WorldWideScience

Sample records for macrochirus foraging behavior

  1. Testing a bioenergetics-based habitat choice model: bluegill (Lepomis macrochirus) responses to food availability and temperature

    Science.gov (United States)

    2011-01-01

    Using an automated shuttlebox system, we conducted patch choice experiments with 32, 8–12 g bluegill sunfish (Lepomis macrochirus) to test a behavioral energetics hypothesis of habitat choice. When patch temperature and food levels were held constant within patches but different between patches, we expected bluegill to choose patches that maximized growth based on the bioenergetic integration of food and temperature as predicted by a bioenergetics model. Alternative hypotheses were that bluegill may choose patches based only on food (optimal foraging) or temperature (behavioral thermoregulation). The behavioral energetics hypothesis was not a good predictor of short-term (from minutes to weeks) patch choice by bluegill; the behavioral thermoregulation hypothesis was the best predictor. In the short-term, food and temperature appeared to affect patch choice hierarchically; temperature was more important, although food can alter temperature preference during feeding periods. Over a 19-d experiment, mean temperatures occupied by fish offered low rations did decline as predicted by the behavioral energetics hypothesis, but the decline was less than 1.0 °C as opposed to a possible 5 °C decline. A short-term, bioenergetic response to food and temperature may be precluded by physiological costs of acclimation not considered explicitly in the behavioral energetics hypothesis.

  2. Boa constrictor (Boa constrictor): foraging behavior

    Science.gov (United States)

    Sorrell, G.G.; Boback, M.S.; Reed, R.N.; Green, S.; Montgomery, Chad E.; DeSouza, L.S.; Chiaraviglio, M.

    2011-01-01

    Boa constrictor is often referred to as a sit-and-wait or ambush forager that chooses locations to maximize the likelihood of prey encounters (Greene 1983. In Janzen [ed.], Costa Rica Natural History, pp. 380-382. Univ. Chicago Press, Illinois). However, as more is learned about the natural history of snakes in general, the dichotomy between active versus ambush foraging is becoming blurred. Herein, we describe an instance of diurnal active foraging by a B. constrictor, illustrating that this species exhibits a range of foraging behaviors.

  3. Hybrid value foraging: How the value of targets shapes human foraging behavior.

    Science.gov (United States)

    Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla

    2018-04-01

    In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.

  4. Biodiversity data mining from Argus-eyed citizens: the first illegal introduction record of Lepomis macrochirus macrochirus Rafinesque, 1819 in Japan based on Twitter information.

    Science.gov (United States)

    Miyazaki, Yusuke; Teramura, Akinori; Senou, Hiroshi

    2016-01-01

    An apparent illegal introduction of Lepomis macrochirus macrochirus from Yokohama City, Kanagawa Prefecture, Japan, is reported based on a juvenile specimen and a photograph of two adults collected on 14 June 2015 and deposited in the Kangawa Prefectural Museum of Natural History. The specimens and photographs were initially reported on the internet-based social networking site, Twitter. Two specimens of Carassius auratus, including an aquarium form, were also reported at the same locality and date, suggesting that the illegal introductions originated from an aquarium release. Our report demonstrates an example of web data mining in the discipline of Citizen Science.

  5. Optimal search behavior and classic foraging theory

    International Nuclear Information System (INIS)

    Bartumeus, F; Catalan, J

    2009-01-01

    Random walk methods and diffusion theory pervaded ecological sciences as methods to analyze and describe animal movement. Consequently, statistical physics was mostly seen as a toolbox rather than as a conceptual framework that could contribute to theory on evolutionary biology and ecology. However, the existence of mechanistic relationships and feedbacks between behavioral processes and statistical patterns of movement suggests that, beyond movement quantification, statistical physics may prove to be an adequate framework to understand animal behavior across scales from an ecological and evolutionary perspective. Recently developed random search theory has served to critically re-evaluate classic ecological questions on animal foraging. For instance, during the last few years, there has been a growing debate on whether search behavior can include traits that improve success by optimizing random (stochastic) searches. Here, we stress the need to bring together the general encounter problem within foraging theory, as a mean for making progress in the biological understanding of random searching. By sketching the assumptions of optimal foraging theory (OFT) and by summarizing recent results on random search strategies, we pinpoint ways to extend classic OFT, and integrate the study of search strategies and its main results into the more general theory of optimal foraging.

  6. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level.

    Science.gov (United States)

    Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J

    2016-09-01

    Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.

  7. Foraging behavior of stingless bee Heterotrigona itama (Cockerell, 1918) (Hymenoptera : Apidae : Meliponini)

    Science.gov (United States)

    Jaapar, Mohd Fahimee; Jajuli, Rosliza; Mispan, Muhamad Radzali; Ghani, Idris Abd

    2018-04-01

    A study to investigate the foraging behavior of Heterotrigona itama (Cockerell, 1918) was conducted on three colonies between January 2016 and June 2016. A digital single-lens reflex (DSLR) with macro lens attached, and action camera (SJCAM) was used to record foraging behavior of H. itama in its colonies for 5 min per hour between 0800 to 1700 h for a day per 6 months. In addition, three data loggers (Watchdog B100 2K) has been installed adjacent to the observation nest for collect temperature and humidity in the study areas. Result showed that the numbers of return foragers was significantly different from January to June also with outgoing forager. The returning forager between hours showed significant different from 8 am to 5 pm also for outgoing forager. The ideal temperature related to foraging behavior for H. itama was 29°C to 32 °C Our finding also, helps to guide researcher to expand the knowledge in foraging behavior by stingless bee as well as encouraging more small farmers to start rearing at least for their own consumption. In addition, these findings also guide the farmers to manage their chemical toxic inside the meliponiculture.

  8. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  9. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    Science.gov (United States)

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  10. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    Science.gov (United States)

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  11. Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators.

    Directory of Open Access Journals (Sweden)

    Stella Villegas-Amtmann

    Full Text Available Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus (CSL whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki (GSL whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in

  12. Foraging Behavior of Odontomachus bauri on Barro Colorado Island, Panama

    Directory of Open Access Journals (Sweden)

    Birgit Ehmer

    1995-01-01

    Full Text Available Foraging behavior and partitioning of foraging areas of Odonomachus bauri were investigated on Barro Colorado Island in Panama. The activity of the ants did not show any daily pattern; foragers were active day and night. The type of prey captured by O. bauri supports the idea that in higher Odontomachus and Anochetus species, the high speed of mandible closure serves more for generating power than capturing elusive prey. Polydomous nests may enable O. bauri colonies to enlarge their foraging areas.

  13. [Partial purification of peptides present in the Tityus macrochirus (Buthidae) scorpion venom and preliminary assessment of their cytotoxicity].

    Science.gov (United States)

    Rincón-Cortés, Clara Andrea; Reyes-Montaño, Edgar Antonio; Vega-Castro, Nohora Angélica

    2017-06-01

    Scorpion venom contains peptides with neurotoxic action primarily active on ion channels in the nervous system of insects and mammals. They are also characterized as cytolytic and anticancer, biological characteristics that have not yet been reported for the Tityus macrochirus venom. To assess if the total T. macrochirus venom and the fraction of partially purified peptides decrease the viability of various tumor-derived cell lines. The scorpion venom was collected by electrical stimulation and, subsequently, subjected to chromatography, electrophoresis, and ultrafiltration with Amicon Ultra 0.5® membranes for the partial identification and purification of its peptides. The cytotoxic activity of the venom and the peptides fraction trials on tumor-derived cell lines were carried out by the MTT method. The T. macrochirus scorpion venom has peptides with molecular weights ranging between 3 and 10 kDa. They were partially purified using the ultrafiltration technique, and assessed by the RP-HPLC method. Cytotoxicity trials with the whole T. macrochirus venom showed a higher viability decrease on the PC3 cell line compared to the other cell lines assessed, while the partially purified peptides decreased the HeLa cell line viability. Peptides in the T. macrochirus scorpion venom showed cytotoxic activity on some tumorderived cell lines. We observed some degree of selectivity against other cell lines assessed.

  14. Foraging behavior of three passerines in mature bottomland hardwood forests during summer.

    Energy Technology Data Exchange (ETDEWEB)

    Buffington, J., Matthew; Kilgo, John, C.; Sargent, Robert, A.; Miller, Karl, V.; Chapman, Brian, R.

    2001-08-01

    Attention has focused on forest management practices and the interactions between birds and their habitat, as a result of apparent declines in populations of many forest birds. Although avian diversity and abundance have been studied in various forest habitats, avian foraging behavior is less well known. Although there are published descriptions of avian foraging behaviors in the western United States descriptions from the southeastern United States are less common. This article reports on the foraging behavior of the White-eyed Vireo, Northern Parula, and Hooded Warbler in mature bottomland hardwood forests in South Carolina.

  15. Corticosterone predicts foraging behavior and parental care in macaroni penguins.

    Science.gov (United States)

    Crossin, Glenn T; Trathan, Phil N; Phillips, Richard A; Gorman, Kristen B; Dawson, Alistair; Sakamoto, Kentaro Q; Williams, Tony D

    2012-07-01

    Corticosterone has received considerable attention as the principal hormonal mediator of allostasis or physiological stress in wild animals. More recently, it has also been implicated in the regulation of parental care in breeding birds, particularly with respect to individual variation in foraging behavior and provisioning effort. There is also evidence that prolactin can work either inversely or additively with corticosterone to achieve this. Here we test the hypothesis that endogenous corticosterone plays a key physiological role in the control of foraging behavior and parental care, using a combination of exogenous corticosterone treatment, time-depth telemetry, and physiological sampling of female macaroni penguins (Eudyptes chrysolophus) during the brood-guard period of chick rearing, while simultaneously monitoring patterns of prolactin secretion. Plasma corticosterone levels were significantly higher in females given exogenous implants relative to those receiving sham implants. Increased corticosterone levels were associated with significantly higher levels of foraging and diving activity and greater mass gain in implanted females. Elevated plasma corticosterone was also associated with an apparent fitness benefit in the form of increased chick mass. Plasma prolactin levels did not correlate with corticosterone levels at any time, nor was prolactin correlated with any measure of foraging behavior or parental care. Our results provide support for the corticosterone-adaptation hypothesis, which predicts that higher corticosterone levels support increased foraging activity and parental effort.

  16. Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster.

    Science.gov (United States)

    Lee, Yuh Chwen G; Yang, Qian; Chi, Wanhao; Turkson, Susie A; Du, Wei A; Kemkemer, Claus; Zeng, Zhao-Bang; Long, Manyuan; Zhuang, Xiaoxi

    2017-05-01

    Foraging behavior is critical for the fitness of individuals. However, the genetic basis of variation in foraging behavior and the evolutionary forces underlying such natural variation have rarely been investigated. We developed a systematic approach to assay the variation in survival rate in a foraging environment for adult flies derived from a wild Drosophila melanogaster population. Despite being such an essential trait, there is substantial variation of foraging behavior among D. melanogaster strains. Importantly, we provided the first evaluation of the potential caveats of using inbred Drosophila strains to perform genome-wide association studies on life-history traits, and concluded that inbreeding depression is unlikely a major contributor for the observed large variation in adult foraging behavior. We found that adult foraging behavior has a strong genetic component and, unlike larval foraging behavior, depends on multiple loci. Identified candidate genes are enriched in those with high expression in adult heads and, demonstrated by expression knock down assay, are involved in maintaining normal functions of the nervous system. Our study not only identified candidate genes for foraging behavior that is relevant to individual fitness, but also shed light on the initial stage underlying the evolution of the behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Caroline L Poli

    Full Text Available During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra, in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level, the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance

  18. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    Science.gov (United States)

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  19. Complex scaling behavior in animal foraging patterns

    Science.gov (United States)

    Premachandra, Prabhavi Kaushalya

    This dissertation attempts to answer questions from two different areas of biology, ecology and neuroscience, using physics-based techniques. In Section 2, suitability of three competing random walk models is tested to describe the emergent movement patterns of two species of primates. The truncated power law (power law with exponential cut off) is the most suitable random walk model that characterizes the emergent movement patterns of these primates. In Section 3, an agent-based model is used to simulate search behavior in different environments (landscapes) to investigate the impact of the resource landscape on the optimal foraging movement patterns of deterministic foragers. It should be noted that this model goes beyond previous work in that it includes parameters such as spatial memory and satiation, which have received little consideration to date in the field of movement ecology. When the food availability is scarce in a tropical forest-like environment with feeding trees distributed in a clumped fashion and the size of those trees are distributed according to a lognormal distribution, the optimal foraging pattern of a generalist who can consume various and abundant food types indeed reaches the Levy range, and hence, show evidence for Levy-flight-like (power law distribution with exponent between 1 and 3) behavior. Section 4 of the dissertation presents an investigation of phase transition behavior in a network of locally coupled self-sustained oscillators as the system passes through various bursting states. The results suggest that a phase transition does not occur for this locally coupled neuronal network. The data analysis in the dissertation adopts a model selection approach and relies on methods based on information theory and maximum likelihood.

  20. Memory Effects on Movement Behavior in Animal Foraging.

    Science.gov (United States)

    Bracis, Chloe; Gurarie, Eliezer; Van Moorter, Bram; Goodwin, R Andrew

    2015-01-01

    An individual's choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems.

  1. Foraging behavioral of Phylloscartes ventralis (Aves, Tyrannidae in native and planted forests of southern Brazil

    Directory of Open Access Journals (Sweden)

    André de Mendonça-Lima

    2014-12-01

    Full Text Available Few studies have related the effects of silviculture practices to the behavior of bird species in the Neotropics. The present study examined the foraging behavior of Phylloscartes ventralis (Temminck, 1824 in a native forest and in silviculture areas of Pinus elliotti and Araucaria angustifolia with different structures and ages. We tested two general hypotheses: (1 areas of commercial forest plantation change the foraging behavior of P. ventralis in relation to native forest, and (2 the foraging behavior of P. ventralis in silviculture areas with understories (complex structures is different from its behavior in areas without understory. The results showed that P. ventralis changed its foraging behavior depending on the type of forest, and on the presence of an understory in silviculture areas. Main changes involved the height and angle of substrate where the prey was captured. Phylloscartes ventralis showed the same set of attack maneuvers, with more maneuvers type in young Pinus planted without understory. The frequency of use of attack maneuvers was more similar in areas of silviculture with understory and in the native forest. The results highlight the importance of an understory structure and the utilization of native plant species in silviculture practices, to the foraging behavior of native bird species.

  2. The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.

    Science.gov (United States)

    Sprayberry, Jordanna D H; Ritter, Kaitlin A; Riffell, Jeffrey A

    2013-01-01

    Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation) have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.

  3. The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.

    Directory of Open Access Journals (Sweden)

    Jordanna D H Sprayberry

    Full Text Available Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.

  4. Experimental Evidence that Social Relationships Determine Individual Foraging Behavior.

    Science.gov (United States)

    Firth, Josh A; Voelkl, Bernhard; Farine, Damien R; Sheldon, Ben C

    2015-12-07

    Social relationships are fundamental to animals living in complex societies. The extent to which individuals base their decisions around their key social relationships, and the consequences this has on their behavior and broader population level processes, remains unknown. Using a novel experiment that controlled where individual wild birds (great tits, Parus major) could access food, we restricted mated pairs from being allowed to forage at the same locations. This introduced a conflict for pair members between maintaining social relationships and accessing resources. We show that individuals reduce their own access to food in order to sustain their relationships and that individual foraging activity was strongly influenced by their key social counterparts. By affecting where individuals go, social relationships determined which conspecifics they encountered and consequently shaped their other social associations. Hence, while resource distribution can determine individuals' spatial and social environment, we illustrate how key social relationships themselves can govern broader social structure. Finally, social relationships also influenced the development of social foraging strategies. In response to forgoing access to resources, maintaining pair bonds led individuals to develop a flexible "scrounging" strategy, particularly by scrounging from their pair mate. This suggests that behavioral plasticity can develop to ameliorate conflicts between social relationships and other demands. Together, these results illustrate the importance of considering social relationships for explaining behavioral variation due to their significant impact on individual behavior and demonstrate the consequences of key relationships for wider processes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Memory Effects on Movement Behavior in Animal Foraging

    Science.gov (United States)

    Bracis, Chloe; Gurarie, Eliezer; Van Moorter, Bram; Goodwin, R. Andrew

    2015-01-01

    An individual’s choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems. PMID:26288228

  6. Temporal effects of hunting on foraging behavior of an apex predator: Do bears forego foraging when risk is high?

    Science.gov (United States)

    Hertel, Anne G; Zedrosser, Andreas; Mysterud, Atle; Støen, Ole-Gunnar; Steyaert, Sam M J G; Swenson, Jon E

    2016-12-01

    Avoiding predators most often entails a food cost. For the Scandinavian brown bear (Ursus arctos), the hunting season coincides with the period of hyperphagia. Hunting mortality risk is not uniformly distributed throughout the day, but peaks in the early morning hours. As bears must increase mass for winter survival, they should be sensitive to temporal allocation of antipredator responses to periods of highest risk. We expected bears to reduce foraging activity at the expense of food intake in the morning hours when risk was high, but not in the afternoon, when risk was low. We used fine-scale GPS-derived activity patterns during the 2 weeks before and after the onset of the annual bear hunting season. At locations of probable foraging, we assessed abundance and sugar content, of bilberry (Vaccinium myrtillus), the most important autumn food resource for bears in this area. Bears decreased their foraging activity in the morning hours of the hunting season. Likewise, they foraged less efficiently and on poorer quality berries in the morning. Neither of our foraging measures were affected by hunting in the afternoon foraging bout, indicating that bears did not allocate antipredator behavior to times of comparably lower risk. Bears effectively responded to variation in risk on the scale of hours. This entailed a measurable foraging cost. The additive effect of reduced foraging activity, reduced forage intake, and lower quality food may result in poorer body condition upon den entry and may ultimately reduce reproductive success.

  7. Corticosterone and foraging behavior in a diving seabird: the Adélie penguin, Pygoscelis adeliae.

    Science.gov (United States)

    Angelier, Frédéric; Bost, Charles-André; Giraudeau, Mathieu; Bouteloup, Guillaume; Dano, Stéphanie; Chastel, Olivier

    2008-03-01

    Because hormones mediate physiological or behavioral responses to intrinsic or extrinsic stimuli, they can help us understand how animals adapt their foraging decisions to energetic demands of reproduction. Thus, the hormone corticosterone deserves specific attention because of its influence on metabolism, food intake and locomotor activities. We examined the relationships between baseline corticosterone levels and foraging behavior or mass gain at sea in a diving seabird, the Adélie penguin, Pygoscelis adeliae. Data were obtained from free-ranging penguins during the brooding period (Adélie Land, Antarctica) by using satellite transmitters and time-depth-recorders. The birds were weighed and blood sampled before and after a foraging trip (pre-trip and post-trip corticosterone levels, respectively). Penguins with elevated pre-trip corticosterone levels spent less time at sea and stayed closer to the colony than penguins with low pre-trip corticosterone levels. These short trips were associated with a higher foraging effort in terms of diving activity and a lower mass gain at sea than long trips. According to previous studies conducted on seabird species, these results suggest that penguins with elevated pre-trip corticosterone levels might maximize the rate of energy delivery to the chicks at the expense of their body reserves. Moreover, in all birds, corticosterone levels were lower post-foraging than pre-foraging. This decrease could result from either the restoration of body reserves during the foraging trip or from a break in activity at the end of the foraging trip. This study demonstrates for the first time in a diving predator the close relationships linking foraging behavior and baseline corticosterone levels. We suggest that slight elevations in pre-trip corticosterone levels could play a major role in breeding effort by facilitating foraging activity in breeding seabirds.

  8. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior.

    Directory of Open Access Journals (Sweden)

    Alison A Bockoven

    Full Text Available Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.

  9. Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest

    Science.gov (United States)

    Newell, P.; King, Sammy L.; Kaller, Michael D.

    2009-01-01

    In bottomland hardwood forests, partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife like Louisiana black bear (Ursus americanus luteolus), white-tailed deer (Odocoileus virginianus), and Neotropical migrants. Although partial cutting may be beneficial to some species, those that use dead wood may be negatively affected since large diameter and poor quality trees (deformed, moribund, or dead) are rare, but normally targeted for removal. On the other hand, partial cutting can create dead wood if logging slash is left on-site. We studied foraging behavior of pileated woodpeckers (Dryocopus pileatus) in one- and two-year-old partial cuts designed to benefit priority species and in uncut forest during winter, spring, and summer of 2006 and 2007 in Louisiana. Males and females did not differ in their use of tree species, dbh class, decay class, foraging height, use of foraging tactics or substrate types; however, males foraged on larger substrates than females. In both partial cut and uncut forest, standing live trees were most frequently used (83% compared to 14% for standing dead trees and 3% for coarse woody debris); however, dead trees were selected (i.e. used out of proportion to availability). Overcup oak (Quercus lyrata) and bitter pecan (Carya aquatica) were also selected and sugarberry (Celtis laevigata) avoided. Pileated woodpeckers selected trees >= 50 cm dbh and avoided trees in smaller dbh classes (10-20 cm). Density of selected foraging substrates was the same in partial cut and uncut forest. Of the foraging substrates, woodpeckers spent 54% of foraging time on live branches and boles, 37% on dead branches and boles, and 9% on vines. Of the foraging tactics, the highest proportion of foraging time was spent excavating (58%), followed by pecking (14%), gleaning (14%), scaling (7%), berry-eating (4%), and probing (3%). Woodpecker use of foraging tactics and substrates, and foraging height and substrate

  10. Shallow food for deep divers: Dynamic foraging behavior of male sperm whales in a high latitude habitat

    DEFF Research Database (Denmark)

    Teloni, Valeria; Johnson, M.P.; Miller, P.J.O.

    2008-01-01

    Groups of female and immature sperm whales live at low latitudes and show a stereotypical diving and foraging behavior with dives lasting about 45 min to depths of between 400 and 1200 m. In comparison, physically mature male sperm whales migrate to high latitudes where little is known about...... their foraging behavior and ecology. Here we use acoustic recording tags to study the diving and acoustic behavior of male sperm whales foraging off northern Norway. Sixty-five hours of tag data provide detailed information about the movements and sound repertoire of four male sperm whales performing 83 dives...... epipelagic prey, is consistent with the hypothesis that male sperm whales may migrate to high latitudes to access a productive, multi-layered foraging habitat....

  11. Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre)

    OpenAIRE

    Grajales-Conesa,Julieta; Meléndez Ramírez,Virginia; Cruz-López,Leopoldo; Sánchez Guillén,Daniel

    2012-01-01

    Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre). Stingless bees have an important role as pollinators of many wild and cultivated plant species in tropical regions. Little is known, however, about the interaction between floral fragrances and the foraging behavior of meliponine species. Thus we investigated the chemical composition of the extracts of citric (lemon and orange) flowers and their effects on the foraging behavi...

  12. Optimization of Power Utilization in Multimobile Robot Foraging Behavior Inspired by Honeybees System

    Science.gov (United States)

    Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari

    2014-01-01

    Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work. PMID:24949491

  13. Effects of forage source and forage particle size as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters.

    Science.gov (United States)

    Omidi-Mirzaei, H; Azarfar, A; Mirzaei, M; Kiani, A; Ghaffari, M H

    2018-05-01

    We investigated the interactive effects of forage source and forage particle size (PS) as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters. Forty-eight Holstein calves (42 ± 3 kg of body weight) were randomly assigned (n = 12 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors of forage source [alfalfa hay (AH) and wheat straw (WS)] and forage PS [(AH: medium = 1.96 mm or long = 3.93 mm) and (WS: medium = 2.03 mm or long = 4.10 mm), as geometric mean diameters]. The treatments were (1) AH with medium PS (AH-MPS), (2) AH with long PS (AH-LPS), (3) WS with medium PS (WS-MPS), and (4) WS with long PS (WS-LPS). Regardless of forage PS, the preweaning starter intake, dry matter intake, metabolizable energy intake, weaning body weight, and forage intake were greater for AH calves than WS calves. Average daily gain, average daily gain/metabolizable energy intake, feed efficiency, and final body weight of the calves did not differ among groups. An interaction of forage source and forage PS influenced acetate, propionate, and acetate-to-propionate ratio in the rumen on d 35, with the greatest acetate proportion and acetate-to-propionate ratio, but the least propionate proportion for AH-MPS calves than the other calves. The total volatile fatty acid concentration and the rumen proportions of propionate (d 70), butyrate (d 35), and valerate (d 35) were greater in AH-MPS calves than in AH-LPS calves. Calves fed AH had greater total volatile fatty acid concentration (d 35 and 70) and propionate proportion (d 70), but lesser ruminal proportions of butyrate (d 35 and 70), valerate (d 35 and 70), and acetate-to-propionate ratio (d 70) compared with calves fed WS. The ruminal valerate proportion (d 70) was greatest in WS-MPS calves than the other calves. An interaction of forage source and forage PS influenced preweaning standing time and starter eating time, with the least

  14. A stochastic differential equation model for the foraging behavior of fish schools.

    Science.gov (United States)

    Tạ, Tôn Việt; Nguyen, Linh Thi Hoai

    2018-03-15

    Constructing models of living organisms locating food sources has important implications for understanding animal behavior and for the development of distribution technologies. This paper presents a novel simple model of stochastic differential equations for the foraging behavior of fish schools in a space including obstacles. The model is studied numerically. Three configurations of space with various food locations are considered. In the first configuration, fish swim in free but limited space. All individuals can find food with large probability while keeping their school structure. In the second and third configurations, they move in limited space with one and two obstacles, respectively. Our results reveal that the probability of foraging success is highest in the first configuration, and smallest in the third one. Furthermore, when school size increases up to an optimal value, the probability of foraging success tends to increase. When it exceeds an optimal value, the probability tends to decrease. The results agree with experimental observations.

  15. A stochastic differential equation model for the foraging behavior of fish schools

    Science.gov (United States)

    Tạ, Tôn ệt, Vi; Hoai Nguyen, Linh Thi

    2018-05-01

    Constructing models of living organisms locating food sources has important implications for understanding animal behavior and for the development of distribution technologies. This paper presents a novel simple model of stochastic differential equations for the foraging behavior of fish schools in a space including obstacles. The model is studied numerically. Three configurations of space with various food locations are considered. In the first configuration, fish swim in free but limited space. All individuals can find food with large probability while keeping their school structure. In the second and third configurations, they move in limited space with one and two obstacles, respectively. Our results reveal that the probability of foraging success is highest in the first configuration, and smallest in the third one. Furthermore, when school size increases up to an optimal value, the probability of foraging success tends to increase. When it exceeds an optimal value, the probability tends to decrease. The results agree with experimental observations.

  16. Behavioral and hormonal responses to the availability of forage material in Western lowland gorillas (Gorilla gorilla gorilla).

    Science.gov (United States)

    Fuller, Grace; Murray, Anna; Thueme, Melissa; McGuire, Molly; Vonk, Jennifer; Allard, Stephanie

    2018-01-01

    We investigated how forage material affects indicators of welfare in three male Western lowland gorillas (Gorilla gorilla gorilla) at the Detroit Zoo. In addition to their maintenance diet and enrichment foods, the gorillas generally received forage material four times a week. From this baseline, we systematically manipulated how much forage material the group received on a weekly basis, with either daily or bi (twice)-weekly presentation of browse (mulberry, Morus sp.) or alfalfa hay. We collected behavioral data (60 hr per gorilla) and measured fecal glucocorticoid metabolites (FGM). Mixed models indicated that the presence of forage material significantly increased time feeding (F 2,351  = 9.58, p gorillas, compared to a disproportionately greater amount of time spent feeding by the dominant individual when forage material was absent. Providing forage material in addition to the regular diet likely created more opportunities for equitable feeding for the subordinate gorillas. FGM concentrations did not vary based on the presence or type of forage material available and, instead, likely reflected group social dynamics. In general, alfalfa and mulberry had similar impacts on behavior, indicating that alfalfa can be an adequate behavioral substitute during times when browse is less readily available for gorillas housed in seasonally variable climates. © 2017 Wiley Periodicals, Inc.

  17. Mercury Concentrations of Bluegill (Lepomis macrochirus Vary by Sex

    Directory of Open Access Journals (Sweden)

    Charles P. Madenjian

    2015-11-01

    Full Text Available Patterns in relative differences in contaminant concentrations between the sexes across many species of fish may reveal clues for important behavioral and physiological differences between the sexes, and may also be useful in developing fish consumption advisories and efficient designs for programs meant to monitor contaminant levels in fish. We determined skin-off fillet and whole-fish total mercury (Hg concentrations of 28 adult female and 26 adult male bluegills (Lepomis macrochirus from Squaw Lake, Oakland County, Michigan (MI, USA. Bioenergetics modeling was used to quantify the effect of growth dilution on the difference in Hg concentrations between the sexes. On average, skin-off fillet and whole-fish Hg concentrations were 25.4% higher and 26.6% higher, respectively, in females compared with males. Thus, the relative difference in Hg concentrations between the sexes for skin-off fillets was nearly identical to that for whole fish. However, mean skin-off fillet Hg concentration (363 ng/g was 2.3 times greater than mean whole-fish Hg concentration (155 ng/g. Males grew substantially faster than females, and bioenergetics modeling results indicated that the growth dilution effect could account for females having 14.4% higher Hg concentrations than males. Our findings should be useful in revising fish consumption advisories.

  18. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    Directory of Open Access Journals (Sweden)

    Annette eDenzinger

    2013-07-01

    Full Text Available Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats’ echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies pattern of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning.

  19. California Least Tern Foraging Ecology in Southern California: A Review of Foraging Behavior Relative to Proposed Dredging Locations

    Science.gov (United States)

    2016-05-01

    additional data are necessary to understand the relationship among turbidity plumes, behavior of CLT prey fish , and CLT foraging behavior. KBC...activities. Fish actively seek out or avoid turbid waters for a number of reasons, including predator avoidance and food resources, and this...Birds 14:57-72. Atwood, J. L., and P. R. Kelly. 1984. Fish dropped on breeding colonies as indicators of Least Tern food habits. Wilson Bulletin 96: 34

  20. Foraging strategies of the Galapagos Marine Iguana (Amblyrhynchus Cristatus): adapting behavioral rules to ontogenetic size change

    OpenAIRE

    Wikelski, Martin; Trillmich, Fritz

    1994-01-01

    Ontogenetic development in reptiles entails major changes in size-related foraging options. We studied the changes in foraging behavior of marine iguanas. In this species, size increases about twenty- to hundredfold from hatching to full adult size. The foraging strategy of marine iguanas was studied at Miedo on Santa Fe Island in the Galapagos archipelago During low tide, large marine iguanas (>250 mm snout vent length (SVL)) foraged more in the lower intertidal than small ones (

  1. Using diel movement behavior to infer foraging strategies related to ecological and social factors in elephants.

    Science.gov (United States)

    Polansky, Leo; Douglas-Hamilton, Iain; Wittemyer, George

    2013-01-01

    Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement

  2. Gathering Baltimore's bounty: Characterizing behaviors, motivations, and barriers of foragers in an urban ecosystem

    Science.gov (United States)

    Colleen M. Synk; Brent F. Kim; Charles A. Davis; James Harding; Virginia Rogers; Patrick T. Hurley; Marla R. Emery; Keeve E. Nachman

    2017-01-01

    As a component of urban food systems, foraging—the collection of plant or fungal materials, such as berries and nuts, not deliberately cultivated for human use—may promote positive cultural, ecological, economic, and health outcomes. Foraging behaviors, motivations, and barriers in the urban context remain under-characterized despite emerging literature on the subject...

  3. Performance and goats behavior in pasture of Andropogon grass under different forage allowances

    Directory of Open Access Journals (Sweden)

    Daniel Louçana da Costa Araújo

    2015-07-01

    Full Text Available This study was accomplished to evaluate the behavior and performance of goats in to grazing on grass Andropogon gayanus Kunth var. Bisquamulatus (Hochst Hack. cv. Planaltina submitted to three forage allowances: 11, 15 and 19% BW/day, under continuous grazing. The experimental design to assess the grazing behaviour was randomized blocks in a split-plot with five replicates within the block. In the plots, we evaluated the effect of forage allowances and in the subplots, the months May and June. While for evaluation of animal performance was in complete block design with five replicates within the block. The different forage allowance did not cause structural changes in the pasture, except in height. However, there was an increase of dead material, leaf/stem ratio and reducing of height during the grazing period. The behavioral variables were not affected by forage allowance, except for the time of displacement, whereby goats spent more time in pastures with offer of 11% BW. The goats remained most part of the time in grazing and idle, corresponding to 89% and 5% of the evaluation time, respectively. Higher bit rate was observed in June, among the offerings, and 15 and 19% BW. The ingestive and grazing behaviour in goats is changed by the accumulation of dead material and stem in pasture from Andropogon grass during at rainy season. The forage supply 11% of BW increases the time of displacement of goats grazing on Andropogon grass. The management of grazing Andropogon grass with forage allowance being 11 and 19% of BW provides low weight gains in goats during the rainy season.

  4. Avian predator buffers against variability in marine habitats with flexible foraging behavior

    Science.gov (United States)

    Schoen, Sarah K.; Piatt, John F.; Arimitsu, Mayumi L.; Heflin, Brielle; Madison, Erica N.; Drew, Gary S.; Renner, Martin; Rojek, Nora A.; Douglas, David C.; DeGange, Anthony R.

    2018-01-01

    How well seabirds compensate for variability in prey abundance and composition near their breeding colonies influences their distribution and reproductive success. We used tufted puffins (Fratercula cirrhata) as forage fish samplers to study marine food webs from the western Aleutian Islands (53°N, 173°E) to Kodiak Island (57°N, 153°W), Alaska, during August 2012–2014. Around each colony we obtained data on: environmental characteristics (sea surface temperature and salinity, seafloor depth and slope, tidal range, and chlorophyll-a), relative forage fish biomass (hydroacoustic backscatter), and seabird community composition and density at-sea. On colonies, we collected puffin chick-meals to characterize forage communities and determine meal energy density, and measured chicks to obtain a body condition index. There were distinct environmental gradients from west to east, and environmental variables differed by ecoregions: the (1) Western-Central Aleutians, (2) Eastern Aleutians, and, (3) Alaska Peninsula. Forage fish biomass, species richness, and community composition all differed markedly between ecoregions. Forage biomass was strongly correlated with environmental gradients, and environmental gradients and forage biomass accounted for ~ 50% of the variability in at-sea density of tufted puffins and all seabird taxa combined. Despite the local and regional variability in marine environments and forage, the mean biomass of prey delivered to puffin chicks did not differ significantly between ecoregions, nor did chick condition or puffin density at-sea. We conclude that puffins can adjust their foraging behavior to produce healthy chicks across a wide range of environmental conditions. This extraordinary flexibility enables their overall success and wide distribution across the North Pacific Ocean.

  5. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica

    Science.gov (United States)

    Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.

    2011-01-01

    We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins, Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.

  6. A conceptual framework that links pollinator foraging behavior to gene flow

    Science.gov (United States)

    In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...

  7. Humpback whale song and foraging behavior on an antarctic feeding ground.

    Directory of Open Access Journals (Sweden)

    Alison K Stimpert

    Full Text Available Reports of humpback whale (Megaptera novaeangliae song chorusing occurring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animals or close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and to prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations.

  8. The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees

    International Nuclear Information System (INIS)

    Meindl, George A.; Ashman, Tia-Lynn

    2013-01-01

    Metals in soil are known to negatively affect the health of many groups of organisms, but it is unclear whether they can affect plant-pollinator interactions, and whether pollinators that visit plants growing on contaminated soils are at risk of ingesting potentially toxic resources. We address whether the presence of metals in nectar alters foraging behavior by bumblebees by manipulating nectar with one of two common soil contaminants (Al or Ni) in flowers of Impatiens capensis (Balsaminaceae). While the presence of Al in nectar did not influence foraging patterns by bumblebees, flowers containing Ni nectar solutions were visited for shorter time periods relative to controls, and discouraged bees from visiting nearby Ni-contaminated flowers. However, because bumblebees still visited these flowers, they likely ingested a potentially toxic resource. Our findings suggest that soil metals could cascade to negatively affect pollinators in metal contaminated environments. -- Highlights: ► We address whether metals in nectar alter foraging behavior by bumblebees. ► Al in nectar did not influence foraging patterns by bumblebees. ► Ni nectar solutions were visited for shorter time periods relative to controls. ► Ni nectar solutions discouraged bees from visiting nearby Ni-contaminated flowers. ► Our findings suggest soil metals could cascade to negatively affect pollinators. -- We extend current understanding of the effects of plant chemistry on plant-pollinator interactions by describing the effects of metals in nectar on bee foraging

  9. Experimental Evidence that Social Relationships Determine Individual Foraging Behavior

    OpenAIRE

    Firth, Josh A.; Voelkl, Bernhard; Farine, Damien R.; Sheldon, Ben C.

    2015-01-01

    Social relationships are fundamental to animals living in complex societies [1-3]. The extent to which individuals base their decisions around their key social relationships, and the consequences this has on their behavior and broader population level processes, remains unknown. Using a novel experiment that controlled where individual wild birds (great tits, Parus major) could access food, we restricted mated pairs from being allowed to forage at the same locations. This introduced a conflic...

  10. Growth, life history, and species interactions of bluegill sunfish (Lepomis macrochirus) under heavy predation

    Energy Technology Data Exchange (ETDEWEB)

    Belk, Mark Carl [Univ. of Georgia, Athens, GA (United States)

    1992-01-01

    The purpose of this study was, first, to compare growth and life history characteristics of an unfished population of bluegill sunfish (Lepomis macrochirus) in the presence of an abundant predator population to characteristic exhibited by bluegills in typical southeastern US reservoirs where the abundance of predators is reduced, but fishing is increased. The second objective was to determine if differences observed between populations were determined genetically or environmentally.

  11. Search and foraging behaviors from movement data: A comparison of methods.

    Science.gov (United States)

    Bennison, Ashley; Bearhop, Stuart; Bodey, Thomas W; Votier, Stephen C; Grecian, W James; Wakefield, Ewan D; Hamer, Keith C; Jessopp, Mark

    2018-01-01

    Search behavior is often used as a proxy for foraging effort within studies of animal movement, despite it being only one part of the foraging process, which also includes prey capture. While methods for validating prey capture exist, many studies rely solely on behavioral annotation of animal movement data to identify search and infer prey capture attempts. However, the degree to which search correlates with prey capture is largely untested. This study applied seven behavioral annotation methods to identify search behavior from GPS tracks of northern gannets ( Morus bassanus ), and compared outputs to the occurrence of dives recorded by simultaneously deployed time-depth recorders. We tested how behavioral annotation methods vary in their ability to identify search behavior leading to dive events. There was considerable variation in the number of dives occurring within search areas across methods. Hidden Markov models proved to be the most successful, with 81% of all dives occurring within areas identified as search. k -Means clustering and first passage time had the highest rates of dives occurring outside identified search behavior. First passage time and hidden Markov models had the lowest rates of false positives, identifying fewer search areas with no dives. All behavioral annotation methods had advantages and drawbacks in terms of the complexity of analysis and ability to reflect prey capture events while minimizing the number of false positives and false negatives. We used these results, with consideration of analytical difficulty, to provide advice on the most appropriate methods for use where prey capture behavior is not available. This study highlights a need to critically assess and carefully choose a behavioral annotation method suitable for the research question being addressed, or resulting species management frameworks established.

  12. Nectar yeasts in the tall Larkspur Delphinium barbeyi (Ranunculaceae and effects on components of pollinator foraging behavior.

    Directory of Open Access Journals (Sweden)

    Robert N Schaeffer

    Full Text Available Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54-77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness.

  13. Nectar Yeasts in the Tall Larkspur Delphinium barbeyi (Ranunculaceae) and Effects on Components of Pollinator Foraging Behavior

    Science.gov (United States)

    Schaeffer, Robert N.; Phillips, Cody R.; Duryea, M. Catherine; Andicoechea, Jonathan; Irwin, Rebecca E.

    2014-01-01

    Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae) and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54–77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited) flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness. PMID:25272164

  14. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta at a foraging ground

    Directory of Open Access Journals (Sweden)

    Samir Harshad Patel

    2016-12-01

    Full Text Available Assessing sea turtle behavior at the foraging grounds has been primarily limited to the interpretation of remotely-sensed data. As a result, there is a general lack of detailed understanding regarding the habitat use of sea turtles during a phase that accounts for a majority of their lives. Thus, this study aimed to fill these data gaps by providing detailed information about the feeding habits, prey availability, buoyancy control and water column usage by 73 loggerhead turtles across 45.7 hours of video footage obtained from a remotely operated vehicle (ROV from 2008 – 2014. We developed an ethogram to account for 27 potential environmental and behavioral parameters. Turtles were filmed through the entire water column and we quantified the frequency of behaviors such as flipper beats, breaths, defecations, feedings and reactions to the ROV. We used the ROV’s depth sensor and visible cues (i.e. water surface or benthic zone in view to distinguish depth zones and assess the turtles’ use of the water column. We also quantified interactions with sympatric biota, including potential gelatinous and non-gelatinous prey species, fish (including sharks, marine mammals and other sea turtles. We discovered that turtles tended to remain within the near surface and surface zones of the water column through the majority of the footage. During benthic dives, turtles consistently exhibited negative buoyancy and some turtles exhibited a dichotomous foraging behavior, first foraging within the water column, then diving to the benthic environment. Videography allowed us to combine behavioral observations and habitat features that cannot be captured by traditional telemetry methods, resulting in a broader understanding of loggerheads’ ecological role in the U.S. Mid-Atlantic.

  15. Effect of sociality and season on gray wolf (Canis lupus) foraging behavior: implications for estimating summer kill rate.

    Science.gov (United States)

    Metz, Matthew C; Vucetich, John A; Smith, Douglas W; Stahler, Daniel R; Peterson, Rolf O

    2011-03-01

    Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA) for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging). We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf) decreased from 8.4±0.9 kg (mean ± SE) in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  16. A Novel Adaptive Particle Swarm Optimization Algorithm with Foraging Behavior in Optimization Design

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2018-01-01

    Full Text Available The method of repeated trial and proofreading is generally used to the convention reducer design, but these methods is low efficiency and the size of the reducer is often large. Aiming the problems, this paper presents an adaptive particle swarm optimization algorithm with foraging behavior, in this method, the bacterial foraging process is introduced into the adaptive particle swarm optimization algorithm, which can provide the function of particle chemotaxis, swarming, reproduction, elimination and dispersal, to improve the ability of local search and avoid premature behavior. By test verification through typical function and the application of the optimization design in the structure of the reducer with discrete and continuous variables, the results are shown that the new algorithm has the advantages of good reliability, strong searching ability and high accuracy. It can be used in engineering design, and has a strong applicability.

  17. Mechanisms of force production during linear accelerations in bluegill sunfish Lepomis macrochirus

    Science.gov (United States)

    Tytell, Eric D.; Wise, Tyler N.; Boden, Alexandra L.; Sanders, Erin K.; Schwalbe, Margot A. B.

    2016-11-01

    In nature, fish rarely swim steadily. Although unsteady behaviors are common, we know little about how fish change their swimming kinematics for routine accelerations, and how these changes affect the fluid dynamic forces and the wake produced. To study force production during acceleration, particle image velocimetry was used to quantify the wake of bluegill sunfish Lepomis macrochirus and to estimate the pressure field during linear accelerations and steady swimming. We separated "steady" and "unsteady" trials and quantified the forward acceleration using inertial measurement units. Compared to steady sequences, unsteady sequences had larger accelerations and higher body amplitudes. The wake consisted of single vortices shed during each tail movement (a '2S' wake). The structure did not change during acceleration, but the circulation of the vortices increased, resulting in larger forces. A fish swimming unsteadily produced significantly more force than the same fish swimming steadily, even when the accelerations were the same. This increase is likely due to increased added mass during unsteady swimming, as a result of the larger body amplitude. Pressure estimates suggest that the increase in force is correlated with more low pressure regions on the anterior body. This work was supported by ARO W911NF-14-1-0494 and NSF RCN-PLS 1062052.

  18. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats

    Directory of Open Access Journals (Sweden)

    Nor Atiqah Norazlimi

    2015-01-01

    Full Text Available A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus, Common redshank (Tringa totanus, Whimbrel (Numenius phaeopus, and Little heron (Butorides striata and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder. The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R=0.443, p<0.05, bill size and prey size (R=-0.052, p<0.05, bill size and probing depth (R=0.42, p=0.003, and leg length and water/mud depth (R=0.706, p<0.005. A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm and species (H=15.96, p=0.0012. Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  19. Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre

    Directory of Open Access Journals (Sweden)

    Julieta Grajales-Conesa

    2012-03-01

    Full Text Available Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre. Stingless bees have an important role as pollinators of many wild and cultivated plant species in tropical regions. Little is known, however, about the interaction between floral fragrances and the foraging behavior of meliponine species. Thus we investigated the chemical composition of the extracts of citric (lemon and orange flowers and their effects on the foraging behavior of the stingless bee Scaptotrigona pectoralis. We found that each type of flower has its own specific blend of major compounds: limonene (62.9% for lemon flowers, and farnesol (26.5%, (E-nerolidol (20.8%, and linalool (12.7% for orange flowers. In the foraging experiments the S. pectoralis workers were able to use the flower extracts to orient to the food source, overlooking plates baited with hexane only. However, orange flower extracts were seemingly more attractive to these worker bees, maybe because of the particular blend present in it. Our results reveal that these fragrances are very attractive to S. pectoralis, so we can infer that within citric orchards they could be important visitors in the study area; however habitat destruction, overuse of pesticides and the competitive override by managed honeybees might have put at risk their populations and thus the ecological services they provide to us.

