结果表明:mrjp2、mrjp4、mrjp6、mrjp7、LOC406114、Hbg3、Ef-1a-f1、Obp3、Wat、Oa1、TpnT在意大利蜜蜂哺育蜂和采集蜂头部表达差异极显著(P<0.01 ),mrjp1、mrjp3、Ache、LOC406142、Mblk-1、TpnCIIIa、Ant、CSP3、Dop1、Jhe、Per 在意大利蜜蜂哺育蜂和采集蜂头部表达差异显著( 0.01

  9. Foraging behaviour by parasitoids in multiherbivore communities

    NARCIS (Netherlands)

    Rijk, de M.; Dicke, M.; Poelman, E.H.

    2013-01-01

    Parasitoid foraging decisions are often affected by community characteristics such as community diversity and complexity. As part of a complex habitat, the presence of unsuitable hosts may affect foraging behaviour of parasitoids. First, unsuitable herbivores may affect the localization of patches w

  10. Increased carrying capacity with perennial forage kochia

    Science.gov (United States)

    Carrying capacity can be increased on grass-dominated rangeland pastures by including perennial forage kochia (Kochia prostrata) as one of the plant components. The objectives of the study reported here were to compare the differences of traditional winter pastures versus pastures with forage kochi...

  11. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

    Directory of Open Access Journals (Sweden)

    Hailey N Scofield

    Full Text Available The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera. Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults. Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus

  12. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

    Science.gov (United States)

    Scofield, Hailey N; Mattila, Heather R

    2015-01-01

    The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings

  13. Foraging in groups affects giving-up densities: solo foragers quit sooner.

    Science.gov (United States)

    Carthey, Alexandra J R; Banks, Peter B

    2015-07-01

    The giving-up density framework is an elegant and widely adopted mathematical approach to measuring animals' foraging decisions at non-replenishing artificial resource patches. Under this framework, an animal should "give up" when the benefits of foraging are outweighed by the costs (e.g., predation risk, energetic, and/or missed opportunity costs). However, animals of many species may forage in groups, and group size is expected to alter perceived predation risk and hence influence quitting decisions. Yet, most giving-up density studies assume either that individuals forage alone or that giving-up densities are not affected by group foraging. For animals that forage both alone and in groups, differences in giving-up densities due to group foraging rather than experimental variables may substantially alter interpretation. However, no research to date has directly investigated how group foraging affects the giving-up density. We used remote-sensing cameras to identify instances of group foraging in two species of Rattus across three giving-up density experiments to determine whether group foraging influences giving-up densities. Both Rattus species have been observed to vary between foraging alone and in groups. In all three experiments, solo foragers left higher giving-up densities on average than did group foragers. This result has important implications for studies using giving-up densities to investigate perceived risk, the energetic costs of searching, handling time, digestion, and missed opportunity costs, particularly if groups of animals are more likely to experience certain experimental treatments. It is critically important that future giving-up density studies consider the effects of group foraging.

  14. Social influences on the acquisition of sex-typical foraging patterns by juveniles in a group of wild tufted capuchin monkeys (Cebus nigritus).

    Science.gov (United States)

    Agostini, Ilaria; Visalberghi, Elisabetta

    2005-04-01

    Foraging traditions in primates are becoming the subject of increasing debate. Recent evidence for such a phenomenon was recently provided for wild Cebus capucinus [Fragaszy & Perry, 2003]. To better understand the bases of animal traditions, one should examine intrapopulation behavioral variability and the influence of social context on within-group transmission of specific foraging patterns. We studied the variability of foraging patterns across age and sex classes, and the proximity patterns of juveniles to adults of both sexes in a group of wild tufted capuchin monkeys (Cebus nigritus) living in the Iguazu National Park, Argentina. Foraging activity was examined for a period of 9 months in terms of proportions of focal samples devoted to foraging on certain food targets, microhabitats, and supports, and using specific foraging patterns. Proximity analyses were performed to reveal patterns of association between juveniles and adults. Sex differences in foraging behavior were present and overrode age differences. Overall, males ate more animal foods, foraged more for invertebrates on woody microhabitats (especially large branches), palms, and epiphytes, and used lower and larger supports than females. Females ate more fruits, foraged more on leaves and bamboo microhabitats, and used smaller supports than males. Juveniles were similar to adults of the same sex in terms of food targets, foraging substrates, and choice of supports, but were less efficient than adults. Proximity patterns indicated that juvenile males stayed in close spatial association with adult males and preferentially focused their "food interest" on them. This phenomenon was less evident in juvenile females. The degree to which juveniles, especially males, showed some of the sex-typical foraging patterns correlated positively with their proximity to adults of the same sex. These findings suggest that the acquisition of foraging behaviors by juvenile males is socially biased by their closeness to

  15. Differences in foraging activity of deep sea diving odontocetes in the Ligurian Sea as determined by passive acoustic recorders

    Science.gov (United States)

    Giorli, Giacomo; Au, Whitlow W. L.; Neuheimer, Anna

    2016-01-01

    Characterizing the trophic roles of deep-diving odontocete species and how they vary in space and time is challenged by our ability to observe foraging behavior. Though sampling methods are limited, foraging activity of deep-diving odontocetes can be monitored by recording their biosonar emissions. Daily occurrence of echolocation clicks was monitored acoustically for five months (July-December 2011) in the Ligurian Sea (Mediterranean Sea) using five passive acoustic recorders. Detected odontocetes included Cuvier's beaked whales (Zipuhius cavirostris), sperm whales (Physeter macrocephalus), Risso's dolphins (Grampus griseus), and long-finned pilot whales (Globicephala melas). The results indicated that the foraging strategies varied significantly over time, with sperm whales switching to nocturnal foraging in late September whereas Risso's dolphins and pilot whales foraged mainly at night throughout the sampling period. In the study area, winter nights are about five hours longer than summer nights and an analysis showed that pilot whales and Risso's dolphins adjusted their foraging activity with the length of the night, foraging longer during the longer winter nights. This is the first study to show that marine mammals exhibit diurnal foraging patterns closely correlated to sunrise and sunset.

  16. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Science.gov (United States)

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  17. Space use and resource selection by foraging Indiana bats at the northern edge of their distribution

    Science.gov (United States)

    Jachowski, David S.; Johnson, Joshua B.; Dobony, Christopher A.; Edwards, John W.; Ford, W. Mark

    2014-01-01

    Despite 4 decades of conservation concern, managing endangered Indiana bat (Myotis sodalis) populations remains a difficult wildlife resource issue facing natural resource managers in the eastern United States. After small signs of population recovery, the recent emergence of white-nose syndrome has led to concerns of local and/or regional extirpation of the species. Where Indiana bats persist, retaining high-quality foraging areas will be critical to meet physiological needs and ensure successful recruitment and overwinter survival. However, insight into foraging behavior has been lacking in the Northeast of the USA. We radio-tracked 12 Indiana bats over 2 summers at Fort Drum, New York, to evaluate factors influencing Indiana bat resource selection during night-time foraging. We found that foraging space use decreased 2% for every 100 m increase in distance to water and 6% for every 100 m away from the forest edge. This suggests high use of riparian areas in close proximity to forest and is somewhat consistent with the species’ foraging ecology in the Midwest and upper South. Given the importance of providing access to high-quality foraging areas during the summer maternity season, Indiana bat conservation at the northern extent of the species’ range will be linked to retention of forested habitat in close proximity to riparian zones. 

  18. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  19. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  20. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  1. Foraging Path-length Protocol for Drosophila melanogaster Larvae.

    Science.gov (United States)

    Anreiter, Ina; Vasquez, Oscar E; Allen, Aaron M; Sokolowski, Marla B

    2016-04-23

    The Drosophila melanogaster larval path-length phenotype is an established measure used to study the genetic and environmental contributions to behavioral variation. The larval path-length assay was developed to measure individual differences in foraging behavior that were later linked to the foraging gene. Larval path-length is an easily scored trait that facilitates the collection of large sample sizes, at minimal cost, for genetic screens. Here we provide a detailed description of the current protocol for the larval path-length assay first used by Sokolowski. The protocol details how to reproducibly handle test animals, perform the behavioral assay and analyze the data. An example of how the assay can be used to measure behavioral plasticity in response to environmental change, by manipulating feeding environment prior to performing the assay, is also provided. Finally, appropriate test design as well as environmental factors that can modify larval path-length such as food quality, developmental age and day effects are discussed.

  2. Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight.

    Science.gov (United States)

    Carr, Jennie M; Lima, Steven L

    2014-03-01

    Wintering birds can gain significant thermal benefits by foraging in direct sunlight. However, exposure to bright sunlight might make birds easier to detect by predators and may also cause visual glare that can reduce a bird's ability to monitor the environment. Thus, birds likely experience a trade-off between the thermal benefits and predation-related costs of foraging in direct sunlight. To examine this possible thermoregulation-predation trade-off, we monitored the behavior of mixed-species flocks of wintering emberizid sparrows foraging in alternating strips of sunlight and shade. On average, these sparrows routinely preferred to forage in the shade, despite midday air temperatures as much as 30 °C below their thermoneutral zone. This preference for shade was strongest at relatively high temperatures when the thermal benefits of foraging in sunlight were reduced, suggesting a thermoregulation-predation trade-off. Glare could be reduced if birds faced away from the sun while feeding in direct sunlight, but we found that foraging birds tended to face southward (the direction of the sun). We speculate that other factors, such as the likely direction of predator approach, may explain this southerly orientation, particularly if predators use solar glare to their advantage during an attack. This interpretation is supported by the fact that birds had the weakest southerly orientation on cloudy days. Wintering birds may generally avoid foraging in direct sunlight to minimize their risk of predation. However, given the thermal benefits of sunshine, such birds may benefit from foraging in habitats that provide a mosaic of sunlit and shaded microhabitats.

  3. Ontogeny of corticotropin-releasing factor effects on locomotion and foraging in the Western spadefoot toad (Spea hammondii).

    Science.gov (United States)

    Crespi, Erica J; Denver, Robert J

    2004-11-01

    We investigated the effects of corticotropin-releasing factor (CRF) and corticosterone (CORT) on foraging and locomotion in Western spadefoot toad (Spea hammondii) tadpoles and juveniles to assess the behavioral functions of these hormones throughout development. We administered intracerebroventricular injections of ovine CRF or CRF receptor antagonist alphahelical CRF((9-41)) to tadpoles and juveniles, and observed behavior within 1.5 h after injection. In both premetamorphic (Gosner stage 33) and prometamorphic (Gosner stages 35-37) tadpoles, CRF injections increased locomotion and decreased foraging. Injections of alphahelical CRF((9-41)) reduced locomotion but did not affect foraging in premetamorphic tadpoles, but dramatically increased foraging in prometamorphic tadpoles compared to both placebo and uninjected controls. Similarly, alphahelical CRF((9-41)) injections stimulated food intake and prey-catching behavior in juveniles. These results suggest that in later-staged amphibians, endogenous CRF secretion modulates feeding by exerting a suppressive effect on appetite. By contrast to the inhibitory effect of CRF, 3-h exposure to CORT (500 nM added to the aquarium water) stimulated foraging in prometamorphic tadpoles. These tadpoles also exhibited a CORT-mediated increase in foraging 6 h after CRF injection, which was associated with elevated whole-body CORT content and blocked by glucocorticoid receptor (GR) antagonist (RU486) injections. Thus, exogenous CRF influences locomotion and foraging in both pre- and prometamorphic tadpoles, but endogenous CRF secretion in relatively unstressed animals does not affect foraging until prometamorphic stages. Furthermore, the opposing actions of CRF and CORT on foraging suggest that they are important regulators of energy balance and food intake in amphibians throughout development.

  4. Sexual segregation in foraging giraffe

    Science.gov (United States)

    Mramba, Rosemary Peter; Mahenya, Obeid; Siyaya, Annetjie; Mathisen, Karen Marie; Andreassen, Harry Peter; Skarpe, Christina

    2017-02-01

    Sexual segregation in giraffe is known to vary between savannas. In this study, we compared sexual segregation in giraffe in one nutrient-rich savanna, the Serengeti National Park, one nutrient-poor, Mikumi National Park, and one medium rich savanna, Arusha National Park, (from here on referred to just by name) based on effects of sexual size dimorphism and related hypotheses. Data were collected in the wet and dry seasons, by driving road transects and making visual observations of browsing giraffe. Additional data were collected from literature (plant chemistry; mammal communities). There was a noticeable difference in browsing by females and males and in browsing between the three savannas. Females browsed a higher diversity of tree species in Serengeti whereas males browsed a higher diversity in Arusha, while the diversity of species browsed in Mikumi was high and about the same in both sexes. Females selected for high concentrations of nitrogen and low concentrations of tannins and phenolics compared to males in Serengeti but selection in Mikumi was more complex. Males browsed higher in the canopy than females in all sites, but the browsing height was generally higher in Serengeti than Mikumi and Arusha. Season had an effect on the browsing height independent of sex in Mikumi, where giraffes browsed higher in the dry season compared to the wet season. Males spent more time browsing per tree compared to females in all three sites; however, browsing time in Mikumi was also affected by season, where giraffes had longer browsing bouts in the wet season compared to the dry season. We suggest that sexual differences in forage requirement and in foraging interacts with differences in tree chemistry and in competing herbivore communities between nutrient rich and nutrient poor savanna in shaping the sexual segregation.

  5. Color and polarization vision in foraging Papilio.

    Science.gov (United States)

    Kinoshita, Michiyo; Arikawa, Kentaro

    2014-06-01

    This paper gives an overview of behavioral studies on the color and polarization vision of the Japanese yellow swallowtail butterfly, Papilio xuthus. We focus on indoor experiments on foraging individuals. Butterflies trained to visit a disk of certain color correctly select that color among various other colors and/or shades of gray. Correct selection persists under colored illumination, but is systematically shifted by background colors, indicating color constancy and simultaneous color contrast. While their eyes contain six classes of spectral receptors, their wavelength discrimination performance indicates that their color vision is tetrachromatic. P. xuthus innately prefers brighter targets, but can be trained to select dimmer ones under certain conditions. Butterflies trained to a dark red stimulus select an orange disk presented on a bright gray background over one on dark gray. The former probably appears darker to them, indicating brightness contrast. P. xuthus has a strong innate preference for vertically polarized light, but the selection of polarized light changes depending on the intensity of simultaneously presented unpolarized light. Discrimination of polarization also depends on background intensity. Similarities between brightness and polarization vision suggest that P. xuthus perceive polarization angle as brightness, such that vertical polarization appears brighter than horizontal polarization.

  6. Dynamic foraging of a top predator in a seasonal polar marine environment.

    Science.gov (United States)

    Weinstein, Ben G; Friedlaender, Ari S

    2017-09-15

    The seasonal movement of animals at broad spatial scales provides insight into life-history, ecology and conservation. By combining high-resolution satellite-tagged data with hierarchical Bayesian movement models, we can associate spatial patterns of movement with marine animal behavior. We used a multi-state mixture model to describe humpback whale traveling and area-restricted search states as they forage along the West Antarctic Peninsula. We estimated the change in the geography, composition and characteristics of these behavioral states through time. We show that whales later in the austral fall spent more time in movements associated with foraging, traveled at lower speeds between foraging areas, and shifted their distribution northward and inshore. Seasonal changes in movement are likely due to a combination of sea ice advance and regional shifts in the primary prey source. Our study is a step towards dynamic movement models in the marine environment at broad scales.

  7. Harvester ants use interactions to regulate forager activation and availability.

    Science.gov (United States)

    Pinter-Wollman, Noa; Bala, Ashwin; Merrell, Andrew; Queirolo, Jovel; Stumpe, Martin C; Holmes, Susan; Gordon, Deborah M

    2013-07-01

    Social groups balance flexibility and robustness in their collective response to environmental changes using feedback between behavioural processes that operate at different timescales. Here we examine how behavioural processes operating at two timescales regulate the foraging activity of colonies of the harvester ant, Pogonomyrmex barbatus, allowing them to balance their response to food availability and predation. Previous work showed that the rate at which foragers return to the nest with food influences the rate at which foragers leave the nest. To investigate how interactions inside the nest link the rates of returning and outgoing foragers, we observed outgoing foragers inside the nest in field colonies using a novel observation method. We found that the interaction rate experienced by outgoing foragers inside the nest corresponded to forager return rate, and that the interactions of outgoing foragers were spatially clustered. Activation of a forager occurred on the timescale of seconds: a forager left the nest 3-8 s after a substantial increase in interactions with returning foragers. The availability of outgoing foragers to become activated was adjusted on the timescale of minutes: when forager return was interrupted for more than 4-5 min, available foragers waiting near the nest entrance went deeper into the nest. Thus, forager activation and forager availability both increased with the rate at which foragers returned to the nest. This process was checked by negative feedback between forager activation and forager availability. Regulation of foraging activation on the timescale of seconds provides flexibility in response to fluctuations in food abundance, whereas regulation of forager availability on the timescale of minutes provides robustness in response to sustained disturbance such as predation.