  20. Forage intake and behavior of goats on Tanzania-grass pasture at two regrowth ages - doi: 10.4025/actascianimsci.v35i1.16035 Forage intake and behavior of goats on Tanzania-grass pasture at two regrowth ages - doi: 10.4025/actascianimsci.v35i1.16035

    Directory of Open Access Journals (Sweden)

    Wellington Kelson Alvarenga Silva

    2013-01-01

    Full Text Available Normal 0 21 false false false The forage mass, sward structure, the ingestive and grazing behavior and forage intake by goats grazing on Tanzania-grass at 22 and 37 days of regrowth were evaluated. A completely randomized experimental design was used, with eight replications for evaluating the pasture and bite depth, and six replications for evaluating intake, feeding and grazing behavior. The forage canopy height ranged from 64.1 to 92.7 cm. Higher forage mass was observed at 37 days, and the best leaf/stem ratio, at 22 regrowth days. The bite depth did not differ between regrowth ages. The biting rate for the 22 regrowth days (23.07 bites min.-1 was higher than at 37 days (19.06 bites min.-1. The grazing time was longer at the regrowth age of 22 days (5.58h than at 37 days (4.51h. The average feed intake was 2.75% of the body weight and was not different between regrowth ages.  The forage mass, sward structure, the ingestive and grazing behavior and forage intake by goats grazing on Tanzania-grass at 22 and 37 days of regrowth were evaluated. A completely randomized experimental design was used, with eight replications for evaluating the pasture and bite depth, and six replications for evaluating intake, feeding and grazing behavior. The forage canopy height ranged from 64.1 to 92.7 cm. Higher forage mass was observed at 37 days, and the best leaf/stem ratio, at 22 regrowth days. The bite depth did not differ between regrowth ages. The biting rate for the 22 regrowth days (23.07 bites min.-1 was higher than at 37 days (19.06 bites min.-1. The grazing time was longer at the regrowth age of 22 days (5.58h than at 37 days (4.51h. The average feed intake was 2.75% of the body weight and was not different between regrowth ages.  

  1. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    LÚCIA H.P. KIILL

    2014-12-01

    Full Text Available The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 – ‘Yellow melon’ and Sancho -‘Piel de Sapo’ in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p <0.0001, floral type (F = 47.25, p <0.0001 and resource foraged (F = 239.14, p <0.0001. The flowers of Sancho were more attractive to A. mellifera when compared with hybrid 10:00, which may be correlated to the morphology and floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types.

  2. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  3. Performance, nutritional behavior, and metabolic responses of calves supplemented with forage depend on starch fermentability.

    Science.gov (United States)

    Mojahedi, S; Khorvash, M; Ghorbani, G R; Ghasemi, E; Mirzaei, M; Hashemzadeh-Cigari, F

    2018-05-16

    This study evaluated the interactive effects of forage provision on performance, nutritional behavior, apparent digestibility, rumen fermentation, and blood metabolites of dairy calves when corn grains with different fermentability were used. Sixty 3-d-old Holstein calves were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Dietary treatments were (1) steam-flaked (SF) corn without alfalfa hay (AH) supplementation (SF-NO), (2) SF corn with AH supplementation (SF-AH), (3) cracked (CR) corn without AH supplementation (CR-NO), and (4) CR corn with AH supplementation (CR-AH). All calves received the same amount of pasteurized whole milk and weaned on d 56 of the experiment; the study was terminated on d 70. Steam-flaked corn contained higher amounts of gelatinized starch in comparison with cracked corn (44.1 vs. 12.5% of total starch, respectively). Starter intake was not affected by corn processing methods or AH provision during the pre- or postweaning periods. However, we noted an interaction between corn processing methods and forage supplementation for starter intake during d 31 to 50 of the experiment, where calves fed on SF-AH starter had greater starter intake than those fed SF-NO starter, but the starter intake was not different between CR-NO and CR-AH fed calves. Furthermore, AH increased average daily gain (ADG) of calves fed an SF-based diet but not in calves fed a CR-based diet during the preweaning and overall periods. Interaction between forage provision and time was significant for ADG and feed efficiency, as calves supplemented with forage had higher ADG (0.982 vs. 0.592, respectively) and feed efficiency compared with forage unsupplemented calves at the weaning week. Forage supplementation resulted in more stable ruminal condition compared with nonforage-fed calves, as evidenced by higher ruminal pH (5.71 vs. 5.29, respectively) at postweaning and lower non-nutritive oral behavior around weaning time (55 vs. 70.5 min

  4. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    Science.gov (United States)

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on

  5. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Christof W Schneider

    Full Text Available The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee and clothianidin (0.05-2 ng/bee under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin and ≥1.5 ng/bee (imidacloprid during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further

  6. Effect of sociality and season on gray wolf (Canis lupus foraging behavior: implications for estimating summer kill rate.

    Directory of Open Access Journals (Sweden)

    Matthew C Metz

    Full Text Available BACKGROUND: Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. METHODOLOGY/PRINCIPAL FINDINGS: For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging. We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf decreased from 8.4±0.9 kg (mean ± SE in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  7. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  8. Several New Aspects of the Foraging Behavior of Osmia cornifrons in an Apple Orchard

    Directory of Open Access Journals (Sweden)

    Shogo Matsumoto

    2010-01-01

    Full Text Available We investigated the foraging behavior of Osmia cornifrons Radoszkowski, which is a useful pollinator in apple orchards consisting of only one kind of commercial cultivars such as “Fuji”, and of different types of pollinizers, such as the red petal type, “Maypole” or “Makamik”. It was confirmed that, in terms of the number of foraging flowers per day, visiting flowers during low temperatures, strong wind, and reduced sunshine in an apple orchard, O. cornifrons were superior to honeybees. We indicated that O. cornifrons seemed to use both petals and anthers as foraging indicator, and that not only female, but also males contributed to apple pollination and fertilization by the pollen grains attached to them from visiting flowers, including those at the balloon stage. It was confirmed that O. cornifrons acts as a useful pollinator in an apple orchard consisting of one kind of cultivar with pollinizers planted not more than 10 m from commercial cultivars.

  9. Ingestive behavior, performance and forage intake by beef heifers on tropical pasture systems

    Directory of Open Access Journals (Sweden)

    Renato Alves de Oliveira Neto

    2013-08-01

    Full Text Available The experiment was carried out to evaluate forage intake, performance and ingestive behavior of beef heifers. Productive, structural and chemical characteristics of the pasture were also evaluated. The experimental design was completely randomized in a 3 × 2 factorial arrangement, with three pasture systems (Alexandergrass [Urochloa plantaginea Link.] with and without supplement to heifers and Coastcross [Cynodon dactylon (L. Pers.] and two phenological stages: vegetative and flowering. The grazing method was put-and-take stocking. Grazing, ruminating and idle activities, feeding stations, displacement patterns, bite mass and bite rate were evaluated. The forage intake was estimated using chromic oxide as an indicator of fecal output. The heifers modified the use of feeding stations and displacement patterns between phenological stages and pasture systems. Heifers consumed more forage in the vegetative stage (2.81% of body weight in dry matter than in the flowering stage (1.92% of body weight in dry matter. Average daily gain, body condition and stocking rate were similar for heifers in the evaluated systems. Beef heifers receiving protein supplement on Alexandergrass pasture consumed more forage than heifers fed Coastcross exclusively. Regardless of the species, no difference was observed when the heifers were exclusively on pasture. Pasture systems on Alexandergrass or Coastcross provide suitable nutrient intake for heifers to be mated at 18 months of age.

  10. Role of olfaction in the foraging behavior and trial-and-error learning in short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Zhang, Wei; Zhu, Guangjian; Tan, Liangjing; Yang, Jian; Chen, Yi; Liu, Qi; Shen, Qiqi; Chen, Jinping; Zhang, Libiao

    2014-03-01

    We observed the foraging behavior of short-nosed fruit bats, Cynopterus sphinx, in captivity. The role of olfaction in their foraging behavior was examined using real fruit, mimetic fruit, and mimetic fruit soaked in the juice of real fruit. The results showed that C. sphinx visited the real fruit more often than the mimetic fruit, but they had no preference between real fruit and treated mimetic fruit. Our experiment indicates that this bat has the ability to find and identify fruit by olfaction. We also tested for behavior of trial-and-error learning. Our observations revealed that the bats could form a sensory memory of the olfactory cue (cedar wood oil) after five days of training because they responded to the olfactory cues. Our results provide the evidence that C. sphinx can establish the connection between the fruit and a non-natural odor through learning and memory with the assistance of olfaction, and can thus recognize a variety of odors by trial-and-error learning. This behavioral flexibility based on olfactory cues will be beneficial for the short-nosed fruit bat in foraging. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Foraging behavior and virulence of some entomopathogenic nematodes

    Directory of Open Access Journals (Sweden)

    Manana A. Lortkipanidze

    2016-06-01

    Full Text Available At present the biological control as a pest control technology is becoming more desirable. Biological formulations on basis of entomopathogenic nematodes are one of the effective means for the protection of agricultural and forest plants from harmful insects. Nowadays, the use of entomopathogenic nematodes as biological control agents is a key component in IPM system. The foraging strategies of entomopathogenic nematodes (EPNs vary between species. This variation is consistent with use of different foraging strategies between ambush, cruise and intermediate to find their host insects. In order to ambush prey, some species of EPNs nictate, or raise their bodies of the soil surface so they are better poised to attach passing insects, other species adopt a cruising strategy and rarely nictate. Some species adopt an intermediate strategy between ambush and cruise. We compared in laboratory the foraging strategies of the entomopathogenic nematode species: Steinernema carpocapsae, Heterorhabditis bacteriophora and the recently described species Steinernema tbilisiensis and assessed their virulence against mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae. The tests showed that S. tbilisiensis adopts both foraging strategies.

  12. Cumulative Effects of Foraging Behavior and Social Dominance on Brain Development in a Facultatively Social Bee (Ceratina australensis).

    Science.gov (United States)

    Rehan, Sandra M; Bulova, Susan J; O'Donnell, Sean

    2015-01-01

    In social insects, both task performance (foraging) and dominance are associated with increased brain investment, particularly in the mushroom bodies. Whether and how these factors interact is unknown. Here we present data on a system where task performance and social behavior can be analyzed simultaneously: the small carpenter bee Ceratina australensis. We show that foraging and dominance have separate and combined cumulative effects on mushroom body calyx investment. Female C. australensis nest solitarily and socially in the same populations at the same time. Social colonies comprise two sisters: the social primary, which monopolizes foraging and reproduction, and the social secondary, which is neither a forager nor reproductive but rather remains at the nest as a guard. We compare the brains of solitary females that forage and reproduce but do not engage in social interactions with those of social individuals while controlling for age, reproductive status, and foraging experience. Mushroom body calyx volume was positively correlated with wing wear, a proxy for foraging experience. We also found that, although total brain volume did not vary among reproductive strategies (solitary vs. social nesters), socially dominant primaries had larger mushroom body calyx volumes (corrected for both brain and body size variation) than solitary females; socially subordinate secondaries (that are neither dominant nor foragers) had the least-developed mushroom body calyces. These data demonstrate that sociality itself does not explain mushroom body volume; however, achieving and maintaining dominance status in a group was associated with mushroom body calyx enlargement. Dominance and foraging effects were cumulative; dominant social primary foragers had larger mushroom body volumes than solitary foragers, and solitary foragers had larger mushroom body volumes than nonforaging social secondary guards. This is the first evidence for cumulative effects on brain development by

  13. Roosevelt elk density and social segregation: Foraging behavior and females avoiding larger groups of males

    Science.gov (United States)

    Weckerly, F.; McFarland, K.; Ricca, M.; Meyer, K.

    2004-01-01

    Intersexual social segregation at small spatial scales is prevalent in ruminants that are sexually dimorphic in body size. Explaining social segregation, however, from hypotheses of how intersexual size differences affects the foraging process of males and females has had mixed results. We studied whether body size influences on forage behavior, intersexual social incompatibility or both might influence social segregation in a population of Roosevelt elk (Cervus elaphus roosevelt) that declined 40% over 5 y. Most males and females in the population occurred in the same forage patches, meadows, but occupied different parts of meadows and most groups were overwhelming comprised of one sex. The extent of segregation varied slightly with changing elk density. Cropping rate, our surrogate of forage ingestion, of males in mixed-sex groups differed from males in male-only groups at high, but not low, elk density. In a prior study of intersexual social interactions it was shown that females avoided groups containing ???6 males. Therefore, we predicted that females should avoid parts of meadows where groups of males ???6 were prevalent. Across the 5 y of study this prediction held because ???5% of all females were found in parts of meadows where median aggregation sizes of males were ???6. Social segregation was coupled to body size influences on forage ingestion at high density and social incompatibility was coupled to social segregation regardless of elk density.

  14. Sympatric cattle grazing and desert bighorn sheep foraging

    Science.gov (United States)

    Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2015-01-01

    Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by

  15. Bioconcentration of haloxyfop-methyl in bluegill (Lepomis macrochirus Rafinesque)

    International Nuclear Information System (INIS)

    Murphy, P.G.; Lutenske, N.E.

    1990-01-01

    Bluegill (Lepomis macrochirus Rafinesque) were exposed to a 14 C haloxyfop-methyl [methyl 2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoate] concentration averaging 0.29 μg/L under flow-through conditions for 28 days. At the end of 28 days, the fish were transferred to clean water for a 4-day flow-through clearance period. Bluegill were found to rapidly absorb the ester from water which was then biotransformed at an extremely fast rate within the fish, such that essentially no haloxyfop-methyl was detected in the fish. The estimated bioconcentration factor for haloxyfop-methyl in whole fish was 14 C residue within whole fish was haloxyfop acid [2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoic acid] which accounted for an average of about 60% of the total radioactivity. The high rate of biotransformation of the parent compound within the fish demonstrates the importance of basing the bioconcentration factor upon the actual concentration of parent material within the organism rather than the total radioactive residue levels for bioconcentration studies with radiolabeled compounds

  16. Importance of the 2014 Colorado River Delta pulse flow for migratory songbirds: Insights from foraging behavior

    Science.gov (United States)

    Darrah, Abigail J.; Greeney, Harold F.; van Riper, Charles

    2017-01-01

    The Lower Colorado River provides critical riparian areas in an otherwise arid region and is an important stopover site for migrating landbirds. In order to reverse ongoing habitat degradation due to drought and human-altered hydrology, a pulse flow was released from Morelos Dam in spring of 2014, which brought surface flow to dry stretches of the Colorado River in Mexico. To assess the potential effects of habitat modification resulting from the pulse flow, we used foraging behavior of spring migrants from past and current studies to assess the relative importance of different riparian habitats. We observed foraging birds in 2000 and 2014 at five riparian sites along the Lower Colorado River in Mexico to quantify prey attack rates, prey attack maneuvers, vegetation use patterns, and degree of preference for fully leafed-out or flowering plants. Prey attack rate was highest in mesquite (Prosopis spp.) in 2000 and in willow (Salix gooddingii) in 2014; correspondingly, migrants predominantly used mesquite in 2000 and willow in 2014 and showed a preference for willows in flower or fruit in 2014. Wilson’s warbler (Cardellina pusilla) used relatively more low-energy foraging maneuvers in willow than in tamarisk (Tamarix spp.) or mesquite. Those patterns in foraging behavior suggest native riparian vegetation, and especially willow, are important resources for spring migrants along the lower Colorado River. Willow is a relatively short-lived tree dependent on spring floods for dispersal and establishment and thus spring migrants are likely to benefit from controlled pulse flows.

  17. Morphology and Efficiency of a Specialized Foraging Behavior, Sediment Sifting, in Neotropical Cichlid Fishes

    Science.gov (United States)

    Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L.; Winemiller, Kirk O.

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny. PMID:24603485

  18. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Hernán López-Fernández

    Full Text Available Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  19. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    Science.gov (United States)

    López-Fernández, Hernán; Arbour, Jessica; Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L; Winemiller, Kirk O

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  20. Consumption and foraging behaviors for common stimulants (nicotine, caffeine).

    Science.gov (United States)

    Phillips, James G; Currie, Jonathan; Ogeil, Rowan P

    2016-01-01

    Models are needed to understand the emerging capability to track consumers' movements. Therefore, we examined the use of legal and readily available stimulants that vary in their addictive potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the number of times and locations stimulants were purchased and used. On average, nicotine dependent individuals made their purchases from 2 locations, while caffeine dependent individuals consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use. Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency. The finding has implications for attempts to control substance use.

  1. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.

    Science.gov (United States)

    Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J

    2015-12-01

    Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A

    2012-01-01

    The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.

  3. Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata, Tropiduridae in a caatinga area of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo B. Ribeiro

    2011-09-01

    Full Text Available This study aimed to analyze the seasonal variation in diet composition and foraging behavior of Tropidurus hispidus (Spix, 1825 and T. semitaeniatus (Spix, 1825, as well as measurement of the foraging intensity (number of moves, time spent stationary, distance traveled and number of attacks on prey items in a caatinga patch on the state of Rio Grande do Norte, Brazil. Hymenoptera/Formicidae and Isoptera predominated in the diet of both species during the dry season. Opportunistic predation on lepidopteran larvae, coleopteran larvae and adults, and orthopteran nymphs and adults occurred in the wet season; however, hymenopterans/Formicidae were the most important prey items. The number of food items was similar between lizard species in both seasons; however the overlap for number of prey was smaller in the wet season. Preys ingested by T. hispidus during the wet season were also larger than those consumed by T. semitaeniatus. Seasonal comparisons of foraging intensity between the two species differed, mainly in the wet season, when T. hispidus exhibited less movement and fewer attacks on prey, and more time spent stationary if compared to T. semitaeniatus. Although both lizards are sit-and-wait foragers, T. semitaeniatus is more active than T. hispidus. The diet and foraging behavior of T. hispidus and T. semitaeniatus overlap under limiting conditions during the dry season, and are segregative factors that may contribute to the coexistence of these species in the wet season.

  4. Ant Foraging Behavior for Job Shop Problem

    Directory of Open Access Journals (Sweden)

    Mahad Diyana Abdul

    2016-01-01

    Full Text Available Ant Colony Optimization (ACO is a new algorithm approach, inspired by the foraging behavior of real ants. It has frequently been applied to many optimization problems and one such problem is in solving the job shop problem (JSP. The JSP is a finite set of jobs processed on a finite set of machine where once a job initiates processing on a given machine, it must complete processing and uninterrupted. In solving the Job Shop Scheduling problem, the process is measure by the amount of time required in completing a job known as a makespan and minimizing the makespan is the main objective of this study. In this paper, we developed an ACO algorithm to minimize the makespan. A real set of problems from a metal company in Johor bahru, producing 20 parts with jobs involving the process of clinching, tapping and power press respectively. The result from this study shows that the proposed ACO heuristics managed to produce a god result in a short time.

  5. Fine-scale foraging ecology of leatherback turtles

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    2015-02-01

    Full Text Available Remote tracking of migratory species and statistical modeling of behaviors have enabled identification of areas that are of high ecological value to these widely distributed taxa. However, direct observations at fine spatio-temporal scales are often needed to correctly interpret behaviors. In this study, we combined GPS-derived locations and archival dive records (1 sec sampling rate with animal-borne video footage from foraging leatherback turtles (Dermochelys coriacea in Nova Scotia, Canada (Northwest Atlantic Ocean to generate the most highly detailed description of natural leatherback behavior presented to date. Turtles traveled shorter distances at slower rates and increased diving rates in areas of high prey abundance, which resulted in higher prey capture rates. Increased foraging effort (e.g., dive rate, dive duration, prey handling time, number of bites was not associated with increased time at the surface breathing to replenish oxygen stores. Instead, leatherbacks generally performed short, shallow dives in the photic zone to or above the thermocline, where they disproportionately captured prey at bottoms of dives and during ascents. This foraging strategy supports visual prey detection, allows leatherbacks to exploit physically structured prey at relatively shallow depths (typically <30m, and increases time turtles spend in warmer water temperatures, thus optimizing net energy acquisition. Our results demonstrate that leatherbacks appear to be continuously foraging during daylight hours while in continental shelf waters of Nova Scotia, and that leatherback foraging behavior is driven by prey availability, not by whether or not a turtle is in a resource patch characterized by a particular size or prey density. Our study demonstrates the fundamental importance of obtaining field-based, direct observations of true behaviors at fine spatial and temporal scales to enhance our efforts to both study and manage migratory species.

  6. Lateral Dispersal and Foraging Behavior of Entomopathogenic Nematodes in the Absence and Presence of Mobile and Non-Mobile Hosts.

    Directory of Open Access Journals (Sweden)

    Harit K Bal

    Full Text Available Entomopathogenic nematodes have been classified into cruisers (active searchers and ambushers (sit and wait foragers. However, little is known about their dispersal and foraging behavior at population level in soil. We studied lateral dispersal of the ambush foraging Steinernema carpocapsae (ALL strain and cruise foraging Heterorhabditis bacteriophora (GPS11 strain from infected host cadavers in microcosms (0.05 m2 containing Wooster silt-loam soil (Oxyaquic fragiudalf and vegetation in the presence or absence of non-mobile and mobile hosts. Results showed that the presence of a non-mobile host (Galleria mellonella larva in a wire mesh cage enhanced H. bacteriophora dispersal for up to 24 hr compared with no-host treatment, but had no impact on S. carpocapsae dispersal. In contrast, presence of a mobile host (G. mellonella larvae increased dispersal of S. carpocapsae compared with no host treatment, but had no effect on H. bacteriophora dispersal. Also H. bacteriophora was better at infecting non-mobile than mobile hosts released into the microcosms and S. carpocapsae was better at infecting mobile than non-mobile hosts, thus affirming the established cruiser-ambusher theory. However, results also revealed that a large proportion of infective juveniles (IJs of both species stayed near (≤ 3.8 cm the source cadaver (88-96% S. carpocapsae; 67-79% H. bacteriophora, and the proportion of IJs reaching the farthest distance (11.4 cm was significantly higher for S. carpocapsae (1.4% than H. bacteriophora (0.4% in the presence of mobile hosts. S. carpocapsae also had higher average population displacement than H. bacteriophora in the presence of both the non-mobile (5.07 vs. 3.6 cm/day and mobile (8.06 vs. 5.3 cm/day hosts. We conclude that the two species differ in their dispersal and foraging behavior at the population level and this behavior is affected by both the presence and absence of hosts and by their mobility.

  7. Host choice in a bivoltine bee: how sensory constraints shape innate foraging behaviors.

    Science.gov (United States)

    Milet-Pinheiro, Paulo; Herz, Kerstin; Dötterl, Stefan; Ayasse, Manfred

    2016-04-11

    Many insects have multiple generations per year and cohorts emerging in different seasons may evolve their own phenotypes if they are subjected to different selection regimes. The bivoltine bee Andrena bicolor is reported to be polylectic and oligolectic (on Campanula) in the spring and summer generations, respectively. Neurological constraints are assumed to govern pollen diet in bees. However, evidence comes predominantly from studies with oligolectic bees. We have investigated how sensory constraints influence the innate foraging behavior of A. bicolor and have tested whether bees of different generations evolved behavioral and sensory polyphenism to cope better with the host flowers available in nature when they are active. Behavioral and sensory polyphenisms were tested in choice assays and electroantennographic analyses, respectively. In the bioassays, we found that females of both generations (1) displayed a similar innate relative reliance on visual and olfactory floral cues irrespective of the host plants tested; (2) did not prefer floral cues of Campanula to those of Taraxacum (or vice versa) and (3) did not display an innate preference for yellow and lilac colors. In the electroantennographic analyses, we found that bees of both generations responded to the same set of compounds. Overall, we did not detect seasonal polyphenism in any trait examined. The finding that bees of both generations are not sensory constrained to visit a specific host flower, which is in strict contrast to results from studies with oligolectic bees, suggest that also bees of the second generation have a flexibility in innate foraging behavior and that this is an adaptive trait in A. bicolor. We discuss the significance of our findings in context of the natural history of A. bicolor and in the broader context of host-range evolution in bees.

  8. Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata, Tropiduridae) in a caatinga area of northeastern Brazil

    OpenAIRE

    Ribeiro,Leonardo B.; Freire,Eliza M. X.

    2011-01-01

    This study aimed to analyze the seasonal variation in diet composition and foraging behavior of Tropidurus hispidus (Spix, 1825) and T. semitaeniatus (Spix, 1825), as well as measurement of the foraging intensity (number of moves, time spent stationary, distance traveled and number of attacks on prey items) in a caatinga patch on the state of Rio Grande do Norte, Brazil. Hymenoptera/Formicidae and Isoptera predominated in the diet of both species during the dry season. Opportunistic predation...

  9. Influence of poisoned prey on foraging behavior of ferruginous hawks

    Science.gov (United States)

    Vyas, Nimish B.; Kuncir, Frank; Clinton, Criss C.

    2017-01-01

    We recorded 19 visits by ferruginous hawks (Buteo regalis) over 6 d at two black–tailed prairie dog (Cynomys ludovicianus) subcolonies poisoned with the rodenticide Rozol® Prairie Dog Bait (0.005% chlorophacinone active ingredient) and at an adjacent untreated subcolony. Before Rozol® application ferruginous hawks foraged in the untreated and treated subcolonies but after Rozol® application predation by ferruginous hawks was only observed in the treated subcolonies. We suggest that ferruginous hawks' preference for hunting in the treated subcolonies after Rozol® application was influenced by the availability of easy-to-capture prey, presumably due to Rozol® poisoning. The energetically beneficial behavior of favoring substandard prey may increase raptor encounters with rodenticide exposed animals if prey vulnerability has resulted from poisoning.

  10. Testing Optimal Foraging Theory Using Bird Predation on Goldenrod Galls

    Science.gov (United States)

    Yahnke, Christopher J.

    2006-01-01

    All animals must make choices regarding what foods to eat, where to eat, and how much time to spend feeding. Optimal foraging theory explains these behaviors in terms of costs and benefits. This laboratory exercise focuses on optimal foraging theory by investigating the winter feeding behavior of birds on the goldenrod gall fly by comparing…

  11. Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    James R. Hagler

    2004-01-01

    Full Text Available The sweetpotato whitefly, Bemisia tabaci (Gennadius is fed on by a wide variety of generalist predators, but there is little information on these predator-prey interactions. A laboratory investigation was conducted to quantify the foraging behavior of the adults of five common whitefly predators presented with a surfeit of whitefly eggs, nymphs, and adults. The beetles, Hippodamia convergens Guérin-Méneville and Collops vittatus (Say fed mostly on whitefly eggs, but readily and rapidly preyed on all of the whitefly lifestages. The true bugs, Geocoris punctipes (Say and Orius tristicolor (Say preyed almost exclusively on adult whiteflies, while Lygus hesperus Knight preyed almost exclusively on nymphs. The true bugs had much longer prey handling times than the beetles and spent much more of their time feeding (35-42% than the beetles (6-7%. These results indicate that generalist predators vary significantly in their interaction with this host, and that foraging behavior should be considered during development of a predator-based biological control program for B. tabaci.

  12. Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent.

    Science.gov (United States)

    Levy, Ofir; Dayan, Tamar; Porter, Warren P; Kronfeld-Schor, Noga

    2016-08-01

    Although animals fine-tune their activity to avoid excess heat, we still lack a mechanistic understanding of such behaviors. As the global climate changes, such understanding is particularly important for projecting shifts in the activity patterns of populations and communities. We studied how foraging decisions vary with biotic and abiotic pressures. By tracking the foraging behavior of diurnal desert spiny mice in their natural habitat and estimating the energy and water costs and benefits of foraging, we asked how risk management and thermoregulatory requirements affect foraging decisions. We found that water requirements had the strongest effect on the observed foraging decisions. In their arid environment, mice often lose water while foraging for seeds and cease foraging even at high energetic returns when water loss is high. Mice also foraged more often when energy expenditure was high and for longer times under high seed densities and low predation risks. Gaining insight into both energy and water balance will be crucial to understanding the forces exerted by changing climatic conditions on animal energetics, behavior, and ecology.

  13. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  14. Amygdala Signaling during Foraging in a Hazardous Environment.

    Science.gov (United States)

    Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis

    2015-09-23

    We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of

  15. The foraging behavior of Japanese macaques Macaca fuscata in a forested enclosure: Effects of nutrient composition, energy and its seasonal variation on the consumption of natural plant foods

    Directory of Open Access Journals (Sweden)

    M. Firoj JAMAN, Michael A. HUFFMAN, Hiroyuki TAKEMOTO

    2010-04-01

    Full Text Available In the wild, primate foraging behaviors are related to the diversity and nutritional properties of food, which are affected by seasonal variation. The goal of environmental enrichment is to stimulate captive animals to exhibit similar foraging behavior of their wild counterparts, e.g. to extend foraging time. We conducted a 12-month study on the foraging behavior of Japanese macaques in a semi-naturally forested enclosure to understand how they use both provisioned foods and naturally available plant foods and what are the nutritional criteria of their consumption of natural plants. We recorded time spent feeding on provisioned and natural plant foods and collected the plant parts ingested of their major plant food species monthly, when available. We conducted nutritional analysis (crude protein, crude lipid, neutral detergent fiber-‘NDF’, ash and calculated total non-structural carbohydrate – ‘TNC’ and total energy of those food items. Monkeys spent 47% of their feeding time foraging on natural plant species. The consumption of plant parts varied significantly across seasons. We found that leaf items were consumed in months when crude protein, crude protein-to-NDF ratio, TNC and total energy were significantly higher and NDF was significantly lower, fruit/nut items in months when crude protein and TNC were significantly higher and crude lipid content was significantly lower, and bark items in months when TNC and total energy were higher and crude lipid content was lower. This preliminary investigation showed that the forested enclosure allowed troop members to more fully express their species typical flexible behavior by challenging them to adjust their foraging behavior to seasonal changes of plant item diversity and nutritional content, also providing the possibility for individuals to nutritionally enhance their diet [Current Zoology 56 (2: 198–208, 2010].

  16. Interactions Increase Forager Availability and Activity in Harvester Ants.

    Directory of Open Access Journals (Sweden)

    Evlyn Pless

    Full Text Available Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  17. Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee.

    Science.gov (United States)

    Pope, Nathaniel S; Jha, Shalene

    2018-01-01

    Foraging is an essential process for mobile animals, and its optimization serves as a foundational theory in ecology and evolution; however, drivers of foraging are rarely investigated across landscapes and seasons. Using a common bumblebee species from the western United States (Bombus vosnesenskii), we ask whether seasonal decreases in food resources prompt changes in foraging behavior and space use. We employ a unique integration of population genetic tools and spatially explicit foraging models to estimate foraging distances and rates of patch visitation for wild bumblebee colonies across three study regions and two seasons. By mapping the locations of 669 wild-caught individual foragers, we find substantial variation in colony-level foraging distances, often exhibiting a 60-fold difference within a study region. Our analysis of visitation rates indicates that foragers display a preference for destination patches with high floral cover and forage significantly farther for these patches, but only in the summer, when landscape-level resources are low. Overall, these results indicate that an increasing proportion of long-distance foraging bouts take place in the summer. Because wild bees are pollinators, their foraging dynamics are of urgent concern, given the potential impacts of global change on their movement and services. The behavioral shift toward long-distance foraging with seasonal declines in food resources suggests a novel, phenologically directed approach to landscape-level pollinator conservation and greater consideration of late-season floral resources in pollinator habitat management.

  18. Red-cockaded woodpecker male/female foraging differences in young forest stands.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2010-07-01

    ABSTRACT The Red-cockaded Woodpecker (Picoides borealis) is an endangered species endemic to pine (Pinus spp.) forests of the southeastern United States. I examined Red-cockaded Woodpecker foraging behavior to learn if there were male/female differences at the Savannah River Site, South Carolina. The study was conducted in largely young forest stands (,50 years of age) in contrast to earlier foraging behavior studies that focused on more mature forest. The Redcockaded Woodpecker at the Savannah River site is intensively managed including monitoring, translocation, and installation of artificial cavity inserts for roosting and nesting. Over a 3-year period, 6,407 foraging observations covering seven woodpecker family groups were recorded during all seasons of the year and all times of day. The most striking differences occurred in foraging method (males usually scaled [45% of observations] and females mostly probed [47%]),substrate used (females had a stronger preference [93%] for the trunk than males [79%]), and foraging height from the ground (mean 6 SE foraging height was higher for males [11.1 6 0.5 m] than females [9.8 6 0.5 m]). Niche overlap between males and females was lowest for substrate (85.6%) and foraging height (87.8%), and highest for tree species (99.0%), tree condition (98.3%), and tree height (96.4%). Both males and females preferred to forage in older, large pine trees. The habitat available at the Savannah River Site was considerably younger than at most other locations, but the pattern of male/female habitat partitioning observed was similar to that documented elsewhere within the range attesting to the species’ ability to adjust behaviorally.

  19. Moving evidence into practice: cost analysis and assessment of macaques' sustained behavioral engagement with videogames and foraging devices.

    Science.gov (United States)

    Bennett, Allyson J; Perkins, Chaney M; Tenpas, Parker D; Reinebach, Alma L; Pierre, Peter J

    2016-12-01

    Environmental enrichment plans for captive nonhuman primates often include provision of foraging devices. The rationale for using foraging devices is to promote species-typical activity patterns that encourage physical engagement and provide multi-sensory stimulation. However, these devices have been shown to be ineffective at sustaining manipulation over long periods of time, and often produce minimal cognitive engagement. Here we use an evidence-based approach to directly compare the amount of object-directed behavior with a foraging device and a computer-based videogame system. We recorded 11 adult male rhesus monkeys' interactions with a foraging device and two tasks within a joystick videogame cognitive test battery. Both techniques successfully produced high levels of engagement during the initial 20 min of observation. After 1 hr the monkeys manipulated the foraging device significantly less than the joystick, F(2,10) = 43.93, P videogame play for the majority of a 5 hr period, provided that they received a 94 mg chow pellet upon successful completion of trials. Using a model approach, we developed previously as a basis for standardized cost:benefit analysis to inform facility decisions, we calculated the comprehensive cost of incorporating a videogame system as an enrichment strategy. The videogame system has a higher initial cost compared to widely-used foraging devices, however, the ongoing labor and supply costs are relatively low. Our findings add to two decades of empirical studies by a number of laboratories that have demonstrated the successful use of videogame-based systems to promote sustained non-social cognitive engagement for macaques. The broader significance of the work lies in the application of a systematic approach to compare and contrast enrichment strategies and encourage evidence-based decision making when choosing an enrichment strategy in a manner that promotes meaningful cognitive enrichment to the animals. © 2016 Wiley

  20. Moving Evidence into Practice: Cost Analysis and Assessment of Macaques’ Sustained Behavioral Engagement with Videogames and Foraging Devices

    Science.gov (United States)

    Bennett, Allyson J.; Perkins, Chaney M.; Tenpas, Parker D.; Reinebach, Alma L.; Pierre, Peter J.

    2017-01-01

    Environmental enrichment plans for captive nonhuman primates often include provision of foraging devices. The rationale for using foraging devices is to promote species-typical activity patterns that encourage physical engagement and provide multi-sensory stimulation. However, these devices have been shown to be ineffective at sustaining manipulation over long periods of time, and often produce minimal cognitive engagement. Here we use an evidence-based approach to directly compare the amount of object-directed behavior with a foraging device and a computer-based videogame system. We recorded 11adult male rhesus monkeys’ interactions with a foraging device and two tasks within a joystick videogame cognitive test battery. Both techniques successfully produced high levels of engagement during the initial 20-min of observation. After 1-hr the monkeys manipulated the foraging device significantly less than the joystick, F(2,10)= 43.93, p videogame play for the majority of a 5-hr period, provided that they received a 94mg chow pellet upon successful completion of trials. Using a model approach we developed previously as a basis for standardized cost:benefit analysis to inform facility decisions, we calculated the comprehensive cost of incorporating a videogame system as an enrichment strategy. The videogame system has a higher initial cost compared to widely-used foraging devices however, the ongoing labor and supply costs are relatively low. Our findings add to two decades of empirical studies by a number of laboratories that have demonstrated the successful use of videogame-based systems to promote sustained non-social cognitive engagement for macaques. The broader significance of the work lies in the application of a systematic approach to compare and contrast enrichment strategies and encourage evidence-based decision making when choosing an enrichment strategy in a manner that promotes meaningful cognitive enrichment to the animals. PMID:27404766

  1. Animal-Borne Imaging Reveals Novel Insights into the Foraging Behaviors and Diel Activity of a Large-Bodied Apex Predator, the American Alligator (Alligator mississippiensis)

    Science.gov (United States)

    Nifong, James C.; Nifong, Rachel L.; Silliman, Brian R.; Lowers, Russell H.; Guillette, Louis J.; Ferguson, Jake M.; Welsh, Matthew; Abernathy, Kyler; Marshall, Greg

    2014-01-01

    Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales) can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam) to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis) in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour) as well as the probability of prey-capture success (mean = 0.52 per attack) were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals’ experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal

  2. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus).

    Science.gov (United States)

    Mallott, Elizabeth K; Garber, Paul A; Malhi, Ripan S

    2017-02-01

    Invertebrate foraging strategies in nonhuman primates often require complex extractive foraging or prey detection techniques. As these skills take time to master, juveniles may have reduced foraging efficiency or concentrate their foraging efforts on easier to acquire prey than adults. We use DNA barcoding, behavioral observations, and ecological data to assess age-based differences in invertebrate prey foraging strategies in a group of white-faced capuchins (Cebus capucinus) in northeastern Costa Rica. Invertebrate availability was monitored using canopy traps and sweep netting. Fecal samples were collected from adult female, adult male, and juvenile white-faced capuchins (n = 225). COI mtDNA sequences were compared with known sequences in GenBank and the Barcode of Life Database. Frequencies of Lepidoptera and Hymenoptera consumption were higher in juveniles than in adults. A significantly smaller proportion of juvenile fecal samples contained Gryllidae and Cercopidae sequences, compared with adults (0% and 4.2% vs. 4.6% and 12.5%), and a significantly larger proportion contained Tenthredinidae, Culicidae, and Crambidae (5.6%, 9.7%, and 5.6% vs. 1.3%, 0.7%, and 1.3%). Juveniles spent significantly more time feeding and foraging than adults, and focused their foraging efforts on prey that require different skills to capture or extract. Arthropod availability was not correlated with foraging efficiency, and the rate of consumption of specific orders of invertebrates was not correlated with the availability of those same taxa. Our data support the hypothesis that juveniles are concentrating their foraging efforts on different prey than adults, potentially focusing their foraging efforts on more easily acquired types of prey. © 2016 Wiley Periodicals, Inc.

  3. A Novel Plant Root Foraging Algorithm for Image Segmentation Problems

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a new type of biologically-inspired global optimization methodology for image segmentation based on plant root foraging behavior, namely, artificial root foraging algorithm (ARFO. The essential motive of ARFO is to imitate the significant characteristics of plant root foraging behavior including branching, regrowing, and tropisms for constructing a heuristic algorithm for multidimensional and multimodal problems. A mathematical model is firstly designed to abstract various plant root foraging patterns. Then, the basic process of ARFO algorithm derived in the model is described in details. When tested against ten benchmark functions, ARFO shows the superiority to other state-of-the-art algorithms on several benchmark functions. Further, we employed the ARFO algorithm to deal with multilevel threshold image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the suitability of the proposed method for solving such problem.

  4. Variation in foraging behavior and body mass in broods of Emperor Geese (Chen canagica): Evidence for interspecific density dependence

    Science.gov (United States)

    Schmutz, J.A.; Laing, K.K.

    2002-01-01

    Broods of geese spend time feeding according to availability and quality of food plants, subject to inherent foraging and digestive constraints. We studied behavioral patterns of broods of Emperor Geese (Chen canagica) on the Yukon–Kuskokwim Delta, Alaska, and examined how feeding and alert behavior varied in relation to habitat and goose density. During 1994–1996, time spent feeding by Emperor Goose goslings and adult females was positively related to multispecies goose densities near observation blinds, and not to just Emperor Goose density. Similarly, body mass of Emperor Goose goslings was more strongly related (negatively) to multispecies goose densities than intraspecific densities. A grazing experiment in 1995 indicated that most above ground primary production by Carex subspathacea, a preferred food plant, was consumed by grazing geese. Those results demonstrate that interspecific competition for food occurred, with greatest support for goslings whose behavioral repertoire is limited primarily to feeding, digesting, and resting. Although the more abundant Cackling Canada Geese (Branta canadensis minima) differed from Emperor Geese in their preferred use of habitats during brooding rearing (Schmutz 2001), the two species occurred in equal abundance in habitats preferred by Emperor Goose broods. Thus, Cackling Canada Geese were a numerically significant competitor with Emperor Geese. Comparing these results to an earlier study, time spent feeding by goslings, adult females, and adult males were greater during 1993–1996 than during 1985–1986. During the interval between those studies, densities of Cackling Canada Geese increased two to three times whereas Emperor Goose numbers remained approximately stable, which implies that interspecific competition affected foraging behavior over a long time period. These density-dependent changes in foraging behavior and body mass indicate that interspecific competition affects nutrient acquisition and gosling

  5. Foraging behavior of selected insectivorous birds in Cauvery Delta region of Nagapattinam District, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    S. Asokan

    2010-02-01

    Full Text Available This paper reports the foraging behavior of five insectivorous birds, namely White-breasted Kingfisher Halcyon smyrnensis, Small Bee-eater Merops orientalis, Indian Roller Coracias benghalensis, Common Myna Acridotheres tristis and Black Drongo Dicrurus macrocercus in Nagapattinam District of Tamil Nadu, India. The birds used a variety of perch types for hunting insect prey; in general the electric power line was a common perch type used by all species except the Common Myna. The perching and foraging height used by birds were classified into 3 meter categories, up to 12m. Aerial feeding or hawking in Bee-eaters and ground feeding in Common Mynas were major feeding techniques, recorded 68% and 86% of the time respectively. The other three species used gleaning as a feeding technique. The highest niche overlap was recorded between Indian Rollers and Black Drongos and between White-breasted Kingfishers and Indian Rollers.

  6. A Breath of Fresh Air in Foraging Theory: The Importance of Wind for Food Size Selection in a Central-Place Forager.

    Science.gov (United States)

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2017-09-01

    Empirical data about food size carried by central-place foragers do not often fit with the optimum predicted by classical foraging theory. Traditionally, biotic constraints such as predation risk and competition have been proposed to explain this inconsistency, leaving aside the possible role of abiotic factors. Here we documented how wind affects the load size of a central-place forager (leaf-cutting ants) through a mathematical model including the whole foraging process. The model showed that as wind speed at ground level increased from 0 to 2 km/h, load size decreased from 91 to 30 mm 2 , a prediction that agreed with empirical data from windy zones, highlighting the relevance of considering abiotic factors to predict foraging behavior. Furthermore, wind reduced the range of load sizes that workers should select to maintain a similar rate of food intake and decreased the foraging rate by ∼70% when wind speed increased 1 km/h. These results suggest that wind could reduce the fitness of colonies and limit the geographic distribution of leaf-cutting ants. The developed model offers a complementary explanation for why load size in central-place foragers may not fit theoretical predictions and could serve as a basis to study the effects of other abiotic factors that influence foraging.

  7. Dynamic optimal foraging theory explains vertical migrations of bigeye tuna

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Sommer, Lene; Evans, Karen

    2016-01-01

    Bigeye tuna are known for remarkable daytime vertical migrations between deep water, where food is abundant but the water is cold, and the surface, where water is warm but food is relatively scarce. Here we investigate if these dive patterns can be explained by dynamic optimal foraging theory...... behaves such as to maximize its energy gains. The model therefore provides insight into the processes underlying observed behavioral patterns and allows generating predictions of foraging behavior in unobserved environments...

  8. Information Foraging in E-Voting

    DEFF Research Database (Denmark)

    Vatrapu, Ravi; Robertson, Scott

    2009-01-01

    with others. Interaction analysis of the case study data consisted of applying Information Foraging Theory to understand participant specific behaviors in searching and browsing. Case study results show skewed time allocation to activities, a tradeoff between enrichment vs. exploitation of search results...

  9. By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle

    Science.gov (United States)

    Simonis, Anne Elizabeth

    The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian

  10. Canopy characteristics, animal behavior and forage intake by goats grazing on Tanzania-grass pasture with different heights - doi: 10.4025/actascianimsci.v34i4.14544

    Directory of Open Access Journals (Sweden)

    Maurílio Souza dos Santos

    2012-10-01

    Full Text Available This study evaluated the influence of Tanzania-grass sward height (30, 50, 70 and 90 cm on the morphological characteristics of the canopy, grazing behavior and forage intake by adult Anglo Nubian female goats. A completely randomized experimental design was employed, with two replicates in space and two replicates in time. Six animals were used to assess the grazing behavior, and four, the ingestion process. The rise in sward height increased the forage and leaf mass, the percentages of stem and dead material, and reduced the leaf stem-1 ratio. Above 50 cm there was an increase in grazing time and a decrease in leisure time. A positive linear correlation was detected between sward height and bite depth. The consumed forage mass, ingestion rate and daily intake were higher at 50 cm, indicating that the other heights reduced the intake process. The sward height was negatively correlated to the bite rate and positively to the bite time. The sward height of 50 cm presents the best combination of features, favoring the grazing and ingestive behavior of female adult goats.

  11. Effect of early weaning and concentrate supplementation at forage intake and ingestive behavior of sheep grazing Tifton 85 (Cynodon spp.