  8. Mobile robot dynamic path planning based on bacterial foraging behavior%基于细菌觅食行为的移动机器人动态路径规划

    Institute of Scientific and Technical Information of China (English)

    梁晓丹; 蔺娜; 陈瀚宁

    2016-01-01

    Dynamic Optimization Problem (DOP)is a kind of problems with dynamic fitness functions,problem instances and limiting conditions.Mobile robot dynamic path planning must face dynamic variations of the environment,which is also a typical DOP.By analogizing the natural phenomena of bacterial adaptive foraging and mobile robot dynamic path planning,a Dynamic Bacterial Foraging Optimization (DBFO)is proposed.A complex dynamic multimodal test function is adopted to test its performance.The results show that DBFO exhibits a high accuracy,stabilization and an ability of dynamic optimization.Using the Sphere function as the simulation environment for Robot path planning optimization,searching subject driven by DBFO can smoothly avoid obstacles,quickly find the target site and effectively saves walking time.The bionic intelligent optimization approach is effective,stable,and competitive,and it is good for the searching efficiency and solution accuracy in the solving of complex engineering optimization.%将自然界中细菌的自适应觅食现象与移动机器人动态路径规划相类比,设计基于细菌最优觅食理论的新型生物启发计算方法(DBFO)。通过对无约束复杂动态多峰测试函数库测试,证实 DBFO 算法具有较高的准确性和稳定性,具备动态优化能力。并以 Sphere 函数作为机器人路径寻优的仿真测试环境,DBFO 算法驱动的搜索主体可以顺利避开障碍并快速找到目标地点,有效节约了行走时间,验证了其是一种高效、稳定、有竞争力的仿生智能优化方法,在求解实际复杂工程优化问题中体现了极为优越的搜索效率和求解精度。

  9. Optimal Foraging by Birds: Experiments for Secondary & Postsecondary Students

    Science.gov (United States)

    Pecor, Keith W.; Lake, Ellen C.; Wund, Matthew A.

    2015-01-01

    Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. We describe three experiments designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These experiments can be used alone or in combination and can…

  10. A review on studies in forage in China

    Institute of Scientific and Technical Information of China (English)

    LONG Wenxing; YANG Xiaobo; QI Meiying

    2007-01-01

    A review is made of the achievements in the collection,conservation,and genetic diversity of forage germplasm resources;methods and goals for forage breeding;and development and utilization of forage in China.The current problems based on the researches in forage are analyzed,and some suggestions are put forward.

  11. Cholecystokinin-33 acutely attenuates food foraging, hoarding and intake in Siberian hamsters.

    Science.gov (United States)

    Teubner, Brett J W; Bartness, Timothy J

    2010-04-01

    Neurochemicals that stimulate food foraging and hoarding in Siberian hamsters are becoming more apparent, but we do not know if cessation of these behaviors is due to waning of excitatory stimuli and/or the advent of inhibitory factors. Cholecystokinin (CCK) may be such an inhibitory factor as it is the prototypic gastrointestinal satiety peptide and is physiologically important in decreasing food intake in several species including Siberian hamsters. Systemic injection of CCK-33 in laboratory rats decreases food intake, doing so to a greater extent than CCK-8. We found minimal effects of CCK-8 on food foraging and hoarding previously in Siberian hamsters, but have not tested CCK-33. Therefore, we asked: Does CCK-33 decrease normal levels or food deprivation-induced increases in food foraging, hoarding and intake? Hamsters were housed in a wheel running-based foraging system with simulated burrows to test the effects of peripheral injections of CCK-33 (13.2, 26.4, or 52.8 microg/kg body mass), with or without a preceding 56 h food deprivation. The highest dose of CCK-33 caused large baseline reductions in all three behaviors for the 1st hour post-injection compared with saline; in addition, the intermediate CCK-33 dose was sufficient to curtail food intake and foraging during the 1st hour. In food-deprived hamsters, we used a 52.8 microg/kg body mass dose of CCK-33 which decreased food intake, hoarding, and foraging almost completely compared with saline controls for 1h. Therefore, CCK-33 appears to be a potent inhibitor of food intake, hoarding, and foraging in Siberian hamsters.

  12. Experimental Wing Damage Affects Foraging Effort and Foraging Distance in Honeybees Apis mellifera

    Directory of Open Access Journals (Sweden)

    Andrew D. Higginson

    2011-01-01

    Full Text Available Bees acquire wing damage as they age, and loss of wing area affects longevity and behaviour. This may influence colony performance via effects on worker behaviour. The effects of experimental wing damage were studied in worker honeybees in observation hives by recording survivorship, how often and for how long bees foraged, and by decoding waggle dances. Mortality rate increased with both age and wing damage. Damaged bees carried out shorter and/or less frequent foraging trips, foraged closer to the hive, and reported the profitability of flower patches to be lower than did controls. These results suggest that wing damage caused a reduction in foraging ability, and that damaged bees adjusted their foraging behaviour accordingly. Furthermore, the results suggest that wing damage affects the profitability of nectar sources. These results have implications for the colony dynamics and foraging efficiency in honeybees.

  13. Worker honey bee pheromone regulation of foraging ontogeny

    Science.gov (United States)

    Pankiw, Tanya

    The evolution of sociality has configured communication chemicals, called primer pheromones, which play key roles in regulating the organization of social life. Primer pheromones exert relatively slow effects that fundamentally alter developmental, physiological, and neural systems. Here, I demonstrate how substances extracted from the surface of foraging and young pre-foraging worker bees regulated age at onset of foraging, a developmental process. Hexane-extractable compounds washed from foraging workers increased foraging age compared with controls, whereas extracts of young pre-foraging workers decreased foraging age. This represents the first known direct demonstration of primer pheromone activity derived from adult worker bees.

  14. Quitting time: When do honey bee foragers decide to stop foraging on natural resources?

    OpenAIRE

    Michael eRivera; Matina eDonaldson-Matasci; Anna eDornhaus

    2015-01-01

    Honey bee foragers may use both personal and social information when making decisions about when to visit resources. In particular, foragers may stop foraging at resources when their own experience indicates declining resource quality, or when social information, namely the delay to being able to unload nectar to receiver bees, indicates that the colony has little need for the particular resource being collected. Here we test the relative importance of these two factors in a natural setting, ...

  15. Novel foraging in the swash zone on Pacific sand crabs (Emerita analoga, Hippidae) by mallards

    Science.gov (United States)

    Lafferty, Kevin D.; McLaughlin, John P.; Dugan, Jenifer E.

    2013-01-01

    Mallards (Anas platyrhynchos) have been observed foraging on intertidal Pacific sand crabs (Hippidae, Emerita analoga) in the swash zone of sandy beaches around Coal Oil Point Reserve, California, and several other beaches on the west coast since at least November 2010. Unlike foraging shorebirds, Mallards do not avoid incoming swashes. Instead, the incoming swash lifts and deposits them down the beach. Shorebirds and diving ducks commonly feed on sand crabs, but sand crabs appear to be a novel behavior and food source for Mallards. Previous surveys of beaches did not report foraging Mallards on regional beaches, whereas foraging Mallards were common in contemporary (recent) surveys and anecdotal reports. Observations of this potentially new behavior were separated by as much as 1,300 km, indicating that this was not a local phenomenon. Mallards foraged singly, in pairs, and in flocks. An expansion of diet to sand crabs carries risks of exposure to surf, human disturbance, high salt intake, and transmission of acanthocephalan and trematode parasites for Mallards but has the benefit of providing a dependable source of animal protein.

  16. An empirically based simulation of group foraging in the harvesting ant, Messor pergandei.

    Science.gov (United States)

    Plowes, Nicola J R; Ramsch, Kai; Middendorf, Martin; Hölldobler, Bert

    2014-01-07

    We present an empirically based group model of foraging interactions in Messor pergandei, the Sonoran desert harvesting ant. M. pergandei colonies send out daily foraging columns consisting of tens of thousands of individual ants. Each day, the directions of the columns may change depending on the resource availability and the neighbor interactions. If neighboring columns meet, ants fight, and subsequent foraging is suppressed. M. pergandei colonies face a general problem which is present in many systems: dynamic spatial partitioning in a constantly changing environment, while simultaneously minimizing negative competitive interactions with multiple neighbors. Our simulation model of a population of column foragers is spatially explicit and includes neighbor interactions. We study how different behavioral strategies influence resource exploitation and space use for different nest distributions and densities. Column foraging in M. pergandei is adapted to the spatial and temporal properties of their natural habitat. Resource and space use is maximized both at the colony and the population level by a model with a behavioral strategy including learning and fast forgetting rates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae)

    OpenAIRE

    Lima,Luan D.; Antonialli-Junior, William F.

    2013-01-01

    Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae). Foraging activity may be limited by temperature, humidity, radiation, wind, and other abiotic factors, all of which can affect energy costs during foraging. Ectatomma vizottoi's biology has only recently been studied, and no detailed information is available on its foraging patterns or diet in the field. For this reason, and because foraging activity is an important part of the ecological success of social insects, t...

  18. Meeting reproductive demands in a dynamic upwelling system: Foraging strategies of a pursuit-diving seabird, the marbled murrelet

    Science.gov (United States)

    Peery, M.Z.; Newman, S.H.; Storlazzi, C.D.; Beissinger, S.R.

    2009-01-01

    Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes in reproductive demands in an upwelling system in central California. We radio-marked 32 murrelets of known reproductive status (9 breeders, 12 potential breeders, and 11 nonbreeders) and estimated both foraging ranges and diving rates during the breeding season. Murrelets spent more time diving during upwelling than oceanographic relaxation, increased their foraging ranges as the duration of relaxation grew longer, and reduced their foraging ranges after transitions to upwelling. When not incubating, murrelets moved in a circadian pattern, spending nighttime hours resting near flyways used to reach nesting habitat and foraging during the daytime an average of 5.7 km (SD 6.7 km) from nighttime locations. Breeders foraged close to nesting habitat once they initiated nesting and nest attendance was at a maximum, and then resumed traveling longer distances following the completion of nesting. Nonbreeders had similar nighttime and daytime distributions and tended to be located farther from inland flyways. Breeders increased the amount of time they spent diving by 71-73% when they had an active nest by increasing the number of dives rather than by increasing the frequency of anaerobiosis. Thus, to meet reproductive demands during nesting, murrelets adopted a combined strategy of reducing energy expended commuting to foraging sites and increasing aerobic dive rates. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  19. Fishing amplifies forage fish population collapses.

    Science.gov (United States)

    Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C

    2015-05-26

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.

  20. Transport infrastructure shapes foraging habitat in a raptor community.

    Science.gov (United States)

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors' foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors' response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways.

  1. Characterization of winter foraging locations of Adélie penguins along the Western Antarctic Peninsula, 2001-2002

    Science.gov (United States)

    Erdmann, Eric S.; Ribic, Christine A.; Patterson-Fraser, Donna L.; Fraser, William R.

    2011-07-01

    In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin ( Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.

  2. Characterization of winter foraging locations of Adélie penguins along the Western Antarctic Peninsula, 2001–2002

    Science.gov (United States)

    Erdmann, Eric S.; Ribic, Christine; Patterson-Fraser, Donna L.; Fraser, William R.

    2011-01-01

    In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin (Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.

  3. 大规模联合采集智能群体的协调跟踪模型及稳定性分析%An Improved Cooperative Tracking Model Used for Large-scale Social Foraging Swarm

    Institute of Scientific and Technical Information of China (English)

    陈世明; 方华京

    2006-01-01

    An improved cooperative tracking model is proposed, which is based on the local information between mutually observable individuals with global object information, and this model is used for scalable social foraging swarm. In this model, the "follower" individuals in the swarm take the center of the minimal circumcircle decided by the neighbors in the positive visual set of individual as its local object position. We study the stability properties of cooperative tracking behavior of social foraging swarm based on Lyapunov stability theory. Simulations show that the stable cooperative tracking behavior of the global social foraging swarm can be achieved easily, and beautiful scalability emerge from the proposed model for social foraging swarm.

  4. Fast carnivores and slow herbivores: differential foraging strategies among grizzly bears in the Canadian Arctic.

    Science.gov (United States)

    Edwards, Mark A; Derocher, Andrew E; Hobson, Keith A; Branigan, Marsha; Nagy, John A

    2011-04-01

    Categorizing animal populations by diet can mask important intrapopulation variation, which is crucial to understanding a species' trophic niche width. To test hypotheses related to intrapopulation variation in foraging or the presence of diet specialization, we conducted stable isotope analysis (δ(13)C, δ(15)N) on hair and claw samples from 51 grizzly bears (Ursus arctos) collected from 2003 to 2006 in the Mackenzie Delta region of the Canadian Arctic. We examined within-population differences in the foraging patterns of males and females and the relationship between trophic position (derived from δ(15)N measurements) and individual movement. The range of δ(15)N values in hair and claw (2.0-11.0‰) suggested a wide niche width and cluster analyses indicated the presence of three foraging groups within the population, ranging from near-complete herbivory to near-complete carnivory. We found no linear relationship between home range size and trophic position when the data were continuous or when grouped by foraging behavior. However, the movement rate of females increased linearly with trophic position. We used multisource dual-isotope mixing models to determine the relative contributions of seven prey sources within each foraging group for both males and females. The mean bear dietary endpoint across all foraging groups for each sex fell toward the center of the mixing polygon, which suggested relatively well-mixed diets. The primary dietary difference across foraging groups was the proportional contribution of herbaceous foods, which decreased for both males and females from 42-76 to 0-27% and 62-81 to 0-44%, respectively. Grizzlies of the Mackenzie Delta live in extremely harsh conditions and identifying within-population diet specialization has improved our understanding of varying habitat requirements within the population.

  5. Quitting time: When do honey bee foragers decide to stop foraging on natural resources?

    Directory of Open Access Journals (Sweden)

    Michael eRivera

    2015-05-01

    Full Text Available Honey bee foragers may use both personal and social information when making decisions about when to visit resources. In particular, foragers may stop foraging at resources when their own experience indicates declining resource quality, or when social information, namely the delay to being able to unload nectar to receiver bees, indicates that the colony has little need for the particular resource being collected. Here we test the relative importance of these two factors in a natural setting, where colonies are using many dynamically changing resources. We recorded detailed foraging histories of individually marked bees, and identified when they appeared to abandon any resources (such as flower patches that they had previously been collecting from consistently. As in previous studies, we recorded duration of trophallaxis events (unloading nectar to receiver bees as a proxy for resource quality and the delays before returning foragers started trophallaxis as a proxy for social need for the resource. If these proxy measures accurately reflect changes in resource quality and social need, they should predict whether bees continue foraging or not. However, neither factor predicted when individuals stopped foraging on a particular resource, nor did they explain changes in colony-level foraging activity. This may indicate that other, as yet unstudied processes also affect individual decisions to abandon particular resources.

  6. Flooding tolerance of forage legumes.

    Science.gov (United States)

    Striker, Gustavo G; Colmer, Timothy D

    2016-06-20

    We review waterlogging and submergence tolerances of forage (pasture) legumes. Growth reductions from waterlogging in perennial species ranged from >50% for Medicago sativa and Trifolium pratense to Lotus corniculatus, L. tenuis, and T. fragiferum For annual species, waterlogging reduced Medicago truncatula by ~50%, whereas Melilotus siculus and T. michelianum were not reduced. Tolerant species have higher root porosity (gas-filled volume in tissues) owing to aerenchyma formation. Plant dry mass (waterlogged relative to control) had a positive (hyperbolic) relationship to root porosity across eight species. Metabolism in hypoxic roots was influenced by internal aeration. Sugars accumulate in M. sativa due to growth inhibition from limited respiration and low energy in roots of low porosity (i.e. 4.5%). In contrast, L. corniculatus, with higher root porosity (i.e. 17.2%) and O2 supply allowing respiration, maintained growth better and sugars did not accumulate. Tolerant legumes form nodules, and internal O2 diffusion along roots can sustain metabolism, including N2 fixation, in submerged nodules. Shoot physiology depends on species tolerance. In M. sativa, photosynthesis soon declines and in the longer term (>10 d) leaves suffer chlorophyll degradation, damage, and N, P, and K deficiencies. In tolerant L corniculatus and L. tenuis, photosynthesis is maintained longer, shoot N is less affected, and shoot P can even increase during waterlogging. Species also differ in tolerance of partial and complete shoot submergence. Gaps in knowledge include anoxia tolerance of roots, N2 fixation during field waterlogging, and identification of traits conferring the ability to recover after water subsides.

  7. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  8. Uninformed sacrifice: Evidence against long-range alarm transmission in foraging ants exposed to localized abduction

    Science.gov (United States)

    Tejera, F.; Reyes, A.; Altshuler, E.

    2016-07-01

    It is well established that danger information can be transmitted by ants through relatively small distances, provoking either a state of alarm when they move away from potentially dangerous stimulus, or charge toward it aggressively. There is almost no knowledge if danger information can be transmitted along large distances. In this paper, we abduct leaf cutting ants of the species Atta insularis while they forage in their natural environment at a certain point of the foraging line, so ants make a "U" turn to escape from the danger zone and go back to the nest. Our results strongly suggest that those ants do not transmit "danger information" to other nestmates marching towards the abduction area. The individualistic behavior of the ants returning from the danger zone results in a depression of the foraging activity due to the systematic sacrifice of non-informed individuals.

  9. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Science.gov (United States)

    Peck, David T; Smith, Michael L; Seeley, Thomas D

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  10. Optimal foraging predicts the ecology but not the evolution of host specialization in bacteriophages.

    Directory of Open Access Journals (Sweden)

    Sébastien Guyader

    Full Text Available We explore the ability of optimal foraging theory to explain the observation among marine bacteriophages that host range appears to be negatively correlated with host abundance in the local marine environment. We modified Charnov's classic diet composition model to describe the ecological dynamics of the related generalist and specialist bacteriophages phiX174 and G4, and confirmed that specialist phages are ecologically favored only at high host densities. Our modified model accurately predicted the ecological dynamics of phage populations in laboratory microcosms, but had only limited success predicting evolutionary dynamics. We monitored evolution of attachment rate, the phenotype that governs diet breadth, in phage populations adapting to both low and high host density microcosms. Although generalist phiX174 populations evolved even broader diets at low host density, they did not show a tendency to evolve the predicted specialist foraging strategy at high host density. Similarly, specialist G4 populations were unable to evolve the predicted generalist foraging strategy at low host density. These results demonstrate that optimal foraging models developed to explain the behaviorally determined diets of predators may have only limited success predicting the genetically determined diets of bacteriophage, and that optimal foraging probably plays a smaller role than genetic constraints in the evolution of host specialization in bacteriophages.

  11. Nuisance ecology: do scavenging condors exact foraging costs on pumas in Patagonia?

    Directory of Open Access Journals (Sweden)

    L Mark Elbroch

    Full Text Available Predation risk describes the energetic cost an animal suffers when making a trade off between maximizing energy intake and minimizing threats to its survival. We tested whether Andean condors (Vultur gryphus influenced the foraging behaviors of a top predator in Patagonia, the puma (Puma concolor, in ways comparable to direct risks of predation for prey to address three questions: 1 Do condors exact a foraging cost on pumas?; 2 If so, do pumas exhibit behaviors indicative of these risks?; and 3 Do pumas display predictable behaviors associated with prey species foraging in risky environments? Using GPS location data, we located 433 kill sites of 9 pumas and quantified their kill rates. Based upon time pumas spent at a carcass, we quantified handling time. Pumas abandoned >10% of edible meat at 133 of 266 large carcasses after a single night, and did so most often in open grasslands where their carcasses were easily detected by condors. Our data suggested that condors exacted foraging costs on pumas by significantly decreasing puma handling times at carcasses, and that pumas increased their kill rates by 50% relative to those reported for North America to compensate for these losses. Finally, we determined that the relative risks of detection and associated harassment by condors, rather than prey densities, explained puma "giving up times" (GUTs across structurally variable risk classes in the study area, and that, like many prey species, pumas disproportionately hunted in high-risk, high-resource reward areas.

  12. Amygdala regulates risk of predation in rats foraging in a dynamic fear environment.

    Science.gov (United States)

    Choi, June-Seek; Kim, Jeansok J

    2010-12-14

    In a natural environment, foragers constantly face the risk of encountering predators. Fear is a defensive mechanism evolved to protect animals from danger by balancing the animals' needs for primary resources with the risk of predation, and the amygdala is implicated in mediating fear responses. However, the functions of fear and amygdala in foraging behavior are not well characterized because of the technical difficulty in quantifying prey-predator interaction with real (unpredictable) predators. Thus, the present study investigated the rat's foraging behavior in a seminaturalistic environment when confronted with a predator-like robot programmed to surge toward the animal seeking food. Rats initially fled into the nest and froze (demonstrating fear) and then cautiously approached and seized the food as a function of decreasing nest-food and increasing food-robot distances. The likelihood of procuring food increased and decreased via lesioning/inactivating and disinhibiting the amygdala, respectively. These results indicate that the amygdala bidirectionally regulates risk behavior in rats foraging in a dynamic fear environment.

  13. Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds

    OpenAIRE

    2015-01-01

    We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals' foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm ...

  14. Ants can learn to forage on one-way trails.

    Directory of Open Access Journals (Sweden)

    Pedro Leite Ribeiro

    Full Text Available The trails formed by many ant species between nest and food source are two-way roads on which outgoing and returning workers meet and touch each other all along. The way to get back home, after grasping a food load, is to take the same route on which they have arrived from the nest. In many species such trails are chemically marked by pheromones providing orientation cues for the ants to find their way. Other species rely on their vision and use landmarks as cues. We have developed a method to stop foraging ants from shuttling on two-way trails. The only way to forage is to take two separate roads, as they cannot go back on their steps after arriving at the food or at the nest. The condition qualifies as a problem because all their orientation cues -- chemical, visual or any other -- are disrupted, as all of them cannot but lead the ants back to the route on which they arrived. We have found that workers of the leaf-cutting ant Atta sexdens rubropilosa can solve the problem. They could not only find the alternative way, but also used the unidirectional traffic system to forage effectively. We suggest that their ability is an evolutionary consequence of the need to deal with environmental irregularities that cannot be negotiated by means of excessively stereotyped behavior, and that it is but an example of a widespread phenomenon. We also suggest that our method can be adapted to other species, invertebrate and vertebrate, in the study of orientation, memory, perception, learning and communication.

  15. Seasonal Changes in Forage Nutrients and Mineral Contents in Water Resources,Forage and Yak Blood

    Institute of Scientific and Technical Information of China (English)

    阎萍

    2005-01-01

    This paper reports results of a study conducted to investigate the concentrations of seven mineral elements in yak blood, forage and water resources around the Qinghai Lake in Qinghai Province in different seasons. Meanwhile, the nutritional compositions of the forage were also surveyed. The results suggest that the mineral elements and the forage nutrients change in a seasonal pattern. In yak blood,the sodium(Na)concentration varies from 0.291 to 0.034 mg/mL,and this is lower than the normal value. In the forage,the ratio calcium(Ca)to phosphorus(P)is 4.06~7.47:1 and potassium(K)to Na 30~27:1. These results indicate that the nutrition of the yak in the area is deficient in Na but high in K. For the withered forage sampled in February,the protein content is only 31.14% of the total protein in the forage growing at puerile stage in June. The severe loss of protein by 68. 9% and decrease of effective nutrients in the wintered forage are considered to be the reasons resulting in the poor condition of yak in winter and spring seasons.

  16. Foraging rates of larval dragonfly colonists are positively related to habitat isolation: results from a landscape-level experiment.

    Science.gov (United States)

    McCauley, Shannon J; Brodin, Tomas; Hammond, John

    2010-03-01

    There is increasing evidence of intraspecific variation in dispersal behavior. Individual differences in dispersal behavior may be correlated with other traits that determine the impact individuals have on patches they colonize. We established habitat patches-artificial pools-across a landscape, and these pools were naturally colonized by dragonfly larvae. Larvae were collected from pools at different levels of isolation and held under common lab conditions for 5 months. We then compared larval foraging rates. Foraging rate was positively related to habitat isolation, and colonists from the most isolated artificial pools had significantly higher foraging rates than individuals from the least isolated pools. Our results indicate that spatial patterns in colonist behavior can develop across a landscape independent of species-level dispersal limitation. This finding suggests that studies of community structure across space should include an assessment of the distribution of phenotypes as well as species-level dispersal limitation patterns.

  17. Long-term individual foraging site fidelity--why some gannets don't change their spots.

    Science.gov (United States)

    Wakefield, Ewan D; Cleasby, Ian R; Bearhop, Stuart; Bodey, Thomas W; Davies, Rachel D; Miller, Peter I; Newton, Jason; Votier, Stephen C; Hamer, Keith C

    2015-11-01

    Many established models of animal foraging assume that individuals are ecologically equivalent. However, it is increasingly recognized that populations may comprise individuals who differ consistently in their diets and foraging behaviors. For example, recent studies have shown that individual foraging site fidelity (IFSF, when individuals consistently forage in only a small part of their population's home range) occurs in some colonial breeders. Short-term IFSF could result from animals using a win-stay, lose-shift foraging strategy. Alternatively, it may be a consequence of individual specialization. Pelagic seabirds are colonial central-place foragers, classically assumed to use flexible foraging strategies to target widely dispersed, spatiotemporally patchy prey. However, tracking has shown that IFSF occurs in many seabirds, although it is not known whether this persists across years. To test for long-term IFSF and to examine alternative hypotheses concerning its cause, we repeatedly tracked 55 Northern Gannets (Morus bassanus) from a large colony in the North Sea within and across three successive breeding seasons. Gannets foraged in neritic waters, predictably structured by tidal mixing and thermal stratification, but subject to stochastic, wind-induced overturning. Both within and across years, coarse to mesoscale (tens of kilometers) IFSF was significant but not absolute, and foraging birds departed the colony in individually consistent directions. Carbon stable isotope ratios in gannet blood tissues were repeatable within years and nitrogen ratios were also repeatable across years, suggesting long-term individual dietary specialization. Individuals were also consistent across years in habitat use with respect to relative sea surface temperature and in some dive metrics, yet none of these factors accounted for IFSF. Moreover, at the scale of weeks, IFSF did not decay over time and the magnitude of IFSF across years was similar to that within years

  18. Article original Agronomy Foraging behaviour of Apis mellifera ...

    African Journals Online (AJOL)

    Hilaire

    Foraging behaviour of Apis mellifera adansonii and its impact on pollination, fruit and .... temperature is about 25°C. ... area before November 15, sugar baby variety of ... abundance, direct observations of the foraging ..... 4 Cane J.H., 2002.

  19. A properly adjusted forage harvester can save time and money

    Science.gov (United States)

    A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....

  20. Pygidial gland chemistry and potential alarm-recruitment function in column foraging, but not solitary, Nearctic Messor harvesting ants (Hymenoptera: Formicidae: Myrmicinae).

    Science.gov (United States)

    Hölldobler, Bert; Plowes, Nicola J R; Johnson, Robert A; Nishshanka, Upul; Liu, Chongming; Attygalle, Athula B

    2013-09-01

    We investigated the role of the pygidial gland on foraging behavior in two ecologically dominant column foraging Nearctic harvesting ants (Messor pergandei and Messor andrei). Using chemical analyses and behavioral tests, we show that n-tridecane is the major biologically active compound of pygidial gland secretions in both species, and that this chemical functions as a powerful alarm-recruitment pheromone. Another major compound of pygidial gland contents is benzaldehyde; this substance does not release behavioral reactions in M. pergandei workers but might function as a defensive secretion. Six solitary foraging Nearctic Messor and two column foraging Palearctic Messor species, did not have large pygidial gland reservoirs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. 毛乌素沙地固沙植物披针叶黄华主要传粉昆虫及其访花行为%Main pollinators and their foraging behaviors on a sand-fixing legume,Thermopsis ianceolata, in Mu Us Sandland

    Institute of Scientific and Technical Information of China (English)

    胡红岩; 陈欢; 徐环李

    2012-01-01

    披针叶黄华(Thermopsis lanceolata)是我国西部地区早春重要野生蜜源植物,也是一种重要的固沙植物,然而对其繁殖特性的研究甚少.本文在系统调查披针叶黄华的访花昆虫基础上,确定其主要传粉昆虫种类、访花行为、传粉过程以及日活动规律,以期揭示主要访花者行为对其有性繁殖的影响.作者在内蒙古毛乌素沙地设置1个10m×10 m的样方,于2010和2011年在披针叶黄华盛花期,采用目测、拍照和摄像等方式对传粉昆虫进行观测,记录样方内主要访花昆虫种类、数量、访花行为及日活动规律.研究表明,大和切叶蜂(Megachile japonica)和戎拟孔蜂(Hoplitis princeps)是披针叶黄华的主要传粉者,但两种昆虫的访花频率存在显著差异;晴天时,大和切叶蜂在19:00-13:00和16:00-18:00出现两个活动高峰,而戎拟孔蜂只在11:30-16:30出现1个活动高峰,两种蜂的访花活动高峰期存在互补关系.大和切叶蜂访花同时具有盗蜜行为,但其盗蜜行为对披针叶黄华的结籽率没有显著影响.根据种群数量、访花频率综合判断,大和切叶蜂是披针叶黄华优势传粉蜂.%Thermopsis lanceolata is sand-fixing plant that plays an important role as a spring nectar source in northeastern China; however, little is known about its reproductive characteristics. To ascertain the major pollinators of T. lanceolata, we identified foraging behaviors, pollination process, activity rhythm of floral visitors and the effect of nectar robbers on the seed setting were investigated in Mu Us Sandland, Inner Mongolia. We used photo, video and visual measurement to observe floral visitors in a 10 m x 10 m quadrat. We recorded the species, pollinating behaviors and visiting frequency of all pollinators from 06:00 hours until 19:00 hours in sunny days. Based on visitation frequencies and pollen amounts carried on the body, two bee species, Megachile japonica and Hoplitis princeps were

  2. Effect of water level fluctuations on temporal-spatial patterns of foraging activities by the wintering Hooded Crane(Grus monacha)

    Institute of Scientific and Technical Information of China (English)

    Dongmei Zhang; Lizhi Zhou; Yunwei Song

    2015-01-01

    Background:The Yangtze River floodplain provides important wintering habitats for Hooded Cranes(Grus monacha) in China.Fluctuations in the water level change foraging habitat and food availability,affecting their temporal-spatial patterns of foraging activities.It is of considerable importance to investigate the effect of these fluctuations on food availability for wintering Hooded Cranes and their foraging response to these changes.Understanding their behavior patterns is beneficial in protecting the wintering crane population and restoring their wintering habitats.Methods:A field survey of the winter behavior of cranes was carried out at Shengjin Lake from November in 2013 to April in 2014.Habitat variables,as well as the spatial distribution and behavior patterns of wintering cranes at their foraging sites during five stages of water level fluctuation were collected.Based on this data we analyzed the relationship of foraging behavior relative to water level fluctuations and habitat types.Results:The foraging habitats used by Hooded Cranes varied at the different water level stages.As the water level decreased,the use of meadows and mudflats increased.When the water dropped to its lowest level,the use by the Hooded Crane in the mudflats reached a peak.There were statistically significant differences in time budget in the three types of habitats over the five stages of the water level.In the mudflats,the foraging behavior and maintenance behavior varied significantly with the water level,while the alert behavior showed little variation.Analysis of a generalized linear model showed that the five water level stages and three habitat types had a significant effect on foraging behavior,while the combined effect of these two variables was significant on the foraging time budget and the length of foraging activity of the Hooded Crane.Conclusions:With the decrease in the water level,the use of mudflats by Hooded Cranes increased correspondingly.Food availability in

  3. Prey-capture efficiency between juveniles and adults, feeding habitat and abundance of Wattled Jacana foragers in northern Pantanal, Mato Grosso state, Brazil.