    Directory of Open Access Journals (Sweden)

    Marina Gabriela Berchiol da Silva

    2012-12-01

    Full Text Available The objective of this study was to evaluate then early weaning and concentrate supplementation effect at pasture characteristics, forage intake and ingestive behavior of lambs grazing Tifton 85 (Cynodon spp.. A randomized block design was used with four treatments, three replications and five lambs per replicate. A total of 60 Suffolk lambs, that 36 were females and 24 steers. The treatments had corresponded to the combinations between early weaning precocious and concentrate supplementation strategies, that resulted in the following ones finishing systems: 1 lambs kept with mothers without supplementation; 2 lambs kept with mothers supplemented with concentrate in creep feeding at 2% of body weigh (BW in DM/day; 3 weaned lambs at 45 ± 5 days without supplementation and 4 weaned lambs at 45 ± 5 days and supplemented with concentrate at 2% of BW in DM/day. Grazing utilization method was continuous stocking with adjustment every 21 days, to maintain forage offer at 12% of BW in DM/day. To characterize the pastoral environment was assessed: morphological composition of pasture. There were made four observations the behavioral activities for individually lambs per 24 hours, such as: grazing, ruminating, suckling, supplementation, and others activities. The intake rate was measured using the technique of double sampling and determination of bite rate was made by visual observation of the number of bits made for animal. The behavior and the distribution of daily activities made by the lambs are influenced for the strategies evaluated. The exclusive presence of milk or supplement concentrate in the diet are important modulators of grazing activity, and the absence of these nutrient sources were offset per an increase in grazing time. This response considered the decrease in nutritional support and lower efficiency in harvesting the forage by lambs. The weaning influenced the morphological characteristics of the pasture, which showed favored the

  12. Meeting reproductive demands in a dynamic upwelling system: foraging strategies of a pursuit-diving seabird, the marbled murrelet

    Science.gov (United States)

    M. Zachariah Peery; Scott H. Newman; Curt D. Storlazzi; Steven R. Beissinger

    2009-01-01

    Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes...

  13. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Railsback, Steven F; Harvey, Bret C

    2013-02-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can address feedbacks but does not provide foraging theory for unique individuals in variable environments. 'State- and prediction-based theory' (SPT) is a new approach that combines existing trade-off methods with routine updating: individuals regularly predict future food availability and risk from current conditions to optimize a fitness measure. SPT can reproduce a variety of realistic foraging behaviors and trait-mediated trophic interactions with feedbacks, even when the environment is unpredictable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The foraging behavior of the Large-headed Flatbill, Ramphotrigon megacephalum and the Dusky-tailed Flatbill, Ramphotrigon fuscicauda (Aves: Tyrannidae

    Directory of Open Access Journals (Sweden)

    Tomaz Nascimento de Melo

    Full Text Available ABSTRACT Southwestern Amazonia has great bird diversity which includes birds specialized in bamboo forests. In this region, bamboo is considered a key element of the landscape. The objective of this study was to investigate and describe the foraging behavior of the Large-headed Flatbill, Ramphotrigon megacephalum (Swainson, 1835 and the Dusky-tailed Flatbill, Ramphotrigon fuscicauda Chapman, 1925, which occur sympatrically in the region and are considered bamboo specialists. This study was conducted between November 2013 and September 2014, within two fragments in the eastern portion of the state of Acre: Fazenda Experimental Catuaba, in the municipality of Senador Guiomard; and Reserva Florestal Humaitá, in Porto Acre. A total of 109 and 97 foraging events were registered, for the Large-headed Flatbill and the Dusky-tailed Flatbill, respectively. The two species frequently used bamboos for searching and capturing their prey. However, the large-headed Flatbill was more specialized in bamboo substrates. Both species use similar foraging techniques and the differences found between the two are minor, but when taken together, these differences may explain their ability to co-exist.

  15. The hydrodynamics of linear accelerations in bluegill sunfish, Lepomis macrochirus

    Science.gov (United States)

    Wise, Tyler; Boden, Alex; Schwalbe, Margot; Tytell, Eric

    2015-11-01

    As fish swim, their body interacts with the fluid around them in order to generate thrust. In this study, we examined the hydrodynamics of linear acceleration by bluegill sunfish, Lepomis macrochirus, which swims using a carangiform mode. Carangiform swimmers primarily use their caudal fin and posterior body for propulsion, which is different from anguilliform swimmers, like eels, that undulate almost their whole body to swim. Most previous studies have examined steady swimming, but few have looked at linear accelerations, even though most fish do not often swim steadily. During steady swimming, thrust and drag forces are balanced, which makes it difficult to separate the two, but during acceleration, thrust exceeds drag, making it easier to measure; this may reveal insights into how thrust is produced. This study used particle image velocimetry (PIV) to compare the structure of the wake during steady swimming and acceleration and to estimate the axial force. Axial force increased during acceleration, but the orientation of the vortices did not differ between steady swimming and acceleration, which is different than anguilliform swimmers, whose wakes change structure during acceleration. This difference may point to fundamental differences between the two swimming modes. This material is based upon work supported by the U. S. Army Research Office under grant number W911NF-14-1-0494.

  16. Quasi-planktonic behavior of foraging top marine predators

    Science.gov (United States)

    Della Penna, Alice; de Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; D'Ovidio, Francesco

    2015-12-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  17. King eider foraging effort during the pre-breeding period in Alaska

    Science.gov (United States)

    Oppel, Steffen; Powell, Abby N.; Butler, Malcolm G.

    2011-01-01

    For reproduction, many arctic-nesting migratory birds rely on nutrients obtained on the breeding grounds, so they devote sufficient time to foraging immediately prior to nesting. However, little is known about the increase in foraging effort necessary to meet the energetic requirements of reproduction. In early June 2006 and 2008, we quantified the proportion of time spent foraging before breeding by a large sea duck, the King Eider (Somateria spectabilis), on its breeding grounds in northern Alaska. During >235 hours of behavioral observations, both male and female King Eiders spent >50% of the day loafing (resting, sleeping, comfort behavior, or being alert). Females foraged on average 30% of the time (mean 7.2 hr day-1,95% CI 6.0-8.4 hr day-1), three times as much as males (9%; 2.3 hr day-1, 95% CI 1.5–2.8 hr day-1). The most common prey in ponds where the eiders foraged were chironomid larvae and worms ranging in length from 1 to 30 mm. If the King Eider's daily energy expenditure on its breeding grounds is similar to values published for related species, it would need to ingest only 0.2–0.6 g dry mass of invertebrates per minute of foraging to meet its energetic requirements. Males did not lose body mass before breeding, and we assume that their foraging effort was sufficient for energy balance. Therefore, female King Eiders appear to triple their foraging effort over maintenance requirements to meet the energetic challenges of egg formation.

  18. Parasitized honey bees are less likely to forage and carry less pollen.

    Science.gov (United States)

    Lach, Lori; Kratz, Madlen; Baer, Boris

    2015-09-01

    Research into loss of pollination capacity has focused primarily on documenting pollinator declines and their causes with comparatively little attention paid to how stressors may affect pollinating behavior of surviving pollinators. The European honey bee, Apis mellifera is one of the world's most important generalist pollinators, and Nosema apis is a widespread microsporidian gut parasite of adult A. mellifera. We individually fed 960 newly eclosed A. mellifera workers either a sucrose solution or 400 N. apis spores in a sucrose solution and tagged them with a unique radio frequency identification (RFID) tag to monitor their foraging behavior. We found spore-fed bees were less likely to forage than those fed sugar only. Those that did forage started foraging when they were older and stopped foraging when they were younger than bees fed sugar only. However, inoculated and non-inoculated bees did not significantly differ in the number of foraging trips taken per day, the total hours foraged over their lifetime, or homing ability. Inoculated returning foragers were 4.3 times less likely to be carrying available pollen than non-inoculated returning foragers and the number of pollen grains carried was negatively correlated with the number of N. apis spores. In an arena of artificial flowers, inoculated bees had a tendency (p=0.061) to choose sugar flowers over pollen flowers, compared to non-inoculated bees which visited pollen and sugar flowers equally. These results demonstrate that even a relatively low dose of a widespread disease of A. mellifera may adversely affect bees' ability to pollinate. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.A.; Robinson, G.E. [Univ. of Illinois, Urbana, IL (United States); Conner, J.K. [Univ. of Illinois, Champaign, IL (United States)

    1997-01-01

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount of solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.

  20. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Collins, S.A.; Robinson, G.E.; Conner, J.K.

    1997-01-01

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount of solar UV-B reaching the earth's surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab

  1. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Science.gov (United States)

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  2. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Directory of Open Access Journals (Sweden)

    Nobuo Kokubun

    Full Text Available Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting occurred over the ocean basin (bottom depth >1,000 m. Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1 flight, characterized by regular wing flapping, (2 resting on water, characterized by non-active behavior, and (3 foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3% compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%. The mean duration of foraging (2.4 ± 2.9 min was shorter than that of flight between prey patches (24.2 ± 53.1 min. Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight. Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  3. Record and foraging behavior of ants (Hymenoptera, Formicidae in vertebrate carcasses

    Directory of Open Access Journals (Sweden)

    Tatiane Tagliatti Maciel

    2016-12-01

    Full Text Available Knowing the importance of participation by insects at cadaverous decomposition processes, and the limited use of the family Formicidae in criminal investigations, this study aims to record the foraging activity of four genera of ants in carcasses of birds and mammals. Observations occurred accidentally in two locations in the State of Minas Gerais, Brazil. In total, seven species of ants foraging in eight vertebrate carcasses were recorded. In addition, the study reported for the first time the presence of Wasmannia in carcasses in Brazil.

  4. Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds.

    Science.gov (United States)

    Peck, Hannah L; Pringle, Henrietta E; Marshall, Harry H; Owens, Ian P F; Lord, Alexa M

    2014-05-01

    Resource competition is one potential behavioral mechanism by which invasive species can impact native species, but detecting this competition can be difficult due to the interactions that variable environmental conditions can have on species behavior. This is particularly the case in urban habitats where the disturbed environment can alter natural behavior from that in undisturbed habitats. The rose-ringed parakeet ( Psittacula krameri ), is an increasingly common invasive species, predominantly associated with large urban centers. Using an experimental approach, we tested the behavioral responses of native garden birds in response to the presence of a rose-ringed parakeet versus the presence of a similarly sized and dominant native bird, the great spotted woodpecker ( Dendrocopos major ). Parakeet presence significantly reduced feeding rates and increased vigilance among native birds compared with our control treatments. Of visits made by native birds in the presence of a parakeet, feeding was more likely to occur in sites within the parakeet range compared with sites outside, suggesting some habituation of native birds has occurred following prior exposure to parakeets but overall foraging behavior is still disrupted. The results of our study suggest that nonnative species can have complex and subtle impacts on native fauna and show that a nonnative competitor can impact native species simply through their presence near resources.

  5. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision.

    Science.gov (United States)

    Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Ghaffari, M H

    2017-02-01

    The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage

  6. Snag Condition and Woodpecker Foraging Ecology in a Bottomland Hardwood Forest

    Science.gov (United States)

    Richard N. Conner; Stanley D. Jones; Gretchen D. Jones

    1994-01-01

    We studied woodpecker foraging behavior, snag quality, and surrounding habitat in a bottomland hardwood forest in the Stephen F. Austin Experimental Forest from December 1984 through November 1986. The amount and location of woodpecker foraging excavations indicated that woodpeckers excavated mainly at the well-decayed tops and bases of snags. Woodpeckers preferred to...

  7. [Activity patterns and foraging behavior of Apis cerana cerana in the urban gardens in winter].

    Science.gov (United States)

    Chen, Fa-jun; Yang, Qing-qing; Long, Li; Hu, Hong-mei; Duan, Bin; Chen, Wen-nian

    2016-01-01

    Bees and other pollinating insects are the important parts of biodiversity due to their great role in plant reproduction and crop production. To explore the role of city garden in native bees conservation, activity patterns, visiting behaviors and flowering plants with nectar or pollen were recorded in south Sichuan in winter. The results showed that, worker bees (Apis cerana cerana) were active to collect food out hive under suitable weather conditions, the duration of working was long. Peaks of the number of outgoing, entrance and foragers without pollen appeared at 14:00-15:00, and bimodal patterns were observed. While, peak of bees with pollen appeared at 11:00, and a unimodal pattern was observed. Time significantly affected the activity of workers. The workload of honey bees on nectar and pollen collection were different, just less than twenty percent foragers carrying pollen. Temperature and humidity also affected flights of bees to some degree, and bee activities showed similar patterns on different days. However, the activities had diverse characteristics in some time. Though a less number of plants were in flowering, most of them could be utilized by A. cerana cerana, and colonies could effectively get the food resource by behavior adjustment. In addition, visiting activities of bees on the flowers of main garden plants, such as Camellia japonica, showed obvious rhythm. Increasing the flowering plants with nectar and pollen in winter by scientific management of urban gardens would facilitate the creation of suitable habitats for A. cerana cerana and maintaining the wild population.

  8. The regulation of ant colony foraging activity without spatial information.

    Directory of Open Access Journals (Sweden)

    Balaji Prabhakar

    Full Text Available Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.

  9. Foraging ecology of least terns and piping plovers nesting on Central Platte River sandpits and sandbars

    Science.gov (United States)

    Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.

    2012-01-01

    Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.

  10. forage systems mixed with forage legumes grazed by lactating cows

    Directory of Open Access Journals (Sweden)

    Clair Jorge Olivo

    2017-02-01

    Full Text Available Current research evaluates productivity, stocking and nutritional rates of three forage systems with Elephant Grass (EG + Italian Ryegrass (IR + Spontaneous Growth Species (SGS, without forage legumes; EG + IR + SGS + Forage Peanut (FP, mixed with FP; and EG + IR + SGS + Red Clover (RC, mixed with RC, in rotational grazing method by lactating cows. IR developed between rows of EG. FP was maintained, whilst RC was sow to respective forage systems. The experimental design was completely randomized, with three treatments and two replication, subdivided into parcels over time. Mean rate for forage yield and average stocking rate were 10.6, 11.6 and 14.4 t ha-1; 3.0, 2.8 and 3.1 animal unit ha-1 day-1, for the respective systems. Levels of crude protein and total digestible nutrients were 17.8, 18.7 and 17.5%; 66.5, 66.8 and 64.8%, for the respective forage systems. The presence of RC results in better and higher forage yield in the mixture, whilst FP results in greater control of SGS. The inclusion of forage legumes in pasture systems provides better nutritional rates.

  11. Persistence of forage fish ‘hot spots’ and its association with foraging Steller sea lions (Eumetopias jubatus) in southeast Alaska

    Science.gov (United States)

    Gende, Scott M.; Sigler, Michael F.

    2006-02-01

    Whereas primary and secondary productivity at oceanic 'hotspots' may be a function of upwelling and temperature fronts, the aggregation of higher-order vertebrates is a function of their ability to search for and locate these areas. Thus, understanding how predators aggregate at these productive foraging areas is germane to the study of oceanic hot spots. We examined the spatial distribution of forage fish in southeast Alaska for three years to better understand Steller sea lion ( Eumetopias jubatus) aggregations and foraging behavior. Energy densities (millions KJ/km 2) of forage fish were orders of magnitude greater during the winter months (November-February), due to the presence of schools of overwintering Pacific herring ( Clupea pallasi). Within the winter months, herring consistently aggregated at a few areas, and these areas persisted throughout the season and among years. Thus, our study area was characterized by seasonally variable, highly abundant but highly patchily distributed forage fish hot spots. More importantly, the persistence of these forage fish hot spots was an important characteristic in determining whether foraging sea lions utilized them. Over 40% of the variation in the distribution of sea lions on our surveys was explained by the persistence of forage fish hot spots. Using a simple spatial model, we demonstrate that when the density of these hot spots is low, effort necessary to locate these spots is minimized when those spots persist through time. In contrast, under similar prey densities but lower persistence, effort increases dramatically. Thus an important characteristic of pelagic hot spots is their persistence, allowing predators to predict their locations and concentrate search efforts accordingly.

  12. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish

  13. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

    Directory of Open Access Journals (Sweden)

    Hailey N Scofield

    Full Text Available The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera. Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults. Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus

  14. Temporal pattern of foraging and microhabitat use by Galápagos marine iguanas, Amblyrhynchus cristatus.

    Science.gov (United States)

    Buttemer, William A; Dawson, William R

    1993-10-01

    We observed a colony of marine iguanas (Amblyrhynchus cristatus) on Isla Fernandina, Galápagos, Ecuador, while measuring local micrometeorological and tidal conditions. We found size-related differences in foraging mode, with smaller iguanas feeding intertidally during daytime low tides and larger iguanas feeding subtidally. Despite having greater opportunity, subtidal foragers did not time their foraging bouts or exploit their environment in ways that optimized their period at high body temperature. Instead, the foraging schedule of these iguanas served to maximize their rate of rewarming following emergence from the cool sea. Intertidal feeders, by contrast, showed much greater behavioral flexibility in attempting to exploit their thermal environment. We suggest that size-ordered differences in marine iguana thermoregulatory behavior reflect underlying ontogenetic changes in costs and benefits of thermoregulation due to differences in predator pressure, quantity of food and electrolytes taken at each feeding, mode of foraging, and agonistic tendencies.

  15. Human disturbance provides foraging opportunities for birds in primary subalpine forest

    DEFF Research Database (Denmark)

    DuBay, Shane G.; Hart Reeve, Andrew; Wu, Yongjie

    2017-01-01

    or Cettia major, and Heteroxenicus stellatus. This behavior is likely a modification of pre-existing interspecific foraging associations with pheasants and large mammals in the region. These larger animals disturb the earth and lower vegetation layers upon passage and while foraging, exposing previously...... opportunities. We cut and cleared small swaths of dense bamboo growth for an unrelated study. Multiple insectivorous species were recruited to the cleared areas, foraging extensively in the disturbed earth, often within 1 m of us. These species included Tarsiger chrysaeus, Tarsiger indicus, Cettia brunnifrons...

  16. Variability in the Foraging Distribution and Diet of Cape Gannets between the Guard and Post-guard Phases of the Breeding Cycle

    Directory of Open Access Journals (Sweden)

    Jonathan A. Botha

    2018-02-01

    Full Text Available During breeding, seabirds are central place foragers and are sensitive to changes in local prey availability. As the breeding season progresses, foraging behavior and distribution is expected to change in response to possible changes in local prey availability. In addition, adult gender, and the increasing nutritional demands of a growing chick may also influence the foraging behavior of individuals. At present, relatively few studies have assessed the foraging behavior of adult birds during the late post-guard stages of chick rearing. Through a combination of GPS tracking and diet sampling we investigated the foraging distances, spatial distribution, and prey composition of adult Cape gannets (Morus capensis during the guard and post-guard stages of chick rearing. We found no clear evidence for consistent sex-specific differences in foraging distances and spatial distribution during the guard stage, although marginal differences in the location of core foraging areas during the post-guard stage were apparent. Results, however, revealed a clear increase in foraging range from the early guard to the late post-guard stage of chick rearing. During December the diet was comprised almost exclusively of anchovy (Engraulis encrasicolus, the proportion of which had decreased significantly in the diet by January. This was mirrored by a substantial increase in the proportion of saury (Scomberesox saurus. These results suggest that Cape gannets show flexibility in the foraging behavior and diet, which may be related to changes in the abundance and distribution of prey or may reflect changes in the energetic requirements of the growing offspring. This study provides the first assessment of Cape gannet foraging behavior and spatial distribution during the post-guard stage of chick rearing. The importance of considering intra-annual variability in foraging distribution when using seabird tracking data in trophic and marine spatial planning studies are

  17. Is there an endogenous tidal foraging rhythm in marine iguanas?

    Science.gov (United States)

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related

  18. Foraging for brain stimulation: toward a neurobiology of computation.

    Science.gov (United States)

    Gallistel, C R

    1994-01-01

    The self-stimulating rat performs foraging tasks mediated by simple computations that use interreward intervals and subjective reward magnitudes to determine stay durations. This is a simplified preparation in which to study the neurobiology of the elementary computational operations that make cognition possible, because the neural signal specifying the value of a computationally relevant variable is produced by direct electrical stimulation of a neural pathway. Newly developed measurement methods yield functions relating the subjective reward magnitude to the parameters of the neural signal. These measurements also show that the decision process that governs foraging behavior divides the subjective reward magnitude by the most recent interreward interval to determine the preferability of an option (a foraging patch). The decision process sets the parameters that determine stay durations (durations of visits to foraging patches) so that the ratios of the stay durations match the ratios of the preferabilities.

  19. Foraging Behavior in Golden Hamsters (Mesocricetus Auratus: Effect of the Distance among Multiple Patches

    Directory of Open Access Journals (Sweden)

    Felipe Cabrera

    2008-05-01

    Full Text Available The pattern of travel and the efficiency in foraging behavior was evaluated in four hamsters searching for food within an enclosure with multiple patches. Two different distances among patches were randomly arranged: Near-Patches (10 cm separation and Distant-Patches (21.5 cm separation. Subjects obtained the food by mounting over the cylinders (stations placed in the enclosure of 110 cm2. Results showed that in both, Near and Distant conditions, the distance between responses was longer in late stages of the trials then in early stages. Nonetheless, the most choices to adjacent stations were in Distant-Patches condition, while skips and diagonal-station choices were more frequently showed in the Near-Patches condition.

  20. Histopathological changes induced by malathion in the gills of bluegill Lepomis macrochirus

    Energy Technology Data Exchange (ETDEWEB)

    Richmonds, C.; Dutta, H.M. (Kent State Univ., OH (USA))

    1989-07-01

    Malathion is a widely used broad spectrum organophosphorus insecticide. Its wide use provides many occasions for its entry into aquatic environments. The presence of this chemical in the aquatic environment would adversely affect many non-target species like fish. About 50 to 90% of the absorbed malathion can be eliminated in one to three days by the fish. About 25% of malathion remained in river water after 2 wk, and 10% remained after 4 wk from the time of its entry. Respiratory distress is one of the early symptoms of pesticide poisoning. These toxicants appear to cause a loss of adhesion between the epithelial cells and the underlying pillar cell system, accompanied by a collapse of the structural integrity of the secondary lamellae. Gills are important in respiration as well as osmoregulation of the fish. Therefore it was decided to study the effects of malathion on the gills of bluegill sunfish, Lepomis macrochirus. Bluegills were selected for this study due to the following reasons: (1) Bluegills are more sensitive to malathion when compared to fathead minnows and goldfish. (2) They are important both as edible and game fish. (3) They are easily available and easy to maintain in the laboratory.

  1. Subjective costs drive overly patient foraging strategies in rats on an intertemporal foraging task.

    Science.gov (United States)

    Wikenheiser, Andrew M; Stephens, David W; Redish, A David

    2013-05-14

    Laboratory studies of decision making often take the form of two-alternative, forced-choice paradigms. In natural settings, however, many decision problems arise as stay/go choices. We designed a foraging task to test intertemporal decision making in rats via stay/go decisions. Subjects did not follow the rate-maximizing strategy of choosing only food items associated with short delays. Instead, rats were often willing to wait for surprisingly long periods, and consequently earned a lower rate of food intake than they might have by ignoring long-delay options. We tested whether foraging theory or delay discounting models predicted the behavior we observed but found that these models could not account for the strategies subjects selected. Subjects' behavior was well accounted for by a model that incorporated a cost for rejecting potential food items. Interestingly, subjects' cost sensitivity was proportional to environmental richness. These findings are at odds with traditional normative accounts of decision making but are consistent with retrospective considerations having a deleterious influence on decisions (as in the "sunk-cost" effect). More broadly, these findings highlight the utility of complementing existing assays of decision making with tasks that mimic more natural decision topologies.

  2. GPS tracking devices reveal foraging strategies of black-legged kittiwakes

    Science.gov (United States)

    Kotzerka, Jana; Garthe, Stefan; Hatch, Scott A.

    2010-01-01

    The Black-legged Kittiwake Rissa tridactyla is the most abundant gull species in the world, but some populations have declined in recent years, apparently due to food shortage. Kittiwakes are surface feeders and thus can compensate for low food availability only by increasing their foraging range and/or devoting more time to foraging. The species is widely studied in many respects, but long-distance foraging and the limitations of conventional radio telemetry have kept its foraging behavior largely out of view. The development of Global Positioning System (GPS) loggers is advancing rapidly. With devices as small as 8 g now available, it is possible to use this technology for tracking relatively small species of oceanic birds like kittiwakes. Here we present the first results of GPS telemetry applied to Black-legged Kittiwakes in 2007 in the North Pacific. All but one individual foraged in the neritic zone north of the island. Three birds performed foraging trips only close to the colony (within 13 km), while six birds had foraging ranges averaging about 40 km. The maximum foraging range was 59 km, and the maximum distance traveled was 165 km. Maximum trip duration was 17 h (mean 8 h). An apparently bimodal distribution of foraging ranges affords new insight on the variable foraging behaviour of Black-legged Kittiwakes. Our successful deployment of GPS loggers on kittiwakes holds much promise for telemetry studies on many other bird species of similar size and provides an incentive for applying this new approach in future studies.

  3. Heat Damaged Forages: Effects on Forage Quality

    Science.gov (United States)

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  4. Nutritional status influences socially regulated foraging ontogeny in honey bees.

    Science.gov (United States)

    Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E

    2005-12-01

    In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.

  5. Foraging

    NARCIS (Netherlands)

    Ydenberg, R.C.; Prins, H.H.T.

    2012-01-01

    This chapter describes the role played by behavioural adjustments to foraging behaviour in accommodating rapid environmental change. It looks into the adjustments of foraging behaviour to predation danger as a result of changes in the type and array of food available. It investigates the effects of

  6. Cognitive plasticity in foraging Vespula germanica wasps.

    Science.gov (United States)

    D'Adamo, Paola; Lozada, Mariana

    2011-01-01

    Vespula germanica (F.) (Hymenoptera: Vespidae) is a highly invasive social wasp that exhibits a rich behavioral repertoire in which learning and memory play a fundamental role in foraging. The learning abilities of these wasps were analyzed while relocating a food source and whether V. germanica foragers are capable of discriminating between different orientation patterns and generalizing their choice to a new pattern. Foraging wasps were trained to associate two different stripe orientation patterns with their respective food locations. Their response to a novel configuration that maintained the orientation of one of the learned patterns but differed in other aspects (e.g. width of stripes) was then evaluated. The results support the hypothesis that V. germanica wasps are able to associate a particular oriented pattern with the location of a feeder and to generalize their choice to a new pattern, which differed in quality, but presented the same orientation.

  7. Optimally frugal foraging

    Science.gov (United States)

    Bénichou, O.; Bhat, U.; Krapivsky, P. L.; Redner, S.

    2018-02-01

    We introduce the frugal foraging model in which a forager performs a discrete-time random walk on a lattice in which each site initially contains S food units. The forager metabolizes one unit of food at each step and starves to death when it last ate S steps in the past. Whenever the forager eats, it consumes all food at its current site and this site remains empty forever (no food replenishment). The crucial property of the forager is that it is frugal and eats only when encountering food within at most k steps of starvation. We compute the average lifetime analytically as a function of the frugality threshold and show that there exists an optimal strategy, namely, an optimal frugality threshold k* that maximizes the forager lifetime.

  8. Temporal and Spatial Foraging Behavior of the Larvae of the Fall Webworm Hyphantria cunea

    Directory of Open Access Journals (Sweden)

    Terrence D. Fitzgerald

    2015-01-01

    Full Text Available During their first three larval stadia, caterpillars of Hyphantria cunea (Lepidoptera: Arctiidae are patch-restricted foragers, confining their activity to a web-nest they construct in the branches of the host tree. Activity recordings of eight field colonies made over 46 colony-days showed that the later instars become central place foragers, leaving their nests at dusk to feed at distant sites and then returning to their nests in the morning. Colonies maintained in the laboratory showed that same pattern of foraging. In Y-choice laboratory experiments, caterpillars were slow to abandon old, exhausted feeding sites in favor of new food finds. An average of approximately 40% of the caterpillars in five colonies still selected pathways leading to exhausted sites at the onset of foraging bouts over those leading to new sites after feeding exclusively at the new sites on each of the previous four days. On returning to their nests in the morning, approximately 23% of the caterpillars erred by selecting pathways that led them away from the nest rather than toward it and showed no improvement over the course of the study. The results of these Y-choice studies indicate that, compared to other previously studied species of social caterpillars, the webworm employs a relatively simple system of collective foraging.

  9. Expression of the Foraging Gene Is Associated with Age Polyethism, Not Task Preference, in the Ant Cardiocondyla obscurior.

    Directory of Open Access Journals (Sweden)

    Jan Oettler

    Full Text Available One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers.

  10. Foraging behavior of Melipona rufiventris Lepeletier (Apinae; Meliponini in Ubatuba, SP, Brazil

    Directory of Open Access Journals (Sweden)

    AO. Fidalgo

    Full Text Available This study describes how the foraging activity of Melipona rufiventris is influenced by the environment and/or by the state of a colony. Two colonies were studied in Ubatuba, SP (44° 48’ W and 23° 22’ S from July/2000 to June/2001. These colonies were classified as strong (Colony 1 and intermediate (Colony 2 according to their general conditions: population and brood comb size and number of food pots. The bees were active from dawn to dusk. The number of pollen loads presented a positive correlation with relative humidity (r s = 0.401; p <0.01 and was highest between 70 and 90%. However, it was negatively correlated with temperature (r s = -0.228; p <0.01 showing a peak between 18 and 23 °C. The number of nectar loads presented a positive correlation with temperature (r s = 0.244; p <0.01 and light intensity (r s = 0.414; p <0.01; it was greater between 50 and 90% of relative humidity and 20 and 30 °C of temperature. They collected more nectar than pollen throughout the day, and were more active between 6 and 9 hours. Workers from Colony 1 (strong collected nectar in greater amounts and earlier than those from Colony 2 (intermediate. The number of pollen, nectar and resin loads varied considerably between the study days. Peaks of pollen collection occurred earlier in months with longer days and in a hotter and more humid climate. The foraging behavior of M. rufiventris is probably affected by the state of the colony and by environmental conditions, notably temperature, relative humidity, light intensity and length of the day.

  11. The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats — A Review

    Directory of Open Access Journals (Sweden)

    Katsunori Sunagawa

    2016-02-01

    Full Text Available The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of NaHCO3 due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h

  12. Correlated evolution of herbivory and food chemical discrimination in iguanian and ambush foraging lizards

    OpenAIRE

    William E. Cooper

    2003-01-01

    To efficiently locate and assess foods, animal sensory capacities and behavioral discriminations based on them must be appropriate for the diet and method of hunting. In lizards, actively foraging insectivores identify animal prey using lingually sampled chemical cues, but ambush foragers do not. Among plant eaters derived from active foragers, plant chemical discrimination is added to prey chemical discrimination, resulting in correlated evolution of plant diet and plant chemical discriminat...

  13. Effects of natural and synthetic alarm pheromone and individual pheromone components on foraging behavior of the giant Asian honey bee, Apis dorsata.

    Science.gov (United States)

    Li, Jianjun; Wang, Zhengwei; Tan, Ken; Qu, Yufeng; Nieh, James C

    2014-10-01

    Social pollinators such as honey bees face attacks from predators not only at the nest, but also during foraging. Pollinating honey bees can therefore release alarm pheromones that deter conspecifics from visiting dangerous inflorescences. However, the effect of alarm pheromone and its chemical components upon bee avoidance of dangerous food sources remains unclear. We tested the responses of giant honey bee foragers, Apis dorsata, presented with alarm pheromone at a floral array. Foragers investigated the inflorescence with natural alarm pheromone, but 3.3-fold more foragers preferred to land on the 'safe' inflorescence without alarm pheromone. Using gas chromatography-mass spectrometry analysis, we identified eight chemical components in the alarm pheromone, of which three components (1-octanol, decanal and gamma-octanoic lactone) have not previously been reported in this species. We bioassayed six major compounds and found that a synthetic mixture of these compounds elicited behaviors statistically indistinguishable from responses to natural alarm pheromone. By testing each compound separately, we show that gamma-octanoic lactone, isopentyl acetate and (E)-2-decen-1-yl acetate are active compounds that elicit significant alarm responses. Gamma-octanoic lactone elicited the strongest response to a single compound and has not been previously reported in honey bee alarm pheromone. Isopentyl acetate is widely found in the alarm pheromones of sympatric Asian honey bee species, and thus alarmed A. dorsata foragers may produce information useful for conspecifics and heterospecifics, thereby broadening the effects of alarm information on plant pollination. © 2014. Published by The Company of Biologists Ltd.

  14. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Science.gov (United States)

    Burke, Chantelle M; Montevecchi, William A; Regular, Paul M

    2015-01-01

    Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge), where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15) and males (n = 9) during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  15. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Directory of Open Access Journals (Sweden)

    Chantelle M Burke

    Full Text Available Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge, where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15 and males (n = 9 during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  16. Site-specific flight speeds of nonbreeding Pacific dunlins as a measure of the quality of a foraging habitat

    NARCIS (Netherlands)

    Reurink, Florian; Hentze, Nathan; Rourke, Jay; Ydenberg, Ron

    2016-01-01

    Many studies have investigated how foraging behavior such as prey choice varies with factors such as prey size or density. Models of such relationships can be applied "in reverse" to translate easily observed foraging behaviors into assays of habitat attributes that cannot (easily) be measured

  17. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    International Nuclear Information System (INIS)

    Peterson, Sarah H.; Peterson, Michael G.; Debier, Cathy; Covaci, Adrian; Dirtu, Alin C.; Malarvannan, Govindan; Crocker, Daniel E.; Schwarz, Lisa K.; Costa, Daniel P.

    2015-01-01

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in 13 C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep

  18. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Sarah H., E-mail: sarahpeterson23@gmail.com [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Peterson, Michael G. [Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (United States); Debier, Cathy [Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve (Belgium); Covaci, Adrian [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dirtu, Alin C. [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi (Romania); Malarvannan, Govindan [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Crocker, Daniel E. [Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 (United States); Schwarz, Lisa K. [Institute of Marine Sciences, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Costa, Daniel P. [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States)

    2015-11-15

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in {sup 13}C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in

  19. Evolution of brains and behavior for optimal foraging: A tale of two predators

    Science.gov (United States)

    Catania, Kenneth C.

    2012-01-01

    Star-nosed moles and tentacled snakes have exceptional mechanosensory systems that illustrate a number of general features of nervous system organization and evolution. Star-nosed moles use the star for active touch—rapidly scanning the environment with the nasal rays. The star has the densest concentration of mechanoreceptors described for any mammal, with a central tactile fovea magnified in anatomically visible neocortical modules. The somatosensory system parallels visual system organization, illustrating general features of high-resolution sensory representations. Star-nosed moles are the fastest mammalian foragers, able to identify and eat small prey in 120 ms. Optimal foraging theory suggests that the star evolved for profitably exploiting small invertebrates in a competitive wetland environment. The tentacled snake’s facial appendages are superficially similar to the mole’s nasal rays, but they have a very different function. These snakes are fully aquatic and use tentacles for passive detection of nearby fish. Trigeminal afferents respond to water movements and project tentacle information to the tectum in alignment with vision, illustrating a general theme for the integration of different sensory modalities. Tentacled snakes act as rare enemies, taking advantage of fish C-start escape responses by startling fish toward their strike—often aiming for the future location of escaping fish. By turning fish escapes to their advantage, snakes increase strike success and reduce handling time with head-first captures. The latter may, in turn, prevent snakes from becoming prey when feeding. Findings in these two unusual predators emphasize the importance of a multidisciplinary approach for understanding the evolution of brains and behavior. PMID:22723352

  20. Group foraging increases foraging efficiency in a piscivorous diver, the African penguin

    Science.gov (United States)

    McGeorge, Cuan; Ginsberg, Samuel; Pichegru, Lorien; Pistorius, Pierre A.

    2017-01-01

    Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change. PMID:28989785

  1. Foraging strategy of little auks during chick rearing in northwest Greenland

    DEFF Research Database (Denmark)

    Mosbech, Anders; Møller, Eva Friis; Johansen, Kasper Lambert

    of the ongoing warming of the Arctic. Here we present the first results from GPS tracking of breeding little auks in northwest Greenland, involving data from four different breeding colonies. We examine time budgets, foraging trip patterns and habitat preferences at foraging areas, including comparison......Foraging strategy of little auks during chick rearing in northwest Greenland Anders Mosbech, Kasper Johansen, Eva Friis Møller & Peter Lyngs Department of Biology and Arctic Center, Aarhus University, Denmark An estimated 80 % of the global little auk population breeds in the coastal landscape...... bordering the north water polynya in high Arctic northwest Greenland, and from this main breeding area very little is known on foraging behavior. Little auks are feeding on lipid-rich copepods associated with cold artic waters, and are potentially important for monitoring and assessing the impact...

  2. Novel foraging in the swash zone on Pacific sand crabs (Emerita analoga, Hippidae) by mallards

    Science.gov (United States)

    Lafferty, Kevin D.; McLaughlin, John P.; Dugan, Jenifer E.

    2013-01-01

    Mallards (Anas platyrhynchos) have been observed foraging on intertidal Pacific sand crabs (Hippidae, Emerita analoga) in the swash zone of sandy beaches around Coal Oil Point Reserve, California, and several other beaches on the west coast since at least November 2010. Unlike foraging shorebirds, Mallards do not avoid incoming swashes. Instead, the incoming swash lifts and deposits them down the beach. Shorebirds and diving ducks commonly feed on sand crabs, but sand crabs appear to be a novel behavior and food source for Mallards. Previous surveys of beaches did not report foraging Mallards on regional beaches, whereas foraging Mallards were common in contemporary (recent) surveys and anecdotal reports. Observations of this potentially new behavior were separated by as much as 1,300 km, indicating that this was not a local phenomenon. Mallards foraged singly, in pairs, and in flocks. An expansion of diet to sand crabs carries risks of exposure to surf, human disturbance, high salt intake, and transmission of acanthocephalan and trematode parasites for Mallards but has the benefit of providing a dependable source of animal protein.

  3. Human memory retrieval as Lévy foraging

    Science.gov (United States)

    Rhodes, Theo; Turvey, Michael T.

    2007-11-01

    When people attempt to recall as many words as possible from a specific category (e.g., animal names) their retrievals occur sporadically over an extended temporal period. Retrievals decline as recall progresses, but short retrieval bursts can occur even after tens of minutes of performing the task. To date, efforts to gain insight into the nature of retrieval from this fundamental phenomenon of semantic memory have focused primarily upon the exponential growth rate of cumulative recall. Here we focus upon the time intervals between retrievals. We expected and found that, for each participant in our experiment, these intervals conformed to a Lévy distribution suggesting that the Lévy flight dynamics that characterize foraging behavior may also characterize retrieval from semantic memory. The closer the exponent on the inverse square power-law distribution of retrieval intervals approximated the optimal foraging value of 2, the more efficient was the retrieval. At an abstract dynamical level, foraging for particular foods in one's niche and searching for particular words in one's memory must be similar processes if particular foods and particular words are randomly and sparsely located in their respective spaces at sites that are not known a priori. We discuss whether Lévy dynamics imply that memory processes, like foraging, are optimized in an ecological way.

  4. Foraging dives by post-breeding northern pintails

    Science.gov (United States)

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  5. Linking mesopelagic prey abundance and distribution to the foraging behavior of a deep-diving predator, the northern elephant seal

    Science.gov (United States)

    Saijo, Daisuke; Mitani, Yoko; Abe, Takuzo; Sasaki, Hiroko; Goetsch, Chandra; Costa, Daniel P.; Miyashita, Kazushi

    2017-06-01

    The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Further, the mesopelagic depths (200-1000 m) host an abundant prey resource known as the deep scattering layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. We found that the abundance of mesopelagic fish at 400-600 m depth zone was the highest in the 43 °N zone, the primary foraging area of female seals. We identified twenty-nine families of fishes from the mid-water trawls, with energy-rich myctophid fishes dominating by species number, individual number, and wet weight. Biomass of mesopelagic fishes is positively correlated to annual net primary productivity; however, at the temporal and spatial scale of our study, we found no relationship between satellite derived surface primary production and prey density. Instead, we found that the subsurface chlorophyll maximum correlated with the primary elephant seal foraging regions, indicating a stronger linkage between mesopelagic ecosystem dynamics and subsurface features rather than the surface features measured with satellites. Our study not only provides insights on prey distribution in a little-studied deep ocean ecosystem, but shows that northern elephant seals are targeting the dense, species-diverse mesopelagic ecosystem at the gyre-gyre boundary that was previously inferred from their diving behavior.

  6. Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae).

    Science.gov (United States)

    Cornelius, Mary L; Osbrink, Weste L A

    2010-06-01

    This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and shelter tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termites built shelter tubes on the sides of the containers. In containers with sand, termites built shelter tubes directly into the air and covered the sides of the container with a layer of sand. The interaction of soil type and moisture availability affected termite movement, feeding, and survival. In assays with moist soils, termites were more likely to aggregate in top soil over potting soil and peat moss. However, termites were more likely to move into containers with dry peat moss and potting soil than containers with dry sand and clay. Termites were also significantly more likely to move into containers with dry potting soil than dry top soil. In the assay with dry soils, termite mortality was high even though termites were able to travel freely between moist sand and dry soil, possibly due to desiccation caused by contact with dry soil. Evaporation from potting soil and peat moss resulted in significant mortality, whereas termites were able to retain enough moisture in top soil, sand, and clay to survive for 25 d. The interaction of soil type and moisture availability influences the distribution of foraging termites in microhabitats.

  7. Habitat use and foraging patterns of molting male Long-tailed Ducks in lagoons of the central Beaufort Sea, Alaska

    Science.gov (United States)

    Flint, Paul L.; Reed, John; Deborah Lacroix,; Richard Lanctot,

    2016-01-01

    From mid-July through September, 10 000 to 30 000 Long-tailed Ducks (Clangula hyemalis) use the lagoon systems of the central Beaufort Sea for remigial molt. Little is known about their foraging behavior and patterns of habitat use during this flightless period. We used radio transmitters to track male Long-tailed Ducks through the molt period from 2000 to 2002 in three lagoons: one adjacent to industrial oil field development and activity and two in areas without industrial activity. We found that an index to time spent foraging generally increased through the molt period. Foraging, habitat use, and home range size showed similar patterns, but those patterns were highly variable among lagoons and across years. Even with continuous daylight during the study period, birds tended to use offshore areas during the day for feeding and roosted in protected nearshore waters at night. We suspect that variability in behaviors associated with foraging, habitat use, and home range size are likely influenced by availability of invertebrate prey. Proximity to oil field activity did not appear to affect foraging behaviors of molting Long-tailed Ducks.

  8. From foraging to operant conditioning: a new computer-controlled Skinner box to study free-flying nectar gathering behavior in bees.

    Science.gov (United States)

    Sokolowski, Michel B C; Abramson, Charles I

    2010-05-15

    The experimental study of nectar foraging behavior in free-flying bees requires the use of automated devices to control solution delivery and measure dependent variables associated with nectar gathering. We describe a new computer-controlled artificial flower and provide calibration data to measure the precision of the apparatus. Our device is similar to a "Skinner box" and we present data of an experiment where various amounts of a 50% sugar solution are presented randomly to individual bees. These data show large individual variations among subjects across several dependent variables. Finally, we discuss possible applications of our device to problems in behavioral sciences. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Linking animal population dynamics to alterations in foraging behaviour

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Sibly, Richard; Tougaard, Jakob

    Background/Question/Methods The survival of animal populations is strongly influenced by the individuals’ ability to forage efficiently, yet there are few studies of how populations respond when disturbances cause animals to deviate from their natural foraging behavior. Animals that respond...... that are increasingly exposed to noise from ships, wind turbines, etc. In the present study we investigate how the dynamics of the harbor porpoise population (Phocoena phocoena) in the inner Danish waters is influenced by disturbances using an agent- based simulation model. In the model animal movement, and hence...... the animals’ ability to forage efficiently and to sustain their energy intake, is influenced by noise emitted from wind turbines and ships. The energy levels in turn affect their survival. The fine-scale movements of the simulated animals was governed by a spatial memory, which allowed the model to produce...

  10. Nuisance ecology: do scavenging condors exact foraging costs on pumas in Patagonia?

    Science.gov (United States)

    Elbroch, L Mark; Wittmer, Heiko U

    2013-01-01

    Predation risk describes the energetic cost an animal suffers when making a trade off between maximizing energy intake and minimizing threats to its survival. We tested whether Andean condors (Vultur gryphus) influenced the foraging behaviors of a top predator in Patagonia, the puma (Puma concolor), in ways comparable to direct risks of predation for prey to address three questions: 1) Do condors exact a foraging cost on pumas?; 2) If so, do pumas exhibit behaviors indicative of these risks?; and 3) Do pumas display predictable behaviors associated with prey species foraging in risky environments? Using GPS location data, we located 433 kill sites of 9 pumas and quantified their kill rates. Based upon time pumas spent at a carcass, we quantified handling time. Pumas abandoned >10% of edible meat at 133 of 266 large carcasses after a single night, and did so most often in open grasslands where their carcasses were easily detected by condors. Our data suggested that condors exacted foraging costs on pumas by significantly decreasing puma handling times at carcasses, and that pumas increased their kill rates by 50% relative to those reported for North America to compensate for these losses. Finally, we determined that the relative risks of detection and associated harassment by condors, rather than prey densities, explained puma "giving up times" (GUTs) across structurally variable risk classes in the study area, and that, like many prey species, pumas disproportionately hunted in high-risk, high-resource reward areas.

  11. Recalling items from a category for 1 hour: an inquiry into power-law behavior and memory foraging.

    Science.gov (United States)

    Rhodes, Theo

    2013-07-01

    There are two complementary approaches to characterizing performance in a free recall task (retrieving items from a specified category). The historic, or top down approach, considers the overall structure of the produced responses, generally as the parameters of a fitted cumulative recall curve. Alternatively, free recall can be considered as a time series of recalls or inter-recall intervals. Earlier work employing this approach (Rhodes & Turvey, 2007) suggested power law behavior. Long trial durations (1 hour) are employed to more rigorously test for the presence of power law behavior and more generally, the hypothesis that the dynamics of free recall reflect complex, multiplicative processes. The outlined empirical methods are also employed to test predictions about the relative structure of differently sized categories. Consequences for an asymptotic curve based understanding of free recall and foraging metaphors of retrieval are discussed.

  12. Nonlinear Dynamic in an Ecological System with Impulsive Effect and Optimal Foraging

    Directory of Open Access Journals (Sweden)

    Min Zhao

    2014-01-01

    Full Text Available The population dynamics of a three-species ecological system with impulsive effect are investigated. Using the theories of impulsive equations and small-amplitude perturbation scales, the conditions for the system to be permanent when the number of predators released is less than some critical value can be obtained. Furthermore, because the predator in the system follows the predictions of optimal foraging theory, it follows that optimal foraging promotes species coexistence. In particular, the less beneficial prey can support the predator alone when the more beneficial prey goes extinct. Moreover, the influences of the impulsive effect and optimal foraging on inherent oscillations are studied using simulation, which reveals rich dynamic behaviors such as period-halving bifurcations, a chaotic band, a periodic window, and chaotic crises. In addition, the largest Lyapunov exponent and the power spectra of the strange attractor, which can help analyze the chaotic dynamic behavior of the model, are investigated. This information will be useful for studying the dynamic complexity of ecosystems.

  13. Optimal foraging and predator-prey dynamics III

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Eisner, Jan

    2003-01-01

    Roč. 63, - (2003), s. 269-279 ISSN 0040-5809 R&D Projects: GA ČR GA201/03/0091; GA MŠk LA 101 Institutional research plan: CEZ:AV0Z5007907 Keywords : Optimal foraging theory * adaptive behavior * predator-prec population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 2.261, year: 2003

  14. Local Orientation and the Evolution of Foraging: Changes in Decision Making Can Eliminate Evolutionary Trade-offs

    Science.gov (United States)

    van der Post, Daniel J.; Semmann, Dirk

    2011-01-01

    Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or “recognize patterns” in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is “staying in patches”. In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape. PMID:21998571

  15. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

    Science.gov (United States)

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2017-01-01

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

  16. Project CONVERGE: Impacts of local oceanographic processes on Adélie penguin foraging ecology

    Science.gov (United States)

    Kohut, J. T.; Bernard, K. S.; Fraser, W.; Oliver, M. J.; Statscewich, H.; Patterson-Fraser, D.; Winsor, P.; Cimino, M. A.; Miles, T. N.

    2016-02-01

    During the austral summer of 2014-2015, project CONVERGE deployed a multi-platform network to sample the Adélie penguin foraging hotspot associated with Palmer Deep Canyon along the Western Antarctic Peninsula. The focus of CONVERGE was to assess the impact of prey-concentrating ocean circulation dynamics on Adélie penguin foraging behavior. Food web links between phytoplankton and zooplankton abundance and penguin behavior were examined to better understand the within-season variability in Adélie foraging ecology. Since the High Frequency Radar (HFR) network installation in November 2014, the radial component current data from each of the three sites were combined to provide a high resolution (0.5 km) surface velocity maps. These hourly maps have revealed an incredibly dynamic system with strong fronts and frequent eddies extending across the Palmer Deep foraging area. A coordinated fleet of underwater gliders were used in concert with the HFR fields to sample the hydrography and phytoplankton distributions associated with convergent and divergent features. Three gliders mapped the along and across canyon variability of the hydrography, chlorophyll fluorescence and acoustic backscatter in the context of the observed surface currents and simultaneous penguin tracks. This presentation will highlight these synchronized measures of the food web in the context of the observed HFR fronts and eddies. The location and persistence of these features coupled with ecological sampling through the food web offer an unprecedented view of the Palmer Deep ecosystem. Specific examples will highlight how the vertical structure of the water column beneath the surface features stack the primary and secondary producers relative to observed penguin foraging behavior. The coupling from the physics through the food web as observed by our multi-platform network gives strong evidence for the critical role that distribution patterns of lower trophic levels have on Adélie foraging.

  17. Is Bumblebee Foraging Efficiency Mediated by Morphological Correspondence to Flowers?

    Directory of Open Access Journals (Sweden)

    Ikumi Dohzono

    2011-01-01

    Full Text Available Preference for certain types of flowers in bee species may be an adaptation for efficient foraging, and they often prefer flowers whose shape fits their mouthparts. However, it is unclear whether such flowers are truly beneficial for them. We address this issue by experimentally measuring foraging efficiency of bumblebees, the volume of sucrose solution consumed over handling time (μL/second, using long-tongued Bombus diversus Smith and short-tongued B. honshuensis Tkalcu that visit Clematis stans Siebold et Zuccarini. The corolla tube length of C. stans decreases during a flowering period, and male flowers are longer than female flowers. Long- and short-tongued bumblebees frequently visited longer and shorter flowers, respectively. Based on these preferences, we hypothesized that bumblebee foraging efficiency is higher when visiting flowers that show a good morphological fit between the proboscis and the corolla tube. Foraging efficiency of bumblebees was estimated using flowers for which nectar quality and quantity were controlled, in an experimental enclosure. We show that 1 the foraging efficiency of B. diversus was enhanced when visiting younger, longer flowers, and that 2 the foraging efficiency of B. honshuensis was higher when visiting shorter female flowers. This suggests that morphological correspondence between insects and flowers is important for insect foraging efficiency. However, in contradiction to our prediction, 3 short-tongued bumblebees B. honshuensis sucked nectar more efficiently when visiting younger, longer flowers, and 4 there was no significant difference in the foraging efficiency of B. diversus between flower sexes. These results suggest that morphological fit between the proboscis and the corolla tube is not a sole determinant of foraging efficiency. Bumblebees may adjust their sucking behavior in response to available rewards, and competition over rewards between bumblebee species might change visitation patterns

  18. Flexibility and persistence of chimpanzee (Pan troglodytes) foraging behavior in a captive environment.

    Science.gov (United States)

    Bonnie, Kristin E; Milstein, Marissa S; Calcutt, Sarah E; Ross, Stephen R; Wagner, Kathy E; Lonsdorf, Elizabeth V

    2012-07-01

    As a result of environmental variability, animals may be confronted with uncertainty surrounding the presence of, or accessibility to, food resources at a given location or time. While individuals can rely on personal experience to manage this variability, the behavior of members of an individual's social group can also provide information regarding the availability or location of a food resource. The purpose of the present study was to measure how captive chimpanzees individually and collectively adjust their foraging strategies at an artificial termite mound, as the availability of resources provided by the mound varied over a number of weeks. As predicted, fishing activity at the mound was related to resource availability. However, chimpanzees continued to fish at unbaited locations on the days and weeks after a location had last contained food. Consistent with previous studies, our findings show that chimpanzees do not completely abandon previously learned habits despite learning individually and/or socially that the habit is no longer effective. © 2012 Wiley Periodicals, Inc.

  19. Dynamics of foraging trails in the Neotropical termite Velocitermes heteropterus (Isoptera: Termitidae).

    Science.gov (United States)

    Haifig, Ives; Jost, Christian; Fourcassié, Vincent; Zana, Yossi; Costa-Leonardo, Ana Maria

    2015-09-01

    Foraging behavior in termites varies with the feeding habits of each species but often occurs through the formation of well-defined trails that connect the nest to food sources in species that build structured nests. We studied the formation of foraging trails and the change in caste ratio during foraging in the termite Velocitermes heteropterus. This species is widespread in Cerrado vegetation where it builds epigeal nests and forages in open-air at night. Our aim was to understand the processes involved in the formation of foraging trails, from the exploration of new unmarked areas to the recruitment of individuals to food and the stabilization of traffic on the trails, as well as the participation of the different castes during these processes. Foraging trails were videotaped in the laboratory and the videos were then analyzed both manually and automatically to assess the flow of individuals and the caste ratio on the trails as well as to examine the spatial organization of traffic over time. Foraging trails were composed of minor workers, major workers, and soldiers. The flow of individuals on the trails gradually increased from the beginning of the exploration of new areas up to the discovery of the food. The caste ratio remained constant throughout the foraging excursion: major workers, minor workers and soldiers forage in a ratio of 8:1:1, respectively. The speed of individuals was significantly different among castes, with major workers and soldiers being significantly faster than minor workers. Overall, our results show that foraging excursions in V. heteropterus may be divided in three different phases, characterized by individual speeds, differential flows and lane segregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Forage selection by Royle's pika (Ochotona roylei) in the western Himalaya, India.

    Science.gov (United States)

    Bhattacharyya, Sabuj; Adhikari, Bhupendra S; Rawat, Gopal S

    2013-10-01

    Forage selection decisions of herbivores are often complex and dynamic; they are modulated by multiple cues, such as quality, accessibility and abundance of forage plants. To advance the understanding of plant-herbivore interactions, we explored foraging behavior of the alpine lagomorph Royle's pika (Ochotona roylei) in Kedarnath Wildlife Sanctuary, India. Pika bite counts on food plants were recorded through focal sampling in three permanently marked plots. Food plant abundance was recorded by traditional quadrat procedures; forage selection was estimated with Jacob's selection index. Multiple food-choice experiments were conducted to determine whether forage selection criteria would change with variation in food plant composition. We also analyzed leaf morphology and nutrient content in both major food plants and abundantly available non-food plants. Linear regression models were used to test competing hypotheses in order to identify factors governing forage selection. Royle's pika fed primarily on 17 plant species and each forage selection decision was positively modulated by leaf area and negatively modulated by contents of avoided substances (neutral detergent fiber, acid detergent fiber, acid detergent lignin and tannin) in food plants. Furthermore, significance of the interaction term "leaf size × avoided substance" indicates that plants with large leaves were selected only when they had low avoided substance content. The forage selection criteria did not differ between field and laboratory experiments. The parameter estimates of best fit models indicate that the influence of leaf size or amount of avoided substance on pika forage selection was modulated by the magnitude of predation risk. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Directory of Open Access Journals (Sweden)

    Deborah M Gordon

    Full Text Available The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  2. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Science.gov (United States)

    Gordon, Deborah M

    2012-01-01

    The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  3. Long-term spatial memory in Vespula germanica social wasps: the influence of past experience on foraging behavior.

    Science.gov (United States)

    Moreyra, Sabrina; D'Adamo, Paola; Lozada, Mariana

    2017-10-01

    Social insects exhibit complex learning and memory mechanisms while foraging. Vespula germanica (Fab.) (Hymenoptera: Vespidae) is an invasive social wasp that frequently forages on undepleted food sources, making several flights between the resource and the nest. Previous studies have shown that during this relocating behavior, wasps learn to associate food with a certain site, and can recall this association 1 h later. In this work, we evaluated whether this wasp species is capable of retrieving an established association after 24 h. For this purpose, we trained free flying individuals to collect proteinaceous food from an experimental plate (feeder) located in an experimental array. A total of 150 individuals were allowed 2, 4, or 8 visits. After the training phase, the array was removed and set up again 24 h later, but this time a second baited plate was placed opposite to the first. After 24 h we recorded the rate of wasps that returned to the experimental area and those which collected food from the previously learned feeding station or the nonlearned one. During the testing phase, we observed that a low rate of wasps trained with 2 collecting visits returned to the experimental area (22%), whereas the rate of returning wasps trained with 4 or 8 collecting visits was higher (51% and 41%, respectively). Moreover, wasps trained with 8 feeding visits collected food from the previously learned feeding station at a higher rate than those that did from the nonlearned one. In contrast, wasps trained 2 or 4 times chose both feeding stations at a similar rate. Thus, significantly more wasps returned to the previously learned feeding station after 8 repeated foraging flights but not after only 2 or 4 visits. This is the first report that demonstrates the existence of long-term spatial memory in V. germanica wasps. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  4. Effect of forage quality in faeces from different ruminant species fed high and low quality forage

    DEFF Research Database (Denmark)

    Jalali, A R; Nørgaard, P; Nielsen, M O

    2010-01-01

    Effect of forage quality in faeces from different ruminant species fed high and low quality forage......Effect of forage quality in faeces from different ruminant species fed high and low quality forage...

  5. Impact of Different Forms of Environmental Enrichment on Foraging and Activity Levels in Gorillas (Gorilla gorilla gorilla

    Directory of Open Access Journals (Sweden)

    Kristie Charmoy

    2015-08-01

    Full Text Available The maintenance of species-specific behaviors for animals in zoological institutions is of top priority, as this can help ensure high levels of animal welfare. Strict feeding schedules within institutions can often impact natural foraging behaviors of animals, as they are no longer required to seek out or manipulate food items. In the wild, western lowland gorillas would spend a majority of their time foraging. The goal of the current study was to examine the impact of different forms of environmental enrichment on activity and foraging levels in gorillas at the Brookfield Zoo. Results suggest that automatic belt feeders that can feed at randomized times, will have the largest impact on behavior of all enrichment tested. However, there were individual differences observed between animals and the level of impact on their behavior. Using enrichment to increase the amount of time that zoo-housed gorillas spend searching for, acquiring, and consuming food can increase their overall activity levels and shift their behavior towards a more naturalistic direction.

  6. Does greed help a forager survive?

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  7. Foraging behavior of the mangrove sesarmid crab Neosarmatium trispinosum enhances food intake and nutrient retention in a low-quality food environment

    Science.gov (United States)

    Harada, Yota; Lee, S. Y.

    2016-06-01

    The large sesarmid crab Neosarmatium trispinosum has been reported to actively collect freshly fallen mangrove leaves and store them in its burrow where they are assumed to age prior to consumption. This leaf-catching behavior was hypothesized to improve the palatability and nutritional quality of leaves through leaching of feeding deterrent and microbial enrichment during storage. Earlier studies also hypothesized that N. trispinosum feeds on sediment or animal material to meet their N needs. A series of experiments was carried out to investigate the foraging behavior of N. trispinosum against these hypotheses. Study of foraging behavior using remotely operated cameras indicated that this crab spends the far majority of time (97.5 ± 2.5%, SD) underground and only a small percentage of time outside its burrow foraging (2.2 ± 2.3%). Collection of fresh mangrove litter was swift but no record of predation was evident over 31 h of video records. A field leaf tethering experiment showed that this crab started to consume the leaves immediately after collection rather than storing whole leaves, refuting the leaf-aging hypothesis. N. trispinosum also showed a preference for senescent yellow leaves over decaying brown leaves. This behavior may only aim to stock leaves (i.e. to ensure food availability) rather than conditioning them through decay (i.e. to improve food quality). Analysis of gut contents showed that vascular plant material was the dominant food item (83.3 ± 4.6%), followed by sediment (9.2 ± 4.6%) but no animal materials were recorded. N. trispinosum therefore relies minimally on animal food but are capable of removing 50% of the daily leaf litter production. Elemental C, N analysis shows that sediment inside the burrow is a sufficient potential food source (C/N = 13 to 15). While having a lower C/N ratio than fresh green or yellow leaves, the N content of sediment (∼0.1%) was significantly lower than those of mangrove leaves (0.3-0.9%), and may thus

  8. Patch dynamics of a foraging assemblage of bees.

    Science.gov (United States)

    Wright, David Hamilton

    1985-03-01

    The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.

  9. Individual foraging strategies reveal niche overlap between endangered galapagos pinnipeds.

    Directory of Open Access Journals (Sweden)

    Stella Villegas-Amtmann

    Full Text Available Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis and sea lions (Zalophus wollebaeki share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0-80 m depth and mostly at 19-22 h. Most sea lion dives also occurred at night (63%, between 0-40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19-22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0-30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h, depth during overlapping time (21-24 m, and foraging range (37.7%. Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging "hot spot" for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during

  10. Contrafreeloading in grizzly bears: implications for captive foraging enrichment.

    Science.gov (United States)

    McGowan, Ragen T S; Robbins, Charles T; Alldredge, J Richard; Newberry, Ruth C

    2010-01-01

    Although traditional feeding regimens for captive animals were focused on meeting physiological needs to assure good health, more recently emphasis has also been placed on non-nutritive aspects of feeding. The provision of foraging materials to diversify feeding behavior is a common practice in zoos but selective consumption of foraging enrichment items over more balanced "chow" diets could lead to nutrient imbalance. One alternative is to provide balanced diets in a contrafreeloading paradigm. Contrafreeloading occurs when animals choose resources that require effort to exploit when identical resources are freely available. To investigate contrafreeloading and its potential as a theoretical foundation for foraging enrichment, we conducted two experiments with captive grizzly bears (Ursus arctos horribilis). In Experiment 1, bears were presented with five foraging choices simultaneously: apples, apples in ice, salmon, salmon in ice, and plain ice under two levels of food restriction. Two measures of contrafreeloading were considered: weight of earned food consumed and time spent working for earned food. More free than earned food was eaten, with only two bears consuming food extracted from ice, but all bears spent more time manipulating ice containing salmon or apples than plain ice regardless of level of food restriction. In Experiment 2, food-restricted bears were presented with three foraging choices simultaneously: apples, apples inside a box, and an empty box. Although they ate more free than earned food, five bears consumed food from boxes and all spent more time manipulating boxes containing apples than empty boxes. Our findings support the provision of contrafreeloading opportunities as a foraging enrichment strategy for captive wildlife. (c) 2009 Wiley-Liss, Inc.

  11. Attraction of Vespula germanica (Hymenoptera: Vespidae) foragers by conspecific heads.

    Science.gov (United States)

    d'Adamo, P; Corley, J C; Lozada, M

    2001-08-01

    The socialwasp Vespula germanica (F.) is a serious pest in many regions it has invaded. Control programs to reduce its populations are commonly based on the use of poison baits. These baits also attract nonpestiferous invertebrates and vertebrates. In this work we studied the attraction of V. germanica foragers by conspecific worker squashes, comparing the effect of head and abdomen squashes in wasps behavior. We found that head squashes attract V. germanica foragers, elicit landing and transportation to nests. Furthermore, the addition of squashed heads to a protein bait increased attraction. This could be an alternative to improve baiting programs.

  12. Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.

    Science.gov (United States)

    Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood

    2010-12-01

    It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.

  13. Quitting time: When do honey bee foragers decide to stop foraging on natural resources?

    Directory of Open Access Journals (Sweden)

    Michael eRivera

    2015-05-01

    Full Text Available Honey bee foragers may use both personal and social information when making decisions about when to visit resources. In particular, foragers may stop foraging at resources when their own experience indicates declining resource quality, or when social information, namely the delay to being able to unload nectar to receiver bees, indicates that the colony has little need for the particular resource being collected. Here we test the relative importance of these two factors in a natural setting, where colonies are using many dynamically changing resources. We recorded detailed foraging histories of individually marked bees, and identified when they appeared to abandon any resources (such as flower patches that they had previously been collecting from consistently. As in previous studies, we recorded duration of trophallaxis events (unloading nectar to receiver bees as a proxy for resource quality and the delays before returning foragers started trophallaxis as a proxy for social need for the resource. If these proxy measures accurately reflect changes in resource quality and social need, they should predict whether bees continue foraging or not. However, neither factor predicted when individuals stopped foraging on a particular resource, nor did they explain changes in colony-level foraging activity. This may indicate that other, as yet unstudied processes also affect individual decisions to abandon particular resources.

  14. Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata

    DEFF Research Database (Denmark)

    Ratcliffe, John M; Jakobsen, Lasse; Kalko, Elisabeth K V

    2011-01-01

    The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a 'monotonous' sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 k......Hz (high-note call). The frequencies of these low-high-note pairs remain stable within sequences. In Panama, we recorded echolocation calls from S. bilineata with a multi-microphone array at two sites: one a known roosting site, the other a known foraging site. Our results indicate that this species (1......) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive...

  15. Modification of feeding circuits in the evolution of social behavior.

    Science.gov (United States)

    Fischer, Eva K; O'Connell, Lauren A

    2017-01-01

    Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification. © 2017. Published by The Company of Biologists Ltd.

  16. Starvation dynamics of a greedy forager

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-07-01

    We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.

  17. The Role of Semantic Clustering in Optimal Memory Foraging

    Science.gov (United States)

    Montez, Priscilla; Thompson, Graham; Kello, Christopher T.

    2015-01-01

    Recent studies of semantic memory have investigated two theories of optimal search adopted from the animal foraging literature: Lévy flights and marginal value theorem. Each theory makes different simplifying assumptions and addresses different findings in search behaviors. In this study, an experiment is conducted to test whether clustering in…

  18. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    Directory of Open Access Journals (Sweden)

    Alexandria Wenninger

    2016-06-01

    Full Text Available Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers, and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  19. Dynamics of Foraging and Recruitment Behavior in the Asian Subterranean Termite Coptotermes gestroi (Rhinotermitidae

    Directory of Open Access Journals (Sweden)

    Alberto Arab

    2012-01-01

    Full Text Available The present study investigated the trail-following behavior of the subterranean termite Coptotermes gestroi (Wasmann Rhinotermitidae under laboratory conditions. The results showed that workers were the first to initiate the exploration to the food source. When food was discovered they returned to the nest laying a trail for recruiting nestmates to the food source. In this situation, workers always traveled significantly faster when returning from the arenas. Both workers and soldiers were recruited to the food source; however, the soldier/worker proportion was higher during the first phase of the recruitment. When no food was available, the number of recruited nestmates and the speed on their way back to the nest were significantly lower. The results also showed that scout foragers always laid trail pheromones when entering into unknown territories, and that chemical signals found in the food could induce workers of C. gestroi to increase their travel speed.

  20. New Developments in Forage Varieties

    Science.gov (United States)

    Forage crops harvested for hay or haylage or grazed support dairy, beef, sheep and horse production. Additional livestock production from reduced forage acreage supports the need for forage variety improvement. The Consortium for Alfalfa Improvement is a partnership model of government, private no...

  1. The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis mellifera).

    Science.gov (United States)

    Chicas-Mosier, Ana M; Cooper, Bree A; Melendez, Alexander M; Pérez, Melina; Oskay, Devrim; Abramson, Charles I

    2017-09-01

    Pollinator decline is of international concern because of the economic services these organisms provide. Commonly cited sources of decline are toxicants, habitat fragmentation, and parasites. Toxicant exposure can occur through uptake and distribution from plant tissues and resources such as pollen and nectar. Metals such as aluminum can be distributed to pollinators and other herbivores through this route especially in acidified or mined areas. A free-flying artificial flower patch apparatus was used to understand how two concentrations of aluminum (2mg/L and 20mg/L) may affect the learning, orientation, and foraging behaviors of honey bees (Apis mellifera) in Turkey. The results show that a single dose of aluminum immediately affects the floral decision making of honey bees potentially by altering sucrose perception, increasing activity level, or reducing the likelihood of foraging on safer or uncontaminated resource patches. We conclude that aluminum exposure may be detrimental to foraging behaviors and potentially to other ecologically relevant behaviors. Copyright © 2017. Published by Elsevier Inc.

  2. Determination of ten perfluorinated compounds in bluegill sunfish (Lepomis macrochirus) fillets

    International Nuclear Information System (INIS)

    Delinsky, Amy D.; Strynar, Mark J.; Nakayama, Shoji F.; Varns, Jerry L.; Ye, XiBiao; McCann, Patricia J.; Lindstrom, Andrew B.

    2009-01-01

    A rigorous solid phase extraction/liquid chromatography/tandem mass spectrometry method for the measurement of 10 perfluorinated compounds (PFCs) in fish fillets is described and applied to fillets of bluegill sunfish (Lepomis macrochirus) collected from selected areas of Minnesota and North Carolina. The 4 PFC analytes routinely detected in bluegill fillets were perfluorooctane sulfonate (PFOS), perfluorodecanoic acid (C10), perfluoroundecanoic acid (C11), and perflurododecanoic acid (C12). Measures of method accuracy and precision for these compounds showed that calculated concentrations of PFCs in spiked samples differed by less than 20% from their theoretical values and that the %RSD for repeated measurements was less than 20%. Minnesota samples were collected from areas of the Mississippi River near historical PFC sources, from the St. Croix River as a background site, and from Lake Calhoun, which has no documented PFC sources. PFOS was the most prevalent PFC found in the Minnesota samples, with median concentrations of 47.0-102 ng/g at locations along the Mississippi River, 2.08 ng/g in the St. Croix River, and 275 ng/g in Lake Calhoun. North Carolina samples were collected from two rivers with no known historical PFC sources. PFOS was the predominant analyte in fish taken from the Haw and Deep Rivers, with median concentrations of 30.3 and 62.2 ng/g, respectively. Concentrations of C10, C11, and C12 in NC samples were among the highest reported in the literature, with respective median values of 9.08, 23.9, and 6.60 ng/g in fish from the Haw River and 2.90, 9.15, and 3.46 ng/g in fish from the Deep River. These results suggest that PFC contamination in freshwater fish may not be limited to areas with known historical PFC inputs.

  3. Examining the joint toxicity of chlorpyrifos and atrazine in the aquatic species: Lepomis macrochirus, Pimephales promelas and Chironomus tentans

    International Nuclear Information System (INIS)

    Tyler Mehler, W.; Schuler, Lance J.; Lydy, Michael J.

    2008-01-01

    The joint toxicity of chlorpyrifos and atrazine was compared to that of chlorpyrifos alone to discern any greater than additive response using both acute toxicity testing and whole-body residue analysis. In addition, acetylcholinesterase (AChE) inhibition and biotransformation were investigated to evaluate the toxic mode of action of chlorpyrifos in the presence of atrazine. The joint toxicity of atrazine and chlorpyrifos exhibited no significant difference in Lepomis macrochirus compared to chlorpyrifos alone; while studies performed with Pimephales promelas and Chironomus tentans, did show significant differences. AChE activity and biotransformation showed no significant differences between the joint toxicity of atrazine and chlorpyrifos and that of chlorpyrifos alone. From the data collected, the combination of atrazine and chlorpyrifos pose little additional risk than that of chlorpyrifos alone to the tested fish species. - The joint toxicity between atrazine and chlorpyrifos caused greater than additive responses in invertebrates, but the interactions in vertebrates was less pronounced

  4. Examining the joint toxicity of chlorpyrifos and atrazine in the aquatic species: Lepomis macrochirus, Pimephales promelas and Chironomus tentans

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Mehler, W.; Schuler, Lance J. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University at Carbondale, Carbondale, IL 62901-6511 (United States); Lydy, Michael J. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University at Carbondale, Carbondale, IL 62901-6511 (United States)], E-mail: mlydy@siu.edu

    2008-03-15

    The joint toxicity of chlorpyrifos and atrazine was compared to that of chlorpyrifos alone to discern any greater than additive response using both acute toxicity testing and whole-body residue analysis. In addition, acetylcholinesterase (AChE) inhibition and biotransformation were investigated to evaluate the toxic mode of action of chlorpyrifos in the presence of atrazine. The joint toxicity of atrazine and chlorpyrifos exhibited no significant difference in Lepomis macrochirus compared to chlorpyrifos alone; while studies performed with Pimephales promelas and Chironomus tentans, did show significant differences. AChE activity and biotransformation showed no significant differences between the joint toxicity of atrazine and chlorpyrifos and that of chlorpyrifos alone. From the data collected, the combination of atrazine and chlorpyrifos pose little additional risk than that of chlorpyrifos alone to the tested fish species. - The joint toxicity between atrazine and chlorpyrifos caused greater than additive responses in invertebrates, but the interactions in vertebrates was less pronounced.

  5. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster.

    Science.gov (United States)

    Allen, Aaron M; Anreiter, Ina; Neville, Megan C; Sokolowski, Marla B

    2017-02-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for 0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {for BAC } rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis. Copyright © 2017 by the Genetics Society of America.

  6. Food availability and foraging near human developments by black bears

    Science.gov (United States)

    Merkle, Jerod A.; Robinson, Hugh S.; Krausman, Paul R.; Alaback, Paul B.

    2013-01-01

    Understanding the relationship between foraging ecology and the presence of human-dominated landscapes is important, particularly for American black bears (Ursus americanus), which sometimes move between wildlands and urban areas to forage. The food-related factors influencing this movement have not been explored, but can be important for understanding the benefits and costs to black bear foraging behavior and the fundamental origins of bear conflicts. We tested whether the scarcity of wildland foods or the availability of urban foods can explain when black bears forage near houses, examined the extent to which male bears use urban areas in comparison to females, and identified the most important food items influencing bear movement into urban areas. We monitored 16 collared black bears in and around Missoula, Montana, during 2009 and 2010, while quantifying the rate of change in green vegetation and the availability of 5 native berry-producing species outside the urban area, the rate of change in green vegetation, and the availability of apples and garbage inside the urban area. We used parametric time-to-event models in which an event was a bear location collected within 100 m of a house. We also visited feeding sites located near houses and quantified food items bears had eaten. The probability of a bear being located near a house was 1.6 times higher for males, and increased during apple season and the urban green-up. Fruit trees accounted for most of the forage items at urban feeding sites (49%), whereas wildland foods composed fruit trees, appear to be more important than the availability of garbage in influencing when bears forage near houses.

  7. The bottlenose dolphin Tursiops truncatus foraging around a fish farm: Effects of prey abundance on dolphins’ behavior

    Directory of Open Access Journals (Sweden)

    Bruno Díaz LÓPEZ

    2009-08-01

    Full Text Available The extent to which prey abundance influences both bottlenose dolphin foraging behavior and group size in the presence of human activities has not previously been studied. The primary aim of this study was to identify and quantify how wild bottlenose dolphins respond, individually and as groups, to the relative abundance of prey around a fish farm. Detailed views of dolphins’ behavior were obtained by focal following individual animals whilst simultaneously collecting surface and underwater behavioral data. A total of 2150 dive intervals were analyzed, corresponding to 342 focal samples, lasting over 34 hours. Bottlenose dolphins remained submerged for a mean duration of 46.4 seconds and a maximum of 249 seconds. This study provides the first quantified data on bottlenose dolphin diving behavior in a marine fin-fish farm area. This study’s results indicate that within a fish farm area used intensively by bottlenose dolphins for feeding, dolphins did not modify dive duration. Additionally, underwater observations confirmed that dolphins find it easier to exploit a concentrated food source and it appears that hunting tactic and not group size plays an important role during feeding activities. Thus, bottlenose dolphins appear capable of modifying their hunting tactics according to the abundance of prey. When top predators display behavioral responses to activities not directed at them, the task of studying all possible effects of human activities can become even more challenging [Current Zoology 55(4: 243–248, 2009].

  8. Forage quantity and quality

    Science.gov (United States)

    Jorgenson, Janet C.; Udevitz, Mark S.; Felix, Nancy A.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    The Porcupine caribou herd has traditionally used the coastal plain of the Arctic National Wildlife Refuge, Alaska, for calving. Availability of nutritious forage has been hypothesized as one of the reasons the Porcupine caribou herd migrates hundreds of kilometers to reach the coastal plain for calving (Kuropat and Bryant 1980, Russell et al. 1993).Forage quantity and quality and the chronology of snowmelt (which determines availability and phenological stages of forage) have been suggested as important habitat attributes that lead calving caribou to select one area over another (Lent 1980, White and Trudell 1980, Eastland et al. 1989). A major question when considering the impact of petroleum development is whether potential displacement of the caribou from the 1002 Area to alternate calving habitat will limit access to high quantity and quality forage.Our study had the following objectives: 1) quantify snowmelt patterns by area; 2) quantify relationships among phenology, biomass, and nutrient content of principal forage species by vegetation type; and 3) determine if traditional concentrated calving areas differ from adjacent areas with lower calving densities in terms of vegetation characteristics.

  9. Effects of Tall Fescue Forage Mass on Steer Ingestive Behavior and Performance

    Science.gov (United States)

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh] is a well adapted perennial pasture species utilized across the north-south transition zone of the United States and in similar environments worldwide. This 3-yr trial evaluated the influence of three forage masses (FM) on steer and pasture respons...

  10. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    Science.gov (United States)

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.

  11. Optimal Foraging in Semantic Memory

    Science.gov (United States)

    Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.

    2012-01-01

    Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…

  12. Forage production in mixed grazing systems of elephant grass with arrowleaf clover or forage peanut

    Directory of Open Access Journals (Sweden)

    Daiane Cristine Seibt

    Full Text Available ABSTRACT Most dairy production systems are pasture-based, usually consisting of sole grass species. This system facilitates pasture management, but results in high production costs, mainly because of nitrogen fertilizers. An alternative to making forage systems more sustainable is to introduce legumes into the pasture. Mixed pastures allow better forage distribution over time and reduce fertilization costs. Thus, the objective of this study was to evaluate, throughout the year, three forage systems (FS: FS1 (control - elephant grass (EG, ryegrass (RG, and spontaneous species (SS; FS2 - EG + RG + SS + arrowleaf clover; and FS3 - EG + RG + SS + forage peanut. Elephant grass was planted in rows spaced 4 m apart. Ryegrass was sown between the EG lines, in the winter. Arrowleaf clover was sown according to the respective treatments and forage peanut was preserved. Evaluation was carried out using Holstein cows. The experiment was arranged in a completely randomized design, with three treatments (FS, and three repetitions (paddocks with repeated measurements (grazing cycles. Forage mass achieved 3.46, 3.80, and 3.91 t ha-1 for the treatments FS1, FS2 and FS3, respectively. The forage systems intercropped with legumes produced the best results.

  13. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey

    2013-01-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can...

  14. Artificial Plant Root System Growth for Distributed Optimization: Models and Emergent Behaviors

    Directory of Open Access Journals (Sweden)

    Su Weixing

    2016-01-01

    Full Text Available Plant root foraging exhibits complex behaviors analogous to those of animals, including the adaptability to continuous changes in soil environments. In this work, we adapt the optimality principles in the study of plant root foraging behavior to create one possible bio-inspired optimization framework for solving complex engineering problems. This provides us with novel models of plant root foraging behavior and with new methods for global optimization. This framework is instantiated as a new search paradigm, which combines the root tip growth, branching, random walk, and death. We perform a comprehensive simulation to demonstrate that the proposed model accurately reflects the characteristics of natural plant root systems. In order to be able to climb the noise-filled gradients of nutrients in soil, the foraging behaviors of root systems are social and cooperative, and analogous to animal foraging behaviors.

  15. Neurogenomic signatures of spatiotemporal memories in time-trained forager honey bees

    Science.gov (United States)

    Naeger, Nicholas L.; Van Nest, Byron N.; Johnson, Jennifer N.; Boyd, Sam D.; Southey, Bruce R.; Rodriguez-Zas, Sandra L.; Moore, Darrell; Robinson, Gene E.

    2011-01-01

    Honey bees can form distinct spatiotemporal memories that allow them to return repeatedly to different food sources at different times of day. Although it is becoming increasingly clear that different behavioral states are associated with different profiles of brain gene expression, it is not known whether this relationship extends to states that are as dynamic and specific as those associated with foraging-related spatiotemporal memories. We tested this hypothesis by training different groups of foragers from the same colony to collect sucrose solution from one of two artificial feeders; each feeder was in a different location and had sucrose available at a different time, either in the morning or afternoon. Bees from both training groups were collected at both the morning and afternoon training times to result in one set of bees that was undergoing stereotypical food anticipatory behavior and another that was inactive for each time of day. Between the two groups with the different spatiotemporal memories, microarray analysis revealed that 1329 genes were differentially expressed in the brains of honey bees. Many of these genes also varied with time of day, time of training or state of food anticipation. Some of these genes are known to be involved in a variety of biological processes, including metabolism and behavior. These results indicate that distinct spatiotemporal foraging memories in honey bees are associated with distinct neurogenomic signatures, and the decomposition of these signatures into sets of genes that are also influenced by time or activity state hints at the modular composition of this complex neurogenomic phenotype. PMID:21346126

  16. The influence of past experience on wasp choice related to foraging behavior.

    Science.gov (United States)

    Sabrina, Moreyra; D'Adamo, Paola; Lozada, Mariana

    2014-12-01

    Memory has been little studied in social wasps. Vespula germanica (Fab.) (Hymenoptera: Vespidae) frequently revisits nondepleted food sources, making several trips between the resource and the nest. In this study, we analyzed this relocating behavior in order to evaluate whether this species is capable of remembering an established association after 1 h. To this end, we trained wasps to feed from a certain array. Then it was removed, setting it up again 1 h later, but this time 2 baited feeders were put in place, one at the original feeding site and the other opposite the first. We recorded the proportion of returning foragers, and their choice of feeder, after either 1 or 4 feeding trials. After 1 h, 78% of wasps trained with 4 feeding trials and 65% trained with 1, returned to the experimental area. Furthermore, during the testing phase, wasps trained with 4 feeding trials collected food from the previously learned feeder significantly more frequently than from the nonlearned one (P germanica is capable of remembering an association 1 h after the last associative event, demonstrating that 1 h does not impair memory retention if 4 feeding experiences have occurred. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  17. Foraging behavior of three bee species in a natural mimicry system: female flowers which mimic male flowers in Ecballium elaterium (Cucurbitaceae).

    Science.gov (United States)

    Dukas, Reuyen

    1987-12-01

    The behavior of Apis mellifera and two species of solitary bees which forage in the flowers of monoecious Ecballium elaterium (L.) A. Rich (Cucurbitaceae) were compared. The female flowers of E. elaterium resemble male flowers visually but are nectarless, and their number is relatively smaller. Apis mellifera was found to discriminate between the two genders and to pay relatively fewer visits to female flowers (mean of 30% relative to male flowers) from the beginning of their activity in the morning. The time spent by honeybees in female flowers is very short compared to that spent in male flowers. It is surmised that the bees remember the differences between the flowers where they foraged on the previous days. In contrast, the two species of solitary bees Lasioglossum politum (Morawitz) (Halictidae) and Ceratina mandibularis Fiese (Anthophoridae) visit the female flowers with nearly equal frequencies at the beginning of each foraging day and stay longer in these flowers. Over the day there is a decline in the relative frequency of visits to female flowers and also in the mean time spent in them. The study shows that bees can collect rewards at high efficiency from the flowers of Ecballium elaterium because of their partial discrimination ability and the scarcity of the mimic flowers. It is suggested that the memory pattern of some solitary bees may be different from that of Apis mellifera. It seems that the limited memory and discrimination ability of bees can lead to a high frequency of visits to the mimic flowers during a long flowering season.

  18. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.

    Science.gov (United States)

    Warnecke, Michaela; Chiu, Chen; Engelberg, Jonathan; Moss, Cynthia F

    2015-09-01

    In their natural environment, big brown bats forage for small insects in open spaces, as well as in vegetation and in the presence of acoustic clutter. While searching and hunting for prey, bats experience sonar interference, not only from densely cluttered environments, but also from calls of conspecifics foraging in close proximity. Previous work has shown that when two bats compete for a single prey item in a relatively open environment, one of the bats may go silent for extended periods of time, which can serve to minimize sonar interference between conspecifics. Additionally, pairs of big brown bats have been shown to adjust frequency characteristics of their vocalizations to avoid acoustic interference in echo processing. In this study, we extended previous work by examining how the presence of conspecifics and environmental clutter influence the bat's echolocation behavior. By recording multichannel audio and video data of bats engaged in insect capture in open and cluttered spaces, we quantified the bats' vocal and flight behaviors. Big brown bats flew individually and in pairs in an open and cluttered room, and the results of this study shed light on the different strategies that this species employs to negotiate a complex and dynamic environment. © 2015 S. Karger AG, Basel.

  19. Differing foraging strategies influence mercury (Hg) exposure in an Antarctic penguin community.

    Science.gov (United States)

    Polito, Michael J; Brasso, Rebecka L; Trivelpiece, Wayne Z; Karnovsky, Nina; Patterson, William P; Emslie, Steven D

    2016-11-01

    Seabirds are ideal model organisms to track mercury (Hg) through marine food webs as they are long-lived, broadly distributed, and are susceptible to biomagnification due to foraging at relatively high trophic levels. However, using these species as biomonitors requires a solid understanding of the degree of species, sexual and age-specific variation in foraging behaviors which act to mediate their dietary exposure to Hg. We combined stomach content analysis along with Hg and stable isotope analyses of blood, feathers and common prey items to help explain inter and intra-specific patterns of dietary Hg exposure across three sympatric Pygoscelis penguin species commonly used as biomonitors of Hg availability in the Antarctic marine ecosystem. We found that penguin tissue Hg concentrations differed across species, between adults and juveniles, but not between sexes. While all three penguins species diets were dominated by Antarctic krill (Euphausia superba) and to a lesser extent fish, stable isotope based proxies of relative trophic level and krill consumption could not by itself sufficiently explain the observed patterns of inter and intra-specific variation in Hg. However, integrating isotopic approaches with stomach content analysis allowed us to identify the relatively higher risk of Hg exposure for penguins foraging on mesopelagic prey relative to congeners targeting epipelagic or benthic prey species. When possible, future seabird biomonitoring studies should seek to combine isotopic approaches with other, independent measures of foraging behavior to better account for the confounding effects of inter and intra-specific variation on dietary Hg exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas)

    Science.gov (United States)

    Webber, H.M.; Haines, T.A.

    2003-01-01

    Mercury contamination of fish is widespread in North America and has resulted in the establishment of fish consumption advisories to protect human health, However, the effects of mercury exposure to fish have seldom been investigated. We examined the effects of dietary mercury exposure at environmental levels in a common forage species, golden shiner (Notemigonus crysoleucas). Fish were fed either an unaltered diet (12 ng/g wet wt methylmercury [MeHg] as Hg), a low-Hg diet (455 ng/g Hg), or a high-Hg diet (959 ng/g Hg). After 90 d mean fish whole-body total Hg concentrations were 41, 230, and 518 ng/g wet wt, respectively, which were within the range of concentrations found in this species in northern U.S. lakes. There were no mortalities or differences in growth rate among groups. Groups of fish from each treatment were exposed to a model avian predator and their behavioral response videotaped for analysis. Brain acetylcholinesterase (AChE) activity was determined in fish after behavioral testing. Fish fed the high-Hg diet had significantly greater shoal vertical dispersal following predator exposure, took longer to return to pre-exposure activity level, and had greater shoal area after return to pre-exposure activity than did the other treatments, all of which would increase vulnerability of the fish to predation. There were no differences in brain AChE among treatments. We conclude that mercury exposure at levels currently occurring in northern United States lakes alters fish predator-avoidance behavior in a manner that may increase vulnerability to predation. This finding has significant implications for food chain transfer of Hg and Hg exposure of fish predators.

  1. Hyperoxia-triggered aversion behavior in Drosophila foraging larvae is mediated by sensory detection of hydrogen peroxide.

    Science.gov (United States)

    Kim, Myung Jun; Ainsley, Joshua A; Carder, Justin W; Johnson, Wayne A

    2013-12-01

    Reactive oxygen species (ROS) in excess have been implicated in numerous chronic illnesses, including asthma, diabetes, aging, cardiovascular disease, and neurodegenerative illness. However, at lower concentrations, ROS can also serve essential routine functions as part of cellular signal transduction pathways. As products of atmospheric oxygen, ROS-mediated signals can function to coordinate external environmental conditions with growth and development. A central challenge has been a mechanistic distinction between the toxic effects of oxidative stress and endogenous ROS functions occurring at much lower concentrations. Drosophila larval aerotactic behavioral assays revealed strong developmentally regulated aversion to mild hyperoxia mediated by H2O2-dependent activation of class IV multidendritic (mdIV) sensory neurons expressing the Degenerin/epithelial Na(+) channel subunit, Pickpocket1 (PPK1). Electrophysiological recordings in foraging-stage larvae (78-84 h after egg laying [AEL]) demonstrated PPK1-dependent activation of mdIV neurons by nanomolar levels of H2O2 well below levels normally associated with oxidative stress. Acute sensitivity was reduced > 100-fold during the larval developmental transition to wandering stage (> 96 h AEL), corresponding to a loss of hyperoxia aversion behavior during the same period. Degradation of endogenous H2O2 by transgenic overexpression of catalase in larval epidermis caused a suppression of hyperoxia aversion behavior. Conversely, disruption of endogenous catalase activity using a UAS-CatRNAi transposon resulted in an enhanced hyperoxia-aversive response. These results demonstrate an essential role for low-level endogenous H2O2 as an environment-derived signal coordinating developmental behavioral transitions.

  2. Predator-Prey Dynamics in the Mesopelagic: Odontocete Foraging Ecology and Anti-predator Behavior of Prey

    Science.gov (United States)

    Benoit-Bird, K. J.

    2016-02-01

    We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.

  3. Bust economics: foragers choose high quality habitats in lean times

    Directory of Open Access Journals (Sweden)

    Sonny S. Bleicher

    2016-01-01

    Full Text Available In environments where food resources are spatially variable and temporarily impoverished, consumers that encounter habitat patches with different food density should focus their foraging initially where food density is highest before they move to patches where food density is lower. Increasing missed opportunity costs should drive individuals progressively to patches with lower food density as resources in the initially high food density patches deplete. To test these expectations, we assessed the foraging decisions of two species of dasyurid marsupials (dunnarts: Sminthopsis hirtipes and S. youngsoni during a deep drought, or bust period, in the Simpson Desert of central Australia. Dunnarts were allowed access to three patches containing different food densities using an interview chamber experiment. Both species exhibited clear preference for the high density over the lower food density patches as measured in total harvested resources. Similarly, when measuring the proportion of resources harvested within the patches, we observed a marginal preference for patches with initially high densities. Models analyzing behavioral choices at the population level found no differences in behavior between the two species, but models analyzing choices at the individual level uncovered some variation. We conclude that dunnarts can distinguish between habitat patches with different densities of food and preferentially exploit the most valuable. As our observations were made during bust conditions, experiments should be repeated during boom times to assess the foraging economics of dunnarts when environmental resources are high.

  4. Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins

    Science.gov (United States)

    Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.

    2016-02-01

    Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.

  5. Utilization of 15N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    International Nuclear Information System (INIS)

    Peschke, H.