    Science.gov (United States)

    Forti, L R; Nóbrega, P F A

    2012-05-01

    The choice of foraging strategies implies an attempt at gaining energy by predators. Supposedly, the difference in employing the "sit and wait" or "active foraging" behavior lays in hunter skills, experience and the kind of prey consumed. With the hypothesis that "active foraging" demands no learning, in this study we compared the prey capture efficiency among Wattled Jacana juveniles and adults, and also present descriptive information about feeding habitat and the abundance variation of foragers throughout the day in the northern Pantanal. Prey capture efficiency did not differ significantly among juveniles and adults, corroborating our initial hypothesis that "active foraging" is an instinctive behavior and demands no experience to be effective. However, future work is necessary to compare the energetic quality of consumed items by juveniles and adults, searching for differences explained by adults' experience. Foraging individuals were found at an average distance of 14 m ranging from 2 to 42 m) from the margin of the sampled swamps, however 64% of the foragers were found closer to the margins. The average depth of foraging sites was 17 cm, ranging from 5 to 40 cm, although no preference for specific classes of depth was found (p > 0,05). Despite the accepted general pattern of birds being more active in the early morning, the largest number of individuals foraging was observed between 11:00 and 12:00 AM, but no significant difference was found in the abundance of foraging individuals among different periods of the day. Factors, which were not analyzed, such as food availability and presence of competitors and predators need to be studied to reveal the main factors of the spatial and temporal distribution of the Wattled Jacana.

  4. Rats value time differently on equivalent foraging and delay-discounting tasks.

    Science.gov (United States)

    Carter, Evan C; Redish, A David

    2016-09-01

    All organisms have to consider consequences that vary through time. Theories explaining how animals handle intertemporal choice include delay-discounting models, in which the value of future rewards is discounted by the delay until receipt, and foraging models, which predict that decision-makers maximize rate of reward. We measured the behavior of rats on a 2-option delay-discounting task and a stay/go foraging task that were equivalent for rate of reward and physical demand. Despite the highly shared features of the tasks, rats were willing to wait much longer on the foraging task than on the delay-discounting task. Moreover, choice performance by rats was less optimal in terms of total reward received on the foraging task compared to the delay-discounting task. We applied a suite of intertemporal choice models to the data but found that we needed a novel model incorporating interactions of decision-making systems to successfully explain behavior. Our findings (a) highlight the importance of factors that historically have been seen as irrelevant and (b) indicate the inadequacy of current general theories of intertemporal choice. (PsycINFO Database Record

  5. Nitrogen transfer between herbivores and their forage species

    NARCIS (Netherlands)

    Sjogersten, Sofie; Kuijper, Dries P. J.; van der Wal, Rene; Loonen, Maarten J. J. E.; Huiskes, Ad H. L.; Woodin, Sarah J.

    2010-01-01

    Herbivores may increase the productivity of forage plants; however, this depends on the return of nutrients from faeces to the forage plants. The aim of this study was to test if nitrogen (N) from faeces is available to forage plants and whether the return of nutrients differs between plant species

  6. Blue Oak Canopy Effect on Seasonal Forage Production and Quality

    Science.gov (United States)

    William E. Frost; Neil K. McDougald; Montague W. Demment

    1991-01-01

    Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...

  7. Scheduling and development support in the Scavenger cyber foraging system

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2010-01-01

    Cyber foraging is a pervasive computing technique where small mobile devices offload resource intensive tasks to stronger computing machinery in the vicinity. One of the main challenges within cyber foraging is that it is very difficult to develop cyber foraging enabled applications. An applicati...

  8. Insect-foraging in captive owl monkeys (Aotus nancymaae).

    Science.gov (United States)

    Wolovich, Christy K; Rivera, Jeanette; Evans, Sian

    2010-08-01

    Whereas the diets of diurnal primate species vary greatly, almost all nocturnal primate species consume insects. Insect-foraging has been described in nocturnal prosimians but has not been investigated in owl monkeys (Aotus spp.). We studied 35 captive owl monkeys (Aotus nancymaae) in order to describe their foraging behavior and to determine if there were any age or sex differences in their ability to capture insect prey. Because owl monkeys cooperate in parental care and in food-sharing, we expected social interactions involving insect prey. We found that owl monkeys most often snatched flying insects from the air and immobilized crawling insects against a substrate using their hands. Immatures and adult female owl monkeys attempted to capture prey significantly more often than did adult males; however, there was no difference in the proportion of attempts that resulted in capture. Social interactions involving prey appeared similar to those with provisioned food, but possessors of prey resisted begging attempts more so than did possessors of other food. Owl monkeys attempted to capture prey often (mean = 9.5 +/- 5.8 attempts/h), and we speculate that the protein and lipid content of captured prey is important for meeting the metabolic demands for growth and reproduction.

  9. Foraging optimally for home ranges

    Science.gov (United States)

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  10. Behaviorism

    National Research Council Canada - National Science Library

    Moore, J

    2011-01-01

    .... Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the observational methods common to all sciences...

  11. Habitat use and foraging patterns of molting male Long-tailed Ducks in lagoons of the central Beaufort Sea, Alaska

    Science.gov (United States)

    Flint, Paul L.; Reed, John; Deborah Lacroix,; Richard Lanctot,

    2016-01-01

    From mid-July through September, 10 000 to 30 000 Long-tailed Ducks (Clangula hyemalis) use the lagoon systems of the central Beaufort Sea for remigial molt. Little is known about their foraging behavior and patterns of habitat use during this flightless period. We used radio transmitters to track male Long-tailed Ducks through the molt period from 2000 to 2002 in three lagoons: one adjacent to industrial oil field development and activity and two in areas without industrial activity. We found that an index to time spent foraging generally increased through the molt period. Foraging, habitat use, and home range size showed similar patterns, but those patterns were highly variable among lagoons and across years. Even with continuous daylight during the study period, birds tended to use offshore areas during the day for feeding and roosted in protected nearshore waters at night. We suspect that variability in behaviors associated with foraging, habitat use, and home range size are likely influenced by availability of invertebrate prey. Proximity to oil field activity did not appear to affect foraging behaviors of molting Long-tailed Ducks.

  12. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences.

    Science.gov (United States)

    Vaudo, Anthony D; Patch, Harland M; Mortensen, David A; Tooker, John F; Grozinger, Christina M

    2016-07-12

    To fuel their activities and rear their offspring, foraging bees must obtain a sufficient quality and quantity of nutritional resources from a diverse plant community. Pollen is the primary source of proteins and lipids for bees, and the concentrations of these nutrients in pollen can vary widely among host-plant species. Therefore we hypothesized that foraging decisions of bumble bees are driven by both the protein and lipid content of pollen. By successively reducing environmental and floral cues, we analyzed pollen-foraging preferences of Bombus impatiens in (i) host-plant species, (ii) pollen isolated from these host-plant species, and (iii) nutritionally modified single-source pollen diets encompassing a range of protein and lipid concentrations. In our semifield experiments, B impatiens foragers exponentially increased their foraging rates of pollen from plant species with high protein:lipid (P:L) ratios; the most preferred plant species had the highest ratio (∼4.6:1). These preferences were confirmed in cage studies where, in pairwise comparisons in the absence of other floral cues, B impatiens workers still preferred pollen with higher P:L ratios. Finally, when presented with nutritionally modified pollen, workers were most attracted to pollen with P:L ratios of 5:1 and 10:1, but increasing the protein or lipid concentration (while leaving ratios intact) reduced attraction. Thus, macronutritional ratios appear to be a primary factor driving bee pollen-foraging behavior and may explain observed patterns of host-plant visitation across the landscape. The nutritional quality of pollen resources should be taken into consideration when designing conservation habitats supporting bee populations.

  13. Thiamethoxam: Assessing flight activity of honeybees foraging on treated oilseed rape using radio frequency identification technology.

    Science.gov (United States)

    Thompson, Helen; Coulson, Mike; Ruddle, Natalie; Wilkins, Selwyn; Harkin, Sarah

    2016-02-01

    The present study was designed to assess homing behavior of bees foraging on winter oilseed rape grown from seed treated with thiamethoxam (as Cruiser OSR), with 1 field drilled with thiamethoxam-treated seed and 2 control fields drilled with fungicide-only-treated seed. Twelve honeybee colonies were used per treatment group, 4 each located at the field edge (on-field site), at approximately 500 m and 1000 m from the field. A total of nearly 300 newly emerged bees per colony were fitted (tagged) with Mic3 radio frequency identification (RFID) transponders and introduced into each of the 36 study hives. The RFID readers fitted to the entrances of the test colonies were used to monitor the activity of the tagged bees for the duration of the 5-wk flowering period of the crop. These activity data were analyzed to assess any impact on flight activity of bees foraging on the treated compared with untreated crops. Honeybees were seen to be actively foraging within all 3 treatment groups during the exposure period. The data for the more than 3000 RFID-tagged bees and more than 90 000 foraging flights monitored throughout the exposure phase for the study follow the same trends across the treatment and controls and at each of the 3 apiary distances, indicating that there were no effects from foraging on the treated crop. Under the experimental conditions, there was no effect of foraging on thiamethoxam-treated oilseed rape on honeybee flight activity or on their ability to return to the hive. © 2015 SETAC.

  14. Phototaxic foraging of the archaepaddler, a hypothetical deep-sea species.

    Science.gov (United States)

    Bertin, R J; van de Grind, W A

    1998-01-01

    An autonomous agent (animat, hypothetical animal), called the (archae) paddler, is simulated in sufficient detail to regard its simulated aquatic locomotion (paddling) as physically possible. The paddler is supposed to be a model of an animal that might exist, although it is perfectly possible to view it as a model of a robot that might be built. The agent is assumed to navigate in a simulated deep-sea environment, where it forages for autoluminescent prey. It uses a biologically inspired phototaxic foraging strategy, while paddling in a layer just above the bottom. The advantage of this living space is that the navigation problem--and hence our model--is essentially two-dimensional. Moreover, the deep-sea environment is physically simple (and hence easy to simulate): no significant currents, constant temperature, completely dark. A foraging performance metric is developed that circumvents the necessity to solve the traveling salesman problem. A parametric simulation study then quantifies the influence of habitat factors, such as the density of prey, and body geometry (e.g., placement, direction and directional selectivity of the eyes) on foraging success. Adequate performance proves to require a specific body geometry adapted to the habitat characteristics. In general, performance degrades gracefully for modest changes of the geometric and habitat parameters, indicating that we work in a stable region of "design space." The parameters have to strike a compromise between, on the one hand, to "see" as many targets at the same time as possible. One important conclusion is that simple reflex-based navigation can be surprisingly efficient. Additionally, performance in a global task (foraging) depends strongly on local parameters such as visual direction tuning, position of the eyes and paddles, and so forth. Behavior and habitat "mold" the body, and the body geometry strongly influences performance. The resulting platform enables further testing of foraging strategies

  15. Assessment of foraging devices as a model for decision-making in nonhuman primate environmental enrichment.

    Science.gov (United States)

    Bennett, Allyson J; Perkins, Chaney M; Harty, Nicole M; Niu, Mengyao; Buelo, Audrey K; Luck, Melissa L; Pierre, Peter J

    2014-09-01

    Continued progress to move evidence-based best practices into community and regulatory animal welfare standards depends in part on developing common metrics to assess cost, benefit, and relative value. Here we describe a model approach to evidence-based evaluation and an example of comprehensive cost-benefit assessment for a common element of environmental enrichment plans for laboratory-housed nonhuman primates. Foraging devices encourage a species-typical activity that dominates the time budget of primates outside captivity and provide inherent cognitive challenges, physical activity demands, and multi-sensory stimulation. However, their implementation is not standard, and is challenged by perception of high costs and labor; nutritional and health concerns; and identification of best practices in implementation (that is, device types, food type, frequency of delivery and rotation). To address these issues, we directly compared monkeys' engagement with different foraging devices and the comprehensive cost of implementing foraging opportunities. We recorded 14 adult male cynomolgus monkeys' interactions with 7 types of devices filled with a range of enrichment foods. All devices elicited foraging behavior, but there were significant differences among them both initially and over subsequent observations. Devices that afforded opportunity for extraction of small food items and that posed manipulative challenge elicited greater manipulation. The cost of providing a foraging opportunity to a single monkey is roughly US$1, with approximately 80% attributable to labor. This study is the first to perform a rigorous cost-benefit analysis and comparison of common foraging devices included in environmental enrichment. Its broader significance lies in its contribution to the development of methods to facilitate improvement in evidence-based practices and common standards to enhance laboratory animal welfare.

  16. Increased Foraging in Outdoor Organic Pig Production-Modeling Environmental Consequences.

    Science.gov (United States)

    Jakobsen, Malene; Preda, Teodora; Kongsted, Anne Grete; Hermansen, John Erik

    2015-11-02

    Consumers' motivations for buying organic products include a wish of acquiring healthy, environmentally friendly products from production systems that also ensure a high level of animal welfare. However, the current Danish organic pig production faces important challenges regarding environmental impact of the system. High ammonia emissions arise from outdoor concrete areas with growing pigs and sows on pasture possess an increased risk of nitrogen (N) leaching. Direct foraging in the range area is suggested as a way to improve the nutrient efficiency at farm level and to support a more natural behavior of the pig. Thus, by modeling, we investigated the environmental consequences of two alternative scenarios with growing pigs foraging in the range area and different levels of crops available for foraging-grass-clover or a combination of Jerusalem artichokes and lucerne. It was possible to have growing pigs on free-range without increasing N leaching compared to the current practice. The alternative system with Jerusalem artichokes and lucerne (high integration of forage) showed the lowest carbon foot print with 3.12 CO₂ eq kg(-1) live weight pig compared to the current Danish pasture based system with 3.69 kg CO₂ eq kg(-1) live weight pig. Due to positive impact on soil carbon sequestration, the second alternative system based on grass-clover (low integration of forage) showed a similar carbon foot print compared to current practice with 3.68 kg CO₂ eq kg(-1) live weight pig. It is concluded that in practice there is room for development of organic farming systems where direct foraging plays a central role.

  17. Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis.

    Directory of Open Access Journals (Sweden)

    Alexander Silvis

    Full Text Available Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.

  18. Cell Wall Diversity in Forage Maize

    NARCIS (Netherlands)

    Torres, A.F.; Noordam-Boot, C.M.M.; Dolstra, Oene; Weijde, van der Tim; Combes, Eliette; Dufour, Philippe; Vlaswinkel, Louis; Visser, R.G.F.; Trindade, L.M.

    2015-01-01

    Genetic studies are ideal platforms for assessing the extent of genetic diversity, inferring the genetic architecture, and evaluating complex trait interrelations for cell wall compositional and bioconversion traits relevant to bioenergy applications. Through the characterization of a forage maiz

  19. Investigating Optimal Foraging Theory in the Laboratory

    Science.gov (United States)

    Harden, Siegfried; Grilliot, Matthew E.

    2014-01-01

    Optimal foraging theory is a principle that is often presented in the community ecology section of biology textbooks, but also can be demonstrated in the laboratory. We introduce a lab activity that uses an interactive strategy to teach high school and/or college students about this ecological concept. The activity is ideal because it engages…

  20. Breeding success of a marine central place forager in the context of climate change: A modeling approach.

    Science.gov (United States)

    Massardier-Galatà, Lauriane; Morinay, Jennifer; Bailleul, Frédéric; Wajnberg, Eric; Guinet, Christophe; Coquillard, Patrick

    2017-01-01

    In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS)), including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella), which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.

  1. Responses of late-lactation cows to forage substitutes in low-forage diets supplemented with by-products

    Science.gov (United States)

    In response to drought-induced shortages of forage and increased corn and soy prices, a study was conducted to evaluate lactation response of dairy cows to lower-forage diets supplemented with forage substitutes and with byproduct feeds entirely substituted for corn grain and soybean feeds. The desi...