    1981-01-01

    After systematic application of 15 N-ammonium nitrate, the change of the dinuclidic composition and 15 N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative 15 N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The 15 N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are 15 N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors. (author)

  6. PDK1 and HR46 gene homologs tie social behavior to ovary signals.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available The genetic basis of division of labor in social insects is a central question in evolutionary and behavioral biology. The honey bee is a model for studying evolutionary behavioral genetics because of its well characterized age-correlated division of labor. After an initial period of within-nest tasks, 2-3 week-old worker bees begin foraging outside the nest. Individuals often specialize by biasing their foraging efforts toward collecting pollen or nectar. Efforts to explain the origins of foraging specialization suggest that division of labor between nectar and pollen foraging specialists is influenced by genes with effects on reproductive physiology. Quantitative trait loci (QTL mapping of foraging behavior also reveals candidate genes for reproductive traits. Here, we address the linkage of reproductive anatomy to behavior, using backcross QTL analysis, behavioral and anatomical phenotyping, candidate gene expression studies, and backcross confirmation of gene-to-anatomical trait associations. Our data show for the first time that the activity of two positional candidate genes for behavior, PDK1 and HR46, have direct genetic relationships to ovary size, a central reproductive trait that correlates with the nectar and pollen foraging bias of workers. These findings implicate two genes that were not known previously to influence complex social behavior. Also, they outline how selection may have acted on gene networks that affect reproductive resource allocation and behavior to facilitate the evolution of social foraging in honey bees.

  7. A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophila.

    Science.gov (United States)

    Engel, J E; Xie, X J; Sokolowski, M B; Wu, C F

    2000-01-01

    The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila.

  8. Artificial root foraging optimizer algorithm with hybrid strategies

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-02-01

    Full Text Available In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.

  9. Evidence of trapline foraging in honeybees.

    Science.gov (United States)

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once. © 2016. Published by The Company of Biologists Ltd.

  10. Retrospective analysis of bottlenose dolphin foraging: a legacy of anthropogenic ecosystem disturbance

    Science.gov (United States)

    Rossman, Sam; Barros, Nélio B.; Ostrom, Peggy H.; Stricker, Craig A.; Hohn, Aleta A.; Gandhi, Hasand; Wells, Randall S.

    2013-01-01

    We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.

  11. Visual Foraging With Fingers and Eye Gaze

    Directory of Open Access Journals (Sweden)

    Ómar I. Jóhannesson

    2016-03-01

    Full Text Available A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a The fact that a sizeable number of observers (in particular during gaze foraging had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints.

  12. Habitat-specific foraging strategies in Australasian gannets

    Directory of Open Access Journals (Sweden)

    Melanie R. Wells

    2016-07-01

    Full Text Available Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26, in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change.

  13. Foraging modality and plasticity in foraging traits determine the strength of competitive interactions among carnivorous plants, spiders and toads.

    Science.gov (United States)

    Jennings, David E; Krupa, James J; Rohr, Jason R

    2016-07-01

    Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  14. Sensory response system of social behavior tied to female reproductive traits.

    Directory of Open Access Journals (Sweden)

    Jennifer M Tsuruda

    Full Text Available Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding. We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The 'pollen-hoarding syndrome' of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size, physiology (yolk protein level, and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH, which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar. To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER assay and quantified ovary size and vitellogenin (yolk precursor gene expression in 6-7-day-old bees by counting ovarioles (ovary filaments and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles are characterized by higher levels of

  15. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    Science.gov (United States)

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  16. Increased Foraging in Outdoor Organic Pig Production—Modeling Environmental Consequences

    Directory of Open Access Journals (Sweden)

    Malene Jakobsen

    2015-11-01

    Full Text Available Consumers’ motivations for buying organic products include a wish of acquiring healthy, environmentally friendly products from production systems that also ensure a high level of animal welfare. However, the current Danish organic pig production faces important challenges regarding environmental impact of the system. High ammonia emissions arise from outdoor concrete areas with growing pigs and sows on pasture possess an increased risk of nitrogen (N leaching. Direct foraging in the range area is suggested as a way to improve the nutrient efficiency at farm level and to support a more natural behavior of the pig. Thus, by modeling, we investigated the environmental consequences of two alternative scenarios with growing pigs foraging in the range area and different levels of crops available for foraging—grass–clover or a combination of Jerusalem artichokes and lucerne. It was possible to have growing pigs on free-range without increasing N leaching compared to the current practice. The alternative system with Jerusalem artichokes and lucerne (high integration of forage showed the lowest carbon foot print with 3.12 CO2 eq kg−1 live weight pig compared to the current Danish pasture based system with 3.69 kg CO2 eq kg−1 live weight pig. Due to positive impact on soil carbon sequestration, the second alternative system based on grass-clover (low integration of forage showed a similar carbon foot print compared to current practice with 3.68 kg CO2 eq kg−1 live weight pig. It is concluded that in practice there is room for development of organic farming systems where direct foraging plays a central role.

  17. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Directory of Open Access Journals (Sweden)

    David T Peck

    Full Text Available Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  18. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees

    Science.gov (United States)

    Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation. PMID:27942015

  19. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Science.gov (United States)

    Peck, David T; Smith, Michael L; Seeley, Thomas D

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  20. Utilization of /sup 15/N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion

    1981-12-01

    After systematic application of /sup 15/N-ammonium nitrate, the change of the dinuclidic composition and /sup 15/N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative /sup 15/N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The /sup 15/N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are /sup 15/N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors.

  1. Effect of physical form of forage on performance, feeding behavior, and digestibility of Holstein calves.

    Science.gov (United States)

    Montoro, C; Miller-Cushon, E K; DeVries, T J; Bach, A

    2013-02-01

    The physical form of forage may influence rumen development and, consequently, the body weight gain, dry matter (DM) consumption, digestibility, and welfare of dairy calves. The objective of this study was to determine the effect of 2 different physical forms of forage on performance, apparent digestibility, and feeding behavior of young calves. Twenty Holstein male calves (46.8 ± 1.2 kg) were randomly assigned at birth to 1 of 2 feeding treatments in which they were exposed to a mixed ration containing (on a DM basis) 90% crumb starter concentrate and either (1) 10% coarsely chopped (3 to 4 cm) grass hay (CRS; n=10) or (2) 10% finely ground (2mm) grass hay (FN; n=10). All calves were offered 8L/d of milk replacer (MR; 1.2 kg of DM) from birth; the amount of MR was progressively reduced after 5 wk to enable weaning by the end of wk 7. The study finished after wk 8. Consumption of the mixed ration, MR, and water was recorded daily, and calves were weighed twice weekly. Samples of feed and orts were taken in wk 7 and 8 for nutrient content analysis. Behavioral data for each calf were obtained for 2h/d during wk 6 and 8, for a total observation time per animal of 28 h. Total feces were collected during wk 8 to determine apparent digestibility. Calves fed CRS had greater DM intake than those fed FN (2.70 vs. 2.45 ± 0.11 kg/d, respectively) during the week after weaning (wk 8). Body weight gain was similar between treatments; however, calves fed CRS tended to have a greater gain-to-feed ratio than calves fed FN (0.68 vs. 0.63 ± 0.02 kg of gain/kg of DM intake). No differences were observed in crude protein and acid detergent fiber consumption between treatments; however, calves fed CRS tended to consume more neutral detergent fiber than calves fed FN during the last week of the study (719.2 vs. 610.5 ± 25.84 g/d). Calves receiving CRS sorted in favor of neutral detergent fiber to a greater extent than calves consuming FN, whereas calves fed FN sorted in favor of

  2. Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis.

    Directory of Open Access Journals (Sweden)

    Alexander Silvis

    Full Text Available Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.

  3. Alaska northern fur seal migration and foraging strategies telemetry and environmental data, 2009-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was used for the analysis of adult male and female northern fur seal winter migration and foraging behavior published by Sterling et al. (2014)....

  4. The hippocampus and exploration: dynamically evolving behavior and neural representations

    Science.gov (United States)

    Johnson, Adam; Varberg, Zachary; Benhardus, James; Maahs, Anthony; Schrater, Paul

    2012-01-01

    We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation. PMID:22848196

  5. The hippocampus and exploration: dynamically evolving behavior and neural representations

    Directory of Open Access Journals (Sweden)

    Adam eJohnson

    2012-07-01

    Full Text Available We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation.

  6. Comportamento de pastejo e ingestão de forragem por novilhas de corte em pastagens de milheto e papuã Grazing behavior and forage ingestion by beef heifers on pearl millet and alexander grass pastures

    Directory of Open Access Journals (Sweden)

    Vagner Guasso da Costa

    2011-02-01

    Full Text Available Foram estudados o desempenho, o comportamento e a ingestão de forragem por novilhas de corte em pastagem de milheto (Pennisetum americanum (L. Leeke e papuã (Urochloa plantaginea no período de janeiro a abril de 2008. Foi utilizado o método de pastejo contínuo com número variável de animais. A ingestão de forragem foi estimada nos estádios vegetativo e reprodutivo das forrageiras usando o óxido de cromo como indicador da produção fecal. As avaliações de comportamento foram feitas por meio de observação visual, em quatro períodos contínuos de 24 horas. Os valores médios de massa de forragem, oferta de forragem e oferta de lâminas foliares foram de 3.927 kg/ha de MS, 14,6 kg de MS/100 kg de peso corporal (PC e 3,36 kg de MS/100 kg de PC, respectivamente. As variáveis do pasto, o desempenho animal, o comportamento ingestivo e a ingestão de forragem foram semelhantes entre milheto e papuã. As variáveis da forragem, desempenho animal e tempos de pastejo, ócio e ruminação e número de bocados por dia apresentaram variação ao longo dos dias de utilização da pastagem. A ingestão de forragem foi de 2,49% do peso corporal e não variou conforme o estádio fenológico. Em áreas infestadas com papuã, sua utilização em pastejo proporciona desempenho semelhante ao obtido com milheto.It was studied performance, behavior and forage ingestion by beef heifers on pearl millet (Pennisetum americanum (L. Leeke and Alexander grass (Urochloa plantaginea pastures from January to April 2008. The continuous grazing method with a variable number of animals was used. Forage ingestion was estimated during vegetative and reproductive stage of forage plants using chromic oxide as fecal production marker. Evaluations of behavior were carried out by visual observation in four 24-hour continuous periods. Mean values of forage mass, forage offer and leaf blade offer were 3,927 kg/ha of DM, 14.6 kg of DM/100 kg BW and 3.36 kg of DM/100 kg BW

  7. Space use and resource selection by foraging Indiana bats at the northern edge of their distribution

    Science.gov (United States)

    Jachowski, David S.; Johnson, Joshua B.; Dobony, Christopher A.; Edwards, John W.; Ford, W. Mark

    2014-01-01

    Despite 4 decades of conservation concern, managing endangered Indiana bat (Myotis sodalis) populations remains a difficult wildlife resource issue facing natural resource managers in the eastern United States. After small signs of population recovery, the recent emergence of white-nose syndrome has led to concerns of local and/or regional extirpation of the species. Where Indiana bats persist, retaining high-quality foraging areas will be critical to meet physiological needs and ensure successful recruitment and overwinter survival. However, insight into foraging behavior has been lacking in the Northeast of the USA. We radio-tracked 12 Indiana bats over 2 summers at Fort Drum, New York, to evaluate factors influencing Indiana bat resource selection during night-time foraging. We found that foraging space use decreased 2% for every 100 m increase in distance to water and 6% for every 100 m away from the forest edge. This suggests high use of riparian areas in close proximity to forest and is somewhat consistent with the species’ foraging ecology in the Midwest and upper South. Given the importance of providing access to high-quality foraging areas during the summer maternity season, Indiana bat conservation at the northern extent of the species’ range will be linked to retention of forested habitat in close proximity to riparian zones. 

  8. Foraging behavior of bee pollinators on the tropical weed Triumfetta semitriloba: flight distance and directionality.

    Science.gov (United States)

    Collevatti, R G; Schoereder, J H; Campos, L A

    2000-02-01

    We studied flight distance and directionality of bee pollinators on the tropical shrub weed Triumfetta semitriloba Jacq. (Tiliaceae), addressing (1) within- and between-plant movement pattern; (2) distances flown between plants; (3) flight directionality. Flowering plants were distributed in well-delimited clumps, in each of two pasture areas (A1 and A2) and one area of forest gap (A3), in Viçosa, southeastern Brazil. Five solitary bee species, Augochlorella michaelis, Augochloropsis cupreola, Pseudocentron paulistana, Ceratinula sp., Melissodes sexcincta, and two social bee, Plebeia droryana, P. cf. nigriceps were observed. All species moved mainly to the nearest flower on the same individual plant and, in between-plant movements, to the first or second nearest neighbor. All species moved non-randomly, presenting a flight directionality in departures (maintenance of flight direction), but with a high frequency of turn angles. It is suggested that this foraging behavior pattern occurred because of the resource quantity and quality (pollen or nectar), and environmental characteristics such as flower density and resource distribution.

  9. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  10. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  11. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  12. Individual lifetime pollen and nectar foraging preferences in bumble bees

    Science.gov (United States)

    Hagbery, Jessica; Nieh, James C.

    2012-10-01

    Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.

  13. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  14. Spotted wing drosophila prefer low hanging fruit: insights into foraging behavior and management strategies

    Science.gov (United States)

    Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive insect that attacks ripe, small fruit such as raspberries, blackberries, and blueberries. Little is known about SWD foraging ecology, and current trapping and monitoring systems are ineffective at commercial scales. In caged foragin...

  15. Agronomic and forage characteristics of Guazuma ulmifolia Lam.

    OpenAIRE

    Manríquez-Mendoza, Leonor Yalid; López-Ortíz, Silvia; Pérez-Hernández, Ponciano; Ortega- Jiménez, Eusebio; López-Tecpoyotl, Zenón Gerardo; Villarruel-Fuentes, Manuel

    2011-01-01

    Native trees are an important source of forage for livestock, particularly in regions having prolonged dry periods. Some tree species have fast growth rates, good nutritional quality, and the ability to produce forage during dry periods when the need for forage is greater. Guazuma ulmifolia Lam. is a tree native to tropical America that has a high forage potential. This species is mentioned in a number of studies assessing the forage potential of trees in a diverse array of environments and v...

  16. Transport infrastructure shapes foraging habitat in a raptor community.

    Science.gov (United States)

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors' foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors' response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways.

  17. Movements and foraging effort of Steller's Eiders and Harlequin Ducks wintering near Dutch Harbor, Alaska

    Science.gov (United States)

    Reed, J.A.; Flint, Paul L.

    2007-01-01

    We studied the movements and foraging effort of radio-marked Steller's Eiders (Polysticta stelleri) and Harlequin Ducks (Histrionicus histrionicus) to evaluate habitat quality in an area impacted by industrial activity near Dutch Harbor, Alaska. Foraging effort was relatively low, with Steller's Eiders foraging only 2.7 ± 0.6 (SE) hours per day and Harlequin Ducks 4.1 ± 0.5 hours per day. Low-foraging effort during periods of high-energetic demand generally suggests high food availability, and high food availability frequently corresponds with reductions in home range size. However, the winter ranges of Harlequin Ducks did not appear to be smaller than usual, with the mean range size in our study (5.5 ± 1.1 km2) similar to that reported by previous investigators. The mean size of the winter ranges of Steller's Eiders was similar (5.1 ± 1.3 km2), but no comparable estimates are available. Eutrophication of the waters near Dutch Harbor caused by seafood processing and municipal sewage effluent may have increased populations of the invertebrate prey of these sea ducks and contributed to their low-foraging effort. The threat of predation by Bald Eagles (Haliaeetus leucocephalus) that winter near Dutch Harbor may cause Steller's Eiders and Harlequin Ducks to move further offshore when not foraging, contributing to an increase in range sizes. Thus, the movement patterns and foraging behavior of these ducks likely represent a balance between the cost and benefits of wintering in a human-influenced environment.

  18. Down-regulation of honey bee IRS gene biases behavior toward food rich in protein.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2010-04-01

    Full Text Available Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS. By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi, we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen rather than toward carbohydrate (nectar sources. Through control experiments, we establish that IRS does not influence the bees' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect's foraging choice between protein and carbohydrate sources.

  19. BEE FORAGE MAPPING BASED ON MULTISPECTRAL IMAGES LANDSAT

    Directory of Open Access Journals (Sweden)

    A. Moskalenko

    2016-10-01

    Full Text Available Possibilities of bee forage identification and mapping based on multispectral images have been shown in the research. Spectral brightness of bee forage has been determined with the use of satellite images. The effectiveness of some methods of image classification for mapping of bee forage is shown. Keywords: bee forage, mapping, multispectral images, image classification.

  20. Hooded seal Cystophora cristata foraging areas in the Northeast Atlantic Ocean-Investigated using three complementary methods.

    Directory of Open Access Journals (Sweden)

    Jade Vacquie-Garcia

    Full Text Available Identifying environmental characteristics that define the ecological niche of a species is essential to understanding how changes in physical conditions might affect its distribution and other aspects of its ecology. The present study used satellite relay data loggers (SRDLs to study habitat use by Northeast Atlantic hooded seals (N = 20; 9 adult females, 3 adult males, and 8 juveniles. Three different methods were used in combination to achieve maximum insight regarding key foraging areas for hooded seals in this region, which have decline by 85% in recent decades: 1 first passage time (FPT; 2 vertical transit rate and; 3 change in dive drift rate. Generalized additive mixed models (GAMM were applied to each method to determine whether specific habitat characteristics were associated with foraging. Separate models were run for the post-molting and the post-breeding seasons; sex and age classes were included in the GAMMs. All three methods highlighted a few common geographic areas as being important foraging zones; however, there were also some different areas identified by the different methods, which highlights the importance of using multiple indexes when analyzing tracking and diving data to study foraging behavior. Foraging occurred most commonly in relatively shallow areas with high Sea Surface Temperatures (SST, corresponding to continental shelf areas with Atlantic Water masses. All age and sex classes overlapped spatially to some extent, but the different age and sex groups showed differences in the bathymetry of their foraging areas as well as in their vertical use of the water column. When foraging, pups dove in the upper part of the water column in relatively deep areas. Adult females foraged relatively shallowly in deep water areas too, though in shallower areas than pups. Adult males foraged close to the bottom in shallower areas.

  1. Dental evidence for wild tuber processing among Titicaca Basin foragers 7000 ybp.

    Science.gov (United States)

    Watson, James T; Haas, Randall

    2017-09-01

    The objective of this work is to characterize dental wear in a skeletal sample dating to the Middle/Late Archaic period transition (8,000-6,700 cal. B.P.) from the Lake Titicaca Basin, Peru to better define subsistence behaviors of foragers prior to incipient sedentism and food production. The dental sample consists of 251 teeth from 11 individuals recovered from the site of Soro Mik'aya Patjxa (SMP), the earliest securely dated burial assemblage in the Lake Titicaca Basin and the only burial assemblage in the region from an unequivocal forager context. Occlusal surface wear was quantified according to Smith (1984) and Scott (1979a) to characterize diversity within the site and to facilitate comparison with other foraging groups worldwide. General linear modeling was used to assess observation error and principal axis analysis was used to compare molar wear rates and angles. Teeth were also examined for caries and specialized wear. Occlusal surface attrition is generally heavy across the dental arcade and tends to be flat among posterior teeth. Only one carious lesion was observed. Five of the 11 individuals exhibit lingual surface attrition of the maxillary anterior teeth (LSAMAT). Tooth wear rates, molar wear plane, and caries rates are consistent with terrestrial foraging and a diverse diet. The presence of LSAMAT indicates tuber processing. The results therefore contribute critical new data toward our understanding of forager diet in the Altiplano prior to plant and animal domestication in the south-central Andes. © 2017 Wiley Periodicals, Inc.

  2. A New Perspective on the Foraging Ecology of Apex Predators in the California Current: Results from a Fully Coupled Ecosystem Model

    Science.gov (United States)

    Fiechter, J.; Huckstadt, L. A.; Rose, K.; Costa, D. P.; Curchitser, E. N.; Hedstrom, K.; Edwards, C. A.; Moore, A. M.

    2016-02-01

    Results from a fully coupled end-to-end ecosystem model for the California Current Large Marine Ecosystem are used to describe the impact of environmental variability on the foraging ecology of its most abundant apex predator, California sea lions (Zalophus californianus). The ecosystem model consists of a biogeochemical submodel embedded in a regional ocean circulation submodel, and both coupled with a multi-species individual-based submodel for forage fish (sardine and anchovy) and California sea lions. For sea lions, bioenergetics and behavioral attributes are specified using available TOPP (Tagging Of Pacific Predators) data on their foraging patterns and diet in the California Current. Sardine and anchovy are explicitly included in the model as they represent important prey sources for California sea lions and exhibit significant interannual and decadal variability in population abundances. Output from a 20-year run (1989-2008) of the model demonstrates how different physical and biological processes control habitat utilization and foraging success of California sea lions on interannual time scales. A principal component analysis of sea lion foraging patterns indicates that the first mode of variability is alongshore and tied to sardine availability, while the second mode is cross-shore and associated with coastal upwelling intensity (a behavior consistent with male sea lion tracking data collected in 2004 vs. 2005). The results also illustrate how variability in environmental conditions and forage fish distribution affects sea lions feeding success. While specifically focusing on the foraging ecology of sea lions, our modeling framework has the ability to provide new and unique perspectives on trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.

  3. Synergy in spreading processes: from exploitative to explorative foraging strategies.

    Science.gov (United States)

    Pérez-Reche, Francisco J; Ludlam, Jonathan J; Taraskin, Sergei N; Gilligan, Christopher A

    2011-05-27

    An epidemiological model which incorporates synergistic effects that allow the infectivity and/or susceptibility of hosts to be dependent on the number of infected neighbors is proposed. Constructive synergy induces an exploitative behavior which results in a rapid invasion that infects a large number of hosts. Interfering synergy leads to a slower and sparser explorative foraging strategy that traverses larger distances by infecting fewer hosts. The model can be mapped to a dynamical bond percolation with spatial correlations that affect the mechanism of spread but do not influence the critical behavior of epidemics. © 2011 American Physical Society

  4. Modelling foraging movements of diving predators: a theoretical study exploring the effect of heterogeneous landscapes on foraging efficiency

    Directory of Open Access Journals (Sweden)

    Marianna Chimienti

    2014-09-01

    Full Text Available Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model

  5. Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Luan D. Lima

    2013-12-01

    Full Text Available Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae. Foraging activity may be limited by temperature, humidity, radiation, wind, and other abiotic factors, all of which can affect energy costs during foraging. Ectatomma vizottoi's biology has only recently been studied, and no detailed information is available on its foraging patterns or diet in the field. For this reason, and because foraging activity is an important part of the ecological success of social insects, the present study aimed to investigate E. vizottoi's foraging strategies and dietary habits. First, we determined how abiotic factors constrained E. vizottoi's foraging patterns in the field by monitoring the foraging activity of 16 colonies on eight different days across two seasons. Second, we characterized E. vizottoi's diet by monitoring another set of 26 colonies during peak foraging activity. Our results show that E. vizottoi has foraging strategies that are similar to those of congeneric species. In spite of having a low efficiency index, colonies adopted strategies that allowed them to successfully obtain food resources while avoiding adverse conditions. These strategies included preying on other ant species, a foraging tactic that could arise if a wide variety of food items are not available in the environment or if E. vizottoi simply prefers, regardless of resource availability, to prey on other invertebrates and especially on other ant species.

  6. Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal.

    Directory of Open Access Journals (Sweden)

    Patrick W Robinson

    Full Text Available The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species' range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean.

  7. Trapline foraging by bumble bees: VII. Adjustments for foraging success following competitor removal

    OpenAIRE

    Kazuharu Ohashi; Alison Leslie; James D. Thomson

    2013-01-01

    Animals collecting food from renewable resource patches scattered in space often establish small foraging areas to which they return faithfully. Such area fidelity offers foraging advantages through selection of profitable patches, route minimization, and regular circuit visits to these patches (“trapline foraging”). Resource distribution under field conditions may often vary in time, however, especially when competitors suddenly vanish and a number of patches become available for their neigh...

  8. The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging.

    Science.gov (United States)

    Killen, Shaun S; Brown, Joseph A; Gamperl, A Kurt

    2007-07-01

    1. In many species, individuals will alter their foraging strategy in response to changes in prey density. However, previous work has shown that prey density has differing effects on the foraging mode decisions of ectotherms as compared with endotherms. This is likely due to differences in metabolic demand; however, the relationship between metabolism and foraging mode choice in ectotherms has not been thoroughly studied. 2. Juvenile lumpfish Cyclopterus lumpus forage using one of two modes: they can actively search for prey while swimming, or they can 'sit-and-wait' for prey while clinging to the substrate using a ventral adhesive disk. The presence of these easily distinguishable foraging modes makes juvenile lumpfish ideal for the study of foraging mode choice in ectotherms. 3. Behavioural observations conducted during laboratory experiments showed that juvenile lumpfish predominantly use the 'cling' foraging mode when prey is abundant, but resort to the more costly 'swim' mode to seek out food when prey is scarce. The metabolic cost of active foraging was also quantified for juvenile lumpfish using swim-tunnel respirometry, and a model was devised to predict the prey density at which lumpfish should switch between the swim and cling foraging modes to maximize energy intake. 4. The results of this model do not agree with previous observations of lumpfish behaviour, and thus it appears that juvenile lumpfish do not try to maximize their net energetic gain. Instead, our data suggest that juvenile lumpfish forage in a manner that reduces activity and conserves space in their limited aerobic scope. This behavioural flexibility is of great benefit to this species, as it allows young individuals to divert energy towards growth as opposed to activity. In a broader context, our results support previous speculation that ectotherms often forage in a manner that maintains a minimum prey encounter rate, but does not necessarily maximize net energy gain.

  9. Neural Mechanisms of Foraging

    OpenAIRE

    Kolling, Nils; Behrens, Timothy EJ; Mars, Rogier B; Rushworth, Matthew FS

    2012-01-01

    Behavioural economic studies, involving limited numbers of choices, have provided key insights into neural decision-making mechanisms. By contrast, animals’ foraging choices arise in the context of sequences of encounters with prey/food. On each encounter the animal chooses to engage or whether the environment is sufficiently rich that searching elsewhere is merited. The cost of foraging is also critical. We demonstrate humans can alternate between two modes of choice, comparative decision-ma...

  10. RNAi-mediated silencing of vitellogenin gene function turns honeybee ( Apis mellifera) workers into extremely precocious foragers

    Science.gov (United States)

    Marco Antonio, David Santos; Guidugli-Lazzarini, Karina Rosa; Do Nascimento, Adriana Mendes; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2008-10-01

    The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee ( Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (>10 min) to earlier in life (by 3 4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (<10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.

  11. Annual forage cropping-systems for midwestern ruminant livestock production

    OpenAIRE

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  12. The Effects of Forage Policy on Feed Costs in Korea

    Directory of Open Access Journals (Sweden)

    Jae Bong Chang

    2018-05-01

    Full Text Available Feeding operations are substantial on livestock farms, besides being potentially expensive. Feeding efficiency has been considered a major influence on profits in the livestock industry. Indeed, feed costs are shown to be the largest single item of production cost in Korea. To promote production and use of domestic forage, the Korean government has enforced the forage base expansion program that strengthens the competitiveness of the livestock industry by reducing the production cost. The forage base expansion program includes three main policies: subsidized forage production, support for processing and distribution, and expanding land for forage production. This paper investigates the influence of the government’s policies often conjectured to have pronounced effects on forage production. To evaluate the forage policies, this paper uses a path-analysis approach linking government spending on forage base expansion programs and feed costs. Results indicate that the Korean government’s spending on supporting domestic forage production results in a decrease in the ratio of forage expenses to total feed cost.

  13. Forage evaluation by analysis after

    African Journals Online (AJOL)

    by forages, can be estimated by amino acid analysis of the products of fermentation in vitro. Typical results of such analyses are presented in Table 1. These results indicate that after fermentation the amino acid balance of forages is not optimal for either milk or meat production, with histidine usually being the first limiting.

  14. Optimal Foraging by Birds: Experiments for Secondary & Postsecondary Students

    Science.gov (United States)

    Pecor, Keith W.; Lake, Ellen C.; Wund, Matthew A.

    2015-01-01

    Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. We describe three experiments designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These experiments can be used alone or in combination and can…

  15. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker (Lepidoptera: Tortricidae.

    Directory of Open Access Journals (Sweden)

    Yi Feng

    Full Text Available The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions

  16. Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance.

    Science.gov (United States)

    Wisniewska, Danuta Maria; Johnson, Mark; Teilmann, Jonas; Rojano-Doñate, Laia; Shearer, Jeanne; Sveegaard, Signe; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-06-06

    The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2-4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3-10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these "aquatic shrews," even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Multiple-stage decisions in a marine central-place forager.

    Science.gov (United States)

    Friedlaender, Ari S; Johnston, David W; Tyson, Reny B; Kaltenberg, Amanda; Goldbogen, Jeremy A; Stimpert, Alison K; Curtice, Corrie; Hazen, Elliott L; Halpin, Patrick N; Read, Andrew J; Nowacek, Douglas P

    2016-05-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager

  18. Multiple-stage decisions in a marine central-place forager

    Science.gov (United States)

    Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.

    2016-05-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager

  19. State of emergency: behavior of gerbils is affected by the hunger state of their predators.

    Science.gov (United States)

    Berger-Tal, Oded; Kotler, Burt P

    2010-02-01

    Predator-prey interactions are usually composed of behaviorally sophisticated games in which the values of the strategies of foraging prey individuals may depend on those of their predators, and vice versa. Therefore, any change in the behavior of the predator should result in changes to the behavior of the prey. However, this key prediction has rarely been tested. To examine the effects of the predator state on prey behavior, we manipulated the state of captive Barn Owls, Tyto alba, and released them into an enclosure containing Allenby's gerbils, Gerbillus andersoni allenbyi, a common prey of the owls. The owls were significantly more active when hungry. In response, the gerbils altered their behavior according to the state of the owl. When the owl was hungry, the gerbils visited fewer food patches, foraged in fewer patches, and harvested less food from each patch. Moreover, the gerbils kept their foraging bouts closer to their burrow, which reduced the overlap among foraging ranges of individual gerbils. Thus, changes in the state of the predator affect the foraging behavior of its prey and can also mediate competition among prey individuals.

  20. Quality of the forage apparently consumed by beef calves in natural grassland under fertilization and oversown with cool season forage species

    Directory of Open Access Journals (Sweden)

    Denise Adelaide Gomes Elejalde

    2012-06-01

    Full Text Available The objective of this study was to evaluate the chemical composition of the forage apparently consumed by steers in a natural grassland on region of Campanha, in Rio Grande do Sul, Brazil, subjected or not to different inputs: NP - natural pasture without inputs; FNP - fertilized natural pasture and INP - improved natural grassland with fertilization and over-seeded with cultivated winter species. Three Angus steers testers and a variable number of regulator animals per experimental unit were utilized in order to maintain 13 kg of DM/100 kg of live weight (LW as forage allowance. One time at each season, hand plucking samples were performed along the daily grazing time simulating forage harvested by the animals. The collected samples after drying and grind were submitted to chemical analysis to determine the forage quality. Except in winter and spring, the values of neutral detergent fiber were higher than the critical value of 550 g/kg of DM, which could limit forage intake, demonstrating that the values of forage on offer provided (15.6; 13.7; 13.5; 15.8 kg of DM/100 kg of LW/day in summer, autumn, winter and spring, respectively were not restrictive to intake. The oversowing of winter cultivated species or fertilization positively alter the degradable fiber content. The seasons had marked influence on the chemical composition of forage apparently consumed; positively increasing some fractions of forage chemical composition in the seasons in which native or cultivated winter species increased their participation. The forage chemical composition is the determining factor in animal performance in natural pasture.

  1. Reduced foraging in the presence of predator cues by the Black Spiny-tailed Iguana, Ctenosaura similis (Sauria: Iguanidae

    Directory of Open Access Journals (Sweden)

    Vincent R. Farallo

    2010-12-01

    Full Text Available The presence of a predator may have direct and indirect effects on the behavior of the prey. Although altered behavior may help prey avoid predators, it also can have a potential impact on critical activities such as foraging. Predator-prey interactions are routinely studied in laboratory-based experiments owing to theperceived difficulties of conducting such experiments in natural settings. We conducted an experimental study under field conditions in Palo Verde National Park in northwestern Costa Rica to assess behavioral responses of Black Spiny-tailed Iguanas (Ctenosaurasimilis to the presence of predators and predator cues. Free-roaming iguanas were offered mango in designated areas in the presence of a predator (Boa constrictor, a predator cue (B. constrictor feces, and a control (no predator or predator cue. Results indicate that iguanas reduced their foraging efforts in the presence of both a predator and its cue.

  2. Rodent foraging is affected by indirect, but not by direct, cues of predation risk.

    Energy Technology Data Exchange (ETDEWEB)

    Orrock, John, L.; Danielson, Brent, J.; Brinkerhoff, R., Jory

    2004-01-01

    Behavioral Ecology Vol. 15 No. 3: 433 - 437 We used foraging trays to determine whether old field mice, Peromyscus polionotus , altered foraging in response to direct cues of predation risk (urine of native and nonnative predators) and indirect cues of predation risk (foraging microhabitat, precipitation, and moon illumination). The proportion of seeds remaining in each tray (a measure of the giving-up density [GUD]) was used to measure risk perceived by mice. Mice did not alter their GUD when presented with cues of native predators (bobcats, Lynx r ufus , and red foxes, Vulpes vulpes), recently introduced predators (coyotes, Canis latrans ), nonnative predators (ocelots, Leopardus pardalis ), a native herbivore (white-tailed deer, Odocoileus virginianus), or a water control. Rather, GUD was related to microhabitat: rodents removed more seeds from foraging trays sheltered beneath vegetative cover compared with exposed trays outside of cover. Rodents also removed more seeds during nights with precipitation and when moon illumination was low. Our results suggest that P. polionotus used indirect cues rather than direct cues to assess risk of vertebrate predation. Indirect cues may be more reliable than are direct scent cues for estimating risk from multiple vertebrate predators that present the most risk in open environments.

  3. Taking movement data to new depths: Inferring prey availability and patch profitability from seabird foraging behavior.

    Science.gov (United States)

    Chimienti, Marianna; Cornulier, Thomas; Owen, Ellie; Bolton, Mark; Davies, Ian M; Travis, Justin M J; Scott, Beth E

    2017-12-01

    Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills ( Alca torda , N  = 5, from Fair Isle, UK) and common guillemots ( Uria aalge , N  = 2 from Fair Isle and N  = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive ( N  = 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives ( N  = 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.

  4. Giant panda foraging and movement patterns in response to bamboo shoot growth.

    Science.gov (United States)

    Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin

    2018-03-01

    Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.

  5. Afferent Connections to the Rostrolateral Part of the Periaqueductal Gray: A Critical Region Influencing the Motivation Drive to Hunt and Forage

    Directory of Open Access Journals (Sweden)

    Sandra Regina Mota-Ortiz

    2009-01-01

    Full Text Available Previous studies have shown that a particular site in the periaqueductal gray (PAG, the rostrolateral PAG, influences the motivation drive to forage or hunt. To have a deeper understanding on the putative paths involved in the decision-making process between foraging, hunting, and other behavioral responses, in the present investigation, we carried out a systematic analysis of the neural inputs to the rostrolateral PAG (rlPAG, using Fluorogold as a retrograde tracer. According to the present findings, the rlPAG appears to be importantly driven by medial prefrontal cortical areas involved in controlling attention-related and decision-making processes. Moreover, the rlPAG also receives a wealth of information from different amygdalar, hypothalamic, and brainstem sites related to feeding, drinking, or hunting behavioral responses. Therefore, this unique combination of afferent connections puts the rlPAG in a privileged position to influence the motivation drive to choose whether hunting and foraging would be the most appropriate adaptive responses.

  6. Breeding limits foraging time : Evidence of interrupted foraging response from body mass variation in a tropical environment

    NARCIS (Netherlands)

    Nwaogu, Chima J.; Dietz, Maurine W.; Tieleman, B. Irene; Cresswell, Will

    Birds should store body reserves if starvation risk is anticipated; this is known as an ‘interrupted foraging response’. If foraging remains unrestricted, however, body mass should remain low to limit the predation risk that gaining and carrying body reserves entails. In temperate environments mass

  7. Forage mass and the nutritive value of pastures mixed with forage peanut and red clover

    Directory of Open Access Journals (Sweden)

    Ricardo Lima de Azevedo Junior

    2012-04-01

    Full Text Available The objective of this research was to estimate three pasture-based systems mixed with elephantgrass + spontaneous growth species, annual ryegrass, for pasture-based system 1; elephantgrass + spontaneous growth species + forage peanut, for pasture-based system 2; and elephantgrass + spontaneous growth species + annual ryegrass + red clover, for pasture-based system 3. Elephantgrass was planted in rows 4 m apart from each other. During the cool-season, annual ryegrass was sown in the alleys between the rows of elephantgrass; forage peanut and red clover were sown in the alleys between the elephantgrass according to the respective treatment. The experimental design was totally randomized in the three treatments (pasture-based systems, two replicates (paddocks in completely split-plot time (grazing cycles. Holstein cows receiving 5.5 kg-daily complementary concentrate feed were used in the evaluation. Pre-grazing forage mass, botanical composition and stocking rate were evaluated. Samples of simulated grazing were collected to analyze organic matter (OM, neutral detergent fiber (NDF, crude protein (CP and organic matter in situ digestibility (OMISD. Nine grazing cycles were performed during the experimental period (341 days. The average dry matter values for pre-grazing and stocking rate were 3.34; 3.46; 3.79 t/ha, and 3.28; 3.34; 3.60 AU/ha for each respective pasture-based system. Similar results were observed between the pasture-based systems for OM, NDF, CP and OMISD. Considering forage mass, stocking rate and nutritive value, the pasture-based system intercropped with forage legumes presented better performance.

  8. Analysis of Inter- and Intra-individual Variation in Foraging Habits of the Endangered Hawaiian Petrel Using Stables Isotopes

    Science.gov (United States)

    Morra, K. E.; Ostrom, P. H.; Wiley, A. E.; James, H. F.; Stricker, C. A.; Gandhi, H.

    2014-12-01

    Stable isotope analysis of the endangered Hawaiian petrel's (Pterodroma sandwichensis, HAPE) feathers provides otherwise intractable information regarding non-breeding season foraging habits. Adult HAPE spend 3.5-6 months at sea during the non-breeding season, at which time they sequentially molt their flight feathers. Because feathers are metabolically inert once synthesized, they capture isotopic signals while they are grown, providing an opportunity to study foraging habits over time. Here we use stable hydrogen (δD), carbon (δ13C) and nitrogen (δ15N) isotopes to assess variation in foraging habits within and between individuals, and among four breeding colonies. δD is an indicator of prevalence of fish vs. invertebrates in the diet. In one analysis, we observed large variation in feather δD (125‰), with adults from Maui and Kauai having significantly higher δD values than corresponding hatch-year birds, indicating significant dietary differences between age groups. In a second analysis, we utilized δ13C and δ15N of Hawaii, Maui and Lanai adults, values which vary with trophic level and also at the base of the food web across HAPE's foraging range, potentially revealing information about feeding location, as well as diet. Furthermore, because the sequence of molt is known, we are able to determine whether individual foraging specialization (continued use of the same foraging behavior over time) exists in this species. To do this, we analyzed two primary feathers, P1 and P6, which reflect the beginning and the middle of the non-breeding season, respectively. We did not find significant differences in δ13C or δ15N between P1 and P6, suggesting consistent foraging habits within individuals over time. This provides evidence that individual foraging specialization exists within these populations. Analysis of a secondary feather grown late in the molt sequence would further illuminate the extent of foraging specialization. Finally, δ15N differs

  9. Breeding success of a marine central place forager in the context of climate change: A modeling approach.

    Directory of Open Access Journals (Sweden)

    Lauriane Massardier-Galatà

    Full Text Available In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS, including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella, which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.

  10. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    Science.gov (United States)

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  11. Foraging ecology as related to the distribution of planktivorous auklets in the Bering Sea

    Science.gov (United States)

    Hunt, George L.; Harrison, Nancy M.; Piatt, John F.

    1993-01-01

    We review recent accounts of the foraging ecologies of  five species of small auklets found in the Bering Sea. These birds eat a wide variety of zooplankton and micronekton. Least Auklets Aethia pusilla and Whiskered Auklets A. pygmaea, as far as is known, primarily eat copepods, whereas Created Auklets A. cristatella appear to specialize on euphausiids, at least during the breeding season. The diet of Parakeet Auklets Cyclorrhynchus psittacula is much broader than that of most other Aethia species, and includes many gelatinous species and their commensals. Little is known of the diet of Cassin's Auklet Ptychoramphus aleuticus in the Bering Sea, although elsewhere they take large copepods, euphausiids, and larval fish.There are considerable differences in the at-sea distributions and foraging behaviors of these five species of auklet. Least Auklets in the norhtern Bering Sea concentrate their foraging activities over strongly stratified water and near fronts where pycnoclines may approach the surface. In the Aleutian Islands, Least Auklets forage where oceanic and tidal currents strike the shelf between the islands and rise toward the surface carrying plankton. Least Auklets and Crested Auklets are often found in large flocks, whereas Parakeet Auklets are rarely found in groups of more than three birds and are usually widely dispersed. The few at-sea observations of Whiskered Auklets have been of small flocks in turbulent waters of island passes. We relate prey types taken, foraging dispersion, and the use of hydrographic features by these auklet species.

  12. The Role of Non-Foraging Nests in Polydomous Wood Ant Colonies.

    Science.gov (United States)

    Ellis, Samuel; Robinson, Elva J H

    2015-01-01

    A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.

  13. Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging.

    Science.gov (United States)

    Saleh, Nehal; Chittka, Lars

    2007-04-01

    To test the relative importance of long-term and working spatial memories in short-range foraging in bumblebees, we compared the performance of two groups of bees. One group foraged in a stable array of six flowers for 40 foraging bouts, thereby enabling it to establish a long-term memory of the array, and adjust its spatial movements accordingly. The other group was faced with an array that changed between (but not within) foraging bouts, and thus had only access to a working memory of the flowers that had been visited. Bees in the stable array started out sampling a variety of routes, but their tendency to visit flowers in a repeatable, stable order ("traplining") increased drastically with experience. These bees used shorter routes and converged on four popular paths. However, these routes were mainly formed through linking pairs of flowers by near-neighbour movements, rather than attempting to minimize overall travel distance. Individuals had variations to a primary sequence, where some bees used a major sequence most often, followed by a minor less used route, and others used two different routes with equal frequency. Even though bees foraging in the spatially randomized array had access to both spatial working memory and scent marks, this manipulation greatly disrupted foraging efficiency, mainly via an increase in revisitation to previously emptied flowers and substantially longer search times. Hence, a stable reference frame greatly improves foraging even for bees in relatively small arrays of flowers.

  14. Adaptive Lévy processes and area-restricted search in human foraging.

    Directory of Open Access Journals (Sweden)

    Thomas T Hills

    Full Text Available A considerable amount of research has claimed that animals' foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods-comparing alternative distributions using maximum likelihood methods-showed the strongest support for bounded power-law distributions (truncated Lévy flights. However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32 participants. Moreover, paths in the patchy environment (but not the dispersed environment showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments-where search was area-restricted. Furthermore, our results

  15. Fear of feces? Trade-offs between disease risk and foraging drive animal activity around raccoon latrines

    Science.gov (United States)

    Weinstein, Sara B.; Moura, Chad W.; Mendez, Jon Francis; Lafferty, Kevin D.

    2017-01-01

    Fear of predation alters prey behavior, which can indirectly alter entire landscapes. A parasite-induced ecology of fear might also exist if animals avoid parasite-contaminated resources when infection costs outweigh foraging benefits. To investigate whether animals avoid parasite contaminated sites, and if such avoidance balances disease costs and foraging gains, we monitored animal behavior at raccoon latrines – sites that concentrate both seeds and pathogenic parasite eggs. Using wildlife cameras, we documented over 40 potentially susceptible vertebrate species in latrines and adjacent habitat. Latrine contact rates reflected background activity, diet preferences and disease risk. Disease-tolerant raccoons and rats displayed significant site attraction, while susceptible birds and small mammals avoided these high-risk sites. This suggests that parasites, like predators, might create a landscape of fear for vulnerable hosts. Such non-consumptive parasite effects could alter disease transmission, population dynamics, and even ecosystem structure.

  16. Risso's dolphins plan foraging dives.

    Science.gov (United States)

    Arranz, Patricia; Benoit-Bird, Kelly J; Southall, Brandon L; Calambokidis, John; Friedlaender, Ari S; Tyack, Peter L

    2018-02-28

    Humans remember the past and use that information to plan future actions. Lab experiments that test memory for the location of food show that animals have a similar capability to act in anticipation of future needs, but less work has been done on animals foraging in the wild. We hypothesized that planning abilities are critical and common in breath-hold divers who adjust each dive to forage on prey varying in quality, location and predictability within constraints of limited oxygen availability. We equipped Risso's dolphins with sound-and-motion recording tags to reveal where they focus their attention through their externally observable echolocation and how they fine tune search strategies in response to expected and observed prey distribution. The information from the dolphins was integrated with synoptic prey data obtained from echosounders on an underwater vehicle. At the start of the dives, whales adjusted their echolocation inspection ranges in ways that suggest planning to forage at a particular depth. Once entering a productive prey layer, dolphins reduced their search range comparable to the scale of patches within the layer, suggesting that they were using echolocation to select prey within the patch. On ascent, their search range increased, indicating that they decided to stop foraging within that layer and started searching for prey in shallower layers. Information about prey, learned throughout the dive, was used to plan foraging in the next dive. Our results demonstrate that planning for future dives is modulated by spatial memory derived from multi-modal prey sampling (echoic, visual and capture) during earlier dives. © 2018. Published by The Company of Biologists Ltd.

  17. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  18. Three-dimensional foraging habitat use and niche partitioning in two sympatric seabird species, Phalacrocorax auritus and P. penicillatus

    Science.gov (United States)

    Peck-Richardson, Adam G.; Lyons, Donald E.; Roby, Daniel D.; Cushing, Daniel A.; Lerczak, James A.