  2. Perching but not foraging networks predict the spread of novel foraging skills in starlings.

    Science.gov (United States)

    Boogert, Neeltje J; Nightingale, Glenna F; Hoppitt, William; Laland, Kevin N

    2014-11-01

    The directed social learning hypothesis suggests that information does not spread evenly through animal groups, but rather individual characteristics and patterns of physical proximity guide the social transmission of information along specific pathways. Network-based diffusion analysis (NBDA) allows researchers to test whether information spreads following a social network. However, the explanatory power of different social networks has rarely been compared, and current models do not easily accommodate random effects (e.g. allowing for individuals within groups to correlate in their asocial solving rates). We tested whether the spread of two novel foraging skills through captive starling groups was affected by individual- and group-level random and fixed effects (i.e. sex, age, body condition, dominance rank and demonstrator status) and perching or foraging networks. We extended NBDA to include random effects and conducted model discrimination in a Bayesian context. We found that social learning increased the rate at which birds acquired the novel foraging task solutions by 6.67 times, and acquiring one of the two novel foraging task solutions facilitated the asocial acquisition of the other. Surprisingly, the spread of task solutions followed the perching rather than the foraging social network. Upon acquiring a task solution, foraging performance was facilitated by the presence of group mates. Our results highlight the importance of considering more than one social network when predicting the spread of information through animal groups. This article is part of a Special Issue entitled: Cognition in the wild.

  3. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Sarah H., E-mail: sarahpeterson23@gmail.com [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Peterson, Michael G. [Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (United States); Debier, Cathy [Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve (Belgium); Covaci, Adrian [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dirtu, Alin C. [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi (Romania); Malarvannan, Govindan [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Crocker, Daniel E. [Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 (United States); Schwarz, Lisa K. [Institute of Marine Sciences, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Costa, Daniel P. [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States)

    2015-11-15

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in {sup 13}C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in

  4. Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Luan D. Lima

    2013-12-01

    Full Text Available Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae. Foraging activity may be limited by temperature, humidity, radiation, wind, and other abiotic factors, all of which can affect energy costs during foraging. Ectatomma vizottoi's biology has only recently been studied, and no detailed information is available on its foraging patterns or diet in the field. For this reason, and because foraging activity is an important part of the ecological success of social insects, the present study aimed to investigate E. vizottoi's foraging strategies and dietary habits. First, we determined how abiotic factors constrained E. vizottoi's foraging patterns in the field by monitoring the foraging activity of 16 colonies on eight different days across two seasons. Second, we characterized E. vizottoi's diet by monitoring another set of 26 colonies during peak foraging activity. Our results show that E. vizottoi has foraging strategies that are similar to those of congeneric species. In spite of having a low efficiency index, colonies adopted strategies that allowed them to successfully obtain food resources while avoiding adverse conditions. These strategies included preying on other ant species, a foraging tactic that could arise if a wide variety of food items are not available in the environment or if E. vizottoi simply prefers, regardless of resource availability, to prey on other invertebrates and especially on other ant species.

  5. Foraging and refuge use by a pond snail: Effects of physiological state, predators, and resources

    Science.gov (United States)

    Wojdak, Jeremy M.

    2009-09-01

    The costs and benefits of anti-predator behavioral responses should be functions of the actual risk of predation, the availability of the prey's resources, and the physiological state of the prey. For example, a food-stressed individual risks starvation when hiding from predators, while a well-fed organism can better afford to hide (and pay the cost of not foraging). Similarly, the benefits of resource acquisition are probably highest for the prey in the poorest state, while there may be diminishing returns for prey nearing satiation. Empirical studies of state-dependent behavior are only beginning, however, and few studies have investigated interactions between all three potentially important factors. Here I present the results of a laboratory experiment where I manipulated the physiological state of pond snails ( Physa gyrina), the abundance of algal resources, and predation cues ( Belostoma flumineum waterbugs consuming snails) in a full factorial design to assess their direct effects on snail behavior and indirect effects on algal biomass. On average, snails foraged more when resources were abundant, and when predators were absent. Snails also foraged more when previously exposed to physiological stress. Snails spent more time at the water's surface (a refuging behavior) in the presence of predation cues on average, but predation, resource levels, and prey state had interactive effects on refuge use. There was a consistent positive trait-mediated indirect effect of predators on algal biomass, across all resource levels and prey states.

  6. Scavenger: Transparent Development of Efficient Cyber Foraging Applications

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø

    2010-01-01

    Cyber foraging is a pervasive computing technique where small mobile devices offload resource intensive tasks to stronger computing machinery in the vicinity. This paper presents Scavenger-a new cyber foraging system supporting easy development of mobile cyber foraging applications, while still...... delivering efficient, mobile use of remote computing resources through the use of a custom built mobile code execution environment and a new dual-profiling scheduler. One of the main difficulties within cyber foraging is that it is very challenging for application programmers to develop cyber foraging...... enabled applications. An application using cyber foraging is working with mobile, distributed and, possibly, parallel computing; fields within computer science known to be hard for programmers to grasp. In this paper it is shown by example, how a highly distributed, parallel, cyber foraging enabled...

  7. Summertime blues: August foraging leaves honey bees empty-handed.

    Science.gov (United States)

    Couvillon, Margaret J; Fensome, Katherine A; Quah, Shaun Kl; Schürch, Roger

    2014-01-01

    A successful honey bee forager tells her nestmates the location of good nectar and pollen with the waggle dance, a symbolic language that communicates a distance and direction. Because bees are adept at scouting out profitable forage and are very sensitive to energetic reward, we can use the distance that bees communicate via waggle dances as a proxy for forage availability, where the further the bees fly, the less forage can be found locally. Previously we demonstrated that bees fly furthest in the summer compared with spring or autumn to bring back forage that is not necessarily of better quality. Here we show that August is also the month when significantly more foragers return with empty crops (P = 7.63e-06). This provides additional support that summer may represent a seasonal foraging challenge for honey bees.

  8. Adaptive intertemporal preferences in foraging-style environments

    Directory of Open Access Journals (Sweden)

    Michael T. Bixter

    2013-06-01

    Full Text Available Decision makers often face choices between smaller more immediate rewards and larger more delayed rewards. For example, when foraging for food, animals must choose between actions that have varying costs (e.g., effort, duration, energy expenditure and varying benefits (e.g., amount of food intake. The combination of these costs and benefits determine what optimal behavior is. In the present study, we employ a foraging-style task to study how humans make reward-based choices in response to the real-time constraints of a dynamic environment. On each trial participants were presented with two rewards that differed in magnitude and in the delay until their receipt. Because the experiment was of a fixed duration, maximizing earnings required decision makers to determine how to trade off the magnitude and the delay associated with the two rewards on each trial. To evaluate the extent to which participants could adapt to the decision environment, specific task characteristics were manipulated, including reward magnitudes (Experiment 1 and the delay between trials (Experiment 2. Each of these manipulations was designed to alter the pattern of choices made by an optimal decision maker. Several findings are of note. First, different choice strategies were observed with the manipulated environmental constraints. Second, despite contextually-appropriate shifts in behavior between conditions in each experiment, choice patterns deviated from theoretical optimality. In particular, the delays associated with the rewards did not exert a consistent influence on choices as required by exponential discounting. Third, decision makers nevertheless performed surprisingly well in all task environments with any deviations from strict optimality not having particularly deleterious effects on earnings. Taken together, these results suggest that human decision makers are capable of exhibiting intertemporal preferences that reflect a variety of environmental constraints.

  9. Adaptive intertemporal preferences in foraging-style environments.

    Science.gov (United States)

    Bixter, Michael T; Luhmann, Christian C

    2013-01-01

    Decision makers often face choices between smaller more immediate rewards and larger more delayed rewards. For example, when foraging for food, animals must choose between actions that have varying costs (e.g., effort, duration, energy expenditure) and varying benefits (e.g., amount of food intake). The combination of these costs and benefits determine what optimal behavior is. In the present study, we employ a foraging-style task to study how humans make reward-based choices in response to the real-time constraints of a dynamic environment. On each trial participants were presented with two rewards that differed in magnitude and in the delay until their receipt. Because the experiment was of a fixed duration, maximizing earnings required decision makers to determine how to trade off the magnitude and the delay associated with the two rewards on each trial. To evaluate the extent to which participants could adapt to the decision environment, specific task characteristics were manipulated, including reward magnitudes (Experiment 1) and the delay between trials (Experiment 2). Each of these manipulations was designed to alter the pattern of choices made by an optimal decision maker. Several findings are of note. First, different choice strategies were observed with the manipulated environmental constraints. Second, despite contextually-appropriate shifts in behavior between conditions in each experiment, choice patterns deviated from theoretical optimality. In particular, the delays associated with the rewards did not exert a consistent influence on choices as required by exponential discounting. Third, decision makers nevertheless performed surprisingly well in all task environments with any deviations from strict optimality not having particularly deleterious effects on earnings. Taken together, these results suggest that human decision makers are capable of exhibiting intertemporal preferences that reflect a variety of environmental constraints.

  10. Behaviorism

    Science.gov (United States)

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  11. Behaviorism

    Science.gov (United States)

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  12. Selective Foraging by Pogonomyrmex salinus (Hymenoptera: Formicidae) in Semiarid Grassland: Implications for a Rare Plant.

    Science.gov (United States)

    Schmasow, Matthew S; Robertson, Ian C

    2016-08-01

    Selective foraging by granivores can have important consequences for the structure and composition of plant communities, and potentially severe consequences for rare plant species. To understand how granivore foraging behavior affects common and rare plant species, diet selection should be viewed relative to the availability of alternative seed options, and with consideration of the individual attributes of those seeds (e.g., morphology, nutrient content). We examined the foraging decisions of Owyhee harvester ants, Pogonomyrmex salinus (Olsen), in semiarid grassland dominated by two species of grass, Poa secunda and Bromus tectorum, and two species of mustard, Sisymbrium altissimum and Lepidium papilliferum The latter is a rare plant endemic to southwestern Idaho, and its seeds are readily consumed by P. salinus We examined the diets of P. salinus colonies in June and July over three years and compared these values to the weekly availability of seeds on the ground in a 3-12 -m radius around individual ant colonies. Small-seeded species (P. secunda, S. altissimum, and L. papilliferum) were usually overrepresented in the diet of ants relative to their availability, whereas the large seeds of B. tectorum were largely avoided despite being abundant and nutritious. The reduced travel time associated with carrying small seeds may overshadow differences in nutritional content among seed types, except in times when small seeds are in short supply. Lepidium papilliferum appears particularly vulnerable to seed predation, likely in part because it grows in dense patches that are easily exploited by foragers.

  13. Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as 'dance communication'. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication.

  14. Retrospective analysis of bottlenose dolphin foraging: a legacy of anthropogenic ecosystem disturbance

    Science.gov (United States)

    Rossman, Sam; Barros, Nélio B.; Ostrom, Peggy H.; Stricker, Craig A.; Hohn, Aleta A.; Gandhi, Hasand; Wells, Randall S.

    2013-01-01

    We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.

  15. The hippocampus and exploration: dynamically evolving behavior and neural representations

    Directory of Open Access Journals (Sweden)

    Adam eJohnson

    2012-07-01

    Full Text Available We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation.

  16. The Fremont complex: A behavioral perspective

    Science.gov (United States)

    Madsen, D.B.; Simms, S.R.

    1998-01-01

    The Fremont complex is composed of farmers and foragers who occupied the Colorado Plateau and Great Basin region of western North America from about 2100 to 500 years ago. These people included both immigrants and indigenes who shared some material culture and symbolic attributes, but also varied in ways not captured by definitions of the Fremont as a shared cultural tradition. The complex reflects a mosaic of behaviors including full-time farmers, full-time foragers, part-time farmer/foragers who seasonally switched modes of production, farmers who switched to full-time foraging, and foragers who switched to full-time farming. Farming defines the Fremont, but only in the sense that it altered the matrix in which both farmers and foragers lived, a matrix which provided a variety of behavioral options to people pursuing an array of adaptive strategies. The mix of symbiotic and competitive relationships among farmers and between farmers and foragers presents challenges to detection in the archaeological record. Greater clarity results from use of a behavioral model which recognizes differing contexts of selection favoring one adaptive strategy over another. The Fremont is a case where the transition from foraging to farming is followed by a millennium of adaptive diversity and terminates with the abandonment of farming. As such, it serves as a potential comparison to other cases in the world during the early phases of the food producing transition.

  17. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences

    OpenAIRE

    Vaudo, Anthony D.; Patch, Harland M.; Mortensen, David A.; Tooker, John F; Grozinger, Christina M.

    2016-01-01

    Bees pollinate the majority of flowering plant species, including agricultural crops. The pollen they obtain is their main protein and lipid source that fuels development and reproduction. Bee populations are declining globally, in large part because of landscape-level loss of host-plant species contributing to a nutritional shortage. To mitigate declines, we must understand how the nutritional requirements of bees influence foraging behavior. We demonstrate that bumble bees selectively colle...

  18. Winter forage selection by barren-ground caribou: Effects of fire and snow

    OpenAIRE

    Lisa Saperstein

    1996-01-01

    Both long- and short-term consequences should be considered when examining the effects of fire on the foraging behavior of caribou. Post-fire increases in protein content, digestibility, and availability of E. vaginatum make burned tussock tundra an attractive feeding area for caribou in late winter. These benefits are likely short-lived, however. Lowered availability of lichens and increased relative frequency of bryophytes will persist for a much longer period.

  19. Winter forage selection by barren-ground caribou: Effects of fire and snow

    Directory of Open Access Journals (Sweden)

    Lisa Saperstein

    1996-01-01

    Full Text Available Both long- and short-term consequences should be considered when examining the effects of fire on the foraging behavior of caribou. Post-fire increases in protein content, digestibility, and availability of E. vaginatum make burned tussock tundra an attractive feeding area for caribou in late winter. These benefits are likely short-lived, however. Lowered availability of lichens and increased relative frequency of bryophytes will persist for a much longer period.

  20. Adaptive Levy walks in foraging fallow deer.

    Directory of Open Access Journals (Sweden)

    Stefano Focardi

    Full Text Available BACKGROUND: Lévy flights are random walks, the step lengths of which come from probability distributions with heavy power-law tails, such that clusters of short steps are connected by rare long steps. Lévy walks maximise search efficiency of mobile foragers. Recently, several studies raised some concerns about the reliability of the statistical analysis used in previous analyses. Further, it is unclear whether Lévy walks represent adaptive strategies or emergent properties determined by the interaction between foragers and resource distribution. Thus two fundamental questions still need to be addressed: the presence of Lévy walks in the wild and whether or not they represent a form of adaptive behaviour. METHODOLOGY/PRINCIPAL FINDINGS: We studied 235 paths of solitary and clustered (i.e. foraging in group fallow deer (Dama dama, exploiting the same pasture. We used maximum likelihood estimation for discriminating between a power-tailed distribution and the exponential alternative and rank/frequency plots to discriminate between Lévy walks and composite Brownian walks. We showed that solitary deer perform Lévy searches, while clustered animals did not adopt that strategy. CONCLUSION/SIGNIFICANCE: Our demonstration of the presence of Lévy walks is, at our knowledge, the first available which adopts up-to-date statistical methodologies in a terrestrial mammal. Comparing solitary and clustered deer, we concluded that the Lévy walks of solitary deer represent an adaptation maximising encounter rates with forage resources and not an epiphenomenon induced by a peculiar food distribution.