    2018-01-01

    Ecological theory predicts that co-existing, morphologically similar species will partition prey resources when faced with resource limitations. We investigated local movements, foraging dive behavior, and foraging habitat selection by breeding adults of 2 closely related cormorant species, double-crested cormorants Phalacrocorax auritus and Brandt’s cormorants P. penicillatus. These species nest sympatrically at East Sand Island in the Columbia River estuary at the border of Oregon and Washington states, USA. Breeding individuals of each species were tracked using GPS tags with integrated temperature and depth data-loggers. The overall foraging areas and core foraging areas (defined as the 95% and 50% kernel density estimates of dive locations, respectively) of double-crested cormorants were much larger and covered a broader range of riverine, mixed-estuarine, and nearshore marine habitats. Brandt’s cormorant foraging areas were less expansive, were exclusively marine, and mostly overlapped with double-crested cormorant foraging areas. Within these areas of overlap, Brandt’s cormorants tended to dive deeper (median depth = 6.48 m) than double-crested cormorants (median depth = 2.67 m), and selected dive locations where the water was deeper. Brandt’s cormorants also utilized a deeper, more benthic portion of the water column than did double-crested cormorants. Nevertheless, the substantial overlap in foraging habitat between the 2 cormorant species in the Columbia River estuary, particularly for Brandt’s cormorants, suggests that superabundant prey resources allow these 2 large and productive cormorant colonies to coexist on a single island near the mouth of the Columbia River.

  19. Genetic Localization of Foraging (For): A Major Gene for Larval Behavior in Drosophila Melanogaster

    OpenAIRE

    de-Belle, J. S.; Hilliker, A. J.; Sokolowski, M. B.

    1989-01-01

    Localizing genes for quantitative traits by conventional recombination mapping is a formidable challenge because environmental variation, minor genes, and genetic markers have modifying effects on continuously varying phenotypes. We describe ``lethal tagging,'' a method used in conjunction with deficiency mapping for localizing major genes associated with quantitative traits. Rover/sitter is a naturally occurring larval foraging polymorphism in Drosophila melanogaster which has a polygenic pa...

  20. Resource diversity and landscape-level homogeneity drive native bee foraging.

    Science.gov (United States)

    Jha, Shalene; Kremen, Claire

    2013-01-08

    Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.

  1. Information Foraging in Nuclear Power Plant Control Rooms

    International Nuclear Information System (INIS)

    Boring, R.L.

    2011-01-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  2. Information Foraging in Nuclear Power Plant Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  3. Improving the Yield and Nutritional Quality of Forage Crops

    Directory of Open Access Journals (Sweden)

    Nicola M. Capstaff

    2018-04-01

    Full Text Available Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

  4. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?

    Science.gov (United States)

    Vardi, Reut; Abramsky, Zvika; Kotler, Burt P; Altstein, Ofir; Rosenzweig, Michael L

    2017-07-01

    Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator-prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools-having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish 'peeping' out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.

  5. Utilization of Swamp Forages from South Kalimantan on Local Goat Performances

    Directory of Open Access Journals (Sweden)

    T. Rostini

    2014-04-01

    Full Text Available Forages in swamp area consist of grass and legumes that have good productivity and nutrient quality. This research was aimed to evaluate the potency of swamp forage on digestibility and performance of goats. There were 24 local male goats aged 10-12 months with initial body weight of 13.10±1.55 kg, allocated into 6 treatments. Those were control (R0: 60% grass and 40% legumes; (R1: 60% swamp forages and 40% concentrate; (R2: 100% swamp forages; (R3: 100% swamp forage hay; (R4: 100% swamp forage silage; (R5: 100% haylage swamp forages. Results showed that silage treatment significantly increased (P<0.05 consumption and digestibility. Swamp forages could be utilized well by preservation (silage, hay, and haylage. Ensilage of swamp forages increased protein content from 13.72% to 14.02%, protein intake (74.62 g/d, dry matter intake (532.11 g/d, nitrogen free extract intake (257.39 g/d, with total body weight gain (3.5 kg in eight weeks and average daily gain (62.60 g/d. It is concluded that ensilage of swamp forages (R4 is very potential to be utilized as forage source for ruminants such as goats.

  6. Volume and density of microglomeruli in the honey bee mushroom bodies do not predict performance on a foraging task.

    Science.gov (United States)

    Van Nest, Byron N; Wagner, Ashley E; Marrs, Glen S; Fahrbach, Susan E

    2017-09-01

    The mushroom bodies (MBs) are insect brain regions important for sensory integration, learning, and memory. In adult worker honey bees (Apis mellifera), the volume of neuropil associated with the MBs is larger in experienced foragers compared with hive bees and less experienced foragers. In addition, the characteristic synaptic structures of the calycal neuropils, the microglomeruli, are larger but present at lower density in 35-day-old foragers relative to 1-day-old workers. Age- and experience-based changes in plasticity of the MBs are assumed to support performance of challenging tasks, but the behavioral consequences of brain plasticity in insects are rarely examined. In this study, foragers were recruited from a field hive to a patch comprising two colors of otherwise identical artificial flowers. Flowers of one color contained a sucrose reward mimicking nectar; flowers of the second were empty. Task difficulty was adjusted by changing flower colors according to the principle of honey bee color vision space. Microglomerular volume and density in the lip (olfactory inputs) and collar (visual inputs) compartments of the MB calyces were analyzed using anti-synapsin I immunolabeling and laser scanning confocal microscopy. Foragers displayed significant variation in microglomerular volume and density, but no correlation was found between these synaptic attributes and foraging performance. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1057-1071, 2017. © 2017 Wiley Periodicals, Inc.

  7. Urban gardens promote bee foraging over natural habitats and plantations.

    Science.gov (United States)

    Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A; Klein, Alexandra-Maria; Leonhardt, Sara D

    2016-03-01

    Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.

  8. Adaptive intertemporal preferences in foraging-style environments

    Directory of Open Access Journals (Sweden)

    Michael T. Bixter

    2013-06-01

    Full Text Available Decision makers often face choices between smaller more immediate rewards and larger more delayed rewards. For example, when foraging for food, animals must choose between actions that have varying costs (e.g., effort, duration, energy expenditure and varying benefits (e.g., amount of food intake. The combination of these costs and benefits determine what optimal behavior is. In the present study, we employ a foraging-style task to study how humans make reward-based choices in response to the real-time constraints of a dynamic environment. On each trial participants were presented with two rewards that differed in magnitude and in the delay until their receipt. Because the experiment was of a fixed duration, maximizing earnings required decision makers to determine how to trade off the magnitude and the delay associated with the two rewards on each trial. To evaluate the extent to which participants could adapt to the decision environment, specific task characteristics were manipulated, including reward magnitudes (Experiment 1 and the delay between trials (Experiment 2. Each of these manipulations was designed to alter the pattern of choices made by an optimal decision maker. Several findings are of note. First, different choice strategies were observed with the manipulated environmental constraints. Second, despite contextually-appropriate shifts in behavior between conditions in each experiment, choice patterns deviated from theoretical optimality. In particular, the delays associated with the rewards did not exert a consistent influence on choices as required by exponential discounting. Third, decision makers nevertheless performed surprisingly well in all task environments with any deviations from strict optimality not having particularly deleterious effects on earnings. Taken together, these results suggest that human decision makers are capable of exhibiting intertemporal preferences that reflect a variety of environmental constraints.

  9. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini) in temperate climate of Jalisco, México.

    Science.gov (United States)

    Macías-Macías, J O; Tapia-Gonzalez, J M; Contreras-Escareño, F

    2017-01-01

    Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  10. Fearful foragers: honey bees tune colony and individual foraging to multi-predator presence and food quality.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller and V. tropica (bigger preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w, colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55-79% and residence times by 17-33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose, colony and individual foraging favored higher sugar concentrations. However, when balancing food quality against multiple threats (sweeter food corresponding to higher danger, colonies exhibited greater fear than individuals. Colonies decreased foraging at low and high danger patches. Individuals exhibited less fear and only decreased visits to the high danger patch. Contrasting individual with emergent colony-level effects of fear can thus illuminate how predators shape pollination by social bees.

  11. 7 CFR 457.117 - Forage production crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117 Forage..., or a mixture thereof, or other species as shown in the Actuarial Documents. Harvest—Removal of forage... different price elections by type, in which case you may select one price election for each forage type...

  12. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini).

    Science.gov (United States)

    Streinzer, Martin; Huber, Werner; Spaethe, Johannes

    2016-10-01

    Stingless bees constitute a species-rich tribe of tropical and subtropical eusocial Apidae that act as important pollinators for flowering plants. Many foraging tasks rely on vision, e.g. spatial orientation and detection of food sources and nest entrances. Meliponini workers are usually small, which sets limits on eye morphology and thus quality of vision. Limitations are expected both on acuity, and thus on the ability to detect objects from a distance, as well as on sensitivity, and thus on the foraging time window at dusk and dawn. In this study, we determined light intensity thresholds for flight under dim light conditions in eight stingless bee species in relation to body size in a Neotropical lowland rainforest. Species varied in body size (0.8-1.7 mm thorax-width), and we found a strong negative correlation with light intensity thresholds (0.1-79 lx). Further, we measured eye size, ocelli diameter, ommatidia number, and facet diameter. All parameters significantly correlated with body size. A disproportionately low light intensity threshold in the minute Trigonisca pipioli, together with a large eye parameter P eye suggests specific adaptations to circumvent the optical constraints imposed by the small body size. We discuss the implications of body size in bees on foraging behavior.

  13. Characterization of forage and extrusa clones dwarf elephant grass under rotational stocking

    Directory of Open Access Journals (Sweden)

    Tatiana Pires Pereira

    2014-10-01

    Full Text Available The objective of this trial was to evaluate the behavior ingestive of crossbred heifers and chemical characteristics of the material from two clones of dwarf elephant grass (BRS Kurumi ‘and CNPGL 01/03/00 submitted to different management strategies through sampling of forage (whole plant extrusa and manual hand plucking. The experiment was conducted at Embrapa Dairy Cattle, Coronel Pacheco, MG. We used a completely randomized design with factorial (2x2x2 with three replications. The treatments consisted of two clones of elephant grass (BRS Kurumi ‘and CNPGL 01/03/00, two light interception at the entrance of the animals (90 and 95% and two heights of post-grazing residue (30 and 50 cm with three replications. The chemical analysis showed that the methodology manual grazing simulation enables an acceptable estimate of the forage selected by grazing animals and the sampling of the whole plant is not selected by the animal diet. To harvest extrusa rate evaluation and mass bit, fractions and chemical composition of the plant of the ingested material was taken. Characteristics, structural and nutritional value of clone BRS ‘Kurumi’ facilitated greater forage intake by the animal, suggesting its use in grazing systems.

  14. Foraging behavior of Anastrepha Ludens, A. obliqua, and A. serpentina in response to feces extracts containing host marking pheromone.

    Science.gov (United States)

    Aluja, Martin; Díaz-Fleischer, Francisco

    2006-02-01

    Following oviposition, females of many Tephritid flies deposit host marking pheromones (HMPs) to indicate that the host fruit has been occupied. We describe the foraging behavior of these three economically important species (Anastrepha ludens and A. obliqua from the fraterculus species group and A. serpentina from the serpentina species group) when they encounter an artificial fruit (green agar spheres wrapped in Parafilm) marked with intra- and interspecific feces extracts that contain, among other substances, host marking pheromone. When flies encountered fruit treated with either 1 or 100 mg/ml feces extract, there were drastic and statistically significant reductions in tree residence time, mean time spent on fruit, and in the number of oviposition attempts or actual ovipositions when compared to the control treatment (clean fruit). These responses were almost identical irrespective of extract origin (i.e., fly species), indicating complete interspecific HMP cross-recognition by all three Anastrepha species tested. We discuss the ecological and practical implications of our findings.

  15. Review: Feeding conserved forage to horses: recent advances and recommendations.

    Science.gov (United States)

    Harris, P A; Ellis, A D; Fradinho, M J; Jansson, A; Julliand, V; Luthersson, N; Santos, A S; Vervuert, I

    2017-06-01

    The horse is a non-ruminant herbivore adapted to eating plant-fibre or forage-based diets. Some horses are stabled for most or the majority of the day with limited or no access to fresh pasture and are fed preserved forage typically as hay or haylage and sometimes silage. This raises questions with respect to the quality and suitability of these preserved forages (considering production, nutritional content, digestibility as well as hygiene) and required quantities. Especially for performance horses, forage is often replaced with energy dense feedstuffs which can result in a reduction in the proportion of the diet that is forage based. This may adversely affect the health, welfare, behaviour and even performance of the horse. In the past 20 years a large body of research work has contributed to a better and deeper understanding of equine forage needs and the physiological and behavioural consequences if these are not met. Recent nutrient requirement systems have incorporated some, but not all, of this new knowledge into their recommendations. This review paper amalgamates recommendations based on the latest understanding in forage feeding for horses, defining forage types and preservation methods, hygienic quality, feed intake behaviour, typical nutrient composition, digestion and digestibility as well as health and performance implications. Based on this, consensual applied recommendations for feeding preserved forages are provided.

  16. Developing Cyber Foraging Applications for Portable Devices

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2008-01-01

    This paper presents the Locusts cyber foraging framework. Cyber foraging is the opportunistic use of computing resources available in the nearby environment, and using such resources thus fall into the category of distributed computing. Furthermore, for the resources to be used efficiently, paral...

  17. Forage: a sensitive indicator of airborne radioactivity

    International Nuclear Information System (INIS)

    Jackson, W.M.; Noakes, J.E.; Spaulding, J.D.

    1981-01-01

    This paper presents the results of using Ge(Li) γ-ray spectroscopy to measure radioactivity concentration of forage in the vicinity of the Joseph M. Farley Nuclear Plant, Houston County, AL., over a 31/2 yr period. The report period includes 2 yr of pre-operational and 11/2 yr of operational sampling. Although the objective of forage sampling was the measurement of manmade airborne fallout radioactivity, several natural radioisotopes were also found to be present. A summary of natural radioactivity data for all samples measured during the period from August 1975 to December 1978 is given. Approximately 10 days after each of four Chinese atmospheric nuclear tests conducted during the sampling period fresh fission product fallout was measured on the forage. The information from these nuclear tests shows forage sampling to be a convenient and sensitive monitoring tool for airborne fallout radioactivity. (author)

  18. Comparative Effect of Sole Forage and Mixed Concentrate-Forage ...

    African Journals Online (AJOL)

    There was no statistical (P>0.05) difference in average intake of forage between the two treatment groups. Economically, Treatment 1 proves to be better for the enhancement of body weight in growing rabbits than Treatment 2. Key words: Weaner rabbits,Poultry grower mesh, Tridax procumbens, Feed intake,Body weight ...

  19. Foraging efficiency of a predator flock for randomly moving prey: A simulation study

    Science.gov (United States)

    Lee, Sang-Hee; Kwon, Ohsung

    2016-03-01

    Flocking behavior of animals is highly advantageous for taking food resources. The degree of the advantage is related to the ability of flock members to detect their prey and the mobility of prey individuals. In this study, to explore the relation, we constructed a model to simulate a predator flock and its randomly moving prey. The predator members have the prey detection ability, which was characterized as sensing distance, R, and a sensing angle, θ. The mobility of the prey individuals was characterized as the maximum traveling distance of an iteration time step, L. The relative flock foraging efficiency, ɛ, was defined as ɛ = 1 - (Td/Tup). Tup and Td represent the spent time for the flock to eat all prey individuals and to uptake the last remaining 10% prey, respectively. Simulation results showed that ɛ increased, maximized, and decreased with the increase of R, regardless of L. As the number of prey, N, increased, the tendency of the increasing and decreasing was diluted. The result was briefly discussed in relation to the flock foraging behavior and the development of the model toward applications for real ecosystems.

  20. Hive Relocation Does Not Adversely Affect Honey Bee (Hymenoptera: Apidae Foraging

    Directory of Open Access Journals (Sweden)

    Fiona C. Riddell Pearce

    2013-01-01

    Full Text Available Honey bees, Apis mellifera, face major challenges including diseases and reduced food availability due to agricultural intensification. Additionally, migratory beekeeping may subject colonies to a moving stress, both during the move itself and after the move, from the bees having to forage in a novel environment where they have no knowledge of flower locations. This study investigated the latter. We moved three colonies housed in observation hives onto the campus from a site 26 km away and compared their foraging performance to three similarly sized colonies at the same location that had not been moved. We obtained data on (1 foraging performance by calculating distance by decoding waggle dances, (2 hive foraging rate by counting forager departure rate, (3 forage quality by assessing sugar content of nectar from returning foragers, and (4 forager success by calculating the proportion of bees returning to the nest entrance with nectar in their crop. We repeated this 3 times (August 2010, October 2010, and June 2011 to encompass any seasonal effects. The data show no consistent difference in foraging performance of moved versus resident hives. Overall the results suggest that moving to a new location does not adversely affect the foraging success of honey bees.

  1. Bursts and heavy tails in temporal and sequential dynamics of foraging decisions.

    Directory of Open Access Journals (Sweden)

    Kanghoon Jung

    2014-08-01

    Full Text Available A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a a highly biased choice distribution; and (b preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices.

  2. Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions

    Science.gov (United States)

    Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D.; Jeong, Jaeseung

    2014-01-01

    A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices. PMID:25122498

  3. 7 CFR 407.13 - Group risk plan for forage.

    Science.gov (United States)

    2010-01-01

    ... acres of hay in the county, as specified in the actuarial documents. The actuarial documents will... a period for forage regrowth. 2. Crop Insured The insured crop will be the forage types shown on the... the Group Risk Plan Common Policy, acreage seeded to forage after July 1 of the previous crop year...

  4. Influence of vegetation on the nocturnal foraging behaviors and vertebrate prey capture by endangered Burrowing Owls

    Directory of Open Access Journals (Sweden)

    Alan Marsh

    2014-06-01

    Full Text Available Restrictions in technology have limited past habitat selection studies for many species to the home-range level, as a finer-scale understanding was often not possible. Consequently, these studies may not identify the true mechanism driving habitat selection patterns, which may influence how such results are applied in conservation. We used GPS dataloggers with digital video recorders to identify foraging modes and locations in which endangered Burrowing Owls (Athene cunicularia captured prey. We measured the coarse and fine-scale characteristics of vegetation at locations in which owls searched for, versus where they caught, vertebrate prey. Most prey items were caught using hover-hunting. Burrowing Owls searched for, and caught, vertebrate prey in all cover types, but were more likely to kill prey in areas with sparse and less dense vegetative cover. Management strategies designed to increase Burrowing Owl foraging success in the Canadian prairies should try to ensure a mosaic of vegetation heights across cover types.

  5. Adaptive Feeding behavior and functional responses in pelagic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Saiz, Enrico; Tiselius, Peter

    2018-01-01

    Zooplankton may modify their feeding behavior in response to prey availability and presence of predators with implications to populations of both predators and prey. Optimal foraging theory predicts that such responses result in a type II functional response for passive foragers and a type III re...

  6. Foraging niche segregation in Malaysian babblers (Family: Timaliidae.

    Directory of Open Access Journals (Sweden)

    Mohammad Saiful Mansor

    Full Text Available Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i how these babblers forage in the wild and use vegetation to obtain food, and ii how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.

  7. Foraging niche segregation in Malaysian babblers (Family: Timaliidae).

    Science.gov (United States)

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.

  8. Foraging niche segregation in Malaysian babblers (Family: Timaliidae)

    Science.gov (United States)

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause’ law of competitive exclusion, which states two species occupying the same niche will not stably coexist. PMID:28253284

  9. Subalpine bumble bee foraging distances and densities in relation to flower availability.

    Science.gov (United States)

    Elliott, Susan E

    2009-06-01

    Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.

  10. The role of landscape characteristics for forage maturation and nutritional benefits of migration in red deer.

    Science.gov (United States)

    Mysterud, Atle; Vike, Brit Karen; Meisingset, Erling L; Rivrud, Inger Maren

    2017-06-01

    Large herbivores gain nutritional benefits from following the sequential flush of newly emergent, high-quality forage along environmental gradients in the landscape, termed green wave surfing. Which landscape characteristics underlie the environmental gradient causing the green wave and to what extent landscape characteristics alone explain individual variation in nutritional benefits remain unresolved questions. Here, we combine GPS data from 346 red deer ( Cervus elaphus ) from four partially migratory populations in Norway with the satellite-derived normalized difference vegetation index (NDVI), an index of plant phenology. We quantify whether migratory deer had access to higher quality forage than resident deer, how landscape characteristics within summer home ranges affected nutritional benefits, and whether differences in landscape characteristics could explain differences in nutritional gain between migratory and resident deer. We found that migratory red deer gained access to higher quality forage than resident deer but that this difference persisted even after controlling for landscape characteristics within the summer home ranges. There was a positive effect of elevation on access to high-quality forage, but only for migratory deer. We discuss how the landscape an ungulate inhabits may determine its responses to plant phenology and also highlight how individual behavior may influence nutritional gain beyond the effect of landscape.

  11. SILAGE QUALITY OF CORN AND SORGHUM ADDED WITH FORAGE PEANUTS

    Directory of Open Access Journals (Sweden)

    WALKÍRIA GUIMARÃES CARVALHO

    2016-01-01

    Full Text Available Corn and sorghum are standard silage crops because of their fermentative characteristics. While corn and sorghum silages have lower crude protein (CP contents than other crops, intercropping with legumes can increase CP content. Furthermore, one way to increase CP content is the addition of legumes to silage. Consequently, the research objective was to evaluate the fermentative and bromatological characteristics of corn (Zea mays and sorghum (Sorghum bicolor silages added with forage peanuts (Arachis pintoi. The experimental design was completely randomized with four replicates. The treatments consisted of corn silage, sorghum silage, forage peanut silage, corn silage with 30% forage peanut, and sorghum silage with 30% forage peanut. The results showed that the corn and sorghum added with peanut helped to improve the silage fermentative and bromatological characteristics, proving to be an efficient technique for silage quality. The forage peanut silage had lower fermentative characteristics than the corn and sorghum silages. However, the forage peanut silage had a greater CP content, which increased the protein contents of the corn and sorghum silages when intercropped with forage peanuts.

  12. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini in temperate climate of Jalisco, México

    Directory of Open Access Journals (Sweden)

    J. O. Macías-Macías

    Full Text Available Abstract Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  13. Mercury bioaccumulation and risk to three waterbird foraging guilds is influenced by foraging ecology and breeding stage

    International Nuclear Information System (INIS)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; De La Cruz, Susan E.W.; Takekawa, John Y.

    2009-01-01

    We evaluated mercury (Hg) in five waterbird species representing three foraging guilds in San Francisco Bay, CA. Fish-eating birds (Forster's and Caspian terns) had the highest Hg concentrations in thier tissues, but concentrations in an invertebrate-foraging shorebird (black-necked stilt) were also elevated. Foraging habitat was important for Hg exposure as illustrated by within-guild differences, where species more associated with marshes and salt ponds had higher concentrations than those more associated with open-bay and tidal mudflats. Importantly, Hg concentrations increased with time spent in the estuary. Surf scoter concentrations tripled over six months, whereas Forster's terns showed an up to 5-fold increase between estuary arrival and breeding. Breeding waterbirds were at elevated risk of Hg-induced reproductive impairment, particularly Forster's terns, in which 48% of breeding birds were at high risk due to their Hg levels. Our results highlight the importance of habitat and exposure timing, in addition to trophic position, on waterbird Hg bioaccumulation and risk. - The influence of foraging habitat, trophic position, and exposure timing on mercury bioaccumulation and risk to reproduction is evaluated in three waterbird guilds.

  14. Artificial pheromone for path selection by a foraging swarm of robots.

    Science.gov (United States)

    Campo, Alexandre; Gutiérrez, Alvaro; Nouyan, Shervin; Pinciroli, Carlo; Longchamp, Valentin; Garnier, Simon; Dorigo, Marco

    2010-11-01

    Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilities.

  15. Long bone cross-sectional geometric properties of Later Stone Age foragers and herder�foragers

    Directory of Open Access Journals (Sweden)

    Michelle E. Cameron

    2014-09-01

    Full Text Available Diaphyseal cross-sectional geometry can be used to infer activity patterns in archaeological populations. We examined the cross-sectional geometric (CSG properties of adult Later Stone Age (LSA herder-forager long bones from the inland lower Orange River Valley of South Africa (n=5 m, 13 f. We then compared their CSG properties to LSA forager adults from the coastal fynbos (n=23 m, 14 f and forest (n=17 m, 19 f regions, building on a previous report (Stock and Pfeiffer, 2004. The periosteal mould method was used to quantify total subperiosteal area, torsional strength, bilateral asymmetry and diaphyseal circularity (Imax/Imin at the mid-distal (35% location of upper arms (humeri and the mid-shaft (50% location of upper legs (femora. Maximum humerus and femur lengths were similar among the three samples, suggesting that adult stature was similar in all three regions. When compared to the previous study, CSG property values obtained using the periosteal mould method correlated well, and there were no significant differences between data collected using the different methods. No statistically significant differences were found among the humerus or femur CSG properties from the different regions. This finding suggests that all individuals undertook similar volitional habitual activities in regard to their upper limbs, and also had similar degrees of terrestrial mobility. These results indicate relative behavioural homogeneity among LSA foragers and herder foragers from South Africa. The small degree of regional variation apparent among the three samples may reflect local ecology and the subsistence demands affecting populations in these different regions.

  16. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.

    Science.gov (United States)

    Cantalapiedra-Hijar, G; Yáñez-Ruiz, D R; Martín-García, A I; Molina-Alcaide, E

    2009-02-01

    The effects of forage type and forage:concentrate ratio (F:C) on apparent nutrient digestibility, ruminal fermentation, and microbial growth were investigated in goats. A comparison between liquid (LAB) and solid (SAB)-associated bacteria to estimate microbial N flow (MNF) from urinary purine derivative excretion was also examined. Treatments were a 2 x 2 factorial arrangement of forage type (grass hay vs. alfalfa hay) and high vs. low F:C (70:30 and 30:70, respectively). Four ruminally cannulated goats were fed, at maintenance intake, 4 experimental diets according to a 4 x 4 Latin square design. High-concentrate diets resulted in greater (P 0.05) when diets included alfalfa hay. Total protozoa numbers and holotricha proportion were greater and less (P forage used. The MNF measured in goats fed different diets was influenced by the bacterial pellet (LAB or SAB). In addition, the purine bases:N ratio values found were different from those reported in the literature, which underlines the need for these variables to be analyzed directly in pellets isolated from specific animals and experimental conditions.

  17. Work or sleep? : honeybee foragers opportunistically nap during the day when forage is not available

    OpenAIRE

    Klein, Barrett; Seeley, Thomas D.

    2011-01-01

    Shifts in work schedules test humans’ capacity to be flexible in the timing of both work and sleep. Honeybee, Apis mellifera, foragers also shift their work schedules, but how flexible they are in the timing of sleep as they shift the timing of work is unknown, despite the importance of colony-level plasticity in the face of a changing environment. We hypothesized that sleep schedules of foragers are not fixed and instead vary depending on the time when food is available. We trained bees to v...

  18. Determinants of spatial behavior of a tropical forest seed predator: The roles of optimal foraging, dietary diversification, and home range defense.

    Science.gov (United States)

    Palminteri, Suzanne; Powell, George V N; Peres, Carlos A

    2016-05-01

    Specialized seed predators in tropical forests may avoid seasonal food scarcity and interspecific feeding competition but may need to diversify their daily diet to limit ingestion of any given toxin. Seed predators may, therefore, adopt foraging strategies that favor dietary diversity and resource monitoring, rather than efficient energy intake, as suggested by optimal foraging theory. We tested whether fine-scale space use by a small-group-living seed predator-the bald-faced saki monkey (Pithecia irrorata)-reflected optimization of short-term foraging efficiency, maximization of daily dietary diversity, and/or responses to the threat of territorial encroachment by neighboring groups. Food patches across home ranges of five adjacent saki groups were widely spread, but areas with higher densities of stems or food species were not allocated greater feeding time. Foraging patterns-specifically, relatively long daily travel paths that bypassed available fruiting trees and relatively short feeding bouts in undepleted food patches-suggest a strategy that maximizes dietary diversification, rather than "optimal" foraging. Travel distance was unrelated to the proportion of seeds in the diet. Moreover, while taxonomically diverse, the daily diets of our study groups were no more species-rich than randomly derived diets based on co-occurring available food species. Sakis preferentially used overlapping areas of their HRs, within which adjacent groups shared many food trees, yet the density of food plants or food species in these areas was no greater than in other HR areas. The high likelihood of depletion by neighboring groups of otherwise enduring food sources may encourage monitoring of peripheral food patches in overlap areas, even if at the expense of immediate energy intake, suggesting that between-group competition is a key driver of fine-scale home range use in sakis. © 2015 Wiley Periodicals, Inc.

  19. Ants can learn to forage on one-way trails.

    Directory of Open Access Journals (Sweden)

    Pedro Leite Ribeiro

    Full Text Available The trails formed by many ant species between nest and food source are two-way roads on which outgoing and returning workers meet and touch each other all along. The way to get back home, after grasping a food load, is to take the same route on which they have arrived from the nest. In many species such trails are chemically marked by pheromones providing orientation cues for the ants to find their way. Other species rely on their vision and use landmarks as cues. We have developed a method to stop foraging ants from shuttling on two-way trails. The only way to forage is to take two separate roads, as they cannot go back on their steps after arriving at the food or at the nest. The condition qualifies as a problem because all their orientation cues -- chemical, visual or any other -- are disrupted, as all of them cannot but lead the ants back to the route on which they arrived. We have found that workers of the leaf-cutting ant Atta sexdens rubropilosa can solve the problem. They could not only find the alternative way, but also used the unidirectional traffic system to forage effectively. We suggest that their ability is an evolutionary consequence of the need to deal with environmental irregularities that cannot be negotiated by means of excessively stereotyped behavior, and that it is but an example of a widespread phenomenon. We also suggest that our method can be adapted to other species, invertebrate and vertebrate, in the study of orientation, memory, perception, learning and communication.

  20. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2015-05-01

    Full Text Available One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM model. Three different basic simulation scenarios (with irrigation were carried out using forage crops (namely maize, soybean and sorghum for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

  1. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options.

    Science.gov (United States)

    Islam, M R; Garcia, S C; Clark, C E F; Kerrisk, K L

    2015-05-01

    One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

  2. Scheduling and development support in the Scavenger cyber foraging system

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2010-01-01

    Cyber foraging is a pervasive computing technique where small mobile devices offload resource intensive tasks to stronger computing machinery in the vicinity. One of the main challenges within cyber foraging is that it is very difficult to develop cyber foraging enabled applications. An applicati...

  3. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers.

    Science.gov (United States)

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y; Miao, Xiaoqing

    2013-01-01

    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  4. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers.

    Directory of Open Access Journals (Sweden)

    Wenchao Yang

    Full Text Available In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  5. Comparative Sucrose Responsiveness in Apis mellifera and A. cerana Foragers

    Science.gov (United States)

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y.; Miao, Xiaoqing

    2013-01-01

    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources. PMID:24194958

  6. Foraging task specialisation and foraging labour allocation in stingless bees

    NARCIS (Netherlands)

    Hofstede, Frouke Elisabeth

    2006-01-01

    Social bees collect nectar and pollen from flowering plants for energy of the adult bees and for feeding the larvae in the colony. The flowering patterns of plants imply that periods of high food availability are often followed by periods of meagre foraging conditions. Being dependent on such a

  7. Nutrient balance affects foraging behaviour of a trap-building predator

    DEFF Research Database (Denmark)

    Mayntz, David; Toft, Søren; Vollrath, Fritz

    2009-01-01

    Predator foraging may be affected by previous prey capture, but it is unknown how nutrient balance affects foraging behaviour. Here, we use a trap-building predator to test whether nutrients from previous prey captures affect foraging behaviour. We fed orb-weaving spiders (Zygiella x-notata) prey...

  8. Trade-offs between energy maximization and parental care in a central place forager, the sea otter

    Science.gov (United States)

    Thometz, N M; Staedler, M.M.; Tomoleoni, Joseph; Bodkin, James L.; Bentall, G.B.; Tinker, M. Tim

    2016-01-01

    Between 1999 and 2014, 126 archival time–depth recorders (TDRs) were used to examine the foraging behavior of southern sea otters (Enhydra lutris nereis) off the coast of California, in both resource-abundant (recently occupied, low sea otter density) and resource-limited (long-occupied, high sea otter density) locations. Following predictions of foraging theory, sea otters generally behaved as energy rate maximizers. Males and females without pups employed similar foraging strategies to optimize rates of energy intake in resource-limited habitats, with some exceptions. Both groups increased overall foraging effort and made deeper, longer and more energetically costly dives as resources became limited, but males were more likely than females without pups to utilize extreme dive profiles. In contrast, females caring for young pups (≤10 weeks) prioritized parental care over energy optimization. The relative importance of parental care versus energy optimization for adult females with pups appeared to reflect developmental changes as dependent young matured. Indeed, contrary to females during the initial stages of lactation, females with large pups approaching weaning once again prioritized optimizing energy intake. The increasing prioritization of energy optimization over the course of lactation was possible due to the physiological development of pups and likely driven by the energetic deficit incurred by females early in lactation. Our results suggest that regardless of resource availability, females at the end of lactation approach a species-specific ceiling for percent time foraging and that reproductive females in the central portion of the current southern sea otter range are disproportionately affected by resource limitation.

  9. Information Foraging Theory: A Framework for Intelligence Analysis

    Science.gov (United States)

    2014-11-01

    oceanographic information, human intelligence (HUMINT), open-source intelligence ( OSINT ), and information provided by other governmental departments [1][5...Human Intelligence IFT Information Foraging Theory LSA Latent Semantic Similarity MVT Marginal Value Theorem OFT Optimal Foraging Theory OSINT

  10. Multi-Robot Item Delivery and Foraging: Two Sides of a Coin

    Directory of Open Access Journals (Sweden)

    Somchaya Liemhetcharat

    2015-09-01

    Full Text Available Multi-robot foraging has been widely studied in the literature, and the general assumption is that the robots are simple, i.e., with limited processing and carrying capacity. We previously studied continuous foraging with slightly more capable robots, and in this article, we are interested in using similar robots for item delivery. Interestingly, item delivery and foraging are two sides of the same coin: foraging an item from a location is similar to satisfying a demand. We formally define the multi-robot item delivery problem and show that the continuous foraging problem is a special case of it. We contribute distributed multi-robot algorithms that solve the item delivery and foraging problems and describe how our shared world model is synchronized across the multi-robot team. We performed extensive experiments on simulated robots using a Java simulator, and we present our results to demonstrate that we outperform benchmark algorithms from multi-robot foraging.

  11. Geographic profiling and animal foraging.

    Science.gov (United States)

    Le Comber, Steven C; Nicholls, Barry; Rossmo, D Kim; Racey, Paul A

    2006-05-21

    Geographic profiling was originally developed as a statistical tool for use in criminal cases, particularly those involving serial killers and rapists. It is designed to help police forces prioritize lists of suspects by using the location of crime scenes to identify the areas in which the criminal is most likely to live. Two important concepts are the buffer zone (criminals are less likely to commit crimes in the immediate vicinity of their home) and distance decay (criminals commit fewer crimes as the distance from their home increases). In this study, we show how the techniques of geographic profiling may be applied to animal data, using as an example foraging patterns in two sympatric colonies of pipistrelle bats, Pipistrellus pipistrellus and P. pygmaeus, in the northeast of Scotland. We show that if model variables are fitted to known roost locations, these variables may be used as numerical descriptors of foraging patterns. We go on to show that these variables can be used to differentiate patterns of foraging in these two species.

  12. Intensive use of an intertidal mudflat by foraging adult American horseshoe crabs Limulus polyphemus in the Great Bay estuary, New Hampshire

    Directory of Open Access Journals (Sweden)

    Wan-Jean LEE

    2010-10-01

    Full Text Available Although concerns about harvesting levels of the American Horseshoe Crab, Limulus polyphemus have prompted increased research into its ecology, current understanding of the species’ foraging ecology is mostly limited to mid-Atlantic populations. This study elucidates the spatial and temporal pattern of Limulus foraging on an intertidal mudflat of a northern New England estuary. A novel survey method was used to monitor Limulus foraging activity without disturbing the sediment. A fixed 50 m´2 m transect was monitored with monthly surveys of the number of Limulus feeding pits from June to October 2009, May and June 2010. Snorkelling surveys were also carried out to observe individual behavior and examine the spatial scale of activity of individual animals. Results showed frequent and intensive use of the mudflat by foraging Limulus. Limulus were actively foraging within the survey area during all months surveyed. Foraging patterns exhibited a seasonal pattern with activity levels peaking in August 2009 and increased significantly towards the end of the study in June 2010. It was also shown that Limulus intertidal foraging persisted and peaked after the spring breeding season. Observations of foraging Limulus revealed that individual predators dig multiple pits within a single high tide, with little disturbance to the sediment in between. In addition to altering the perception of Limulus as a subtidal predator outside of the breeding season, findings from this study suggests a segregation of spawning and feeding habitats, thus underscoring the need to consider a wider range of critical habitats in the management of Limulus populations [Current Zoology 56 (5: 611–617, 2010].

  13. Forage yield and nutritive value of Elephant grass, Italian ryegrass and spontaneous growing species mixed with forage peanut or red clover

    Directory of Open Access Journals (Sweden)

    Michelle Schalemberg Diehl

    2014-10-01

    Full Text Available The objective of this research was to evaluate of three grazing systems (GS with elephant grass (EG, Italian ryegrass (IR + spontaneous growing species (SGS; EG + IR + SGS + forage peanut (FP; and EG + IR + SGS + red clover (RC, during the winter and summer periods in rotational grazing with dairy cattle. Experimental design was completely randomized with three treatments, two replicates with repeated measures. Lactating Holstein cows receiving 1% BW-daily feed supplement with concentrate were used in the evaluation. Eight grazing cycles were performed during the experimental period. The values of pre forage mass and stocking rate were 2.52, 2.60 and 2.99 t ha-1 and 2.64, 2.77 and 3.14 animal unit ha-1, respectively for GS. Samples of forage were collected by hand-plucking technique to analyze the crude protein (CP, neutral detergent fiber (NDF, in situ dry matter digestibility (ISDMD, in situ organic matter digestibility (ISOMD of forage present between rows of elephant grass, in the rows of elephant grass and the legumes. Higher value of CP, ISOMD and lower of NDF were observed for the grazing systems mixed with legumes forage.

  14. Forage based animal production systems and sustainability, an invited keynote

    Directory of Open Access Journals (Sweden)

    Abdul Shakoor Chaudhry

    2008-07-01

    Full Text Available Forages are essential for the successful operation of animal production systems. This is more relevant to ruminants which are heavily dependant upon forages for their health and production in a cost-effective and sustainable manner. While forages are an economical source of nutrients for animal production, they also help conserve the soil integrity, water supply and air quality. Although the role of these forages for animal production could vary depending upon the regional preferences for the animal and forage species, climate and resources, their importance in the success of ruminant production is acknowledged. However with the increasing global human population and urbanisation, the sustainability of forage based animal production systems is sometimes questioned due to the interrelationship between animal production and the environment. It is therefore vital to examine the suitability of these systems for their place in the future to supply quality food which is safe for human consumption and available at a competitive price to the growing human population. Grassland and forage crops are recognised for their contribution to the environment, recreation and efficiency of meat and milk production,. To maintain sustainability, it is crucial that such farming systems remain profitable and environmentally friendly while producing nutritious foods of high economical value. Thus, it is pertinent to improve the nutritive value of grasses and other forage plants in order to enhance animal production to obtain quality food. It is also vital to develop new forages which are efficiently utilised and wasted less by involving efficient animals. A combination of forage legumes, fresh or conserved grasses, crop residues and other feeds could help develop an animal production system which is economically efficient, beneficial and viable. Also, it is crucial to use efficient animals, improved forage conservation methods, better manure handling, and minimum

  15. Application of genomics to forage crop breeding for quality traits

    DEFF Research Database (Denmark)

    Lübberstedt, Thomas

    2007-01-01

    Forage quality depends on the digestibility of fodder, and can be directly measured by the intake and metabolic conversion in animal trials. However, animal trials are time-consuming, laborious, and thus expensive. It is not possible to study thousands of plant genotypes, as required in breeding...... studied in detail and sequence motifs with likely effect on forage quality have been identified by association studies. Moreover, transgenic approaches substantiated the effect of several of these genes on forage quality. Perspectives and limitations of these findings for forage crop breeding...

  16. Floral odor learning within the hive affects honeybees' foraging decisions

    Science.gov (United States)

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2007-03-01

    Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.

  17. Corn in consortium with forages

    Directory of Open Access Journals (Sweden)

    Cássia Maria de Paula Garcia

    2013-12-01

    Full Text Available The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was conducted at the Fazenda de Ensino, Pesquisa e Extensão – FEPE  of the Faculdade de Engenharia - UNESP, Ilha Solteira in an Oxisol in savannah conditions and in the autumn winter of 2009. The experimental area was irrigated by a center pivot and had a history of no-tillage system for 8 years. The corn hybrid used was simple DKB 390 YG at distances of 0.90 m. The seeds of grasses were sown in 0.34 m spacing in the amount of 5 kg ha-1, they were mixed with fertilizer minutes before sowing  and placed in a compartment fertilizer seeder and fertilizers were mechanically deposited in the soil at a depth of 0.03 m. The experimental design used was a randomized block with four replications and five treatments: Panicum maximum cv. Tanzania sown during the nitrogen fertilization (CTD of the corn; Panicum maximum cv. Mombaça sown during the nitrogen fertilization (CMD of the corn; Urochloa brizantha cv. Xaraés sown during the occasion of nitrogen fertilization (CBD of the corn; Urochloa ruziziensis cv. Comumsown during the nitrogen fertilization (CRD of the corn and single corn (control. The production components of corn: plant population per hectare (PlPo, number of ears per hectare (NE ha-1, number of rows per ear (NRE, number of kernels per row on the cob (NKR, number of grain in the ear (NGE and mass of 100 grains (M100G were not influenced by consortium with forage. Comparing grain yield (GY single corn and maize intercropped with forage of the genus Panicum

  18. Physiology, phenology and behavioural strategies of forage fish

    DEFF Research Database (Denmark)

    Frisk, Christina

    Forage fish are small individuals, and are very abundant in numbers and can form dense schools. Forage fish are important within the food webs of the oceans, as they are at the lower trophic levels. Forage fish prey on zooplankton and they are themselves preyed on by piscivore fish. The individual...... forage fish and its growth dynamics are governed by an interplay between physiological rates, e.g. metabolism and consumption and the ambient environment as the rates are temperature dependent. The topic of this thesis is to describe the strong link between the individual and the environment through....... The model includes an additional structure pool; gonads, to which energy is transferred during the spawning season. During periods of poor feeding, energy to cover metabolic costs are firstly taken from the reserve pool and secondly, if the reserves are depleted, from the somatic tissue pool. The model...

  19. Blue Oak Canopy Effect on Seasonal Forage Production and Quality

    Science.gov (United States)

    William E. Frost; Neil K. McDougald; Montague W. Demment

    1991-01-01

    Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...

  20. Food and foraging preferences of three pteropodid bats in southern India

    Directory of Open Access Journals (Sweden)

    M.R Sudhakaran

    2012-01-01

    Full Text Available A study on the food, foraging and flight height in three species of pteropodid bats, namely Cynopterus sphinx, Rousettus leschenaultii and Pteropus giganteus was conducted in Tirunelveli and Tuticorin districts of southern Tamil Nadu, India. A total of 37 species of plants were identified as potential food plants of the pteropodid bats. The preference for fruits by pteropodids varied according to the developmental stages of fruits namely, immature, unripe and ripe. There is a relationship between the foraging activities of bats and the moon phase. Bats exhibit a varied foraging pattern and flight height. A variation in the foraging flight height was observed in C. sphinx and R. leschenaultii. R. leschenaultii was observed to have a higher foraging echelon than that of the C. sphinx. In our study we found that the C. sphinx forages normally at canopy level (up to 3.5m, R. leschenaultii forages at upper canopy levels (up to 9m and P. giganteus at a height above the canopy area (>9m.

  1. The ecological economics of kleptoparasitism: pay-offs from self-foraging versus kleptoparasitism.

    Science.gov (United States)

    Flower, Tom P; Child, Matthew F; Ridley, Amanda R

    2013-01-01

    Animals commonly steal food from other species, termed interspecific kleptoparasitism, but why animals engage in kleptoparasitism compared with alternate foraging tactics, and under what circumstances they do so, is not fully understood. Determining what specific benefits animals gain from kleptoparasitism could provide valuable insight into its evolution. Here, we investigate the benefits of kleptoparasitism for a population of individually recognizable and free-living fork-tailed drongos (Dicrurus adsimilis) in the southern Kalahari Desert. Drongos engaged in two foraging behaviours: self-foraging for small insects or following other species which they kleptoparasitized for larger terrestrial prey that they could not capture themselves. Kleptoparasitism consequently enabled drongos to exploit a new foraging niche. Kleptoparasitism benefitted drongos most in the morning and on colder days because at these times pay-offs from kleptoparasitism remained stable, while those from self-foraging declined. However, drongos engaged in kleptoparasitism less than expected given the overall high (but more variable) pay-offs from this behaviour, suggesting that kleptoparasitism is a risky foraging tactic and may incur additional foraging costs compared with self-foraging. This is the first study to comprehensively investigate the benefits of facultatively engaging in kleptoparasitism, demonstrating that animals may switch to kleptoparasitism to exploit a new foraging niche when pay-offs exceed those from alternate foraging behaviours. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  2. Evaluation of nutritional value some forage species available in Iran ...

    African Journals Online (AJOL)

    Novin

    2012-07-17

    Jul 17, 2012 ... and chemical composition of forage species was estimated. MATERIALS AND METHODS ... head per day at 8.00 a.m. and 6.00 p.m. Forage samples (2 g DM with 2 mm screen ) were weighed into nylon bags ..... methods to study the kinetics of degradation of forage species, instead of the in situ technique, ...

  3. The forager oral tradition and the evolution of prolonged juvenility.

    Science.gov (United States)

    Scalise Sugiyama, Michelle

    2011-01-01

    The foraging niche is characterized by the exploitation of nutrient-rich resources using complex extraction techniques that take a long time to acquire. This costly period of development is supported by intensive parental investment. Although human life history theory tends to characterize this investment in terms of food and care, ethnographic research on foraging skill transmission suggests that the flow of resources from old-to-young also includes knowledge. Given the adaptive value of information, parents may have been under selection pressure to invest knowledge - e.g., warnings, advice - in children: proactive provisioning of reliable information would have increased offspring survival rates and, hence, parental fitness. One way that foragers acquire subsistence knowledge is through symbolic communication, including narrative. Tellingly, oral traditions are characterized by an old-to-young transmission pattern, which suggests that, in forager groups, storytelling might be an important means by which adults transfer knowledge to juveniles. In particular, by providing juveniles with vicarious experience, storytelling may expand episodic memory, which is believed to be integral to the generation of possible future scenarios (i.e., planning). In support of this hypothesis, this essay reviews evidence that: mastery of foraging knowledge and skill sets takes a long time to acquire; foraging knowledge is transmitted from parent to child; the human mind contains adaptations specific to social learning; full assembly of learning mechanisms is not complete in early childhood; and forager oral traditions contain a wide range of information integral to occupation of the foraging niche. It concludes with suggestions for tests of the proposed hypothesis.

  4. The forager oral tradition and the evolution of prolonged juvenility

    Directory of Open Access Journals (Sweden)

    Michelle Scalise Sugiyama

    2011-08-01

    Full Text Available The foraging niche is characterized by the exploitation of nutrient-rich resources using complex extraction techniques that take a long time to acquire. This costly period of development is supported by intensive parental investment. Although human life history theory tends to characterize this investment in terms of food and care, ethnographic research on foraging skill transmission suggests that the flow of resources from old to young also includes knowledge. Given the adaptive value of information, parents may have been under selection pressure to invest knowledge—e.g., warnings, advice--in children: proactive provisioning of reliable information would have increased offspring survival rates and, hence, parental fitness. One way that foragers acquire subsistence knowledge is through symbolic communication, including narrative. Tellingly, oral traditions are characterized by an old-to-young transmission pattern, which suggests that, in forager groups, storytelling might be an important means by which adults transfer knowledge to juveniles. In particular, by providing juveniles with vicarious experience, storytelling may expand episodic memory, which is believed to be integral to the generation of possible future scenarios (i.e., planning. In support of this hypothesis, this essay reviews evidence that: mastery of foraging knowledge and skill sets takes a long time to acquire; foraging knowledge is transmitted from parent to child; the human mind contains adaptations specific to social learning; full assembly of learning mechanisms is not complete in early childhood; and forager oral traditions contain a wide range of information integral to occupation of the foraging niche. It concludes with suggestions for tests of the proposed hypothesis.

  5. Correlations between environmental factors and wild bee behavior on alfalfa (Medicago sativa) in northwestern China.

    Science.gov (United States)

    Wang, Xiaojuan; Liu, Hongping; Li, Xiaoxia; Song, Yu; Chen, Li; Jin, Liang

    2009-10-01

    To discover the effect of environmental factors on pollinator visitation to flowering Medicago sativa, several field experiments were designed to examine the diurnal movement patterns of wild bee species in the Hexi Corridor of northwestern China. Our study results showed that Megachile abluta, M. spissula, and Xylocopa valga showed unimodal diurnal foraging behavior, whereas Andrena parvula and Anthophora melanognatha showed bimodal diurnal foraging behavior. Correlation analysis indicated that diurnal foraging activities of pollinators were significantly correlated with environmental factors. Correlations of foraging activities versus environmental factors for M. abluta, M. spissula, and X. valga best fit a linear model, whereas those of A. parvula and A. melanognatha best fit a parallel quadratic model. Results of this study indicated that solitary wild bees such as M. abluta, M. spissula, X. valga, A. parvula, and A. melanognatha are potential alfalfa pollinators in the Hexi Corridor. An understanding of the environmental factors that affect the behaviors of different wild bees foraging in alfalfa are basic to the utilization of solitary wild bees in a practical way for increased, or more consistent, pollination of alfalfa for seed production.

  6. And yet it optimizes. Comment on "Liberating Lévy walk research from the shackles of optimal foraging" by A.M. Reynolds

    Science.gov (United States)

    da Luz, M. G. E.; Raposo, E. P.; Viswanathan, G. M.

    2015-09-01

    In the present issue of Physics of Life Reviews, A.M. Reynolds publishes an interesting (and stimulating) work titled "Liberating Lévy walk research from the shackles of optimal foraging" [1]. As the title indicates, one of its main discussed points is that, in trying to understand and describe animal foraging through the Lévy walk (LW) framework [2-4], one should not surge into optimization ideas as the essential underlying mechanism. In other words, the reason for the existence of a wide diversity of animal foraging processes that follow the typical LW statistical behavior might not be driven by the maximization of the search outcomes. Actually, in a broad perspective LWs transcend Ecology and Biology, and can be found in a huge diversity of systems, including many inanimate ones [2-4]. Therefore, we do agree that constraining the LW research to the confines of optimal foraging theory can be restrictive. Moreover, given the huge complexity and diversity of biological phenomena, it is unlikely that a single impelling force would be responsible for all the observed life-related Lévy patterns.

  7. Reduced foraging in the presence of predator cues by the Black Spiny-tailed Iguana, Ctenosaura similis (Sauria: Iguanidae)

    OpenAIRE

    Vincent R. Farallo; Mahmood Sasa; Dennis K. Wasko; Michael R. J. Forstner

    2010-01-01

    The presence of a predator may have direct and indirect effects on the behavior of the prey. Although altered behavior may help prey avoid predators, it also can have a potential impact on critical activities such as foraging. Predator-prey interactions are routinely studied in laboratory-based experiments owing to theperceived difficulties of conducting such experiments in natural settings. We conducted an experimental study under field conditions in Palo Verde National Park in northwestern ...

  8. Scavenger: Transparent Development of Efficient Cyber Foraging Applications

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø

    2010-01-01

    delivering efficient, mobile use of remote computing resources through the use of a custom built mobile code execution environment and a new dual-profiling scheduler. One of the main difficulties within cyber foraging is that it is very challenging for application programmers to develop cyber foraging...

  9. Evidence of Levy walk foraging patterns in human hunter-gatherers.

    Science.gov (United States)

    Raichlen, David A; Wood, Brian M; Gordon, Adam D; Mabulla, Audax Z P; Marlowe, Frank W; Pontzer, Herman

    2014-01-14

    When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter-gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.

  10. Method for aquatic multiple species toxicant testing: acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. [Pimephales promelas; Carassius auratus; Ictalurus punctatus; Lepomis macrochirus; Salmo gairdneri; Orconectes immunis; Aplexa hypnorum

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, G.L.; Holcombe, G.W.

    1985-01-01

    A method was developed to simultaneously ascertain 96 h LC/sub 50/ values for seven freshwater species in a single flow through test with measured concentrations. It allows interspecific comparisons, easy determination of the most sensitive species, and cuts cost of labor, materials and chemical analysis for measured concentration tests. Species tested included fathead minnows Pimephales promelas, goldfish Carassius auratus, channel catfish Ictalurus punctatus, bluegill Lepomis macrochirus, rainbow trout Salmo gairdneri, crayfish Orconectes immunis and snails Aplexa hypnorum. Compounds tested were pentachlorophenol, 2-chloroethanol, 2,4-pentanedione, hexachloroethane, ..cap alpha..-bromo-2',5'-dimethoxyacetophenone, benzaldehyde, 1,3-dichloro-4,6-dinitro-benzene, dursban, sevin and cadmium chloride. The LC/sub 50/ values from these multiple species tests compared favourably with those determined using single species tests at this laboratory, usually within 20%.

  11. A neural coding scheme reproducing foraging trajectories

    Science.gov (United States)

    Gutiérrez, Esther D.; Cabrera, Juan Luis

    2015-12-01

    The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series.

  12. Nutritional Characteristics of Forage Grown in South of Benin

    Directory of Open Access Journals (Sweden)

    Nadia Musco

    2016-01-01

    Full Text Available In order to provide recommendations on the most useful forage species to smallholder farmers, eleven grass and eleven legume forages grown in Abomey-Calavi in Republic of Benin were investigated for nutritive value (i.e. chemical composition and energy content and fermentation characteristics (i.e. gas and volatile fatty acid production, organic matter degradability. The in vitro gas production technique was used, incubating the forages for 120 h under anaerobic condition with buffalo rumen fluid. Compared to legume, tropical grass forages showed lower energy (8.07 vs 10.57 MJ/kg dry matter [DM] and crude protein level (16.10% vs 19.91% DM and higher cell wall content (neutral detergent fiber: 63.8% vs 40.45% DM, respectively. In grass forages, the chemical composition showed a quite high crude protein content; the in vitro degradability was slightly lower than the range of tropical pasture. The woody legumes were richer in protein and energy and lower in structural carbohydrates than herbaceous plants, however, their in vitro results are influenced by the presence of complex compounds (i.e. tannins. Significant correlations were found between chemical composition and in vitro fermentation characteristics. The in vitro gas production method appears to be a suitable technique for the evaluation of the nutritive value of forages in developing countries.

  13. Foraging range movements of the endangered Hawaiian hoary bat, Lasiurus cinereus semotus (Chiroptera: Vespertilionidae)

    Science.gov (United States)

    Bonaccorso, Frank J.; Todd, Christopher M.; Miles, Adam C.; Gorresen, P. Marcos

    2015-01-01

    We documented nightly movements of Hawaiian hoary bats (Lasiurus cinereus semotus) on the island of Hawai’i. Based on data from 28 radiotagged individuals mean foraging range (FR) was 230.7±72.3 ha, core-use area (CUA) was 25.5±6.9 ha (or 11.1% of mean FR), and the mean long axis (LAX) across the FR was 3,390.8±754.3 m. There was almost no overlap in CUAs among 4 adult males having overlapping foraging areas and tracked simultaneously or within a 90-day window of each other. CUAs of subadults partially overlapped with multiple adult males or with one other subadult. High variance in FRs, cores use areas, and LAX across the FR perhaps reflect localized stochastic variables such as weather, habitat, and food resources. Hawaiian hoary bats use moderately large FRs among insectivorous bats studied with comparable methodologies; however, foraging activity indicated by documentation of acoustic feeding buzzes is concentrated within one or a few disjunct areas cumulatively forming the 50% fixed kernel of CUA. The concentration of feeding activity, low values of individual overlap, and agonistic chasing behavior within CUAs all demonstrate a structured use of individual space by Hawaiian hoary bats.

  14. Forage herbs improve mineral composition of grassland herbage

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Søegaard, Karen; Jensen, Henning Høgh

    2011-01-01

    there is limited information about mineral concentrations in forage herbs. To determine whether herbs have greater macro- and micromineral concentrations than forage legumes and grasses, we conducted a 2-year experiment on a loamy-sand site in Denmark sown with a multi-species mixture comprised of three functional...

  15. Does foraging behaviour affect female mate preferences and pair formation in captive zebra finches?

    Directory of Open Access Journals (Sweden)

    Neeltje J Boogert

    Full Text Available BACKGROUND: Successful foraging is essential for survival and reproductive success. In many bird species, foraging is a learned behaviour. To cope with environmental change and survive periods in which regular foods are scarce, the ability to solve novel foraging problems by learning new foraging techniques can be crucial. Although females have been shown to prefer more efficient foragers, the effect of males' foraging techniques on female mate choice has never been studied. We tested whether females would prefer males showing the same learned foraging technique as they had been exposed to as juveniles, or whether females would prefer males that showed a complementary foraging technique. METHODOLOGY/PRINCIPAL FINDINGS: We first trained juvenile male and female zebra finches (Taeniopygia guttata to obtain a significant proportion of their food by one of two foraging techniques. We then tested whether females showed a preference for males with the same or the alternative technique. We found that neither a male's foraging technique nor his foraging performance affected the time females spent in his proximity in the mate-choice apparatus. We then released flocks of these finches into an aviary to investigate whether assortative pairing would be facilitated by birds taught the same technique exploiting the same habitat. Zebra finches trained as juveniles in a specific foraging technique maintained their foraging specialisation in the aviary as adults. However, pair formation and nest location were random with regard to foraging technique. CONCLUSIONS/SIGNIFICANCE: Our findings show that zebra finches can be successfully trained to be foraging specialists. However, the robust negative results of the conditions tested here suggest that learned foraging specializations do not affect mate choice or pair formation in our experimental context.

  16. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera)

    Science.gov (United States)

    Pankiw, Tanya; Roman, Roman; Sagili, Ramesh R.; Zhu-Salzman, Keyan

    2004-12-01

    The success of a species depends on its ability to assess its environment and to decide accordingly which behaviors are most appropriate. Many animal species, from bacteria to mammals, are able to communicate using interspecies chemicals called pheromones. In addition to exerting physiological effects on individuals, for social species, pheromones communicate group social structure. Communication of social structure is important to social insects for the allocation of its working members into coordinated suites of behaviors. We tested effects of long-term treatment with brood pheromone on suites of honey bee brood rearing and foraging behaviors. Pheromone-treated colonies reared significantly greater brood areas and more adults than controls, while amounts of stored pollen and honey remained statistically similar. Brood pheromone increased the number of pollen foragers and the pollen load weights they returned. It appeared that the pheromone-induced increase in pollen intake was directly canalized into more brood rearing. A two-way pheromone priming effect was observed, such that some workers from the same age cohorts showed an increased and extended capacity to rear larvae, while others were recruited at significantly younger ages into pollen-specific foraging. Brood pheromone affected suites of nursing and foraging behaviors allocating worker and pollen resources associated with an important fitness trait, colony growth.

  17. PRODUCTIVE IMPACT OF THE GREEN FORAGE SUPPLY USAGE AT THE DAIRY FARMS

    Directory of Open Access Journals (Sweden)

    LAVINIA MOISE

    2007-05-01

    Full Text Available This paper presents the importance of the crop structure as a tool to maximize efficiency in the conceiving of the green forage supply scheme in a dairy farm. Several apects are necessary to consider for proper green forage utilization by the cattle, as follows: climatic conditions, proper field operations for each crop, optimal harvest date, and farm technical and economical resources. With a high degree of succulence, green forage and derived products (silage, haylage, present addvantages as compared to hay, having superior indices of nutritive value and palatability. A green forage supply scheme was applied on an area of 188 ha taking into account dairy cattle biological traits. Crop structure was as follows: forage maize, Sudan grass, Italian ryegrass, new lucern and old lucerne, and orchardgrass. Insuring the required superior green forage for the dairy cattle according to forage rations, represents one of the main techniques to maximize milk production and to minimize milk production cost.

  18. Behavioural environments and niche construction: the evolution of dim-light foraging in bees.

    Science.gov (United States)

    Wcislo, William T; Tierney, Simon M

    2009-02-01

    Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.

  19. Wolf, Canis lupus, visits to white-tailed deer, Odocoileus virginianus, summer ranges: Optimal foraging?

    Science.gov (United States)

    Demma, D.J.; Mech, L.D.

    2009-01-01

    We tested whether Wolf (Canis lupus) visits to individual female White-tailed Deer (Odocoileus virginianus) summer ranges during 2003 and 2004 in northeastern Minnesota were in accord with optimal-foraging theory. Using GPS collars with 10- to 30-minute location attempts on four Wolves and five female deer, plus eleven VHF-collared female deer in the Wolves' territory, provided new insights into the frequency of Wolf visits to summer ranges of female deer. Wolves made a mean 0.055 visits/day to summer ranges of deer three years and older, significantly more than their 0.032 mean visits/day to ranges of two-year-old deer, which generally produce fewer fawns, and most Wolf visits to ranges of older deer were much longer than those to ranges of younger deer. Because fawns comprise the major part of the Wolf's summer diet, this Wolf behavior accords with optimal-foraging theory.

  20. Detecting predators and locating competitors while foraging: an experimental study of a medium-sized herbivore in an African savanna.

    Science.gov (United States)

    Pays, Olivier; Blanchard, Pierrick; Valeix, Marion; Chamaillé-Jammes, Simon; Duncan, Patrick; Périquet, Stéphanie; Lombard, Marion; Ncube, Gugulethu; Tarakini, Tawanda; Makuwe, Edwin; Fritz, Hervé

    2012-06-01

    Vigilance allows individuals to escape from predators, but it also reduces time for other activities which determine fitness, in particular resource acquisition. The principles determining how prey trade time between the detection of predators and food acquisition are not fully understood, particularly in herbivores because of many potential confounding factors (such as group size), and the ability of these animals to be vigilant while handling food. We designed a fertilization experiment to manipulate the quality of resources, and compared awareness (distinguishing apprehensive foraging and vigilance) of wild impalas (Aepyceros melampus) foraging on patches of different grass height and quality in a wilderness area with a full community of predators. While handling food, these animals can allocate time to other functions. The impalas were aware of their environment less often when on good food patches and when the grass was short. The animals spent more time in apprehensive foraging when grass was tall, and no other variable affected apprehensive behavior. The probability of exhibiting a vigilance posture decreased with group size. The interaction between grass height and patch enrichment also affected the time spent in vigilance, suggesting that resource quality was the main driver when visibility is good, and the risk of predation the main driver when the risk is high. We discuss various possible mechanisms underlying the perception of predation risk: foraging strategy, opportunities for scrounging, and inter-individual interference. Overall, this experiment shows that improving patch quality modifies the trade-off between vigilance and foraging in favor of feeding, but vigilance remains ultimately driven by the visibility of predators by foragers within their feeding patches.

  1. Recent developments in forage evaluation with special reference to practical applications

    Directory of Open Access Journals (Sweden)

    P. HUHTANEN

    2008-12-01

    Full Text Available The present re-evaluation of a dataset of systematically collected laboratory analyses and in vivo digestibility information for several types of silages gives convincing evidence of the biological weaknesses of feed characterisation based on the proximate feed analysis. The problems include intrinsic failures of the analysis in describing cause-response relationships between forage composition and digestibility, and heavy dependency of the equations on forage specific and environmental factors. It is concluded that proximate analysis is not suitable for characterisation of neither forages nor concentrate feedstuffs. In vitro pepsin-cellulase solubility of organic matter (OMS and concentration of indigestible neutral detergent fibre (iNDF predicted forage organic matter digestibility (OMD with an acceptable accuracy for practical feed evaluation purposes provided that forage type dependent correction equations were employed. The revised detergent system dividing forage dry matter (DM into almost completely available neutral detergent solubles (NDS, and insoluble residue (neutral detergent fibre, NDF shows potential for future development. The combined use of long-term in situ ruminal incubation and NDF fractionation can be used to divide forage DM into three biologically meaningful fractions: NDS, iNDF and potentially digestible NDF (pdNDF. The summative models can then be used to predict forage D-value, i.e. apparently digestible organic matter in forage (g kg-1 DM. The models sum digestible NDS, which can be determined by Lucas equation, and digestible NDF (dNDF, which is the amount of pdNDF that is actually digested during any specific fermentation or retention time. Forage type specific summative models were as good as regression equations based on OMS or iNDF in predicting forage D-value and general summative models gave better results than general equations based on iNDF and especially OMS. If the goal is to reduce prediction error of D

  2. Effects of forage type, forage to concentrate ratio, and crushed linseed supplementation on milk fatty acid profile in lactating dairy cows

    NARCIS (Netherlands)

    Sterk, A.R.; Johansson, B.E.O.; Taweel, H.Z.H.; Murphy, M.; Vuuren, van A.M.; Hendriks, W.H.; Dijkstra, J.

    2011-01-01

    The effects of an increasing proportion of crushed linseed (CL) in combination with varying forage type (grass or corn silage) and forage to concentrate ratio (F:C), and their interactions on milk fatty acid (FA) profile of high-producing dairy cows was studied using a 3-factor Box-Behnken design.

  3. Does supplemental feeding affect behaviour and foraging of ...

    African Journals Online (AJOL)

    In response to the provision of high-quality pods of Acacia albida, animals reduced foraging time in 2008 and allocated it to resting. This pattern corresponds to the animals' behaviour in captivity without foraging versus vigilance trade-offs and with predictable (in time and space) access to food. In 2009, supplemental ...

  4. Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate.

    Science.gov (United States)

    Commun, L; Mialon, M M; Martin, C; Baumont, R; Veissier, I

    2009-10-01

    This study aimed to investigate whether sheep offered free-choice intake of forage and concentrate develop subacute ruminal acidosis (SARA) and to identify SARA-associated feeding behavior components. In a crossover design over two 28-d periods, 11 rumen-cannulated wethers received wheat and alfalfa hay in 2 separate compartments. Concentrate and forage were provided for ad libitum access or in a fixed amount corresponding to 80% of ad libitum hay intake with a concentrate:forage ratio of 60:40 on a DM basis. In both diets, sheep were fed 2 equal portions at 0800 and 1600 h. Ruminal pH, voluntary intake, and feeding behavior were recorded continuously from d 1 to 9 and d 15 to 23 in each period. When no measurements were performed, the animals were housed in larger pens with straw bedding. When fed for ad libitum intake, the sheep ingested 1,340 g of DM/d consisting of 49.1% wheat, whereas with the fixed diet they ate 872 g of DM/d consisting of 58.4% wheat. Sheep fed for ad libitum intake spent more time with ruminal pH ruminal pH ruminal pH reached the same minimum level in both diets after main meals, time to reach pH nadir was longer with ad libitum diet (P ruminal pH increased more slowly in this diet, inducing a decreased preprandial ruminal pH (P ruminal pH may enable sheep to consume larger quantities of food. However, free access to concentrate maintains continuously elevated content of ruminal fermentation end products and so requires more time for pH to return to neutral values. Thus, interval between feed distributions should be as large as possible to help resume the preprandial ruminal pH and to limit time spent with pH <5.6.

  5. Variability in individual activity bursts improves ant foraging success.

    Science.gov (United States)

    Campos, Daniel; Bartumeus, Frederic; Méndez, Vicenç; Andrade, José S; Espadaler, Xavier

    2016-12-01

    Using experimental and computational methods, we study the role of behavioural variability in activity bursts (or temporal activity patterns) for individual and collective regulation of foraging in A. senilis ants. First, foraging experiments were carried out under special conditions (low densities of ants and food and absence of external cues or stimuli) where individual-based strategies are most prevalent. By using marked individuals and recording all foraging trajectories, we were then able to precisely quantify behavioural variability among individuals. Our main conclusions are that (i) variability of ant trajectories (turning angles, speed, etc.) is low compared with variability of temporal activity profiles, and (ii) this variability seems to be driven by plasticity of individual behaviour through time, rather than the presence of fixed behavioural stereotypes or specialists within the group. The statistical measures obtained from these experimental foraging patterns are then used to build a general agent-based model (ABM) which includes the most relevant properties of ant foraging under natural conditions, including recruitment through pheromone communication. Using the ABM, we are able to provide computational evidence that the characteristics of individual variability observed in our experiments can provide a functional advantage (in terms of foraging success) to the group; thus, we propose the biological basis underpinning our observations. Altogether, our study reveals the potential utility of experiments under simplified (laboratory) conditions for understanding information-gathering in biological systems. © 2016 The Author(s).

  6. To walk or to fly? How birds choose among foraging modes

    Science.gov (United States)

    Bautista, Luis M.; Tinbergen, Joost; Kacelnik, Alejandro

    2001-01-01

    We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight required to get one food reward, and for each flight cost value, we titrated the amount of walking until the birds showed indifference between foraging modes. We then compared the indifference points to those predicted by gross rate of gain over time, net rate of gain over time, and the ratio of gain to expenditure (efficiency). The results for the choice between modes show strong qualitative and quantitative support for net rate of gain over time over the alternatives. However, the birds foraged for only a fraction of the available time, indicating that the choice between foraging and resting could not be explained by any of these currencies. We suggest that this discrepancy could be accounted for functionally because nonenergetic factors such as predation risk may differ between resting and foraging in any mode but may not differ much between foraging modes, hence releasing the choice between foraging modes from the influence of such factors. Alternatively, the discrepancy may be attributable to the use of predictable (rather than stochastic) ratios of effort per prey in our experiment, and it may thus be better understood with mechanistic rather than functional arguments. PMID:11158599

  7. Morphological responses of forage sorghums to salinity and ...

    African Journals Online (AJOL)

    The response of forage sorghum [Sorghum bicolor (L.) Moench] varieties to salinity and irrigation frequency were studied from December 2007 to December 2009. Two forage sorghum varieties (Speedfeed and KFS4) were grown under salinity levels of 0, 5, 10 and 15 dS m-1 and irrigated when the leaf water potential ...

  8. Vision in avian emberizid foragers: maximizing both binocular vision and fronto-lateral visual acuity.

    Science.gov (United States)

    Moore, Bret A; Pita, Diana; Tyrrell, Luke P; Fernández-Juricic, Esteban

    2015-05-01

    Avian species vary in their visual system configuration, but previous studies have often compared single visual traits between two to three distantly related species. However, birds use different visual dimensions that cannot be maximized simultaneously to meet different perceptual demands, potentially leading to trade-offs between visual traits. We studied the degree of inter-specific variation in multiple visual traits related to foraging and anti-predator behaviors in nine species of closely related emberizid sparrows, controlling for phylogenetic effects. Emberizid sparrows maximize binocular vision, even seeing their bill tips in some eye positions, which may enhance the detection of prey and facilitate food handling. Sparrows have a single retinal center of acute vision (i.e. fovea) projecting fronto-laterally (but not into the binocular field). The foveal projection close to the edge of the binocular field may shorten the time to gather and process both monocular and binocular visual information from the foraging substrate. Contrary to previous work, we found that species with larger visual fields had higher visual acuity, which may compensate for larger blind spots (i.e. pectens) above the center of acute vision, enhancing predator detection. Finally, species with a steeper change in ganglion cell density across the retina had higher eye movement amplitude, probably due to a more pronounced reduction in visual resolution away from the fovea, which would need to be moved around more frequently. The visual configuration of emberizid passive prey foragers is substantially different from that of previously studied avian groups (e.g. sit-and-wait and tactile foragers). © 2015. Published by The Company of Biologists Ltd.

  9. Foraging decisions, patch use, and seasonality in egrets (Aves: ciconiiformes)

    Science.gov (United States)

    Erwin, R.M.

    1985-01-01

    Feeding snowy (Egretta thula) and great (Casmerodius albus) egrets were observed during 2 breeding seasons in coastal New Jersey and 2 brief winter periods in northeast Florida (USA). A number of tests based on assumptions of foraging models, predictions from foraging theory, and earlier empirical tests concerning time allocation and movement in foraging patches was made. Few of the expectations based on foraging theory and/or assumptions were supported by the empirical evidence. Snowy egrets fed with greater intensity and efficiency during the breeding season (when young were being fed) than during winter. They also showed some tendency to leave patches when their capture rate declined, and they spent more time foraging in patches when other birds were present nearby. Great egrets showed few of these tendencies, although they did leave patches when their intercapture intervals increased. Satiation differences had some influence on feeding rates in snowy egrets, but only at the end of feeding bouts. Some individuals of both species revisited areas in patches that had recently been exploited, and success rates were usually higher after the 2nd visit. Apparently, for predators of active prey, short-term changes in resource availability ('resource depression') may be more important than resource depletion, a common assumption in most optimal foraging theory models.

  10. Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers

    Science.gov (United States)

    Mattila, Heather R; Burke, Kelly M; Seeley, Thomas D

    2008-01-01

    Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker–worker communication signals that facilitate the swift discovery and exploitation of food resources. PMID:18198143

  11. Root foraging increases performance of the clonal plant Potentilla reptans in heterogeneous nutrient environments.

    Science.gov (United States)

    Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A

    2013-01-01

    Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.

  12. Consensus and experience trump leadership, suppressing individual personality during social foraging

    Science.gov (United States)

    McDonald, Nicholas D.; Rands, Sean A.; Hill, Francesca; Elder, Charlotte; Ioannou, Christos C.

    2016-01-01

    Whether individual behavior in social settings correlates with behavior when individuals are alone is a fundamental question in collective behavior. However, evidence for whether behavior correlates across asocial and social settings is mixed, and no study has linked observed trends with underlying mechanisms. Consistent differences between individuals in boldness, which describes willingness to accept reward over risk, are likely to be under strong selection pressure. By testing three-spined sticklebacks (Gasterosteus aculeatus) in a risky foraging task alone and repeatedly in shoals, we demonstrate that the expression of boldness in groups is context-specific. Whereas personality is repeatable in a low-risk behavior (leaving a refuge), the collectively made consensus decision to then cross the arena outweighs leadership by bolder individuals, explaining the suppression of personality in this context. However, despite this social coordination, bolder individuals were still more likely to feed. Habituation and satiation over repeated trials degrade the effect of personality on leaving the refuge and also whether crossing the arena is a collective decision. The suppression of personality in groups suggests that individual risk-taking tendency may rarely represent actual risk in social settings, with implications for the evolution and ecology of personality variation. PMID:27652342

  13. Consensus and experience trump leadership, suppressing individual personality during social foraging.

    Science.gov (United States)

    McDonald, Nicholas D; Rands, Sean A; Hill, Francesca; Elder, Charlotte; Ioannou, Christos C

    2016-09-01

    Whether individual behavior in social settings correlates with behavior when individuals are alone is a fundamental question in collective behavior. However, evidence for whether behavior correlates across asocial and social settings is mixed, and no study has linked observed trends with underlying mechanisms. Consistent differences between individuals in boldness, which describes willingness to accept reward over risk, are likely to be under strong selection pressure. By testing three-spined sticklebacks (Gasterosteus aculeatus) in a risky foraging task alone and repeatedly in shoals, we demonstrate that the expression of boldness in groups is context-specific. Whereas personality is repeatable in a low-risk behavior (leaving a refuge), the collectively made consensus decision to then cross the arena outweighs leadership by bolder individuals, explaining the suppression of personality in this context. However, despite this social coordination, bolder individuals were still more likely to feed. Habituation and satiation over repeated trials degrade the effect of personality on leaving the refuge and also whether crossing the arena is a collective decision. The suppression of personality in groups suggests that individual risk-taking tendency may rarely represent actual risk in social settings, with implications for the evolution and ecology of personality variation.

  14. Space use by foragers consuming renewable resources

    Science.gov (United States)

    Abramson, Guillermo; Kuperman, Marcelo N.; Morales, Juan M.; Miller, Joel C.

    2014-05-01

    We study a simple model of a forager as a walk that modifies a relaxing substrate. Within it simplicity, this provides an insight on a number of relevant and non-intuitive facts. Even without memory of the good places to feed and no explicit cost of moving, we observe the emergence of a finite home range. We characterize the walks and the use of resources in several statistical ways, involving the behavior of the average used fraction of the system, the length of the cycles followed by the walkers, and the frequency of visits to plants. Preliminary results on population effects are explored by means of a system of two non directly interacting animals. Properties of the overlap of home ranges show the existence of a set of parameters that provides the best utilization of the shared resource.

  15. Determination of Tropical Forage Preferences Using Two Offering Methods in Rabbits

    Directory of Open Access Journals (Sweden)

    A. M. Safwat

    2014-04-01

    Full Text Available Two methods of feed preference trials were compared to evaluate the acceptability of 5 fresh foliages: Leucaena leucocephala, Moringa oleifera, Portulaca oleracea, Guazuma ulmifolia, and Brosimum alicastrum that was included as control. The evaluation included chemical analyses and forage intake by rabbits. The first method was a cafeteria trial; 12 California growing rabbits aged 8 wk, allocated in individual cages, were offered the five forage plants at the same time inside the cage, while in the second trial 60 California growing rabbits aged 8 wk, allocated individually, were randomly distributed into 5 experimental groups (n = 12/group; for each group just one forage species was offered at a time. The testing period for each method lasted for 7 d, preceded by one week of adaptation. The results showed that B. alicastrum and L. lecocephala were the most preferred forages while on the contrary G. ulmifolia was the least preferred one by rabbits. The results also revealed that the CV% value for the 2nd method (16.32%, which the tested forages were presented separately to rabbits, was lower and methodologically more acceptable than such value for the 1st method (34.28%, which all forages were presented together at the same time. It can be concluded that a range of tropical forages were consumed in acceptable quantities by rabbits, suggesting that diets based on such forages with a concentrate supplement could be used successfully for rabbit production. However, growth performance studies are still needed before recommendations could be made on appropriate ration formulations for commercial use.

  16. Foraging in corallivorous butterflyfish varies with wave exposure

    Science.gov (United States)

    Noble, Mae M.; Pratchett, Morgan S.; Coker, Darren J.; Cvitanovic, Christopher; Fulton, Christopher J.

    2014-06-01

    Understanding the foraging patterns of reef fishes is crucial for determining patterns of resource use and the sensitivity of species to environmental change. While changes in prey availability and interspecific competition have been linked to patterns of prey selection, body condition, and survival in coral reef fishes, rarely has the influence of abiotic environmental conditions on foraging been considered. We used underwater digital video to explore how prey availability and wave exposure influence the behavioural time budgets and prey selectivity of four species of obligate coral-feeding butterflyfishes. All four species displayed high selectivity towards live hard corals, both in terms of time invested and frequency of searching and feeding events. However, our novel analysis revealed that such selectivity was sensitive to wave exposure in some species, despite there being no significant differences in the availability of each prey category across exposures. In most cases, these obligate corallivores increased their selectivity towards their most favoured prey types at sites of high wave exposure. This suggests there are costs to foraging under different wave environments that can shape the foraging patterns of butterflyfishes in concert with other conditions such as prey availability, interspecific competition, and territoriality. Given that energy acquisition is crucial to the survival and fitness of fishes, we highlight how such environmental forcing of foraging behaviour may influence the ecological response of species to the ubiquitous and highly variable wave climates of shallow coral reefs.

  17. Propaganda, Public Information, and Prospecting: Explaining the Irrational Exuberance of Central Place Foragers During a Late Nineteenth Century Colorado Silver Rush.

    Science.gov (United States)

    Glover, Susan M

    2009-10-01

    Traditionally, models of resource extraction assume individuals act as if they form strategies based on complete information. In reality, gathering information about environmental parameters may be costly. An efficient information gathering strategy is to observe the foraging behavior of others, termed public information. However, media can exploit this strategy by appearing to supply accurate information while actually shaping information to manipulate people to behave in ways that benefit the media or their clients. Here, I use Central Place Foraging (CPF) models to investigate how newspaper propaganda shaped ore foraging strategies of late nineteenth-century Colorado silver prospectors. Data show that optimistic values of silver ore published in local newspapers led prospectors to place mines at a much greater distance than was profitable. Models assuming perfect information neglect the possibility of misinformation among investors, and may underestimate the extent and degree of human impacts on areas of resource extraction.

  18. Ingestive and metabolic behavior of beef cattle fed diets with different levels of turnip forage (Rhaphanus sativus cake in replacement to soybean meal

    Directory of Open Access Journals (Sweden)

    Valdecir de Souza Castro

    2014-02-01

    Full Text Available The objective of this study was to assess the effects of five substitution levels of soybean meal by turnip forage cake in the concentrate, on dry matter intake (DM, organic matter (OM, crude protein (CP, ether extract (EE, neutral detergent fiber (NDF and acid detergent fiber (ADF, pH and ammonia nitrogen (N-NH3 in the rumen liquid and plasmatic urea nitrogen (PUN in beef steer. The diets were isoprotein (6.5 % CP and isoenergetic (50.0% TDN, using in natura sugarcane silage as the only forage (85,5 %DM. Five castrated males were used, 1/2 Simental x Nelore cross, with average weight of 610 kg and 36 months old, all fistulated in the rumen. The different levels of replacement were: 0, 25, 50, 75 and 100%, based on CP responsible of soybean meal of ration. Each experimental period lasted 19 days. The experiment was carried out in a 5x5 latin square experimental design, with five animals and five periods. The potential of dry matter intake (%BW and g/kg BW0,75 of turnip forage cake forage was obtained with 27% of replacement in the protean basis in relation to soybean meal, promoting, a maximum intake of 0,217 kg/animal/day, not proportionating alterations in the ruminal dynamic and in the blood.

  19. Skill ontogeny among Tsimane forager-horticulturalists.

    Science.gov (United States)

    Schniter, Eric; Gurven, Michael; Kaplan, Hillard S; Wilcox, Nathaniel T; Hooper, Paul L

    2015-09-01

    We investigate whether age profiles of Tsimane forager-horticulturalists' reported skill development are consistent with predictions derived from life history theory about the timing of productivity and reproduction. Previous studies of forager skill development have often focused on a few abilities (e.g. hunting), and neglected the broad range of skills and services typical of forager economies (e.g. childcare, craft production, music performance, story-telling). By systematically examining age patterns in reported acquisition, proficiency, and expertise across a broad range of activities including food production, childcare, and other services, we provide the most complete skill development study of a traditional subsistence society to date. Our results show that: (1) most essential skills are acquired prior to first reproduction, then developed further so that their productive returns meet the increasing demands of dependent offspring during adulthood; (2) as postreproductive adults age beyond earlier years of peak performance, they report developing additional conceptual and procedural proficiency, and despite greater physical frailty than younger adults, are consensually regarded as the most expert (especially in music and storytelling), consistent with their roles as providers and educators. We find that adults have accurate understandings of their skillsets and skill levels -an important awareness for social exchange, comparison, learning, and pedagogy. These findings extend our understanding of the evolved human life history by illustrating how changes in embodied capital and the needs of dependent offspring predict the development of complementary skills and services in a forager-horticulturalist economy. © 2015 Wiley Periodicals, Inc.

  20. Visual field shape and foraging ecology in diurnal raptors.

    Science.gov (United States)

    Potier, Simon; Duriez, Olivier; Cunningham, Gregory B; Bonhomme, Vincent; O'Rourke, Colleen; Fernández-Juricic, Esteban; Bonadonna, Francesco

    2018-05-18

    Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single traits approach, and then exploring the shape of the binocular field with morphometric approaches. While the maximum binocular field width did not differ in species of different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency ( e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies. © 2018. Published by The Company of Biologists Ltd.

  1. Reappraising social insect behavior through aversive responsiveness and learning.

    Science.gov (United States)

    Roussel, Edith; Carcaud, Julie; Sandoz, Jean-Christophe; Giurfa, Martin

    2009-01-01

    The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult. To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor. Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsive to shock learned and memorized better aversive associations. Finally, guards were less responsive than nectar foragers to electric shocks, exhibiting higher tolerance to low voltage shocks. Consequently, foragers, which are more sensitive, were the ones learning and memorizing better in aversive conditioning. Our results constitute the first integrative study on how aversive responsiveness affects learning, memory and social

  2. Reappraising social insect behavior through aversive responsiveness and learning.

    Directory of Open Access Journals (Sweden)

    Edith Roussel

    Full Text Available The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult.To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor.Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsive to shock learned and memorized better aversive associations. Finally, guards were less responsive than nectar foragers to electric shocks, exhibiting higher tolerance to low voltage shocks. Consequently, foragers, which are more sensitive, were the ones learning and memorizing better in aversive conditioning.Our results constitute the first integrative study on how aversive responsiveness affects learning, memory and

  3. [Occurrence and behavioral patterns of the spotted coastal dolphin Stenella attenuata (Cetacea: delphinidae) in the Gulf of Papagayo, Costa Rica].

    Science.gov (United States)

    May-Collado, Laura; Ramírez, Alvaro Morales

    2005-01-01

    Dolphins are characterized by a significant behavioral versatility, which allows them to respond to environmental seasonality. Seasonal variation in dolphin behavior in tropical waters is not well known. Stenella attenuata graffmani is a resident dolphin in the clearly defined seasonal Gulf of Papagayo, Costa Rica, and we studied if dolphin group size, occurrence and behavioral patterns were associated with season and time of day in the gulf. Using strip transects we surveyed two locations for three consecutive years. School size ranged from 1 to 50 individuals, mean group size was 10.16 (SD = 9.61) individuals. Overall, foraging activities were the most frequent, followed by social interactions and travel. From 6:00 AM to 9:00 AM we mostly observed social interactions, followed by feeding-socializing (9:00 AM-12:00 PM) and feeding exclusively (12:00 PM-3:00 PM). Social activities intensified afterwards (3:00 PM-6:00 PM). Behavior and gulf seasonality were associated (chi2 = 90.52, gl = 6, psocializing was more frequent in the early rainy season (May-July). Larger groups (mean 12 dolphins) forage actively; smaller groups (mean 6 dolphins 6.51 +/- 5.12) foraged more passively. Seasonal variation in dolphin activities are likely to be associated with food availability, as observed in the high number of groups involved in foraging behaviors, and a high investment in foraging activities during the dry season.

  4. Simulation modeling to understand how selective foraging by beaver can drive the structure and function of a willow community

    Science.gov (United States)

    Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.

    2009-01-01

    Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.

  5. Seasonal behavioral responses of an arid-zone passerine in a hot environment.

    Science.gov (United States)

    Pattinson, Nicholas B; Smit, Ben

    2017-10-01

    Many arid-zone animals have to forage under extremely hot conditions to maintain water and energy balance. The effect of high air temperatures (T air ) on the behavioral patterns of small endothermic animals-characterized by their high energy and water demands-will provide a valuable framework for understanding species vulnerability to climate warming. We determined the seasonal behavioral responses to changes in T air in a~10-g arid-zone passerine, the rufous-eared warbler (Malcorus pectoralis), in the Karoo semi-desert, South Africa. Rufous-eared warblers showed significant temperature-dependence in their behavior in summer, but not in winter. During summer, the warblers frequently experienced T air exceeding 40°C in the shade. For all observations 36°C, the warblers showed reductions in preening (40% decrease), foraging effort (56% decrease), and foraging success (15% decrease), as well as a significant increase in time spent engaged in evaporative cooling behavior. Moreover, as T air increased the warblers shifted increasingly off the ground and out of the full sun, into microsites in the shade (131% increase) and in shrubs (23% increase). In this regard, behavior varied seasonally, with the time spent in the shade 23% higher, and foraging effort 28% higher, in summer compared to winter across a range of moderate T air (15-30°C). Our findings emphasize the link between behavior and temperature in small birds inhabiting hot, arid environments, as well as the importance of understanding these responses for predicting biologically meaningful responses (and hence, vulnerability) of arid-zone avian communities to climactic shifts. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Foraging behaviour and feeding ecology of the Black-cheeked ...

    African Journals Online (AJOL)

    Foraging behaviour and feeding ecology of the Black-cheeked Lovebird Agapornis nigrigenis were studied in Zambia. The birds fed on at least 39 species, and food items included seeds, leaves, flowers (especially nectar), fruit pulp, invertebrates, bark, lichen and resin. Terrestrial foraging was dominant, whereas arboreal ...

  7. Optimal Foraging for Multiple Resources in Several Food Species

    NARCIS (Netherlands)

    Hengeveld, G.M.; Langevelde, van F.; Groen, T.A.; Knegt, de H.J.

    2009-01-01

    The concentrations of resources in forage are not perfectly balanced to the needs of an animal, and food species differ in these concentrations. Under many circumstances, animals should thus forage on multiple food species to attain the maximum and most balanced intake of several resources. In this

  8. Optimal foraging for multiple resources in several food species

    NARCIS (Netherlands)

    Hengeveld, G.M.; van Langevelde, F.; Groen, T.A.; de Knegt, H.J.

    2009-01-01

    The concentrations of resources in forage are not perfectly balanced to the needs of an animal, and food species differ in these concentrations. Under many circumstances, animals should thus forage on multiple food species to attain the maximum and most balanced intake of several resources. In this

  9. A properly adjusted forage harvester can save time and money

    Science.gov (United States)

    A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....

  10. Forage yield and nitrogen nutrition dynamics of warm-season native forage genotypes under two shading levels and in full sunlight

    OpenAIRE

    Barro,Raquel Santiago; Varella,Alexandre Costa; Lemaire,Gilles; Medeiros,Renato Borges de; Saibro,João Carlos de; Nabinger,Carlos; Bangel,Felipe Villamil; Carassai,Igor Justin

    2012-01-01

    The successful achievement of a highly productive understorey pasture in silvopastoral systems depends on the use of well-adapted forage genotypes, showing good agronomic performance and persistence under shading and grazing. In this study, the herbage dry matter yield (DMY) and nitrogen nutrition dynamics were determined in three native warm-season grasses (Paspalum regnellii, Paspalum dilatatum and Paspalum notatum) and a forage legume (Arachis pintoi) under two shading levels compared with...

  11. Use of biosolids to enhance rangeland forage quality.

    Science.gov (United States)

    McFarland, Michael J; Vasquez, Issaak Romero; Vutran, MaiAnh; Schmitz, Mark; Brobst, Robert B

    2010-05-01

    Biosolids land application was demonstrated to be a potentially cost-effective means for restoring forage productivity and enhancing soil-moisture-holding capacity on disturbed rangelands. By land-applying aerobically digested, anaerobically digested, composted, and lime-stabilized biosolids on rangeland test plots at rates of up to 20 times (20X) the estimated nitrogen-based agronomic rate, forage yields were found to increase from 132.8 kg/ha (118.2 lb/ac) (control plots) to 1182.3 kg/ha (1052.8 lb/ac). Despite the environmental benefits associated with increased forage yield (e.g., reduced soil erosion, improved drainage, and enhanced terrestrial carbon sequestration), the type of forage generated both before and after biosolids land application was found to be dominated by invasive weeds, all of which were characterized as having fair to poor nutritional value. Opportunistic and shallow rooting invasive weeds not only have marginal nutritional value, they also limit the establishment of native perennial grasses and thus biodiversity. Many of the identified invasive species (e.g., Cheatgrass) mature early, a characteristic that significantly increases the fuel loads that support the increased frequency and extent of western wildfires.