  1. Utilisation of intensive foraging zones by female Australian fur seals.

    Directory of Open Access Journals (Sweden)

    Andrew J Hoskins

    Full Text Available Within a heterogeneous environment, animals must efficiently locate and utilise foraging patches. One way animals can achieve this is by increasing residency times in areas where foraging success is highest (area-restricted search. For air-breathing diving predators, increased patch residency times can be achieved by altering both surface movements and diving patterns. The current study aimed to spatially identify the areas where female Australian fur seals allocated the most foraging effort, while simultaneously determining the behavioural changes that occur when they increase their foraging intensity. To achieve this, foraging behaviour was successfully recorded with a FastLoc GPS logger and dive behaviour recorder from 29 individual females provisioning pups. Females travelled an average of 118 ± 50 km from their colony during foraging trips that lasted 7.3 ± 3.4 days. Comparison of two methods for calculating foraging intensity (first-passage time and first-passage time modified to include diving behaviour determined that, due to extended surface intervals where individuals did not travel, inclusion of diving behaviour into foraging analyses was important for this species. Foraging intensity 'hot spots' were found to exist in a mosaic of patches within the Bass Basin, primarily to the south-west of the colony. However, the composition of benthic habitat being targeted remains unclear. When increasing their foraging intensity, individuals tended to perform dives around 148 s or greater, with descent/ascent rates of approximately 1.9 m•s-1 or greater and reduced postdive durations. This suggests individuals were maximising their time within the benthic foraging zone. Furthermore, individuals increased tortuosity and decreased travel speeds while at the surface to maximise their time within a foraging location. These results suggest Australian fur seals will modify both surface movements and diving behaviour to maximise their time within a

  2. Utilisation of intensive foraging zones by female Australian fur seals.

    Science.gov (United States)

    Hoskins, Andrew J; Costa, Daniel P; Arnould, John P Y

    2015-01-01

    Within a heterogeneous environment, animals must efficiently locate and utilise foraging patches. One way animals can achieve this is by increasing residency times in areas where foraging success is highest (area-restricted search). For air-breathing diving predators, increased patch residency times can be achieved by altering both surface movements and diving patterns. The current study aimed to spatially identify the areas where female Australian fur seals allocated the most foraging effort, while simultaneously determining the behavioural changes that occur when they increase their foraging intensity. To achieve this, foraging behaviour was successfully recorded with a FastLoc GPS logger and dive behaviour recorder from 29 individual females provisioning pups. Females travelled an average of 118 ± 50 km from their colony during foraging trips that lasted 7.3 ± 3.4 days. Comparison of two methods for calculating foraging intensity (first-passage time and first-passage time modified to include diving behaviour) determined that, due to extended surface intervals where individuals did not travel, inclusion of diving behaviour into foraging analyses was important for this species. Foraging intensity 'hot spots' were found to exist in a mosaic of patches within the Bass Basin, primarily to the south-west of the colony. However, the composition of benthic habitat being targeted remains unclear. When increasing their foraging intensity, individuals tended to perform dives around 148 s or greater, with descent/ascent rates of approximately 1.9 m•s-1 or greater and reduced postdive durations. This suggests individuals were maximising their time within the benthic foraging zone. Furthermore, individuals increased tortuosity and decreased travel speeds while at the surface to maximise their time within a foraging location. These results suggest Australian fur seals will modify both surface movements and diving behaviour to maximise their time within a foraging patch.

  3. Utilisation of Intensive Foraging Zones by Female Australian Fur Seals

    Science.gov (United States)

    Hoskins, Andrew J.; Costa, Daniel P.; Arnould, John P. Y.

    2015-01-01

    Within a heterogeneous environment, animals must efficiently locate and utilise foraging patches. One way animals can achieve this is by increasing residency times in areas where foraging success is highest (area-restricted search). For air-breathing diving predators, increased patch residency times can be achieved by altering both surface movements and diving patterns. The current study aimed to spatially identify the areas where female Australian fur seals allocated the most foraging effort, while simultaneously determining the behavioural changes that occur when they increase their foraging intensity. To achieve this, foraging behaviour was successfully recorded with a FastLoc GPS logger and dive behaviour recorder from 29 individual females provisioning pups. Females travelled an average of 118 ± 50 km from their colony during foraging trips that lasted 7.3 ± 3.4 days. Comparison of two methods for calculating foraging intensity (first-passage time and first-passage time modified to include diving behaviour) determined that, due to extended surface intervals where individuals did not travel, inclusion of diving behaviour into foraging analyses was important for this species. Foraging intensity ‘hot spots’ were found to exist in a mosaic of patches within the Bass Basin, primarily to the south-west of the colony. However, the composition of benthic habitat being targeted remains unclear. When increasing their foraging intensity, individuals tended to perform dives around 148 s or greater, with descent/ascent rates of approximately 1.9 m•s-1 or greater and reduced postdive durations. This suggests individuals were maximising their time within the benthic foraging zone. Furthermore, individuals increased tortuosity and decreased travel speeds while at the surface to maximise their time within a foraging location. These results suggest Australian fur seals will modify both surface movements and diving behaviour to maximise their time within a foraging patch

  4. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments.

    Science.gov (United States)

    Reiskind, Michael H; Janairo, M Shawn

    2015-09-01

    The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models.

  5. Salt preferences of honey bee water foragers.

    Science.gov (United States)

    Lau, Pierre W; Nieh, James C

    2016-03-01

    The importance of dietary salt may explain why bees are often observed collecting brackish water, a habit that may expose them to harmful xenobiotics. However, the individual salt preferences of water-collecting bees were not known. We measured the proboscis extension reflex (PER) response of Apis mellifera water foragers to 0-10% w/w solutions of Na, Mg and K, ions that provide essential nutrients. We also tested phosphate, which can deter foraging. Bees exhibited significant preferences, with the most PER responses for 1.5-3% Na and 1.5% Mg. However, K and phosphate were largely aversive and elicited PER responses only for the lowest concentrations, suggesting a way to deter bees from visiting contaminated water. We then analyzed the salt content of water sources that bees collected in urban and semi-urban environments. Bees collected water with a wide range of salt concentrations, but most collected water sources had relatively low salt concentrations, with the exception of seawater and swimming pools, which had >0.6% Na. The high levels of PER responsiveness elicited by 1.5-3% Na may explain why bees are willing to collect such salty water. Interestingly, bees exhibited high individual variation in salt preferences: individual identity accounted for 32% of variation in PER responses. Salt specialization may therefore occur in water foragers.

  6. BIOACCUMULATION OF HEAVY METALS IN FORAGE GRASSES

    Directory of Open Access Journals (Sweden)

    Adam Łukowski

    2017-02-01

    Full Text Available The aim of this study was estimation of bioaccumulation of heavy metals (Pb, Ni, Cu, Zn, Cd in forage grasses from the area of Podlasie Province based on the bioaccumulation factor. In the soil samples the pH, organic carbon content and CEC were determined. Determination of heavy metals contents in plant and soil material was carried out by flame atomic absorption spectrometry. Soils were characterized mainly by acidic reaction, high cation exchange capacity and organic carbon content. The content of heavy metals in studied forage grasses did not exceed the polish regulations related to plant usage for feeding purposes, except the lead content in seven samples. Coefficients of variation for particular heavy metals content in studied forage grasses were as follows: Pb - 37%, Ni - 63%, Cu - 30%, Zn - 34%, Cd - 48%. The highest bioaccumulation factor was found for nickel and grass from the village Remieńkiń (11.54, while the lowest for cadmium and grass from the village Jemieliste (0.04.

  7. Polydomy enhances foraging performance in ant colonies.

    Science.gov (United States)

    Stroeymeyt, N; Joye, P; Keller, L

    2017-04-26

    Collective foraging confers benefits in terms of reduced predation risk and access to social information, but it heightens local competition when resources are limited. In social insects, resource limitation has been suggested as a possible cause for the typical decrease in per capita productivity observed with increasing colony size, a phenomenon known as Michener's paradox. Polydomy (distribution of a colony's brood and workers across multiple nests) is believed to help circumvent this paradox through its positive effect on foraging efficiency, but there is still little supporting evidence for this hypothesis. Here, we show experimentally that polydomy enhances the foraging performance of food-deprived Temnothorax nylanderi ant colonies via several mechanisms. First, polydomy influences task allocation within colonies, resulting in faster retrieval of protein resources. Second, communication between sister nests reduces search times for far away resources. Third, colonies move queens, brood and workers across available nest sites in response to spatial heterogeneities in protein and carbohydrate resources. This suggests that polydomy represents a flexible mechanism for space occupancy, helping ant colonies adjust to the environment. © 2017 The Author(s).

  8. Underwater turning movement during foraging in Hydromedusa maximiliani (Testudines, Chelidae from southeastern Brazil

    Directory of Open Access Journals (Sweden)

    O Rocha-Barbosa

    Full Text Available A type of locomotor behavior observed in animals with rigid bodies, that can be found in many animals with exoskeletons, shells, or other forms of body armor, to change direction, is the turning behavior. Aquatic floated-turning behavior among rigid bodies animals have been studied in whirligig beetles, boxfish, and more recently in freshwater turtle, Chrysemys picta. In the laboratory we observed a different kind of turning movement that consists in an underwater turning movement during foraging, wherein the animal pivoted its body, using one of the hindlimbs as the fixed-point support in the substratum. We describe, analyze and quantify this movement during foraging in Hydromedusa maximiliani, using observations made in the laboratory. We studied 3 adult specimens (2 males, 1 female and 2 non-sexed juveniles of H. maximiliani. They were kept individually in an aquarium filled with water and small fish. They were filmed, in dorsal view, at 30 frames per second. Sequences were analyzed frame by frame and points were marked on limbs and shell to enable analysis of variation in limb flexion and extension, as well as rotation movements. While foraging, turtles frequently turned their bodies, using one hind leg as the pivot point. This underwater turning movement, in addition to slow movements with the neck stretched, or staying nearly immobile and scanning the surroundings with lateral movements of the neck (in arcs up to 180°, and fast attacks of neck, may increase prey capture rates.

  9. Of hummingbirds and helicopters: hovering costs, competitive ability, and foraging strategies.

    Science.gov (United States)

    Altshuler, Douglas L

    2004-01-01

    Wing morphology and flight kinematics profoundly influence foraging costs and the overall behavioral ecology of hummingbirds. By analogy with helicopters, previous energetic studies have applied the momentum theory of aircraft propellers to estimate hovering costs from wing disc loading (WDL), a parameter incorporating wingspan (or length) and body mass. Variation in WDL has been used to elucidate differences either among hummingbird species in nectar-foraging strategies (e.g., territoriality, traplining) and dominance relations or among gender-age categories within species. We first demonstrate that WDL, as typically calculated, is an unreliable predictor of hovering (induced power) costs; predictive power is increased when calculations use wing length instead of wingspan and when actual wing stroke amplitudes are incorporated. We next evaluate the hypotheses that foraging strategy and competitive ability are functions of WDL, using our data in combination with those of published sources. Variation in hummingbird behavior cannot be easily classified using WDL and instead is correlated with a diversity of morphological and physiological traits. Evaluating selection pressures on hummingbird wings will require moving beyond wing and body mass measurements to include the assessment of the aerodynamic forces, power requirements, and power reserves of hovering, forward flight, and maneuvering. However, the WDL-helicopter dynamics model has been instrumental in calling attention to the importance of comparative wing morphology and related aerodynamics for understanding the behavioral ecology of hummingbirds.

  10. ABEJAS VISITANTES DE Aspilia tenella (KUNTH S. F. BLAKE (ASTERACEAE: COMPORTAMIENTO DE FORRAJEO Y CARGAS POLÍNICAS BEES VISITING Aspilia tenella (KUNTH S .F. BLAKE (ASTERACEAE: FORAGING BEHAVIOR AND POLLEN LOADS

    Directory of Open Access Journals (Sweden)

    Clara Isabel Aguilar Sierra

    2008-12-01

    Full Text Available En cuatro localidades de la zona de influencia del embalse Porce II (Antioquia, Colombia, se observó el comportamiento de 23 taxones de abejas durante sus visitas a Aspilia tenella (Kunth S. F. Blake; se registró el número de individuos y el tiempo total de visita y se midieron la temperatura y la humedad relativa. Los análisis de varianza indican que hubo una relación estadísticamente significativa en cuanto a los atributos considerados para las especies de abejas y una covariación significativa con las variables ambientales. Las pruebas de rangos múltiples muestran que Trigona nigerrima es la especie con los mayores valores promedio para el número de individuos y el tiempo de visita. En el estudio de las cargas polínicas se encontraron 30 tipos polínicos, dentro de los cuales A. tenella presentó el mayor porcentaje; Piper aduncum, Miconia minuti flora, Psidium guajava, Rapanea sp., Mimosa pudica y Psychotria sp., en su orden, son otras fuentes de polen importantes para varias de las especies de abejas. El análisis de agrupamiento para las abejas capturadas permitió diferenciar dos grupos: el primero incluye a 18 especies cuyas cargas polínicas que poseían una abundancia relativa de granos de polen de A. tenella por encima de 77%; el segundo grupo estaba conformado por cinco especies de abejas que recolectaron porcentajes mayores de otros tipos polínicos: Exomalopsis sp. 1 (90,4% de M. minuti flora; Lasioglossum sp. 1 y Coelioxys aff. mexicana (77,4% y 64,1% de P. aduncum, respectivamente; Exomalopsis sp. 2 (67,1% de P. guajava y Auglochloropsis vesta (55,5% de Rapanea sp.. Trigona fulviventris y Apis mellifera presentaron los valores más altos de riqueza de tipos polínicos en las cargas de polen; ello evidencia sus nichos tróficos amplios y su comportamiento generalista de visita.We observed the behavior of 23 species of wild bees visiting Aspilia tenella (Kunth S .F. Blake in four different localities of the Porce II dam

  11. Potential for using visual, auditory, and olfactory cues to manage foraging behaviour and spatial distribution of rangeland livestock

    Science.gov (United States)

    This paper reviews the literature and reports on the current state of knowledge regarding the potential for managers to use visual (VC), auditory (AC), and olfactory (OC) cues to manage foraging behavior and spatial distribution of rangeland livestock. We present evidence that free-ranging livestock...

  12. Consórcio sorgo-soja. V. Comportamento de híbridos de sorgo e cultivares de soja consorciados na entrelinha no rendimento de forragem Sorghum and soybean intercropping. V. Behavior of hybrids of sorghum and cultivars soybean intercropped between rows forage yield

    Directory of Open Access Journals (Sweden)

    Pedro Milanez de Rezende

    2001-06-01

    Full Text Available Com o objetivo de verificar o comportamento de cultivares de sorgo e soja em cultivo consorciado e o sorgo em monocultivo na produção de forragens, foi conduzido, no ano agrícola 1996/97, um ensaio no Departamento de Agricultura no Campus da Universidade Federal de Lavras, em Lavras, MG, em um Latossolo Roxo Distrófico. O delineamento experimental utilizado foi o de blocos casualizados em esquema fatorial 4x4+4 com três repetições, sendo constituído por quatro híbridos de sorgo forrageiro (AG 2002, AG 2006, BR 601 e CMSXS 756, quatro cultivares de soja (CAC-1, Doko RC, UFV-16 e UFV-17 e quatro tratamentos adicionais, correspondentes aos respectivos monocultivos de sorgo. Foi realizado apenas um corte, rente ao solo, no consórcio no estádio R5 (início da formação das sementes da cultura da soja e no monocultivo de sorgo, no estádio de grãos farináceos. Os resultados obtidos evidenciaram que a combinação da cultivar UFV-16 com os híbridos AG 2002 e AG 2006 proporcionou os maiores rendimentos de massa verde, matéria seca e proteína bruta total. No consórcio e em monocultivo, o híbrido AG 2002 foi o que mais se destacou para a produção de massa verde e matéria seca. Em geral, o sistema consorciado proporcionou, em relação ao monocultivo, os maiores rendimentos de massa verde, matéria seca e proteína bruta total.With the purpose of evaluating the behavior of sorghum and soybean cultivars in intercropping for forage production and sorghum in monoculture, a trial was conducted in the agricultural year of 1996/1997 at the Department of Agriculture of the Universidade Federal de Lavras- MG, on a distrophic red dusky latosol. The experimental design was that of randomized blocks in a 4 x 4 + 4 factorial scheme, with three replications, being made up of four hybrids of forage sorghum (AG-2002, AG-2006, BR-601 and CMSXS-756, four soybean cultivars (CAC-1, Doko RC, UFV-16 and UFV-17 and four additional treatment corresponding

  13. Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates

    Science.gov (United States)

    Hiramatsu, Chihiro; Melin, Amanda D.; Aureli, Filippo; Schaffner, Colleen M.; Vorobyev, Misha; Matsumoto, Yoshifumi; Kawamura, Shoji

    2008-01-01

    Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations. PMID:18836576

  14. Hydrocarbons emitted by waggle-dancing honey bees increase forager recruitment by stimulating dancing.

    Science.gov (United States)

    Gilley, David C

    2014-01-01

    Hydrocarbons emitted by waggle-dancing honey bees are known to reactivate experienced foragers to visit known food sources. This study investigates whether these hydrocarbons also increase waggle-dance recruitment by observing recruitment and dancing behavior when the dance compounds are introduced into the hive. If the hydrocarbons emitted by waggle-dancing bees affect the recruitment of foragers to a food source, then the number of recruits arriving at a food source should be greater after introduction of dance compounds versus a pure-solvent control. This prediction was supported by the results of experiments in which recruits were captured at a feeder following introduction of dance-compounds into a hive. This study also tested two nonexclusive behavioral mechanism(s) by which the compounds might stimulate recruitment; 1) increased recruitment could occur by means of increasing the recruitment effectiveness of each dance and/or 2) increased recruitment could occur by increasing the intensity of waggle-dancing. These hypotheses were tested by examining video records of the dancing and recruitment behavior of individually marked bees following dance-compound introduction. Comparisons of numbers of dance followers and numbers of recruits per dance and waggle run showed no significant differences between dance-compound and solvent-control introduction, thus providing no support for the first hypothesis. Comparison of the number of waggle-dance bouts and the number of waggle runs revealed significantly more dancing during morning dance-compound introduction than morning solvent-control introduction, supporting the second hypothesis. These results suggest that the waggle-dance hydrocarbons play an important role in honey bee foraging recruitment by stimulating foragers to perform waggle dances following periods of inactivity.

  15. Thermodynamic properties of water desorption of forage turnip seeds

    OpenAIRE

    Kelly Aparecida Sousa; Osvaldo Resende; André Luis Duarte Goneli; Thaís Adriana de Souza Smaniotto; Daniel Emanuel Cabral de Oliveira

    2014-01-01

    The purpose of this study was to determine the thermodynamic properties of the process of water sorption in forage turnip  seeds. The equilibrium moisture content of forage turnip  seeds was determined by the gravimetric-dynamic method for different values of temperature and water activity. According to the results, increasing the moisture content increases the energy required for the evaporation of water in forage turnip seeds, and the values of integral isosteric heat of desorption, within ...

  16. Thermodynamic properties of water desorption of forage turnip seeds

    OpenAIRE

    Sousa,Kelly Aparecida de; Resende,Osvaldo; Goneli, André Luis Duarte; Smaniotto,Thaís Adriana de Souza; Oliveira,Daniel Emanuel Cabral de

    2015-01-01

    The purpose of this study was to determine the thermodynamic properties of the process of water sorption in forage turnip seeds. The equilibrium moisture content of forage turnip seeds was determined by the gravimetric-dynamic method for different values of temperature and water activity. According to the results, increasing the moisture content increases the energy required for the evaporation of water in forage turnip seeds, and the values of integral isosteric heat of desorption, within th...

  17. Information Foraging Theory: A Framework for Intelligence Analysis

    Science.gov (United States)

    2014-11-01

    Applying information foraging theory to ntelligence analysis This section lays out a plan for the application of IFT to the military...psychologist, 53(5), 533. [24] Wells, V. K. (2012). Foraging: An ecology model of consumer behaviour ? Marketing Theory , 12,117-136. [25] Mantovani, G. (2001...discrete information sources, and the use of semantic cues to enhance the search process. A plan for the application of Information Foraging Theory to the

  18. Interactions between shoal size and conformity in guppy social foraging

    OpenAIRE

    Day, R.L.; MacDonald, T; Brown, C.; Laland, K.N.; Reader, S.M.

    2001-01-01

    Previous experimental studies have established that shoaling fish forage more effectively in large than small groups. We investigated how shoal size affects the foraging efficiency of laboratory populations of the guppy, Poecilia reticulata, exposed to different foraging tasks. Experiment 1 confirmed the prediction that in open water the first fish and focal fish of larger shoals locate food faster than in smaller shoals. However, a second experiment, in which shoals of fish were required to ...

  19. How past and present influence the foraging of clonal plants?

    Science.gov (United States)

    Louâpre, Philipe; Bittebière, Anne-Kristel; Clément, Bernard; Pierre, Jean-Sébastien; Mony, Cendrine

    2012-01-01

    Clonal plants spreading horizontally and forming a network structure of ramets exhibit complex growth patterns to maximize resource uptake from the environment. They respond to spatial heterogeneity by changing their internode length or branching frequency. Ramets definitively root in the soil but stay interconnected for a varying period of time thus allowing an exchange of spatial and temporal information. We quantified the foraging response of clonal plants depending on the local soil quality sampled by the rooting ramet (i.e. the present information) and the resource variability sampled by the older ramets (i.e. the past information). We demonstrated that two related species, Potentilla reptans and P. anserina, responded similarly to the local quality of their environment by decreasing their internode length in response to nutrient-rich soil. Only P. reptans responded to resource variability by decreasing its internode length. In both species, the experience acquired by older ramets influenced the plastic response of new rooted ramets: the internode length between ramets depended not only on the soil quality locally sampled but also on the soil quality previously sampled by older ramets. We quantified the effect of the information perceived at different time and space on the foraging behavior of clonal plants by showing a non-linear response of the ramet rooting in the soil of a given quality. These data suggest that the decision to grow a stolon or to root a ramet at a given distance from the older ramet results from the integration of the past and present information about the richness and the variability of the environment.

  20. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  1. Foraging arena size and structural complexity affect the dynamics of food distribution in ant colonies.

    Science.gov (United States)

    Buczkowski, Grzegorz; VanWeelden, Matthew

    2010-12-01

    Food acquisition by ant colonies is a complex process that starts with acquiring food at the source (i.e., foraging) and culminates with food exchange in or around the nest (i.e., feeding). While ant foraging behavior is relatively well understood, the process of food distribution has received little attention, largely because of the lack of methodology that allows for accurate monitoring of food flow. In this study, we used the odorous house ant, Tapinoma sessile (Say) to investigate the effect of foraging arena size and structural complexity on the rate and the extent of spread of liquid carbohydrate food (sucrose solution) throughout a colony. To track the movement of food, we used protein marking and double-antibody sandwich enzyme-linked immunosorbent assay, DAS-ELISA. Variation in arena size, in conjunction with different colony sizes, allowed us to test the effect of different worker densities on food distribution. Results demonstrate that both arena size and colony size have a significant effect on the spread of the food and the number of workers receiving food decreased as arena size and colony size increased. When colony size was kept constant and arena size increased, the percentage of workers testing positive for the marker decreased, most likely because of fewer trophallactic interactions resulting from lower worker density. When arena size was kept constant and colony size increased, the percentage of workers testing positive decreased. Nonrandom (clustered) worker dispersion and a limited supply of food may have contributed to this result. Overall, results suggest that food distribution is more complete is smaller colonies regardless of the size of the foraging arena and that colony size, rather than worker density, is the primary factor affecting food distribution. The structural complexity of foraging arenas ranged from simple, two-dimensional space (empty arenas) to complex, three-dimensional space (arenas filled with mulch). The structural

  2. Delineation of the southern elephant seal's main foraging environments defined by temperature and light conditions

    Science.gov (United States)

    Vacquié-Garcia, Jade; Guinet, Christophe; Laurent, Cécile; Bailleul, Frédéric

    2015-03-01

    Changes in marine environments, induced by the global warming, are likely to influence the prey field distribution and consequently the foraging behaviour and the distribution of top marine predators. Thanks to bio-logging, the simultaneous measurements of fine-scale foraging behaviors and oceanographic parameters by predators allow characterizing their foraging environments and provide insights into their prey distribution. In this context, we propose to delimit and to characterize the foraging environments of a marine predator, the Southern Elephant Seal (SES). To do so, the relationship between oceanographic factors and prey encounter events (PEE) was investigated in 12 females SES from Kerguelen Island simultaneously equipped with accelerometers and with a range of physical sensors (temperature, light and depth). PEEs were assessed from the accelerometer data at high spatio-temporal precision while the physical sensors allowed the continuous monitoring of environmental conditions encountered by the SES when diving. First, visited and foraging environments were distinguished according to the oceanographic conditions encountered in the absence and in presence of PEE. Then, a hierarchical classification of the physical parameters recorded during PEEs led to the distinction of five different foraging environments. These foraging environments were structured according to the main frontal systems of the SO. One was located north to the subantarctic front (SAF) and characterized by high temperature and depth, and low light levels. Another, characterized by intermediate levels of temperature, light and depth, was located between the SAF and the polar front (PF). And finally, the last three environments were all found south to the PF and, characterized by low temperature but highly variable depth and light levels. The large physical and/or spatial differences found between these environments suggest that, depending on the location, different prey communities are

  3. Ecology and caudal skeletal morphology in birds: the convergent evolution of pygostyle shape in underwater foraging taxa.

    Science.gov (United States)

    Felice, Ryan N; O'Connor, Patrick M

    2014-01-01

    Birds exhibit a specialized tail that serves as an integral part of the flight apparatus, supplementing the role of the wings in facilitating high performance aerial locomotion. The evolution of this function for the tail contributed to the diversification of birds by allowing them to utilize a wider range of flight behaviors and thus exploit a greater range of ecological niches. The shape of the wings and the tail feathers influence the aerodynamic properties of a bird. Accordingly, taxa that habitually utilize different flight behaviors are characterized by different flight apparatus morphologies. This study explores whether differences in flight behavior are also associated with variation in caudal vertebra and pygostyle morphology. Details of the tail skeleton were characterized in 51 Aequornithes and Charadriiformes species. Free caudal vertebral morphology was measured using linear metrics. Variation in pygostyle morphology was characterized using Elliptical Fourier Analysis, a geometric morphometric method for the analysis of outline shapes. Each taxon was categorized based on flight style (flap, flap-glide, dynamic soar, etc.) and foraging style (aerial, terrestrial, plunge dive, etc.). Phylogenetic MANOVAs and Flexible Discriminant Analyses were used to test whether caudal skeletal morphology can be used to predict flight behavior. Foraging style groups differ significantly in pygostyle shape, and pygostyle shape predicts foraging style with less than 4% misclassification error. Four distinct lineages of underwater foraging birds exhibit an elongate, straight pygostyle, whereas aerial and terrestrial birds are characterized by a short, dorsally deflected pygostyle. Convergent evolution of a common pygostyle phenotype in diving birds suggests that this morphology is related to the mechanical demands of using the tail as a rudder during underwater foraging. Thus, distinct locomotor behaviors influence not only feather attributes but also the underlying

  4. Ecology and caudal skeletal morphology in birds: the convergent evolution of pygostyle shape in underwater foraging taxa.

    Directory of Open Access Journals (Sweden)

    Ryan N Felice

    Full Text Available Birds exhibit a specialized tail that serves as an integral part of the flight apparatus, supplementing the role of the wings in facilitating high performance aerial locomotion. The evolution of this function for the tail contributed to the diversification of birds by allowing them to utilize a wider range of flight behaviors and thus exploit a greater range of ecological niches. The shape of the wings and the tail feathers influence the aerodynamic properties of a bird. Accordingly, taxa that habitually utilize different flight behaviors are characterized by different flight apparatus morphologies. This study explores whether differences in flight behavior are also associated with variation in caudal vertebra and pygostyle morphology. Details of the tail skeleton were characterized in 51 Aequornithes and Charadriiformes species. Free caudal vertebral morphology was measured using linear metrics. Variation in pygostyle morphology was characterized using Elliptical Fourier Analysis, a geometric morphometric method for the analysis of outline shapes. Each taxon was categorized based on flight style (flap, flap-glide, dynamic soar, etc. and foraging style (aerial, terrestrial, plunge dive, etc.. Phylogenetic MANOVAs and Flexible Discriminant Analyses were used to test whether caudal skeletal morphology can be used to predict flight behavior. Foraging style groups differ significantly in pygostyle shape, and pygostyle shape predicts foraging style with less than 4% misclassification error. Four distinct lineages of underwater foraging birds exhibit an elongate, straight pygostyle, whereas aerial and terrestrial birds are characterized by a short, dorsally deflected pygostyle. Convergent evolution of a common pygostyle phenotype in diving birds suggests that this morphology is related to the mechanical demands of using the tail as a rudder during underwater foraging. Thus, distinct locomotor behaviors influence not only feather attributes but also

  5. Spatio-Temporal Behavior Analysis and Pheromone-Based Fusion Model for Big Trace Data

    National Research Council Canada - National Science Library

    Luliang Tang; Qianqian Zou; Xia Zhang; Chang Ren; Qingquan Li

    2017-01-01

    ..., and overlooking the influence of previous activities on future behaviors. We propose a Pheromone-based Fusion Model, viewing human behaviors as similar to insect foraging behaviors to model spatio-temporal recreational activity patterns, on and offline...

  6. Habitat-specific foraging strategies in Australasian gannets

    Directory of Open Access Journals (Sweden)

    Melanie R. Wells

    2016-07-01

    Full Text Available Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26, in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change.

  7. Application of genomics to forage crop breeding for quality traits

    DEFF Research Database (Denmark)

    Lübberstedt, Thomas

    2007-01-01

    Forage quality depends on the digestibility of fodder, and can be directly measured by the intake and metabolic conversion in animal trials. However, animal trials are time-consuming, laborious, and thus expensive. It is not possible to study thousands of plant genotypes, as required in breeding...... studied in detail and sequence motifs with likely effect on forage quality have been identified by association studies. Moreover, transgenic approaches substantiated the effect of several of these genes on forage quality. Perspectives and limitations of these findings for forage crop breeding...

  8. Adaptive collective foraging in groups with conflicting nutritional needs

    Science.gov (United States)

    Senior, Alistair M.; Lihoreau, Mathieu; Charleston, Michael A.; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms. PMID:27152206

  9. Adaptive collective foraging in groups with conflicting nutritional needs.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Charleston, Michael A; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-04-01

    Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms.

  10. Habitat-specific foraging strategies in Australasian gannets.

    Science.gov (United States)

    Wells, Melanie R; Angel, Lauren P; Arnould, John P Y

    2016-07-15

    Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator) typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26), in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change.

  11. Identification and characterisation of foraging areas of seabirds in upwelling systems: biological and hydrographic implications for foraging at sea

    OpenAIRE

    Ludynia, Katrin

    2007-01-01

    This thesis investigates the foraging behaviour of three seabird species, the African penguin (Spheniscus demersus) and the Cape gannet (Morus capensis) in the Benguela upwelling system as well as the Peruvian booby (Sula variegata) in the Humboldt Current. Biological and hydrographic parameters were considered when evaluating the characteristics of foraging areas and the behaviour of the species studied. Foraging areas used by the birds as well as the birds' diving behaviour were assessed by...

  12. Foraging modality and plasticity in foraging traits determine the strength of competitive interactions among carnivorous plants, spiders and toads.

    Science.gov (United States)

    Jennings, David E; Krupa, James J; Rohr, Jason R

    2016-07-01

    Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  13. Modification of feeding circuits in the evolution of social behavior.

    Science.gov (United States)

    Fischer, Eva K; O'Connell, Lauren A

    2017-01-01

    Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification.

  14. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    Directory of Open Access Journals (Sweden)

    Mekala Sundaram

    Full Text Available The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae to eastern gray squirrels (Sciurus carolinensis, and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%, and combined effects of seed traits and phylogeny of hardwood trees (5-55%. A phylogenetic PCA (pPCA on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is

  15. Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins

    Science.gov (United States)

    Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.

    2016-02-01

    Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.

  16. Forage Polyphenol Oxidase and Ruminant Livestock Nutrition

    Directory of Open Access Journals (Sweden)

    Michael Richard F. Lee

    2014-12-01

    Full Text Available Polyphenol oxidase (PPO is associated with the detrimental effect of browning fruit and vegetables, however interest within PPO containing forage crops has grown since the brownng reaction was associated with reduced nitrogen (N losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage increased the quality of protein, improving N-use efficiency (NUE when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalysing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP. If the protein is an enzyme the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase un-degraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of red clover.

  17. Forager Polymorphism and Foraging Ecology in the Leaf-Cutting Ant, Atta colombica

    Directory of Open Access Journals (Sweden)

    James K. Wetterer

    1995-01-01

    workers are smaller and do not appear to be so specialized as soldiers as are A. cephalotes maxima workers. The broader size-range of workers participating in foraging appears to allow A. colombica to exploit a wider range of resources than A. cephalotes, including tougher, denser vegetation and fallen fruits.

  18. "Hummingbird" floral traits interact synergistically to discourage visitation by bumble bee foragers.

    Science.gov (United States)

    Gegear, Robert J; Burns, Rebecca; Swoboda-Bhattarai, Katharine A

    2017-02-01

    Pollination syndromes are suites of floral traits presumed to reflect adaptations to attract and utilize a "primary" type of animal pollinator. However, syndrome traits may also function to deter "secondary" flower visitors that reduce plant fitness through their foraging activities. Here we use the hummingbird-pollinated plant species Mimulus cardinalis as a model to investigate the potential deterrent effects of classic bird syndrome traits on bumble bee foragers. To establish that M. cardinalis flowers elicit an avoidance response in bees, we assessed the choice behavior of individual foragers on a mixed experimental array of M. cardinalis and its bee-pollinated sister species M. lewisii. As expected, bees showed a strong preference against M. cardinalis flowers (only 22% of total bee visits were to M. cardinalis), but surprisingly also showed a high degree of individual specialization (95.2% of total plant transitions were between conspecifics). To determine M. cardinalis floral traits that discourage bee visitation, we then assessed foraging responses of individuals to M. cardinalis-like and M. lewisii-like floral models differing in color, orientation, reward, and combinations thereof. Across experiments, M. cardinalis-like trait combinations consistently produced a higher degree of flower avoidance behavior and individual specialization than expected based on bee responses to each trait in isolation. We then conducted a series of flower discrimination experiments to assess the ability of bees to utilize traits and trait combinations associated with each species. Relative to M. lewisii-like alternatives, M. cardinalis-like traits alone had a minimal effect on bee foraging proficiency but together increased the time bees spent searching for rewarding flowers from 1.49 to 2.65 s per visit. Collectively, our results show that M. cardinalis flowers impose foraging costs on bumble bees sufficient to discourage visitation and remarkably, generate such

  19. Fatty acid composition of forage herb species

    DEFF Research Database (Denmark)

    Warner, D.; Jensen, Søren Krogh; Cone, J.W.

    2010-01-01

    The use of alternative forage species in grasslands for intensive livestock production is receiving renewed attention. Data on fatty acid composition of herbs are scarce, so four herbs (Plantago lanceolata, Achillea millefolium, Cichorium intybus, Pastinaca sativa) and one grass species (timothy......, Phleum pratense) were sown in a cutting trial. The chemical composition and concentration of fatty acids (FA) of individual species were determined during the growing season. Concentrations of crude protein and FA were generally higher in the herbs than in timothy. C. intybus had the highest nutritive...

  20. Forage polyphenol oxidase and ruminant livestock nutrition.

    Science.gov (United States)

    Lee, Michael R F

    2014-01-01

    Polyphenol oxidase (PPO) is predominately associated with the detrimental effect of browning fruit and vegetables, however, interest within PPO containing forage crops (crops to be fed to animals) has grown since the browning reaction was associated with reduced nitrogen (N) losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage) increased the quality of protein, improving N-use efficiency [feed N into product N (e.g., Milk): NUE] when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis (cleaving of glycerol-based lipid) in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA) in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalyzing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP). If the protein is an enzyme (e.g., protease or lipase) the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase undegraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated

  1. 75 FR 68321 - Forage Genetics International; Supplemental Request for Partial Deregulation of Roundup Ready...

    Science.gov (United States)

    2010-11-05

    ... Animal and Plant Health Inspection Service Forage Genetics International; Supplemental Request for... ``partial deregulation'' from Forage Genetics International for the planting, harvesting, and movement... submitted to the Agency from Forage Genetics International requesting a ``partial deregulation.'' ADDRESSES...

  2. How a simple adaptive foraging strategy can lead to emergent home ranges and increased food intake

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Teilmann, Jonas; Tougaard, Jakob

    2013-01-01

    the optimal balance between alternative movement strategies is therefore selectively advantageous. Recent theory suggests that animals are capable of switching movement mode depend- ing on heterogeneities in the landscape, and that different modes may predominate at different temporal scales. Here we develop...... a conceptual model that enables animals to use either an area-concentrated food search behavior or undirected random movements. The model builds on the animals’ ability to remember the profitability and location of previously visited areas. In contrast to classical optimal foraging models, our model does...... not assume food to be distributed in large, well-defined patches, and our focus is on animal movement rather than on how animals choose between foraging patches with known locations and value. After parameterizing the fine-scale movements to resemble those of the harbor porpoise Phocoena phocoena we...

  3. Wolf, Canis lupus, visits to white-tailed deer, Odocoileus virginianus, summer ranges: Optimal foraging?

    Science.gov (United States)

    Demma, D.J.; Mech, L.D.

    2009-01-01

    We tested whether Wolf (Canis lupus) visits to individual female White-tailed Deer (Odocoileus virginianus) summer ranges during 2003 and 2004 in northeastern Minnesota were in accord with optimal-foraging theory. Using GPS collars with 10- to 30-minute location attempts on four Wolves and five female deer, plus eleven VHF-collared female deer in the Wolves' territory, provided new insights into the frequency of Wolf visits to summer ranges of female deer. Wolves made a mean 0.055 visits/day to summer ranges of deer three years and older, significantly more than their 0.032 mean visits/day to ranges of two-year-old deer, which generally produce fewer fawns, and most Wolf visits to ranges of older deer were much longer than those to ranges of younger deer. Because fawns comprise the major part of the Wolf's summer diet, this Wolf behavior accords with optimal-foraging theory.

  4. Multi-machine power system stabilizer design by rule based bacteria foraging

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.; Tripathy, M.; Nanda, J. [Department of Electrical Engineering, Indian Institute of Technology, Delhi (India)

    2007-10-15

    Several power system stabilizers (PSS) connected in number of machines in a multi-machine power systems, pose the problem of appropriate tuning of their parameters so that overall system dynamic stability can be improved in a robust way. Based on the foraging behavior of Escherichia coli bacteria in human intestine, this paper attempts to optimize simultaneously three constants each of several PSS present in a multi-machine power system. The tuning is done taking an objective function that incorporates a multi-operative condition, consisting of nominal and various changed conditions, into it. The convergence with the proposed rule based bacteria foraging (RBBF) optimization technique is superior to the conventional and genetic algorithm (GA) techniques. Robustness of tuning with the proposed method was verified, with transient stability analysis of the system by time domain simulations subjecting the power system to different types of disturbances. (author)

  5. Urban gardens promote bee foraging over natural habitats and plantations.

    Science.gov (United States)

    Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A; Klein, Alexandra-Maria; Leonhardt, Sara D

    2016-03-01

    Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.

  6. Forage mass and the nutritive value of pastures mixed with forage peanut and red clover

    Directory of Open Access Journals (Sweden)

    Ricardo Lima de Azevedo Junior

    2012-04-01

    Full Text Available The objective of this research was to estimate three pasture-based systems mixed with elephantgrass + spontaneous growth species, annual ryegrass, for pasture-based system 1; elephantgrass + spontaneous growth species + forage peanut, for pasture-based system 2; and elephantgrass + spontaneous growth species + annual ryegrass + red clover, for pasture-based system 3. Elephantgrass was planted in rows 4 m apart from each other. During the cool-season, annual ryegrass was sown in the alleys between the rows of elephantgrass; forage peanut and red clover were sown in the alleys between the elephantgrass according to the respective treatment. The experimental design was totally randomized in the three treatments (pasture-based systems, two replicates (paddocks in completely split-plot time (grazing cycles. Holstein cows receiving 5.5 kg-daily complementary concentrate feed were used in the evaluation. Pre-grazing forage mass, botanical composition and stocking rate were evaluated. Samples of simulated grazing were collected to analyze organic matter (OM, neutral detergent fiber (NDF, crude protein (CP and organic matter in situ digestibility (OMISD. Nine grazing cycles were performed during the experimental period (341 days. The average dry matter values for pre-grazing and stocking rate were 3.34; 3.46; 3.79 t/ha, and 3.28; 3.34; 3.60 AU/ha for each respective pasture-based system. Similar results were observed between the pasture-based systems for OM, NDF, CP and OMISD. Considering forage mass, stocking rate and nutritive value, the pasture-based system intercropped with forage legumes presented better performance.

  7. Dissociation of the neural substrates of foraging effort and its social facilitation in the domestic chick.

    Science.gov (United States)

    Ogura, Yukiko; Izumi, Takeshi; Yoshioka, Mitsuhiro; Matsushima, Toshiya

    2015-11-01

    The frequency or intensity of behavior is often facilitated by the presence of others. This social facilitation has been reported in a variety of animals, including birds and humans. Based on Zajonc's "drive theory," we hypothesized that facilitation and drive have shared neural mechanisms, and that dopaminergic projections from the midbrain to striatum are involved. As the ascending dopaminergic projections include the mesolimbic and nigrostriatal pathways, we targeted our lesions at the medial striatum (MSt) and substantia nigra (SN). We found that a bilateral electrolytic lesion of the MSt suppressed baseline foraging effort, but social facilitation was intact. Conversely, an electrolytic lesion targeted at the unilateral SN (on the right side) partially suppressed social facilitation, while baseline foraging effort remained unaffected. However, selective depletion of catecholaminergic (thyrosine hydroxylase immunoreactive) terminals by micro-infusion of 6-hydroxydopamine (6-OHDA) to bilateral MSt had no significant effects on foraging behavior, whereas it impaired formation of the association memory reinforced by water reward. Neurochemical assay by high-perfromance liquid chromatography also revealed a significant decrease in the dopamine and noradrenaline contents in MSt after 6-OHDA micro-infusion compared with intact control chicks. Thus, we conclude that the neural substrate of social facilitation can be dissociated from that responsible for reward-based foraging effort, and that ascending dopaminergic pathways do not appear to contribute to social facilitation. Based on our detailed analysis of the lesion areas, we discuss fiber tracts or neural components of the midbrain tegmental area that may be responsible for social facilitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Elevation and forest clearing effects on foraging differ between surface--and subterranean--foraging army ants (Formicidae: Ecitoninae).

    Science.gov (United States)

    Kumar, Anjali; O'Donnell, Sean

    2009-01-01

    1. Forest fragmentation often results in a matrix of open areas mixed with patches of forest. Both biotic and abiotic factors can affect consumer species' ability to utilize the altered habitat, especially for species that range over large areas searching for prey. 2. Army ants (Formicidae: Ecitoninae) are highly mobile top predators in terrestrial Neotropical ecosystems. Army ant foraging behaviour is influenced by forest clearing at lowland sites, and clearing can reduce army ant population persistence. 3. Because high temperatures are implicated in hindering above-ground army ant foraging, we predicted that forest clearing effects on army ant foraging would be reduced at higher (cooler) elevations in montane forest. We also predicted that subterranean foraging, employed by some army ant species, would buffer them from the negative effects of forest clearing. 4. We quantified the foraging rates of above-ground and underground foraging army ants at eight sites along an elevational gradient from 1090 to 1540 m a.s.l. We asked whether these two foraging strategies cause a difference in the ability of army ants to forage in open matrix areas relative to elevationally matched forested habitats, and whether elevation predicts open area vs. forest foraging rate differences. 5. As predicted, army ants that forage above-ground had lower foraging rates in open areas, but the open area vs. forest difference declined with elevation. In contrast, underground foragers were not affected by habitat type, and underground foraging rates increased with elevation. Ground surface temperatures were higher in open areas than forested areas. Temperatures declined with elevation, and temperature differences between open and forested areas decreased with elevation. 6. We conclude that army ants that forage above-ground may be restricted to forested areas due to a thermal tolerance threshold, but that they are released from this limitation at higher elevations. We further suggest that

  9. Modeling ventilation time in forage tower silos.

    Science.gov (United States)

    Bahloul, A; Chavez, M; Reggio, M; Roberge, B; Goyer, N

    2012-10-01

    The fermentation process in forage tower silos produces a significant amount of gases, which can easily reach dangerous concentrations and constitute a hazard for silo operators. To maintain a non-toxic environment, silo ventilation is applied. Literature reviews show that the fermentation gases reach high concentrations in the headspace of a silo and flow down the silo from the chute door to the feed room. In this article, a detailed parametric analysis of forced ventilation scenarios built via numerical simulation was performed. The methodology is based on the solution of the Navier-Stokes equations, coupled with transport equations for the gas concentrations. Validation was achieved by comparing the numerical results with experimental data obtained from a scale model silo using the tracer gas testing method for O2 and CO2 concentrations. Good agreement was found between the experimental and numerical results. The set of numerical simulations made it possible to establish a simple analytical model to predict the minimum time required to ventilate a silo to make it safe to enter. This ventilation time takes into account the headspace above the forage, the airflow rate, and the initial concentrations of O2 and CO2. The final analytical model was validated with available results from the literature.

  10. N response of no-till dryland winter triticale forage

    Science.gov (United States)

    Triticale’s forage-yield response to fertilizer nitrogen (N) is impressive on soils testing low in available N. Our objective is to quantify the forage yield response of dryland winter triticale to applied N and to residual NO3-N. A second objective is to fit the yield data to a regression equation ...

  11. Yield and forage nutritive value of reduced lignin alfalfa

    Science.gov (United States)

    Reduced lignin alfalfa (Medicago sativa L.) cultivars have the potential to increase the feeding value of alfalfa for livestock by improving the forage fiber digestibility and to increase harvest management flexibility. The objectives were to compare the yield and forage nutritive value of reduced ...

  12. Group foraging by a stream minnow: shoals or aggregations?

    Science.gov (United States)

    Freeman, Mary C.; Grossman, G.D.

    1992-01-01

    The importance of social attraction in the formation of foraging groups was examined for a stream-dwelling cyprinid, the rosyside dace, Clinostomus funduloides. Dace arrivals and departures at natural foraging sites were monitored and tested for (1) tendency of dace to travel in groups, and (2) dependency of arrival and departure rates on group size. Dace usually entered and departed foraging sites independently of each other. Group size usually affected neither arrival rate nor departure probability. Thus, attraction among dace appeared weak; foraging groups most often resulted from dace aggregating in preferred foraging sites. The strongest evidence of social attraction was during autumn, when dace departure probability often decreased with increasing group size, possibly in response to increased threat of predation by a seasonally occurring predator. Dace also rarely avoided conspecifics, except when an aggressive individual defended a foraging site. Otherwise, there was little evidence of exploitative competition among dace for drifting prey or of foraging benefits in groups, because group size usually did not affect individual feeding rates. These results suggest that the benefits of group foraging demonstrated under laboratory conditions in other studies may not always apply to field conditions.

  13. Promoting Interactive Learning: A Classroom Exercise to Explore Foraging Strategies

    Science.gov (United States)

    Beaumont, Ellen S.; Rowe, Graham; Mikhaylov, Natalie S.

    2012-01-01

    We describe a classroom exercise to allow students to explore foraging strategies in higher vertebrates. The exercise includes an initial interactive session in which students act as predators and are guided through foraging simulations, and a subsequent student-led session where classmates are employed as experimental subjects. Students rated the…

  14. Experience, corpulence and decision making in ant foraging.

    Science.gov (United States)

    Robinson, Elva J H; Feinerman, Ofer; Franks, Nigel R

    2012-08-01

    Social groups are structured by the decisions of their members. Social insects typically divide labour: some decide to stay in the nest while others forage for the colony. Two sources of information individuals may use when deciding whether to forage are their own experience of recent task performance and their own physiology, e.g. fat reserves (corpulence). The former is primarily personal information; the latter may give an indication of the food reserves of the whole colony. These factors are hard to separate because typically leaner individuals are also more experienced foragers. We designed an experiment to determine whether foraging specialisation is physiological or experience based (or both). We invented a system of automatic doors controlled by radio-tag information to manipulate task access and decouple these two sources of information. Our results show that when information from corpulence and recent experience conflict, ants behave only in accordance with their corpulence. However, among ants physiologically inclined to forage (less corpulent ants), recent experience of success positively influenced their propensity to forage again. Hence, foraging is organised via long-term physiological differences among individuals resulting in a relatively stable response threshold distribution, with fine-tuning provided by short-term learning processes. Through these simple rules, colonies can organise their foraging effort both robustly and flexibly.

  15. Children's Play and Culture Learning in an Egalitarian Foraging Society

    Science.gov (United States)

    Boyette, Adam H.

    2016-01-01

    Few systematic studies of play in foragers exist despite their signi