  12. Multiple model testing using Chernobyl fallout data of I-131 in forage and milk and Cs-137 in forage, milk, beef and grain. Pt. 1

    International Nuclear Information System (INIS)

    Koehler, H.; Peterson, S.R.; Owen Hoffman, F.

    1991-03-01

    Comprehensive measurements of I-131 and Cs-137 in the environment after the Chernobyl accident provided a unique opportunity for the collection of environmental transfer data sets. These come from 13 locations in the northern hemisphere which experienced levels of contamination that spanned approximately three orders of magnitude. Data have been compiled for radionuclide concentrations in air, rain, pasture vegetation, milk, beef and grain. In addition background information has been collated for factors such as prevailing meteorological conditions, location description, and local agricultural practices. Participants were asked to predict radionuclide concentrations in forage, milk, beef and grain from radionuclide concentrations in air, the daily amounts of precipitation and other pertinent information. This was a blind test in that the locations to which the input data referred were not revealed to the participants until after they had submitted their predictions. Twenty-three models were involved in the study. This report compares observations and predictions for deposition, time- integrated concentrations in forage, milk, beef and grain, to help assess understanding of individual processes, time-dependent concentrations in forage, milk and beef. In general, predictions of time-integrated concentration of I-131 and Cs-137 in forage, milk (normalized for forage) and beef are within a factor of 10 of the observations. About 50% of the predictions of I-131 and Cs-137 in forage and just over 30% of the predictions of those nuclides in milk (normalized for forage) fall within a factor of 2 of the observations. Documentation of the measurements, models, methods of analysis and model results is presented in the appendices. (au) (75 refs.)

  13. Rumen passage kinetics of forage and concentrate derived fiber in dairy cows

    DEFF Research Database (Denmark)

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2013-01-01

    , were used in a completely randomized block experiment. Treatments differed in forage type (corn silage versus grass silage) and forage:concentrate ratio (50:50 versus 75:25 on organic matter basis). Fiber passage kinetics were studied based on rumen evacuations and on marker excretion profiles in feces....... The forage type itself (corn silage and grass silage) rather than ration composition seemed to determine the total tract retention time of forage fiber......Rumen passage kinetics of forage and concentrate fiber were analyzed to determine intrinsic feed effects and extrinsic ration effects on the retention time of fiber in the rumen. Sixteen Danish Holstein cows (557 + 37 kg body weight, 120 + 21 days in milk, mean + SD), 8 fitted with ruminal cannulas...

  14. Comparison of alternative beef production systems based on forage finishing or grain-forage diets with or without growth promotants: 2. Meat quality, fatty acid composition, and overall palatability.

    Science.gov (United States)

    Faucitano, L; Chouinard, P Y; Fortin, J; Mandell, I B; Lafrenière, C; Girard, C L; Berthiaume, R

    2008-07-01

    Five beef cattle management regimens were evaluated for their effect on meat quality, fatty acid composition, and overall palatability of the longis-simus dorsi (LD) muscle in Angus cross steers. A 98-d growing phase was conducted using grass silage with or without supplementation of growth promotants (Revalor G and Rumensin) or soybean meal. Dietary treatments in the finishing phase were developed with or without supplementation of growth promotants based on exclusive feeding of forages with no grain supplementation, or the feeding of grain:forage (70:30) diets. Growth promotants increased (P forages increased the proportion of cis-9, cis-12, cis-15 C18:3 as well as several other isomers of the n-3 family and decreased in the ratio of n-6 to n-3 fatty acids in the LD muscle as compared with supplementing grain (P forage-based diet increased (P Forage feeding also increased the proportion of cis-9, trans-11 C18:2 (P forage-finishing and growth promotants-free beef production system.

  15. Substituição do milho por palma forrageira: comportamento ingestivo de vacas mestiças em lactação - DOI: 10.4025/actascianimsci.v25i2.2029 Replacement of the corn by forage cactus: Ingestive behavior of crossbreed lactating cows - DOI: 10.4025/actascianimsci.v25i2.2029

    Directory of Open Access Journals (Sweden)

    Maria Adélia Oliveira Monteiro Cruz

    2003-04-01

    Full Text Available O objetivo deste trabalho foi estudar o efeito da substituição do milho por palma forrageira sobre o comportamento ingestivo de 8 vacas 5/8 Holandês-Zebu, distribuídas em 2 quadrados latinos 4 x 4. Os tratamentos consistiram na combinação fatorial de 2 cultivares de palma (miúda e gigante e 2 níveis de milho (com e sem. Não houve interação entre palma e milho (p > 0,05. As vacas que consumiram palma gigante gastaram mais tempo para se alimentar e as que consumiram palma miúda permanecerem maior tempo descansando (p The aim of this work was to evaluate the effects of replacement of corn by forage cactus on the ingestive behavior of eight crossbreed cows, assigned to a two 4 x 4 Latin square design. The treatments were a factorial 2 x 2 arrangement (two cultivars of forage cactus and two corn levels, with and without. There wasn’t interaction between forage cactus and corn (p > 0,05. The cows that consumed giant forage cactus spent more time eating and those that consumed small forage cactus spent more time resting (p < 0,01. The intake of water was lower for the animals that consumed diets with giant forage cactus and without corn (p < 0,01.

  16. Seasonality directs contrasting food collection behavior and nutrient regulation strategies in ants.

    Science.gov (United States)

    Cook, Steven C; Eubanks, Micky D; Gold, Roger E; Behmer, Spencer T

    2011-01-01

    Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant.

  17. Winter active bumblebees (Bombus terrestris achieve high foraging rates in urban Britain.

    Directory of Open Access Journals (Sweden)

    Ralph J Stelzer

    2010-03-01

    Full Text Available Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect?To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7 in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008 and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer.B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.

  18. Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain.

    Science.gov (United States)

    Stelzer, Ralph J; Chittka, Lars; Carlton, Marc; Ings, Thomas C

    2010-03-05

    Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect? To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7) in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID) technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008) and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer. B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.

  19. Tadpoles balance foraging and predator avoidance: Effects of predation, pond drying, and hunger

    Science.gov (United States)

    Bridges, C.M.

    2002-01-01

    Organisms are predicted to make trade-offs when foraging and predator avoidance behaviors present conflicting demands. Balancing conflicting demands is important to larval amphibians because adult fitness can be strongly influenced by size at metamorphosis and duration of the larval period. Larvae in temporary ponds must maximize growth within a short time period to achieve metamorphosis before ponds dry, while simultaneously avoiding predators. To determine whether tadpoles trade off between conflicting demands, I examined tadpole (Pseudacris triseriata) activity and microhabitat use in the presence of red-spotted newts (Notopthalmus viridescens) under varying conditions of pond drying and hunger. Tadpoles significantly decreased activity and increased refuge use when predators were present. The proportion of active time tadpoles spent feeding was significantly greater in predator treatments, suggesting tadpoles adaptively balance the conflicting demands of foraging and predator avoidance without making apparent trade-offs. Tadpoles responded to simulated drying conditions by accelerating development. Pond drying did not modify microhabitat use or activity in the presence of predators, suggesting tadpoles perceived predation and hunger as greater immediate threats than desiccation, and did not take more risks.

  20. EXPLORATION UNDER SHADE PLANTS OF CASSAVA AND IT’S POTENTIAL AS FORAGE

    Directory of Open Access Journals (Sweden)

    Novia Qomariyah

    2014-01-01

    Full Text Available Utilization of forage plants growing among cassava (Manihot esculenta Crantz is not optimal. Potential for development of integration of both very large and mutually beneficial. Purpose of this study is to explore and identify types of forage that grows in shade of the cassava plant and potential for development as a source of forage. This study took place in March 2014 Month held at IPB Sinar Sari Complex Dramaga. This research method to define area of cassava plants as treatments that cassava plants were planted separately with another crop (monoculture and cassava crops are planted among crops and horticultural crops such as pariah plants, beans, squash and corn (polyculture. Furthermore, observed and forage samples taken were grown in both location and made herbarium and identified its kind. Results: forage crops are grown between cassava monoculture is more diverse than polyculture. Types of forage crops grown on cassava monoculture is Echinochloa colona, Setaria barbata, Family Juncaceae, Cyperus sp., Conjugatum paspalum, Cynodon dactylon, Stenotaphrum secundatum, Axonophus compressus (Swartz P. Beauv, Eleusine indica and Panicum maximum. Types of forage crops grown on cassava polyculture is colona Echinochloa, Setaria barbata, Family Juncaceae, Cyperus sp., Stenotaphrum secundatum, Eleusine indica and Leucaena leucephala.

  1. More milk from forage: Milk production, blood metabolites, and forage intake of dairy cows grazing pasture mixtures and spatially adjacent monocultures.

    Science.gov (United States)

    Pembleton, Keith G; Hills, James L; Freeman, Mark J; McLaren, David K; French, Marion; Rawnsley, Richard P

    2016-05-01

    There is interest in the reincorporation of legumes and forbs into pasture-based dairy production systems as a means of increasing milk production through addressing the nutritive value limitations of grass pastures. The experiments reported in this paper were undertaken to evaluate milk production, blood metabolite concentrations, and forage intake levels of cows grazing either pasture mixtures or spatially adjacent monocultures containing perennial ryegrass (Lolium perenne), white clover (Trifolium repens), and plantain (Plantago lanceolata) compared with cows grazing monocultures of perennial ryegrass. Four replicate herds, each containing 4 spring-calving, cross-bred dairy cows, grazed 4 different forage treatments over the periods of early, mid, and late lactation. Forage treatments were perennial ryegrass monoculture (PRG), a mixture of white clover and plantain (CPM), a mixture of perennial ryegrass, white clover, and plantain (RCPM), and spatially adjacent monocultures (SAM) of perennial ryegrass, white clover, and plantain. Milk volume, milk composition, blood fatty acids, blood β-hydroxybutyrate, blood urea N concentrations, live weight change, and estimated forage intake were monitored over a 5-d response period occurring after acclimation to each of the forage treatments. The acclimation period for the early, mid, and late lactation experiments were 13, 13, and 10 d, respectively. Milk yield (volume and milk protein) increased for cows grazing the RCPM and SAM in the early lactation experiment compared with cows grazing the PRG, whereas in the mid lactation experiment, milk fat increased for the cows grazing the RCPM and SAM when compared with the PRG treatments. Improvements in milk production from grazing the RCPM and SAM treatments are attributed to improved nutritive value (particularly lower neutral detergent fiber concentrations) and a potential increase in forage intake. Pasture mixtures or SAM containing plantain and white clover could be a

  2. Comparing the use of live trees and deadwood for larval foraging by aye-ayes (Daubentonia madagascariensis) at Kianjavato and Torotorofotsy, Madagascar.

    Science.gov (United States)

    Sefczek, Timothy M; Randimbiharinirina, Domenico; Raharivololona, Brigitte M; Rabekianja, Joseph D; Louis, Edward E

    2017-10-01

    Aye-aye (Daubentonia madagascariensis) feeding behavior has become synonymous with deadwood foraging. However, deadwood is not always the most frequently used substrate, as some aye-ayes use live trees more often to access invertebrates. We sought to compare the frequency of aye-aye invertebrate foraging in deadwood and live trees to better understand their feeding behaviors. We followed two male aye-ayes at Kianjavato, a heavily disturbed habitat in southeastern Madagascar, from October 2013 to October 2014, and one male and one female aye-aye at Torotorofotsy, a continuous forest in eastern Madagascar, from July 2014 to December 2015. We collected feeding data by recording the behavior of a focal aye-aye every 5 min for a total of 373 h at Kianjavato and 383 h at Torotorofotsy. Our results showed no difference in the amount of deadwood used between the individuals. However, there was a significant difference in the amount of live tree feeding between the female at Torotorofotsy and one of the males at Kianjavato. We conclude that feeding on invertebrates in live trees is more important to aye-ayes than previously realized and that aye-ayes are exceedingly flexible in their invertebrate feeding behaviors, adjusting to their habitat by using various substrates.

  3. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, James E. [North Carolina State University

    2014-04-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technical resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.

  4. Deep-water feeding and behavioral plasticity in Manta birostris revealed by archival tags and submersible observations.

    Science.gov (United States)

    Stewart, Joshua D; Hoyos-Padilla, Edgar Mauricio; Kumli, Katherine R; Rubin, Robert D

    2016-10-01

    Foraging drives many fundamental aspects of ecology, and an understanding of foraging behavior aids in the conservation of threatened species by identifying critical habitats and spatial patterns relevant to management. The world's largest ray, the oceanic manta (Manta birostris) is poorly studied and threatened globally by targeted fisheries and incidental capture. Very little information is available on the natural history, ecology and behavior of the species, complicating management efforts. This study provides the first data on the diving behavior of the species based on data returned from six tagged individuals, and an opportunistic observation from a submersible of a manta foraging at depth. Pop-off archival satellite tags deployed on mantas at the Revillagigedo Archipelago, Mexico recorded seasonal shifts in diving behavior, likely related to changes in the location and availability of zooplankton prey. Across seasons, mantas spent a large proportion of their time centered around the upper limit of the thermocline, where zooplankton often aggregate. Tag data reveal a gradual activity shift from surface waters to 100-150m across the tagging period, possibly indicating a change in foraging behavior from targeting surface-associated zooplankton to vertical migrators. The depth ranges accessed by mantas in this study carry variable bycatch risks from different fishing gear types. Consequently, region-specific data on diving behavior can help inform local management strategies that reduce or mitigate bycatch of this vulnerable species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Foraging behaviour of pink-footed geese (Anser brachyrhynchus) during spring migration

    DEFF Research Database (Denmark)

    Chudzińska, Magda Ewa

    and their energetic consequences are therefore of great importance to these birds. In this thesis, I have aimed to address some aspects of the foraging decisions and behaviour of pink-footed geese during their spring migration to the Arctic breeding area. I combined field techniques with telemetry technology as well...... as modelling tools to address questions about how geese forage and fuel during their spring migration. The first three presented manuscripts focus on changes in goose foraging behaviour and energetics over the course of the day, a stopover season and the entire migration. They also focus on variety of factors...... the question: which foraging decision do geese make at the Mid-Norway stopover site....

  6. Forage fish, their fisheries, and their predators: who drives whom?

    DEFF Research Database (Denmark)

    Engelhard, Georg H.; Peck, Myron A.; Rindorf, Anna

    2014-01-01

    exist, as in the North Sea. Sandeel appears to be the most important prey forage fish. Seabirds are most dependent on forage fish, due to specialized diet and distributional constraints (breeding colonies). Other than fisheries, key predators of forage fish are a few piscivorous fish species including...... saithe, whiting, mackerel, and horse-mackerel, exploited in turn by fisheries; seabirds and seals have a more modest impact. Size-based foodwebmodelling suggests that reducing fishing mortality may not necessarily lead to larger stocks of piscivorous fish, especially if their early life stages compete...

  7. Predation risk and optimal foraging trade-off in the demography and spacing of the George River Herd, 1958 to 1993

    Directory of Open Access Journals (Sweden)

    Arthur T. Bergerud

    2003-04-01

    Full Text Available The behavior options of feeding animals lie on a continuum between energy maximization and minimization of predation risk. We studied the distribution, mobility, and energy budgets of the George River herd, Ungava from 1974 to 1993. We arranged the annual cycle into 6 phases where we argue that the importance between the priorities of optimal foraging and predation risk change between periods. At calving, risk is more important than foraging for females but males take more risk to optimally forage. During the mosquito season, insect avoidance takes priority over risk and for¬aging. Optimal foraging takes precedent over risk in the late summer and fall and it is at this time that the herd expanded its range relative to numbers and forage abundance. In the winter (December to mid-March animals sought restricted localized ranges with low snow cover to reduce predation risk. The spring migration of females may have increased risk during the interval the females were moving back to the tundra to give birth to their neonates on the low risk calv¬ing ground. In May, females sought early greens near treeline, which may have increased risk in order to provide maximum nutrition to their fetuses in the last weeks of pregnancy. The ancestors of the George River Herd during the Pleistocene, 18 000 yr. BP may have reduced predation risk by spacing-out in the Appalachian Mountains, removed from the major specie of the megafauna in the lowlands. With global warming, it is argued the major problem for caribou will be increased wolf predation rather than changing forage and nutritional regimes. It is essential that First Nation residents of the North maintain their option to manage wolf numbers if excessive predation in the future adversely affects the migratory herds of the Northwest Territories and Ungava.

  8. The amino acid composition of rumen-undegradable protein: a comparison between forages.

    Science.gov (United States)

    Edmunds, B; Südekum, K-H; Bennett, R; Schröder, A; Spiekers, H; Schwarz, F J

    2013-07-01

    The objective of this study was to improve knowledge regarding the amino acid profile of the insoluble portion of ingested forage escaping rumen degradation. Six forage categories were analyzed. Categories varied in botanical composition and each contained 2 samples. Samples within categories were derived from the same parent material but differed in harvest, maturity, or conservation type. The rumen-undegradable protein of all forages was measured by incubation for 16h in the rumen of 3 nonlactating cows. All residues were corrected for microbial colonization. The AA profile of the residue was different to the original profile. Degradation trends of individual AA, in terms of increase or decrease relative to the original concentration, were similar between all forages. The AA profiles of forage residues, both within and between categories, were more similar to each other than to their respective original profile. This information may aid in improving the accuracy of estimating postruminal AA supply from forages while decreasing the number of samples required to be analyzed. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Comparison of sorghum classes for grain and forage yield and forage nutritive value

    Science.gov (United States)

    Sorghum represents a broad category of plants that includes those grown primarily for forage (FS) or grain. Sorghum sudan crosses (SS) are also considered sorghum. Each of these groups can be further classified as brown midrib (BMR), nonBMR, photoperiod sensitive (PS), and nonPS. In our study, sor...

  10. U.S. DAIRY FORAGE RESEARCH CENTER

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  11. U.S. Dairy Forage Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  12. Social foraging by waterbirds in shallow coastal lagoons in Ghana

    NARCIS (Netherlands)

    Battley, PF; Poot, M; Wiersma, P; Gordon, C; Ntiamoa-Baidu, Y; Piersma, T; Battley, Phil F.

    Social foraging in waterbirds in Ghanaian coastal lagoons was studied during October and November 1994. Two types of foraging were social: directionally synchronized flocks (often involving distinctive feeding methods used in unison) and dense pecking aggregations. Social flocks were typically

  13. Interactions with combined chemical cues inform harvester ant foragers' decisions to leave the nest in search of food.

    Directory of Open Access Journals (Sweden)

    Michael J Greene

    Full Text Available Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food.

  14. Effects of seasonal advancement on the forage availability, quality ...

    African Journals Online (AJOL)

    Effects of seasonal advancement on the forage availability, quality and acceptability by grazing gudali cattle in the humid zone of Nigeria. ... There were significant (p<0.05) differences in the dry matter (DM), crude protein (CP) and neutral detergent fibre (NDF) contents of all the forages. DM content ranged from 9.6% (Tridax ...

  15. An evaluation of behavior inferences from Bayesian state-space models: A case study with the Pacific walrus

    Science.gov (United States)

    Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.

    2016-01-01

    State-space models offer researchers an objective approach to modeling complex animal location data sets, and state-space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state-space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two-state discrete-time continuous-space Bayesian state-space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state-space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two-state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state-space models, and reconcile these parameters with the study species and its expected behaviors.

  16. Whose urban forest? The political ecology of foraging urban nontimber forest products

    Science.gov (United States)

    Patrick T. Hurley; Marla R. Emery; Rebecca McLain; Melissa Poe; Brian Grabbatin; Cari L. Goetcheus

    2015-01-01

    Drawing on case studies of foraging in Philadelphia, Pennsylvania and Mt. Pleasant, South Carolina, we point to foraging landscapes and practices within diverse urban forest spaces. We examine these spaces in relation to U.S. conservation and development processes and the effects of management and governance on species valued by foragers. These case studies reveal the...

  17. Effects of radio transmitters on the behavior of Red-headed Woodpeckers

    Science.gov (United States)

    Mark Vukovich; John C. Kilgo

    2009-01-01

    Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior...

  18. A Study to Interpret the Biological Significance of Behavior Associated with 3S Experimental Sonar Exposures

    Science.gov (United States)

    2015-09-30

    species; 2.) quantitative comparison of behavior, and behavioral changes, during sonar presentation and playback of killer whale sounds across the 3S... foraging dives were pre-classified from the remaining dives first by determining a break-point depth in the depth versus duration relationship, and then...AIC point to divide dive depth versus duration relationships (Fig. 2). 50.8% of dives greater than 15m in depth were classified as foraging dives

  19. The Müller-Lyer illusion in ant foraging.

    Directory of Open Access Journals (Sweden)

    Tomoko Sakiyama

    Full Text Available The Müller-Lyer illusion is a classical geometric illusion in which the apparent (perceived length of a line depends on whether the line terminates in an arrow tail or arrowhead. This effect may be caused by economic compensation for the gap between the physical stimulus and visual fields. Here, we show that the Müller-Lyer illusion can also be produced by the foraging patterns of garden ants (Lasius niger and that the pattern obtained can be explained by a simple, asynchronously updated foraging ant model. Our results suggest that the geometric illusion may be a byproduct of the foraging process, in which local interactions underlying efficient exploitation can also give rise to global exploration, and that visual information processing in human could implement similar modulation between local efficient processing and widespread computation.

  20. Extreme precipitation variability, forage quality and large herbivore diet selection in arid environments

    Science.gov (United States)

    Cain, James W.; Gedir, Jay V.; Marshal, Jason P.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Jansen, Brian; Morgart, John R.

    2017-01-01

    Nutritional ecology forms the interface between environmental variability and large herbivore behaviour, life history characteristics, and population dynamics. Forage conditions in arid and semi-arid regions are driven by unpredictable spatial and temporal patterns in rainfall. Diet selection by herbivores should be directed towards overcoming the most pressing nutritional limitation (i.e. energy, protein [nitrogen, N], moisture) within the constraints imposed by temporal and spatial variability in forage conditions. We investigated the influence of precipitation-induced shifts in forage nutritional quality and subsequent large herbivore responses across widely varying precipitation conditions in an arid environment. Specifically, we assessed seasonal changes in diet breadth and forage selection of adult female desert bighorn sheep Ovis canadensis mexicana in relation to potential nutritional limitations in forage N, moisture and energy content (as proxied by dry matter digestibility, DMD). Succulents were consistently high in moisture but low in N and grasses were low in N and moisture until the wet period. Nitrogen and moisture content of shrubs and forbs varied among seasons and climatic periods, whereas trees had consistently high N and moderate moisture levels. Shrubs, trees and succulents composed most of the seasonal sheep diets but had little variation in DMD. Across all seasons during drought and during summer with average precipitation, forages selected by sheep were higher in N and moisture than that of available forage. Differences in DMD between sheep diets and available forage were minor. Diet breadth was lowest during drought and increased with precipitation, reflecting a reliance on few key forage species during drought. Overall, forage selection was more strongly associated with N and moisture content than energy content. Our study demonstrates that unlike north-temperate ungulates which are generally reported to be energy-limited, N and moisture

  1. Female mice respond differently to costly foraging versus food restriction

    NARCIS (Netherlands)

    Schubert, Kristin A.; Vaanholt, Lobke M.; Stavasius, Fanny; Demas, Gregory E.; Daan, Serge; Visser, G. Henk

    2008-01-01

    Experimental manipulation of foraging costs per food reward can be used to study the plasticity of physiological systems involved in energy metabolism. This approach is useful for understanding adaptations to natural variation in food availability. Earlier studies have shown that animals foraging on

  2. Foraging ecology and habitat association of black-winged lovebird ...

    African Journals Online (AJOL)

    26.4% of the lovebirds in Bole Sub-City were observed foraging on Zea mays and 16.5 % on Ricinus communis while in Entoto Natural Park, 50% of these lovebirds used the berries of Juniperus procera. Among the identified foraging plant parts, fruit had 60% in Bole Sub-City and 66.6% in Entoto Natural Park. The threat ...

  3. A systems approach for the evaluation of ethanol production based on forages

    Energy Technology Data Exchange (ETDEWEB)

    Alvo, P. [McGill Univ., Ste. Anne de Bellevue, PQ (Canada). Macdonald Coll.; Savoie, P. [Agriculture and Agri-Food Canada, Quebec, PQ (Canada). Saine-Foy Research Centre; Tremblay, D. [Laval Univ., Quebec, PQ (Canada). Dept. de Genie Rural; Emond, J.-P.; Turcotte, G. [Laval Univ., Quebec City, PQ (Canada). Dept. de Sciences et Technologie des Aliments

    1996-04-01

    A systems approach is proposed to simultaneously consider the agronomic aspects of forage production and the processing aspects related to the extraction of a glucose or xylose substrate, its fermentation into ethanol and the optimal utilization of co-products (protein meal, fibrous residue). The energy to produce and transport forage on the farm was estimated to be only 375 MJ/t dry matter (DM) when liquid manure was used and 1165 MJ/t DM when mineral fertilizer was used. An additional 126 MJ/t DM would be required to transport it to a processing plant. In contrast, whole-plant corn production using mineral fertilizer required about 3211 MJ/t DM, but it had a potential ethanol yield 3.2 times greater per unit area than perennial forage. A forage system with mechanical juice extraction resulted in 8-20% of the original forage dry matter available in a liquid substrate with subsequent protein meal separation and the fermentation of soluble sugars into ethanol. Another forage system with relatively complete conversion of cellulose and hemicellulose into simple sugars by thermal, acidic and enzymatic treatments was estimated to produce 12-28 times more ethanol per unit area than the mechanically extracted juice. Complete conversion of perennial forages would meet the petroleum industry`s needs more consistently than simple extraction of soluble components. (Author)

  4. Changes in learning and foraging behaviour within developing bumble bee (Bombus terrestris colonies.

    Directory of Open Access Journals (Sweden)

    Lisa J Evans

    Full Text Available Organisation in eusocial insect colonies emerges from the decisions and actions of its individual members. In turn, these decisions and actions are influenced by the individual's behaviour (or temperament. Although there is variation in the behaviour of individuals within a colony, we know surprisingly little about how (or indeed if the types of behaviour present in a colony change over time. Here, for the first time, we assessed potential changes in the behavioural type of foragers during colony development. Using an ecologically relevant foraging task, we measured the decision speed and learning ability of bumble bees (Bombus terrestris at different stages of colony development. We determined whether individuals that forage early in the colony life cycle (the queen and early emerging workers behaved differently from workers that emerge and forage at the end of colony development. Whilst we found no overall change in the foraging behaviour of workers with colony development, there were strong differences in foraging behaviour between queens and their workers. Queens appeared to forage more cautiously than their workers and were also quicker to learn. These behaviours could allow queens to maximise their nectar collecting efficiency whilst avoiding predation. Because the foundress queen is crucial to the survival and success of a bumble bee colony, more efficient foraging behaviour in queens may have strong adaptive value.

  5. Insights into the Transcriptional Architecture of Behavioral Plasticity in the Honey Bee Apis mellifera

    KAUST Repository

    Khamis, Abdullah M.

    2015-06-15

    Honey bee colonies exhibit an age-related division of labor, with worker bees performing discrete sets of behaviors throughout their lifespan. These behavioral states are associated with distinct brain transcriptomic states, yet little is known about the regulatory mechanisms governing them. We used CAGEscan (a variant of the Cap Analysis of Gene Expression technique) for the first time to characterize the promoter regions of differentially expressed brain genes during two behavioral states (brood care (aka “nursing”) and foraging) and identified transcription factors (TFs) that may govern their expression. More than half of the differentially expressed TFs were associated with motifs enriched in the promoter regions of differentially expressed genes (DEGs), suggesting they are regulators of behavioral state. Strikingly, five TFs (nf-kb, egr, pax6, hairy, and clockwork orange) were predicted to co-regulate nearly half of the genes that were upregulated in foragers. Finally, differences in alternative TSS usage between nurses and foragers were detected upstream of 646 genes, whose functional analysis revealed enrichment for Gene Ontology terms associated with neural function and plasticity. This demonstrates for the first time that alternative TSSs are associated with stable differences in behavior, suggesting they may play a role in organizing behavioral state.

  6. Seed storage effects on germination for two forage kochia cultivars

    Science.gov (United States)

    The cultivar ‘Snowstorm’ forage kochia was released by the USDA-ARS in 2012. It is a synthetic cultivar selected for stature, forage production, and adaptation to semiarid environments. Similar to the earlier released (1984) ‘Immigrant’ cultivar it can increase rangeland productivity magnitudes when...

  7. Do inter-colony differences in Cape fur seal foraging behaviour ...

    African Journals Online (AJOL)

    We investigated how such environmental variability may impact foraging behaviour of the Cape fur seal Arctocephalus pusillus pusillus, using satellite telemetry on animals in northern, central and southern Namibia. We expected that seal foraging behaviour would reflect a gradient of deteriorating feeding conditions from ...

  8. Mercury in San Francisco Bay forage fish

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Ben K., E-mail: ben@sfei.or [San Francisco Estuary Institute, 7770 Pardee Lane, Oakland, CA 94621 (United States); Jahn, Andrew, E-mail: andyjahn@mac.co [1000 Riverside Drive, Ukiah, CA 95482 (United States)

    2010-08-15

    In the San Francisco Estuary, management actions including tidal marsh restoration could change fish mercury (Hg) concentrations. From 2005 to 2007, small forage fish were collected and analyzed to identify spatial and interannual variation in biotic methylmercury (MeHg) exposure. The average whole body total Hg concentration was 0.052 {mu}g g{sup -1} (wet-weight) for 457 composite samples representing 13 fish species. MeHg constituted 94% of total Hg. At a given length, Hg concentrations were higher in nearshore mudflat and wetland species (Clevelandia ios, Menidia audens, and Ilypnus gilberti), compared to species that move offshore (e.g., Atherinops affinis and Lepidogobius lepidus). Gut content analysis indicated similar diets between Atherinops affinis and Menidia audens, when sampled at the same locations. Hg concentrations were higher in sites closest to the Guadalupe River, which drains a watershed impacted by historic Hg mining. Results demonstrate that despite differences among years and fish species, nearshore forage fish exhibit consistent Hg spatial gradients. - Total mercury in estuarine forage fish varies with species, habitat, and proximity to a historic mercury mine.

  9. Mercury in San Francisco Bay forage fish

    International Nuclear Information System (INIS)

    Greenfield, Ben K.; Jahn, Andrew

    2010-01-01

    In the San Francisco Estuary, management actions including tidal marsh restoration could change fish mercury (Hg) concentrations. From 2005 to 2007, small forage fish were collected and analyzed to identify spatial and interannual variation in biotic methylmercury (MeHg) exposure. The average whole body total Hg concentration was 0.052 μg g -1 (wet-weight) for 457 composite samples representing 13 fish species. MeHg constituted 94% of total Hg. At a given length, Hg concentrations were higher in nearshore mudflat and wetland species (Clevelandia ios, Menidia audens, and Ilypnus gilberti), compared to species that move offshore (e.g., Atherinops affinis and Lepidogobius lepidus). Gut content analysis indicated similar diets between Atherinops affinis and Menidia audens, when sampled at the same locations. Hg concentrations were higher in sites closest to the Guadalupe River, which drains a watershed impacted by historic Hg mining. Results demonstrate that despite differences among years and fish species, nearshore forage fish exhibit consistent Hg spatial gradients. - Total mercury in estuarine forage fish varies with species, habitat, and proximity to a historic mercury mine.

  10. Loggerhead turtles (Caretta caretta use vision to forage on gelatinous prey in mid-water.

    Directory of Open Access Journals (Sweden)

    Tomoko Narazaki

    Full Text Available Identifying characteristics of foraging activity is fundamental to understanding an animals' lifestyle and foraging ecology. Despite its importance, monitoring the foraging activities of marine animals is difficult because direct observation is rarely possible. In this study, we use an animal-borne imaging system and three-dimensional data logger simultaneously to observe the foraging behaviour of large juvenile and adult sized loggerhead turtles (Caretta caretta in their natural environment. Video recordings showed that the turtles foraged on gelatinous prey while swimming in mid-water (i.e., defined as epipelagic water column deeper than 1 m in this study. By linking video and 3D data, we found that mid-water foraging events share the common feature of a marked deceleration phase associated with the capture and handling of the sluggish prey. Analysis of high-resolution 3D movements during mid-water foraging events, including presumptive events extracted from 3D data using deceleration in swim speed as a proxy for foraging (detection rate = 0.67, showed that turtles swam straight toward prey in 171 events (i.e., turning point absent but made a single turn toward the prey an average of 5.7±6.0 m before reaching the prey in 229 events (i.e., turning point present. Foraging events with a turning point tended to occur during the daytime, suggesting that turtles primarily used visual cues to locate prey. In addition, an incident of a turtle encountering a plastic bag while swimming in mid-water was recorded. The fact that the turtle's movements while approaching the plastic bag were analogous to those of a true foraging event, having a turning point and deceleration phase, also support the use of vision in mid-water foraging. Our study shows that integrated video and high-resolution 3D data analysis provides unique opportunities to understand foraging behaviours in the context of the sensory ecology involved in prey location.

  11. Field margins, foraging distances and their impacts on nesting pollinator success.

    Directory of Open Access Journals (Sweden)

    Sean A Rands

    Full Text Available The areas of wild land around the edges of agricultural fields are a vital resource for many species. These include insect pollinators, to whom field margins provide both nest sites and important resources (especially when adjacent crops are not in flower. Nesting pollinators travel relatively short distances from the nest to forage: most species of bee are known to travel less than two kilometres away. In order to ensure that these pollinators have sufficient areas of wild land within reach of their nests, agricultural landscapes need to be designed to accommodate the limited travelling distances of nesting pollinators. We used a spatially-explicit modelling approach to consider whether increasing the width of wild strips of land within the agricultural landscape will enhance the amount of wild resources available to a nesting pollinator, and if it would impact differently on pollinators with differing foraging strategies. This was done both by creating field structures with a randomised geography, and by using landscape data based upon the British agricultural landscape. These models demonstrate that enhancing field margins should lead to an increase in the availability of forage to pollinators that nest within the landscape. With the exception of species that only forage within a very short range of their nest (less than 125 m, a given amount of field margin manipulation should enhance the proportion of land available to a pollinator for foraging regardless of the distance over which it normally travels to find food. A fixed amount of field edge manipulation should therefore be equally beneficial for both longer-distance nesting foragers such as honeybees, and short-distance foragers such as solitary bees.

  12. Seasonality directs contrasting food collection behavior and nutrient regulation strategies in ants.

    Directory of Open Access Journals (Sweden)

    Steven C Cook

    Full Text Available Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p to carbohydrate (c ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer, and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant.

  13. Levy Foraging in a Dynamic Environment – Extending the Levy Search

    Directory of Open Access Journals (Sweden)

    Vincenzo Fioriti

    2015-07-01

    Full Text Available A common task for robots is the patrolling of an unknown area with inadequate information about target locations. Under these circumstances it has been suggested that animal foraging could provide an optimal or at least sub-optimal search methodology, namely the Levy flight search. Although still in debate, it seems that predators somehow follow this search pattern when foraging, because it avoids being trapped in a local search if the food is beyond the sensory range. A Levy flight is a particular case of the random walk. Its displacements on a 2-D surface are drawn from the Pareto-Levy probability distribution, characterized by power law tails. The Levy flight search has many applications in optical material, ladars, optics, large database search, earthquake data analysis, location of DNA sites, human mobility, stock return analysis, online auctions, astronomy, ecology and biology. Almost all studies and simulations concerning the Levy flight foraging examine static or slowly moving (with respect to the forager uniformly distributed resources. Moreover, in recent works a small swarm of underwater autonomous vehicles has been used to test the standard Levy search in the underwater environment, with good results. In this paper we extend the classical Levy foraging framework taking into consideration a moving target allocated on a 2-D surface according to a radial probability distribution and comparing its performance with the random walk search. The metric used in the numerical simulations is the detection rate. Simulations include the sensor resolution, intended as the maximum detection distance of the forager from the target. Furthermore, contrarily to the usual Levy foraging framework, we use only one target. Results show that Levy flight outperforms the random walk if the sensor detection radius is not too small or too large. We also find the Levy flight in the velocity of the center of mass model of a fish school according the Kuramoto

  14. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    Directory of Open Access Journals (Sweden)

    Vilhelmsen Lars B

    2007-04-01

    Full Text Available Abstract Background Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma forage in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants. Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions in foraging niche and associated morphological adaptations. Results Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants and a reversal to subterranean foraging (a clade with most of the extant Dorylus s.s. species. This means that neither the subgenus Anomma nor Dorylus s.s. is monophyletic, and that one of the Dorylus s.s. lineages adopted subterranean foraging secondarily. We show that this latter group evolved a series of morphological adaptations to underground foraging that are remarkably convergent to the basal state. Conclusion The evolutionary transitions in foraging niche were more complex than previously thought, but our comparative analysis of worker morphology lends strong support to the contention that particular foraging niches have selected for very specific worker morphologies. The surprising reversal to underground foraging is therefore a striking example of convergent morphological evolution.

  15. Shearwater foraging in the Southern Ocean: the roles of prey availability and winds.

    Directory of Open Access Journals (Sweden)

    Ben Raymond

    Full Text Available BACKGROUND: Sooty (Puffinus griseus and short-tailed (P. tenuirostris shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140 degrees E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. CONCLUSIONS/SIGNIFICANCE: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.

  16. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees

    Directory of Open Access Journals (Sweden)

    Robinson Gene E

    2007-06-01

    Full Text Available Abstract Background Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9–10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. Results For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p Conclusion We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in

  17. Children's Play and Culture Learning in an Egalitarian Foraging Society

    Science.gov (United States)

    Boyette, Adam H.

    2016-01-01

    Few systematic studies of play in foragers exist despite their significance for understanding the breadth of contexts for human development and the ontogeny of cultural learning. Forager societies lack complex social hierarchies, avenues for prestige or wealth accumulation, and formal educational institutions, and thereby represent a contrast to…

  18. Boldness affects foraging decisions in barnacle geese: an experimental approach

    NARCIS (Netherlands)

    Kurvers, R.H.J.M.; Nolet, B.A.; Prins, H.H.T.; Ydenberg, R.C.; Oers, van K.

    2012-01-01

    Individuals foraging in groups constantly need to make decisions, such as when to leave a group, when to join a group, and when to move collectively to another feeding site. In recent years, it has become evident that personality may affect these foraging decisions, but studies where individuals are

  19. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    DEFF Research Database (Denmark)

    Kronauer, Daniel J C; Schöning, Caspar; Vilhelmsen, Lars

    2007-01-01

    in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants). Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions...... in foraging niche and associated morphological adaptations. RESULTS: Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants) and a reversal to subterranean foraging (a clade with most......BACKGROUND: Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma) forage...

  20. Conditioning of appetitive behavior in the Hymenopteran parasitoid Microplitis croceipes

    NARCIS (Netherlands)

    Wäckers, F.; Bonifay, C.; Lewis, W.J.

    2002-01-01

    Work on insect learning has made ample use of conditioned behaviors in single learning tasks. Parasitic wasps are particularly suited to study more complex learning processes, as they alternate between host searching and foraging for sugar sources. We here describe a set of behaviors that

  1. Adaptação e comportamento de pastejo da abelha jandaíra (Melipona subnitida Ducke em ambiente protegido - DOI: 10.4025/actascianimsci.v26i3.1777 Adaptation and foraging behavior of the stingless bee (Melipona subnitida Ducke in a caged environment - DOI: 10.4025/actascianimsci.v26i3.1777

    Directory of Open Access Journals (Sweden)

    Eva Mônica Sarmento da Silva

    2004-04-01

    Full Text Available A influência do ambiente protegido no comportamento de pastejo da abelha sem ferrão jandaíra (Melipona subnitida Ducke foi estudada no Estado do Ceará, região Nordeste do Brasil. Foram investigados aspectos como comportamento, adaptação das abelhas à casa de vegetação e o padrão diário de forrageamento destas na cultura do pimentão (Capsicum annuum L., cultivada em ambiente protegido. Os dados foram analisados estatisticamente por meio de análise de variância, com médias comparadas a posteriori, pelo teste de Tukey. Os resultados obtidos mostraram que M. subnitida Ducke adapta-se bem ao uso em casa de vegetação e realiza vôos de forrageamento durante todo o dia, podendo ser utilizada para polinização de culturas agrícolas, sob cultivo protegido.The effect of caged environment on the foraging behavior of the stingless bee Melipona subnitida Ducke was studied in the state of Ceará, NE Brazil. Species adaptation to enclosures, foraging behavioral aspects and daily foraging pattern were investigated in a greenhouse sweet pepper (Capsicum annuum L. crop. Data were analyzed by Anova and means were compared a posteriori using Tukey test. The results showed that M. subnitida Ducke adapts well to greenhouses and forages throughout the day. It may be concluded that this bee species can be used for crop pollination in protected environments.

  2. Multidimensional differentiation in foraging resource use during breeding of two sympatric top predators

    Science.gov (United States)

    Friedemann, Guilad; Leshem, Yossi; Kerem, Lior; Shacham, Boaz; Bar-Massada, Avi; McClain, Krystaal M.; Bohrer, Gil; Izhaki, Ido

    2016-10-01

    Ecologically-similar species were found to develop specific strategies to partition their resources, leading to niche differentiation and divergence, in order to avoid interspecific competition. Our study determines multi-dimensional differentiation of two sympatric top-predators, long-legged buzzards (LLB) and short-toed eagles (STE), which recently became sympatric during their breeding season in the Judean Foothills, Israel. By combining information from comprehensive diet and movement analyses we found four dimensions of differentiation: (1) Geographic foraging area: LLB tended to forage relatively close to their nests (2.35 ± 0.62 km), while STE forage far from their nest (13.03 ± 2.20 km) (2) Foraging-habitat type: LLBs forage at low natural vegetation, avoiding cultivated fields, whereas STEs forage in cultivated fields, avoiding low natural vegetation; (3) Diurnal dynamics of foraging: LLBs are uniformly active during daytime, whereas STEs activity peaks in the early afternoon; and (4) Food-niche: while both species largely rely on reptiles (47.8% and 76.3% for LLB and STE, respectively), LLB had a more diverse diet and consumed significantly higher percentages of lizards, while STE consumed significantly higher percentages of snakes. Our results suggest that this multidimensional differentiation allows the spatial coexistence of these two dense populations in the study area.

  3. Urban Foraging: A Ubiquitous Human Practice Overlooked by Urban Planners, Policy, and Research

    Directory of Open Access Journals (Sweden)

    Charlie M. Shackleton

    2017-10-01

    Full Text Available Although hardly noticed or formally recognised, urban foraging by humans probably occurs in all urban settings around the world. We draw from research in India, South Africa, Sweden, and the United States to demonstrate the ubiquity and varied nature of urban foraging in different contexts. Across these different contexts, we distil seven themes that characterise and thereby advance thinking about research and the understanding of urban foraging. We show that it is widespread and occurs across a variety of urban spaces and places. The species used and the local practices vary between contexts, and are in constant flux as urban ecological and social settings change. This requires that urban foragers are knowledgeable about diverse species, harvest locations, and rights of access, and that their practices are adaptable to changing contexts. Despite its ubiquity, most cities have some forms of regulations that prohibit or discourage urban foraging. We highlight a few important exceptions that can provide prototypes and lessons for other cities regarding supportive policy frameworks and initiatives. The formulation of dynamic policy, design, and management strategies in support of urban foraging will benefit from understanding the common characteristics of foraging in cities worldwide, but also will require comprehension of the specific and dynamic contexts in which they would be implemented.

  4. Effects of Grazing Management in Brachiaria grass-forage Peanut Pastures on Canopy Structure and Forage Intake.

    Science.gov (United States)

    Gomes, F K; Oliveira, M D B L; Homem, B G C; Boddey, R M; Bernardes, T F; Gionbelli, M P; Lara, M A S; Casagrande, D R

    2018-06-13

    Maintenance of mixed grass-legume pastures for stand longevity and improved animal utilization is a challenge in warm-season climates. The goal of this study was to assess grazing management on stand persistence, forage intake, and N balance of beef heifers grazing mixed pastures of Brachiaria brizantha and Arachis pintoi. A two-year experiment was carried out in Brazil, where four grazing management were assessed: rest period interrupted at 90%, 95%, and 100% of light interception (LI) and a fixed rest period of 42 days (90LI, 95LI, 100LI, and 42D, respectively). The LI were taken at 50 points at ground level and at five points above the canopy for each paddock using a canopy analyzer. For all treatments, the post-grazing stubble height was 15 cm. Botanical composition and canopy structure characteristics such as canopy height, forage mass, and vertical distribution of the morphological composition were evaluated pre-and post-grazing. Forage chemical composition, intake, and microbial synthesis were also determined. A randomized complete block design was used, considering the season of the year as a repeated measure over time. Grazing management and season were considered fixed, while block and year were considered random effects. In the summer, legume mass accounted for 19% of the canopy at 100LI, which was less than other treatments (a mean of 30%). The 100LI treatment had a greater grass stem mass compared with other treatments. In terms of vertical distribution for 100LI, 38.6% of the stem mass was above the stubble height, greater than the 5.7% for other treatments. The canopy structure limited neutral detergent fiber intake (P = 0.007) at 100LI (1.02% of BW/d), whereas 42D, 90LI, and 95LI treatments had NDF intake close to 1.2% of BW/d. The intake of digestible organic matter (OM; P = 0.007) and the ratio of crude protein/digestible OM (P < 0.001) were less at 100LI in relation to the other treatments. The production of microbial N (P < 0.001) and efficiency

  5. Effect of downed woody debris on small mammal anti-predator behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.

    2011-10-01

    Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed w