WorldWideScience

Sample records for macrobenthic community trophic

  1. Macrobenthic communities of saltpans from the Sado estuary (Portugal)

    Science.gov (United States)

    Amaral, Maria José; Costa, Maria Helena

    1999-07-01

    A 1-year study on the evolution of benthic communities of saltpans from the Sado estuary was carried out in order to evaluate its density, biomass and diversity, and to understand its trophic-dynamic structure under harsh environmental conditions. Physical and chemical parameters of the water column and sediments were also studied. Salinity and redox potential fluctuated sharply. Of eighteen taxa observed, a few occurred in significant numbers Chironomus salinarius (99 %) at crystallisation ponds where Artemia is present in the water column at salinities ranging from 23 to 249 g .L -1, Hydrobia (95 %) at evaporation pond (salinities between 29 and 112 g .L -1), while the reservoir, with salinities from 22 to 45 g .L -1, showed higher diversity nevertheless lower than in the estuary itself. It is colonised all year by Abra ovata, Cerastoderma glaucum, Hedistes diversicolor, Capitella sp., Microspio mecznikowianus, Mellina palmata, Polydora ciliata, Capitellidae and Microdeutopus gryllotalpa. The diversity of macrobenthic communities decreases with increasing salinity. Among trophic dynamic groups, surface detritivores burrowers, which are present at 85 % of the samples, are the dominant group at evaporation and crystallisation ponds and appears as an isolated group linked to organic matter of sediments and nutrients.

  2. Meiobenthic and Macrobenthic Community Structure in Carbonate Sediments of Rocas Atoll (North-east, Brazil)

    Science.gov (United States)

    Netto, S. A.; Warwick, R. M.; Attrill, M. J.

    1999-01-01

    Rocas is the only atoll of the South Atlantic and it is built almost exclusively by coralline red algae, vermetid gastropods and encrusting foraminiferans. Patterns in the community structure of meiofauna and macrofauna, particularly nematodes and polychaetes, at Rocas Atoll, north-east Brazil, are determined and compared for different habitats: sublittoral, tidal flat, reef pools and lagoon. Nematodes and copepods were the most abundant meiofaunal taxa. In all studied habitats at Rocas Atoll, oligochaetes, nematodes and polychaetes numerically dominate the macrofauna. Univariate and multivariate analyses reveal clear differences in community structure between the habitats of the atoll, especially between the sublittoral and the inner habitats. The number of species, total density, diversity (H') and trophic structure vary significantly between the habitats, but the differences are dependent on which faunistic category (meiobenthic or macrobenthic) is analysed. Nematodes belonging to the Epsilonematidae and Draconematidae, together with a diverse community of meiobenthic polychaetes, characterize the sublittoral habitat of Rocas Atoll. Both meiofauna and macrofauna are depressed in the tidal flat, and the local sediment instability particularly affects the polychaete abundance. Reef pools and lagoons support a very dense aggregation of invertebrates, particularly the macrofauna, when compared with other carbonate reef sediments. However, differences in the structure of meiofauna and macrofauna communities between reef pools and lagoons are not significant. Changes in meiobenthic and macrobenthic community structure are related to the gradation in the physical environment of the atoll.

  3. Macrobenthic community structure response to coastal hypoxia off Southeastern Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Periasamy, R.; De, K.

    The analysis of changes in macrobenthic community using multivariate statistical techniques has been applied to find the structure by the environmental condition. The aim of the study was to evaluate macrofaunal community patterns between natural...

  4. Macrobenthic fauna community in the Middle Songkhla Lake, Southern Thailand

    Directory of Open Access Journals (Sweden)

    Angsupanich, S.

    2005-02-01

    richness was in the SW monsoon season (light rain, June-August. Polychaetes and molluscs tended to decrease in the NE monsoon season with heavy rain from December-February, while crustaceans increased during this time. The best fitting of the environmental variables to explain the macrobenthic fauna community pattern of the Inner Songkhla Lake was an 8-variable combination of %clay, %silt, %organic carbon, soil pH, depth, dissolved oxygen, total suspended solid and temperature (harmonic rank correlation coefficient, ρw = 0.84.

  5. Can mangrove plantation enhance the functional diversity of macrobenthic community in polluted mangroves?

    Science.gov (United States)

    Leung, Jonathan Y S; Cheung, Napo K M

    2017-03-15

    Mangrove plantation is widely applied to re-establish the plant community in degraded mangroves, but its effectiveness to restore the ecological functions of macrobenthic community remains poorly known, especially when pollution may overwhelm its potential positive effect. Here, we tested the effect of mangrove plantation on the ecological functions of macrobenthic community in a polluted mangrove by analyzing biological traits of macrobenthos and calculating functional diversity. Mangrove plantation was shown to enhance the functional diversity and restore the ecological functions of macrobenthic community, depending on seasonality. Given the polluted sediment, however, typical traits of opportunistic species (e.g. small and short-lived) prevailed in all habitats and sampling times. We conclude that mangrove plantation can help diversify the ecological functions of macrobenthic community, but its effectiveness is likely reduced by pollution. From the management perspective, therefore, pollution sources must be stringently regulated and mangrove plantation should be conducted to fully recover degraded mangroves.

  6. Temporal variability of biodiversity patterns and trophic structure of estuarine macrobenthic assemblages along a gradient of metal contamination

    Science.gov (United States)

    Piló, D.; Pereira, F.; Carriço, A.; Cúrdia, J.; Pereira, P.; Gaspar, M. B.; Carvalho, S.

    2015-12-01

    The present study aimed to investigate the response of macrobenthic assemblages along a gradient of metal contamination using a combination of uni- and multivariate methods focusing on their composition, structure and function. A total of six sites were established based on a preliminary survey, which identified three areas with different levels of contamination. These areas were defined as slightly contaminated (SC), moderately contaminated (MC) and highly contaminated (HC). Each area comprised two sites, sampled in four sampling surveys (September 2012, February, May and October of 2013). To investigate the response of the macrobenthic assemblages the number of individuals (N), number of taxa (S), Shannon-Weaver diversity (H‧), Pielou's equitability (J‧) and different distance-based multivariate measures of β-diversity (complementarity) were analysed. β-diversity as turnover was also analysed together with spatial and temporal changes in the trophic structure. A clear gradient of increasing contamination was consistently detected, but comparisons with available sediment quality guidelines indicated that adverse biological effects may be expected in all areas. This result suggests measuring concentrations of contaminants in the sediment per se may be insufficient to establish a clear link between ecological patterns and the contamination of the system. Also it highlights the difficulty of identifying reference areas in highly urbanized and industrialized estuaries. Only multivariate analysis (dbRDA; both using the taxonomic and trophic composition) and β-diversity as turnover showed a consistent response to metal contamination. Higher heterogeneity, mainly due to contribution of rare species (i.e. species present in a single sampling period), was observed in the least contaminated area (SC), decreasing towards the HC. In terms of the trophic function, a shift from a dominance of carnivores in the SC to the dominance of deposit-feeding organisms (and

  7. Temporal variability of biodiversity patterns and trophic structure of estuarine macrobenthic assemblages along a gradient of metal contamination

    KAUST Repository

    Piló, D.

    2015-06-01

    The present study aimed to investigate the response of macrobenthic assemblages along a gradient of metal contamination using a combination of uni- and multivariate methods focusing on their composition, structure and function. A total of six sites were established based on a preliminary survey, which identified three areas with different levels of contamination. These areas were defined as slightly contaminated (SC), moderately contaminated (MC) and highly contaminated (HC). Each area comprised two sites, sampled in four sampling surveys (September 2012, February, May and October of 2013). To investigate the response of the macrobenthic assemblages the number of individuals (N), number of taxa (S), Shannon-Weaver diversity (H\\'), Pielou\\'s equitability (J\\') and different distance-based multivariate measures of β-diversity (complementarity) were analysed. β-diversity as turnover was also analysed together with spatial and temporal changes in the trophic structure. A clear gradient of increasing contamination was consistently detected, but comparisons with available sediment quality guidelines indicated that adverse biological effects may be expected in all areas. This result suggests measuring concentrations of contaminants in the sediment per se may be insufficient to establish a clear link between ecological patterns and the contamination of the system. Also it highlights the difficulty of identifying reference areas in highly urbanized and industrialized estuaries. Only multivariate analysis (dbRDA; both using the taxonomic and trophic composition) and β-diversity as turnover showed a consistent response to metal contamination. Higher heterogeneity, mainly due to contribution of rare species (i.e. species present in a single sampling period), was observed in the least contaminated area (SC), decreasing towards the HC. In terms of the trophic function, a shift from a dominance of carnivores in the SC to the dominance of deposit-feeding organisms (and

  8. Separating natural and contaminant related gradients in estuarine macrobenthic community structure

    Energy Technology Data Exchange (ETDEWEB)

    Rakocinski, C.; Heard, R.; Walker, W. [Gulf Coast Research Lab., Ocean Springs, MS (United States); Brown, S.; Gaston, G. [Univ. of Mississippi, University, MS (United States). Biology Dept.; Summers, J.K. [Environmental Protection Agency, Gulf Breeze, FL (United States)

    1995-12-31

    Using whole-community macrobenthic responses to assess pollution impacts in estuaries presents a difficult challenge due to dynamic natural conditions that may impose their own physical limitations on the biota. For example, the recognition of bioindicator taxa becomes confounded when correlations exist between gradients in natural environmental variables, such as salinity, and gradients in contaminants, such as trace metals. The authors used partial Canonical Correspondence Analysis (CCA) to separate natural and contaminant related gradients in macrobenthic community structure across 319 EMAP sites dispersed throughout the northern Gulf of Mexico. Residual variation in macrobenthic community structure was examined with respect to gradients in contaminant levels to identify responses by positive and negative bioindicator taxa. Gradients in concentrations of trace metals do not coincide completely with those in other chemical contaminants, and responses by characteristic bioindicator taxa reveal information regarding effects of specific contaminants. Several indigenous taxa serve as good negative bioindicators, whereas other opportunistic taxa serve as positive bioindicators of estuarine contamination.

  9. Influence of halophytes and metal contamination on salt marsh macro-benthic communities

    Science.gov (United States)

    Vinagre, C.; Cabral, H. N.; Caçador, I.

    2008-03-01

    Since an important fraction of the organic matter produced by salt marshes is decomposed in situ, macro-benthic communities are particularly exposed to the trace metals retained by these systems. Yet, few studies have investigated the macro-benthic communities using the between-root sediment habitat of the salt marsh halophytes (salt-tolerant plants), or the effect of trace metal pollution on its population dynamics. In the present study, samples were collected in vegetated and unvegetated sediment, in three salt marshes in the Tagus estuary, for trace metal concentration determination in the sediment and in the halophytes roots, grain size determination and macro-benthic organism identification. Data analysis revealed that the distribution of macro-benthic organisms is mainly determined by metal contamination, metal type and by the presence/absence of halophytes, not by the halophyte species. Five different associations were identified: resistant organisms were associated with the highest concentrations of lead (sediment); tolerant organisms with zinc, copper (sediment and roots) and lead (roots); cadmium in the sediment with a lack of macro-benthic life; sensitive organisms with low levels of metals except for cadmium in the roots; and macro-benthos typical of intertidal mudflats with unvegetated areas with low metal contamination.

  10. Impact of flood events on macrobenthic community structure on an intertidal flat developing in the Ohta River Estuary.

    Science.gov (United States)

    Nishijima, Wataru; Nakano, Yoichi; Nakai, Satoshi; Okuda, Tetsuji; Imai, Tsuyoshi; Okada, Mitsumasa

    2013-09-15

    We investigated the effects of river floods on the macrobenthic community of the intertidal flat in the Ohta River Estuary, Japan, from 2005 to 2010. Sediment erosion by flood events ranged from about 2-3 cm to 12 cm, and the salinity dropped to 0‰ even during low-intensity flood events. Cluster analysis of the macrobenthic population showed that the community structure was controlled by the physical disturbance, decreased salinity, or both. The opportunistic polychaete Capitella sp. was the most dominant species in all clusters, and populations of the long-lived polychaete Ceratonereis erythraeensis increased in years with stable flow and almost disappeared in years with intense flooding. The bivalve Musculista senhousia was also an important opportunistic species that formed mats in summer of the stable years and influenced the structure of the macrobenthic community. Our results demonstrate the substantial effects of flood events on the macrobenthic community structure.

  11. Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China

    Science.gov (United States)

    Di Li,; Erickson, Richard A.; Song Tang,; Xuwen Li,; Zhichun Niu,; Xia Wang,; Hongling Liu,; Hongxia Yu,

    2016-01-01

    Tai Lake (Chinese: Taihu), the third-largest freshwater lake in China, suffers from harmful cyanobacteria blooms that are caused by economic development and population growth near the lake. Several studies have focused on phytoplankton in Tai Lake after a drinking water crisis in 2007; however, these studies primarily focused on microcystin bioaccumulation and toxicity to individual species without examining the effects of microcystin on macrobenthic community diversity. In this study, we conducted a survey of the lake to examine the effects of microcystine and other pollutants on marcobenthic community diversity. A totally of forty-nine species of macroinvertebrates were found in Tai Lake. Limnodrilus hoffmeisteri and Corbicula fluminea were the most abundant species. Cluster-analysis and one-way analysis of similarity (ANOSIM) identified three significantly different macrobenthic communities among the sample sites. More specifically, sites in the eastern bays, where aquatic macrophytes were abundant, had the highest diversity of macrobenthic communities, which were dominated by Bellamya aeruginosa, Bellamya purificata, L. hoffmeisteri, and Alocinma longicornis. Sites in Zhushan Bay contained relatively diverse communities, mainly composed of L. hoffmeisteri, C. fluminea, L. claparederanus, R. sinicus, and Cythura sp. Sites in the western region, Meiliang Bay and Wuli Bay had the lowest diversity, mainly composed ofL. hoffmeisteri, C. fluminea, Branchiura sowerbyi, and Rhyacodrilus sinicus. In addition, the relationships between macrobenthic metrics (Shannon–Wiener, Margalef, and Pielou) and environmental variables showed that community structure and spatial patterns of macrobenthos in Tai Lake were significantly influenced by chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), lead (Pb), and microcystin-LR (L for leucine and R for arginine). Our findings provide critical information that could help managers and policymakers

  12. Structure Changes of Macrobenthic Community on Rocky Shores After the Hebei Spirit Oil Spill

    Directory of Open Access Journals (Sweden)

    Yun-Hwan Jung

    2013-09-01

    Full Text Available In Korea, more than 300 oil spill accidents occur every year. Despite the frequency, only a small pool of data is available on the initial effect of oil spill on macrobenthic fauna inhabiting rocky shores. The aim of this study was to analyze the variation of macrobenthic fauna composition and community structure on rocky shores, and understand the impact of oil on rocky shore organisms after the Hebei Spirit oil spill. Field surveys were carried out in five regions dose to the wreck site in January, April and September 2008. Polluted sites after the Hebei Spirit oil spill showed that biological index consistently decreased for 9 months limited to breeding and recruitment of organisms by spilled oil. Macrobenthic community was subdivided into 3 groups by species elimination and differences between density of major dominant species: enriched biota community under a relatively stable environment, the second with relatively low ecological index and the last with poor community. In this study, species number did not clearly reflect the effect of oil on the rare and mobile species. However, mean density, biomass and community structure showed the effect of oil by considering breeding activity, decline in recruitment and variation pattern with time.

  13. Variations in macrobenthic community structures in relation to environmental variables in the Seto Inland Sea, Japan.

    Science.gov (United States)

    Nishijima, Wataru; Umehara, Akira; Okuda, Tetsuji; Nakai, Satoshi

    2015-03-15

    A data set of 425 sites investigated by the Ministry of the Environment in 2001-2005 was used to evaluate the current sediment situation and its effect on macrobenthic community structure in the Seto Inland Sea, Japan. Cluster analysis and principle component analysis of sediments using physico-chemical parameters revealed that total organic carbon, mud, sulfide contents, and oxidation-reduction potential were important parameters influencing macrobenthic population size and biodiversity. A total organic carbon of 1 mg g(-1) interval was highly negatively correlated with two biodiversity indices in the range of 1-20 mg g(-1). Overall, 42% of total sites were organically enriched with much lower macrobenthic population sizes and biodiversity, while 26% were characterized by sandy sediment with a high population size and high proportion of Arthropoda. Nemertea sp., Glycera sp., Notomastus sp. and Ophiophragmus japonicus were common macrobenthos, while Theora fragilis and Ptychoderidae were typical macrobenthos in organically enriched sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Structure and dynamics of the macrobenthic communities of Ubatuba Bay, southeastern Brazilian Coast

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Lopes dos Santos

    2004-03-01

    Full Text Available Species composition, distribution, density, biomass, diversity and trophic relationships of the macrobenthic communities in Ubatuba Bay, southeastern Brazilian coast, were investigated seasonally from August 1995 to June 1996. Sampling was carried out at 9 stations of between 4 and 13 m depth and taken in duplicate with a 0.1m² van Veen grab. Two hundred and five macrofaunal species were identified, presenting low dominance and frequency. Polychaetes and nematodes dominated, representing 89% of the whole fauna. Spatial variations in the structure of the communities were correlated to sediment type whereas seasonal variations were correlated to the increase in wave size and current disturbance over the substrate during the rainy period. Carnivore and surface deposit-feeder polychaetes were dominant, totalling 81% of the species. Mean grain size, fine sand, very fine sand, silt and clay contents were among the main factors related to the patterns of macrofaunal distribution, density and diversity and to the dominance of trophic groups. Multivariate analysis showed that the area may be divided into two groups of stations each of them characterized, respectively, by the presence of Magelona papillicornis and Mediomastus capensis.A composição, distribuição, densidade, biomassa, diversidade e relações tróficas das comunidades macrobênticas da Enseada de Ubatuba, costa sudeste brasileira, foram estudadas sazonalmente, de agosto de 1995 a junho de 1996. As amostragens foram realizadas em 9 estações de coleta, situadas entre 4 e 13 m de profundidade, e obtidas em duplicata com pegador de fundo van Veen de 0,1 m² de área amostral. Duzentas e cinco espécies macrobênticas foram obtidas, a maioria apresentando baixa dominância e freqüência. Poliquetas e nemátodes dominaram, representando 89% da fauna total. As variações espaciais na estrutura das comunidades foram correlacionadas ao tipo de sedimento, ao passo que as varia

  15. A comparative study of macrobenthic community from harbours along the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Sivadas, S.; Nanajkar, M.; Sautya, S.; Nag, A.

    in the northern shallow shelf of Chile and Peru affected by sewage discharge (Carrasco, 1997). Crustaceans were the second dominant group and the community was represented by a total of 16 species (Table 1). The most dominant was the amphipod Ampelisca sp..., 76, 89–131. 8. Carrasco, F. D. (1997). Sublittoral macrobenthic fauna off Punta Coloso, Antofagasta, northern Chile: high persistence of the polychaete assemblages. Bulletin of Marine Science, 60, 443-459. 9. Clarke, K.R. & Warwick, R.M. (1994...

  16. Macrobenthic Communities of the Norfolk Disposal Site. II.

    Science.gov (United States)

    1985-02-01

    reliable estimate of the macrofaunal community. Calculations were based on the following formula : 3 6- -) N ts) 2i’ Dx • where: s standard deviation of...were determined using the formulae of Folk (1974). The epibenthic community was described from 10 minute trawl * samples taken at the North, South...Benedict Drilonereis app. Eteone heteropoda Hartman Eteone lactea Claparede ~Eeone log (FabriCiUs) Eumida sanguinea (Oersted) Exogene hebes (Webster

  17. Feeding guild composition of a macrobenthic subtidal community along a depth gradient

    Directory of Open Access Journals (Sweden)

    Marina Dolbeth

    2009-06-01

    Full Text Available The feeding guild composition of a macrobenthic community from southern Portugal was studied along a depth gradient (1.3 to 32 m. This gradient comprised shallow areas with severe physical stress and deeper areas with no significant hydrodynamic impact at the seafloor. The main goal was to determine the influence of the spatial and temporal differences of the hydrodynamic impact at the seafloor on the feeding guild composition of the macrobenthic community. The feeding guild composition changed gradually with depth, which reflects the differences in the hydrodynamics impact at the seafloor. Herbivores and sand-lickers dominated at the shallowest depths with fine sands, which correlated with higher levels of primary production. Scavengers were also distributed in the shallow areas, which was associated with the lower predation impact. Suspension feeders, in accordance with their physiological requirements, were distributed in coarser sands subjected to a physical impact. Carnivores, surface deposit feeders and sub-surface deposit feeders were distributed mainly below 8 m depth, where there was no significant impact from the wave climate. Carnivores were associated with coarser sands and were mainly small polychaetes and nemerteans. Sub-surface and surface deposit feeders were more abundant in the deepest areas of the depth gradient with fine sands and mud deposits with higher organic content. However, surface deposit feeders also occurred at shallower depths. Some seasonal differences related to disturbance impacts were found in the numerical dominance of the feeding guilds.

  18. Macrobenthic Communities of the Norfolk Disposal Site. I.

    Science.gov (United States)

    1984-10-01

    Calculations were based upon the following = ° formula : \\Dx ) where: s = standard deviation of the prelimianry sample, t = the tabulated t value at the 0.05...were determined graphically using the formulae of Folk (1974). The epibenthic community was described from 10 minute trawl samples taken at the North...Hartman Eteone lactea Claparede Eteone longa (Fabricius) Eu-mida -sane uinea (Oersted) Exogene he bes (Webster and Benedict) Glycera ameiTcana Leidy

  19. Horizontal distribution patterns in Arctic deep-sea macrobenthic communities

    Science.gov (United States)

    Budaeva, Nataliya E.; Mokievsky, Vadim O.; Soltwedel, Thomas; Gebruk, Andrey V.

    2008-09-01

    Horizontal distribution patterns of macrobenthos were studied based on the material collected at the deep-sea long-term observatory HAUSGARTEN in Fram Strait, west of Spitsbergen (79°N), during the R.V. Polarstern expedition ARK XIX/3c in July-August 2003. Macrofauna was obtained with a giant box corer at water depths of about 2500-2600 m. Samples were arranged using a hierarchical approach to analyze benthic fauna distribution at different scales. Three stations were distributed along the 26 km transect. Three cores (0.25 m 2) were taken at each station. Five subcores (156.25 cm 2) were taken from each core. Both qualitative and quantitative methods of statistical analysis showed that all samples belong to one benthic community dominated by three species, Tetractinomorpha gen.sp. A, Myriochele heeri, and Galathowenia fragilis. Total biomasses varied from 2.31 to 6.41 g ww m -2 and densities ranged from 1976 to 3254 ind. m -2. Multivariate analysis showed the division of all samples into two distinct groups (species assemblages) on the core and subcore levels. These assemblages occupied an area several kilometers across, and differed from each other. The second level of heterogeneity occurs between cores and subcores of assemblage B and reflects variations in the abundance of sponge species Tetractinomorpha gen. sp. A. The size of these small patches appears to be about 150 cm 2. The hierarchical organization of benthic macrofauna on the continental slope off Spitsbergen includes at least three levels: communities, which replace each other along the depth gradient, species assemblages, which make up the orthogonal inner mosaics in each vertical zone, and patches of certain species, which form the lowest level of the hierarchy.

  20. Trophic and individual efficiencies of size-structured communities

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan; Lundberg, P.

    2009-01-01

    Individual and trophic efficiencies of size-structured communities are derived from mechanistically based principles at the individual level. The derivations are relevant for communities with a size-based trophic structure, i.e. where trophic level is strongly correlated with individual size...... as in many aquatic systems. The derivations are used to link Lindeman's trophic theory and trophic theory based on average individuals with explicit individual-level size spectrum theory. The trophic efficiency based on the transfer of mass between trophic levels through predator-prey interactions...

  1. Evaluating the impact of a fluoropolymer plant on a river macrobenthic community by a combined chemical, ecological and genetic approach.

    Science.gov (United States)

    Rusconi, Marianna; Marziali, Laura; Stefani, Fabrizio; Valsecchi, Sara; Bettinetti, Roberta; Mazzoni, Michela; Rosignoli, Federica; Polesello, Stefano

    2015-12-15

    Effect-based monitoring is a recommended approach suggested in European Guidelines to assess the response of ecosystem affected by a pollution source, considering the effects at community, population, individual but also at suborganism level. A combined chemical, ecological and genetic approach was applied in order to assess the impact of a fluoropolymer plant on the macrobenthic community of the Northern Italian river Bormida (Piedmont region). The macrobenthic community living downstream of the industrial discharge was chronically exposed to a mixture of perfluoroalkyl substances (PFAS), with perfluorooctanoic acid as the main compound, at concentrations up to several μgL(-1). Ecological assessment proved that the downstream community was not substantially different from that living upstream of the pollution source. The impact on community is not quantifiable with the traditional monitoring methods used for ecological classification under European regulation because macrobenthic communities showed only slight differences in their structure. In order to highlight effects on genetic variability of the native population, a subcellular analysis by using the AFLP (Amplified Fragment Length Polymorphism) genetic technique was applied to genotype of individuals of a selected species (Hydropsyche modesta, Trichoptera) collected in the two sampling sites. Percentage of variation between the two populations was 6.8%, a threshold compatible with a genetic drift induced in the downstream population. The genetic study carried out in field identified a significant divergence between exposed and non-exposed populations, but at present it is not possible to associate this divergence to a specific effect induced by PFAS.

  2. Drought and flood effects on macrobenthic communities in the estuary of Australia's largest river system

    Science.gov (United States)

    Dittmann, Sabine; Baring, Ryan; Baggalley, Stephanie; Cantin, Agnes; Earl, Jason; Gannon, Ruan; Keuning, Justine; Mayo, Angela; Navong, Nathavong; Nelson, Matt; Noble, Warwick; Ramsdale, Tanith

    2015-11-01

    Estuaries are prone to drought and flood events, which can vary in frequency and intensity depending on water management and climate change. We investigated effects of two different drought and flow situations, including a four year long drought (referred to as Millennium drought) and a major flood event, on the macrobenthic community in the estuary and coastal lagoon of the Murray Mouth and Coorong, where freshwater inflows are strictly regulated. The analysis is based on ten years of annual monitoring of benthic communities and environmental conditions in sediment and water. The objectives were to identify changes in diversity, abundance, biomass and distribution, as well as community shifts and environmental drivers for the respective responses. The Millennium drought led to decreased taxonomic richness, abundance and biomass of macrobenthos as hypersaline conditions developed and water levels dropped. More taxa were found under very high salinities than predicted from the Remane diagram. When a flood event broke the Millennium drought, recovery took longer than from a shorter drought followed by small flows. A flow index was developed to assess the biological response subject to the duration of the preceding drought and flow volumes. The index showed higher taxonomic richness, abundance and biomass at intermediate and more continuous flow conditions. Abundance increased quickly after flows were restored, but the benthic community was initially composed of small bodied organisms and biomass increased only after several years once larger organisms became more abundant. Individual densities and constancy of distribution dropped during the drought for almost all macrobenthic taxa, but recoveries after the flood were taxon specific. Distinct benthic communities were detected over time before and after the drought and flood events, and spatially, as the benthic community in the hypersaline Coorong was split off with a salinity threshold of 64 identified by LINKTREE

  3. Macrobenthic communities of the Vellar Estuary in the Bay of Bengal in Tamil-Nadu in South India

    Science.gov (United States)

    Chertoprud, M. V.; Chertoprud, E. S.; Saravanakumar, A.; Thangaradjou, T.; Mazei, Yu. A.

    2013-03-01

    The macrobenthic fauna and communities of the Vellar Estuary located at the southeast cost of India (11°30' N, 79°45' E) and the adjacent marine and river habitats are described on the basis of original data (70 samples over 10 transects). The fauna consists of 115 macrobenthic species and 79 species in estuarine habitats. We described 14 types of macrobenthic communities with different compositions of the dominant species. The leading ecological factors of the distribution of the communities are the salinity, depth, and bottom type. The Vellar estuary consists of two longitudinal zones of macrobenthos. The polyhalinic area is populated by the marine species, but it is related not to a salinity decrease but to the protection from waves and silt on the bottom in this area. The polyhalinic communities are most abundant in terms of the biomass and species richness. The mesohalinic area is inhabited by brackish water species and communities with low abundance. The sublittoral estuarine area is dominated by filter-feeders—the bivalves Crassostrea madrasensis, Meretrix casta, Modiolus metcalfei, and Scapharca inaequivalves—and the littoral zone is dominated by the gastropods Cerithidea cingulata, some crabs, and polychaetes. The ecosystem function of the Vellar estuary can be defined as a filter for the fine organic particles transported by the river.

  4. Macrobenthic community structure and species composition in the Yellow Sea and East China Sea in jellyfish bloom

    Science.gov (United States)

    Peng, Songyao; Li, Xinzheng; Wang, Hongfa; Zhang, Baolin

    2014-05-01

    To understand the characteristics of macrobenthic structures and the relationship between environment and benthic assemblages in jellyfish bloom, we studied the macrobenthos and related environmental factors in the coastal waters of the Yellow Sea and East China Sea. Data were collected during two seasonal cruises in April and August of 2011, and analyzed with multivariate statistical methods. Up to 306 macrobenthic species were registered from the research areas, including 115 species of Polychaeta, 78 of Crustacea, 61 of Mollusca, 30 of Echinodermata, and 22 of other groups. Nine polychaete species occurred at frequencies higher than 25% from the sampling stations: Lumbrineris longifolia, Notomastus latericeus, Ninöe palmata, Ophelina acuminata, Nephtys oligobranchia, Onuphis geophiliformis, Glycera chirori, Terebellides stroemii, and Aricidea fragilis. Both the average biomass and abundance of macrobenthos are higher in August (23.8 g/m2 and 237.7 ind./m2) than those in April (11.3 g/m2 and 128 ind./m2); the dissimilarity of macrobenthic structures among stations is as high as 70%. In terms of the dissimilarity values, we divided the stations into four clusters in spring and eight in summer. The ABC curve shows that the macrofauna communities in high jellyfish abundance were not changed. Canonical correspondence analysis showed that depth, temperature, median grain size, total organic carbon of sediment and total nitrogen in sediment were important factors affecting the macrozoobenthic community in the study area.

  5. Macrobenthic Community in the Xiaoqing River Estuary in Laizhou Bay, China

    Institute of Scientific and Technical Information of China (English)

    LUO Xianxiang; ZHANG Shanshan; YANG Jianqiang; PAN Jinfen; TIAN Lin; ZHANG Longjun

    2013-01-01

    The macrobenthic community of the Xiaoqing River Estuary and the adjacent sea waters was investigated in May and November 2008,August 2009,and May and September 2010,respectively.A total of 95 species of macrobenthos were identified in the five cruises and most of them were polychaetes (46.39%),mollusks (28.86%) and crustaceans (20.62%).The Shannon-Wiener index of macrobenthos was lower than 2 in 67% sites.Along the stream channel,estuary and the coastal waters,the species of polychaetes reduced gradually,while the abundance increased at first and then decreased.The abundance was the biggest at regions with salinity of 5-20 in the estuary.The species and abundance of mollusks and crustaceans increased gradually.As for seasonal distribution,the species,abundance and biomass were higher in spring and lower in summer and autumn.Contemporaneously compared with Laizhou Bay and Yellow River Estuary,the species of macrobenthos appeared in the Xiaoqing River Estuary were much less,while the percentage of polychaetes was higher.Abundance and biomass were higher in Xiaoqing River estuary,then consequently followed by Laizhou Bay and Yellow River Estuary.The dominant species in Xiaoqing River Estuary was polychaete,and Layzhou Bay mollusk.The community structure characteristics of macrobenthos in the Xiaoqing River Estuary revealed a significant pollution status in this region.

  6. Habitat heterogeneity affects ecological functions of macrobenthic communities in a mangrove: Implication for the impact of restoration and afforestation

    Directory of Open Access Journals (Sweden)

    Jonathan Y.S. Leung

    2015-07-01

    Full Text Available Mangroves have been dwindling rapidly in the last few decades due to human activities, and thus restoration is commonly conducted to recover the ecological functions of degraded mangroves. However, afforestation (i.e. mangrove plantation in mudflats can lead to habitat conversion and hence modify the ecosystem functions by increasing habitat heterogeneity. Mudflats are scarce in mangroves, but provide vital ecological functions by the macrobenthos. As such, the present study investigated how habitat heterogeneity affects the ecological functions of macrobenthic communities in a mangrove by analysing functional diversity, functional redundancy and biological trait patterns. Samples were collected from different habitats with increasing order of habitat heterogeneity (mudflat macrobenthic communities, but negative effect was incurred when the habitat heterogeneity was too high. For the sake of conservation and management of mangroves, restoration should consider plant density and plant species to minimize the impact of dense root structures on macrobenthos. Given the lower functional redundancy and distinct trait pattern in the mudflat, afforestation is not recommended so that the integrity of the ecological functions of mangroves can be maintained.

  7. Species-specific effect of macrobenthic assemblages on meiobenthos and nematode community structure in shallow sandy sediments.

    Science.gov (United States)

    Urban-Malinga, Barbara; Drgas, Aleksander; Gromisz, Sławomira; Barnes, Natalie

    2014-01-01

    Three functionally different macrofaunal species (the filter- and/or surface deposit-feeding polychaete Hediste diversicolor, and the suspension-feeding bivalves Mya arenaria and Cerastoderma glaucum) were introduced as single- and two-species treatments into microcosms containing sandy sediment with a natural meiofaunal community. H. diversicolor is a burrowing species building a system of galleries, C. glaucum lives actively near the sediment surface acting as a biodiffuser and M. arenaria buries deeply and leads a sessile lifestyle. It is shown that H. diversicolor extended the vertical distribution of meiofauna into deeper sediment layers compared to the control and non-Hediste treatments. The response of the nematode community varied significantly among treatments and was dependant on the macrobenthic species composition but not on the species number. Nematode assemblages in all treatments with the polychaete, both in monoculture and with either bivalve, differed significantly from those recorded in other treatments and were more similar than replicates within any other single treatment. H. diversicolor also appeared to have stimulated nematode species diversity. The present study demonstrated that the impact of macrobenthic assemblages on meiofauna is not a simple summation of individual species effects but is species specific.

  8. Influence of Spartina alterniflora invasion stages on macrobenthic communities on a tidal flat in Wenzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Bao-Ming Ge

    2012-09-01

    Full Text Available Many coastal habitats in eastern China are being substantially altered by the invasion of Spartina alterniflora. The species richness, density, Margalef's diversity index (R and Shannon's diversity index (H' of macrobenthic communities on a tidal flat in Wenzhou Bay, China, were analyzed with the factors of invasion stage and season, in 2007. A significant effect of invasion stage, season, and the interaction between them on communities was detected. The macrobenthic community was more complex in the patch of initial S. alterniflora invasion than in the patches of some other invasion stages. Macrobenthic communities were classified by cluster and ordination in accordance with the habitat character of the S. alterniflora invasion stage. Our research demonstrated that the S. alterniflora invasion stage affected the macrobenthic communities significantly. The results indicated that biodiversity increased in the initial stage of invasion (invasion age 1-2 years and then decreased in the stage of invasion underway (invasion age 3-4 years and in the stage of invasion completed (invasion age 5-6 years; this phenomenon was related to the change in the S. alterniflora canopy which accompanied the invasion stages.Muitos habitats costeiros vêm sendo alterados substancialmente pela invasão de Spartina alterniflora no leste da China. Em 2007, em uma planície de maré situada em Wenzhou Bay, foram analisadas riqueza de espécies, densidade e diversidade da macrofauna bêntica em relação a diferentes estágios da invasão da gramínea e à estação do ano. Para as medidas de diversidade foram usados os índices de Margalef (R e de Shannon (H'. Foram detectados efeitos significativos do estágio de invasão e época do ano sobre a macrofauna. As comunidades macrofaunais foram mais complexas nas manchas onde a invasão de S. alterniflora estava no seu início, quando considerados os locais onde as manchas estavam em estágios mais avançados. Através das

  9. Structure and Secondary Production of a Soft Bottom Macrobenthic Community in a Brackish Lagoon (Sacca di Goro, north-eastern Italy)

    Science.gov (United States)

    Mistri, M.; Rossi, R.; Fano, E. A.

    2001-05-01

    The composition and distribution of the macrobenthic community in a lagoon in the Po River delta was investigated by taking monthly samples at three sites during 1994. A total of 38 macroinvertebrate taxa, representing five phyla, were identified. Gastropods, amphipods, and chironomid larvae dominated the macrofauna in term of abundance, while in terms of biomass bivalves were the dominant taxon. Monthly total invertebrate abundance showed considerable fluctuations, depending on the season and on the presence of the red macroalgae Gracilaria verrucosa. In the central area of the lagoon, a significant relationship was demonstrated between macrobenthic community parameters and amount of macroalgal cover. Taking the most important species, i.e. those that contributed most to similarity within sites, only Cerastoderma glaucum was found to be negatively related to the amount of macroalgal biomass. Mean annual secondary production varied between 50 and 75 g AFDW m -2yr -1depending on the site, yielding P/B ratios between 1·02 and 1·08. Confinement and moderate disturbance due to the presence of algal cover are hypothesized to determine structure, composition, and production of the macrobenthic community in the Sacca di Goro.

  10. Macrobenthic Community Structure in the Northwestern Arabian Gulf, Twelve Years after the 1991 Oil Spill

    Directory of Open Access Journals (Sweden)

    Thadickal V. Joydas

    2017-08-01

    Full Text Available The biota in the Arabian Gulf faces stress both from natural (i.e., hyper salinity and high sea surface temperature, and human (i.e., from oil-related activities sources. The western Arabian Gulf was also impacted by world's largest oil spill (1991 Oil Spill. However, benthic research in this region is scarce and most of the studies have been conducted only in small areas. Here, we present data on macrobenthos collected during 2002–2003 from the open waters and inner bays in the northwestern Arabian Gulf aimed to assess the ecological status and also to evaluate the long-term impact, if any, of the 1991 Oil Spill. A total of 392 macrobenthic taxa with an average (±SE species richness (S of 71 ± 2, Shannon-Wiener species diversity (H′ of 4.9 ± 0.1, and density of 3,181 ± 359 ind. m−2 was recorded from the open water stations. The open waters have “slightly disturbed” (according to AZTI's Marine Biotic Index, AMBI conditions, with “good-high” (according to multivariate-AMBI, M-AMBI ecological status indicating the absence of long-term impacts of the oil spill. Overall, 162 taxa were recorded from inner bays with average (±SE values of S 41 ± 9, H′ 3.48 ± 0.39, and density 4,203 ± 1,042 ind. m−2. The lower TPH (Total Petroleum Hydrocarbons stations (LTS, TPH concentrations <70 mg kg−2 show relatively higher S, H' and density compared to the higher TPH stations (HTS, TPH concentrations ≥100 mg kg−2. In the inner bays, AMBI values indicate slightly disturbed conditions at all stations except one, which is moderately disturbed. M-AMBI values indicate good status at LTS, while, high, good, moderate, and poor status at HTS. The “moderately disturbed” conditions with “moderate-poor” ecological status in some locations of the inner bays specify a severe long-term impact of the oil spill.

  11. Macrobenthic Community Structure in the Northwestern Arabian Gulf, Twelve Years after the 1991 Oil Spill

    KAUST Repository

    Joydas, Thadickal V.

    2017-08-03

    The biota in the Arabian Gulf faces stress both from natural (i.e., hyper salinity and high sea surface temperature), and human (i.e., from oil-related activities) sources. The western Arabian Gulf was also impacted by world\\'s largest oil spill (1991 Oil Spill). However, benthic research in this region is scarce and most of the studies have been conducted only in small areas. Here, we present data on macrobenthos collected during 2002–2003 from the open waters and inner bays in the northwestern Arabian Gulf aimed to assess the ecological status and also to evaluate the long-term impact, if any, of the 1991 Oil Spill. A total of 392 macrobenthic taxa with an average (±SE) species richness (S) of 71 ± 2, Shannon-Wiener species diversity (H′) of 4.9 ± 0.1, and density of 3,181 ± 359 ind. m−2 was recorded from the open water stations. The open waters have “slightly disturbed” (according to AZTI\\'s Marine Biotic Index, AMBI) conditions, with “good-high” (according to multivariate-AMBI, M-AMBI) ecological status indicating the absence of long-term impacts of the oil spill. Overall, 162 taxa were recorded from inner bays with average (±SE) values of S 41 ± 9, H′ 3.48 ± 0.39, and density 4,203 ± 1,042 ind. m−2. The lower TPH (Total Petroleum Hydrocarbons) stations (LTS, TPH concentrations <70 mg kg−2) show relatively higher S, H\\' and density compared to the higher TPH stations (HTS, TPH concentrations ≥100 mg kg−2). In the inner bays, AMBI values indicate slightly disturbed conditions at all stations except one, which is moderately disturbed. M-AMBI values indicate good status at LTS, while, high, good, moderate, and poor status at HTS. The “moderately disturbed” conditions with “moderate-poor” ecological status in some locations of the inner bays specify a severe long-term impact of the oil spill.

  12. Trophic network models explain instability of Early Triassic terrestrial communities.

    Science.gov (United States)

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-09-07

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction.

  13. Occurrence and distribution of monocyclic aromatic hydrocarbons (BTEX) and the impact on macrobenthic community structure in Lagos lagoon, Nigeria.

    Science.gov (United States)

    Doherty, V F; Otitoloju, A A

    2016-10-01

    The widespread distribution of petroleum products arising from the rapid growth of the petroleum industry in Nigeria has resulted in the pollution of the environment through oil spills involving leakages from tankers, pipelines, tank farms, and dumping of waste petroleum products. The impacts and distribution of major toxic components (benzene, toluene, ethylbenzene, and xylene (BTEX)) of petroleum products in water and sediment samples collected from sampling stations in the Lagos lagoon was investigated over a 2-year period (February 2009-July 2010). The distribution of benthic communities in the different sampling stations of the Lagos lagoon was assessed. The determination of hydrocarbon levels in the samples showed that the levels of total hydrocarbon content (THC) in the water samples around the Atlas Cove and Apapa were high with values ranging from 2.03 to 31.38 mg/l and 4.04 to 22.89 mg/l, respectively. The highest value of total BTEX in the lagoon sediment was also recorded in the Apapa station (450.53 μg/kg), where oil depots and tank farm facilities are located. The study of the macrobenthic community structure showed that the species richness ranged from 1.57 to 2.02 in the reference station, Unilag, while in the Atlas Cove, Iddo, and Apapa stations, it ranged from 1.80 to 2.89, 1.95 to 3.03, and 1.86 to 2.95, respectively. The highest number of organisms (183) was recorded in the reference stations, while the least number (46) was recorded in Apapa. The main hydrocarbon pollution indicator species identified in the impacted aquatic stations were Nais eliguis and Heteromastus filiformis. The levels of hydrocarbon observed in the aquatic environment showed that there is widespread contamination as a result of petroleum product importation, storage, and distribution. The assessment of the monocyclic aromatic hydrocarbon and benthic community will therefore provide important tools for early detection, diagnosis, and management of hydrocarbon pollution

  14. Macrobenthic community structure of coastal Arabian Sea during the fall intermonsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Gaonkar, U.V.; Deshmukh, A.; Mukherjee, I.; Sivadas, S.K.; Gophane, A.

    In the Arabian Sea, organic matter produced during the upwelling period reaches the seafloor by the end of the monsoon and during the fall intermonsoon period (FIM) Studies on the benthic community is lacking during this period Therefore, we predict...

  15. Tropical Estuarine Macrobenthic Communities Are Structured by Turnover Rather than Nestedness.

    Science.gov (United States)

    Medeiros, Carlinda Raílly; Hepp, Luiz Ubiratan; Patrício, Joana; Molozzi, Joseline

    2016-01-01

    Turnover (i.e., species substitution) and nestedness (i.e., subsets of species from more diverse locations), the two main mechanisms used to explain the beta diversity of biological communities, have different implications for biodiversity conservation. To better understand how these mechanisms contribute to beta diversity, we tested the following hypotheses: (i) greater dissimilarity in community composition occurs between estuarine zones than other hierarchical level studied; (ii) beta diversity in these communities develops by turnover in estuaries with a lower degree of anthropogenic impact, but by nestedness in estuaries with a greater degree of anthropogenic impact; and (iii) the structuring mechanism is independent of season. We studied two tropical estuaries (dry and wet seasons) that vary in terms of land-use of the drainage basins. Subtidal benthic macroinvertebrates were sampled along the estuarine gradient in each of the two estuaries. The additive partitioning approach to species diversity was used to determine the hierarchical scale with the greatest dissimilarity in community composition. General beta diversity was measured using the Sorensen dissimilarity index, partitioning the turnover and nestedness components. The greatest dissimilarity in the composition of the communities occurred between the zones along the estuarine gradient in both seasons (dry = 58.6%; wet = 46.3%). In the estuary with a lower degree of anthropogenic influence, benthic macroinvertebrate diversity was generated by turnover regardless of the season. In the estuary with a greater degree of anthropogenic impact, beta diversity was structured by turnover during the dry season and a combination of both mechanisms during the wet season. We conclude that turnover is the principal mechanism responsible for beta diversity in benthic macroinvertebrate communities in tropical estuaries.

  16. Effect of tropical rainfall in structuring the macrobenthic community of Mandovi estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaonkar, U.V.; Sivadasa, S.K.; Ingole, B.S.

    , influenced by rainfall and the estuarine condition during the non-monsoon period resulted in a community dominated by a few species. A low species community in the soft sediments of estuaries is a general trend in the estuaries world over (Giménez et al...,143-153. 10. Giere O. and Pfannkuche O. (1982) Biology and ecology of marine Oligochaeta, a review. Oceanography and Marine Biology Annual Review 20, 173-308. 11. Giménez L., Borthagaray A.E., Rodríguez M., Brazeiro A. and Dimitriadis C. (2005) Scale...

  17. Sandy beaches in a coastline vulnerable to erosion in Atlantic Canada: Macrobenthic community structure in relation to backshore and physical features

    Science.gov (United States)

    MacMillan, Mitchell R.; Duarte, Cristian; Quijón, Pedro A.

    2017-07-01

    Most literature suggests that sandy beach macrobenthic communities are structured by physical factors. However, an aspect that has not been studied in detail is whether those physical factors change with erosion or the association of beaches to backshore features like sand dunes, till bluffs, and sandstone cliffs. We addressed this question by sampling 14 sandy beaches on the north shore of Prince Edward Island, Atlantic Canada. Two null hypotheses were tested: first, there is no relationship between physical factors and community descriptors across sandy beaches, and second, there is no difference among beaches associated with distinct backshore features both in terms of physical factors and community descriptors. In order to test these hypotheses, samples of macrobenthic organisms and measurements of grain size, slope, beach deposit index and erosion rates were obtained. Our surveys collected a total of 14 taxa numerically dominated by the spionid polychaete Scolelepis squamata. With regards to the first hypothesis, regression analyses showed that community descriptors were all positively related to erosion rates while unrelated to the variation in grain size, slope and beach deposit index. As for the second hypothesis, erosion rates were significantly different among beaches associated to till bluffs (highest), dunes and sandstone cliffs (lowest). Meanwhile, the other physical factors did not significantly differ among backshore features. Species richness was highest in beaches associated to till bluffs and lowest in those associated to sandstone cliffs. Abundance values were also lowest in beaches associated to sandstone cliffs, and their community composition was significantly different to those associated to dunes and till bluffs. We suggest that the relationship between erosion rates and community descriptors is complex and may be mediated by the availability of nutrients: higher erosion levels might account for higher concentrations of nutrients for

  18. Deep macrobenthic communities from Nazaré Submarine Canyon (NW Portugal

    Directory of Open Access Journals (Sweden)

    J. Cúrdia

    2004-04-01

    Full Text Available Macrofauna community structure within Nazaré Submarine Canyon is analysed and used to assess the potential effects of natural enrichment in this area subjected to accumulation of coastal sediments. A transect including three stations (2894, 3514 and 4141 m was carried out in the Nazaré Submarine Canyon (NW Portugal during a cruise of OMEX II programme (Ocean Margin Exchange, in the winter season of 1999. Although data was not collected in order to calculate sedimentation rates, sampling station at 2894 m is located in an area characterised by high levels of sedimentation, thus a high amount of organic matter is expected to be available for the local communities. Faunistic data are discussed in the context of the different features of the stations sampled. Multivariate analysis clearly separates the shallowest station from the other ones, which otherwise appear to be very similar. It also revealed a perceptible gradient along sediment depth at all stations, from shallow to deeper layers. Exceptionally depressed species richness and low evenness values were observed at the 2894 m station. The high number of individuals of a single species, Cossura sp. A, and the atypical diversity, dominance and evenness values obtained for this station support the hypothesis of community disturbance due to organic enrichment.

  19. Impacts of Intensive Logging on the Trophic Organisation of Ant Communities in a Biodiversity Hotspot

    Science.gov (United States)

    Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Vun Khen, Chey; Bottrell, Simon H.; Hamer, Keith C.

    2013-01-01

    Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging

  20. Impacts of intensive logging on the trophic organisation of ant communities in a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Paul Woodcock

    Full Text Available Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii the trophic positions of species are altered by logging, (iii disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i. However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii. Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii, and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv. Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by

  1. Trophic ecology drives contaminant concentrations within a tropical seabird community.

    Science.gov (United States)

    Sebastiano, Manrico; Bustamante, Paco; Eulaers, Igor; Malarvannan, Govindan; Mendez-Fernandez, Paula; Churlaud, Carine; Blévin, Pierre; Hauselmann, Antoine; Covaci, Adrian; Eens, Marcel; Costantini, David; Chastel, Olivier

    2017-08-01

    To support environmental management programs, there is an urgent need to know about the presence and understand the dynamics of major contaminants in seabird communities of key marine ecosystems. In this study, we investigated the concentrations and trophodynamics of trace elements in six seabird species and persistent organic pollutants (POPs) in three seabird species breeding on Grand Connétable Island (French Guiana), an area where the increase in human population and mining activities has raised concerns in recent years. Red blood cell Hg concentrations in adults were the highest in Magnificent frigatebirds Fregata magnificens (median: 5.6 μg g(-1) dw; range: 3.8-7.8 μg g(-1) dw) and lowest in Sooty terns Onychoprion fuscatus (median: 0.9 μg g(-1) dw; range: 0.6-1.1 μg g(-1) dw). Among POPs, dichlorodiphenyldichloroethylene (p,p'-DDE) was the most abundant compound in plasma of Cayenne terns Thalasseus sandvicensis (median: 1100 pg g(-1) ww; range: 160 ± 5100 pg g(-1) ww), while polychlorinated biphenyls (PCBs) were the most abundant compound class in plasma of Magnificent frigatebirds (median: 640 pg g(-1) ww; range 330 ± 2700 pg g(-1) ww). While low intensity of POP exposure does not appear to pose a health threat to this seabird community, Hg concentration in several adults Laughing gulls Leucophaeus atricilla and Royal terns Thalasseus maximus, and in all Magnificent frigatebirds was similar or higher than that of high contaminated seabird populations. Furthermore, nestling red blood cells also contained Hg concentrations of concern, and further studies should investigate its potential health impact in this seabird community. Differences in adult trophic ecology of the six species explained interspecific variation in exposure to trace element and POPs, while nestling trophic ecology provides indications about the diverse feeding strategies adopted by the six species, with the consequent variation in exposure to contaminants

  2. Interannual variability of soft-bottom macrobenthic communities of the NW Gulf of Mexico in relationship to the Deepwater Horizon oil spill.

    Science.gov (United States)

    Salcedo, Diana L; Soto, Luis A; Estradas-Romero, Alejandro; Botello, Alfonso V

    2017-01-30

    A 3-year research program was undertaken to assess potential environmental disturbance caused by the Deepwater Horizon oil spill to the soft-bottom macrobenthic communities within Mexican waters of the northwestern Gulf of Mexico. Community properties and temporal/spatial variability were analyzed besides toxicant parameters such as hydrocarbons and trace-metals. Overall infaunal density increased, taxa proportion changed, and small-size opportunistic organisms prevailed throughout the study. Annual abundance-biomass comparison (ABC) curves revealed progressive stress scenarios from moderate to severe. Concentrations of vanadium, nickel, cobalt, PAHs and AHs increased gradually over time. However, low correlations between benthic density and biogeochemical variables were determined. Initially, sedimentary properties were the main drivers of benthic community structure; subsequently, nickel, vanadium and PAHs, indicative of anthropogenic effect, were highlighted. Interannual variability in the macroinfauna was attributed to the synergy of several environmental factors. Undoubtedly, compounds derived from fossil fuels had a significant disturbance role, but their source remains uncertain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Distribution and structure of the upper sublittoral macrobenthic communities of Tróia sand beaches (Setúbal, Portugal) and their relationship with environmental factors.

    Science.gov (United States)

    Vale, Maria; Cabral, Henrique; Andrade, Francisco

    2010-04-01

    The present study dealt with the spatial and temporal variability of the distribution of the upper sublittoral benthic macrofauna of the Tróia peninsula sand beaches and its relationship with abiotic environmental factors. The existence of a relationship between the data set of macrobenthic species distribution and community structure in the Sado estuary (432 individual samples) and the environmental factors in analysis was investigated. Morpho-sedimentary data analysis revealed an environmental gradient, from the marine margin (exposed marine environment) to the estuarine margin (sheltered estuarine environment). Benthic macrofauna analysis showed a gradient of increasing number of individuals, species richness and diversity from the marine margin (Exposed) to the estuarine margin (Sheltered). Canonical Correspondence Analysis showed the dominant patterns in the community structure to be explained by the environmental factors considered, the most important, of which in influencing the spatial and temporal pattern, being beach slope, organic matter and calcium carbonate contents. The structure of the sandy beach communities studied showed a clear dominance of the spatial patterns over the seasonal ones. Four assemblages were defined-(1) an assemblage dominated by Angulus tenuis, on the marine margin of the peninsula; (2) an assemblage dominated by Euclymene sp. and Apseudes latreillei, on the sea-estuary transition area and related to the presence of a Zostera spp. meadow; (3) an assemblage dominated by Glycera sp. and Scoloplos armiger, on the sea-estuary transition area; (4) an assemblage dominated by Notomastus latericeus, Nassarius reticulatus and Cyathura carinata, on the estuarine margin.

  4. Analysis Of Macrobenthic Community Structure In Relation To Different Environmental Conditions In Three Harbours In The North Tyrrhenian Sea (Italy. Preliminary Study

    Directory of Open Access Journals (Sweden)

    R. BEDINI

    2003-12-01

    Full Text Available Studies on benthic communities are being widely used in monitoring pollution effects, using both the methodologies provided from the national laws in various countries and experimental innovative methodologies of research. We have carried out a preliminary study on macrobenthic communities (zoobenthos and phytobenthos in three harbours, one of which (Piombino receives wastewater from industry and is also subject to heavy shipping traffic. The other two (Porto Santo Stefano and Portoferraio enjoy great tourist traffic but no industrial waste, and they have been selected in order to find possible differences between populations of animals present in unpolluted and polluted areas. The results show that there are no outstanding differences in the sessile and sedentary bentological population parameters of the studied harbours. We probably do not have an adequate historical data set of the species living in the study areas to detect the effects of pollution, and the sessile living animal species we found may have adapted to the current situation, since living species typical of very clean waters were found.

  5. Analysis Of Macrobenthic Community Structure In Relation To Different Environmental Conditions In Three Harbours In The North Tyrrhenian Sea (Italy. Preliminary Study

    Directory of Open Access Journals (Sweden)

    R. BEDINI

    2012-12-01

    Full Text Available Studies on benthic communities are being widely used in monitoring pollution effects, using both the methodologies provided from the national laws in various countries and experimental innovative methodologies of research. We have carried out a preliminary study on macrobenthic communities (zoobenthos and phytobenthos in three harbours, one of which (Piombino receives wastewater from industry and is also subject to heavy shipping traffic. The other two (Porto Santo Stefano and Portoferraio enjoy great tourist traffic but no industrial waste, and they have been selected in order to find possible differences between populations of animals present in unpolluted and polluted areas. The results show that there are no outstanding differences in the sessile and sedentary bentological population parameters of the studied harbours. We probably do not have an adequate historical data set of the species living in the study areas to detect the effects of pollution, and the sessile living animal species we found may have adapted to the current situation, since living species typical of very clean waters were found.

  6. Effects of lower trophic level biomass and water temperature on fish communities: A modelling study

    Science.gov (United States)

    Guiet, Jérôme; Aumont, Olivier; Poggiale, Jean-Christophe; Maury, Olivier

    2016-08-01

    Physical and biogeochemical changes of the oceans have complex influences on fish communities. Variations of resource and temperature affect metabolic rates at the individual level, biomass fluxes at the species level, and trophic structure as well as diversity at the community level. We use a Dynamic Energy Budget-, trait-based model of the consumers' community size-spectrum to assess the effects of lower trophic level biomass and water temperature on communities at steady state. First, we look at the stressors separately in idealized simulations, varying one while the second remains constant. A multi-domain response is observed. Linked to the number of trophic levels sustained in the consumers' community, the regimes highlighted present similar properties when lower trophic level biomass is increased or temperature decreased. These trophic-length domains correspond to different efficiencies of the transfer of biomass from small to large individuals. They are characterized by different sensitivities of fish communities to environmental changes. Moreover, differences in the scaling of individuals' metabolism and prey assimilation with temperature lead to a shrinking of fish communities with warming. In a second step, we look at the impact of simultaneous variations of stressors along a mean latitudinal gradient of lower trophic level biomass and temperature. The model explains known observed features of global marine ecosystems such as the fact that larger species compose fish communities when latitude increases. The structure, diversity and metabolic properties of fish communities obtained with the model at different latitudes are interpreted in light of the different trophic-length domains characterized in the idealized experiments. From the equator to the poles, the structure of consumers' communities is predicted to be heterogeneous, with variable sensitivities to environmental changes.

  7. Trophic look at soft-bottom communities - Short-term effects of trawling cessation on benthos

    Science.gov (United States)

    Dannheim, Jennifer; Brey, Thomas; Schröder, Alexander; Mintenbeck, Katja; Knust, Rainer; Arntz, Wolf E.

    2014-01-01

    The trophic structure of the German Bight soft-bottom benthic community was evaluated for potential changes after cessation of bottom trawling. Species were collected with van-Veen grabs and beam trawls. Trophic position (i.e. nitrogen stable isotope ratios, δ15N) and energy flow (i.e. species metabolism approximated by body mass scaled abundance) of dominant species were compared in trawled areas and an area protected from fisheries for 14 months in order to detect trawling cessation effects by trophic characteristics. At the community level, energy flow was lower in the protected area, but we were unable to detect significant changes in trophic position. At the species level energy flow in the protected area was lower for predating/scavenging species but higher for interface feeders. Species trophic positions of small predators/scavengers were lower and of deposit feeders higher in the protected area. Major reasons for trophic changes after trawling cessation may be the absence of artificial and additional food sources from trawling likely to attract predators and scavengers, and the absence of physical sediment disturbance impacting settlement/survival of less mobile species and causing a gradual shift in food availability and quality. Our results provide evidence that species or community energy flow is a good indicator to detect trawling induced energy-flow alterations in the benthic system, and that in particular species trophic properties are suitable to capture subtle and short-term changes in the benthos following trawling cessation.

  8. Trophic structure of the fouling community in Odessa Bay (Black Sea

    Directory of Open Access Journals (Sweden)

    A. Y. Varigin

    2016-06-01

    Full Text Available The trophic structure of the coastal fouling community of Odessa Bay (Black Sea, which was composed of 10 species of macrophytes, 57 invertebrate species and 4 species of fish, was determined. The basic trophic relationship between organisms composing the community is shown. A minimization of interspecific trophic competition within the community is noted. The main sources of food material entering the fouling community were determined. We show that a significant proportion of food in the form of detritus, dissolved organic matter and small planktonic organisms enters the community from the water column. Filtration and pumping activity of sestonophage-organisms, particularly mussels, helps to attract food material to the community. Primary producers of the community are macrophytes and microphytes, which develop on account of their photosynthetic activity and ensure the provision of food to herbivores. The trophic group of detritophages consumes different fractions of the detritus which accumulates in the byssus threads of bivalve molluscs. In this context, mussel druses act as sediment traps, collecting detritus. Numerous polyphages, which are essentially omnivores and do not usually lack food material, were noted in the community. A small group of carnivorous invertebrates, whose representatives actively attack small animals, was identified. The abundance of these species in the community was about 1%, and their biomass less than 0.6%. Fish living in macrophyte weeds are the consumers in the community. We determined that the highest relative abundance (over 36% in the fouling community was reached by sestonophages and polyphages. We found that the undisputed leader in the relative biomass (over 97% in the fouling community ofOdessaBaywas the sestonophages (mainly composed of mussels. We determined that the trophic structure index of the community was 0.94, which confirms the significant dominance in biomass of bivalves over other species in

  9. Trophic resource partitioning within a shorebird community feeding on intertidal mudflat habitats

    Science.gov (United States)

    Bocher, Pierrick; Robin, Frédéric; Kojadinovic, Jessica; Delaporte, Philippe; Rousseau, Pierre; Dupuy, Christine; Bustamante, Paco

    2014-09-01

    In ecological systems, it is necessary to describe the trophic niches of species and their segregation or overlap to understand the distribution of species in the community. In oceanic systems, the community structure of top predators such as seabird communities has been well documented with many studies in several biogeographical areas. But for coastal habitats, very few investigations on the trophic structure have been carried out in avian communities. In this study, the trophic resource partitioning was investigated on eight of the most abundant species of a shorebird community on the central Atlantic coast of France. Our work comprised a comprehensive sample of birds with different ecomorphogical patterns and data on their main prey to encompass potential sources of overlap and segregation in this community. We examined the stable carbon (δ13C) and nitrogen (δ15N) isotopic composition of blood to investigate the trophic structure (1) on a temporal scale by comparing migration and wintering periods; (2) on a spatial scale through inter-site comparisons; and (3) on the community level within groups of phylogenetically related species. Diets appeared different in several cases between periods, between sites and between juveniles and adults for the same sites. A clear trophic partitioning was established with four functional groups of predators in winter inside the community. The Grey Plover, the Bar-tailed Godwit, the Curlew and a majority of the dunlins were worm-eaters mainly feeding on Nereis diversicolor or Nephtys hombergii. Two species were predominantly deposit-suspensivorous mollusc-eaters, including the Red Knot and the Black-tailed Godwit feeding mainly on Macoma balthica. The Oystercatcher fed mainly on suspensivorous molluscs like Cerastodrema edule and two species including the Redshank and some dunlins adopted opportunistic behaviours feeding on mudflat and/or in marshes.

  10. Macrobenthic community structure in the northern Saudi waters of the Gulf, 14years after the 1991 oil spill

    KAUST Repository

    Joydas, Thadickal Viswanathan

    2012-02-01

    The 1991 Gulf oil spill heavily impacted the coastal areas of the Saudi waters of the Arabian Gulf and recent studies have indicated that even 15. years after the incident, macrobenthos had not completely recovered in the sheltered bays in the affected region such as, Manifa Bay. This study investigates the community conditions of macrobenthos in the open waters in one of the impacted areas, Al-Khafji waters, about 14. years after the spill. Diversity measures and community structure analyses indicate a healthy status of polychaete communities. The BOPA index reveals that oil sensitive amphipods were recolonized in the study area. This confirms that the benthic communities of the oil spill impacted area had taken only <14 years to recover in the open waters of the impacted areas. The study also reveals the existence of three distinct polychaete communities along the depth and sediment gradients. © 2011 Elsevier Ltd.

  11. Trophic role and top-down control of a subarctic protozooplankton community

    DEFF Research Database (Denmark)

    Riisgaard, Karen; Swalethorp, Rasmus; Kjellerup, Sanne;

    2014-01-01

    Plankton succession was investigated in the subarctic Godthåbsfjord, Western Greenland, from March to August 2010. The trophic role of protozooplankton (ciliates and heterotrophic dinoflagellates) was evaluated with emphasis on their seasonal succession and as prey for the copepod community...

  12. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities.

    Science.gov (United States)

    Petermann, Jana S; Farjalla, Vinicius F; Jocque, Merlijn; Kratina, Pavel; MacDonald, A Andrew M; Marino, Nicholas A C; De Omena, Paula M; Piccoli, Gustavo C O; Richardson, Barbara A; Richardson, Michael J; Romero, Gustavo Q; Videla, Martin; Srivastava, Diane S

    2015-02-01

    Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator: detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator: detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator: detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of large-bodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the

  13. Macrobenthic community response to the Marenzelleria viridis (Polychaeta) invasion of a Danish estuary

    DEFF Research Database (Denmark)

    Delefosse, Matthieu; Banta, Gary; Canal Vergés, Paula

    2012-01-01

    and to investigate its effect on the native benthic community with focus on the two common polychaetes, Nereis (Hediste) diversicolor and Arenicola marina. M. viridis colonized Odense Fjord rapidly and within 3 years it had spread to about 50% of the estuary. The population development of M. viridis in Odense Fjord...

  14. Do physical and chemical factors structure the macrobenthic community at a continental slope in the NE Atlantic?

    NARCIS (Netherlands)

    Flach, E.; Thomsen, L.

    1998-01-01

    Macrofauna density, biomass and community structure together with several characteristics of the sediment and flow velocity were estimated in May 1994 and August 1995 at seven stations ranging from 208 m to 4470 m water depth along the OMEX- transect in the Goban Spur area (NE Atlantic). In 1994 fou

  15. 渔山列岛潮间带大型底栖动物的群落结构%Community Structure of the Intertidal Macrobenthic Fauna in Yushan Island

    Institute of Scientific and Technical Information of China (English)

    焦海峰; 施慧雄; 刘红丹; 尤仲杰; 楼志军; 黄滨; 黄呈炜

    2011-01-01

    于2009年3月的大潮期间对渔山列岛潮间带布设5个断面,进行大型底栖动物调查。结果表明,该海域潮间带采集到大型底栖动物90种,其中腔肠动物3种,多毛类11种,软体动物45种,甲壳类19种,棘皮动物6种,其它6种。潮间带大型底栖动物总平均生物量5307.06g/m2,总平均丰度为2323.20ind/m2。在各类群底栖动物中,软体动物的平均生物量及丰度居首位。渔山列岛潮间带大型底栖动物的Shannon-Wiener多样性指数(H')、Simpson多样性指数(D)、Mangalef丰富度指数(d)和Piel%Based on macrobenthic samples collected from five intertidal stations in the Yushan Island during March 2009 the macrobenthic community was analysized using PRIMER 5.0,of which CLUSTER,DIVERSE and ABC functions were adopted. Ninety species were found in t

  16. Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure

    Energy Technology Data Exchange (ETDEWEB)

    Parmelee, R.W. (Ohio State Univ., Columbus, OH (United States). Dept. of Entomology); Wentsel, R.S.; Phillips, C.T.; Checkai, R.T. (Army CRDEC, Aberdeen Proving Ground, MD (United States)); Simini, M. (Geo-Centers, Inc., Aberdeen Proving Ground, MD (United States))

    1993-08-01

    A microcosm technique is presented that uses community and trophic-level analysis of soil nematodes and microarthropods to determine the effects of chemicals on soil systems. Forest soil was treated with either copper, p-nitrophenol, or trinitrotoluene. Nematodes were sorted into bacterivore, fungivore, herbivore, and omnivore-predator trophic groups, and a hatchling category. Microarthropods were sorted to the acarine suborders Prostigmata, Mesostigmata, and Oribatida; the insectan order Collembola; and a miscellaneous group. Omnivore-predator nematodes and meso-stigmatid and oribatid mites were the groups most sensitive to copper and were significantly reduced at levels as low as 100 [mu]g g[sup [minus]1] copper. Total nematode and microarthropod numbers declined above 200 [mu]g g[sup [minus]1] copper. Trophic structure analysis suggested that high sensitivity of nematode predators to intermediate levels of copper reduced predation on herbivore nematodes and resulted in greater numbers of nematodes compared to controls. p-Nitrophenol was very toxic to the nematode community, and all trophic groups were significantly reduced above 20 [mu]g g[sup [minus]1]. However, there was no effect of p-nitrophenol on microarthropods. Trinitrotoluene had no significant negative effect on total abundance of either groups of soil fauna, but oribatids were significantly reduced at 200 [mu]g g[sup [minus]1]. The results demonstrated that soil nematodes and microarthropods were sensitive indicators of environmental contaminants and that trophic-structure and community analysis has the potential to detect more subtle indirect effects of chemicals on soil food-web structure. The authors conclude that microcosms with field communities of soil microfauna offer high resolution of the ecotoxicological effects of chemicals in complex soil systems.

  17. Diet compositions and trophic guild structure of the eastern Chukchi Sea demersal fish community

    Science.gov (United States)

    Whitehouse, George A.; Buckley, Troy W.; Danielson, Seth L.

    2017-01-01

    Fishes are an important link in Arctic marine food webs, connecting production of lower trophic levels to apex predators. We analyzed 1773 stomach samples from 39 fish species collected during a bottom trawl survey of the eastern Chukchi Sea in the summer of 2012. We used hierarchical cluster analysis of diet dissimilarities on 21 of the most well sampled species to identify four distinct trophic guilds: gammarid amphipod consumers, benthic invertebrate generalists, fish and shrimp consumers, and zooplankton consumers. The trophic guilds reflect dominant prey types in predator diets. We used constrained analysis of principal coordinates (CAP) to determine if variation within the composite guild diets could be explained by a suite of non-diet variables. All CAP models explained a significant proportion of the variance in the diet matrices, ranging from 7% to 25% of the total variation. Explanatory variables tested included latitude, longitude, predator length, depth, and water mass. These results indicate a trophic guild structure is present amongst the demersal fish community during summer in the eastern Chukchi Sea. Regular monitoring of the food habits of the demersal fish community will be required to improve our understanding of the spatial, temporal, and interannual variation in diet composition, and to improve our ability to identify and predict the impacts of climate change and commercial development on the structure and functioning of the Chukchi Sea ecosystem.

  18. Marine reserve designation, trophic cascades and altered community dynamics

    National Research Council Canada - National Science Library

    David O’Sullivan; Mark Emmerson

    2011-01-01

    Marine ecosystems and their associated populations are increasingly at risk from the cumulative impacts of many anthropogenic threats that increase the likelihood of species extinction and altered community dynamics...

  19. Hemiparasitic plant impacts animal and plant communities across four trophic levels.

    Science.gov (United States)

    Hartley, S E; Green, P; Massey, F P; Press, M C P; Stewart, J A; John, E A

    2015-09-01

    Understanding the impact of species on community structure is a fundamental question in ecology. There is a growing body of evidence that suggests that both subdominant species and parasites can have disproportionately large effects on other organisms. Here we report those impacts for a species that is both subdominant and parasitic, the hemiparasite Rhinanthus minor. While the impact of parasitic angiosperms on their hosts and, to a lesser degree, coexisting plant species, has been well characterized, much less is known about their effects on higher trophic levels: We experimentally manipulated field densities of the hemiparasite Rhinanthus minor in a species-rich grassland, comparing the plant and invertebrate communities in plots where it was removed, present at natural densities, or present at enhanced densities. Plots with natural and enhanced densities of R. minor had lower plant biomass than plots without the hemiparasite, but enhanced densities almost doubled the abundance of invertebrates within the plots across all trophic levels, with effects evident in herbivores, predators, and detritivores. The hemiparasite R. minor, despite being a subdominant and transient component within plant communities that it inhabits, has profound effects on four different trophic levels. These effects persist beyond the life of the hemiparasite, emphasizing its role as a keystone species in grassland communities.

  20. Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community.

    Science.gov (United States)

    Aguirre, Luis F; Herrel, Anthony; van Damme, R; Matthysen, E

    2002-01-01

    The exceptional diversity of neotropical bat communities is sustained by an intricate partitioning of available resources among the member species. Trophical specialization is considered an important evolutionary avenue towards niche partitioning in neotropical phyllostomid bats. From an ancestral insectivorous condition, phyllostomids evolved into highly specialized frugivorous, carnivorous, nectarivorous, piscivorous and even sanguivorous species. Previously, correlations between cranial morphology and trophic ecology within this group have been documented. Here, we examine the evolutionary relationships between bite force and head shape in over 20 species of bats from a single tropical savannah bat community. The results show that bite force increases exponentially with body size across all species examined. Despite the significant differences between large dietary groups using traditional analysis (i.e. non-phylogenetic) and the strong evolutionary correlations between body mass and bite force, phylogenetic analyses indicated no differences in bite performance between insectivorous, omnivorous and frugivorous bats. Comparisons of three species with highly specialized feeding habits (nectarivory, piscivory and sanguivory) with the rest of the species in the community indicate that specialization into these niches comes at the expense of bite performance and, hence, may result in a reduction of the trophic niche breadth. PMID:12065044

  1. Trophic structure of a coastal fish community determined with diet and stable isotope analyses.

    Science.gov (United States)

    Malek, A J; Collie, J S; Taylor, D L

    2016-09-01

    A combination of dietary guild analysis and nitrogen (δ(15) N) and carbon (δ(13) C) stable-isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ(15) N and δ(13) C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter-species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem-based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles.

  2. Trophic structure and community stability in an overfished ecosystem

    KAUST Repository

    Utne-Palm, Anne Christine

    2010-07-15

    Since the collapse of the pelagic fisheries off southwest Africa in the late 1960s, jellyfish biomass has increased and the structure of the Benguelan fish community has shifted, making the bearded goby (Sufflogobius bibarbatus) the new predominant prey species. Despite increased prédation pressure and a harsh environment, the gobies are thriving. Here we show that physiological adaptations and antipredator and foraging behaviors underpin the success of these fish. In particular, body-tissue isotope signatures reveal that gobies consume jellyfish and sulphidic diatomaceous mud, transferring "dead-end" resources back into the food chain.

  3. Spatiotemporal distribution of macrobenthic communities and its relationships with environmental factors in Sanmen Bay%三门湾大型底栖动物时空分布及其与环境因子的关系

    Institute of Scientific and Technical Information of China (English)

    廖一波; 寿鹿; 曾江宁; 高爱根

    2011-01-01

    In November 2006 and in January, April, and August 2007, an investigation on the macrobenthic communities was conducted at 18 stations in Sanmen Bay to study the relationships between the macrobenthic communities and environmental factors. A total of 124 taxa were collect-ed , including 44 species of Polychaeta, 34 species of Crustacea, 22 species of Mollusca, 11 spe-cies of Echinodermata, and 13 species of others. The species of Polychaeta and Mollusca accounted for 62. 9% of the total, which constituted the main population of the communities. Aglaophamus di-branchis, Capitella capitata, and Sternaspis scutata were the dominant species in spring, Stemaspis scutaia, Aglaophamus dibranchis, and Spionidae spp. were the dominant species in summer, S. scutata, C. capitata, A. dibranchis and Virgularia gustaviana were the dominant species in au-tumn , and A. dibranchis, S. scutata, C. capitata, and Spionidae spp. were the dominant species in winter. There was a significant difference in the average biomass and average density of the mac-robenthic communities between different seasons. The annual average biomass was 17.36 g ·m-2, and the annual average density was 72 ind · m-2. The diversity indices of the macrobenthic commu-nities also differed significantly between different seasons. The seasonal average Shannon diversity index was from 1.53 to 1.89, seasonal average Margalef species richness index was from 2. 25 to 2. 96, and seasonal average Pielou evenness index was from 0. 83 to 0. 94. Canonical correspon-dence analysis showed that the sea water temperature, salinity, and dissolved inorganic nitrogen, and the organic matter, total nitrogen, and total phosphorus in surface sediment were the main envi-ronmental factors affecting the macrobenthic communities. Environmental variables could better ex-plain the changes of main macrobenthic species.%2006年11月、2007年1月、4月和8月在三门湾18个采样点对大型底栖动物进行调查,分析了其时空分

  4. Trophic diversity in the evolution and community assembly of loricariid catfishes

    Directory of Open Access Journals (Sweden)

    Lujan Nathan K

    2012-07-01

    Full Text Available Abstract Background The Neotropical catfish family Loricariidae contains over 830 species that display extraordinary variation in jaw morphologies but nonetheless reveal little interspecific variation from a generalized diet of detritus and algae. To investigate this paradox, we collected δ13C and δ15N stable isotope signatures from 649 specimens representing 32 loricariid genera and 82 species from 19 local assemblages distributed across South America. We calculated vectors representing the distance and direction of each specimen relative to the δ15N/δ13C centroid for its local assemblage, and then examined the evolutionary diversification of loricariids across assemblage isotope niche space by regressing the mean vector for each genus in each assemblage onto a phylogeny reconstructed from osteological characters. Results Loricariids displayed a total range of δ15N assemblage centroid deviation spanning 4.9‰, which is within the tissue–diet discrimination range known for Loricariidae, indicating that they feed at a similar trophic level and that δ15N largely reflects differences in their dietary protein content. Total range of δ13C deviation spanned 7.4‰, which is less than the minimum range reported for neotropical river fish communities, suggesting that loricariids selectively assimilate a restricted subset of the full basal resource spectrum available to fishes. Phylogenetic regression of assemblage centroid-standardized vectors for δ15N and δ13C revealed that loricariid genera with allopatric distributions in disjunct river basins partition basal resources in an evolutionarily conserved manner concordant with patterns of jaw morphological specialization and with evolutionary diversification via ecological radiation. Conclusions Trophic partitioning along elemental/nutritional gradients may provide an important mechanism of dietary segregation and evolutionary diversification among loricariids and perhaps other taxonomic

  5. Response of rotifer functional groups to changing trophic state and crustacean community

    Directory of Open Access Journals (Sweden)

    Marina MANCA

    2011-08-01

    Full Text Available Information based on taxon-based indices is species-specific while information gained from function-based research can give a comprehensive view of ecosystem processes. We applied the guild-ratio, an index based on the proportion of functional groups of rotifers (i.e. microphagous and raptorial species, on a long-term data set of Lago Maggiore. By applying seasonal trend decomposition based on smoothing techniques and non-metrical multidimensional scaling, we assessed the response of rotifer functional groups to changes in trophic state and climate. While the taxon-based indices showed smooth changes, the function-based index showed a dramatic shift from a raptorial to a microphagous dominance, with a back-shift to raptorial dominance starting in 2000. The seasonal peak of microphagous and raptorial dry weight was clearly separated in the pre-eutrophication period. When mesotrophic conditions prevailed both peaks overlapped, only to be separated again with re-oligotrophication. We attributed these alterations of rotifer functional groups to changes in competition with crustacean zooplankton and to decreased phytoplankton algal abundance and size while altered seasonality in functional groups could be related to inter-group competition for food. We hypothesise that the effects of trophic state (i.e. altered phytoplankton and climate (i.e. altered cladoceran community were transferred across trophic levels to rotifer functional groups. Our study highlights that functional groups are valid instruments for illustrating unifying principles in ecology through a better understanding of ecosystem processes and the interrelationship between trophic levels.

  6. DISTRIBUTION OF MACROBENTHIC FAUNA OF SOFT ...

    African Journals Online (AJOL)

    The effects of floods on the fauna have also been monitored. ... METHODS. In order to evaluate the estuarine environment of the macrobenthic fauna a number of physical ..... The positive phi quartile skewnesses (Skcp) obtained in most ...... A relatively small number of macrobenthic carnivores was found. None were ...

  7. Linking environmental forcing and trophic supply to benthic communities in the Vercelli Seamount area (Tyrrhenian Sea.

    Directory of Open Access Journals (Sweden)

    Anabella Covazzi Harriague

    Full Text Available Seamounts and their influence on the surrounding environment are currently being extensively debated but, surprisingly, scant information is available for the Mediterranean area. Furthermore, although the deep Tyrrhenian Sea is characterised by a complex bottom morphology and peculiar hydrodynamic features, which would suggest a variable influence on the benthic domain, few studies have been carried out there, especially for soft-bottom macrofaunal assemblages. In order to fill this gap, the structure of the meio-and macrofaunal assemblages of the Vercelli Seamount and the surrounding deep area (northern Tyrrhenian Sea - western Mediterranean were studied in relation to environmental features. Sediment was collected with a box-corer from the seamount summit and flanks and at two far-field sites in spring 2009, in order to analyse the metazoan communities, the sediment texture and the sedimentary organic matter. At the summit station, the heterogeneity of the habitat, the shallowness of the site and the higher trophic supply (water column phytopigments and macroalgal detritus, for instance supported a very rich macrofaunal community, with high abundance, biomass and diversity. In fact, its trophic features resembled those observed in coastal environments next to seagrass meadows. At the flank and far-field stations, sediment heterogeneity and depth especially influenced the meiofaunal distribution. From a trophic point of view, the low content of the valuable sedimentary proteins that was found confirmed the general oligotrophy of the Tyrrhenian Sea, and exerted a limiting influence on the abundance and biomass of the assemblages. In this scenario, the rather refractory sedimentary carbohydrates became a food source for metazoans, which increased their abundance and biomass at the stations where the hydrolytic-enzyme-mediated turnover of carbohydrates was faster, highlighting high lability.

  8. Phytoplankton community structure in reservoirs of different trophic status, Northeast China

    Institute of Scientific and Technical Information of China (English)

    MA Chengxue; YU Hongxian

    2013-01-01

    The aim of this study was to determine the phytoplankton community structures of reservoirs of different trophic status,located in a cold region.Physical and chemical variables and the phytoplankton communities were investigated in two reservoirs (Xiquanyan Reservoir and Taoshan Reservoir) in Northeast China in 2009.The two reservoirs showed strong seasonal fluctuations in their physical and chemical composition.Results of the trophic status index indicated that Xiaquanyan Reservoir was mesotrophic,whilst Taoshan Reservoir was eutrophic.Diatoms were the dominant phytoplankton group in Xiquanyan Reservoir throughout all seasons of the study,while in Taoshan Reservoir,diatoms dominated in spring,and cyanobacteria dominated in summer and autumn.This difference was resulted from differences in local environmental factors,including nutrients and hydrology.This study suggests that in mesotrophic reservoirs,nutrients played a key role in controlling seasonal phytoplankton successions,whereas in eutrophic reservoirs water temperature was the key factor in a cold region.Notably,the dominant species in summer in the Taoshan Reservoir was Microcystis,which may produce toxins depending on the ambient conditions,and presenting a risk of local toxin contamination.

  9. Temporal Patterns in Bacterioplankton Community Composition in Three Reservoirs of Similar Trophic Status in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Jiancheng Li

    2016-06-01

    Full Text Available The bacterioplankton community composition’s (BCC spatial and temporal variation patterns in three reservoirs (Shiyan, Xikeng, and LuoTian Reservoir of similar trophic status in Bao’an District, Shenzhen (China, were investigated using PCR amplification of the 16S rDNA gene and the denaturing gradient gel electrophoresis (DGGE techniques. Water samples were collected monthly in each reservoir during 12 consecutive months. Distinct differences were detected in band number, pattern, and density of DGGE at different sampling sites and time points. Analysis of the DGGE fingerprints showed that changes in the bacterial community structure mainly varied with seasons, and the patterns of change indicated that seasonal forces might have a more significant impact on the BCC than eutrophic status in the reservoirs, despite the similar Shannon-Weiner index among the three reservoirs. The sequences obtained from excised bands were affiliated with Cyanobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Actinobacteria, Planctomycetes, and Proteobacteria.

  10. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China.

    Science.gov (United States)

    Yang, Jun; Yu, Xiaoqing; Liu, Lemian; Zhang, Wenjing; Guo, Peiyong

    2012-06-01

    Fujian reservoirs in southeast China are important water resources for economic and social sustainable development, although few have been studied previously. In recent years, growing population and increasing demands for water shifted the focus of many reservoirs from flood control and irrigation water to drinking water. However, most of them showed a rapid increase in the level of eutrophication, which is one of the most serious and challenging environmental problems. In this study, we investigated the algae community characteristics, trophic state, and eutrophication control strategies for typical subtropical reservoirs in southeast Fujian. Surface water samples were collected using polyvinyl chloride (PVC) plastic bottles from 11 Fujian reservoirs in summer 2010. Planktonic algae were investigated by optical microscopy. Water properties were determined according to the national standard methods. Shallow reservoirs generally have higher values of trophic state index (TSI) and appear to be more susceptible to anthropogenic disturbance than deeper reservoirs. A total of 129 taxa belonging to eight phyla (i.e., Bacillariophyta, Chlorophyta, Chrysophyta, Cryptophyta, Cyanophyta, Euglenophyta, Pyrrophyta, Xanthophyta) were observed and the most diverse groups were Chlorophyta (52 taxa), Cyanophyta (20 taxa), Euglenophyta (17 taxa), Chrysophyta (14 taxa). The dominant groups were Chlorophyta (40.58%), Cyanophyta (22.91%), Bacillariophyta (21.61%), Chrysophyta (6.91%). The species richness, abundance, diversity, and evenness of algae varied significantly between reservoirs. TSI results indicated that all 11 reservoirs were eutrophic, three of them were hypereutrophic, six were middle eutrophic, and two were light eutrophic. There was a strong positive correlation between algal diversity and TSI at P affecting the distribution of algae communities. The transparency and chlorophyll a were the strongest environmental factors in explaining the community data. Furthermore

  11. Trophic redundancy among fishes in an East African nearshore seagrass community inferred from stable-isotope analysis.

    Science.gov (United States)

    Matich, P; Kiszka, J J; Gastrich, K R; Heithaus, M R

    2017-08-01

    Stable-isotope analysis supplemented with stomach contents data from published sources was used to quantify the trophic niches, trophic niche overlaps and potential trophic redundancy for the most commonly caught fish species from an East African nearshore seagrass community. This assessment is an important first step in quantifying food-web structure in a region subject to intense fishing activities. Nearshore food webs were driven by at least two isotopically distinct trophic pathways, algal and seagrass, with a greater proportion of the sampled species feeding within the seagrass food web (57%) compared with the algal food web (33%). There was considerable isotopic niche overlap among species (92% of species overlapped with at least one other species). Narrow isotopic niche widths of most (83%) species sampled, low isotopic similarity (only 23% of species exhibited no differences in δ(13) C and δ(15) N) and low predicted trophic redundancy among fishes most commonly caught by fishermen (15%), however, suggest that adjustments to resource management concerning harvesting and gear selectivity may be needed for the persistence of artisanal fishing in northern Tanzania. More detailed trophic studies paired with information on spatio-temporal variation in fish abundance, especially for heavily targeted species, will assist in the development and implementation of management strategies to maintain coastal food-web integrity. © 2017 The Fisheries Society of the British Isles.

  12. Trophic analysis of the fish community in the Ciénega Churince, Cuatro Ciénegas, Coahuila

    Directory of Open Access Journals (Sweden)

    Ariana Hernández

    2017-09-01

    Full Text Available Fish diets were analyzed to evaluate the dynamic trophs of the fish community in the Churince wetland system of the Cuatro Ciénegas, where the fauna consists of nine species: endemic, native and introduced. In nine sampling events (between February 2011 and May 2014 556 specimens of all nine species were collected. Stomach contents were analyzed and the Relative Importance Index (IRI was calculated. The feed coefficient (Q of the diets and the accumulated trophic diversity (Hk, as well as the amplitude of the trophic niche were evaluated. Feeding strategies in the fish community were found to be eurifagic. The main foods in general were insects, crustaceans, gastropods, plants and teleosts. According to the average linkage method, four functional trophic groups were defined, with no higher consumption species; nevertheless all were regulators, mainly invertebrates. Therefore, the chain reaction in food control was higher from top to bottom, meaning a downwards dietary control.

  13. Trophic analysis of the fish community in the Ciénega Churince, Cuatro Ciénegas, Coahuila.

    Science.gov (United States)

    Hernández, Ariana; Espinosa-Pérez, Hector S; Souza, Valeria

    2017-01-01

    Fish diets were analyzed to evaluate the dynamic trophs of the fish community in the Churince wetland system of the Cuatro Ciénegas, where the fauna consists of nine species: endemic, native and introduced. In nine sampling events (between February 2011 and May 2014) 556 specimens of all nine species were collected. Stomach contents were analyzed and the Relative Importance Index (IRI) was calculated. The feed coefficient (Q) of the diets and the accumulated trophic diversity (Hk), as well as the amplitude of the trophic niche were evaluated. Feeding strategies in the fish community were found to be eurifagic. The main foods in general were insects, crustaceans, gastropods, plants and teleosts. According to the average linkage method, four functional trophic groups were defined, with no higher consumption species; nevertheless all were regulators, mainly invertebrates. Therefore, the chain reaction in food control was higher from top to bottom, meaning a downwards dietary control.

  14. The influence of white seabream ( Diplodus sargus) production on macrobenthic colonization patterns

    Science.gov (United States)

    Carvalho, Susana; Cúrdia, João; Moura, Ana; Gaspar, Miguel B.; Dinis, Maria Teresa; Pousão-Ferreira, Pedro; Cancela da Fonseca, Luís

    2007-05-01

    The present work evaluates the influence of fish production on macrobenthic colonization over large areas (approximately 700 m 2), where the colonizing populations are not nearby the disturbed area. Sampling was undertaken within newly created aquaculture earthen ponds under two contrasting conditions: white seabream ( Diplodus sargus) production and no production (control). Macrobenthic and geochemical samples were collected 7, 23, 54, 93 and 180 days after filling the earthen ponds with seawater pumped from a water reservoir for the first time. The water reservoir was also sampled, and is used as a reference for the colonizing populations. Macrobenthic colonization rate in the ponds was low, probably due to the isolation of the disturbed habitat, to the large size of the defaunated area, and possibly to geochemical constraints. Initial colonization was by insect larvae (mainly chironomids), the bivalves Cerastoderma spp., the polychaetes Pseudopolydora paucibranchiata and Hydrodoides elegans, and nemerteneans. The number of species was similar in control and production ponds, even though under production higher total abundance values were observed. Although well represented in the water reservoir, the amphipod Microdeutopus gryllotalpa was only observed within the new ponds after 6 months. Preliminary results suggest that macrobenthic colonization patterns were influenced by fish production, as assemblages were significantly different among ponds. Higher food availability due to fish production may explain the results obtained, but ecological reasons, such as predation, may also contribute for shaping the macrobenthic communities.

  15. 芝罘岛污水排放对大型底栖动物群落的影响%Effects of Sewage Discharge on the Macrobenthic Com-munity Offshore Area of Yantai,Shandong Province

    Institute of Scientific and Technical Information of China (English)

    刘甜甜; 李晓静; 周政权; 陈琳琳; 李宝泉

    2016-01-01

    sewage discharge on the macrobenthic community provides scientific basis for sustain-able development of biodiversity conservation in coastal areas and marine environmental monito-ring.[Methods]A survey was carried out in Sep-tember 2012 on 10 sampling stations at the wa-ter areas near to Zhifu Island,offshore area of Yantai,Shandong province.Community charac-ters,three biodiversity indices,CLUSTER,non-metric multi-dimensional scaling (MDS)ordina-tion analysis,abundance and biomass curves (ABC)analysis were calculated and analyzed by software PRIMER 6.0.[Results]A total of 63 macrobenthic species were identified,including 35 species of Polychaetes,13 species of Mollus-can,1 1 species of Crustacean,3 species of the Echinoderm,one species of other groups,of which the dominant group was Polychaetes.The average biomass and abundance was 8.30 g/m2 and 618.67 ind./m2 ,respectively,of which Molluscan species contributed most to biomass and Pol-ychaetes contributed most to abundance.Three biodiversity indices,Shannon-Wiener index, Richness index and Evenness index,were 3.173±0.102,5.469±0.417 and 0.965±0.007,re-spectively.Pearson correlation analysis showed that Evenness index was significantly positive related to salinity.However,the Shannon-Wiener index and Richness index were not signifi-cantly related to the 1 2 environmental variables.CLUSTER and MDS analysis showed that macrobenthic assemblages could be divided into three sub-groups based on 60% similarity and significant difference was found between different sub-groups.The species composition of sta-tion Z2 nearest to the sewage discharge point was dominated by polychaetes and it showed a miniaturization trend.[Conclusion]The environmental variables such as water depth,dissolved oxygen,and TN influenced the spatial distribution of macrobenthos,and they were significantly related to the biomass and abundance.ABC curves showed that the macrobenthic community at some stations had been suffered moderate disturbance from

  16. Macrobenthic assemblages of the Changjiang River estuary (Yangtze River, China) and adjacent continental shelf relative to mild summer hypoxia

    Science.gov (United States)

    Liao, Yibo; Shou, Lu; Tang, Yanbin; Zeng, Jiangning; Gao, Aigen; Chen, Quanzhen; Yan, Xiaojun

    2017-05-01

    To assess the effects of hypoxia, macrobenthic communities along an estuarine gradient of the Changjiang estuary and adjacent continental shelf were analyzed. This revealed spatial variations in the communities and relationships with environmental variables during periods of reduced dissolved oxygen (DO) concentration in summer. Statistical analyses revealed significant differences in macrobenthic community composition among the three zones: estuarine zone (EZ), mildly hypoxic zone (MHZ) in the continental shelf, and normoxic zone (NZ) in the continental shelf (Global R =0.206, P =0.002). Pairwise tests showed that the macrobenthic community composition of the EZ was significantly different from the MHZ (pairwise test R =0.305, P =0.001) and the NZ (pairwise test R =0.259, P =0.001). There was no significant difference in macrobenthic communities between the MHZ and the NZ (pairwise test R =0.062, P =0.114). The taxa included small and typically opportunistic polychaetes, which made the greatest contribution to the dissimilarity between the zones. The effects of mild hypoxia on the macrobenthic communities are a result not only of reduced DO concentration but also of differences in environmental variables such as temperature, salinity, and nutrient concentrations caused by stratification.

  17. Richness, composition and trophic groups of an avian community in the Pernambuco Endemism Centre, Alagoas, Brazil.

    Science.gov (United States)

    Toledo-Lima, Guilherme S; Macario, Phoeve; Lyra-Neves, Rachel M de; Teixeira, Bruno P; Lima, Luiz A F de; Sugliano, Gabriel O S; Telino-Júnior, Wallace R

    2014-09-01

    In northeastern Brazil, the reduction of the natural forest cover to a series of small, isolated fragments has had negative consequences for the local avian fauna, in particular, a loss of the more specialized species, while the populations of some generalists have tended to increase. The present study focuses on the composition and trophic groups of a bird community on a farm in the northeastern Brazilian state of Alagoas. Monthly surveys were conducted between November 2008 and October 2009, based on mist-netting and systematic observations. Overall, 112 species were recorded, of which 76 were associated with the two forest fragments surveyed, while all the others were observed exclusively in the surrounding matrix of pasture and orchards. The bird community presented a predominance of insectivorous species, followed by omnivores. However, specialized trunk-creeping and understory insectivores accounted for only around 15% of the species in this feeding category. The reduced diversity of other guilds and species with more specialized diets, and the complete absence of sensitive species such as large parrots and raptors, reflects the severe fragmentation and degradation of the local forests, which has greatly reduced the availability of dietary resources and breeding sites.

  18. Richness, composition and trophic groups of an avian community in the Pernambuco Endemism Centre, Alagoas, Brazil

    Directory of Open Access Journals (Sweden)

    GUILHERME S. TOLEDO-LIMA

    2014-09-01

    Full Text Available In northeastern Brazil, the reduction of the natural forest cover to a series of small, isolated fragments has had negative consequences for the local avian fauna, in particular, a loss of the more specialized species, while the populations of some generalists have tended to increase. The present study focuses on the composition and trophic groups of a bird community on a farm in the northeastern Brazilian state of Alagoas. Monthly surveys were conducted between November 2008 and October 2009, based on mist-netting and systematic observations. Overall, 112 species were recorded, of which 76 were associated with the two forest fragments surveyed, while all the others were observed exclusively in the surrounding matrix of pasture and orchards. The bird community presented a predominance of insectivorous species, followed by omnivores. However, specialized trunk-creeping and understory insectivores accounted for only around 15% of the species in this feeding category. The reduced diversity of other guilds and species with more specialized diets, and the complete absence of sensitive species such as large parrots and raptors, reflects the severe fragmentation and degradation of the local forests, which has greatly reduced the availability of dietary resources and breeding sites.

  19. Stable isotope evidence for trophic niche partitioning in a South African savanna rodent community

    Institute of Scientific and Technical Information of China (English)

    Jacqueline CODRON; Kevin J DUFFY; Nico L AVENANT; Matt SPONHEIMER; Jennifer LEICHLITER; Oliver PAINE; Paul SANDBERG; Daryl CODRON

    2015-01-01

    Species’ partitioning of resources remains one of the most integral components for understanding community assem-bly. Analysis of stable carbon and nitrogen isotopes in animal tissues has the potential to help resolve patterns of partitioning be-cause these proxies represent the individual’s diet and trophic niche, respectively. Using free-ranging rodents in a southern Afri-can savanna as a model community, we find that syntopic species within habitats occupy distinct isotope niches. Moreover, spe-cies with strongly overlapping isotope niches did not overlap in their spatial distribution patterns, suggesting an underlying effect of competitive exclusion. Niche conservatism appears to characterize the behaviour of most species in our sample – with little or no observed changes across habitats – with the exception of one species,Mastomys coucha. This species displayed a generalist distribution, being found in similar abundances across a variety of habitats. This spatial pattern was coupled with a generalist isotope niche that shifted across habitats, likely in response to changes in species composition over the same spatial gradient. The case forM. coucha supports contentions that past competition effects played a significant evolutionary role in shaping community structures of today, including the absence of strong interspecific niche overlaps within particular habitats. Our study highlights the value of stable isotope approaches to help resolve key questions in community ecology, and moreover introduces novel ana-lytical approaches to quantifying isotope niche breadths and niche overlaps that are easily comparable with traditional metrices [Current Zoology 61 (3): 397–441, 2015].

  20. Mechanisms underlying plant sexual dimorphism in multi-trophic arthropod communities.

    Science.gov (United States)

    Petry, William K; Perry, Kayla I; Fremgen, Aleshia; Rudeen, Sarahi K; Lopez, Mitchell; Dryburgh, John; Mooney, Kailen A

    2013-09-01

    A growing body of research documents the importance of plant genetic effects on arthropod community structure. However, the mechanisms underlying these effects are often unclear. Additionally, plant genetic effects have largely been quantified in common gardens, thus inflating the estimates of their importance by minimizing levels of natural variation. Using Valeriana edulis, a dioecious plant with genetically based sex determination, we conducted surveys and experiments on wild-grown individuals to document field patterns of arthropod association between the sexes and the mechanisms underlying these plant genetic effects. Three years of surveys revealed strong and consistent sex-biased arthropod association in wild-grown plants: female plants supported 4-fold, 1.5-fold, and 4-fold higher densities of aphids, aphid predators, and aphid-tending ants, respectively, compared to males. There was mixed evidence that the female bias for aphids was due to higher plant quality, while we found no difference between plant sexes in aphid preference or the top-down effects of predators and tending ants. Female bias for ants was due to both the greater attractiveness of female plants (direct effect mediated by floral nectar) and an independent, weaker effect of higher aphid abundance on females (density-mediated indirect effect). Conversely, the female bias for predators was driven solely by the greater attractiveness of female plants. We did not find interaction modification, i.e., ant-aphid and predator-aphid interactions were equivalent between plant sexes. Plant sex explained 0.24%, 2.28%, and 4.42% of the variance in aphids, predators, and ants, respectively, values comparable to but slightly weaker than those previously reported from common-garden studies. In contrast to the prediction of diminished plant genetic effects with increasing trophic level, we show how weak indirect effects on predators and parasitoids (via herbivores) can be complemented by strong direct

  1. Resource utilization and trophic niche width in sandy beach macrobenthos from an oligotrophic coast

    Science.gov (United States)

    Ortega-Cisneros, Kelly; de Lecea, Ander M.; Smit, Albertus J.; Schoeman, David S.

    2017-01-01

    One of the paradigms underlying sandy beach ecology is the overriding control by physical processes; thus, biological interactions (i.e. food availability, competition and predation) are believed to play a role structuring macrofaunal communities only in benign habitats such as dissipative beaches. Moreover, sandy beaches are characterized by low in-situ productivity, so their food webs rely heavily on marine inputs. Studies have shown that estuarine organic matter plays a key role in influencing the dynamics of marine ecosystems. However, very few studies have tested the role of estuarine input on sandy beaches. Here, we aim to determine the impact of estuarine input on the food web of a sandy beach macrobenthic community. To this end, particulate organic matter (POM) samples from the marine environment and the estuary, as well as macrobenthic samples from the beach, were analysed for their stable isotope (SI) signature. Our results indicated that the POM SI signatures were not different along the beach, but differences were recorded between marine and estuarine sources. Bayesian mixing models indicated that the organisms did not make use of the estuarine POM at the beginning of the wet season, but relied more heavily on this resource towards the end of the wet season. This leads to the conclusion that changes in estuarine flow throughout the wet season can impact the trophic structure of macrobenthos communities, confirming a link between lotic and marine communities. Moreover, SI signatures suggest that the species collected here exhibit overlapping trophic niches, indicating high level of inter-specific competition. This highlights that species in low-productivity areas, such as the one studied here, can experience high levels of competition even in physically controlled environments such as sandy beaches.

  2. Abundance and energy requirements of eiders (Somateria spp.) suggest high predation pressure on macrobenthic fauna in a key wintering habitat in SW Greenland

    DEFF Research Database (Denmark)

    Blicher, Martin Emil; Rasmussen, Lars Maltha; Sejr, Mikael Kristian

    2011-01-01

    , remains unstudied. In this study, we describe prey availability and assess the trophic coupling between eiders and their macrobenthic prey in a shallow inlet, Nipisat Sound; a key wintering habitat in the southwest Greenland Open Water Area. Macrobenthic species abundance and biomass were studied...... on physiological costs of different activities in combination with the observed behavioural pattern, we obtained an estimate of the energy required for eiders to balance their costs of living, which amounted to 58% of the estimated total annual production of macrobenthos in Nipisat Sound. This result suggests...

  3. Long-term changes in temperate stream invertebrate communities reveal a synchronous trophic amplification at the turn of the millennium.

    Science.gov (United States)

    Van Looy, Kris; Floury, Mathieu; Ferréol, Martial; Prieto-Montes, Marta; Souchon, Yves

    2016-09-15

    The positive effects of water quality improvement on stream biodiversity in the temperate regions are expected to be at risk with the projected climatic changes. However, the processes and mechanisms behind the predicted threats remain uncertain. From long-term series of benthic invertebrate samples from temperate rivers and streams in France, we analyzed diversity and composition shifts over time in relation to geographic elements and human stressors. Mechanisms for community changes were investigated with a trait-based analysis for the entire dataset and for a selected caddisfly community module. We observed a 42% increase in the taxonomic richness of stream invertebrate communities over the last 25years. A gradual trend induced by water quality improvement was distinguished from a more abrupt climate change-induced shift in communities around the year 2000. Trophic amplification - the intensification of trophic interactions and pathways through the food web - was identified as the mechanism behind the strong community shift. Four lines of evidence for this trophic amplification are highlighted: (i) higher dissolved oxygen concentrations indicated a shift in primary production, (ii) the trait-based analysis of entire communities showed a bottom-up food web amplification, (iii) the trait-based analysis of the community module evidenced feeding strategy shifts and increased food web interactions, and (iv) the abundance analysis of the community module showed a productivity increase. These results lend credit to persistent investments in water quality for improving stream biodiversity, and contrary to expectation, climate change impacts seem so far to have reinforced these positive effects.

  4. Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies.

    Science.gov (United States)

    Tran, Thi Nhat Quyen; Jackson, Michelle C; Sheath, Danny; Verreycken, Hugo; Britton, J Robert

    2015-07-01

    Ecological theory attempts to predict how impacts for native species arise from biological invasions. A fundamental question centres on the feeding interactions of invasive and native species: whether invasion will result in increased interspecific competition, which would result in negative consequences for the competing species, or trophic niche divergence, which would facilitate the invader's integration into the community and their coexistence with native species. Here, the feeding interactions of a highly invasive fish, topmouth gudgeon Pseudorasbora parva, with three native and functionally similar fishes were studied to determine whether patterns of either niche overlap or divergence detected in mesocosm experiments were apparent between the species at larger spatial scales. Using stable isotope analysis, their feeding relationships were assessed initially in the mesocosms (1000 L) and then in small ponds (600 m(2) ). In the mesocosms, a consistent pattern of trophic niche divergence was evident between the sympatric fishes, with niches shifting further apart in isotopic space than suggested in allopatry, revealing that sharing of food resources was limited. Sympatric P. parva also had a smaller niche than their allopatric populations. In eight small ponds where P. parva had coexisted for several years with at least one of the fish species used in the mesocosms, strong patterns of niche differentiation were also apparent, with P. parva always at a lower trophic position than the other fishes, as also occurred in the mesocosms. Where these fishes were sympatric within more complex fish communities in the large ponds, similar patterns were also apparent, with strong evidence of trophic niche differentiation. Aspects of the ecological impacts of P. parva invasion for native communities in larger ponds were consistent with those in the mesocosm experiments. Their invasion resulted in divergence in trophic niches, partly due to their reduced niche widths

  5. 射阳河口互花米草入侵对大型底栖动物群落的影响%EFFECT OF SPARTINA ALTERNIFLORA INVASION ON THE MACROBENTHIC COMMUNITY IN THE SHEYANG ESTUARY

    Institute of Scientific and Technical Information of China (English)

    侯森林; 余晓韵; 鲁长虎

    2012-01-01

    2008年11月至2009年10月,在盐城自然保护区射阳河口滩涂分别于潮间带、潮上带和潮沟中设置互花米草区与非米草区2类对照样地(共6类生境),按月份取样来研究大型底栖动物群落特征的差异,探讨互花米草入侵对底栖动物的影响.共发现大型底栖动物22种,隶属3门4纲17科,其中软体动物13种,节肢动物6种,环节动物3种.米草区和非米草区的物种组成不同,各生境在不同月份大型底栖动物的物种数、密度、生物量和Shannon-Wiener多样性指数均在不断波动,在潮间带上述指标均为In>Ig,潮上带除密度外均为Sn>Sg,潮沟边滩除个别月份外均为Cg>Cn;3类互花米草生境中大型底栖动物群落各项指标月间变动趋势基本一致(仅个别月份例外),均表现为Cg>Sg>Ig,互花米草生境存在共同的优势种,但数量有一定的差异.分别对潮间带、潮上带和湖沟中互花米草区与非米草区2类对照样地的物种数、密度、生物量以及Shannon-Weiner 多样性指数H进行生境-月份间无重复双因素方差分析,结果显示湖间带2类对照样地各项指标在生境间差异均极显著,月份间差异均不显著;潮上带2类对照样地各项指标生境间存在极其显著的差异(除密度外),月份间差异显著(除多样性外);潮沟2类对照样地生境间差异显著(除生物量外),月份间差异均显著.研究结果表明不同生境中的互花米草对底栖动物的影响不甚相同:湖间带互花米草的入侵降低了大型底栖动物的物种数、密度、生物量和多样性;潮沟米草的入侵提高了大型底栖动物的物种数、密度和多样性;而潮上带来草入侵对大型底栖动物的各指标影响不一.%The macrobenthic community from Nov. 2008 to Oct. 2009 was studied monthly in order to know the effect of Spartina alterniflora invasion on them in Sheyang estuary, Yancheng Nature Reserve. Six habitats were

  6. Trophic relationships in the community of the upper Tagus estuary (Portugal): A preliminary approach

    Science.gov (United States)

    Moreira, F.; Assis, C. A.; Almeida, P. R.; Costa, J. L.; Costa, M. J.

    1992-06-01

    The diet of 25 invertebrate and fish species occurring in the upper Tagus estuary are compared. Multivariate methods are used to define trophic groups and identify key prey species, fundamental links in the understanding of the estuarine food web. Four trophic groups are described: microalgae, macroinfauna, mysid and fish and decapod eaters. It was found that the food web of this area heavily relies on the polychaete Nereis diversicolor and the crustacean Crangon crangon.

  7. Trophic structure of amoeba communities near roots of Medicago sativa after contamination with fuel oil no. 6.

    Science.gov (United States)

    Cortés-Pérez, Sandra; Rodríguez-Zaragoza, Salvador; Mendoza-López, Ma Remedios

    2014-02-01

    Root exudation increases microbial activity, selecting bacterial and fungal communities that metabolize organic matter such as hydrocarbons. However, a strong contamination pulse of hydrocarbons around plant roots may reorganize the soil's microbial trophic structure toward amoebae feeding on bacteria. We conducted a microcosm experiment to elucidate the effect of Medicago sativa on the trophic structure of naked amoebae after a strong pulse of pollution (50,000 ppm of fuel oil no. 6, which is a mixture of long chains ranging from C10 to C28). Plants were seeded 24 h after contamination and species of amoebae in the microcosms were identified at 1, 30, and 60 days after pollution. Several species from three trophic groups of naked amoeba were still alive 24 h after the hydrocarbon pulse. Non-planted microcosms harbored three trophic groups after 60 days, while planted ones nourished four groups. The bacterivore group was the most diverse in all microcosms, followed by protist-eaters and omnivores. The quantity of amoebae was significantly higher (3.4×10(3) organisms/g soil) in the planted pots than in the non-planted ones (1.3×10(3) organisms/g soil after 30 days of pollution (P ≤ 0.01). The shortest hydrocarbon chains (C10-C14) disappeared or diminished in all microcosms, and the longest ones increased in the planted ones. M. sativa thus exerted a positive effect on species richness, quantity, and the composition of amoebae trophic groups in contaminated soil. This indirect effect on bacterial predators is another key factor underlying hydrocarbon assimilation by living organisms during phytoremediation.

  8. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    Science.gov (United States)

    Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G

    2017-09-25

    Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.

  9. Status of macrobenthic community of Manifa-Tanajib Bay System of Saudi Arabia based on a once-off sampling event

    KAUST Repository

    Joydas, Thadickal Viswanathan

    2011-06-01

    Shallow water bays located in the western Arabian Gulf experience harsh environmental conditions. Some of these bays, including Manifa-Tanajib Bay System (MTBS), were also exposed to the 1991 oil pollution event. This study investigates the status of the macrobenthos in MTBS during 2006. This bay system is characterized by very shallow inner bays with elevated salinity and temperature compared to the rest of the bay area. As a result mainly of the hyper salinity, the inner bay communities are distinct from the outer bay communities. Overall, fairly high species richness with several rare species was observed. High Shannon-Wiener diversity values and ABC plots indicated the healthy status of the polychaete communities, while BOPA index indicated slightly polluted status in 20% of the stations. The oil sensitive amphipods were not completely re-colonized in 20% of the stations, even after 15. years of recovery from the 1991 oil spill. © 2011 Elsevier Ltd.

  10. Status of macrobenthic community of Manifa-Tanajib Bay System of Saudi Arabia based on a once-off sampling event.

    Science.gov (United States)

    Joydas, T V; Krishnakumar, P K; Qurban, Mohammad A; Ali, Said M; Al-Suwailem, Abdulaziz; Al-Abdulkader, Khaled

    2011-06-01

    Shallow water bays located in the western Arabian Gulf experience harsh environmental conditions. Some of these bays, including Manifa-Tanajib Bay System (MTBS), were also exposed to the 1991 oil pollution event. This study investigates the status of the macrobenthos in MTBS during 2006. This bay system is characterized by very shallow inner bays with elevated salinity and temperature compared to the rest of the bay area. As a result mainly of the hyper salinity, the inner bay communities are distinct from the outer bay communities. Overall, fairly high species richness with several rare species was observed. High Shannon-Wiener diversity values and ABC plots indicated the healthy status of the polychaete communities, while BOPA index indicated slightly polluted status in 20% of the stations. The oil sensitive amphipods were not completely re-colonized in 20% of the stations, even after 15 years of recovery from the 1991 oil spill.

  11. Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad-insect community.

    Science.gov (United States)

    Srivastava, Diane S

    2006-09-01

    Although previous studies have shown that ecosystem functions are affected by either trophic structure or habitat structure, there has been little consideration of their combined effects. Such interactions may be particularly important in systems where habitat and trophic structure covary. I use the aquatic insects in bromeliads to examine the combined effects of trophic structure and habitat structure on a key ecosystem function: detrital processing. In Costa Rican bromeliads, trophic structure naturally covaries with both habitat complexity and habitat size, precluding any observational analysis of interactions between factors. I therefore designed mesocosms that allowed each factor to be manipulated separately. Increases in mesocosm complexity reduced predator (damselfly larva) efficiency, resulting in high detritivore abundances, indirectly increasing detrital processing rates. However, increased complexity also directly reduced the per capita foraging efficiency of the detritivores. Over short time periods, these trends effectively cancelled each other out in terms of detrital processing. Over longer time periods, more complex patterns emerged. Increases in mesocosm size also reduced both predator efficiency and detritivore efficiency, leading to no net effect on detrital processing. In many systems, ecosystem functions may be impacted by strong interactions between trophic structure and habitat structure, cautioning against examining either effect in isolation.

  12. Flow regime in a restored wetland determines trophic links and species composition in the aquatic macroinvertebrate community

    Energy Technology Data Exchange (ETDEWEB)

    González-Ortegón, E., E-mail: quique.gonzalezortegon@andaluciajunta.es [School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB (United Kingdom); IFAPA Centro El Toruño, Camino Tiro de Pichón s/n, 11500 El Puerto de Santa María (Spain); Walton, M.E.M.; Moghaddam, B. [School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB (United Kingdom); Vilas, C.; Prieto, A. [IFAPA Centro El Toruño, Camino Tiro de Pichón s/n, 11500 El Puerto de Santa María (Spain); Kennedy, H.A. [School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB (United Kingdom); Pedro Cañavate, J. [IFAPA Centro El Toruño, Camino Tiro de Pichón s/n, 11500 El Puerto de Santa María (Spain); Le Vay, L. [School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB (United Kingdom)

    2015-01-15

    In a restored wetland (South of Spain), where different flow regimes control water exchange with the adjacent Guadalquivir estuary, the native Palaemon varians coexists with an exotic counterpart species Palaemon macrodactylus. This controlled m/acrocosm offers an excellent opportunity to investigate how the effects of water management, through different flow regimes, and the presence of a non-native species affect the aquatic community and the trophic niche (by gut contents and C-N isotopic composition) of the native shrimp Palaemon varians. We found that increased water exchange rate (5% day{sup −1} in mixed ponds vs. 0.1% day{sup −1} in extensive ponds) modified the aquatic community of this wetland; while extensive ponds are dominated by isopods and amphipods with low presence of P. macrodactylus, mixed ponds presented high biomass of mysids, corixids, copepods and both shrimp species. An estuarine origin of nutrients and primary production might explain seasonal and spatial differences found among ponds of this wetland. A combined analysis of gut contents and isotopic composition of the native and the exotic species showed that: (1) native P. varians is mainly omnivorous (2) while the non-native P. macrodactylus is more zooplanktivorous and (3) a dietary overlap occurred when both species coexist at mixed ponds where a higher water exchange and high abundance of mysids and copepods diversifies the native species' diet. Thus differences in the trophic ecology of both species are clearly explained by water management. This experimental study is a valuable tool for integrated management between river basin and wetlands since it allows quantification of wetland community changes in response to the flow regime. - Highlights: • Flow regimen is a major determinant of physicochemical habitat of a wetland. • Water exchanges wetland-estuary modify its aquatic community and trophic links. • Omnivory and physiological tolerance key in the resistance of a

  13. Abundance and diversity patterns of the sessile macrobenthic community associated with environmental gradients in Vitória Harbor, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Ilana Rosental Zalmon

    2011-10-01

    Full Text Available Harbor terminals and urban sewage effluents affect the composition and distribution of epibenthic organisms. In this study, we hypothesized that the benthic community structure at the Vitoria Harbor changes spatially in a ~3 km scale, and that these changes are associated with environmental gradients resulting from point-source sewage and differences in the physical and chemical parameters of the water along the harbor access channel. Four sites, internal (PI, intermediate-internal (PMI, intermediate-external (PME and external (PE, varying from 0.5 to 4.0 km off the harbor, were sampled on five quadrats at six sampling dates (N = 30 per site. The epibenthic community on the shallow sublitoral rocky shore was sampled fortnightly from December 2005 to February 2006 by point-intersection method. A total of 27 taxa were registered with higher richness and diversity values at the external sites. The similarity analysis indicated two distinct systems, with the internal sites PI and PMI apart from the external PME and PE, which showed 97% of dissimilarity. While the internal sites presented some estuarine characteristics and a high coverage (> 60% of hydrozoans and bryozoans with silt/clay, the external ones showed coastal water influence and higher amounts of sedimentary material substrate (> 50%. This pattern reflects the estuarine gradient and the suspended sedimentary material at the internal sites, which is carried out to the external parts of the channel. The data showed two distinct benthic communities and support the hypothesis that the community structure varies along the harbor access channel in a gradient from the inner to the outer portion of the estuary.

  14. Distributions of persistent organic contaminants in sediments and their potential impact on macrobenthic faunal community of the Geum River Estuary and Saemangeum Coast, Korea.

    Science.gov (United States)

    Yoon, Seo Joon; Hong, Seongjin; Kwon, Bong-Oh; Ryu, Jongseong; Lee, Chang-Hee; Nam, Jungho; Khim, Jong Seong

    2017-04-01

    Over the last 30 years, the Geum River Estuary and Saemangeum Coast have been subject to major environmental changes, including dike construction, reclamation, and development of industrial complexes. This study aimed to: 1) investigate the occurrence of polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), and styrene oligomers (SOs), 2) identify the sources of sedimentary organic matter, and 3) determine key environmental factors controlling the macrozoobenthos community structure. A total of 58 surface sediments were collected from the estuary and coastal area in 2014. Specific persistent organic contaminants (POCs), including 24 PAHs, 6 APs, and 10 SOs were measured. PAHs, APs, and SOs were detected in the sediments at all sites, with concentrations varying among sites. Although POCs concentrations were generally below the Canadian sediment quality guidelines, relatively greater concentrations of POCs were found at some sites adjacent to industrial complexes and the estuarine area. Sediment organic carbon, total nitrogen, and the stable carbon isotope ratio (δ(13)C) were determined. Some sites near watergate had about 2-3‰ lighter δ(13)C values compared to other areas, indicating that these sites are affected by terrestrial organic matter. The number of species in the macrofaunal community was significantly correlated with δ(13)C values (p organic matter is important for controlling the macrozoobenthos distribution. Overall, this research provides information about the level and sources of sediment pollution, the origins of organic matter, and the relationships with the macrofaunal community.

  15. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  16. Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes

    Directory of Open Access Journals (Sweden)

    Domaizon Isabelle

    2011-04-01

    Full Text Available Abstract Background Over the last 30 years, extensive studies have revealed the crucial roles played by microbes in aquatic ecosystems. It has been shown that bacteria, viruses and protozoan grazers are dominant in terms of abundance and biomass. The frequent interactions between these microbiological compartments are responsible for strong trophic links from dissolved organic matter to higher trophic levels, via heterotrophic bacteria, which form the basis for the important biogeochemical roles of microbial food webs in aquatic ecosystems. To gain a better understanding of the interactions between bacteria, viruses and flagellates in lacustrine ecosystems, we investigated the effect of protistan bacterivory on bacterial abundance, production and structure [determined by 16S rRNA PCR-DGGE], and viral abundance and activity of two lakes of contrasting trophic status. Four experiments were conducted in the oligotrophic Lake Annecy and the mesotrophic Lake Bourget over two seasons (early spring vs. summer using a fractionation approach. In situ dark vs. light incubations were performed to consider the effects of the different treatments in the presence and absence of phototrophic activity. Results The presence of grazers (i.e. Conclusions Our results highlight the importance of a synergistic effect, i.e. the positive influence of grazers on viral activities in sustaining (directly and indirectly bacterial production and affecting composition, in both oligotrophic and mesotrophic lakes.

  17. Trophic structure of two intertidal Fucus spp. communities along a vertical gradient: Similarity and seasonal stability evidenced with δ13C and δ15N

    Science.gov (United States)

    Bordeyne, François; Davoult, Dominique; Migné, Aline; Bertaud du Chazaud, Euriell; Leroux, Cédric; Riera, Pascal

    2017-02-01

    Intertidal communities dominated by canopy-forming macroalgae typically exhibit some differences in their specific composition that are related to their location along the emersion gradient of rocky shores. Tidal level is also expected to affect resource availability for both primary producers and consumers, potentially leading to divergence in the trophic structure of these communities. Furthermore, in temperate areas, the alternation of seasons has usually a large influence on the primary production and on life-history traits of numerous species, which may induce some changes in the food webs of intertidal communities. Thus, this study aimed to investigate the trophic structure of two intertidal communities located at different tidal levels, over several seasons. Focusing on the dominant species of primary producers and consumers, the food webs of the Fucus vesiculosus Linnaeus and Fucus serratus Linnaeus communities were studied during four successive seasons, using an isotopic (δ13C and δ15N) approach. Due to the diversity of primary producers and consumers living in these two communities, food webs were relatively complex and composed of several trophic pathways. These food webs remained rather conserved over the successive seasons, even though some variability in isotopic signature and in diet has been highlighted for several species. Finally, despite their location at different tidal levels, the two Fucus spp. communities exhibited nearly the same trophic structure, with common consumer species displaying similar isotopic signature in both of them.

  18. Coastal Upwelling Drives Intertidal Assemblage Structure and Trophic Ecology.

    Directory of Open Access Journals (Sweden)

    Carl J Reddin

    Full Text Available Similar environmental driving forces can produce similarity among geographically distant ecosystems. Coastal oceanic upwelling, for example, has been associated with elevated biomass and abundance patterns of certain functional groups, e.g., corticated macroalgae. In the upwelling system of Northern Chile, we examined measures of intertidal macrobenthic composition, structure and trophic ecology across eighteen shores varying in their proximity to two coastal upwelling centres, in a hierarchical sampling design (spatial scales of >1 and >10 km. The influence of coastal upwelling on intertidal communities was confirmed by the stable isotope values (δ13C and δ15N of consumers, including a dominant suspension feeder, grazers, and their putative resources of POM, epilithic biofilm, and macroalgae. We highlight the utility of muscle δ15N from the suspension feeding mussel, Perumytilus purpuratus, as a proxy for upwelling, supported by satellite data and previous studies. Where possible, we used corrections for broader-scale trends, spatial autocorrelation, ontogenetic dietary shifts and spatial baseline isotopic variation prior to analysis. Our results showed macroalgal assemblage composition, and benthic consumer assemblage structure, varied significantly with the intertidal influence of coastal upwelling, especially contrasting bays and coastal headlands. Coastal topography also separated differences in consumer resource use. This suggested that coastal upwelling, itself driven by coastline topography, influences intertidal communities by advecting nearshore phytoplankton populations offshore and cooling coastal water temperatures. We recommend the isotopic values of benthic organisms, specifically long-lived suspension feeders, as in situ alternatives to offshore measurements of upwelling influence.

  19. Macrobenthic Communities of the Lower Chesapeake Bay.

    Science.gov (United States)

    1984-10-01

    ECHINODERMATA :ECHINOIDEA Arbacij Runlctulata (Lamarck) Echinarachnius Parma (Larmack) ECHINODERMATA :HOLOTHURO-DEA Holothuroidea spp. Leptosynapta ... inhaerens (Ayres) ECHINODERMATA :OPHIUROIDEA Ophiuroidea spp. * HEMICHORDATA Saccoglossus kowalewskii (Agassiz) CHORDATA :CEPHALOCHORDATA Branchiostoma

  20. Distribution patterns of macrobenthic species in relation to organic enrichment within aquaculture earthen ponds.

    Science.gov (United States)

    Carvalho, Susana; Barata, Marisa; Pereira, Fábio; Gaspar, Miguel B; Cancela da Fonseca, Luís; Pousão-Ferreira, Pedro

    2006-12-01

    The relationship between organic enrichment and macrobenthic colonization patterns was investigated during an 8-month period in Diplodus sargus (white seabream) production ponds. A stratified sampling design was applied and each pond was divided into three zones: water entrance (WE); central (C); and automatic feeder zones (AF). Generally, the number of species and Shannon-Wiener diversity increased from the WE to the AF zone. Abundance did not present a clear trend. The recently developed marine biotic index (AMBI) was applied and showed to be sufficiently robust to discriminate, within a relatively small area, differences in macrobenthic communities due to organic enrichment. Nevertheless, caution is advised when applying this index or others based on ecological group's assignment, as the classification of a certain area may differ when allocating a certain species to an unsuitable group. This is particularly evident when common species are involved.

  1. Flow regime in a restored wetland determines trophic links and species composition in the aquatic macroinvertebrate community.

    Science.gov (United States)

    González-Ortegón, E; Walton, M E M; Moghaddam, B; Vilas, C; Prieto, A; Kennedy, H A; Pedro Cañavate, J; Le Vay, L

    2015-01-15

    In a restored wetland (South of Spain), where different flow regimes control water exchange with the adjacent Guadalquivir estuary, the native Palaemon varians coexists with an exotic counterpart species Palaemon macrodactylus. This controlled m\\acrocosm offers an excellent opportunity to investigate how the effects of water management, through different flow regimes, and the presence of a non-native species affect the aquatic community and the trophic niche (by gut contents and C-N isotopic composition) of the native shrimp Palaemon varians. We found that increased water exchange rate (5% day(-1) in mixed ponds vs. 0.1% day(-1) in extensive ponds) modified the aquatic community of this wetland; while extensive ponds are dominated by isopods and amphipods with low presence of P. macrodactylus, mixed ponds presented high biomass of mysids, corixids, copepods and both shrimp species. An estuarine origin of nutrients and primary production might explain seasonal and spatial differences found among ponds of this wetland. A combined analysis of gut contents and isotopic composition of the native and the exotic species showed that: (1) native P. varians is mainly omnivorous (2) while the non-native P. macrodactylus is more zooplanktivorous and (3) a dietary overlap occurred when both species coexist at mixed ponds where a higher water exchange and high abundance of mysids and copepods diversifies the native species' diet. Thus differences in the trophic ecology of both species are clearly explained by water management. This experimental study is a valuable tool for integrated management between river basin and wetlands since it allows quantification of wetland community changes in response to the flow regime. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fish communities and trophic metrics as measures of ecological degradation: a case study in the tributaries of the river Ganga basin, India

    Directory of Open Access Journals (Sweden)

    Vineet Kumar Dubey

    2013-09-01

    Full Text Available In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecological condition by comparing the trophic metrics of the fish community, conservation status and water chemistry of the two tropical rivers of the Ganga basin, from October 2007 to November 2009. The analysis of trophic niches of the available fish species indicated dominancy of carnivorous (19 species in river Ken and omnivorous (23 species in Betwa. The trophic level score of carnivorous species was recorded similar (33.33% in both rivers, whereas omnivorous species were mostly found in Betwa (36.51% than Ken (28.07%. Relatively undisturbed sites of Betwa (B1, B2 and B3 and Ken (K2, K3 and K5 were characterized by diverse fish fauna and high richness of threatened species. The higher mean trophic level scores were recorded at B4 of Betwa and K4 of Ken. The Bray-Curtis index for trophic level identified the carnivorous species (>0.32 as an indicator species for pollution. Anthropogenic exposure, reflected in water quality as well as in fish community structure, was found higher especially in the lower stretches of both rivers. Our results suggest the importance of trophic metrics on fish community, for ecological conditions evaluation, which enables predictions on the effect of future morphodynamic changes (in the post-interlinking phases, and provide a framework and reference condition to support restoration efforts of relatively altered fish habitats in tropical rivers of India.

  3. Isotopic determination of the trophic ecology of a ubiquitous key species - The crab Liocarcinus depurator (Brachyura: Portunidae)

    Science.gov (United States)

    Careddu, Giulio; Calizza, Edoardo; Costantini, Maria Letizia; Rossi, Loreto

    2017-05-01

    Knowledge of the trophic ecology of predators is key to understanding how they affect food web structure and ecosystem functioning. The harbour crab Liocarcinus depurator (L.) (Brachyura: Portunidae) is one of the most abundant decapod species in soft-bottom areas of the Mediterranean Sea and northeast Atlantic Ocean. It is both a common prey and predator of commercial and non-commercial marine species and its predation pressure appears to have little effect on the subtidal community assemblage. However, there are few studies of its diet and little is known about its role in mediating energy flows in marine ecosystems. In this study, carbon (δ13C) and nitrogen (δ15N) stable isotope analysis (SIA) and Bayesian analytical tools were used to characterise the trophic niche of L. depurator and to quantify the most important prey supporting this species under various environmental conditions. Specimens of L. depurator, their potential prey and basal resources were collected from two different subtidal areas of the Gulf of Gaeta, one affected by human activities (north side) and the other seasonally influenced by freshwater inputs originating from the River Garigliano (south side). While there were differences between the two sampling areas in terms of the abundance and δ15N and δ13C values of the macrobenthic prey community, no differences in the δ15N values and trophic position of L. depurator were observed. Specifically, Bayesian mixing models showed Polychaeta Errantia as the main source of crab diets in both areas. The observed differences in the δ13C values and the analysis of trophic pathways also indicate that the terrestrial organic matter originating from the discharge of the River Garigliano was integrated along the food web up to L. depurator. Although this species is usually considered an opportunistic feeder, it appears to be highly selective and its trophic habits did not influence food web topology, which in contrast was found to be strongly

  4. How functional traits of estuarine macrobenthic assemblages respond to metal contamination?

    KAUST Repository

    Piló, D.

    2016-08-06

    The effects of metal contamination on estuarine macrobenthic communities were investigated using the Biological Traits Analysis (BTA). The study was carried out in the Tagus estuary (western Portugal). Samples of macrobenthic communities and associated environmental variables were taken in four surveys (September 2012, and February, May and October 2013) across the contamination gradient from three main zones: a slightly contaminated, a moderately contaminated and a highly contaminated zone. Functional traits for the most abundant species were assigned using seven categories based on “Feeding mode”, “Life span”, “Body size”, “Motility”, “Position in sediments”, “Larval type” and “AMBI ecological group”. To investigate whether the macroinvertebrate community structure was associated with the environmental parameters and biological traits an integrative multivariate analysis, combining the RLQ analysis and the fourth-corner method, was applied. Within this analysis, human-induced estuarine variables (metals) were rendered independent from natural ones (sediment fine particles) through partial correlations. Following this approach, it was possible to decouple the effects of two typically highly correlated environmental descriptors with different origins. Overall, the study identified significant relationships between sediment environmental descriptors and the functional traits of macrobenthic communities. Further, RLQ/Fourth-corner combined analysis successfully isolated the traits and corresponding species that were most correlated with the measured concentration of trace metals in sediments, supporting the knowledge that benthic organisms exhibit distinct responses to different levels of disturbance. A shift in species dominance occurred along the contamination gradient with epifaunal tolerant species with very small size, long life span, and crawling motility dominating the highest contaminated area. This area was also related with

  5. Linking above- and below-ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land

    NARCIS (Netherlands)

    Korthals, G.W.; Smilauer, P.; Van Dijk, C.; Van der Putten, W.H.

    2001-01-01

    1. This study investigates the effects of experimental plant communities on different trophic levels in the soil food web of abandoned arable land. 2. In April 1996, a biodiversity experiment commenced using a continuation of agricultural crop rotation (CCR), spontaneous succession with naturally co

  6. Indications of low macrobenthic activity in the deep sediments of the eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Daniela Basso

    2004-12-01

    Full Text Available The fluxes and budget of organic matter from the oligotrophic surface waters of the eastern Mediterranean to the deep waters are poorly known, and little information is available on past and present macrobenthic activity on the sea floor. Evidence of macrobenthic activity can be direct, through recovery of living organisms or their autochthonous skeletal remains, or indirect, through bioturbation and trace fossils. The evidence of biological activity in deep eastern Mediterranean sediments has been evaluated and compared through 210Pb profiles from box-cores and study of dredge samples from sites on Medina Rise (1374 m water depth, the Messina Abyssal Plain (4135 m and several sites along the Mediterranean Ridge, SW and S of Crete (1783 to 3655 m. All these sites are remote from the continental shelves, so the biological benthic activity is expected to depend primarily on primary production from surface waters. The results show that present-day macrobenthos and trace fossils are generally scarce, especially at depths > 2500 m. This observation is supported by surface sediment 210Pb excess distributions that show a surface mixed layer (SML 2500 m. The historical layer of some box-cores and the Pleistocene hardgrounds collected in the Cleft area (Mediterranean Ridge do, however, record a macrobenthic activity that is apparently more intense than at present, which may be related to higher primary production of the Pleistocene glacial intervals. In contrast with most areas of the present-day deep eastern Mediterranean which depend on surface primary production based on photosynthesis, a relatively dense and diversified macrobenthic community based on chemosynthesis has been recognised at depths > 1100 m on the Napoli Dome mud volcano in the Olimpi area, and on the Kazan and other mud volcanoes in the Anaximander Mountains.

  7. Microbenthic community structure and trophic status of sediments in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea).

    Science.gov (United States)

    Rubino, F; Cibic, T; Belmonte, M; Rogelja, M

    2016-07-01

    This study aimed to assess the benthic ecosystem trophic status in a heavily polluted marine area and the response of the microbenthic community to multiple and diffuse anthropogenic impacts, integrating information coming from the active and resting (plankton's cysts) components of microbenthos. Two sampling campaigns were carried out in the period 2013-2014 and four sampling sites at different levels of industrial contamination were chosen within the first and second inlet of the Mar Piccolo of Taranto. The chemical contamination affected to a higher extent the active microbenthos than the resting one. In the central part of the first inlet, characterised by more marine features, thrives a very rich and biodiverse microbenthic community. In contrast, at the polluted site near the military navy arsenal, extremely low densities (9576 ± 1732 cells cm(-3)) were observed for active microbenthos, but not for the resting community. Here, the high level of contamination selected for tychopelagic diatom species, i.e., thriving just above the surface sediments, while the other life forms died or moved away. Following the adoption of a 10 μm mesh, for the first time, resting spores produced by small diatoms of the genus Chaetoceros were found. Our results further indicate that although the Mar Piccolo is very shallow, the benthic system is scarcely productive, likely as a consequence of the accumulated contaminants in the surface sediments that probably interfere with the proper functioning of the benthic ecosystem.

  8. Ecological drivers of community assembly across taxonomic groups and trophic levels

    DEFF Research Database (Denmark)

    Özkan, Korhan

    richness and community composition of forest birds in the Istranca forests were significantly related to forest structure, habitat diversity and altitude, while non-environmental spatial factors also had important, albeit weaker, effects, suggesting a secondary role of dispersal and/or biotic interactions......This thesis aimed at elucidating ecological factors affecting community assembly in two study systems: (i) breeding bird communities sampled at 433 locations across north-west Turkey in 2009 and (ii) plankton communities sampled in c. 400 lakes across Denmark between 1989 and 2009. Community....... Local bird abundance was strongly linked with occupancy across the metacommunity (the bird communities in the Istranca landscape) as well as the species’ regional population and range size across the western Palearctic. Null model analyses showed that bird occupancy was non-randomly related to species...

  9. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  10. Trophic structure and diversity in rocky intertidal upwelling ecosystems: A comparison of community patterns across California, Chile, South Africa and New Zealand

    Science.gov (United States)

    Blanchette, C. A.; Wieters, E. A.; Broitman, B. R.; Kinlan, B. P.; Schiel, D. R.

    2009-12-01

    The Benguela, California, and Humboldt represent three of the major eastern boundary upwelling ecosystems in the world. Upwelling ecosystems are highly productive, and this productivity forms the base of the food chain, potentially leading to ecosystems similar in trophic structure and diversity among upwelling regions. Here we compare the biological and trophic structure of rocky intertidal communities in each of these major upwelling regions. Our comparison includes a fourth region, New Zealand, which spans a similar latitudinal range, and experiences intermittent upwelling. The influence of oceanographic conditions on these communities was evaluated by using the long-term mean and standard deviation of satellite-based sea surface temperature (SST). Large differences emerged in the taxonomic richness in each of these systems, with California as the most and the Humboldt as the least taxonomically rich. Across all regions, richness tended to decrease progressively from lower trophic levels (macrophytes) to higher trophic levels (carnivores), and richness was inversely correlated with the proportion of variance in SST contained in the seasonal cycle, suggesting that strongly seasonal, predictable environments are relatively low in diversity. The functional and trophic structures were remarkably similar across these four regions of the world. Macrophytes were slightly dominant over filter-feeders in terms of space occupancy in all regions except the Benguela. Densities of herbivorous grazers were greatest in California and Benguela and far outnumbered carnivore densities in all regions. Despite some similarities, the overall structure of the communities from these regions differed significantly supporting the hypothesis that the biological and ecological consequences of similar physical forcing mechanisms (e.g. upwelling) are likely to be context-dependent.

  11. Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: does the method matter?

    DEFF Research Database (Denmark)

    Menezes, Rosemberg; Borchsenius, Finn; Svenning, J.-C.

    2013-01-01

    The distribution of freshwater fish is influenced by food availability, habitat heterogeneity, competition, predation, trophic state, and presence/absence of macrophytes. This poses a challenge to monitoring, and researchers have been struggling to develop accurate sampling methods for obtaining...... community, as all methods miss some important species that other methods capture. However, electrofishing seems to be a fast alternative to gillnets for monitoring fish species richness and composition in littoral habitats of Danish lakes....

  12. Trophic designation and live coral cover predict changes in reef-fish community structure along a shallow to mesophotic gradient in Hawaii

    Science.gov (United States)

    Kane, Corinne N.; Tissot, Brian N.

    2017-09-01

    Reef-fish community structure and habitat associations are well documented for shallow coral reefs (reefs (mesophotic reefs; >30 m). We documented the community structure of fishes and seafloor habitat composition through visual observations at depth intervals from 3 to 50 m in West Hawaii. Community structure changed gradually with depth, with more than 78% of fish species observed at mesophotic depths also found in shallow reef habitats. Depth explained 17% of the variation in reef-fish community structure; live coral cover explained 10% and prevalence of sand accounted for 7% of the fitted variation indicating that depth-related factors and coral habitat play a predominant role in structuring these communities. Differences in community structure also appear to be linked closely with feeding behavior. Trophic designation accounted for 31% of the fitted variation, with changes in herbivore abundance accounting for 10% of the variation. These findings suggest that changes in reef-fish community composition from shallow to mesophotic environments are largely influenced by trophic position, coral habitat and indirect effects of depth itself.

  13. Ecological drivers of community assembly across taxonomic groups and trophic levels

    DEFF Research Database (Denmark)

    Özkan, Korhan

    environmental niche. Furthermore, species abundance and occupancy across both the metacommunity and the whole western Palearctic were significantly related to an independent species specialization index calculated for the French birds. Together these results indicated that forest bird community assembly...... with positive trends in temperature and precipitation as well as negative trends in wind speed, total nitrogen, NO3 and PO4 concentrations. Environmental control was not the only factor determining the plankton assembly in these 17 lakes. There was also significant congruence between phyto- and zooplankton...

  14. First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities.

    Directory of Open Access Journals (Sweden)

    J A Fonvielle

    Full Text Available Mucus, i.e., particulate and dissolved organic matter (POM, DOM released by corals, acts as an important energy carrier in tropical ecosystems, but little is known on its ecological role in temperate environments. This study assessed POM and DOM production by the temperate coral Cladocora caespitosa under different environmental conditions. The subsequent enzymatic degradation, growth of prokaryotes and virus-like particles (VLPs as well as changes in the structure of the prokaryotic communities were also monitored. C. caespitosa produced an important quantity of mucus, which varied according to the environmental conditions (from 37.8 to 67.75 nmol carbon h-1 cm-2, but remained higher or comparable to productions observed in tropical corals. It has an important nutritional value, as highlighted by the high content in dissolved nitrogen (50% to 90% of the organic matter released. Organic matter was rapidly degraded by prokaryotes' enzymatic activities, and due to its nitrogen content, aminopeptidase activity was 500 fold higher than the α-glucosidase activity. Prokaryotes, as well as VLPs, presented a rapid growth in the mucus, with prokaryote production rates as high as 0.31 μg h-1 L-1. Changes in bacterial and archaeal communities were observed in the ageing mucus and between mucus and the water column, suggesting a clear impact of mucus on microorganism diversity. Overall, our results show that the organic matter released by temperate corals, such as C. caespitosa, which can form reef structures in the Mediterranean Sea, stimulates microbial activity and thereby functions as a significant carbon and nitrogen supplier to the microbial loop.

  15. Litter quality indirectly influences community composition, reproductive mode and trophic structure of oribatid mite communities: a microcosm experiment.

    Science.gov (United States)

    Gergócs, Veronika; Rétháti, Gabriella; Hufnagel, Levente

    2015-11-01

    Our knowledge of the assembly processes of species-rich oribatid mite communities is fairly limited. Also, very little information is available on the effects of habitat factors on these processes. In this paper, the role of litter quality in pattern formation was investigated in a microcosm experiment using the "home-field advantage" approach. Native (home) and foreign (away) types of microarthropod assemblages were extracted from three types of litter samples (Turkey oak, Scots pine and black locust tree), and transferred alive into 'home' and 'away' samples, which have been defaunated and reinoculated with microorganisms to form microcosms. Microarthropods were extracted from the microcosms after incubation for 3-12 months. In addition to species identification and abundance records, some chemical properties of the litter were measured. We hypothesized that oribatid mite communities deteriorate, the proportion of parthenogenetic individuals decreases and the proportion of omnivorous individuals increases in 'away' microcosms in contrast to 'home' systems. Pine and oak litter were favourable for all the three types of oribatid communities since their community traits in these types of litter were found to be similar to 'home' litter. Black locust litter was favourable only for its native oribatid community in the long run. The proportion of parthenogenetic individuals partly supported our hypothesis, mainly in black locust litter. The relative abundance of omnivorous individuals did not differ significantly between treatments. Litter quality is likely to influence oribatid mite assemblages only indirectly.

  16. Long-term trends in the trophic structure of the orth Sea fish community : evidence from stable-isotope analysis, size-spectra and community metrics

    NARCIS (Netherlands)

    Jennings, S.; Greenstreet, S.P.R.; Hill, L.; Piet, G.J.; Pinnegar, J.K.; Warr, K.J.

    2002-01-01

    Fishing has wide-ranging impacts on marine ecosystems. One of the most pervasive signs of intensive fishing is "fishing down the food web", with landings increasingly dominated by smaller species from lower trophic levels. Decreases in the trophic level of landings are assumed to reflect those in

  17. Seasonal changes in community composition and trophic structure of fish populations of five salt marshes along the Essex coastline, United Kingdom

    Science.gov (United States)

    Green, Benjamin C.; Smith, David J.; Earley, Sarah E.; Hepburn, Leanne J.; Underwood, Graham J. C.

    2009-11-01

    European intertidal salt marshes are important nursery sites for juvenile fish and crustaceans. Due to the increasing threat of habitat loss, the seasonal changes of salt marsh fish communities need to be understood in order to appreciate the ecological and economic importance of the saltmarsh habitat. This study was the first in Great Britain to investigate the seasonal changes of salt marsh fish communities and the variation in community structure between closely located marsh habitats. Between February 2007 and March 2008, five marshes on three estuaries of the Essex coastline were sampled using flume nets to block off intertidal creeks at high tide. Fourteen fish species were caught. The community overall was dominated by three species that made up 91.6% of the total catch: the common goby Pomatoschistus microps (46.2% of the total catch), juvenile herring Clupea harengus (24.3%), and juvenile and larval sea bass Dicentrarchus labrax (21.2%). Cluster analysis demonstrated clear seasonal patterns, with some community structures unique to specific marshes or estuaries. The marsh fish community shifts from a highly diverse community during spring, to a community dominated by D. labrax and P. microps in autumn, and low diversity during winter months. Gravimetric stomach content analysis of fish community identified three main trophic guilds; macroinvertivores, planktivores and omnivores. The macroinvertivore feeding guild contained D. labrax and P. microps, the two most frequently occurring species. This investigation demonstrates the importance of British salt marshes as nursery habitats for commercial fish species.

  18. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean.

    Directory of Open Access Journals (Sweden)

    Dominic A Andradi-Brown

    Full Text Available Mesophotic coral ecosystems (MCEs; reefs 30-150m depth are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass with depth, mostly driven by declines in parrotfish (Scaridae. Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus, striped parrotfish (Scarus iserti, blue chromis (Chromis cyanea, creole wrasse (Clepticus parrae, bluehead wrasse (Thalassoma bifasciatum and yellowtail snapper (Ocyurus chrysurus, with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts.

  19. [Trophic chains in soil].

    Science.gov (United States)

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems.

  20. Biodiversity of macrobenthic community in the Huanghe estuary during water and sediment discharge regulation in 2011%2011年黄河调水调沙期间黄河口海域大型底栖动物群落多样性

    Institute of Scientific and Technical Information of China (English)

    刘元进; 吕振波; 李凡; 张焕君; 徐宗法; 徐炳庆

    2012-01-01

    The water and sediment discharge regulation (WSDR) project, which has been performed since 2002 before flood season every year, has become one of the most effective measures to maintain the healthy state of Huanghe River. Macrobenthic community patterns, such as species composition, dominant species, spatial pattern of biomass and abundance were analyzed based on the investigation data of macrobenthos collected in mid-June (before WSDR) , early July (during WSDR) and mid-July (after WSDR) - In the investigated area, 119°05' - 119°27'E, 37°44. 5' -38°00'N, 13 sample stations were set up. A total number of 100 species were identified from the samples, in which 38 species are members of Polychaete, 41 of Mollusca, 15 of Crustacea, 3 of Echinodem and 3 of other groups. Polychaete and Mollusca were dominant both in biomass and abundance in the Huanghe estuary in summer. Dominant species, defined as with index of relative importance (IRI) value more than 500, were Polychaete or Mollusca in all 3 surveys. The distribution of biomass and abundance of macrobenthos had significant difference both in time scale and spatial scale. The diversity index such as Margalef richness index (D) , Shannon-Wiener diversity index (H'~ and Pielou' s evenness index (/') were used for studying the diversity of macrobenthic community. The D, H' and J' of community in survey before WSDR were close to that during WSDR. The D was lower in survey after WSDR than that in survey before WSDR and during WSDR. The H' and J' were higher in survey after WSDR than that in survey before WSDR and during WSDR. A higher proportion of Polychaetes and lower proportion of Echinoderms meant that the macrobenthic community might be under serious environmental pollution. The results of diversity classification showed that the Shannon-Wiener diversity index were poor in all 3 surveys. And the Margalef richness index was poor in survey before WSDR. The Margalef richness index was medium in surveys during and

  1. The trophic position of the alien crab Rhithropanopeus harrisii (crustacea decapoda panopeidae) in the Taman Bay, Sea of Azov community

    Science.gov (United States)

    Zalota, A. K.; Kolyuchkina, G. A.; Tiunov, A. V.; Biriukova, S. V.; Spiridonov, V. A.

    2017-03-01

    This work concerns the trophic web positioning of the alien crab Rhithropanopeus harrisii and other common marine invertebrate species and fishes in the benthic ecosystem of the shallows of Taman Bay, Sea of Azov. The base of the trophic web in this system is composed of phytoplankton, macrophytes (algae and marine grasses), and reeds that use atmospheric carbon for photosynthesis. Analysis of the isotopic composition of nitrogen and carbon has shown that although marine grasses are dominating primary producers in the shallows of the bay, primary consumers (such as Cerastoderma glaucum, Porifera gen. sp., Gammarus aequicauda, Deshayesorchestia deshayesii and Idotea balthica) only partially use this organic source; instead, they use a combination of different sources of primary production. It has been shown that the food source of the alien crab is primarily of animal origin. In Taman Bay, R. harrisii is on the same trophic level as other carnivores/scavengers: benthic fishes Syngnathus nigrolineatus, Gobius spp. and native crab Pilumnus hirtellus and shrimp Palaemon adspersus.

  2. Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities.

    Science.gov (United States)

    Bassman, John H

    2004-05-01

    The potential role of ultraviolet-B (UV-B)-induced secondary plant metabolites as mediators of multiple trophic responses in terrestrial ecosystems is considered through review of the major classes of secondary metabolites, the pathways for their biosynthesis, interactions with primary and secondary consumers and known UV effects on their induction. Gross effects of UV-B radiation on plant growth and survival under realistic spectral balances in the field have been generally lacking, but subtle changes in carbon allocation and partitioning induced by UV-B, in particular production of secondary metabolites, can affect ecosystem-level processes. Secondary metabolites are important in plant-herbivore interactions and may affect pathogens. They act as feeding or oviposition deterrents to generalists and nonadapted specialists, but adapted specialists are stimulated to feed by these same compounds, which they detoxify and often sequester for use against their predators. This provides a route for tritrophic effects of enhanced UV-B radiation whereby herbivory may be increased while predation on the herbivore is simultaneously reduced. It is in this context that secondary metabolites may manifest their most important role. They can be the demonstrable mechanism establishing cause and effect at higher trophic levels because the consequences of their induction can be established at all trophic levels.

  3. Trophic hierarchies illuminated via amino acid isotopic analysis.

    Directory of Open Access Journals (Sweden)

    Shawn A Steffan

    Full Text Available Food web ecologists have long sought to characterize the trophic niches of animals using stable isotopic analysis. However, distilling trophic position from isotopic composition has been difficult, largely because of the variability associated with trophic discrimination factors (inter-trophic isotopic fractionation and routing. We circumvented much of this variability using compound-specific isotopic analysis (CSIA. We examined the (15N signatures of amino acids extracted from organisms reared in pure culture at four discrete trophic levels, across two model communities. We calculated the degree of enrichment at each trophic level and found there was a consistent trophic discrimination factor (~7.6‰. The constancy of the CSIA-derived discrimination factor permitted unprecedented accuracy in the measurement of animal trophic position. Conversely, trophic position estimates generated via bulk-(15N analysis significantly underestimated trophic position, particularly among higher-order consumers. We then examined the trophic hierarchy of a free-roaming arthropod community, revealing the highest trophic position (5.07 and longest food chain ever reported using CSIA. High accuracy in trophic position estimation brings trophic function into sharper focus, providing greater resolution to the analysis of food webs.

  4. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system

    Science.gov (United States)

    Scharler, U.M.; Ulanowicz, Robert E.; Fogel, M.L.; Wooller, M.J.; Jacobson-Meyers, M.E.; Lovelock, C.E.; Feller, I.C.; Frischer, M.; Lee, R.; Mckee, Karen L.; Romero, I.C.; Schmit, J.P.; Shearer, C.

    2015-01-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  5. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system.

    Science.gov (United States)

    Scharler, U M; Ulanowicz, R E; Fogel, M L; Wooller, M J; Jacobson-Meyers, M E; Lovelock, C E; Feller, I C; Frischer, M; Lee, R; McKee, K; Romero, I C; Schmit, J P; Shearer, C

    2015-11-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  6. Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia).

    Science.gov (United States)

    Klarner, Bernhard; Winkelmann, Helge; Krashevska, Valentyna; Maraun, Mark; Widyastuti, Rahayu; Scheu, Stefan

    2017-01-01

    Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world's hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change.

  7. Comparison of the effects of drilling fluid on macrobenthic invertebrates associated with the seagrass, Thalassia testudinum, in the laboratory and field

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.E.; Flemer, D.A.; Bundick, C.M.

    1992-01-01

    The structure of a macrobenthic invertebrate community associated with the seagrass, Thalassia testudinum, was evaluated under laboratory and field conditions. The research focused on: (1) the effects of pollution stress from a representative drilling fluid used in offshore oil and gas operations, and (2) a comparison of responses of the seagrass-invertebrate community in the laboratory and field. The numbers of macrobenthic invertebrates were suppressed by drilling fluid at both exposure periods in the laboratory, but inhibitory effects were absent in the field. Invertebrate densities in the field were similar among control and treated plots, and were much lower than densities occurring in the laboratory control. In most instances, species richness values were similar in the field and laboratory at the end of each 6 and 12 week period.

  8. Community structure and trophic ecology of megabenthic fauna from the deep basins in the Interior Sea of Chiloé, Chile (41-43° S)

    Science.gov (United States)

    Zapata-Hernández, Germán; Sellanes, Javier; Thiel, Martin; Henríquez, Camila; Hernández, Sebastián; Fernández, Julio C. C.; Hajdu, Eduardo

    2016-11-01

    Estuarine environments are complex ecological systems, which depend on multiple inputs of organic sources that could support their benthic communities. The deep-water megabenthic communities of the Interior Sea of Chiloé (ISCh, northern part of the fjord region of Chile) were studied to characterize their taxonomic composition and to trace the energy pathways supporting them by using stable isotope analysis (SIA). Megabenthic and demersal organisms as well as sunken macroalgal debris and terrestrial organic matter (TOM: wood, leaves, branches) were obtained by bottom trawling along an estuarine gradient covering 100-460 m water depth. Additionally, particulate organic matter (POM) and the sedimentary organic matter (SOM) were sampled and carbon (δ13C) and nitrogen (δ15N) isotope ratios were determined for all these organisms and potential food sources. A total of 140 taxa were obtained, including invertebrates (e.g. polychaetes, mollusks, crustaceans and echinoderms) bony fishes, rays and sharks. Based on the stable isotope values it was possible to infer a strong dependence on primary production derived from phytoplankton which is exported to the benthos. A potentially important contribution from sunken macroalgae to megabenthic consumers was established only for some invertebrates, such as the irregular echinoid Tripylaster philippii and the decapod Eurypodius latreillii. The trophic structure metrics suggest a similar isotopic niche width, trophic diversity and species packaging in the food webs among the major basins in the ISCh. It is thus concluded that the benthic food webs are supported principally by surface primary production, but macroalgal subsidies could be exploited by selected invertebrate taxa (e.g. detritivores) and terrestrial carbon pathways are important for certain specialized taxa (e.g. Xylophaga dorsalis).

  9. Mediterranean fouling communities assimilate the organic matter derived from coastal fish farms as a new trophic resource.

    Science.gov (United States)

    Gonzalez-Silvera, D; Izquierdo-Gomez, D; Fernandez-Gonzalez, V; Martínez-López, F J; López-Jiménez, J A; Sanchez-Jerez, P

    2015-02-15

    Currently, the lipid content of fish feeds includes high amounts of terrestrial vegetable oils, rich in n-6 fatty acids and poor in n-3 fatty acids. Sinking organic matter in the shape of fragmented pellets and fish faeces could be ingested by the surrounding fauna attracted to the submerged structures of aquaculture facilities or living in natural benthic habitats. Fatty acids contained in feed pellets were used as trophic markers to shed light on the assimilation and incorporation of aquaculture wastes by the invertebrate fauna associated to sea-cages. Eighteen macroinvertebrate species, and zooplankton, seaweeds and sediments were collected from two fish farms, one of which (control) had not been used as such for two years. This study demonstrates that macroinvertebrate fauna present in fouling can take up sinking organic matter from farms. Further research should be directed at assessing the potential implications of aquaculture production for the surrounding ecosystem.

  10. Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression

    NARCIS (Netherlands)

    Ysebaert, T.; Meire, P.; Herman, P.M.J.; Verbeek, H.

    2002-01-01

    This study aims at contributing to the development of statistical models to predict macrobenthic species response to environmental conditions in estuarine ecosystems. Ecological response surfaces are derived for 10 estuarine macrobenthic species. Logistic regression is applied on a large data set, p

  11. Low biomass of macrobenthic fauna at a tropical mudflat : An effect of latitude?

    NARCIS (Netherlands)

    Purwoko, Agus; Wolff, Wim J.

    2008-01-01

    The macrobenthic animal biomass of the intertidal area of the Sembilang peninsula of South Sumatra, Indonesia, has been studied in 2004. Each month (March-August) 21 core samples were taken at each of six sampling stations. Macrobenthic fauna were identified at the lowest taxonomical level possible

  12. Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic High-Arctic ecosystem

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Schmidt, Niels Martin; Hoye, Toke T.

    2016-01-01

    -Arctic tri-trophic system of flowers, insects and waders (Charadriiformes), with latent factors representing phenology (timing of life history events) and performance (abundance or reproduction success) for each trophic level. The effects derived from the model demonstrated that the time of snowmelt directly...... from the tri-trophic community presented here emphasise that effects of climate on species in consumer-resource systems may propagate through trophic levels...

  13. Fish community reassembly after a coral mass mortality : Higher trophic groups are subject to increased rates of extinction

    NARCIS (Netherlands)

    Alonso, David; Pinyol-Gallemi, Aleix; Alcoverro, Teresa; Arthur, Rohan

    Since Gleason and Clements, our understanding of community dynamics has been influenced by theories emphasising either dispersal or niche assembly as central to community structuring. Determining the relative importance of these processes in structuring real-world communities remains a challenge. We

  14. Fish community reassembly after a coral mass mortality : Higher trophic groups are subject to increased rates of extinction

    NARCIS (Netherlands)

    Alonso, David; Pinyol-Gallemi, Aleix; Alcoverro, Teresa; Arthur, Rohan

    2015-01-01

    Since Gleason and Clements, our understanding of community dynamics has been influenced by theories emphasising either dispersal or niche assembly as central to community structuring. Determining the relative importance of these processes in structuring real-world communities remains a challenge. We

  15. Molecular-based approaches to characterize coastal microbial community and their potential relation to the trophic state of Red Sea

    KAUST Repository

    Ansari, Mohd Ikram

    2015-03-11

    Molecular-based approaches were used to characterize the coastal microbiota and to elucidate the trophic state of Red Sea. Nutrient content and enterococci numbers were monitored, and used to correlate with the abundance of microbial markers. Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach. Water samples collected from the beaches had occasional exceedances in enterococci numbers, higher total organic carbon (TOC, 1.48-2.18 mg/L) and nitrogen (TN, 0.15-0.27 mg/L) than that detected in the near-shore waters. Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers. The abundance of certain genera, for example Arcobacter, Pseudomonas and unclassified Campylobacterales, was observed to exhibit slight correlation with TOC and TN. Low abundance of functional genes accounting for up to 41 copies/L of each Pseudomonas aeruginosa and Campylobacter coli were detected. Arcobacter butzleri was also detected in abundance ranging from 111 to 238 copies/L. Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities. These OTUs could potentially serve as quantifiable markers indicative of the water quality.

  16. Trophic structure and levels of selected metals in the zooplankton community of Thane-Bassein Creek, Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Krishnamurti, A.J.; Gajbhiye, S.N.

    Community structure of zooplankton at 4 locations, 2 in the coastal waters off Bombay and 2 in interior Thane-Bassein Creek System, Maharashtra, India were studied for a period of one year. Copepods as the major herbivore community contributed 76...

  17. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales

    Science.gov (United States)

    Duffy, Leanne M.; Kuhnert, Petra M.; Pethybridge, Heidi R.; Young, Jock W.; Olson, Robert J.; Logan, John M.; Goñi, Nicolas; Romanov, Evgeny; Allain, Valerie; Staudinger, Michelle D.; Abecassis, Melanie; Choy, C. Anela; Hobday, Alistair J.; Simier, Monique; Galván-Magaña, Felipe; Potier, Michel; Ménard, Frederic

    2017-06-01

    Predator-prey interactions for three commercially valuable tuna species: yellowfin (Thunnus albacares), bigeye (T. obesus), and albacore (T. alalunga), collected over a 40-year period from the Pacific, Indian, and Atlantic Oceans, were used to quantitatively assess broad, macro-scale trophic patterns in pelagic ecosystems. Analysis of over 14,000 tuna stomachs, using a modified classification tree approach, revealed for the first time the global expanse of pelagic predatory fish diet and global patterns of micronekton diversity. Ommastrephid squids were consistently one of the top prey groups by weight across all tuna species and in most ocean bodies. Interspecific differences in prey were apparent, with epipelagic scombrid and mesopelagic paralepidid fishes globally important for yellowfin and bigeye tunas, respectively, while vertically-migrating euphausiid crustaceans were important for albacore tuna in the Atlantic and Pacific Oceans. Diet diversity showed global and regional patterns among tuna species. In the central and western Pacific Ocean, characterized by low productivity, a high diversity of micronekton prey was detected while low prey diversity was evident in highly productive coastal waters where upwelling occurs. Spatial patterns of diet diversity were most variable in yellowfin and bigeye tunas while a latitudinal diversity gradient was observed with lower diversity in temperate regions for albacore tuna. Sea-surface temperature was a reasonable predictor of the diets of yellowfin and bigeye tunas, whereas chlorophyll-a was the best environmental predictor of albacore diet. These results suggest that the ongoing expansion of warmer, less productive waters in the world's oceans may alter foraging opportunities for tunas due to regional changes in prey abundances and compositions.

  18. Temporal changes of a macrobenthic assemblage in harsh lagoon sediments

    Science.gov (United States)

    Como, Serena; Magni, Paolo

    2009-08-01

    An opportunistic macrobenthic assemblage was studied from 2001 to 2003 in a central area of the Cabras lagoon (western Sardinia, Italy), known to be affected by environmental disturbances (i.e. organic over-enrichment of sediments, and episodic events of hypoxia/anoxia and sulphide development). We identified recurrent seasonal changes in this macrobenthic assemblage, with a general impoverishment in summer and a recovery in winter/spring. The nereids Neanthes succinea and Hediste diversicolor were found to replace the spionid Polydora ciliata as the most dominant species in the summer for 3 consecutive years. Occasional, unsynchronized appearances of small-sized deposit feeders, such as Tubificidae, Capitella cf. capitata, chironomid larvae and Hydrobia spp., were observed in winter/spring. We suggest that these changes are driven by the interplay of environmental conditions (worse in summer) with numerous biotic factors. This includes different tolerance levels of taxa to low oxygen concentrations and sulphides, variability in larval supply and post-larval transport, as well as competition for space and food between and within different functional groups, and facilitation through animal bioturbation and sediment reoxidation. A conceptual model is proposed to demonstrate how environmental conditions and biotic interactions may control the benthic assemblage in such a harsh lagoon environment.

  19. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests.

    Science.gov (United States)

    Griffiths, Hannah M; Bardgett, Richard D; Louzada, Julio; Barlow, Jos

    2016-12-14

    Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services.

  20. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv

    Directory of Open Access Journals (Sweden)

    Juta Haberman

    2014-03-01

    Full Text Available On the basis of long-term (1964-2011 research, we tested the hypothesis that the zooplankton community has a highly indicative value in assessing the ecosystem and trophic state of water bodies. Basing on the results of our study and taking into account relevant data from numerous zooplankton studies, we can conclude that the zooplankton measures deserving to be used as indicators in the monitoring of Lake Võrtsjärv (and other similar eutrophic water bodies could be the following: i indicatory species of eutrophic waters [Anuraeopsis fissa (Gosse, Keratella tecta (Gosse, Trichocerca rousseleti (Voigt, Chydorus sphaericus (O. F. Müller, Bosmina longirostris (O. F. Müller]; ii indicatory species of oligo-mesotrophic waters [Conochilus unicornis Rousselet, Kellicottia longispina (Kellicott, Ploesoma hudsoni (Imhof, Bosmina berolinensis Imhof, Eudiaptomus gracilis (Sars]; iii number and diversity of species; iv mean zooplankter weight, mean cladoceran weight, mean rotifer weight and mean copepod weight; v rotifer abundance; vi the share (% of rotifers in total zooplankton abundance; vii the ratio of abundance of large cladocerans to abundance of all cladocerans (NLargeClad/NClad; viii the ratio of calanoid copepod abundance to cyclopoid copepod abundance (NCal/NCycl; ix the ratio of crustacean abundance to rotifer abundance (NCrust/NRot . The results of our study show that several zooplankton parameters are among the biological quality elements (BQE deserving to be included in the Water Frame Directive system.

  1. Macrobenthic Communities of the Dam Neck Disposal Site.

    Science.gov (United States)

    1985-02-01

    PLATYHELMINTHES TURBELLARIA Turbellaria app. NEMERTEA Nemertea app. ANNELIDA : POLYCHAETA Amastigos caperatus Ewing and Dauer Aupharete arctica Malmgren...identified to species level (Oligochaeta, Nemertea and Cirratulidae) were excluded from this analysis. 22 FIGURE1 : Study Area showing Sampling Stations. A

  2. Using stable isotope compositions of animal tissues to infer trophic interactions in Gulf of Mexico lower slope seep communities.

    Directory of Open Access Journals (Sweden)

    Erin L Becker

    Full Text Available We analyzed the tissue carbon, nitrogen, and sulfur stable isotope contents of macrofaunal communities associated with vestimentiferan tubeworms and bathymodiolin mussels from the Gulf of Mexico lower continental slope (970-2800 m. Shrimp in the genus Alvinocaris associated with vestimentiferans from shallow (530 m and deep (1400-2800 m sites were used to test the hypothesis that seep animals derive a greater proportion of their nutrition from seeps (i.e. a lower proportion from the surface at greater depths. To account for spatial variability in the inorganic source pool, we used the differences between the mean tissue δ(13C and δ(15N of the shrimp in each collection and the mean δ (13C and δ(15N values of the vestimentiferans from the same collection, since vestimentiferans are functionally autotrophic and serve as a baseline for environmental isotopic variation. There was a significant negative relationship between this difference and depth for both δ(13C and δ(15N (p=0.02 and 0.007, respectively, which supports the hypothesis of higher dependence on seep nutrition with depth. The small polychaete worm Protomystides sp. was hypothesized to be a blood parasite of the vestimentiferan Escarpialaminata. There was a highly significant linear relationship between the δ(13C values of Protomystides sp. and the E. laminata individuals to which they were attached across all collections (p < 0.001 and within a single collection (p = 0.01, although this relationship was not significant for δ(15N and δ(34S. We made several other qualitative inferences with respect to the feeding biology of the taxa occurring in these lower slope seeps, some of which have not been described prior to this study.

  3. Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Renate Degen

    2015-08-01

    Full Text Available Little is known about the distribution and dynamics of macrobenthic communities of the deep Arctic Ocean. The few previous studies report low standing stocks and confirm a gradient with declining biomass from the slopes down to the basins, as commonly reported for deep-sea benthos. In this study, we investigated regional differences of faunal abundance and biomass, and made for the first time ever estimates of deep Arctic community production by using a multi-parameter artificial neural network model. The underlying data set combines data from recent field studies with published and unpublished data from the past 20 years, to analyse the influence of water depth, geographical latitude and sea-ice concentration on Arctic benthic communities. We were able to confirm the previously described negative relationship of macrofauna standing stock with water depth in the Arctic deep sea, while also detecting substantial regional differences. Furthermore, abundance, biomass and production decreased significantly with increasing sea-ice extent (towards higher latitudes down to values <200 ind m−2, <65 mg C m−2 and <73 mg C m−2 y−1, respectively. In contrast, stations under the seasonal ice zone regime showed much higher standing stock and production (up to 2500 mg C m−2 y−1, even at depths down to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic Ocean as it explains both the low values in the ice-covered Arctic basins and the higher values in the seasonal ice zone.

  4. Green Turtle Trophic Ecology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently conducting a study of green sea turtle (Chelonia mydas) trophic ecology in the eastern Pacific. Tissue samples and stable carbon and stable...

  5. Effects of fluvial discharges on meiobenthic and macrobenthic variability in the Vistula River prodelta (Baltic Sea)

    Science.gov (United States)

    Włodarska-Kowalczuk, Maria; Mazurkiewicz, Mikołaj; Jankowska, Emilia; Kotwicki, Lech; Damrat, Mateusz; Zajączkowski, Marek

    2016-05-01

    The role of environmental variability produced by river discharges in shaping the spatial and seasonal patterns of meiobenthic and macrobenthic communities was studied in the Vistula River (Baltic Sea) prodelta. Seven stations located in the delta front, the plume influence area and the distal zone of the prodelta were visited over the four seasons of 2012. Meiofauna, macrofauna, water (temperature, salinity, and suspended matter) and sediments (grain size, POC, TN, δ15N and δ13C and photosynthetic pigments) were analysed. The seasonal variations in the river discharges (with maximum flows in spring) resulted in a strong temporal variability in the studied environmental characteristics. In the benthic biota, the signals of seasonal variability, if present, were much weaker than spatial zonation. The benthic communities inhabiting the delta front where the main bulk of fluvial materials was deposited were taxonomically impoverished. The richest fauna dwelled within the plume influence area where the physical disturbance ceased and primary marine production was enhanced by river transported nutrients. In the distal zone outside the river influence, the fauna was dominated by deeper dwelling species, and the numbers of individuals and taxa decreased. Factors related to the riverine discharges (i.e., salinity, mineral suspension, POC and δ13C in the water and sediments) were identified as having high correlation with variability in the meiofaunal and macrofaunal community descriptors. Evidently, the interplay of food (i.e., the quantity and quality of organic matter) and disturbance (i.e., the deposition of river transported minerals) constraints shaped the patterns of benthic variability in the prodelta of the second largest river entering the Baltic Sea.

  6. Species Diversity of Macro-benthic Invertebrates in Mangrove and Seagrass Ecosystems of Eastern Bohol, Philippines

    Directory of Open Access Journals (Sweden)

    Marichu C. Libres

    2015-12-01

    Full Text Available Descriptive survey method through actual resource assessment was conducted to determine the species diversity of macro-benthic invertebrates in the mangrove forest and seagrass beds of Eastern Bohol, Philippines namely: Anda, Candijay, Mabini, and Ubay. The 4 representative sites were chosen through random sampling. In each municipality, the researcher selected a representative area wherein 3 transects were laid perpendicular to the shoreline. The assessment in each transect covered a strip of 4 m by 50 m. All macro-benthic invertebrates intercepted within 4-meter to the left and right of the transect line were identified, counted and listed in a slate board. The data gathered were subjected to Shannon-Weiner Index and Kruskal Wallis Test. In mangrove forests, results revealed that Anda got the highest species diversity index of 1.66 with 11 species. The lowest value which is 1.15 was recorded in Candijay having only five macro-benthic invertebrate species. In the 4 municipalities, a total of 12 species representing 3 phyla were identified. In seagrass beds, 19 taxa of macro-benthic invertebrates were recorded belonging to three phyla. Based on the findings, the researcher concluded that macro-benthic invertebrates in eastern part of Bohol is diverse both in mangrove forests and seagrass beds. Moreover, there is no significant difference in the species diversity among the four representative sites.

  7. Comparison of the effects of drilling fluid on macrobenthic invertebrates associated with the seagrass, Thalassia testudinum, in the laboratory and field

    Science.gov (United States)

    Weber, David E.; Flemer, David A.; Bundrick, Charles M.

    1992-09-01

    The structure of a macrobenthic invertebrate community associated with the seagrass, Thalassia testudinum, was evaluated under laboratory and field conditions. The research focused on: (1) the effects of pollution stress from a representative drilling fluid used in off-shore oil and gas operations, and (2) a comparison of responses of the seagrass-invertebrate community in the laboratory and field. A series of 15·3 cm diameter cores of the seagrass-invertebrate community was collected from field sites for establishment and sampling of microcosms and in the sampling of field plots over time. Weekly exposures to drilling fluid were conducted in the laboratory microcosms at a mean total suspended matter concentration of 110·7 mg l -1 (± 17·7 SD), and in field plots by usage of acrylic exposure chambers at a mean concentration of 132·8 mg l -1 (±33·3 SD). Standing crop of T. testudinum was not affected by drilling fluid in the laboratory or field when measured after 6 and 12 week exposure periods. The numbers of macrobenthic invertebrates were suppressed by drilling fluid at both exposure periods in the laboratory, but inhibitory effects were absent in the field. Invertebrate densities in the field were similar among control and treated plots, and were much lower than densities occurring in the laboratory control. In most instances, species richness values were similar in the field and laboratory at the end of each 6 and 12 week period.

  8. Freshwater seepages and ephemeral macroalgae proliferation in an intertidal bay: I Effect on benthic community structure and food web

    Science.gov (United States)

    Ouisse, Vincent; Riera, Pascal; Migné, Aline; Leroux, Cédric; Davoult, Dominique

    2011-01-01

    Freshwater seepages and ephemeral Enteromorpha spp. proliferation create heterogeneity at small spatial scale in intertidal sediment. Macrobenthic community diversity was compared between these two disturbances and their respective control points throughout the year 2007 at the Roscoff Aber Bay (Western English Channel, France). In March and September 2007, trophic community pathways of characteristic species were additionally studied using stable isotope ratios of carbon and nitrogen. The low salinity recorded at the freshwater seepage induced the exclusion of the main bioturbator and the presence of omnivores which modified the community composition by biotic pressure. Moreover, food web analyses clearly highlighted a separation at small spatial scale between the two trophic pathways of the impacted area and its control. On the contrary, little differences were observed owning to the ephemeral Enteromorpha spp. proliferation. This suggested a progressive and diffusive disturbance which was applied from the algal mat to the nearby area. However, seasonal changes were observed. First, the algal expansion phase increased the macrofauna diversity and foraminifers' abundance (meiofauna) and then acted as a physical barrier decreasing sediment and water column exchanges and decreasing the fauna diversity. This study highlights the need to take into account small spatial heterogeneity to avoid misinterpretations in intertidal ecology studies.

  9. Combined use of meio- and macrobenthic indices to assess complex chemical impacts on a stream ecosystem

    Science.gov (United States)

    McKnight, Ursula S.; Sonne, Anne T.; Rasmussen, Jes J.; Traunspurger, Walter; Höss, Sebastian; Bjerg, Poul L.

    2016-04-01

    habitats for overall ecosystem health, many biological indices tend only to reflect the ecological quality of surface water, rather than of the sedimentary zones where the accumulation of pollutants is often highest. To address this issue, we monitored meiobenthic (i.e. nematodes) and macrobenthic invertebrate communities along a pollution gradient in order to assess the impact of multiple stressors on a groundwater-fed stream, and thus quantify the link between chemical and ecological status. The studied stressors included point source pollutants originating from contaminated groundwater and aquaculture, and diffuse source pollutants originating from conventional agriculture and urban areas. The use of macrofauna is now well-accepted for assessing ecological integrity in aquatic ecosystems, but less is known about the application of meiofaunal community indicators. High abundance and ubiquitous distribution are two potential advantages for including meiofaunal indicators, and notably - for the case of groundwater-surface water interactions - they are particularly suitable for identifying changes in environmental conditions over smaller spatial scales. The results indicate a change in community composition for both meio- and macrobenthic fauna, pointing towards the presence of a local impact resulting from the discharging contaminated groundwater, which extends downstream along a dilution gradient of the groundwater contaminants. Ecological impacts could be linked to xenobiotic compounds coming from groundwater (both chlorinated solvents and pharmaceuticals), as well as the presence of trace metals of diffuse and/or biogenic origin.

  10. Application of macrobenthic diversity to estimate ecological health of artificial oyster reef in Yangtze Estuary, China.

    Science.gov (United States)

    Lv, Weiwei; Huang, Youhui; Liu, Zhiquan; Yang, Yang; Fan, Bin; Zhao, Yunlong

    2016-02-15

    In this study, several macrobenthic diversity investigations were performed in Yangtze Estuary Oyster Reef, the largest artificial oyster reef in China, from 2012 to 2014. The sampling sites of the south branch showed considerably higher diversity than those of the north branch. The richness measures exhibited a significant increasing trend from low- to high-salinity zone; however, the evenness measures were typically high in the middle-salinity zone. During the past decade, the results were combined with historical data to detect the changes in macrobenthos. The variation in substrate organisms and macrobenthic diversity followed a steady trend after a major fluctuation. Redundancy analysis indicated that the water salinity and substrate factors were the main indicators that influence macrobenthic distribution. All sampling sites in the south branch were protected by a nature reserve. However, the N2 and N6 sites in the north branch were subjected to severe and mild human interventions, respectively.

  11. Trophic role of Protozooplankton in northern marine ecosystems

    DEFF Research Database (Denmark)

    Riisgaard, Karen

    Protozooplankton are the major grazers on phytoplankton in the global ocean, but many questions related to their trophic role remain unanswered in particular for northern marine ecosystems. In the present thesis, protozooplankton communities were evaluated with special emphasis on factors...

  12. Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California

    Science.gov (United States)

    Moseman, Serena M.; Levin, Lisa A.; Currin, Carolyn; Forder, Charlotte

    2004-08-01

    Modes of colonization, the successional trajectory, and trophic recovery of a macrofaunal community were analyzed over 19 months in the Friendship marsh, a 20-acre restored wetland in Tijuana Estuary, California. Traditional techniques for quantifying macrofaunal communities were combined with emerging stable isotopic approaches for evaluation of trophic recovery, making comparisons with a nearby natural Spartina foliosa habitat. Life history-based predictions successfully identified major colonization modes, although most taxa employed a variety of tactics for colonizing the restored marsh. The presence of S. foliosa did not seem to affect macrofaunal colonization or succession at the scale of this study. However, soil organic matter content in the restored marsh was positively correlated with insect densities, and high initial salinities may have limited the success of early colonists. Total macrofaunal densities recovered to natural marsh levels after 14 months and diversity, measured as species richness and the Shannon index ( H'), was comparable to the natural marsh by 19 months. Some compositional disparities between the natural and created communities persisted after 19 months, including lower percentages of surface-feeding polychaetes ( Polydora spp.) and higher percentages of dipteran insects and turbellarians in the Friendship marsh. As surficial structural similarity of infaunal communities between the Friendship and natural habitat was achieved, isotopic analyses revealed a simultaneous trajectory towards recovery of trophic structure. Enriched δ 13C signatures of benthic microalgae and infauna, observed in the restored marsh shortly after establishment compared to natural Spartina habitat, recovered after 19 months. However, the depletion in δ 15N signatures of macrofauna in the Friendship marsh indicated consumption of microalgae, particularly nitrogen-fixing cyanobacteria, while macroalgae and Spartina made a larger contribution to macrofaunal

  13. Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment

    NARCIS (Netherlands)

    Braeckman, U.; van Colen, C.; Soetaert, K.E.R.; Vincx, M.; Vanaverbeke, J.

    2011-01-01

    By bioturbating and bio-irrigating the sea floor, macrobenthic organisms transport organic matter and oxygen from the surface to deeper layers, thereby extending the habitat suitable for smaller infauna. Next to these engineering activities, competition, disturbance and predation may also affect the

  14. Local and regional variability in fish community structure, richness and diversity of 56 Danish lakes with contrasting depth and trophic state

    DEFF Research Database (Denmark)

    Menezes, Rosemberg; Borchsenius, Finn; Svenning, J.-C.

    /profundal zones. Nevertheless, information about how the within-lake variability in fish abundance, richness and diversity changes in the littoral and pelagic areas along contrasting depth and trophic state is scarce. It is expected that eutrophic lakes present lower within lake habit heterogeneity than...... oligotrophic lakes due to high turbidity leading to loss of submerged macrophytes and thus habitat variability. Also the influence of piscivorous birds on the fish distribution in the littoral zone may differ between lake types leading to a more homogeneous distribution along the littoral area in eutrophic...

  15. Piscivores, Trophic Cascades, and Lake Management

    Directory of Open Access Journals (Sweden)

    Ray W. Drenner

    2002-01-01

    Full Text Available The concept of cascading trophic interactions predicts that an increase in piscivore biomass in lakes will result in decreased planktivorous fish biomass, increased herbivorous zooplankton biomass, and decreased phytoplankton biomass. Though often accepted as a paradigm in the ecological literature and adopted by lake managers as a basis for lake management strategies, the trophic cascading interactions hypothesis has not received the unequivocal support (in the form of rigorous experimental testing that might be expected of a paradigm. Here we review field experiments and surveys, testing the hypothesis that effects of increasing piscivore biomass will cascade down through the food web yielding a decline in phytoplankton biomass. We found 39 studies in the scientific literature examining piscivore effects on phytoplankton biomass. Of the studies, 22 were confounded by supplemental manipulations (e.g., simultaneous reduction of nutrients or removal of planktivores and could not be used to assess piscivore effects. Of the 17 nonconfounded studies, most did not find piscivore effects on phytoplankton biomass and therefore did not support the trophic cascading interactions hypothesis. However, the trophic cascading interactions hypothesis also predicts that lake systems containing piscivores will have lower phytoplankton biomass for any given phosphorus concentration. Based on regression analyses of chlorophyll�total phosphorus relationships in the 17 nonconfounded piscivore studies, this aspect of the trophic cascading interactions hypothesis was supported. The slope of the chlorophyll vs. total phosphorus regression was lower in lakes with planktivores and piscivores compared with lakes containing only planktivores but no piscivores. We hypothesize that this slope can be used as an indicator of “functional piscivory” and that communities with extremes of functional piscivory (zero and very high represent classical 3- and 4-trophic level

  16. Recovery of macrobenthic assemblages following experimental sand burial

    Directory of Open Access Journals (Sweden)

    José J. Barrón

    2008-09-01

    Full Text Available This research was supported by a fund provided by the Instituto de Ciencias del Mar y Limnología (UNAM and a fund provided to Celia Olabarria in 2004 and 2005 by the University of Vigo for overseas short stays.AbstractPeriodic inundation by sand is a very common feature of rocky coasts throughout the world. Even so, there have been few direct observations or experiments to investigate the role of sediments on intertidal rocky shores. We designed a field experiment in Mazatlán Bay, Mexico, to test the initial impact and subsequent recovery of intertidal macrobenthic assemblages exposed to sand burial at two sites of varying wave exposure. Both sites supported different natural assemblages. Treatment plots for the addition of sediment and control plots (50 × 50 cm, separated by at least 1.5 m, were randomly placed across the mid-water tidal level. The initial response of the resident macrobenthos and the subsequent recolonization was monitored over a period of 95 days. The main effect of sediment deposition at both sites was mortality and removal of biota due to smothering. The recovery process was rapid and may in part have been the result of the mechanism by which the small, disturbed patches were recolonized. Most of the invertebrates colonized the patches as adults; several seaweeds exhibited vegetative growth as the major mechanism of colonization (e.g., Ulva lactuca Linnaeus, 1753, Amphiroa valonioides Yendo, 1902 and Chaetomorpha antennina (Borgensen Kutzing, 1849. The rate of recovery varied between the sites, however. Recovery of species numbers proceeded quickly at the sheltered site (day 7, but took 95 days at the exposed site. In contrast, biomass reached control levels by day 45 at the sheltered site, but already by day 15 at the exposed site. By day 95, the assemblages recovered to 83.5% and 81% similarity with the controls at the sheltered and exposed sites respectively. Although differences in wave exposure could be very

  17. Trophically Unique Species Are Vulnerable to Cascading Extinction

    OpenAIRE

    Petchey, Owen L.; Eklöf, Anna; Borrvall, Charlotte; Ebenman, Bo

    2008-01-01

    Understanding which species might become extinct and the consequences of such loss is critical. One consequence is a cascade of further, secondary extinctions. While a significant amount is known about the types of communities and species that suffer secondary extinctions, little is known about the consequences of secondary extinctions for biodiversity. Here we examine the effect of these secondary extinctions on trophic diversity, the range of trophic roles played by the species in a communi...

  18. Trigeminal trophic syndrome

    Directory of Open Access Journals (Sweden)

    Parimalam Kumar

    2014-01-01

    Full Text Available Trigeminal trophic syndrome (TTS is a rare cause of facial ulceration, consequent to damage to the trigeminal nerve or its central sensory connections. We reporta case of TTS in a 48-year-old woman with Bell′s palsy following herpes zoster infection. The patient was treated and counseled. There hasnot been any recurrence for 1 year and the patient is being followed-up. The diagnosis of TTS should be suspected when there is unilateral facial ulceration, especially involving the ala nasi associated with sensory impairment.

  19. Assessment of suitability of macrobenthic mollusc diversity to monitor water quality and shallow sediment quality in a tropical rehabilitated and non-rehabilitated wetland system

    Directory of Open Access Journals (Sweden)

    W.M. Dimuthu Nilmini Wijeyaratne

    2017-06-01

    Full Text Available Six sampling sites were selected to represent different land use types in the rehabilitated and non-rehabilitated areas of a recreational wetland in Sri Lanka to study the suitability of macrobenthic mollusc diversity to monitor spatial and temporal variation in physico-chemical parameters of water and shallow sediments. Individuals belonging to six families and eight species were recorded during the study. The significantly highest mean abundance (individuals of Bithynia tentaculata and Pila globosa were recorded in sites from the rehabilitated area and there was no significant temporal variation of mollusc abundance during the study.  The abundance and diversity of mollusc community showed significant spatial variations and this study identified that B. tentaculata and P. globosa can be used as possible bioindicators to detect changes in water and shallow sediment quality in tropical wetland ecosystems

  20. Distribution and abundance of macrobenthic polychaetes along the South Indian coast.

    Science.gov (United States)

    Musale, Amar S; Desai, Dattesh V

    2011-07-01

    Macrobenthic polychaetes play a significant role in marine benthic food chain. A study was carried out to observe the abundance and diversity of soft bottom macrobenthic polychaetes along the South Indian coast, along with observations on sediment characteristics. The present study indicated an increase in the polychaete diversity as compared to earlier reports. Sixty-three different forms of polychaetes were identified along the coast, which constitute the bulk of the macrobenthic fauna. Thirty-eight species of polychaetes showed higher abundance along the west coast, whereas 25 species showed higher abundance along the east coast. Seabed composition showed a spatial variation in its composition along the coast. Occurrence of Prionospio pinnata and Capitella capitata the deposit feeders and indicators of organic pollution suggesting the sampled area is organically rich. Polychaete abundance was found to be higher along the west coast and was attributed to loose texture of sediment due to high sand and sandy-silt resulting in higher interstitial space for organisms to harbor. Canonical correspondence analysis indicated that majority of polychaete species preferred low organic carbon, sandy silt, or sandy-clay substratum. The lower polychaete abundance at high organic carbon and high silt and clay areas can be attributed to avoidance of organisms to rich organic matter and suboxic levels, being a possible indication that these characteristics adversely affects the polychaete abundance and distribution.

  1. The biogeography of trophic cascades on US oyster reefs.

    Science.gov (United States)

    Kimbro, David L; Byers, James E; Grabowski, Jonathan H; Hughes, A Randall; Piehler, Michael F

    2014-07-01

    Predators can indirectly benefit prey populations by suppressing mid-trophic level consumers, but often the strength and outcome of trophic cascades are uncertain. We manipulated oyster reef communities to test the generality of potential causal factors across a 1000-km region. Densities of oyster consumers were weakly influenced by predators at all sites. In contrast, consumer foraging behaviour in the presence of predators varied considerably, and these behavioural effects altered the trophic cascade across space. Variability in the behavioural cascade was linked to regional gradients in oyster recruitment to and sediment accumulation on reefs. Specifically, asynchronous gradients in these factors influenced whether the benefits of suppressed consumer foraging on oyster recruits exceeded costs of sediment accumulation resulting from decreased consumer activity. Thus, although predation on consumers remains consistent, predator influences on behaviour do not; rather, they interact with environmental gradients to cause biogeographic variability in the net strength of trophic cascades.

  2. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas.

    Directory of Open Access Journals (Sweden)

    German A Soler

    Full Text Available Marine Protected Areas (MPAs offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores was significantly greater (by 40% - 200% in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.

  3. Toward a Global Ocean Ecosystem Mid-trophic Automatic Acoustic Sampler (MAAS)

    OpenAIRE

    Handegard, Nils Olav; Demer, David A; Kloser, Rudy; Lehodey, Patrick; Maury, Olivier; Simard, Yvard

    2009-01-01

    Despite their huge biomass and pivotal role, the mid-trophic levels of marine ecosystems are not generally subject to systematic monitoring. Data from such monitoring is crucial for parameterizing, validating, and constraining numerical models of mid-trophic communities. In recent years, acoustic sampling technology has matured, and we argue that acoustic sampling technology, due to long-range propagation in water, is the only means to efficiently observe the large biomass of the mid-trophic ...

  4. Eco-Evolutionary Trophic Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey

    Science.gov (United States)

    Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.

    2011-01-01

    Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156

  5. Eco-evolutionary trophic dynamics: loss of top predators drives trophic evolution and ecology of prey.

    Directory of Open Access Journals (Sweden)

    Eric P Palkovacs

    Full Text Available Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.

  6. Microbes are trophic analogs of animals.

    Science.gov (United States)

    Steffan, Shawn A; Chikaraishi, Yoshito; Currie, Cameron R; Horn, Heidi; Gaines-Day, Hannah R; Pauli, Jonathan N; Zalapa, Juan E; Ohkouchi, Naohiko

    2015-12-01

    In most ecosystems, microbes are the dominant consumers, commandeering much of the heterotrophic biomass circulating through food webs. Characterizing functional diversity within the microbiome, therefore, is critical to understanding ecosystem functioning, particularly in an era of global biodiversity loss. Using isotopic fingerprinting, we investigated the trophic positions of a broad diversity of heterotrophic organisms. Specifically, we examined the naturally occurring stable isotopes of nitrogen ((15)N:(14)N) within amino acids extracted from proteobacteria, actinomycetes, ascomycetes, and basidiomycetes, as well as from vertebrate and invertebrate macrofauna (crustaceans, fish, insects, and mammals). Here, we report that patterns of intertrophic (15)N-discrimination were remarkably similar among bacteria, fungi, and animals, which permitted unambiguous measurement of consumer trophic position, independent of phylogeny or ecosystem type. The observed similarities among bacterial, fungal, and animal consumers suggest that within a trophic hierarchy, microbiota are equivalent to, and can be interdigitated with, macrobiota. To further test the universality of this finding, we examined Neotropical fungus gardens, communities in which bacteria, fungi, and animals are entwined in an ancient, quadripartite symbiosis. We reveal that this symbiosis is a discrete four-level food chain, wherein bacteria function as the apex carnivores, animals and fungi are meso-consumers, and the sole herbivores are fungi. Together, our findings demonstrate that bacteria, fungi, and animals can be integrated within a food chain, effectively uniting the macro- and microbiome in food web ecology and facilitating greater inclusion of the microbiome in studies of functional diversity.

  7. Above- and Belowground Trophic Interactions on Creeping Thistle (Cirsium arvense) in High- and Low-Diversity Plant Communities: Potential for Biotic Resistance?

    NARCIS (Netherlands)

    Bezemer, T.M.; Graça, O.; Rousseau, P.; Putten, van der W.H.

    2004-01-01

    The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and above-ground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by

  8. Above- and Belowground Trophic Interactions on Creeping Thistle (Cirsium arvense) in High- and Low-Diversity Plant Communities: Potential for Biotic Resistance?

    NARCIS (Netherlands)

    Bezemer, T.M.; Graça, O.; Rousseau, P.; Van der Putten, W.H.

    2004-01-01

    The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and aboveground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by

  9. Above- and Belowground Trophic Interactions on Creeping Thistle (Cirsium arvense) in High- and Low-Diversity Plant Communities: Potential for Biotic Resistance?

    NARCIS (Netherlands)

    Bezemer, T.M.; Graça, O.; Rousseau, P.; Van der Putten, W.H.

    2004-01-01

    The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and aboveground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by

  10. Above- and Belowground Trophic Interactions on Creeping Thistle (Cirsium arvense) in High- and Low-Diversity Plant Communities: Potential for Biotic Resistance?

    NARCIS (Netherlands)

    Bezemer, T.M.; Graça, O.; Rousseau, P.; Putten, van der W.H.

    2004-01-01

    The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and above-ground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by

  11. THE TROPHIC LINKS OF DRAGONFLIES (ODONATA IN BIOCENOSES OF THE СENTRAL СAUCASUS

    Directory of Open Access Journals (Sweden)

    Kh. A. Ketenchiev

    2011-01-01

    Full Text Available The trophic links of dragonflies in biocenoses of the Central Caucasus are examined in this article. The analysis of this phenomenon allowed to reveal the spectrum of the given connection of imago and larva’s members of the order Odonata in the communities of the study area. The structure of the trophic links is represented in the form of diagrams.

  12. Temporal variability in the Abra alba community determined by global and local events

    NARCIS (Netherlands)

    Van Hoey, V.H.; Vincx, M.; Degraer, S.

    2007-01-01

    Macrobenthic communities in temperate, shallow coastal waters are characterised by strong seasonal and year-to-year variations in community characteristics. These temporal variations were investigated in the Abra alba community on the Belgian Continental Shelf over a period of nine years (1995 – 200

  13. Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organisms at different trophic levels

    Energy Technology Data Exchange (ETDEWEB)

    Friberg-Jensen, Ursula; Wendt-Rasch, Lina; Woin, Per; Christoffersen, Kirsten

    2003-05-29

    The effects of the pyrethroid insecticide cypermethrin on a natural freshwater community were studied in small in situ enclosures over an 11-day period. The experiment was conducted in a eutrophic lake using a regression design that included three untreated controls and a gradient of six unreplicated cypermethrin concentrations, ranging from 0.01 to 6.1 {mu}g/l. This paper is the first in a series of two, and describes the fate of cypermethrin and its effects on the abundance of crustaceans, rotifers, protozoans (cilliates and heterotrophic nanoflagellates (HNF)) and bacteria and the biomass of periphytic and planktonic algae. The concentration of cypermethrin decreased quickly during the experiment, with a half-life of 48 h for the total and 25 h for the dissolved fractions of cypermethrin, respectively. Cypermethrin proved to be acutely toxic to crustaceans in enclosures receiving nominal cypermethrin concentrations of {>=}0.13 {mu}g/l. No Effect Concentration (NEC) and median Effect Concentration (EC{sub 50}) for the total crustacean community and cladoceran and copepod subgroups ranged between 0.02-0.07 and 0.04-0.17 {mu}g/l, respectively, with copepods being less sensitive than cladocerans. The abundance of rotifers, protozoans and bacteria and the chlorophyll-a concentration of planktonic and periphytic algae was significantly related to the concentration of cypermethrin. All groups proliferated within 2-7 days after the cypermethrin application in those enclosures where the abundance of crustaceans was seriously affected by cypermethrin (i.e. {>=}0.13 {mu}g/l). We hypothesise that the proliferation of rotifers, protozoans, bacteria and algae was due to a reduced grazer control from crustaceans and thereby mediated indirectly by cypermethrin. The results of this experiment provide knowledge on how an entire microplankton community may respond to pyrethroids in nature, and the indirect effects observed on the community clearly demonstrates the necessity of

  14. Infectious Agents Trigger Trophic Cascades.

    Science.gov (United States)

    Buck, Julia C; Ripple, William J

    2017-09-01

    Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Trophic structure of pelagic species in the northwestern Mediterranean Sea

    Science.gov (United States)

    Albo-Puigserver, Marta; Navarro, Joan; Coll, Marta; Layman, Craig A.; Palomera, Isabel

    2016-11-01

    Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea.

  16. The effects of spatial scale on trophic interactions

    NARCIS (Netherlands)

    Koppel, J. van de; Bardgett, R.D.; Bengtsson, J.; Rodriguez-Barrueco, C.; Rietkerk, M.G.; Wassen, M.J.; Wolters, V.

    2005-01-01

    Food chain models have dominated empirical studies of trophic interactions in the past decades, and have lead to important insights into the factors that control ecological communities. Despite the importance of food chain models in instigating ecological investigations, many empirical studies still

  17. Stable Isotopes Reveal Trophic Partitioning and Trophic Plasticity of a Larval Amphibian Guild

    Science.gov (United States)

    Arribas, Rosa; Díaz-Paniagua, Carmen; Caut, Stephane; Gomez-Mestre, Ivan

    2015-01-01

    Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged) on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ13C and δ15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes) and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians’ ability to adjust to different environmental conditions. PMID:26091281

  18. Stable Isotopes Reveal Trophic Partitioning and Trophic Plasticity of a Larval Amphibian Guild.

    Directory of Open Access Journals (Sweden)

    Rosa Arribas

    Full Text Available Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ13C and δ15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians' ability to adjust to different environmental conditions.

  19. The effect of a natural water-movement related disturbance on the structure of meiofauna and macrofauna communities in the intertidal sand flat of Rocas Atoll (NE, Brazil)

    Science.gov (United States)

    Netto, S. A.; Attrill, M. J.; Warwick, R. M.

    1999-12-01

    Rocas, the only atoll in the South Atlantic, is located 266 km off the northeast Brazilian coast. Spatial patterns in community structure of meiofauna, particularly nematodes, and macrofauna were examined along a transect through the sediment path from windward to leeward of the Rocas Atoll sand flat. Differences in benthic community structure between four zones of the sand flat were found to be significant and related to the major local processes of carbonate-grain transport and sedimentation. Both meiobenthic and macrobenthic assemblages were significantly more diverse and abundant within the sediment inflow zone (the initial part of the detrital path of Rocas sand flat) than in the other zones, where a clear impoverishment of benthic invertebrates occurred. This first study of the benthos of an intertidal sand flat over a reef island in the Atlantic showed that the meiofauna is numerically dominated by the nematodes Metoncholainus sp. 1 (Oncholaimidae) and Epsilonema sp. 1 (Epsilonematidade), whilst the macrofauna is largely dominated by oligochaetes and large Oncholaimidae nematodes. Analysis of the species composition, trophic structure and abundance of both the meiobenthos and the macrobenthos revealed an impoverished community subjected to an intense water-movement disturbance.

  20. How do macrobenthic resources concentrate foraging waders in large megatidal sandflats?

    Science.gov (United States)

    Ponsero, Alain; Sturbois, Anthony; Desroy, Nicolas; Le Mao, Patrick; Jones, Auriane; Fournier, Jérôme

    2016-09-01

    The relationship between foraging shorebirds, macrobenthos and sedimentary parameters has been widely studied across Western Europe. Megatidal areas have large zones uncovered when the water retreats. Consequently, in such cases, the tide also influences foraging activities. This paper examines the use of an intertidal space by waders to define how macrobenthic resource concentrates foraging activity of birds in a large megatidal sandflat. This approach combines accurate spatial distribution of waders (Oystercatcher, Eurasian curlew, Bar-tailed Godwit and Redknot) according to their activity with ecological/biological parameters. A differential exploitation of the flat is clearly shown, with macrobenthic biomass appearing as one of the main explanatory factor for the four species considered on the western part of the bay and altitude (shore elevation) in the eastern part. The novelty of this study relates to the large area, also presumed to be a functional unit, while considering at the same time the singularities of the different parts of the flat. This multi-scale approach identifies important factors influencing the differential distribution patterns observed. The different selected parameters present an important variability in their contribution, underlining the complexity of explaining the distribution of foraging birds. Consequently, the study of such complex phenomena needs to consider additional variables to improve the relevance of explanatory models.

  1. A rapid assessment survey of invasive species of macrobenthic invertebrates in Korean waters

    Science.gov (United States)

    Park, Chul; Kim, Sung-Tae; Hong, Jae-Sang; Choi, Keun-Hyung

    2017-06-01

    Introduced species are a growing and imminent threat to living marine resources in parts of the world's oceans. The present study is a rapid assessment survey of invasive macrobenthic invertebrate species in Korean ports. We surveyed over 40 ports around Korea during the period of May 2010 March 2013. Among the sampling sites were concrete walls, docks and associated floats, bumpers, tires, and ropes which might harbor non-native species. We found 15 invasive species as follows: one Sponge, two Bryozoans, three Mollusks, one Polychaete, four Cirripedes, and four Ascidians. Three morphologically similar species, namely X. atrata, M. galloprovincialis, and X. securis were further examined for distinctions in their morphology. Although they could be reasonably distinguished based on shell shapes, significant overlap was noted so that additional analysis may be required to correctly distinguish them. Although many of the introduced species have already spread to all three coastal areas, newly arrived invasive species showed a relatively restricted range, with a serpulid polychaete Ficopomatus enigmaticus and a mytilid bivalve Xenostrobus securis found only at a few sites on the East Coast. An exception is for Balanus perforatus, which has rapidly colonized the East coast of Korea following its introduction into the region. Successful management of invasive macrobenthic invertebrates should be established in order to contain the spread of these newly arrived species.

  2. Notes on common macrobenthic reef invertebrates of Tubbataha Reefs Natural Park, Philippines

    Directory of Open Access Journals (Sweden)

    Jean Beth S. Jontila

    2012-12-01

    Full Text Available Macrobenthic reef invertebrates are important reef health indicators and fishery resources but are not very well documented in Tubbataha Reefs Natural Park. To provide notes on the species composition and the abundance and size of commonly encountered macrobenthic reef invertebrates, belt transects survey in intertidal, shallow, and deep subtidal reef habitats were conducted. In total, 18 species were recorded, six of which were echinoderms and 12 were mollusks, which include the rare giant clam Hippopusporcellanus. Only the giant clam Tridacna crocea and the top shell Trochus niloticus occurred in all seven permanent monitoring sites but the two species varied in densities across depths. There was also an outbreak of crown-of-thorns (COTs sea stars in some sites. The large variation in the density of each species across sites and depths suggests niche differences, overharvesting, or their recovery fromhaving been overly exploited. Separate monitoring areas for each commercially important species are suggested to determine how their populations respond to poaching and their implications on the park’s long term management.

  3. ABUNDANCE AND ISOTOPIC COMPOSITION OF PLANKTONIC MICROCRUSTACEANS IN A CENTRAL AMAZON FLOODPLAIN LAKE: IMPLICATIONS FOR THE TROPHIC DYNAMICS OF THE PLANKTON COMMUNITY

    Directory of Open Access Journals (Sweden)

    Pedro Caraballo

    2016-01-01

    Full Text Available During the hydrological year from December 2007 to November 2008, monthly samplings in the pelagic, littoral and macrophytes zones were conducted in the Lago Catalão, a floodplain lake receiving a mixture of water from Negro and Solimões Rivers, in front of Manaus city. Taxonomic composition and their relative abundance of the planktonic microcrustaceans community was studied. Natural abundances of carbon (C and nitrogen (N stable isotopes were measured to indicate energy sources. Cladocerans were the most abundant, with a relative abundance of 60%, followed by the calanoid and cyclopoid copepods with relative abundances of 29% and 11%, respectively. Diaphanosoma spp. was the dominant cladoceran group during all the sampling periods. Cladocerans were also represented by Moina spp., Ceriodaphnia spp. and Daphnia gessneri. Three genera of calanoid copepods were found: Notodiaptomus spp, Rhacodiaptomus spp., and Argyrodiaptomus spp. The genus Mesocyclops spp. was identified among the cyclopoid copepods. Zooplankton δ13C values indicated that the aquatic macrophyte zone was distinct, with a mean of -27.31‰, which was more enriched than zooplankton in the pelagic and littoral zones, where they had mean δ13C values of -33.11 and -34.66‰, respectively. Overall, analysis of stable isotopes showed that regardless of the pathways, the initial source of carbon for the zooplankton was phytoplankton, with a minimal participation of heterotrophic bacteria.

  4. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

    Directory of Open Access Journals (Sweden)

    Valentina Lauria

    Full Text Available Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO, the decadal mean Sea Surface Temperature (SST in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193. Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014 as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05. Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea, emphasizing the need for more research at regional scales.

  5. Seasonal succession in zooplankton feeding traits reveals trophic trait coupling

    DEFF Research Database (Denmark)

    Kenitz, Kasia; Visser, Andre; Mariani, Patrizio

    2017-01-01

    succession and shows how the physical environment controls the vertical structure of plankton communities, where ambush feeders exhibit a preference for greater depths during summer. We characterize the seasonal succession as trophic trait coupling and conjecture that this coupling leads to a trophic trait......The seasonal forcing of pelagic communities invokes a succession of the dominant phytoplankton and zooplankton species. Here, we characterize the seasonal succession of the plankton traits and their interactions using observations and model simulations of the plankton community in the western...... English Channel. We focus on activity traits that characterize the defensive and feeding abilities of zooplankton and distinguish between low risk, low return ambush feeders and high risk, high return feeding-current feeders. While the phytoplankton succession depends on traits related to nutrient...

  6. Inducible defences and trophic structure

    NARCIS (Netherlands)

    Vos, M.; Verschoor, A.M.; Kooi, B.W.; Wäckers, F.L.; DeAngelis, D.L.; Mooij, W.M.

    2004-01-01

    Resource edibility is a crucial factor in ecological theory on the relative importance of bottom-up and top-down control. Current theory explains trophic structure in terms of the relative abundance and succession of edible and inedible species across gradients of primary productivity. We argue that

  7. Inducible defences and trophic structure.

    NARCIS (Netherlands)

    Vos, M.; Verschoor, A.M.; Kooi, B.W.; Wackers, F.L.; DeAngelis, D.L.; Mooij, W.M.

    2004-01-01

    Resource edibility is a crucial factor in ecological theory on the relative importance of bottom-up and top-down control. Current theory explains trophic structure in terms of the relative abundance and succession of edible and inedible species across gradients of primary productivity. We argue that

  8. Historical changes in the structure and functioning of the benthic community in the lagoon of Venice

    Science.gov (United States)

    Pranovi, Fabio; Da Ponte, Filippo; Torricelli, Patrizia

    2008-03-01

    One of the main challenges in environmental management is how to manage the dynamics of natural environments. In this context, having information about historical changes of the structure of the biological communities could represent a useful tool to improve management strategies, contributing to refine the policy objectives, since it gives reference states with which to compare the present. The Venice lagoon represents an interesting case study, since it is a highly dynamic, but sensitive, environment which requires the adoption of prudent management. In its recent history the lagoon ecosystem has been exposed to different kinds of disturbance, from the discharge of pollutants and nutrients, to the invasion of alien species and the exploitation of its biological resources by using highly impacting fishing gears. The analysis of available data about the macro-benthic community, from 1935 to 2004, allows the description of changes of the community structure over almost 70 years, showing a sharp decrease in its diversity. In order to obtain information about its functioning, it is necessary to know how these changes have affected processes at the community and system level. In shallow water ecosystems, as the control is mainly due to the benthic compartment, variations in the structure of the benthic community can induce modifications in processes at different hierarchical levels. The trophic structure analysis has revealed major changes during the period; from a well-assorted structure in 1935, to an herbivore-detritivore dominated one in the 1990s, and finally to a filter feeder dominated structure during the last decade. This has produced variations in the secondary production and it has induced modifications in the type of the ecosystem control. These changes are discussed in the light of the dynamics of the main driving forces.

  9. Effects of shoreline discharge of iron mine tailings on a marine soft-bottom community in northern Chile.

    Science.gov (United States)

    Lancellotti, D A; Stotz, W B

    2004-02-01

    This study evaluates the magnitude and extension of the impact produced by the discharge of inert allochthonous materials, including clays and particulate iron, on macrobenthic soft-bottom assemblages in the subtidal zone of a coastal bay in north-central Chile. An average of 118 Ton h(-1) of finely divided solids were discharged into the rocky intertidal zone of the bay for a period of over 16 years, producing continuous turbidity in the water column and sedimentation in the subtidal zone. Data obtained four months before cessation of the discharge showed that the macrofauna present at 20 and 50 m depth in the bay suffered an important decrease in abundance and species richness, low diversity/high dominance, and deep changes in community structure related to the discharge. The faunal assemblages present at 110 m depth did not show effects from the discharge, suggesting that the impact was limited to the inner part of the bay. The impoverished faunal aggregates at 20 and 50 m depth showed exclusive domination by the Lumbrineris bifilaris (polychaete)-Diastylis tongoyensis (cumacean) association, representing a simple trophic guild of deposit feeders. The complete absence of opportunistic species such as capitellid, spionid, and/or cirratulid polychaetes may be associated with the turbidity and sedimentation levels in the bay.

  10. Distribution and abundance of macrobenthic polychaetes along the South Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Musale, A.S.; Desai, D.V.

    include microbial (bacteria, microalgae, protists and fungi), meiobial and organic substance (Shou et al. 2009). In the trophic system, benthic fauna plays a significant role as they exploit all forms of food available in the sediment and form...

  11. Assessment Of Trophic Status In Bali Strait

    Directory of Open Access Journals (Sweden)

    Umi Zakiyah

    2016-04-01

    Full Text Available The nutrient content in Banyuwangi coastal environment mostly caused by human activities along the coastal area of Bali strait especially in Banyuwangi surrounding areas. The change of organic element content in waters will directly affect plankton community structure and the aquatic trophic level. The aimed of this research were to analyze the plankton community structure, and to observe the quality of aquatic and determine Bali Strait especially Banyuwangi coastal area trophic level. This research was done in October 2015 at Banyuwangi coastal area. Methods used in this research was descriptive with seawater sampling for water quality analysis of several parameter such as nitrates (NO3, phosphates (PO4, TOM (Total Organic Matter and Chlorophyll-a, meanwhile other parameters were, temperature, pH, Dissolved Oxygen dan salinity from three different depth of three different stations, coastal area of Bangsring, Tandjung Wangi and Muncar. The results for water quality parameters showed that Bangsring coastal area was the most  healthy waters compared to Bangsring and Muncar. Meanwhile, there were tendency that the concentration mostly high in the surface and decrease along with the deeper depth. This condition presumed caused by the ARLINDO current that passed through Bali strait. Phytoplankton identified and calculated consisted of 3 division, namely Chlorophyta, Chrysophyta, and Cyanophyta with total density ranges between 4-2888 ind/ml. The value of diversity index phytoplankton (H’ ranges between 0,3-0,7. Based on the result it can be concluded that Banyuwangi coastal areas were at throphic level of  oligotrophic tended to mesotrophic in northern part and eutrophic especially in Muncar. Thus, it was suggested for the Government to prevent this area becoming more polluted in the future.

  12. Effects of reclamation on macrobenthic assemblages in the coastline of the Arabian Gulf: a microcosm experimental approach.

    Science.gov (United States)

    Naser, Humood A

    2011-03-01

    Coastal reclamation and modifications are extensively carried out in Bahrain, which may physically smother the coastal and subtidal habitats resulting in changes to abundance and distribution of macrobenthic assemblages. A microcosm laboratory experiment using three common macrobenthic invertebrates from a proposed reclaimed coastal area was preformed to examine their responses to mud burial using marine sediment collected from a designated borrow area. Significant difference in numbers of survived organisms between control and experimental treatments with a survival percentage of 41.8% for all of the selected species was observed. The polychaete Perinereis nuntia showed the highest percentage of survival (57.1%) followed by the bivalve Tellinavaltonis (42.3%) and the gastropod Cerithidea cingulata (24.0%). Quantifying species responses to sediment burial resulted from dredging and reclamation will aid in predicting the expected ecological impacts associated with coastal developments and subsequently minimizing these impacts and maintaining a sustainable use of coastal and marine ecosystems in the Arabian Gulf.

  13. Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals.

    Science.gov (United States)

    Tucker, Marlee A; Rogers, Tracey L

    2014-12-22

    Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals

    Science.gov (United States)

    Tucker, Marlee A.; Rogers, Tracey L.

    2014-01-01

    Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460

  15. Macrobenthic community response to the Marenzelleria viridis (Polychaeta) invasion of a Danish estuary

    DEFF Research Database (Denmark)

    Delefosse, Matthieu; Banta, Gary; Canal Vergés, Paula

    2012-01-01

    In the context of increasing biological invasions, we investigated the invasion of the non-native polychaete Marenzelleria viridis in a shallow Danish estuary, Odense Fjord. Three datasets with different spatial and temporal resolution were examined to describe the invasion of M. viridis and to i...

  16. Infaunal macrobenthic community of soft bottom sediment in a tropical shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Jayaraj, K.A.; Jacob, J.; DineshKumar, P.K.

    * Cluster 1 Cluster 2 Cluster 3 Depth 30–50 m 75–100 m H11022 100m Mean density (ind./m 2 ) 2021 396 257 SD 1739 334 263 Prionospio pinnata p. pinn 478 30 23 P. cirrifera p. cirr 57 0 0 P. sexoculata p. sex 52 0 0 P. polybranchiata p. poly 31 0 0 P. ehlersi...

  17. Macrobenthic communities of the coastal waters of Dabhol, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Rodrigues, N.; Ansari, Z.A.

    's formula as a measurement of specific diversity and its use and misuse, Am Nat, 100 (1966) 463-465. 8 Margalef R, Perspective in ecological theory, (University of Chicago Press, Chicago) 1968, pp.111. 9 Bray J R & Curtis J T, An ordination..., Harkantra S N & Ansari Z A, Benthic pro- duction and demersal fishery resources of the Indian seas. Indian J Mar Sci, 11 (1982) 7-14. 16 Kinney O, Cultivation of animals, in Marine ecology, Vol. 3 (2), edited by O Kinney, (Wiley & Sons, London) 1977...

  18. Environmental gradient favours functionally diverse macrobenthic community in a placer rich tropical bay

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.K.; Ingole, B.S.; Fernandes, C.E.G.

    (GR), omnivore (O), and carnivore (C). Mobility categories included: mobile (M), discretely mobile (D), and sessile (S). Five categories of habit type were classified free living, that is, living on surface or actively burrowing (F), tubiculous (T... Polychaeta Ancistrosyllis sp. 0–25 C M F Microphthalmus sp. 0–1,100 GR M F Hesione sp. 0–50 O M F Exogone sp. 25–75 GR M F Odontosyllis sp. 0–50 C M F Nereis sp. 25–75 O D T Perinereis sp. 0–25 O D T Eteone sp. 50–1,025 O M F Phyllodoce sp. 50–650 O M F...

  19. Potential impact of sand mining on macrobenthic community at Kalbadevi Beach, Ratnagiri, West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.; Sautye, S.; Nanajkar, M.; Ingole, B.S.

    removal of sediment. However, the macro faunal parameters returned to the pre-disturbances values within a period of two months after disturbances, suggesting short-term impact of physical disturbances....

  20. Impact of maintenance dredging on macrobenthic community structure of a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Rehitha, T.V.; Ullas, N.; Vineetha, G.; Benny, P.Y.; Madhu, N.V.; Revichandran, C.

    quality showed relatively higher values (>0.24), which indicates the prevalence of poor environmental conditions in the dredging locations. The present study reveals the extent of impacts associated with maintenance dredging activities in a tropical...

  1. Ontogenetic, spatial and temporal variation in trophic level and diet of Chukchi Sea fishes

    Science.gov (United States)

    Marsh, Jennifer M.; Mueter, Franz J.; Iken, Katrin; Danielson, Seth

    2017-01-01

    Climate warming and increasing development are expected to alter the ecosystem of the Chukchi Sea, including its fish communities. As a component of the Arctic Ecosystem Integrated Survey, we assessed the ontogenetic, spatial and temporal variability of the trophic level and diet of key fish species in the Chukchi Sea using N and C stable isotopes. During August and September of 2012 and 2013, 16 common fish species and two primary, invertebrate consumers were collected from surface, midwater and bottom trawls within the eastern Chukchi Sea. Linear mixed-effects models were used to detect possible variation in the relationship between body length and either δ13C or δ15N values among water masses and years for 13 fish species with an emphasis on Arctic cod (Boreogadus saida). We also examined the fish community isotopic niche space, trophic redundancy, and trophic separation within each water mass as measures of resiliency of the fish food web. Ontogenetic shifts in trophic level and diet were observed for most species and these changes tended to vary by water mass. As they increased in length, most fish species relied more on benthic prey with the exception of three forage fish species (walleye pollock, Gadus chalcogrammus, capelin, Mallotus villosus, and Pacific sandlance, Ammodytes hexapterus). Species that exhibited interannual differences in diet and trophic level were feeding at lower trophic levels and consumed a more pelagic diet in 2012 when zooplankton densities were higher. Fish communities occupied different isotopic niche spaces depending on water mass association. In more northerly Arctic waters, the fish community occupied the smallest isotopic niche space and relied heavily on a limited range of intermediate δ13C prey, whereas in warmer, nutrient-rich Bering Chukchi Summer Water, pelagic prey was important. In the warmest, Pacific-derived coastal water, fish consumed both benthic and pelagic prey. Examining how spatial gradients in trophic

  2. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes.

    Science.gov (United States)

    Wood, Susanna A; Maier, Marcia Y; Puddick, Jonathan; Pochon, Xavier; Zaiko, Anastasija; Dietrich, Daniel R; Hamilton, David P

    2017-02-01

    Cyanobacteria are commonly associated with eutrophic lakes, where they often form blooms and produce toxins. However, they are a ubiquitous component of phytoplankton in lakes of widely varying trophic status. We hypothesised that cyanobacterial diversity would vary among lakes of differing trophic status, but that the relative importance of geographical and hydromorphological characteristics driving these patterns would differ across trophic groups. DNA from 143 New Zealand lakes that spanned a range of geographic, hydromorphological and trophic gradients was analysed using automated rRNA intergenic spacer analysis and screened for genes involved in cyanotoxin production. Statistical analysis revealed significant delineation among cyanobacterial communities from different trophic classes. Multivariate regression indicated that geographical features (latitude, longitude and altitude) were significant in driving cyanobacterial community structure; however, partitioning of their effects varied among trophic categories. High-throughput sequencing was undertaken on selected samples to investigate their taxonomic composition. The most abundant and diverse (71 operational taxonomic units) taxon across all lake types was the picocyanobacteria genus Synechococcus Cyanotoxins (microcystins n = 23, anatoxins n = 1) were only detected in eutrophic lowland lakes. Collectively, these data infer that increasing eutrophication of lakes will have broad-scale impacts on planktonic cyanobacteria diversity and the prevalence of cyanotoxins. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Railsback, Steven F; Harvey, Bret C

    2013-02-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can address feedbacks but does not provide foraging theory for unique individuals in variable environments. 'State- and prediction-based theory' (SPT) is a new approach that combines existing trade-off methods with routine updating: individuals regularly predict future food availability and risk from current conditions to optimize a fitness measure. SPT can reproduce a variety of realistic foraging behaviors and trait-mediated trophic interactions with feedbacks, even when the environment is unpredictable.

  4. Trophic status of the Iranian Caspian Sea based on water quality parameters and phytoplankton diversity

    Science.gov (United States)

    Nasrollahzadeh, Hasan Saravi; Din, Zubir Bin; Foong, Swee Yeok; Makhlough, Asieh

    2008-05-01

    The present study attempted to test the applicability of the trophic index (TRIX) for assessing trophic status along the Iranian coast of the Caspian Sea (CS). In order to increase the sensitivity of the TRIX for this area, we defined the range (lower and upper limits) from data collected between 1994 and 2005 which have been used as a reference. Several biological and chemical water quality parameters were determined and compared with the TRIX in order to describe the water quality status of the area. Comparisons were also made on two temporarily and spatially varied trophic status at the study site. Sampling was carried out at 36 stations during Phase I (1996-1997: before the introduction of an alien species Mnemiopsis leidyi, as a background data) while 24 stations were sampled during Phase II in 2005 (after the introduction of the alien species). A Parallel Study (as supplementary data) from 16 smaller scale sampling at shallower sites was also included in the discussion (1994-2005 on 18 transects). The results show that nutrient concentration (DIN, DIP compounds), oxygen (as absolute %) deviation from saturation (aD%O), chlorophyll a and also the Caspian Sea Trophic Index (TRIXCS) increase significantly after the introduction of an alien species ( p<0.01). During Phase I and the Parallel Study, the phytoplankton community was dominated (based on important species index) by Thalassionema nitzschioides, Skeletonema costatum (Chrysophyta) year round but during Phase II, Spirulina laxissma (Cyanophyta ) dominated annually and in autumn, coinciding with the minimum Shannon-Weaver diversity and Evenness indices recorded. Several trophic status indices and indicators were applied and an overall analysis suggested that the area has low trophic level during Phase I and high trophic level during Phase II. During the Parallel Study, low trophic level was recorded during the pre-invasion period and high trophic level for the post-invasion period.

  5. Adaptive behaviour, tri-trophic food-web stability and damping of chaos

    DEFF Research Database (Denmark)

    Visser, Andre; Mariani, Patrizio; Pigolotti, Simone

    2012-01-01

    We examine the effect of adaptive foraging behaviour within a tri-trophic food web with intra-guild predation. The intra-guild prey is allowed to adjust its foraging effort so as to achieve an optimal per capita growth rate in the face of realized feeding, predation risk and foraging cost. Adaptive...... directly. The latter condition is a general criterion for the feasibility of intra-guild predation as a trophic mode. Under these conditions, we demonstrate rigorously that adaptive behaviour will always promote stability of community dynamics in the sense that the region of parameter space in which...... fitness-seeking behaviour of the intra-guild prey has a stabilizing effect on the tri-trophic food-web dynamics provided that (i) a finite optimal foraging effort exists and (ii) the trophic transfer efficiency from resource to predator via the intra-guild prey is greater than that from the resource...

  6. Soft-bottom macrobenthic faunal associations in the southern Chilean glacial fjord complex

    Directory of Open Access Journals (Sweden)

    Carlos Ríos

    2005-12-01

    Full Text Available Macrobenthic associations were investigated at 29 sampling stations with a semi-quantitative Agassiz trawl, ranging from the South Patagonian Icefield to the Straits of Magellan in the South Chilean fjord system. A total of 1,895 individuals belonging to 131 species were collected. 19 species belong to colonial organisms, mainly Bryozoa (17 species and Octocorallia (2 species. The phylum Echinodermata was the most diverse in species number (47 species, with asteroids (25 species and ophiuroids (13 species being the best represented within this taxon. Polychaeta was the second dominant group in terms of species richness (46 species. Multidimensional scaling ordination (MDS separated two station groups, one related to fjords and channels off the South Patagonian Icefield and the second one to stations surrounding the Straits of Magellan. 45 species account for 90% of the dissimilarity between these two groups. These differences can mainly be explained by the influence of local environmental conditions determined by processes closely related to the presence/absence of glaciers. Abiotic parameters such as water depth, type of sediment and chemical features of the superficial sediment were not correlated with the numbers of individuals caught by the Agassiz trawl in each group of sampling stations.

  7. Evaluation of European diatom trophic indices.

    NARCIS (Netherlands)

    Lototskaya, A.A.; Verdonschot, P.F.M.; Coste, M.; Vijver, van de B.

    2011-01-01

    Freshwater diatoms are considered to be reliable indicators of the trophic status of rivers and lakes. In the past 30 years, a number of indicator indices have been developed and used for the assessment of trophic conditions all over Europe. It is however still not clear whether the ecologic signatu

  8. Estructura comunitaria y trófica de las estrellas de mar (Echinodermata: Asteroidea en arrecifes rocosos de Loreto, Golfo de California, México Community and trophic structure of sea stars (Echinodermata: Asteroidea in rocky reefs of Loreto, Gulf of California, Mexico

    Directory of Open Access Journals (Sweden)

    Betsabé Montserrat Luna Salguero

    2010-08-01

    its assemblages. The objective of this study was to compare the community and trophic structure of rocky bottom asteroids in two regions of the Gulf of California: Loreto and Ligüi (25.5° to 26.5°N. Individuals were censused in belt transects 25 × 2 m (N = 106, at depths from 3 to 12 m, abundance, species richness, diversity (H' and evenness (J' was estimated, as well as the number of seastars per trophic guild (carnivores, herbivores and detritivores, and of guilds present per transect. The results indicate that starfish assemblages in both zones were dominated by the species Phataria unifascialis, and that Loreto had significantly higher richness, abundance and diversity of asteroids than Ligüi, probably as a consequence of higher number of habitats and food resources. In relation to the trophic composition, in both areas herbivores predominated, followed by detritivores and finally by carnivores. Abundance in each trophic level was statistically higher in Loreto, and also there were more trophic groups per transect at that location.

  9. Estrutura da comunidade de invertebrados bentônicos em dois cursos d'água do Rio Grande do Sul, Brasil Community structure of benthic invertebrates in two watercourses in Rio Grande do Sul State, southern Brazil

    Directory of Open Access Journals (Sweden)

    Alessandra A. P. Bueno

    2003-03-01

    Full Text Available The benthic fauna has an important role in the trophic chain of limnic environments, serving as food for fishes and crustaceans. This work aimed to identify and compare, quantitative and qualitatively, the macrobenthic communities from two watercourses in Rio Grande do Sul State. Samplings were done with a Surber sampler, monthly, from September 1999 to August 2000, in one of the creeks forming Tainhas River(29º15'30,2"S, 50º13'12,5"W, around São Francisco de Paula city and in Mineiro Creek (29º30'0,2"S, 50º46'50"W, around Taquara city. At each sampling point, physical and chemical variables of the waters were registered. In the laboratory, the samples were sorted out and the animals identified and quantified. Dissolved oxigen, pH and stream speed were very similar for both environments, whilst conductivity had extreme values. Insects, crustaceans, acari and molluscs dominated in the samples. Abundance, richness and diversity indexes in Tainhas subsidiary had relatively higher average values than Mineiro Creek. Similarity matrix groupings between sampling units indicate three groups. Our research revealed important characteristics of the ecology and distribution of benthic invertebrates, information that can subsidise future environmental monitoring in the region of São Francisco de Paula and Taquara.

  10. Effects of habitat complexity on the structure of macrobenthic association in a Spartina altemiflora marsh

    Directory of Open Access Journals (Sweden)

    Maurea Nicoletti Flynn

    1996-01-01

    Full Text Available The structure and seasonal variability of macrobenthic associations in four different patches on a Sportillo alterniflora bed at Arrozal Point, Cananéia, São Paulo State are described and compared. In the local intertidal marsh, densities of S. oltemifloro plants appear in sparsely or denscly arranged patches, both in tall and short forms. The infaunal polychaetes Copitella copitata, Isolda pulchella, Laconereis acuta accounted for 44.0% of the total individuals while epifaunal forms such as Helcobia australis, Littorina ollngulifera, Tholozidium rhombofrotalis and Sphoeromopsis mourei were the second most abundant components with 39.5%. Classilication analyses of sampling time in the same sampling patch indicated that species groups were formed basically by spatial similarity and peak densities of macrofauna and secondarily by temporal patterns. Temporal variations were evident with higher number of species in eolder months (winter and spring. Species diversity and evenness did not show clear seasonal pattcrns, although they were sigmlicantly different in sampling patchcs and time. Heleobia australis, Littorina agulifera and Anomalocardia brasilienses were dominant in tall sparse S. alterniflora with density pcaks occurring in winter/spring pcriods. Tholozodium rhombofrontalis and Sphoeromopsis mourei; were dominant in short sparse S. olterniflora with density peaks in summer. In tall, densely distributed S. altemiflora plants the higher densities occurred in winter and the dominant spccies were Nereis oligohoalina, Isolda pulchella and Copitella capitata. The species H. australis, L ongulifera and A. brasiliensis predominated in the short S. alterniflora plants denscly distributed, with faunistic peaks recorded in spring. The results suggcst that differenccs in form and aggregation of S. alternifloraimpart changes in the structure of macrobenthic fauna associated to this vegetation.A estrutura e variação temporal de associações macrobent

  11. Shifts in the trophic base of intermittent stream food webs

    Science.gov (United States)

    Dekar, Matthew P.; Magoulick, Daniel D.; Huxel, G.R.

    2009-01-01

    Understanding spatial and temporal variation in the trophic base of stream food webs is critical for predicting population and community stability, and ecosystem function. We used stable isotope ratios (13C/12C, and 15N/14N) to characterize the trophic base of two streams in the Ozark Mountains of northwest Arkansas, U.S.A. We predicted that autochthonous resources would be more important during the spring and summer and allochthonous resources would be more important in the winter due to increased detritus inputs from the riparian zone during autumn leaf drop. We predicted that stream communities would demonstrate increased reliance on autochthonous resources at sites with larger watersheds and greater canopy openness. The study was conducted at three low-order sites in the Mulberry River Drainage (watershed area range: 81-232 km2) seasonally in 2006 and 2007. We used circular statistics to examine community-wide shifts in isotope space among fish and invertebrate consumers in relation to basal resources, including detritus and periphyton. Mixing models were used to quantify the relative contribution of autochthonous and allochthonous energy sources to individual invertebrate consumers. Significant isotopic shifts occurred but results varied by season and site indicating substantial variation in the trophic base of stream food webs. In terms of temporal variation, consumers shifted toward periphyton in the summer during periods of low discharge, but results varied during the interval between summer and winter. Our results did not demonstrate increased reliance on periphyton with increasing watershed area or canopy openness, and detritus was important at all the sites. In our study, riffle-pool geomorphology likely disrupted the expected spatial pattern and stream drying likely impacted the availability and distribution of basal resources.

  12. Trophic level stability-inducing effects of predaceous early juvenile fish in an estuarine mesocosm study.

    Directory of Open Access Journals (Sweden)

    Ryan J Wasserman

    Full Text Available BACKGROUND: Classically, estuarine planktonic research has focussed largely on the physico-chemical drivers of community assemblages leaving a paucity of information on important biological interactions. METHODOLOGY/PRINCIPAL FINDINGS: Within the context of trophic cascades, various treatments using in situ mesocosms were established in a closed estuary to highlight the importance of predation in stabilizing estuarine plankton abundances. Through either the removal (filtration or addition of certain planktonic groups, five different trophic systems were established. These treatments contained varied numbers of trophic levels and thus different "predators" at the top of the food chain. The abundances of zooplankton (copepod and polychaete, ciliate, micro-flagellate, nano-flagellate and bacteria were investigated in each treatment, over time. The reference treatment containing apex zooplanktivores (early juvenile mullet and plankton at natural densities mimicked a natural, stable state of an estuary. Proportional variability (PV and coefficient of variation (CV of temporal abundances were calculated for each taxon and showed that apex predators in this experimental ecosystem, when compared to the other systems, induced stability. The presence of these predators therefore had consequences for multiple trophic levels, consistent with trophic cascade theory. CONCLUSIONS/SIGNIFICANCE: PV and CV proved useful indices for comparing stability. Apex predators exerted a stabilizing pressure through feeding on copepods and polychaetes which cascaded through the ciliates, micro-flagellates, nano-flagellates and bacteria. When compared with treatments without apex predators, the role of predation in structuring planktonic communities in closed estuaries was highlighted.

  13. Trophic ulcers in the carpal tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Abelardo Q.-C. Araújo

    1993-09-01

    Full Text Available A patient with carpal tunnel syndrome (CTS and trophic ulcers is described. Despite the healing of the ulcers after surgery for CTS, the severe sensory deficit and the electrophysiological tests have not shown any significant improvement. We think these findings argue against the hypothesis of the sensory deficit being responsible for the trophic ulcers. We favor a major role for the sympathetic disturbances as the main cause for those lesions.

  14. A bio-engineered soft-bottom environment: The impact of Lanice conchilega on the benthic species-specific densities and community structure

    NARCIS (Netherlands)

    Rabaut, M.; Guilini, K.; Van Hoey, V.H.; Vincx, M.; Degraer, S.

    2007-01-01

    This paper evaluates the effect of the tube-building, habitat structuring polychaete Lanice conchilega on the macrobenthic community and sediment characteristics of its habitat. To investigate which factors make species occur in a well-known bio-engineered habitat, macrofaunal and sedimentological d

  15. Trophic impact of Atlantic bluefin tuna migrations in the North Sea

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Andersen, Ken Haste; Lindegren, Martin

    2017-01-01

    spectrum model to analyse the trophic impact of the returning tuna on the entire fish community, under scenarios with varying levels of tuna consumption and fishing mortality on the prey. We show that with high level of prey fishing mortality in the North Sea, the effect of a tuna re-colonization results...

  16. Trophic ecology of Lepidoptera larvae associated with woody vegetation in a savanna ecosystem

    CSIR Research Space (South Africa)

    Scholtz, CH

    1982-06-01

    Full Text Available This study represents a quantitative survey of a Lepidoptera community and deals with the trophic ecology of the 27 species of foliage-feeding Lepidoptera on the eight dominant woody plants in the Burkea africana-Eragrostis pallens savanna...

  17. Multispecies interactions across trophic levels at macroscales: retrospective and future directions

    NARCIS (Netherlands)

    W.D. Kissling; M. Schleuning

    2015-01-01

    Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively demonstrated at local spatial scales. However, how local species interactions scale-up to large spatial scales and how they contribute to shape specie

  18. Effects of an invasive plant transcend ecosystem boundaries through a dragonfly-mediated trophic pathway.

    Science.gov (United States)

    Burkle, Laura A; Mihaljevic, Joseph R; Smith, Kevin G

    2012-12-01

    Trophic interactions can strongly influence the structure and function of terrestrial and aquatic communities through top-down and bottom-up processes. Species with life stages in both terrestrial and aquatic systems may be particularly likely to link the effects of trophic interactions across ecosystem boundaries. Using experimental wetlands planted with purple loosestrife (Lythrum salicaria), we tested the degree to which the bottom-up effects of floral density of this invasive plant could trigger a chain of interactions, changing the behavior of terrestrial flying insect prey and predators and ultimately cascading through top-down interactions to alter lower trophic levels in the aquatic community. The results of our experiment support the linkage of terrestrial and aquatic food webs through this hypothesized pathway, with high loosestrife floral density treatments attracting high levels of visiting insect pollinators and predatory adult dragonflies. High floral densities were also associated with increased adult dragonfly oviposition and subsequently high larval dragonfly abundance in the aquatic community. Finally, high-flower treatments were coupled with changes in zooplankton species richness and shifts in the composition of zooplankton communities. Through changes in animal behavior and trophic interactions in terrestrial and aquatic systems, this work illustrates the broad and potentially cryptic effects of invasive species, and provides additional compelling motivation for ecologists to conduct investigations that cross traditional ecosystem boundaries.

  19. Detection of terrigenous and marine organic matter flow into a eutrophic semi-enclosed bay by δ(13)C and δ(15)N of intertidal macrobenthos and basal food sources.

    Science.gov (United States)

    Arbi, Iman; Liu, Songlin; Zhang, Jingping; Wu, Yunchao; Huang, Xiaoping

    2017-09-20

    The pathways of terrigenous and marine organic matter originating into Daya Bay intertidal habitats were investigated using carbon and nitrogen stable isotope analyses. Spatiotemporal (sites, seasons and tidal levels) variations in isotopic ratios of basal food sources and macrobenthic consumers, and also the contribution of sources to the diet of representative species and the whole macrobenthic biomass were estimated using Isosource mixing model. Results showed the anthropogenic impacts on benthic and pelagic organic matter as well as macrobenthos, depending on the spatial and temporal scales. Macrobenthic trophic structure was affected by mariculture and nuclear power plants in the dry season (winter), and the allochthonous sources i.e. industrial and urban sewage in flood season (summer). Microphytobenthos dominated the sediment organic matter pool and macrobenthic diet, while the trophic importance of mangrove leaf litter for intertidal macrobenthic communities was low. However, mangroves showed their indirect effects on the variations in macrobenthic trophic function across tidal levels. The isotopic ratios of benthic food sources and common taxa varied significantly among the tidal levels of the mangrove-lined ecosystem. In addition, pooling the macrobenthic taxa based on their feeding guild and also biomass confirmed the causes and effects for variations in organic matter composition and flow indicated by representative species in the study area. Therefore, using feeding guild and biomass as the indicators of the macrobenthic trophic function is suggested as well as the tidal level spatial scale in the heterogeneous intertidal ecosystems for data analyses and sampling design of intertidal macrobenthic food web modeling. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 我国海洋大型底栖生物多样性研究及展望:以黄海为例%An overview of studies on marine macrobenthic biodiversity from Chinese waters: principally from the Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    李新正

    2011-01-01

    The progress on the studies of marine macrobenthic biodiversity from Chinese waters with a focus on the Yellow Sea is summarized in the present paper, with discussions of achievements in the fields of species composition, individual consistency, biomass, biodiversity, secondary productivity, macrobenthic community energy levels, and the introductions of research methods, impacts of environmental change and pollution. To date, Jiaozhou Bay, Changjiang Estuary, and the Fujian and Zhejiang coastal zones are the most intensively studied regions. The seminal research projects on macrobenthic ecology and biodiversity within the study region are also listed. In conclusion of the studies of macrobenthic ecology and biodiversity in China seas, the macrobenthic fauna from the Bohai Bay is the most simple. A total of 413 macrobenthic species have been found in this gulf, the common or dominant species are usually the hypothermal, euryhalinous warm water species; the annual mean biomass is 19.83 g/m2, the Mollusca is the main contributing group to the biomass; the annual mean density is 474 inds./m2, the Polychaeta and Mollusca are the two main contributing groups to the density. In the Yellow Sea, 853 macrobenthic species have been found. The common or dominant species are stenohaline warm water species; the annual mean biomass from the northern Yellow Sea is 99.66 g/m2, the Echinodermata is the main contributing group to the biomass, the annual mean biomass from the southern Yellow Sea is 27.69 g/m2, which is much lower than that from the northern Yellow Sea, the Polychaeta is the main contributor; the annual mean density from the northern Yellow Sea is 2,017.40 inds./m2, that from the southern Yellow Sea is only 88.67 inds./m2. In fact, the mean density and biomass from the northern Yellow Sea is much higher than those from other areas in China seas; the annual mean secondary productivity from the southern Yellow Sea is 4.98 g(APDW)/m2, the two high areas of secondary

  1. Temporal characterization of mercury accumulation at different trophic levels and implications for metal biomagnification along a coastal food web.

    Science.gov (United States)

    Cardoso, P G; Pereira, E; Duarte, A C; Azeiteiro, U M

    2014-10-15

    The main goal of this study was to assess temporal mercury variations along an estuarine food web to evaluate the mercury contamination level of the system and the risks that humans are exposed to, due to mercury biomagnification. The highest mercury concentrations in the sediments and primary producers (macrophytes) were observed during winter sampling. Instead, the highest mercury concentrations in the water, suspended particulate matter as well as in the zooplanktonic and suprabenthic communities were observed during summer sampling. Evidences of mercury biomagnification along the food web were corroborated by the positive biomagnification factors, particularly for omnivorous macrobenthic species. Comparing the mercury levels at distinct components with several environmental quality criteria it suggests that sediments, water and edible species (e.g., bivalve Scrobicularia plana and the crustacean Carcinus maenas) presented higher mercury levels than the values accepted by legislation which represent a matter of concern for the environment and human health.

  2. The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel; Munk, Peter

    2011-01-01

    Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the GodthAyenbsfjord (64 degrees N, 51 degrees W) SW Greenland, through a combination of fieldwork...... ration of 1% body C d(-1). Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 mu m, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory...

  3. Dynamics of the bathyal Benthic Boundary Layer in the northwestern Mediterranean: depth and temporal variations in macrofaunal megafaunal communities and their possible connections within deep-sea trophic webs

    Science.gov (United States)

    Cartes, Joan E.

    1998-01-01

    The distribution patterns of benthopelagic fauna and the macrofauna-megafauna trophic relationships in the Benthic Boundary Layer (BBL) were studied. The study is based on data collected during 6 sampling cruises off the Catalan coast (western Mediterranean) during 1991-1995 at depths ranging from 389-1355 m. Crustaceans were the dominant benthopelagic macrofauna in the BBL level closest to the sea bed (~0-1.5 m above bottom) on the Catalan Sea slope. Copepods and peracarid crustaceans (mysids, amphipods, isopods, and cumaceans) were dominant, whereas euphausiids and natantian decapods, some taxa of gelatinous plankton (siphonophores, medusae, and chaetognaths), and benthopelagic fishes were also well represented groups. Seasonal changes in megafaunal decapod crustaceans abundance seem to be linked to changes in the density and the biological cycle of BBL macrofauna, which constitute an important part of the available food exploited by megafauna. Both the advective and the vertical flow of organic matter in the north-western Mediterranean should simultaneously influence peaks of available food (BBL macrofauna) for bathyal-megafaunal decapods. Recruitment of macrofaunal (suprabenthos and infauna) species at the level of canyons and neighbouring slope zones mainly occurred between late autumn-late winter and would probably be mainly induced by an advective component. However, the macrofaunal sizes consumed by megafaunal decapods are found more abundantly represented in spring and summer populations. In parallel, the vertical fluxes seem to determine maxima in the abundance of planktonic organisms (especially copepods) which also occur in late spring-summer. Size, natatory capability, and energetic value are important factors in the selection of food-resources by megafaunal decapods, which would have a greater availability of food in late spring-summer. This would explain both the seasonal maxima of decapod abundance in summer, and maxima in the catches of some

  4. Zooplankton-based assessment of the trophic state of a tropical forest river in Nigeria

    Directory of Open Access Journals (Sweden)

    Imoobe T.O.T.

    2009-01-01

    Full Text Available In this study, we explore the usefulness of zooplankton as a tool for assessing the trophic status of a Nigerian forest river. The river was sampled monthly and investigated for water physico-chemistry and zooplankton community structure using basic statistical measurement of diversity indices to characterize the zooplankton fauna. The trophic sta­tus of the river evaluated from its physico-chemical parameters indicates that the river is oligotrophic. The zooplankton composition was typical of a tropical freshwater river, with a total of 40 species, made up of 16 rotifers, 12 cladocerans, and 12 copepods and their developing stages in the following order of dominance: Rotifera > Cladocera > Cyclopoida > Calanoida. There were strong correlations between the lake's trophic status and its zooplankton communities. The zoo­plankton community was dominated by numerous species of rotifers and crustaceans, which are typical of oligotrophic to mesotrophic systems, such species including Conochilus dossuarius and Synchaeta longipes. However, the most dominant zooplankton species in West African freshwater ecosystems, viz., Keratella tropica, Keratella quadrata, Brachionus angularis, Trichocerca pusilla, Filinia longiseta, Pompholyx sulcata, and Proales sp., and others that are indicator species of high trophic levels, were not recorded in the river. The river is very clear and can be used for all manner of recreational activities.

  5. Structure and dynamics of a benthic trophic web in a Mediterranean seasonal stream

    Directory of Open Access Journals (Sweden)

    Patrizia Elena Vannucchi

    2013-10-01

    Full Text Available In this work we present the results of a study conducted on the benthic macroinvertebrate community of a Southern Spain seasonal stream over a year. We constructed the food web focusing on the benthic fauna and we studied the ecology and dynamics of the community in terms of trophic resources. The benthic trophic web was composed by 35 families; these were not all present at the same time, but were incorporating and disappearing throughout the study period. Connectance between trophospecies varied from 0.24 to 0.59. The functional feeding group (FFG composition of the community turned out to be fairly constant with time with a predominance of scrapers and collector-gatherers. Furthermore, data obtained from the Bray-Curtis measure and the niche overlap study, evidence the stability of the stream from a trophic point of view. Rather widespread is omnivory that plays an important role in the survival of some families. We compared the results of the trophic web study with those of other temporary streams of the same region of Southern Spain.

  6. Quantitative model of trophic interactions in Beibu Gulf ecosystem in the northern South China Sea

    Institute of Scientific and Technical Information of China (English)

    CHEN Zuozhi; QIU Yongsong; JIA Xiaoping

    2006-01-01

    A mass-balanced model was constructed to determine the flow-energy in a community of fishes and invertebrates in the Beibu Gulf,northern South China Sea using Ecopath and Ecosim software. Input parameters were taken from the literature, except for the biomass of fish groups which was obtained from trawl surveys during October 1997 to May 1999 in the study area. The model consisted of 16 functional groups (boxes), including one marine mammal and seabirds, each representing organisms with a similar role in the food web, and only covered the main trophic flow in the Beibu Gulf ecosystem. The results showed that the food web of Beibu Gulf was dominated by the detrital path and benthic invertebrates played a significant role in transferring energy from the detritus to higher trophic levels; phytoplankton was a primary producer and most utilized as a food source. Fractional trophic levels ranged from 1.0 to 4.08 with marine mammals occupying the highest trophic level. Using network analysis, the system network was mapped into a linear food chain and six discrete trophic levels were found with a mean transfer efficiency of 16.7% from the detritus, 16.2% from the primary producer within the ecosystem. The biomass density of the commercially utilized species estimated by the model is 8.46 t/km2, only 0.48% of the net primary production.

  7. Molecular trophic markers in marine food webs and their potential use for coral ecology.

    Science.gov (United States)

    Leal, Miguel Costa; Ferrier-Pagès, Christine

    2016-10-01

    Notable advances in ecological genomics have been driven by high-throughput sequencing technology and taxonomically broad sequence repositories that allow us to accurately assess species interactions with great taxonomic resolution. The use of DNA as a marker for ingested food is particularly relevant to address predator-prey interactions and disentangle complex marine food webs. DNA-based methods benefit from reductionist molecular approaches to address ecosystem scale processes, such as community structure and energy flow across trophic levels, among others. Here we review how molecular trophic markers have been used to better understand trophic interactions in the marine environment and their advantages and limitations. We focus on animal groups where research has been focused, such as marine mammals, seabirds, fishes, pelagic invertebrates and benthic invertebrates, and use case studies to illustrate how DNA-based methods unraveled food-web interactions. The potential of molecular trophic markers for disentangling the complex trophic ecology of corals is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Loss and self-restoration of macrobenthic diversity in reclamation habitats of estuarine islands in Yangtze Estuary, China.

    Science.gov (United States)

    Lv, Weiwei; Liu, Zhiquan; Yang, Yang; Huang, Youhui; Fan, Bin; Jiang, Qichen; Zhao, Yunlong

    2016-02-15

    In this study, macrobenthic diversity data were collected from intertidal habitats of island wetlands in Yangtze Estuary before and after reclamation. Three survey regions based on habitat features were investigated: protected region, normal region, and self-restored region. The pattern of diversity variation showed a sharp decrease in reclamation sites and an obvious increase in vegetated sites of the self-restored region before and after reclamation. A declining trend in habitat health was observed in reclamation sites, but the degree of perturbation was relatively weaker in protected region than in normal region. The vegetated site showed a better self-restoration of biodiversity than the bald site. These results suggest that reclamation may have a negative influence on biodiversity and habitat health status in the intertidal wetland. Also, there is a possibility of self-restoration in tidal flats disturbed by reclamation and the resistance effect in nature reserve may reduce the disturbances resulting from reclamation.

  9. Habitat contrasts reveal a shift in the trophic position of ant assemblages.

    Science.gov (United States)

    Gibb, Heloise; Cunningham, Saul A

    2011-01-01

    1. Trophic structure within a guild can be influenced by factors such as resource availability and competition. While ants occupy a wide range of positions in food webs, and ant community composition changes with habitat, it is not well understood if ant genera tend to maintain their position in the trophic structure, or if trophic position varies across habitats. 2. We used ratios of stable isotopes of carbon and nitrogen to test for differences in the trophic structure and position of assemblages of ants among habitat types. We tested for differences between assemblages in replicate sites of the land use categories: (i) pastures with old large trees; (ii) recently revegetated pastures with small young trees; and (iii) remnant woodlands. Known insect herbivores and predatory spiders provided baselines for herbivorous and predaceous arthropods. Soil samples were used to correct for the base level of isotopic enrichment at each site. 3. We found no significant interactions between land use and ant genus for isotope enrichment, indicating that trophic structure is conserved across land use categories. The fixed relative positions of genera in the trophic structure might be re-enforced by competition or some other factor. However, the entire ant assemblage had significantly lower δ(15) N values in revegetated sites, suggesting that ants feed lower down in the food chain i.e. they are more 'herbivorous' in revegetated sites. This may be a result of the high availability of plant sugars, honeydew and herbivorous arthropod prey. 4. Surprisingly, ants in remnants and pastures with trees displayed similar isotopic compositions. Interactions within ant assemblages are thus likely to be resilient to changes in land use, but ant diets in early successional habitats may reflect the simplicity of communities, which may have comparatively lower rates of saprophagy and predation.

  10. Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines

    Science.gov (United States)

    Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Edwards, Felicity A.; Khen, Chey Vun; Bottrell, Simon H.; Hamer, Keith C.

    2012-04-01

    Nitrogen isotope signatures (δ15N) provide powerful measures of the trophic positions of individuals, populations and communities. Obtaining reliable consumer δ15N values depends upon controlling for spatial variation in plant δ15N values, which form the trophic `baseline'. However, recent studies make differing assumptions about the scale over which plant δ15N values vary, and approaches to baseline control differ markedly. We examined spatial variation in the δ15N values of plants and ants sampled from eight 150-m transects in both unlogged and logged rainforests. We then investigated whether ant δ15N values were related to variation in plant δ15N values following baseline correction of ant values at two spatial scales: (1) using `local' means of plants collected from the same transect and (2) using `global' means of plants collected from all transects within each forest type. Plant δ15N baselines varied by the equivalent of one trophic level within each forest type. Correcting ant δ15N values using global plant means resulted in consumer values that were strongly positively related to the transect baseline, whereas local corrections yielded reliable estimates of consumer trophic positions that were largely independent of transect baselines. These results were consistent at the community level and when three trophically distinct ant subfamilies and eight abundant ant species were considered separately. Our results suggest that assuming baselines do not vary can produce misleading estimates of consumer trophic positions. We therefore emphasise the importance of clearly defining and applying baseline corrections at a scale that accounts for spatial variation in plant δ15N values.

  11. Potential trophic cascades triggered by the barred owl range expansion

    Science.gov (United States)

    Holm, Samantha R.; Noon, Barry R.; Wiens, David; Ripple, William J.

    2016-01-01

    Recently, the barred owl (Strix varia) has expanded its range into the Pacific Northwest of the United States resulting in pronounced effects on the demography and behavior of the northern spotted owl (S. occidentalis caurina). The range expansion has brought together historically allopatric species, creating the potential for significant changes in the avian predator community with possible cascading effects on food-web dynamics. The adverse effects of the barred owl on the behavior and demography of the northern spotted owl are well-documented, but little is known about the immediate and long-term effects changes in the predator community may have on native species composition and ecosystem processes. Based on northern spotted owl and barred owl selection for diet and habitat resources, there is a potential for trophic cascades within the region's predator and prey communities, differing responses by their shared and unique prey species, and possible direct and indirect effects on ecosystem processes. We explored the possible ecological consequences of the barred owl range expansion to wildlife communities of the Pacific Northwest based on the theoretical underpinnings of predator–prey relationships, interspecific competition, intraguild predation, and potential cascading trophic interactions. Negative effects on fitness of northern spotted owls because of interspecific competition with barred owls are strong selection forces that may contribute to the regional extinction of the northern spotted owl. In addition, we posit that shared prey species and those uniquely consumed by barred owls, along with other competing native predators, may experience changes in behavior, abundance, and distribution as a result of increased rates of predation by rapidly expanding populations of barred owls.

  12. The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures.

    Science.gov (United States)

    Dauvin, Jean-Claude; Bakalem, Ali; Baffreau, Alexandrine; Delecrin, Claire; Bellan, Gérard; Lardicci, Claudio; Balestri, Elena; Sardá, Rafael; Grimes, Samir

    2017-02-18

    The Biocoenosis of Well Sorted Fine Sands (WSFS) (SFBC, Sables Fins Bien Calibrés in French) is a Mediterranean community very well delimited by bathymetry (2-25 m) and sedimentology (>90% of fine sand) occurring in zones with relatively strong hydrodynamics. In this study focused on sites located along the Algerian, French, Italian and Spanish coasts of the Western Basin of the Mediterranean Sea (WBMS) we aim to compare the structure, ecological status and diversity of the macrofauna of the WSFS and examine the effects of recent human pressures on the state of this shallow macrobenthic community. We assess the ecological status and functioning of these WSFS using three categories of benthic indices: a) five indices based on classification of species into ecological groups, AMBI, BO2A, BPOFA, IQ and IP, b) the ITI index based on classification of species in trophic groups, and c) the Shannon H' index, and the Biological Traits Analysis (BTA), which is an alternative method to relative taxon composition analysis and integrative indices. Cluster analyses show that each zone show a particular taxonomic richness and dominant species. The seven benthic indices reveal that the macrobenthos of the WSFS of the four coastal zones show good or high Quality Status, except for one location on the Algerian coast (the Djendjen site) in 1997. BTA highlights the presence of three groups of species: 1) typical characteristic species; 2) indicator species of enrichment of fine particles and organic matter, and 3) coarse sand species which are accessorily found on fine sand. Finally, the WSFS which are naturally subject to regular natural physical perturbations show a high resilience after human pressures but are very sensitive to changes in the input of organic matter.

  13. Trophic Status Controls Mercury Methylation Pathways in Northern Peats

    Science.gov (United States)

    Hines, M. E.; Zhang, L.; Barkay, T.; Krabbenhoft, D. P.; Schaefer, J.; Hu, H.; Sidelinger, W.; Liu, X.; Wang, Y.

    2015-12-01

    Methyl mercury (MeHg) can be produced by a variety of microbes including syntrophs, methanogens, acetogens, and fermenters, besides sulfate (SO42-, SRB) and iron- reducing bacteria. Many freshwater wetlands are deficient in electron acceptors that support the traditional respiratory pathways of methylation, yet they accumulate high levels of MeHg. To investigate methylation in these wetlands and to connect these pathways with vegetation and microbial communities, incubation experiments were conducted using peats from 26 sites in Alaska. The sites were clustered using multiple factor analysis based on pH, temp, CH4 and volatile fatty acids production rates, and surface vegetation composition. Three clusters were generated and corresponded to three trophic levels that were manifested by three pH levels (3.5, 4.5, and 5). Hg methylation activity in laboratory incubations was determined using the short-lived radioisotope 197Hg. In the low pH, Sphagnum-dominated cluster, methylation rates were less than 1% day-1 and likely conducted by primary fermenters. Conversely, the high pH trophic cluster dominated by Carex aquatilis and active syntrophy exhibited Hg methylation rates as high as 12% day-1. In intermediate sites, rich in Sphagnum magellanicum with less Carex, a gradient in syntrophy and Hg methylation paths was observed. Amendments with process-stimulators and inhibitors revealed no evidence of SO42- reduction, but suggested that SRB, metabolizing either syntrophically with methanogens and/or by fermentation, likely methylated Hg. While on going metatranscriptomics studies are required to verify the role of syntrophs, fermenters, and methanogens as methylators, these results revealed that Hg methylation pathways change greatly along trophic gradients with a dominance of respiratory pathways in mineral-rich sites, syntrophy dominance in intermediate sites, and fermentation dominance in nutrient-poor sites.

  14. Trophic interactions in northern Chile upwelling ecosystem, year 1997

    Directory of Open Access Journals (Sweden)

    Mónica E Barros

    2014-11-01

    Full Text Available A food web model is constructed to describe predator-prey interactions, community structure and trophic flows in northern Chile upwelling ecosystem (18°20'S, 24°S, for the year 1997. The model is built using the Ecopath with Ecosim software version 6.4, and encompasses 21 functional groups, ranging from primary producers (phytoplankton to top predators (birds and marine mammals, the principal fishing resources and the fishery. Input parameters required to build the model were gathered from specialized literature, grey literature and our own estimates. The results indicated that the total biomass (B T was estimated at 624.7 ton km-2. The combined biomass of small pelagic fish represented 26% of B T, while the combined biomass of demersal fish represented only 0.1% of B T. These results highlight the importance of pelagic fish in this system. Predation mortality resulted to be the main source of mortality. Nevertheless, fishing mortality was important in anchovy, mackerel, common dolphinfish and jack mackerel. The mean trophic level of the fishery was estimated as 3.7, with landings sustained mainly by anchovy. Primary production required to sustain the landings (PPR was estimated at 7.5% of calculated total net primary production, which is lower than PPR estimates in other upwelling ecosystems. The average trophic transfer efficiency was 18%, which is in the range (10-20% informed for marine ecosystems. Results indicate that in 1997 the northern Chile marine ecosystem was characterized for being a system far from maturity, dominated in terms of biomass and flows by the pelagic realm.

  15. Mercury pathways and trophic interactions in New Brunswick lakes

    Energy Technology Data Exchange (ETDEWEB)

    Barry, E.; Curry, A. [New Brunswick Univ., Cooperative Fish and Wildlife Research Unit, Fredericton, NB (Canada); Burgess, N. [Environment Canada, Canadian Wildlife Service, Sackville, NB (Canada); Bielak, A. [Environment Canada, Environmental Conservation Branch, Dartmouth, NS (Canada)

    1998-11-01

    This study was designed to determine the pathway taken by mercury from primary to top consumer in lakes of southern New Brunswick. The study was part of a development of new models to predict the fate of mercury in natural systems. Fish communities in 18 lakes were surveyed in 1997 and analyzed for mercury, stomach content and stable isotope ratios. Adult and tadpole bullfrogs, plankton and benthic invertebrates from the littoral zone were also collected and examined for total mercury and methylmercury concentrations. Stable isotope analysis was also conducted for each species of organism to elucidate mercury pathways based on the trophic position and mercury concentration ratios. Since this study is the first in-depth look at mercury concentrations in lake ecosystems in this region, it is expected that the trophic interactions within these lakes will lead to a greater understanding of the route mercury takes within lakes. It is also expected to lead to further development of predictive models of fish and loon mercury levels in New Brunswick and in Atlantic Canada as a whole.

  16. Trophically available metal - A variable feast

    Energy Technology Data Exchange (ETDEWEB)

    Rainbow, Philip S., E-mail: p.rainbow@nhm.ac.uk [Department of Zoology, Natural History Museum, Cromwell Rd, London SW7 5BD (United Kingdom); Luoma, Samuel N. [Department of Zoology, Natural History Museum, Cromwell Rd, London SW7 5BD (United Kingdom); John Muir Institute of the Environment, University of California, Davis, CA 95616 (United States); Wang Wenxiong [College of Marine and Environmental Sciences, State Key Laboratory for Marine Environmental Sciences, Xiamen University, Fujian (China)

    2011-10-15

    Assimilation of trace metals by predators from prey is affected by the physicochemical form of the accumulated metal in the prey, leading to the concept of a Trophically Available Metal (TAM) component in the food item definable in terms of particular subcellular fractions of accumulated metal. As originally defined TAM consists of soluble metal forms and metal associated with cell organelles, the combination of separated fractions which best explained particular results involving a decapod crustacean predator feeding on bivalve mollusc tissues. Unfortunately TAM as originally defined has subsequently frequently been used in the literature as an absolute description of that component of accumulated metal that is trophically available in all prey to all consumers. It is now clear that what is trophically available varies between food items, consumers and metals. TAM as originally defined should be seen as a useful starting hypothesis, not as a statement of fact. - Trophically Available Metal (TAM), the component of accumulated metal in food that is taken up by a feeding animal, varies with food type and consumer.

  17. Taxonomy, ecology and fishery of Lake Victoria haplochromine trophic groups

    NARCIS (Netherlands)

    Witte, F.; Oijen, van M.J.P

    1990-01-01

    Based on ecological and morphological features, the 300 or more haplochromine cichlid species of Lake Victoria are classified into fifteen (sub)trophic groups. A key to the trophic groups, mainly based on external morphological characters, is presented. Of each trophic group a description is given c

  18. Modeling lake trophic state: a random forest approach

    Science.gov (United States)

    Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...

  19. Taxonomy, ecology and fishery of Lake Victoria haplochromine trophic groups

    NARCIS (Netherlands)

    Witte, F.; Oijen, van M.J.P

    1990-01-01

    Based on ecological and morphological features, the 300 or more haplochromine cichlid species of Lake Victoria are classified into fifteen (sub)trophic groups. A key to the trophic groups, mainly based on external morphological characters, is presented. Of each trophic group a description is given c

  20. Trophic Niche Differentiation in Rodents and Marsupials Revealed by Stable Isotopes

    Science.gov (United States)

    Galetti, Mauro; Rodarte, Raisa Reis; Neves, Carolina Lima; Moreira, Marcelo; Costa-Pereira, Raul

    2016-01-01

    Tropical rainforests support the greatest diversity of small mammals in the world, yet we have little understanding about the mechanisms that promote the coexistence of species. Diet partitioning can favor coexistence by lessening competition, and interspecific differences in body size and habitat use are usually proposed to be associated with trophic divergence. However, the use of classic dietary methods (e.g. stomach contents) is challenging in small mammals, particularly in community-level studies, thus we used stable isotopes (δ13C and δ15N) to infer about trophic niche. We investigated i) how trophic niche is partitioned among rodent and marsupial species in three Atlantic forest sites and ii) if interspecific body size and locomotor habit inequalities can constitute mechanisms underlying the isotopic niche partitioning. We found that rodents occupied a broad isotopic niche space with species distributed in different trophic levels and relying on diverse basal carbon sources (C3 and C4 plants). Surprisingly, on the other hand, marsupials showed a narrow isotopic niche, both in δ13C and δ15N dimensions, which is partially overlapped with rodents, contradicting their description as omnivores and generalists proposed classic dietary studies. Although body mass differences did not explained the divergence in isotopic values among species, groups of species with different locomotor habit presented clear differences in the position of the isotopic niche space, indicating that the use of different forest strata can favor trophic niche partitioning in small mammals communities. We suggest that anthropogenic impacts, such as habitat modification (logging, harvesting), can simplify the vertical structure of ecosystems and collapse the diversity of basal resources, which might affect negatively small mammals communities in Atlantic forests. PMID:27049763

  1. Categorização funcional trófica das comunidades de macroinvertebrados de dois reservatórios na região Centro-Oeste do Estado de São Paulo, Brasil = Functional trophic categorization of macroinvertebrate communities of two reservoirs in the Midwestern region of São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Fabio Laurindo da Silva

    2009-01-01

    Full Text Available A utilização do conceito de guilda pode ser útil para a categorização funcional trófica de comunidades, pois não há obrigatoriedade da identificação dos organismos em nível de espécie, nem de tratar cada espécie como uma entidade separada. O objetivo deste estudo foi analisar os grupos funcionais tróficos (coletores-catadores, coletores-filtradores, fragmentadores, predadores e raspadores das comunidades de macroinvertebrados de dois reservatórios da região Centro-Oeste do Estado de São Paulo, Brasil. As amostragens foramrealizadas nos períodos chuvoso (março/abril - 2001 e de seca (julho/agosto - 2001 e os dados obtidos indicam que os coletores-catadores foram a guilda mais frequente. Este fato sugere grande importância da matéria orgânica como recurso alimentar na dieta dosmacroinvertebrados analisados.The use of the concept of guild can be useful for the functional trophic categorization of communities, because there is no requirement identification of organisms in the level of species and not to treat each species as a separate entity. The aim of this studywas to analyze the functional feeding groups (collectors-gatherers, collectors-filterers, shredders, predators and grazer-scrapers of the macroinvertebrate communities of two reservoirs in the Midwestern region of São Paulo State. Sampling was carried out in rainy(March/April - 2001 and dry (July/August - 2001 seasons and the data obtained indicate that ‘collectors-gatherers’ is the most frequent guild. This fact suggests a great importance of organic matter as a food source in the diet of the macroinvertebrates analyzed.

  2. Trophic relations between macroinvertebrates in the Vlasina river (Serbia

    Directory of Open Access Journals (Sweden)

    Paunović M.

    2006-01-01

    Full Text Available The aim of the study presented was to define trophic relationships within the benthic community according to functional feeding groups (FFG in the Vlasina River (Southeast Serbia, with an attempt to use those results to describe the watercourse. In an investigation performed during 1996, a total of 125 macrozoobenthic taxa were identified, 95 of which were included in FFG analyses. Although the investigated part of the river, in its physical and chemical characteristics, as well as characteristics of the benthofauna, generally corresponds to what could be expected, certain variations of faunal composition were observed along the river. Two groups of sites were separated by FFG analysis - sites on the upper section of the river and on a tributary (the Gradska River comprised one group, while the remaining sites made up the other.

  3. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.

    Science.gov (United States)

    Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett

    2015-04-24

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.

  4. Trophic relations of introduced flathead catfish in an atlantic river

    Science.gov (United States)

    Baumann, Jessica R.; Kwak, Thomas J.

    2011-01-01

    The flathead catfish Pylodictis olivaris is a large piscivore that is native to the Mississippi and Rio Grande river drainages but that has been widely introduced across the United States. River ecologists and fisheries managers are concerned about introduced flathead catfish populations because of the negative impacts on native fish communities or imperiled species associated with direct predation and indirect competition from this apex predator. We studied the trophic relations of introduced flathead catfish in an Atlantic river to further understand the effects on native fish communities. Crayfish (Astacidea) occurred most frequently in the flathead catfish diet, while sunfish Lepomis spp. comprised the greatest percentage by weight. Neither of two sympatric imperiled fish species (the federally endangered Cape Fear shiner Notropis mekistocholas and the Carolina redhorse Moxostoma sp., a federal species of concern) was found in any diet sample. An ontogenetic shift in diet was evident when flathead catfish reached about 300 mm, and length significantly explained the variation in the percent composition by weight of sunfish and darters Etheostoma and Percina spp. Flathead catfish showed positive prey selectivity for taxa that occupied similar benthic microhabitat, highlighting the importance of opportunistic feeding and prey encounter rates. Flathead catfish displayed a highly variable diel feeding chronology during July, when they had a mean stomach fullness of 0.32%, but then showed a single midday feeding peak during August (mean fullness = 0.52%). The gastric evacuation rate increased between July (0.40/h) and August (0.59/h), as did daily ration, which more than doubled between the 2 months (3.06% versus 7.37%). Our findings increase the understanding of introduced flathead catfish trophic relations and the degree of vulnerability among prey taxa, which resource managers may consider in fisheries management and conservation of native fish populations and

  5. Trophic cascades induced by lobster fishing are not ubiquitous in southern California kelp forests.

    Science.gov (United States)

    Guenther, Carla M; Lenihan, Hunter S; Grant, Laura E; Lopez-Carr, David; Reed, Daniel C

    2012-01-01

    Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and

  6. Trophic conditions govern summer zooplankton production variability along the SE Spanish coast (SW Mediterranean)

    Science.gov (United States)

    Yebra, Lidia; Putzeys, Sébastien; Cortés, Dolores; Mercado, Jesús M.; Gómez-Jakobsen, Francisco; León, Pablo; Salles, Soluna; Herrera, Inma

    2017-03-01

    The influence of hydrochemistry and trophic conditions on the coastal zooplankton community metabolic rates was investigated along the southeastern Spanish coast, from Algeciras to Cartagena. Zooplankton metabolism was assessed from measurements of gut fluorescence (GF), electron transport system (ETS) and aminoacyl-tRNA synthetases (AARS) activities. Zooplankton had higher biomass-specific respiration and growth rates in the Mediterranean stations to the East, driven by warmer seawater temperatures. However, zooplankton biomass and abundance were significantly higher in the Alboran Sea and, consequently, the zooplankton community in these coastal waters presented the highest production rates of the study area and among the highest of the Mediterranean Sea. We observed that summer zooplankton production variability was driven by the trophic conditions rather than by the hydrological variability.

  7. Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Mørk, Søren; Madsen, Mette Vestergård;

    2006-01-01

    The aim was to study the effects of P fertilization and leaf aphid attack on the trophic interactions of bacteria and bacterial feeders in the rhizospheres of barley plants. The density of protozoa peaked in the rhizospheres of plants fertilized with N and P, whereas nematodes peaked in the rhizo......The aim was to study the effects of P fertilization and leaf aphid attack on the trophic interactions of bacteria and bacterial feeders in the rhizospheres of barley plants. The density of protozoa peaked in the rhizospheres of plants fertilized with N and P, whereas nematodes peaked...... in the rhizospheres of plants to which only N had been added. Fingerprinting of bacterial communities by length heterogeneity polymerase chain reaction revealed differences in community structure between NP rhizospheres and N rhizospheres as well as aphid-related differences within N rhizospheres. Specifically, a...

  8. Modelling emergent trophic strategies in plankton

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Aksnes, Dag L.; Berge, Terje;

    2015-01-01

    Plankton are typically divided into phytoplankton and zooplankton in marine ecosystem models. Yet, most protists in the photic zone engage in some degree of phagotrophy, and it has been suggested that trophic strategy is really a continuum between pure phototrophs (phytoplankton) and pure...... phagotrophs (unicellular zooplankton). Such a continuum of trophic strategies is well represented by trait-based modelling techniques. A key model ingredient is the size of individual cells, as size constrains affinities for nutrient uptake, photosynthesis and active encounter with other cells. We outline...... a general trait-based model of a unicellular planktonic organism where size is a central trait and where nutrient uptake, photosynthesis and phagotrophy are determined by investments into these functions and by the physical constraints imposed by organism size. This framework provides simple predictions...

  9. Trigeminal trophic syndrome: A rare entity

    Directory of Open Access Journals (Sweden)

    Sunil N Mishra

    2011-01-01

    Full Text Available Trigeminal trophic syndrome is a rare condition resulting from self-manipulation of the skin after a peripheral or central injury to the trigeminal system. The syndrome consists of a classic triad of anaesthesia, paraesthesia, and a secondary persistent or recurrent facial ulceration. We describe a 60 year-old woman who developed this syndrome as a sequel to the gasserian ganglion block for trigeminal neuralgia. She had also developed melasma within 1 year. A remarkable benefit was achieved by proper patient education and topical antibiotics which led to the healing of all ulcerations within 4 weeks. In the case reported here, the diagnosis of the trigeminal trophic syndrome was made primarily as a result of the physician′s experience with the syndrome previously.

  10. Introgressive hybridization in a trophically polymorphic cichlid.

    Science.gov (United States)

    Hulsey, C Darrin; García-de-León, Francisco J

    2013-11-01

    Trophically polymorphic species could represent lineages that are rapidly diverging along an ecological axis or could phenotypically mark the collapse of species through introgressive hybridization. We investigated patterns of introgression between the trophically polymorphic cichlid fish Herichthys minckleyi and its relative H. cyanoguttatus using a combination of population genetics and species tree analyses. We first examined the distribution of mitochondrial haplotypes within the alternative H. minckleyi pharyngeal jaw morphotypes that are endemic to the small desert valley of Cuatro Ciénegas. We recovered two clusters of mitochondrial haplotypes. The first contained a number of slightly differentiated cytochrome b (cytb) haplotypes that showed some phylogeographic signal and were present in both jaw morphotypes. The other haplotype was monomorphic, highly differentiated from the other cluster, present in equal frequencies in the morphotypes, and identical to H. cyanoguttatus haplotypes found outside Cuatro Ciénegas. Then, we investigated whether H. minckleyi individuals with the H. cyanoguttatus cytb were more evolutionarily similar to H. cyanoguttatus or other H. minckleyi using a species tree analysis of 84 nuclear loci. Both H. minckleyi pharyngeal morphotypes, regardless of their cytb haplotype, were quite distinct from H. cyanoguttatus. However, hybridization could be blurring subdivision within H. minckleyi as the alternative jaw morphotypes were not genetically distinct from one another. Accounting for introgression from H. cyanoguttatus will be essential to understand the evolution of the trophically polymorphic cichlid H. minckleyi.

  11. Trophic structure in a seabird host-parasite food web: insights from stable isotope analyses.

    Directory of Open Access Journals (Sweden)

    Elena Gómez-Díaz

    Full Text Available Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C ((13C/(12C, delta(13C and N ((15N/(14N, delta(15N of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters. delta(13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in delta(15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 per thousand depending on the species. Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.

  12. Exploited species impacts on trophic linkages along reef-seagrass interfaces in the Florida Keys.

    Science.gov (United States)

    Valentine, John F; Heck, Kenneth L; Blackmon, Derrick; Goecker, Margene E; Christian, Juliet; Kroutil, Ryan M; Peterson, Bradley J; Vanderklift, Mathew A; Kirsch, Kevin D; Beck, Mike

    2008-09-01

    The removal of fish biomass by extensive commercial and recreational fishing has been hypothesized to drastically alter the strength of trophic linkages among adjacent habitats. We evaluated the effects of removing predatory fishes on trophic transfers between coral reefs and adjacent seagrass meadows by comparing fish community structure, grazing intensity, and invertebrate predation potential in predator-rich no-take sites and nearby predator-poor fished sites in the Florida Keys (USA). Exploited fishes were more abundant at the no-take sites than at the fished sites. Most of the exploited fishes were either omnivores or invertivores. More piscivores were recorded at no-take sites, but most (approximately 95%) were moderately fished and unexploited species (barracuda and bar jacks, respectively). Impacts of these consumers on lower trophic levels were modest. Herbivorous and smaller prey fish (seagrass grazing diminished with distance from reefs and were not negatively impacted by the elevated densities of exploited fishes at no-take sites. Predation by reef fishes on most tethered invertebrates was high, but exploited species impacts varied with prey type. The results of the study show that, even though abundances of reef-associated fishes have been reduced at fished sites, there is little evidence that this has produced cascading trophic effects or interrupted cross-habitat energy exchanges between coral reefs and seagrasses.

  13. The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles.

    Science.gov (United States)

    Schoeman, M Corrie; Jacobs, David S

    2011-06-01

    Deterministic filters such as competition and prey defences should have a strong influence on the community structure of animals like animalivorous bats which have life histories characterized by low fecundity, low predation risk, long life expectancy and stable populations. We investigated the relative influence of these two deterministic filters on the trophic structure of animalivorous bat assemblages in South Africa. We used null models to test if patterns of dietary overlap were significantly different from patterns expected by chance and multivariate analyses to test the correlations between diet and phenotype (body size, wing morphology and echolocation). We found little evidence that competition structured the trophic niche of coexisting bats. Contrary to predictions from competition, dietary overlap between bats of ensembles and functional groups (open-air, clutter-edge, and clutter foragers) were significantly higher than expected by chance. Instead, we found support for the predictions of the allotonic frequency hypothesis: there were significant relationships between peak echolocation frequency and the proportion of moths in the diets of bats at local and regional scales, and peak echolocation frequency was the best predictor of diet even after we controlled for the influence of body size and phylogeny. These results suggest that echolocation frequency and prey hearing exert more influence on the trophic structure of sympatric animalivorous bats than competition. Nonetheless, differential habitat use and sensory bias may also be major determinants of trophic structure because these are also correlated with frequencies of bat calls.

  14. Trophic cascades in rocky shore tide pools: distinguishing lethal and nonlethal effects.

    Science.gov (United States)

    Trussell, Geoffrey C; Ewanchuk, Patrick J; Bertness, Mark D; Silliman, Brian R

    2004-05-01

    The effects of predators on the density of their prey can have positive indirect effects on the abundance of the prey's resource via a trophic cascade. This concept has strongly influenced contemporary views of how communities are structured. However, predators also can transmit indirect effects by inducing changes in prey traits. We show that the mere presence of predator risk cues can initiate a trophic cascade in rocky shore tide pools. In large (mean surface area =9 m2), natural tide pools, we manipulated crab density and their foraging ability to examine the relative importance of lethal (density-mediated) and non-lethal (trait-mediated) predator effects to algal community development. We found that perceived predation risk reduced snail density as much as the direct predation treatment, showing that green crab predation was not an important factor regulating local snail density. Instead, snail emigration away from resident crabs appears to be the most important factor regulating local snail density. As a result, the abundance of ephemeral green algae was similar in the predation risk and direct predation treatments, suggesting that the consumption of snails by crabs plays a minimal role in mediating the trophic cascade. Increased attention to trait-mediated effects that are transmitted by predator-induced changes in prey behavior may change our view of how predators exert their strong influence on community structure.

  15. The distribution of persistent organic pollutants in a trophically complex Antarctic ecosystem model

    Science.gov (United States)

    Bates, Michael L.; Bengtson Nash, Susan M.; Hawker, Darryl W.; Shaw, Emily C.; Cropp, Roger A.

    2017-06-01

    Despite Antarctica's isolation from human population centres, persistent organic pollutants (POPs) are transported there via long range atmospheric transport and subsequently cold-trapped. The challenging nature of working in the Antarctic environment greatly limits our ability to monitor POP concentrations and understand the processes that govern the distribution of POPs in Antarctic ecosystems. Here we couple a dynamic, trophically complex biological model with a fugacity model to investigate the distribution of hexachlorobenzene (HCB) in a near-shore Antarctic ecosystem. Using this model we examine the steady-state, and annual cycle of HCB concentration in the atmosphere, ocean, sediment, detritus, and 21 classes of biota that span from primary producers to apex predators. The scope and trophic resolution of our model allows us to examine POP pathways through the ecosystem. In our model the main pathway of HCB to upper trophic species is via pelagic communities, with relatively little via benthic communities. Using a dynamic ecosystem model also allows us to examine the seasonal and potential climate change induced changes in POP distribution. We show that there is a large annual cycle in concentration in the planktonic communities, which may have implications for biomagnification factors calculated from observations. We also examine the direct effects of increasing temperature on the redistribution of HCB in a changing climate and find that it is likely minor compared to other indirect effects, such as changes in atmospheric circulation, sea ice dynamics, and changes to the ecosystem itself.

  16. Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea.

    Science.gov (United States)

    Coates, Delphine A; Deschutter, Yana; Vincx, Magda; Vanaverbeke, Jan

    2014-04-01

    The growing development of offshore wind energy installations across the North Sea is producing new hard anthropogenic structures in the natural soft sediments, causing changes to the surrounding macrobenthos. The extent of modification in permeable sediments around a gravity based wind turbine in the Belgian part of the North Sea was investigated in the period 2011-2012, along four gradients (south-west, north-east, south-east, north-west). Sediment grain size significantly reduced from 427 μm at 200 m to 312 ± 3 μm at 15 m from the foundation along the south-west and north-west gradients. The organic matter content increased from 0.4 ± 0.01% at 100 m to 2.5 ± 0.9% at 15 m from the foundation. The observed changes in environmental characteristics triggered an increase in the macrobenthic density from 1390 ± 129 ind m⁻² at 200 m to 18 583 ± 6713 ind m⁻² at 15 m together with an enhanced diversity from 10 ± 2 at 200 m to 30 ± 5 species per sample at 15 m. Shifts in species dominance were also detected with a greater dominance of the ecosystem-engineer Lanice conchilega (16-25%) close to the foundation. This study suggests a viable prediction of the effects offshore wind farms could create to the naturally occurring macrobenthos on a large-scale.

  17. MACROBENTHIC DIVERSITY DURING PRE AND POST DROUGHT PERIOD OF A FLOODPLAIN WETLAND IN VAISHALI DISTRICT OF BIHAR

    Directory of Open Access Journals (Sweden)

    Pankaj Patial

    2015-05-01

    Full Text Available Qualitative and quantitative estimation of macrobenthic fauna was done during pre and post drought period. A total of 18 species of macrobenthos were recorded during pre drought and 17 in post drought period. Maximum number of species was reported in Mollusca followed by Diptera and Oligochaeta. The average contribution of Mollusca was 94.72%, Dipetra 2.98% and Oligochaeta 2.30% to total benthic species of the Chaur. Bellamya bengalensis, Gabbia orcula, Gyraulus convexiusculus, Lymnaea acuminata and Lymnaea auricularia were the molluccs which were found in all the monthly samples. Number wise Gyraulus convexiusculus was most abundant followed by Gabbia orcula while Lamellidens marginalis and Pila glabosa were the least abundant. In pre drought period average number of macrobenthos was 3176/m2 while in post drought period, it was 2676/m2. Analysis of the various index showed that diversity of benthic fauna was higher in WIN season followed by RMON, PRM and MON season. Winter seems to be a favourable season for benthic organisms. Availability of different species of mollusks indicated the good cultural and unpolluted condition of Chaur.

  18. Macrobenthic assemblage in the soft sediment of Marmugao Harbour, Goa (central west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A; Sreepada, R.A; Kanti, A; Gracias, E.S.

    were identified. The communities were not discrete and there was some overlap in the occurrence of the families. Influence of anthropogenic disturbances and environmental factors such as sediment type and availability of food were responsible...

  19. The macrofaunal communities in the shallow subtidal areas for the first 3 years after the Hebei Spirit oil spill.

    Science.gov (United States)

    Seo, Jin-Young; Kim, Moonkoo; Lim, Hyun-Sig; Choi, Jin-Woo

    2014-05-15

    In order to detect the early impact of the Hebei Spirit oil spill on the shallow subtidal macrozoobenthic communities, macrobenthic fauna were collected seasonally for 3 years. The alkylated PAHs concentrations within sediments near Mallipo beach remained as high as 129 ng g(-)(1) DW one month after the oil spill, but the concentration decreased below the background level thereafter. The number of species and density decreased in 4 months compared to those before the oil spill. An opportunistic polychaete, Prionospio paradisea, occurred as a dominant species at subtidal area near Mallipo beach in 10 months after the oil spill. Any mass mortality of amphipods and any clear dominance of opportunistic species were not detected except for the stations near Mallipo and Hagampo beaches. The macrobenthic communities at the shallow subtidal stations seemed to have a relatively stable faunal composition, even not fully recovered, in 3 years after the Hebei Spirit oil spill.

  20. Changes in the soft-bottom macrobenthic diversity and community structure from the ports of Mumbai, India

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Harkantra, S.N.

    samples were transported to the laboratory and identified to species level using a microscope with the help of available taxonomic literature (Satyamurti 1952, 1956; Fauvel 1953; Day 1967; Hartman 1974a, 1974b; Srikrishnadhas et al. 1987; Subba Rao et al..., west coast of India. Current Science, 85(10), 1458-1464. Hartman, O. (1974a). Polychaetous annelids of the Indian Ocean including an account of species collected by members of the International Indian Ocean Expeditions, 1963-64 and a catalogue...

  1. Impact of 'Chitra' oil spill on tidal pool macrobenthic communities of a tropical rocky shore (Mumbai, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Sukumaran, S.; Mulik, J.; Rokade, M.A.; Kamble, A.

    A collision between the ships MSC Chitra and MV Khalijia 3 in the mouth region of Mumbai Harbour led to a leakage of around 800 t of fuel oil in August 2010, affecting the rocky intertidal region of Colaba. To evaluate the impact...

  2. Role of environmental heterogeneity in structuring the macrobenthic community in a tropical sandy beach, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.; Ingole, B.S.; Ganesan, P.; Sautya, S.; Nanajkar, M.

    the best correlation with OC, phaeopigment and grain size. High abundance of macrofauna in the north and south was due to food availability, influenced by the creek. The low abundance during monsoon and subsequent increase in the post-monsoon can...

  3. [Ecology of nutrition and differentiation of the trophic niches of bats (Chiroptera: Vespertilionidae) in floodplain ecosystems of the Samara Bend].

    Science.gov (United States)

    Smirnov, D G; Vekhnik, V P

    2014-01-01

    A complex analysis of the food range of 15 bat species inhabiting floodplain ecosystems of the Samara Bend has been performed. It is shown that, in bats, an important component of the structuring of their communities is the division of food resources. The guild structure and position of species in the trophic space are described. Seven food guilds consisting of nonspecialized and specialized species are distinguished. It is noted that most species are characterized by a wide overlapping of their trophic niches, which may be a consequence of their weak competition in an environment that is rich in food resources.

  4. Predator diversity and identity drive interaction strength and trophic cascades in a food web.

    Science.gov (United States)

    Otto, Sonja B; Berlow, Eric L; Rank, Nathan E; Smiley, John; Brose, Ulrich

    2008-01-01

    Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.

  5. Convergent, parallel and correlated evolution of trophic morphologies in the subfamily schizothoracinae from the Qinghai-Tibetan plateau.

    Science.gov (United States)

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP.

  6. Statistical assessment of trophic conditions: squared Euclidean distance approach

    Directory of Open Access Journals (Sweden)

    Chatchai Ratanachai

    2003-05-01

    Full Text Available The classification of trophic conditions of water bodies may often face contradictory cases where a given lake is classified into a trophic category from a trophic variable, whereas it is classified into another trophic category from other trophic variables. To solve this problem, this paper proposes a new methodology based on the concepts of squared Euclidean distance and the boundary values recommended by the OECD (Organization for Economic Cooperation and Development. This methodology requires that a trophic variable data set of a water body under consideration and such boundary values be compared by a measure of similarity computed by using basic statistical techniques to determine the trophic condition of a given water body. The methodology has been tested by applying it to two sample data sets: the Pattani Dam Reservoir and the North Adriatic Sea data sets, which were taken from Kietpawpan (2002 and Zurlini (1996, respectively. The squared Euclidean distance analysis were then applied to the above data sets in order to classifytrophic conditions, based on four trophic variables comprising total nitrogen, total phosphorus, chlorophylla, and Secchi depth. Our results show that the squared Euclidean distance analysis is a useful methodology for preliminarily classifying trophic conditions and solving contradictory classifications, which often arise when applying the present OECD methodology alone.

  7. Human influences on trophic cascades along rocky shores

    Science.gov (United States)

    Lindberg, D.R.; Estes, J.A.; Warheit, K.I.

    1998-01-01

    A three-trophic-level interaction among American Black Oystercatchers (Haematopus bachmani), limpets (Lottia spp.), and erect fleshy algae in rocky intertidal communities of central and southern California was documented via manipulative and 'natural' experiments. Removal of the territorial limpet (Lottia gigantea) initially caused large increases in the percent cover of erect fleshy algae, followed by a more gradual increase in density of small limpets (Lottia spp.) and a decline in algal cover. Algal cover increased following the removal of small limpets at the sites from which L. gigantea had been removed earlier, thus demonstrating that the large and small limpets had similar inhibitory effects on plant populations. A comparison of sites with and without oyster-catchers showed that L. gigantea occupied substrate inclinations in proportion to their availability at sites where oystercatchers were rare, whereas the distribution of L. gigantea was skewed toward vertically inclined substrates where oystercatchers were common. Survival rates of limpets translocated to horizontal and vertical substrates were similar in sites lacking oystercatcher predation, but were much lower on horizontal substrates where oystercatchers were common. Our results are consistent with those from several prior studies in demonstrating that shorelines frequented by humans typically lack oystercatchers. Humans also exploit L. gigantea and reduce populations to low densities of small individuals. These findings may explain why the midlittoral zone of rocky intertidal communities in western North America are so often dominated by high population densities of small limpets.

  8. Developing Terrestrial Trophic Models for Petroleum and Natural Gas Exploration and Production Sites: The Oklahoma Tallgrass Prairie Preserve Example

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, M; Coty, J; Stewart, J; Carlsen, T; Callaham, M

    2001-01-26

    This document details procedures to be used when constructing a conceptual terrestrial trophic model for natural gas and oil exploration and production sites. A site conceptual trophic model is intended for use in evaluating ecological impacts of oil and brine releases at E&P sites from a landscape or ecosystem perspective. The terrestrial trophic model protocol was developed using an example site, the Tallgrass Prairie Preserve (TPP) in Oklahoma. The procedure focuses on developing a terrestrial trophic model using information found in the primary literature, and augmented using site-specific research where available. Although the TPP has been the subject of considerable research and public interest since the high-profile reintroduction of bison (Bison bison) in 1993, little formal work has been done to develop a food web for the plant and animal communities found at the preserve. We describe how to divide species into guilds using explicit criteria on the basis of resource use and spatial distribution. For the TPP, sixteen guilds were developed for use in the trophic model, and the relationships among these guilds were analyzed. A brief discussion of the results of this model is provided, along with considerations for its use and areas for further study.

  9. Trophic ecology and vertical patterns of carbon and nitrogen stable isotopes in zooplankton from oxygen minimum zone regions

    Science.gov (United States)

    Williams, Rebecca L.; Wakeham, Stuart; McKinney, Rick; Wishner, Karen F.

    2014-08-01

    The unique physical and biogeochemical characteristics of oxygen minimum zones (OMZs) influence plankton ecology, including zooplankton trophic webs. Using carbon and nitrogen stable isotopes, this study examined zooplankton trophic webs in the Eastern Tropical North Pacific (ETNP) OMZ. δ13C values were used to indicate zooplankton food sources, and δ15N values were used to indicate zooplankton trophic position and nitrogen cycle pathways. Vertically stratified MOCNESS net tows collected zooplankton from 0 to 1000 m at two stations along a north-south transect in the ETNP during 2007 and 2008, the Tehuantepec Bowl and the Costa Rica Dome. Zooplankton samples were separated into four size fractions for stable isotope analyses. Particulate organic matter (POM), assumed to represent a primary food source for zooplankton, was collected with McLane large volume in situ pumps. The isotopic composition and trophic ecology of the ETNP zooplankton community had distinct spatial and vertical patterns influenced by OMZ structure. The most pronounced vertical isotope gradients occurred near the upper and lower OMZ oxyclines. Material with lower δ13C values was apparently produced in the upper oxycline, possibly by chemoautotrophic microbes, and was subsequently consumed by zooplankton. Between-station differences in δ15N values suggested that different nitrogen cycle processes were dominant at the two locations, which influenced the isotopic characteristics of the zooplankton community. A strong depth gradient in zooplankton δ15N values in the lower oxycline suggested an increase in trophic cycling just below the core of the OMZ. Shallow POM (0-110 m) was likely the most important food source for mixed layer, upper oxycline, and OMZ core zooplankton, while deep POM was an important food source for most lower oxycline zooplankton (except for samples dominated by the seasonally migrating copepod Eucalanus inermis). There was no consistent isotopic progression among the four

  10. The impact of organic pollution on the macrobenthic fauna of Dubai Creek (UAE).

    Science.gov (United States)

    Saunders, James E; Al Zahed, Khalid Mohammed; Paterson, David M

    2007-11-01

    Dubai Creek is a tidal marine intrusion bisecting Dubai within the United Arab Emirates (UAE). The creek extends 14km inland from its opening into the Arabian Gulf, with a narrow lower creek channel leading to a lagoon section in the upper creek. The creek contains numerous sources of organic pollution including sewage outlet flows and boat waste. A survey of the creek was performed, assessing organic pollution, water properties, and the benthic macrofaunal community. The upper creek was heavily polluted with macrofauna communities commonly associated with organic pollution and eutrophication, while the lower creek contained low pollution and relatively healthy macrofauna communities. There is little net tidal flow of water within the creek and residence time in the lagoon is high, which may account for the high organic pollution levels. However, some evidence of the pollution effect moving into the lower creek was found. The results are considered in light of current and historic organic loading within the creek and future developments in the area.

  11. Assessing Lake Trophic Status: A Proportional Odds Logistic Regression Model

    Science.gov (United States)

    Lake trophic state classifications are good predictors of ecosystem condition and are indicative of both ecosystem services (e.g., recreation and aesthetics), and disservices (e.g., harmful algal blooms). Methods for classifying trophic state are based off the foundational work o...

  12. Trophic niche-space imaging, using resource and consumer traits

    NARCIS (Netherlands)

    Nagelkerke, L.A.J.; Rossberg, A.G.

    2014-01-01

    The strength of trophic (feeding) links between two species depends on the traits of both the consumer and the resource. But which traits of consumer and resource have to be measured to predict link strengths, and how many? A novel theoretical framework for systematically determining trophic traits

  13. Climate Change and Baleen Whale Trophic Cascades in Greenland

    Science.gov (United States)

    2009-09-30

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Climate Change and Baleen Whale Trophic Cascades in Greenland...SUBTITLE Climate Change And Baleen Whale Trophic Cascades In Greenland 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  14. Trophic niche-space imaging, using resource and consumer traits

    NARCIS (Netherlands)

    Nagelkerke, L.A.J.; Rossberg, A.G.

    2014-01-01

    The strength of trophic (feeding) links between two species depends on the traits of both the consumer and the resource. But which traits of consumer and resource have to be measured to predict link strengths, and how many? A novel theoretical framework for systematically determining trophic traits

  15. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research

    OpenAIRE

    Svenning, Jens-Christian; Pedersen, Pil B. M.; Donlan, C. Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M.; Sandel, Brody; Sandom, Christopher J.; Terborgh, John W.; Vera, Frans W M

    2015-01-01

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provid...

  16. Catchment land-use effects on littoral macroinvertebrates in response to local habitat structure and trophic state

    DEFF Research Database (Denmark)

    McGoff, Elaine; Sandin, Leif Leonard

    2012-01-01

    macroinvertebrate community structure: trophic status, substrate variables or riparian variables. We also investigated what influence each of these groups of variables has on the other. The impact of large scale land use patterns was also investigated, to determine if macroinvertebrates responded differently in two...... different catchment land use types: impaired and unimpaired. Partial canonical ordination analysis showed that substrate variables were the most important for describing macroinvertebrate community variation in both catchment land use classes, followed by riparian descriptors, with the trophic signal only....... The macroinvertebrate community composition was also responding to changes in riparian vegetation, specifically the presence of riparian trees and canopy cover. These variables, or lack of, are possible proxies for anthropogenic alteration of lake shores. Therefore, although macroinvertebrates may not be strong...

  17. Study of the Intertidal Macrobenthic Fauna in Dayushan Island, Zhejiang%浙江大渔山岛潮间带大型底栖动物的群落结构

    Institute of Scientific and Technical Information of China (English)

    杨秀琴

    2012-01-01

    The community structures of the intertidal macrobenthic fauna in Dayushan island,Zhejiang,including species composition,quantity distribution and biodiversity,were analyzed in the study.The investigation in the study found 35 species,including 1 species of Annelida,2 species of Chordata,2 species of coelenterate,9 species of Arthropoda and 21 species of Mollusca.The average biomass and density in all stations were 1027.33 g/m2 and 1404 ind.m-2,respectively.The mollusca were the first in biomass and density among all macrobenthic fauna.The value of Shannon-Weaner index,Margalef's species richness index and Pielou's evenness index were 0.193~2.101,0.268~1.744 and 0.073~2.007,and their averages were 1.140±1.084,1.080±0.696 and 0.780±0.886,respectively.There was significant difference between the results in the study and in the similar experiments.The Abundance/Biomass curves of the intertidal zone of Dayushan island had part of the cross.%文章通过分析浙江大渔山岛潮间带大型底栖动物的物种组成、数量分布和生物多样性等群落结构特征来了解周围海域的水质状况。本次大渔山岛海域潮间带调查采获的大型底栖动物标本共有35种,其中软体动物21种,节肢动物9种,脊索动物与腔肠动物各2种,环节动物仅1种。且该海域潮间带大型底栖动物的平均生物量为1027.33 g/m2,平均丰度为1404 ind./m2。在各类群底栖动物中,软体动物的平均生物量及丰富都为第一。大渔山岛潮间带大型底栖动物的多样性指数、丰富度指数和均匀度指数的分布范围分别在0.193~2.101、0.268~1.744和0.073~2.007,平均值分别为1.140±1.084、1.080±0.696和0.780±0.886。

  18. Novel trophic cascades: apex predators enable coexistence.

    Science.gov (United States)

    Wallach, Arian D; Ripple, William J; Carroll, Scott P

    2015-03-01

    Novel assemblages of native and introduced species characterize a growing proportion of ecosystems worldwide. Some introduced species have contributed to extinctions, even extinction waves, spurring widespread efforts to eradicate or control them. We propose that trophic cascade theory offers insights into why introduced species sometimes become harmful, but in other cases stably coexist with natives and offer net benefits. Large predators commonly limit populations of potentially irruptive prey and mesopredators, both native and introduced. This top-down force influences a wide range of ecosystem processes that often enhance biodiversity. We argue that many species, regardless of their origin or priors, are allies for the retention and restoration of biodiversity in top-down regulated ecosystems.

  19. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    Science.gov (United States)

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary

  20. Trigeminal Trophic Syndrome – Case Report

    Directory of Open Access Journals (Sweden)

    Boštjan Matos

    2015-05-01

    Full Text Available 1024x768 Trigeminal trophic syndrome is a rare condition resulting from compulsive self-manipulation of the skin after a peripheral or central injury to the trigeminal system. The classic triad consists of trigeminal anesthesia, facial paresthesias, and crescentric lateral nasal alar erosion and ulceration. Although the symptoms are visibly clear, the diagnosis is not easy to establish. The appearance of the ulcers mimics many other disease entities such as neoplasm, infection, granulomatous disease, vasculitis and factitial dermatitis. Trigeminal trophic syndrome should be considered with a positive neurologic history and when laboratory and biopsy workup is inconclusive. Once diagnosis is confirmed, treatment is complicated and often multidisciplinary. We report a case of a woman who developed a strictly unilateral crescent ulcer of the ala nasi after resection of an statoacoustic neurinoma. A clinician who is faced with a patient with nasal ulceration should consider this diagnosis.     Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  1. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    Science.gov (United States)

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance.

  2. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia)

    Science.gov (United States)

    Agha, Ramsy; Saebelfeld, Manja; Manthey, Christin; Rohrlack, Thomas; Wolinska, Justyna

    2016-10-01

    Parasites are rarely included in food web studies, although they can strongly alter trophic interactions. In aquatic ecosystems, poorly grazed cyanobacteria often dominate phytoplankton communities, leading to the decoupling of primary and secondary production. Here, we addressed the interface between predator-prey and host-parasite interactions by conducting a life-table experiment, in which four Daphnia galeata genotypes were maintained on quantitatively comparable diets consisting of healthy cyanobacteria or cyanobacteria infected by a fungal (chytrid) parasite. In four out of five fitness parameters, at least one Daphnia genotype performed better on parasitised cyanobacteria than in the absence of infection. Further treatments consisting of purified chytrid zoospores and heterotrophic bacteria suspensions established the causes of improved fitness. First, Daphnia feed on chytrid zoospores which trophically upgrade cyanobacterial carbon. Second, an increase in heterotrophic bacterial biomass, promoted by cyanobacterial decay, provides an additional food source for Daphnia. In addition, chytrid infection induces fragmentation of cyanobacterial filaments, which could render cyanobacteria more edible. Our results demonstrate that chytrid parasitism can sustain zooplankton under cyanobacterial bloom conditions, and exemplify the potential of parasites to alter interactions between trophic levels.

  3. Trophic relationships between macroinvertebrates and fish in a pampean lowland stream (Argentina

    Directory of Open Access Journals (Sweden)

    María V. López van Oosterom

    2013-03-01

    Full Text Available The diet and trophic relationships between the macroinvertebrates Phyllogomphoides joaquini Rodrigues Capítulo, 1992 and Coenagrionidae (Odonata, Chironomidae (Diptera, Diplodon delodontus (Lamarck, 1919 (Bivalvia: Hyriidae, and Pomacea canaliculata (Lamarck, 1822 (Gastropoda: Ampulariidae and the fishes Pimelodella laticeps Eigenmann, 1917 (Heptapteridae and Bryconamericus iheringii (Boulenger, 1887 (Characidae in a temperate lowland lotic system in Argentina were assessed on the basis of gut contents and stable-isotope analyses. The feeding strategies were analyzed by the AMUNDSEN method. Relative food items contribution for the taxa studied indicated a generalist-type trophic strategy. In macroinvertebrates, in general, the values of stable isotope confirmed the result of the analysis of gut contents. With the fish, stable-isotope analysis demonstrated that both species are predators, although B. iheringii exhibited a more omnivorous behaviour. These feeding studies allowed us to determine the trophic relationships among taxa studied. Detritus and diatoms were a principal source of food for all the macroinvertebrates studied. In La Choza stream the particulate organic matter is a major no limited food resource, has a significant influence upon the community.

  4. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  5. Determination of fish trophic levels in an estuarine system

    Science.gov (United States)

    Pasquaud, S.; Pillet, M.; David, V.; Sautour, B.; Elie, P.

    2010-01-01

    The concept of trophic level is particularly relevant in order to improve knowledge of the structure and the functioning of an ecosystem. A precise estimation of fish trophic levels based on nitrogen isotopic signatures in environments as complex and fluctuant as estuaries requires a good description of the pelagic and benthic trophic chains and a knowledge of organic matter sources at the bottom. In this study these points are considered in the case of the Gironde estuary (south west France, Europe). To obtain a good picture of the food web, fish stomach content analyses and a bibliographic synthesis of the prey feeding ecology were carried out. Fish trophic levels were calculated from these results and δ 15N data. The feeding link investigation enabled us to identify qualitatively and quantitatively the different preys consumed by each fish group studied, to distinguish the prey feeding on benthos from those feeding on pelagos and to characterize the different nutritive pools at the base of the system. Among the species studied, only Liza ramada and the flatfish ( Platichthys flesus and Solea solea) depend mainly on benthic trophic compartments. All the other fish groups depend on several trophic (benthic and/or pelagic) sources. These results enabled us to correct the calculation of fish trophic levels which are coherent with their feeding ecology data obtained from the nitrogen isotopic integrative period. The present work shows that trophic positions are linked with the feeding ecology of fish species and vary according to individual size. Ecological data also allow the correction of the isotopic data by eliminating absurd results and showing the complementarity of the two methods. This work is the first to consider source variability in the fish food web. This is an indispensable step for trophic studies in a dynamic environment. The investigation of matter fluxes and recycling processes at the food web base would provide a useful improvement in future

  6. Bioindicators of climate and trophic state in lowland and highland aquatic ecosystems of the Northern Neotropics

    Directory of Open Access Journals (Sweden)

    Liseth Pérez

    2013-06-01

    Full Text Available Chironomids, diatoms and microcrustaceans that inhabit aquatic ecosystems of the Northern Neotropics are abundant and diverse. Some species are highly sensitive to changes in water chemical composition and trophic state. This study was undertaken as a first step in developing transfer functions to infer past environmental conditions in the Northern lowland Neotropics. Bioindicator species abundances were related to multiple environmental variables to exploit their use as environmental and paleoenvironmental indicators. We collected and analyzed water and surface sediment samples from 63 waterbodies located along a broad trophic state gradient and steep gradients of altitude (~0-1 560m.a.s.l. and precipitation (~400-3 200mm/y, from NW Yucatán Peninsula (Mexico to southern Guatemala. We related 14 limnological variables to relative abundances of 282 diatom species, 66 chironomid morphospecies, 51 species of cladocerans, 29 non-marine ostracode species and six freshwater calanoid copepods. Multivariate statistics indicated that bicarbonate is the strongest driver of chironomid and copepod distribution. Trophic state is the second most important factor that determines chironomid distribution. Conductivity, which is related to the precipitation gradient and marine influence on the Yucatán Peninsula, is the main variable that shapes diatom, ostracode and cladoceran communities. Diatoms, chironomids and cladocerans displayed higher diversities (H=2.4-2.6 than ostracodes and copepods (H=0.7- 1.8. Species richness and diversity were greater at lower elevations (<450m.a.s.l. than at higher elevations in Guatemala. Distribution and diversity of bioindicators are influenced by multiple factors including altitude, precipitation, water chemistry, trophic state and human impact.

  7. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis

    Directory of Open Access Journals (Sweden)

    Amanda W.J. Demopoulos

    2015-04-01

    Full Text Available Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi and permanently parasitic cymothoids (Anilocra. To further track the transfer of fish-derived carbon (energy from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in 13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  8. Bioindicators of climate and trophic state in lowland and highland aquatic ecosystems of the Northern Neotropics.

    Science.gov (United States)

    Pérez, Liseth; Lorenschat, Julia; Massaferro, Julieta; Pailles, Christine; Sylvestre, Florence; Hollwedel, Werner; Brandorff, Gerd-Oltmann; Brenner, Mark; Islebe, Gerald; del Socorro Lozano, María; Scharf, Burkhard; Schwalb, Antje

    2013-06-01

    Chironomids, diatoms and microcrustaceans that inhabit aquatic ecosystems of the Northern Neotropics are abundant and diverse. Some species are highly sensitive to changes in water chemical composition and trophic state. This study was undertaken as a first step in developing transfer functions to infer past environmental conditions in the Northern lowland Neotropics. Bioindicator species abundances were related to multiple environmental variables to exploit their use as environmental and paleoenvironmental indicators. We collected and analyzed water and surface sediment samples from 63 waterbodies located along a broad trophic state gradient and steep gradients of altitude (approximately 0-1 560 m.a.s.l.) and precipitation (approximately 400-3200 mm/y), from NW Yucatán Peninsula (Mexico) to southern Guatemala. We related 14 limnological variables to relative abundances of 282 diatom species, 66 chironomid morphospecies, 51 species of cladocerans, 29 non-marine ostracode species and six freshwater calanoid copepods. Multivariate statistics indicated that bicarbonate is the strongest driver of chironomid and copepod distribution. Trophic state is the second most important factor that determines chironomid distribution. Conductivity, which is related to the precipitation gradient and marine influence on the Yucatán Peninsula, is the main variable that shapes diatom, ostracode and cladoceran communities. Diatoms, chironomids and cladocerans displayed higher diversities (H = 2.4-2.6) than ostracodes and copepods (H = 0.7-1.8). Species richness and diversity were greater at lower elevations (bioindicators are influenced by multiple factors including altitude, precipitation, water chemistry, trophic state and human impact.

  9. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    Science.gov (United States)

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  10. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  11. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    Directory of Open Access Journals (Sweden)

    Francesca Pasotti

    Full Text Available The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands, a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii over time driving the benthic assemblages into a more compact trophic structure with

  12. Nitrogen and Carbon Dynamics Across Trophic Levels Along an Atmospheric Nitrogen Deposition Gradient

    Science.gov (United States)

    Wissinger, B. D.; Bell, M. D.; Newingham, B. A.

    2011-12-01

    Atmospheric nitrogen deposition has altered soil biogeochemical processes and plant communities across the United States. Prior investigations have demonstrated these alterations; however, little is known about the effects of elevated nitrogen on higher trophic levels. Building upon previous research that revealed an atmospheric nitrogen deposition gradient from the San Bernardino Mountains through Joshua Tree National Park in California, we investigated atmospheric nitrogen and its effects on soils, plants, and harvester ants. We measured nitrogen and carbon concentrations, along with carbon and nitrogen stable isotopes, across trophic levels at eighteen urban and unpopulated sites along the deposition gradient. Carbon and nitrogen attributes were determined in atmospheric nitric acid, soil, Larrea tridentata and Ambrosia dumosa leaves, seeds from selected plant species, and ants. We predicted carbon and nitrogen ratios and isotopes to change in areas with higher nitrogen deposition and vary along the deposition gradient. Nitrogen (p=0.02) and carbon (p=0.05) concentrations, as well as C:N ratios (p=<0.001), significantly differed in Messor pergandei individuals among sites; however, no correlation was found between these carbon and nitrogen attributes and the nitrogen deposition gradient (%N r2=0.02, %C r2=0.007, C:N r2=0.02). The δ15N and δ13C values of the ants, leaf tissues, and seeds measured across the gradient follow similar patterns with r2 values all below 0.20. Our results suggest the current and previous rates of nitrogen deposition in this area are not enough to modify nitrogen and carbon concentrations and isotope values. Compensatory nitrogen cycling processes in the soil may reduce the effects of increased nitrogen on plants and thus higher trophic levels. Nitrogen and carbon dynamics across trophic levels might change after longer ecosystem exposure to elevated nitrogen; however, other abiotic and biotic factors are likely driving current

  13. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton.

    Science.gov (United States)

    Plum, Christoph; Hüsener, Matthias; Hillebrand, Helmut

    2015-11-01

    Despite the progress made in explaining trophic interactions through the stoichiometric interplay between consumers and resources, it remains unclear how the number of species in a trophic group influences the effects of elemental imbalances in food webs. Therefore, we conducted a laboratory experiment to test the hypothesis that multispecies producer assemblages alter the nutrient dynamics in a pelagic community. Four algal species were reared in mono- and polycultures under a 2 x 2 factorial combination of light and nutrient supply, thereby contrasting the stoichiometry of trophic interactions involving single vs. multiple producer species. After 9 d, these cultures were fed to the calanoid copepod Acartia tonsa, and we monitored biomass, resource use, and C:N:P stoichiometry in both phyto- and zooplankton. According to our expectations, light and N supply resulted in gradients of phytoplankton biomass and nutrient composition (C:N:P). Significant net diversity effects for algal biomass and C:N:P ratios reflected the greater responsiveness of the phytoplankton polyculture to altered resource supply compared to monocultures. These alterations of elemental ratios were common, and were partly triggered by changes in species frequency in the mixtures and partly by diversity-related changes in resource use. Copepod individual biomass increased under high light (HL) and N-reduced (-N) conditions, when food was high in C:N but low in C:P and N:P, whereas copepod growth was obviously P limited, and copepod stoichiometry was not affected by phytoplankton elemental composition. Correspondingly, copepod individual biomass reflected significant net diversity effects: compared to expectations- derived from monocultures, copepod individuals feeding on algal polycultures remained smaller than predicted under HL and N-sufficient (+N) conditions but grew larger than predicted under HL, -N and low light +N conditions. In conclusion, multiple producer species altered the

  14. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...

  15. Science for a wilder Anthropocene : Synthesis and future directions for trophic rewilding research

    NARCIS (Netherlands)

    Svenning, Jens Christian; Pedersen, Pil B M; Donlan, C. Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M.; Sandel, Brody; Sandom, Christopher J.; Terborgh, John W.; Vera, Frans W M

    2016-01-01

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and

  16. Science for a wilder Anthropocene : Synthesis and future directions for trophic rewilding research

    NARCIS (Netherlands)

    Svenning, Jens Christian; Pedersen, Pil B M; Donlan, C. Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M.; Sandel, Brody; Sandom, Christopher J.; Terborgh, John W.; Vera, Frans W M

    2016-01-01

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and

  17. Mean trophic level of coastal fisheries landings in the Persian Gulf (Hormuzgan Province), 2002-2011

    Science.gov (United States)

    Razzaghi, Marzieh; Mashjoor, Sakineh; Kamrani, Ehsan

    2016-06-01

    Fishing activities can alter the structure of marine food webs by the selective removal of some species. The changes in the marine food webs of the Hormuzgan waters of the Persian Gulf, Iran were assessed, based on estimates of the mean trophic index (MTI) and Fishing in Balance index (FiB), and on landing profile of the exploited marine community (49 species) during the period, 2002-2011. The total landings (Y t) (R=0.88, Pprocess is occurring in this area, and that this trend may continue in the long-term. Therefore, environmental fisheries management and conservation programs should be prioritized for these valuable resources.

  18. Shift in a large river fish assemblage: body-size and trophic structure dynamics.

    Directory of Open Access Journals (Sweden)

    Kyle J Broadway

    Full Text Available As the intensity and speed of environmental change increase at both local and global scales it is imperative that we gain a better understanding of the ecological implications of community shifts. While there has been substantial progress toward understanding the drivers and subsequent responses of community change (e.g. lake trophic state, the ecological impacts of food web changes are far less understood. We analyzed Wabash River fish assemblage data collected from 1974-2008, to evaluate temporal variation in body-size structure and functional group composition. Two parameters derived from annual community size-spectra were our major response variables: (1 the regression slope is an index of ecological efficiency and predator-prey biomass ratios, and (2 spectral elevation (regression midpoint height is a proxy for food web capacity. We detected a large assemblage shift, over at least a seven year period, defined by dramatic changes in abundance (measured as catch-per-unit-effort of the dominant functional feeding groups among two time periods; from an assemblage dominated by planktivore-omnivores to benthic invertivores. There was a concurrent increase in ecological efficiency (slopes increased over time following the shift associated with an increase in large-bodied low trophic level fish. Food web capacity remained relatively stable with no clear temporal trends. Thus, increased ecological efficiency occurred simultaneous to a compensatory response that shifted biomass among functional feeding groups.

  19. Aspects of the trophic ecology of Liza falcipinnis (Valenciennes 1836)

    African Journals Online (AJOL)

    Aspects of the trophic ecology of Liza falcipinnis (Valenciennes 1836) (Pisces: ... From the index of relative importance (IRI), L. falcipinnis fed primarily on diatoms, ... algae and blue-green algae while free living nematodes, macrophyte matter, ...

  20. Trophic transfer of metal-based nanoparticles in aquatic environments

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal; Selck, Henriette; Winther-Nielsen, Margrethe

    2016-01-01

    environment where they have been shown to be taken up by a variety of species. Therefore, there is a possibility that Me-ENPs will enter and pass through aquatic food webs, but research on this topic is limited. In this tutorial review, we discuss the factors contributing to trophic transfer of Me......-ENPs, and where this information is scarce, we utilize the existing literature on aqueous metal trophic transfer as a potential starting point for greater mechanistic insight and for setting directions for future studies. We identify four key factors affecting trophic transfer of Me-ENPs: (1) environmental...... transformations of Me-ENPs, (2) uptake and accumulation in prey organisms, (3) internal fate and localization in the prey, and (4) digestive physiology of the predator. Whilst much research has been conducted on the first two of these factors, key knowledge gaps exist in our understanding of how Me-ENP trophic...

  1. From neurons to epidemics: How trophic coherence affects spreading processes

    CERN Document Server

    Klaise, Janis

    2016-01-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feed-back cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here we consider two simple yet apparently quite different dynamical models -- one a Susceptible-Infected-Susceptible (SIS) epidemic model adapted to include complex contagion, the other an Amari-Hopfield neural network -- and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks...

  2. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.

    Science.gov (United States)

    Soliveres, Santiago; van der Plas, Fons; Manning, Peter; Prati, Daniel; Gossner, Martin M; Renner, Swen C; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul C; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-08-25

    Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services

  3. Marine reserves demonstrate trophic interactions across habitats.

    Science.gov (United States)

    Langlois, Timothy J; Anderson, Marti J; Babcock, Russell C; Kato, Shin

    2006-02-01

    Several infaunal bivalve taxa show patterns of decreased biomass in areas with higher densities of adjacent reef-associated predators (the snapper, Pagrus auratus and rock lobster, Jasus edwardsii). A caging experiment was used to test the hypothesis that patterns observed were caused by predation, using plots seeded with a known initial density of the bivalve Dosinia subrosea to estimate survivorship. The caging experiment was replicated at several sites inside and outside two highly protected marine reserves: predators are significantly more abundant inside these reserves. Survivorship in fully caged, partially caged and open plots were then compared at sites having either low (non reserve) or high (reserve) predator density. The highest rates of survivorship of the bivalve were found in caged plots inside reserves and in all treatments outside reserves. However, inside reserves, open and partially caged treatments exhibited low survivorship. It was possible to specifically attribute much of this mortality to predation by large rock lobsters, due to distinctive marks on the valves of dead D. subrosea. This suggests that predation by large rock lobster could indeed account for the distributional patterns previously documented for certain bivalve populations. Our results illustrate that protection afforded by marine reserves is necessary to investigate how depletion through fishing pressure can change the role of upper-level predators and trophic processes between habitats.

  4. Complex trophic interactions in kelp forest ecosystems

    Science.gov (United States)

    Estes, J. A.; Danner, E.M.; Doak, D.F.; Konar, B.; Springer, A.M.; Steinberg, P.D.; Tinker, M. Tim; Williams, T.M.

    2004-01-01

    The distributions and abundances of species and populations change almost continuously. Understanding the processes responsible is perhaps ecology’s most fundamental challenge. Kelp-forest ecosystems in southwest Alaska have undergone several phase shifts between alga- and herbivore-dominated states in recent decades. Overhunting and recovery of sea otters caused the earlier shifts. Studies focusing on these changes demonstrate the importance of top-down forcing processes, a variety of indirect food-web interactions associated with the otter-urchin-kelp trophic cascade, and the role of food-chain length in the coevolution of defense and resistance in plants and their herbivores. This system unexpectedly shifted back to an herbivore-dominated state during the 1990s, because of a sea-otter population collapse that apparently was driven by increased predation by killer whales. Reasons for this change remain uncertain but seem to be linked to the whole-sale collapse of marine mammals in the North Pacific Ocean and southern Bering Sea. We hypothesize that killer whales sequentially "fished down" pinniped and sea-otter populations after their earlier prey, the great whales, were decimated by commercial whaling. The dynamics of kelp forests in southwest Alaska thus appears to have been influenced by an ecological chain reaction that encompassed numerous species and large scales of space and time.

  5. Trophic ecology of the pikeperch (Sander lucioperca) in its introduced areas: a stable isotope approach in southwestern France.

    Science.gov (United States)

    Kopp, Dorothée; Cucherousset, Julien; Syväranta, Jari; Martino, Aurélia; Céréghino, Régis; Santoul, Frédéric

    2009-08-01

    During the last decades, non-native predatory fish species have been largely introduced in European lakes and rivers, calling for detailed information on the trophic ecology of co-existing native and non-native predators. The present study describes the trophic ecology of the introduced pikeperch (Sander lucioperca) in two southwestern French rivers, using stable isotope analysis. Pikeperch could be categorized as a top-predator, and had a significantly higher trophic position (TP, mean+/-SE=4.2+/-0.1) compared to other predatory fish such as the native pike (Esox lucius, TP=3.7+/-0.1) and the introduced European catfish (Silurus glanis, TP=3.8+/-0.1). Most studies of resource use in freshwaters consider predatory fish as ecologically equivalent; however, this study showed that the pikeperch occupied a higher trophic niche compared to other predatory species in the Lot and Tarn rivers (Garonne River basin). This apparent specialization may thus have consequences upon interspecific relationships within the predatory guild and upon the functional organization of biological communities.

  6. Critical assessment and ramifications of a purported marine trophic cascade

    Science.gov (United States)

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  7. Community characteristics of macrobenthos in the Huanghe (Yellow River) Estuary during water and sediment discharge regulation

    Institute of Scientific and Technical Information of China (English)

    REN Zhonghua; LI Fan; WEI Jiali; LI Shaowen; LV Zhenbo; GAO Yanjie; CONG Xuri

    2016-01-01

    The community characteristics of macrobenthos in the Huanghe (Yellow River) Estuary is influenced by a combination of natural and anthropogenic factors. Here, we investigated short-term changes (1-month) in macrobenthic community structure in response to water and sediment discharge regulation (WSDR) in 2011. Specifically, we sampled the macrobenthos at 18 sampling stations situated at four distances (5, 10, 20, and 40 km) from the mouth of the Huanghe Estuary before (mid-June), during (early-July), and after (mid-July) WSDR. The results showed that a total of 73, 72, and 85 species were collected before, during, and after WSDR, respectively. Then, 13, 1, and 16 dominant species were detected at this three periods. Four phyla were primarily detected at all three periods (Annelida, Mollusca, Arthropoda, and Echinodermata). However, while Mollusca and Annelida were the most important phyla in our study, Echinodermata and Annelida were the most important phyla in 1982, demonstrating major changes to community structure over a 3-decadal period. All stations were of high quality BOPA index before WSDR, whereas two and three stations were of reduced quality BOPA index during and after WSDR, respectively. The results of ABC curves showed that had incurred disturbed conditions after human activities WSDR. Most important of all, multivariate analyses and RDA analysis indicated that the structure of the macrobenthic community was closely linked to environment factors, including that organic content factor caused the distribution of macrobenthic community mostly during WSDR, while water depth after WSDR affected the macro benthos community structure seriously, and during WSDR, the environment factor influencing it was not single, including organic content, sulfide content, Hg and As. These differences may have been due to changes in water transparency negatively impacting the growth and development of macrobenthos, due to specific life-history requirements. Our results

  8. Spatiotemporal diversity, structure and trophic guilds of insect assemblages in a semi-arid Sabkha ecosystem

    Directory of Open Access Journals (Sweden)

    Haroun Chenchouni

    2015-03-01

    Full Text Available The current study highlights some knowledge on the diversity and structure of insect communities and trophic groups living in Sabkha Djendli (semi-arid area of Northeastern Algeria. The entomofauna was monthly sampled from March to November 2006 using pitfall traps at eight sites located at the vicinity of the Sabkha. Structural and diversity parameters (species richness, Shannon index, evenness were measured for both insect orders and trophic guilds. The canonical correspondence analysis (CCA was applied to determine how vegetation parameters (species richness and cover influence spatial and seasonal fluctuations of insect assemblages. The catches totalled 434 insect individuals classified into 75 species, 62 genera, 31 families and 7 orders, of which Coleoptera and Hymenoptera were the most abundant and constant over seasons and study stations. Spring and autumn presented the highest values of diversity parameters. Individual-based Chao-1 species richness estimator indicated 126 species for the total individuals captured in the Sabkha. Based on catch abundances, the structure of functional trophic groups was predators (37.3%, saprophages (26.7%, phytophages (20.5%, polyphages (10.8%, coprophages (4.6%; whereas in terms of numbers of species, they can be classified as phytophages (40%, predators (25.3%, polyphages (13.3%, saprophages (12%, coprophages (9.3%. The CCA demonstrated that phytophages and saprophages as well as Coleoptera and Orthoptera were positively correlated with the two parameters of vegetation, especially in spring and summer. While the abundance of coprophages was positively correlated with species richness of plants, polyphage density was positively associated with vegetation cover. The insect community showed high taxonomic and functional diversity that is closely related to diversity and vegetation cover in different stations of the wetland and seasons.

  9. Oil spill effects on macrofaunal communities and bioturbation of pristine marine sediments (Caleta Valdés, Patagonia, Argentina): experimental evidence of low resistance capacities of benthic systems without history of pollution.

    Science.gov (United States)

    Ferrando, Agustina; Gonzalez, Emilia; Franco, Marcos; Commendatore, Marta; Nievas, Marina; Militon, Cécile; Stora, Georges; Gilbert, Franck; Esteves, José Luis; Cuny, Philippe

    2015-10-01

    The Patagonian coast is characterized by the existence of pristine ecosystems which may be particularly sensitive to oil contamination. In this study, a simulated oil spill at acute and chronic input levels was carried out to assess the effects of contamination on the macrobenthic community structure and the bioturbation activity of sediments sampled in Caleta Valdés creek. Superficial sediments were either noncontaminated or contaminated by Escalante crude oil and incubated in the laboratory for 30 days. Oil contamination induced adverse effects on macrobenthic community at both concentrations with, for the highest concentration, a marked decrease of approximately 40 and 55 % of density and specific richness, respectively. Besides the disappearance of sensitive species, some other species like Oligochaeta sp. 1, Paranebalia sp., and Ostracoda sp. 2 species have a higher resistance to oil contamination. Sediment reworking activity was also affected by oil addition. At the highest level of contamination, nearly no activity was observed due to the high mortality of macroorganisms. The results strongly suggest that an oil spill in this protected marine area with no previous history of contamination would have a deep impact on the non-adapted macrobenthic community.

  10. Striatal trophic activity is reduced in the aged rat brain.

    Science.gov (United States)

    Ling, Z D; Collier, T J; Sortwell, C E; Lipton, J W; Vu, T Q; Robie, H C; Carvey, P M

    2000-02-21

    Our previous studies demonstrated that the survival of a mesencephalic graft was reduced in aged animals suggesting an age-related decline in target-derived neurotrophic activity. We tested this hypothesis by examining dopamine (DA) and trophic activities from the striatum of intact or unilateral 6-hydroxydopamine (6-OHDA) lesioned rats of increasing age. Fisher 344 rats were 4, 12, 18, and 23 months old (m.o.) at sacrifice. Half the animals had received unilateral 6-OHDA lesions of the mesostriatal DA pathway 8 weeks earlier. Striatal tissue punches were analyzed for DA, homovanillic acid (HVA), and DA activity (HVA/DA) using HPLC. The remainder of the striatal tissue was homogenized to generate tissue extracts which were added to E14.5 ventral mesencephalic cultures to test trophic activity. In the non-lesioned animals, striatal DA was reduced and striatal DA activity was increased in the 18 and 23 m.o. animals relative to the 4 and 12 m.o. animals. Striatal trophic activity was inversely related to age. In the lesioned animals, striatal DA ipsilateral to 6-OHDA infusion was below detection limits while the contralateral striatum exhibited age-related changes in DA similar to those seen in the non-lesioned animals. In 4 m.o. lesioned rats, striatal trophic activity ipsilateral to 6-OHDA infusion was elevated by 26% relative to the contralateral side. The ipsi/contra-lateral differences in striatal trophic activity were reduced in 12 m.o. animals and absent in the 18 and 23 m.o. groups. These data suggest that advancing age is associated with a reduction in striatal DA as well as trophic activity. Moreover, the aged striatum loses its ability to biochemically and trophically compensate for DA reduction and therefore may represent a more challenging environment for the survival, growth, and function of a fetal graft.

  11. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    Directory of Open Access Journals (Sweden)

    Nina E Fatouros

    Full Text Available Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata to volatiles of a wild crucifer (Brassica nigra induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae. Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

  12. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    Science.gov (United States)

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

  13. Trophic interactions in the St. Lawrence Estuary (Canada): Must the blue whale compete for krill?

    Science.gov (United States)

    Savenkoff, C.; Comtois, S.; Chabot, D.

    2013-09-01

    Inverse methodology was used to construct a mass-balance model of the Lower St. Lawrence Estuary (LSLE) for the 2008-2010 time period. Our first objective was to make an overall description of community structure, trophic interactions, and the effects of fishing and predation on the vertebrate and invertebrate communities of the ecosystem. A second objective was to identify other important predators of krill, and to assess if these compete with blue whales, listed as endangered under the Canadian Species at Risk Act in 2005 (northwest Atlantic population). The Estuary and the Gulf of St. Lawrence are summer feeding grounds for blue whales and other marine mammals. Blue whales eat only euphausiids (krill) and require dense concentrations of prey to meet their energy requirements, which makes them particularly vulnerable to changes in prey availability. In the LSLE, many species from secondary producers (hyperiid amphipods, other macrozooplankton) to top predators (fish, birds, and marine mammals) consumed euphausiids. Consequently, krill predators were found at all consumer trophic levels. However, our results showed that only about 35% of the estimated euphausiid production was consumed by all predator species combined. Euphausiid did not seem to be a restricted resource in the LSLE ecosystem, at least during the study period. The blue whale did not appear to have to compete for krill in the LSLE.

  14. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions.

    Science.gov (United States)

    Majdi, Nabil; Boiché, Anatole; Traunspurger, Walter; Lecerf, Antoine

    2014-07-01

    Predator effects on ecosystems can extend far beyond their prey and are often not solely lethally transmitted. Change in prey traits in response to predation risk can have important repercussions on community assembly and key ecosystem processes (i.e. trait-mediated indirect effects). In addition, some predators themselves alter habitat structure or nutrient cycling through ecological engineering effects. Tracking these non-trophic pathways is thus an important, yet challenging task to gain a better grasp of the functional role of predators. Multiple lines of evidence suggest that, in detritus-based food webs, non-trophic interactions may prevail over purely trophic interactions in determining predator effects on plant litter decomposition. This hypothesis was tested in a headwater stream by modulating the density of a flatworm predator (Polycelis felina) in enclosures containing oak (Quercus robur) leaf litter exposed to natural colonization by small invertebrates and microbial decomposers. Causal path modelling was used to infer how predator effects propagated through the food web. Flatworms accelerated litter decomposition through positive effects on microbial decomposers. The biomass of prey and non-prey invertebrates was not negatively affected by flatworms, suggesting that net predator effect on litter decomposition was primarily determined by non-trophic interactions. Flatworms enhanced the deposition and retention of fine sediments on leaf surface, thereby improving leaf colonization by invertebrates - most of which having strong affinities with interstitial habitats. This predator-induced improvement of habitat availability was attributed to the sticky nature of the mucus that flatworms secrete in copious amount while foraging. Results of path analyses further indicated that this bottom-up ecological engineering effect was as powerful as the top-down effect on invertebrate prey. Our findings suggest that predators have the potential to affect substantially

  15. 辽宁獐子岛马牙滩潮间带及近岸海区大型底栖动物群落特征%Macrobenthic fauna in the intertidal and offshore areas of Zhangzi Island

    Institute of Scientific and Technical Information of China (English)

    王全超; 韩庆喜; 李宝泉

    2013-01-01

    为摸清辽宁獐子岛潮间带及近岸海区的大型底栖动物的分布现状和群落受扰动情况,作者于2011年11月中旬在马牙滩潮间带和近岸海区采集大型底栖动物,采用优势度指数、Shannon-Wiener多样性指数、Margalef丰富度指数、Pielou均匀度指数,Bray-Curtis相似性聚类分析、MDS标序和ABC曲线等方法,分析该区域内大型底栖动物群落的生态学特点.结果表明,在潮间带共鉴定大型底栖动物39种,优势类群为多毛类、甲壳类和软体类;优势种均为多毛类,即小头虫(Capitella capitata)、多美沙蚕(Lycastopsis augenari)、仙居虫(Naineris laevigata)和短叶索沙蚕(Lumbrineris latreilli);平均生物量为25.76±41.08 g/m2,以软体动物占优势;平均栖息密度为315.11±160.73个/m2,以多毛类占优势;丰富度指数、均匀度指数与Shannon-Wiener多样性指数的平均值分别为1.17±0.89,0.74±0.17和1.80±1.09.近岸海区共鉴定大型底栖动物40种,优势类群为多毛类、甲壳动物、软体动物和棘皮动物.优势种包括4种棘皮动物和1种多毛类,即紫蛇尾(Ophiopholis mirabilis)、日本倍棘蛇尾(Amphioplus japonicus)、短叶索沙蚕、心形海胆(Echinocardium cordatum)和浅水萨氏真蛇尾(Ophiura sarsiivadicola).近岸海区的平均生物量和平均栖息密度分别为218.86±152.24g/m2和700.00±471.51个/m2,均以棘皮动物占优势.丰富度指数、均匀度指数与Shannon-Wiener多样性指数的平均值分别为1.40±0.60,0.64±0.19和2.04±0.78.聚类分析结果表明,潮间带不同潮区间和近岸海区不同断面间群落差异显著.ABC曲线分析显示,獐子岛潮间带底质环境受到中度扰动,大型底栖动物群落结构处于不稳定状态;近岸海区受到轻度干扰,群落结构未发生明显变化.%We completed a quantitative investigation of the macrobenthic community in the intertidal zone and offshore areas of Zhangzi Island in November 2011 to

  16. Shift in trophic level of Mediterranean mariculture species.

    Science.gov (United States)

    Tsikliras, Athanassios C; Stergiou, Konstantinos I; Adamopoulos, Nikolaos; Pauly, Daniel; Mente, Eleni

    2014-08-01

    The mean trophic level of the farmed fish species in the Mediterranean has been increasing. We examined the farming-up hypothesis (i.e., the increase in the production of high-trophic-level species) in the Mediterranean by determining the trophic level of the aquafeeds (i.e., what the fish are fed) of 5 species of farmed marine fishes: common dentex (Dentex dentex), common pandora (Pagellus erythrinus), European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), and red porgy (Pagrus sp.). The mean trophic level of aquafeed used in mariculture from 1950 to 2011 was higher (3.93) than the prey farmed fish consume in the wild (3.72) and increased at a faster rate (0.48/decade) compared with that based on their diets in the wild (0.43/decade). Future expected replacement of the fishmeal and oil in aquafeeds by plant materials may reverse the farming-up trend, although there are a number of concerns regarding operational, nutritional, environmental, and economic issues. The farming-up reversal can be achieved in an ecologically friendly manner by facilitating the mariculture of low-trophic-level fishes and by promoting high efficiency in the use of living marine resources in aquafeeds. © 2014 Society for Conservation Biology.

  17. From neurons to epidemics: How trophic coherence affects spreading processes

    Science.gov (United States)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  18. Temporal variation in the biochemical ecology of lower trophic levels in the Northern California Current

    Science.gov (United States)

    Miller, J. A.; Peterson, W. T.; Copeman, L. A.; Du, X.; Morgan, C. A.; Litz, M. N. C.

    2017-06-01

    There is strong correlative evidence that variation in the growth and survival of secondary consumers is related to the copepod species composition within the Northern California Current. Potential mechanisms driving these correlations include: (1) enhanced growth and survival of secondary consumers when lipid-rich, boreal copepod species are abundant, with cascading effects on higher trophic levels; (2) the regulation of growth and condition of primary and secondary consumers by the relative proportion of certain essential fatty acids (FAs) in primary producers; or (3) a combination of these factors. Disentangling the relative importance of taxonomic composition, lipid quantity, and FA composition on the nutritional quality of copepods requires detailed information on both the consumer and primary producers. Therefore, we collected phytoplankton and copepods at an oceanographic station for 19 months and completed species community analyses and generated detailed lipid profiles, including lipid classes and FAs, for both groups. There was strong covariation between species and biochemistry within and across trophic levels and distinct seasonal differences. The amount of total lipid within both the phytoplankton and copepod communities was twice as high in spring and summer than in fall and winter, and certain FAs, such as diatom indicators 20:5ω3 and 16:1ω7, comprised a greater proportion of the FA pool in spring and summer. Indicators of bacterial production within the copepod community were proportionally twice as high during fall and winter than spring and summer. Seasonal transitions in copepod FA composition were consistently offset from transitions in copepod species composition by approximately two weeks. The timing of the seasonal transition in copepod FAs reflected seasonal shifts in the species composition and/or biochemistry of primary producers more than seasonal shifts in the copepod species composition. These results emphasize the importance of

  19. Spatial patterns and predictors of trophic control in marine ecosystems.

    Science.gov (United States)

    Boyce, Daniel G; Frank, Kenneth T; Worm, Boris; Leggett, William C

    2015-10-01

    A key question in ecology is under which conditions ecosystem structure tends to be controlled by resource availability vs. consumer pressure. Several hypotheses derived from theory, experiments and observational field studies have been advanced, yet a unified explanation remains elusive. Here, we identify common predictors of trophic control in a synthetic analysis of 52 observational field studies conducted within marine ecosystems across the Northern Hemisphere and published between 1951 and 2014. Spatial regression analysis of 45 candidate variables revealed temperature to be the dominant predictor, with unimodal effects on trophic control operating both directly (r(2) = 0.32; P marine ecosystems, and that variation in ocean temperature will affect the trophic structure of marine ecosystems through both direct and indirect mechanisms. © 2015 John Wiley & Sons Ltd/CNRS.

  20. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    Science.gov (United States)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  1. Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia

    Directory of Open Access Journals (Sweden)

    Jessica A. Schultz

    2016-04-01

    Full Text Available Echinoderm population collapses, driven by disease outbreaks and climatic events, may be important drivers of population dynamics, ecological shifts and biodiversity. The northeast Pacific recently experienced a mass mortality of sea stars. In Howe Sound, British Columbia, the sunflower star Pycnopodia helianthoides—a previously abundant predator of bottom-dwelling invertebrates—began to show signs of a wasting syndrome in early September 2013, and dense aggregations disappeared from many sites in a matter of weeks. Here, we assess changes in subtidal community composition by comparing the abundance of fish, invertebrates and macroalgae at 20 sites in Howe Sound before and after the 2013 sea star mortality to evaluate evidence for a trophic cascade. We observed changes in the abundance of several species after the sea star mortality, most notably a four-fold increase in the number of green sea urchins, Strongylocentrotus droebachiensis, and a significant decline in kelp cover, which are together consistent with a trophic cascade. Qualitative data on the abundance of sunflower stars and green urchins from a citizen science database show that the patterns of echinoderm abundance detected at our study sites reflected wider local trends. The trophic cascade evident at the scale of Howe Sound was observed at half of the study sites. It remains unclear whether the urchin response was triggered directly, via a reduction in urchin mortality, or indirectly, via a shift in urchin distribution into areas previously occupied by the predatory sea stars. Understanding the ecological implications of sudden and extreme population declines may further elucidate the role of echinoderms in temperate seas, and provide insight into the resilience of marine ecosystems to biological disturbances.

  2. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    Directory of Open Access Journals (Sweden)

    Katrin Tirok

    Full Text Available Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  3. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    Science.gov (United States)

    Tirok, Katrin; Bauer, Barbara; Wirtz, Kai; Gaedke, Ursula

    2011-01-01

    Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  4. Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia

    Science.gov (United States)

    Cloutier, Ryan N.; Côté, Isabelle M.

    2016-01-01

    Echinoderm population collapses, driven by disease outbreaks and climatic events, may be important drivers of population dynamics, ecological shifts and biodiversity. The northeast Pacific recently experienced a mass mortality of sea stars. In Howe Sound, British Columbia, the sunflower star Pycnopodia helianthoides—a previously abundant predator of bottom-dwelling invertebrates—began to show signs of a wasting syndrome in early September 2013, and dense aggregations disappeared from many sites in a matter of weeks. Here, we assess changes in subtidal community composition by comparing the abundance of fish, invertebrates and macroalgae at 20 sites in Howe Sound before and after the 2013 sea star mortality to evaluate evidence for a trophic cascade. We observed changes in the abundance of several species after the sea star mortality, most notably a four-fold increase in the number of green sea urchins, Strongylocentrotus droebachiensis, and a significant decline in kelp cover, which are together consistent with a trophic cascade. Qualitative data on the abundance of sunflower stars and green urchins from a citizen science database show that the patterns of echinoderm abundance detected at our study sites reflected wider local trends. The trophic cascade evident at the scale of Howe Sound was observed at half of the study sites. It remains unclear whether the urchin response was triggered directly, via a reduction in urchin mortality, or indirectly, via a shift in urchin distribution into areas previously occupied by the predatory sea stars. Understanding the ecological implications of sudden and extreme population declines may further elucidate the role of echinoderms in temperate seas, and provide insight into the resilience of marine ecosystems to biological disturbances. PMID:27168988

  5. Estimate of the trophic status of subarctic Imandra Lake

    Directory of Open Access Journals (Sweden)

    Terent'eva I. A.

    2017-03-01

    Full Text Available The object of study is Imandra Lake – the largest reservoir of the Murmansk region. The lake is being influenced by the long-term and multi-factorial activities of mining and ore processing industries, air pollution and energetics. Moreover, the drain of municipal sewage from the large settlements situated on the lake's watershed makes a serious contribution to water pollution. As a result the lake has accumulated a significant amount of pollutants and nutrients that resulted currently in an increase of the toxic load on the lake system. One of the main ecological problems also is the intensification of the anthropogenic eutrophication processes. The aim of this study is to evaluate the current trophic status of Imandra Lake using the trophic index (TSI with the average annual values of the parameters: chlorophyll, total nitrogen, total phosphorus, and total organic carbon and to find the dynamics of these parameters' changes during more than 20-year period. The study of the trophic status of Imandra Lake has been performed for the period 1991–2013 yrs. using the trophic state index developed by Carlson, Kratzer and Bresonik, Dunalska. According to the calculated values of the indexes Bolshaja Imandra Lake corresponds to eutrophic-mesotrophic trophic status, Yokostrovskaya Imandra Lake could be described as mesotrophic. Babinskaja Imandra Lake that subjected to essential nutrient loading is close to the oligotrophic trophic status. However, some parts of Babinskaja Imandra Lake refer to the mesotrophic state due to influence of industrial, household and heated water of the Kola atomic power station. Thus, this part of Imadra Lake could be considered as a meso-oligotrophic status. It has been established that currently nitrogen is a limiting factor for development of algae in Imandra Lake. Based on the mathematical Vollenweider model the critical phosphorus loading values to control such an important nutrient element as phosphorus have been

  6. Effect of plum-peach intercropping on community composition and trophic structure of carabids ( Coleoptera: Carabidae) in North China%中国北方桃李间作对步甲群落组成和营养级结构的影响

    Institute of Scientific and Technical Information of China (English)

    胡雅辉; 刘小侠; 赵章武; 张青文

    2011-01-01

    their similar ecological environments. The experiment was carried out to clarify the effect of plum-peach intercropping on trophic structure of ground beetles, and to assess whether plum-peach intercropping is beneficial to pest control. [ Methods] Ground beetles were investigated with pitfall trapping method in three mono-peach orchards and three plum-peach intercropping orchards in linfen, Shanxi from April to October in 2006 and 2007, of which each experimental orchard is about 0. 3 hm2. The Carabidae species richness was compared between the two kinds of orchards. For the six dominant Carabidae species determined, two different species in combination were placed in one glass bottle with 10 beet webworms as food, and the bottles were placed under peach trees. The results of beetle attacking recorded from these bottles were used to determine the trophic level of Carabidae species. The relative abundances of carabids from each trophic level were compared between the two kinds of orchards. [ Results ] The 24 species of ground beetles were found, and the number of species showed no significant difference between in mono-peach orchard and in plum-peach intercropping orchard (P≥0. 38). In addition, the six dominant species could be classified into four trophic levels; Lesticus magnus ( Motschulsky) belongs to the senior predator, Scarites acutides Chaudoir the intermediate predator, Chlaenius bioculatus Chaudoir and Calathus halensis (Schaller) junior predators, and Harpalus tschiliensis Schauberger and Harpalus griseus ( Panzer) herbivores. The relative abundance of carabids at different trophic levels was higher in plum-peach intercropping orchard than in mono-peach orchard. The results of T test showed that extremely significant difference (P≤0.002) and significant difference (P=0.013) in relative abundances of herbivores and junior predators existed between the two kinds of peach orchards in 2006, respectively, but no significant difference (P≤0. 085) in relative

  7. Discordant Temporal Turnovers of Sediment Bacterial and Eukaryotic Communities in Response to Dredging: Nonresilience and Functional Changes.

    Science.gov (United States)

    Zhang, Na; Xiao, Xian; Pei, Meng; Liu, Xiang; Liang, Yuting

    2017-01-01

    To study the stability and succession of sediment microbial and macrobenthic communities in response to anthropogenic disturbance, a time-series sampling was conducted before, during, and 1 year after dredging in the Guan River in Changzhou, China, which was performed with cutter suction dredgers from 10 April to 20 May 2014. The microbial communities were analyzed by sequencing bacterial 16S rRNA and eukaryotic 18S rRNA gene amplicons with Illumina MiSeq, and the macrobenthic community was identified using a morphological approach simultaneously. The results indicated that dredging disturbance significantly altered the composition and structures of sediment communities. The succession rates of communities were estimated by comparing the slopes of time-decay relationships. The temporal turnover of microeukaryotes (w = 0.3251, P species turnover) across log(time)]) was the highest, followed by that of bacteria (w = 0.2450, P turnovers and nonresilience of sediment communities under dredging resulted in functional changes, which are important for predicting sediment ecosystem functions under anthropogenic disturbances.

  8. Comparative ecosystem trophic structure of three U.S. mid-Atlantic estuaries

    National Research Council Canada - National Science Library

    Mark E. Monaco; Robert E. Ulanowicz

    1997-01-01

    Quantitative networks of trophic exchanges offer the potential to compare food webs from neighboring ecosystems in order to ascertain whether large differences and similarities exist in trophic structure and function...

  9. The Roles of Macrobenthic Mollusks as Bioindicator in Response to Environmental Disturbance : Cumulative k-dominance curves and bubble plots ordination approaches

    Science.gov (United States)

    Putro, Sapto P.; Muhammad, Fuad; Aininnur, Amalia; Widowati; Suhartana

    2017-02-01

    Floating net cage is one of the aquaculture practice operated in Indonesian coastal areas that has been growing rapidly over the last two decades. This study is aimed to assess the roles of macrobenthic mollusks as bioindicator in response to environmental disturbance caused by fish farming activities, and compare the samples within the locations using graphical methods. The research was done at the floating net cage fish farming area in the Awerange Gulf, South Sulawesi, Indonesia at the coordinates between 79°0500‧- 79°1500‧ LS and 953°1500‧- 953°2000‧ BT, at the polyculture and reference areas, which was located 1 km away from farming area. Sampling period was conducted between October 2014 to June 2015. The sediment samples were taken from the two locations with two sampling time and three replicates using Van Veen Grab for biotic and abiotic assessment. Mollusks as biotic parameter were fixed using 4% formalin solution and were preserved using 70% ethanol solution after 1mm mesh size. The macrobenthic mollusks were found as many as 15 species consisting of 14 families and 2 classes (gastropods and bivalves). Based on cumulative k-dominance analysis projected on each station, the line of station K3T1 (reference area; first sampling time) and KJAB P3T2 (polyculture area; second sampling time) are located below others curves, indicating the highest evenness and diversity compared to the other stations, whereas station K2T1 (reference area; first sampling time) and K3T2 (polyculture area, second sampling time) are located on the top, indicate the lowest value of evenness and diversity. Based on the bubble plots NMDS ordination, the four dominant taxa/species did not clearly show involvement in driving/shifting the ordinate position of station on the graph, except T. agilis. However, the two species showed involvement in driving/shifting the ordinate position of two stations of the reference areas from the first sampling time by Rynoclavis sordidula

  10. The effect of water quality on the distribution of macro-benthic fauna in Western Lagoon and Timsah Lake, Egypt.I

    Directory of Open Access Journals (Sweden)

    Aisha Ahmed M. Belal

    2016-12-01

    Full Text Available Macro-benthic fauna are considered the good bio-indicators for the environmental changes of any aquatic ecosystems. Samples of macro-benthos, sediments and surface water were collected from 13 stations representing different conditions in the Western Lagoon (10 stations and Timsah Lake (3 stations from autumn 2014 to summer 2015. Macro-benthic density and diversity in Timsah Lake were higher than those in the Western Lagoon; the density at Timsah Lake encompassed 167,649 individual/m2 representing 42 species from the total of 46 species recorded in the investigated area. While species density in the Western Lagoon constituted 12,008 individual/m2 presenting only 16 species. Winter recorded the highest density (74,854 individual/m2; the highest dominance (CDI = 0.858 and the lowest Equitability (0.293 due to the dominance of the opportunistic species. Spring harvested both the highest diversity (28 species and species richness (SR = 2.917. While autumn and summer procured both the lowest density and diversity (34,021 and 29,544 individual/m2 and 23 and 25 species respectively. The equitability index (E′ showed its highest values within the Western Lagoon (>0.90 owing to the species poorness relative to Timsah Lake. The water quality data showed that the Western Lagoon and Timsah Lake had significant high oxygen influx in spring (11.00 and 9.35 mg/l, respectively and oxygen depletion in summer (1.00 and 3.00 mg/l, respectively. Reactive phosphorus and ammonia in the Western Lagoon exceeded the world averages. Timsah Lake sediments were highly affected by the sediment drifts from the Western Lagoon. The highest influx of the fine sediment group (FSG was estimated during spring with an average of 62.77% and 61.18% in Timsah Lake and Western Lagoon, respectively. Total organic matter (TOM in Western Lagoon recorded the highest average of 17.05% in spring accompanied with the high biological productivities.

  11. Trophic partitioning among three littoral microcrustaceans: relative importance of periphyton as food resource

    Directory of Open Access Journals (Sweden)

    Alexandre Bec

    2012-07-01

    Full Text Available The high species richness of zooplankton communities in macrophytes littoral zones could result from the diversity of potential trophic niches found in such environment. In macrophytes littoral zones, in addition to phytoplankton, neustonic, benthic and epiphytic biofilms can also be potential components of the microcrustacean diet. Here, we investigated the ability of three large cladocerans: Daphnia longispina, Simocephalus vetulus and Eurycercus lamellatus, to develop on periphyton as their only food source or as a complement to a phytoplankton resource in scarce supply. D. longispina exhibited a very low growth and reproduction rates on the periphytic resource and as S. vetulus seems unable to scrape on periphyton. In contrast, E. lamellatus could not grow on phytoplankton, and appears to be an obligatory periphyton scraper. This latter finding contrasts with previous studies suggesting that E. lamellatus could be able to scrap periphyton as well as filter-feed on suspended matter. These differences in feeding strategy probably reflect the different trophic niches occupied by these three species in macrophytes littoral zones, and may explain at least in part their ability to coexist in the same environment.

  12. Influence of plant genetic diversity on interactions between higher trophic levels.

    Science.gov (United States)

    Moreira, Xoaquín; Mooney, Kailen A

    2013-06-23

    While the ecological consequences of plant diversity have received much attention, the mechanisms by which intraspecific diversity affects associated communities remains understudied. We report on a field experiment documenting the effects of patch diversity in the plant Baccharis salicifolia (genotypic monocultures versus polycultures of four genotypes), ants (presence versus absence) and their interaction on ant-tended aphids, ants and parasitic wasps, and the mechanistic pathways by which diversity influences their multi-trophic interactions. Five months after planting, polycultures (versus monocultures) had increased abundances of aphids (threefold), ants (3.2-fold) and parasitoids (1.7-fold) owing to non-additive effects of genetic diversity. The effect on aphids was direct, as plant genetic diversity did not mediate ant-aphid, parasitoid-aphid or ant-parasitoid interactions. This increase in aphid abundance occurred even though plant growth (and thus aphid resources) was not higher in polycultures. The increase in ants and parasitoids was an indirect effect, due entirely to higher aphid abundance. Ants reduced parasitoid abundance by 60 per cent, but did not affect aphid abundance or plant growth, and these top-down effects were equivalent between monocultures and polycultures. In summary, intraspecific plant diversity did not increase primary productivity, but nevertheless had strong effects across multiple trophic levels, and effects on both herbivore mutualists and enemies could be predicted entirely as an extension of plant-herbivore interactions.

  13. Molecular characterization of trophic ecology within an island radiation of insect herbivores (Curculionidae: Entiminae: Cratopus).

    Science.gov (United States)

    Kitson, James J N; Warren, Ben H; Florens, F B Vincent; Baider, Claudia; Strasberg, Dominique; Emerson, Brent C

    2013-11-01

    The phytophagous beetle family Curculionidae is the most species-rich insect family known, with much of this diversity having been attributed to both co-evolution with food plants and host shifts at key points within the early evolutionary history of the group. Less well understood is the extent to which patterns of host use vary within or among related species, largely because of the technical difficulties associated with quantifying this. Here we develop a recently characterized molecular approach to quantify diet within and between two closely related species of weevil occurring primarily within dry forests on the island of Mauritius. Our aim is to quantify dietary variation across populations and assess adaptive and nonadaptive explanations for this and to characterize the nature of a trophic shift within an ecologically distinct population within one of the species. We find that our study species are polyphagous, consuming a much wider range of plants than would be suggested by the literature. Our data suggest that local diet variation is largely explained by food availability, and locally specialist populations consume food plants that are not phylogenetically novel, but do appear to represent a novel preference. Our results demonstrate the power of molecular methods to unambiguously quantify dietary variation across populations of insect herbivores, providing a valuable approach to understanding trophic interactions within and among local plant and insect herbivore communities.

  14. Trophic positioning of meiofauna revealed by stable isotopes and food web analyses.

    Science.gov (United States)

    Schmid-Araya, Jenny M; Schmid, Peter E; Tod, Steven P; Esteban, Genoveva F

    2016-11-01

    Despite important advances in the ecology of river food webs, the strength and nature of the connection between the meio- and macrofaunal components of the web are still debated. Some unresolved issues are the effects of the inclusion of meiofaunal links and their temporal variations on the overall river food web properties, and the significance of autochthonous and allochthonous material for these components. In the present study, we conducted analyses of gut content of macro- and meiofauna and stable isotope analyses of meiofauna to examine seasonal food webs of a chalk stream. The results of the gut content analyses, confirmed by the δ(13) C signatures, revealed a seasonal shift from a dependence on autochthonous (biofilm) to allochthonous food sources. Here, we demonstrate that aggregating basal or meiofaunal species into single categories affects key web properties such as web size, links, linkage density, and predator-prey ratios. More importantly, seasonal variation in attributes characterized the entire web and these changes persist regardless of taxonomic resolution. Furthermore, our analyses evidenced discrete variations in δ(15) N across the meiofauna community with a trophic structure that confirms gut content analyses, placing the meiofauna high in the food web. We, therefore, conclude that small-body-sized taxa can occur high in dynamic river food webs, questioning assumptions that trophic position increases with body size and that webs are static. © 2016 by the Ecological Society of America.

  15. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    Science.gov (United States)

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle L.; Mahler, Barbara J.; VanMetre, Peter

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  16. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø, Olav R.

    2012-01-17

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  17. Phenological sensitivity to climate across taxa and trophic levels

    DEFF Research Database (Denmark)

    Thackeray, Stephen J.; Henrys, Peter; Hemming, Deborah

    2016-01-01

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate...

  18. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    Science.gov (United States)

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  19. Trophic structure and biomass distribution on two East Cape rocky ...

    African Journals Online (AJOL)

    1980-01-12

    Jan 12, 1980 ... Trophic structure and biomass distribution on two. East Cape rocky shores ... consist of sandy beaches with rocky shores restricted mainly to the area .... Figures 1 and 2, a simple energy flow diagram has been constructed for ...

  20. Trophic position of coexisting krill species: a stable isotope approach

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Bode, Antonio; Nielsen, Torkel Gissel

    2014-01-01

    Four krill species with overlapping functional biology coexist in Greenland waters. Here, we used stable isotopes to investigate and discuss their trophic role and mode of coexistence. Bulk carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of Thysanoessa longicaudata, T. inermis, T. rasch...

  1. Macroinvertebrate Trophic Groups in an Andean Wetland of Colombia

    Directory of Open Access Journals (Sweden)

    John Jader Rivera Usme

    2013-06-01

    Full Text Available In the wetland Jaboque (Bogotá, Colombia the physical and chemical properties of the water and the food dietary guilds of the aquatic macroinvertebrate community were analyzed from April 2009 to January 2010. The wetland waters had a slightly acid character with high values of nitrate, ammonia and orthophosphate, so this ecosystem is classified as eutrophic to hypereutrophic.In the aquatic macroinvertebrate community six food groups were recorded; they were conformed by 27 families, 26 confirmed genera and nine to be confirmed, with a total of 6,403 individuals collected in 28 samples of macrophytes. The highest abundances corresponded to detritivores (43.5 %, collector-scrapers (31.5 %, and collector-shredders (14.1 %, which were more abundantin the months of low rainfall. Stomach contents of some of the organisms showed that most of these individuals consumed more than one food type and high amounts of organic matter. Detrended correspondence analysis (DCA showed a spatial (stations and temporal (climatic seasons organization, in which trophic guilds are grouped according to their niche requirements, environmental fluctuations or anthropogenic factors. Variations in dietary groups reflected changes in the macroinvertebrate community from a functional perspective and indicated that the wetland is very disturbed by urban activities.GRUPOS TRÓFICOS DE MACROINVERTEBRADOS ACUÁTICOS EN UN HUMEDAL URBANO ANDINO DE COLOMBIAEn el humedal Jaboque (Bogotá, Colombia se analizaron las condiciones físicas y químicas del agua y se estudió la comunidad de macroinvertebrados acuáticos por grupos dietarios entre abril de 2009 y enero de 2010. Las aguas del humedal presentaron un carácter ligeramente ácido con valores altos de nitratos, nitrógeno amoniacal y fósforo, por lo que este ecosistema se clasificacomo eutrófico a hipereutrófico. La comunidad de macroinvertebrados acuáticos registró seis grupos alimenticios, los cuales

  2. Trophic ecomorphology of Siluriformes (Pisces, Osteichthyes from a tropical stream

    Directory of Open Access Journals (Sweden)

    JPA Pagotto

    Full Text Available The present study analysed the relationship between morphology and trophic structure of Siluriformes (Pisces, Osteichthyes from the Caracu Stream (22º 45' S and 53º 15' W, a tributary of the Paraná River (Brazil. Sampling was carried out at three sites using electrofishing, and two species of Loricariidae and four of Heptapteridae were obtained. A cluster analysis revealed the presence of three trophic guilds (detritivores, insectivores and omnivores. Principal components analysis demonstrated the segregation of two ecomorphotypes: at one extreme there were the detritivores (Loricariidae with morphological structures that are fundamental in allowing them to fix themselves to substrates characterised by rushing torrents, thus permitting them to graze on the detritus and organic materials encrusted on the substrate; at the other extreme of the gradient there were the insectivores and omnivores (Heptapteridae, with morphological characteristics that promote superior performance in the exploitation of structurally complex habitats with low current velocity, colonised by insects and plants. Canonical discriminant analysis revealed an ecomorphological divergence between insectivores, which have morphological structures that permit them to capture prey in small spaces among rocks, and omnivores, which have a more compressed body and tend to explore food items deposited in marginal backwater zones. Mantel tests showed that trophic structure was significantly related to the body shape of a species, independently of the phylogenetic history, indicating that, in this case, there was an ecomorphotype for each trophic guild. Therefore, the present study demonstrated that the Siluriformes of the Caracu Stream were ecomorphologically structured and that morphology can be applied as an additional tool in predicting the trophic structure of this group.

  3. Planktonic food web structure at a coastal time-series site: II. Spatiotemporal variability of microbial trophic activities

    Science.gov (United States)

    Connell, Paige E.; Campbell, Victoria; Gellene, Alyssa G.; Hu, Sarah K.; Caron, David A.

    2017-03-01

    The grazing activities of phagotrophic protists on various microbial assemblages play key roles in determining the amount of carbon available for higher trophic levels and for export out of the photic zone. However, comparisons of the proportion of carbon consumed from the phytoplankton (cyanobacteria+photosynthetic eukaryotes) and heterotrophic bacteria (bacteria+archaea, excluding cyanobacteria) are rare. In this study, microbial community composition, phytoplankton growth and mortality rates (total chlorophyll a, Synechococcus, Prochlorococcus, and photosynthetic picoeukaryotes), and bacterial mortality rates were measured seasonally from 2012 to 2014 in the surface waters of three environmentally distinct sites in the San Pedro Channel, off the coast of southern CA, USA. Higher nutrient concentrations at the nearshore site supported community standing stocks that were 1.3-4.5x those found offshore, yet average growth and grazing rates of the phytoplankton and bacterial assemblages were generally similar between sites and across seasons. Thus, the amount of carbon consumed by the grazer assemblage was largely dictated by prey standing stocks. Heterotrophic bacteria constituted an important source of carbon for microbial consumers, particularly at the two offshore sites where bacterial carbon consumed was roughly equivalent to the amount of phytoplankton carbon consumed. Carbon removal by grazers at the nearshore station was predominantly from the diatoms, which were the primary component of the photosynthetic community at that site. This study highlights the significant contribution of protistan-bacterial trophic interactions to planktonic food webs and provides unique community composition and turnover data to inform biogeochemical models.

  4. Natural and experimental tests of trophic cascades: gray wolves and white-tailed deer in a Great Lakes forest.

    Science.gov (United States)

    Flagel, D G; Belovsky, G E; Beyer, D E

    2016-04-01

    Herbivores can be major drivers of environmental change, altering plant community structure and changing biodiversity through the amount and species of plants consumed. If natural predators can reduce herbivore numbers and/or alter herbivore foraging behavior, then predators may reduce herbivory on sensitive plants, and a trophic cascade will emerge. We have investigated whether gray wolves (Canis lupus) generate such trophic cascades by reducing white-tailed deer (Odocoileus virginianus) herbivory on saplings and rare forbs in a northern mesic forest (Land O' Lakes, WI). Our investigation used an experimental system of deer exclosures in areas of high and low wolf use that allowed us to examine the role that wolf predation may play in reducing deer herbivory through direct reduction in deer numbers or indirectly through changing deer behavior. We found that in areas of high wolf use, deer were 62 % less dense, visit duration was reduced by 82 %, and percentage of time spent foraging was reduced by 43 %; in addition, the proportion of saplings browsed was nearly sevenfold less. Average maple (Acer spp.) sapling height and forb species richness increased 137 and 117 % in areas of high versus low wolf use, respectively. The results of the exclosure experiments revealed that the negative impacts of deer on sapling growth and forb species richness became negligible in high wolf use areas. We conclude that wolves are likely generating trophic cascades which benefit maples and rare forbs through trait-mediated effects on deer herbivory, not through direct predation kills.

  5. Exploring trophic strategies of exotic caprellids (Crustacea: Amphipoda): Comparison between habitat types and native vs introduced distribution ranges

    Science.gov (United States)

    Ros, Macarena; Tierno de Figueroa, José Manuel; Guerra-García, José Manuel; Navarro-Barranco, Carlos; Lacerda, Mariana Baptista; Vázquez-Luis, Maite; Masunari, Setuko

    2014-02-01

    The trophic ecology of non-native species is a key aspect to understand their invasion success and the community effects. Despite the important role of caprellid amphipods as trophic intermediates between primary producers and higher levels of marine food webs, there is very little information on their feeding habits. This is the first comprehensive study on the trophic strategies of two co-occurring introduced caprellids in the Spanish coasts: Caprella scaura and Paracaprella pusilla. The diet of 446 specimens of C. scaura and 230 of P. pusilla was analyzed to investigate whether there were differences in the feeding habits in relation to habitat characteristics (natural vs artificial hard substrata), type of host substrata (bryozoans and hydroids) and native vs introduced distribution ranges (Brazil vs Spain). Results revealed differences in diet preferences of the two species that have important implications for their trophic behaviour and showed a limited food overlap, which may favour their coexistence in introduced areas. In general terms, P. pusilla is a predator species, showing preference by crustacean prey in all of its life stages, while C. scaura feeds mainly on detritus. Although no sex-related diet shifts were observed in either of the species, evidence of ontogenetic variation in diet of C. scaura was found, with juveniles feeding on more amount of prey than adults. No diet differences were found between native and introduced populations within the same habitat type. However, P. pusilla exhibited a shift in its diet when different habitats were compared in the same distribution area, and C. scaura showed a flexible feeding behaviour between different host substrata in the same habitat type. This study shows that habitat characteristics at different scales can have greater influence on the feeding ecology of exotic species than different distribution ranges, and support the hypothesis that a switch between feeding strategies depending on habitat

  6. Trophic flexibility and the persistence of understory birds in intensively logged rainforest.

    Science.gov (United States)

    Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C

    2013-10-01

    Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.

  7. Trophic cascades result in large-scale coralline algae loss through differential grazer effects.

    Science.gov (United States)

    O'Leary, Jennifer K; McClanahan, Timothy R

    2010-12-01

    Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer

  8. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming.

    Science.gov (United States)

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-05-12

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa.

  9. Trophic interactions determine the effects of drought on an aquatic ecosystem.

    Science.gov (United States)

    Amundrud, Sarah L; Srivastava, Diane S

    2016-06-01

    Species interactions can be important mediators of community and ecosystem responses to environmental stressors. However, we still lack a mechanistic understanding of the indirect ecological effects of stress that arise via altered species interactions. To understand how species interactions will be altered by environmental stressors, we need to know if the species that are vulnerable to such stressors also have large impacts on the ecosystem. As predators often exhibit certain traits that are linked to a high vulnerability to stress (e.g., large body size, long generation time), as well as having large effects on communities (e.g., top-down trophic effects), predators may be particularly likely to mediate ecological effects of environmental stress. Other functional groups, like facilitators, are known to have large impacts on communities, but their vulnerability to perturbations remains undocumented. Here, we use aquatic insect communities in bromeliads to examine the indirect effects of an important stressor (drought) on community and ecosystem responses. In a microcosm experiment, we manipulated predatory and facilitative taxa under a range of experimental droughts, and quantified effects on community structure and ecosystem function. Drought, by adversely affecting the top predator, had indirect cascading effects on the entire food web, altering community composition and decomposition. We identified the likely pathway of how drought cascaded through the food web from the top-down as drought -->predator --> shredder --> decomposition. This stress-induced cascade depended on predators exhibiting both a strong vulnerability to drought and large impacts on prey (especially shredders), as well as shredders exhibiting high functional importance as decomposers.

  10. Plant interactions with multiple insect herbivores: from community to genes

    NARCIS (Netherlands)

    Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; Loon, van J.J.A.; Poelman, E.H.; Dicke, M.

    2014-01-01

    Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant simulta

  11. Plant interactions with multiple insect herbivores: from community to genes

    NARCIS (Netherlands)

    Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; Loon, van J.J.A.; Poelman, E.H.; Dicke, M.

    2014-01-01

    Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant

  12. Free tissue transfer for trophic ulcer complicating leprosy

    Directory of Open Access Journals (Sweden)

    Bhatt Yogesh

    2009-01-01

    Full Text Available Plantar ulceration is the commonest disability in leprosy and occurs in about 10 to 20% of leprosy patients. Various loco-regional flaps have been described for reconstruction of trophic ulcers; however, very large defects are not amenable to local flaps and free flaps form one of the important treatment options. We present a case of a post Hansen′s trophic ulcer over the forefoot managed using a radial artery forearm free flap. Debridement of the osteomyelitic bone, removal of the bony prominences, coverage by a well-vascularised tissue, end-to-side arterial anastomosis, use of anterior tibial as the recipient vessel and good postoperative compliance in foot care on the part of the patient gave us good results.

  13. A General Approach to the Modelling of Trophic Chains

    CERN Document Server

    Dilão, R; Dilao, Rui; Domingos, Tiago

    1999-01-01

    Based on the law of mass action (and its microscopic foundation) and mass conservation, we present here a method to derive consistent dynamic models for the time evolution of systems with an arbitrary number of species. Equations are derived through a mechanistic description, ensuring that all parameters have ecological meaning. After discussing the biological mechanisms associated to the logistic and Lotka-Volterra equations, we show how to derive general models for trophic chains, including the effects of internal states at fast time scales. We show that conformity with the mass action law leads to different functional forms for the Lotka-Volterra and trophic chain models. We use mass conservation to recover the concept of carrying capacity for an arbitrary food chain.

  14. Phenological sensitivity to climate across taxa and trophic levels

    DEFF Research Database (Denmark)

    Thackeray, Stephen J.; Henrys, Peter; Hemming, Deborah

    2016-01-01

    Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic...... groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing...... of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5–2.9 days earlier on average), with substantial taxonomic variation (1.1–14.8 days earlier on average)....

  15. Global change in the trophic functioning of marine food webs

    DEFF Research Database (Denmark)

    Maureaud, Aurore; Gascuel, Didier; Colléter, Mathieu

    2017-01-01

    The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches...... and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI......) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950...

  16. Trophic magnification of organic chemicals: A global synthesis

    Science.gov (United States)

    Walters, David; Jardine, T.D.; Cade, Brian S.; Kidd, K.A.; Muir, D.C.G.; Leipzig-Scott, Peter C.

    2016-01-01

    Production of organic chemicals (OCs) is increasing exponentially, and some OCs biomagnify through food webs to potentially toxic levels. Biomagnification under field conditions is best described by trophic magnification factors (TMFs; per trophic level change in log-concentration of a chemical) which have been measured for more than two decades. Syntheses of TMF behavior relative to chemical traits and ecosystem properties are lacking. We analyzed >1500 TMFs to identify OCs predisposed to biomagnify and to assess ecosystem vulnerability. The highest TMFs were for OCs that are slowly metabolized by animals (metabolic rate kM  0.2 day–1). This probabilistic model provides a new global tool for screening existing and new OCs for their biomagnification potential.

  17. Comparison of contaminants from different trophic levels and ecosystems

    DEFF Research Database (Denmark)

    Dietz, R.; Riget, F.; Cleemann, M.

    2000-01-01

    ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, Sigma PCB, Sigma DDT, Sigma HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine...... considerably less mercury but higher levels of Sigma PCB, Sigma DDT and HCB than other Arctic marine top consumers. (C) 2000 Elsevier Science B.V. All rights reserved....

  18. Assessment of trophic status in Changjiang (Yangtze) River estuary

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The integrated methodology for the assessment of estuarine trophic status (ASSETS),which was extended and refined from the United States National Estuarine Eutrophication Assessment (NEEA), is a multi-parameter assessment system and has been widely used in eutrophication assessment in estuarine and coastal waters. The ASSETS was applied to evaluate the trophic status of the Changjiang (Yangtze) River estuary, one of the largest estuaries in the world. The following main results were obtained: (i) The estuarine export potential is "moderate susceptibility" due to the "moderate" dilution potential and "moderate" flushing potential; (ii) The overall human influence (OHI) index classified the impact of nutrients in the system as "high" due to the high level of nutrient discharge by the river which channels anthropogenic impacts in the catchments to the estuarine system; (iii) The overall eutrophic condition (OEC) in the estuary was classified into the "high" category due to frequent occurrence of nuisance and toxic algal blooms in the mixing and seawater zones; (iv) Since the nutrient loadings (e.g.,DIN) in the river is expected to continue to increase in the near future following the population increase and rapid economic growth throughout the drainage basin, the nutrient-related symptoms in the estuary are likely to substantially worsen, which leads to the "worsen high" category for the definition of future outlook (DFO). The combinations of the three components (i.e., OHI, OEC, and DFO) lead to an overall grade as "bad" for the trophic status in the Changjiang River estuary.

  19. Short- and long-term (trophic) purinergic signalling.

    Science.gov (United States)

    Burnstock, Geoffrey

    2016-08-05

    There is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body, in addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion. It is not always easy to distinguish between short- and long-term signalling. For example, adenosine triphosphate (ATP) can sometimes act as a short-term trigger for long-term trophic events that become evident days or even weeks after the original challenge. Examples of short-term purinergic signalling during sympathetic, parasympathetic and enteric neuromuscular transmission and in synaptic transmission in ganglia and in the central nervous system are described, as well as in neuromodulation and secretion. Long-term trophic signalling is described in the immune/defence system, stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption and in cancer. It is likely that the increase in intracellular Ca(2+) in response to both P2X and P2Y purinoceptor activation participates in many short- and long-term physiological effects.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.

  20. Trophic niche shifts driven by phytoplankton in sandy beach ecosystems

    Science.gov (United States)

    Bergamino, Leandro; Martínez, Ana; Han, Eunah; Lercari, Diego; Defeo, Omar

    2016-10-01

    Stable isotopes (δ13C and δ15N) together with chlorophyll a and densities of surf diatoms were used to analyze changes in trophic niches of species in two sandy beaches of Uruguay with contrasting morphodynamics (i.e. dissipative vs. reflective). Consumers and food sources were collected over four seasons, including sediment organic matter (SOM), suspended particulate organic matter (POM) and the surf zone diatom Asterionellopsis guyunusae. Circular statistics and a Bayesian isotope mixing model were used to quantify food web differences between beaches. Consumers changed their trophic niche between beaches in the same direction of the food web space towards higher reliance on surf diatoms in the dissipative beach. Mixing models indicated that A. guyunusae was the primary nutrition source for suspension feeders in the dissipative beach, explaining their change in dietary niche compared to the reflective beach where the proportional contribution of surf diatoms was low. The high C/N ratios in A. guyunusae indicated its high nutritional value and N content, and may help to explain the high assimilation by suspension feeders at the dissipative beach. Furthermore, density of A. guyunusae was higher in the dissipative than in the reflective beach, and cell density was positively correlated with chlorophyll a only in the dissipative beach. Therefore, surf diatoms are important drivers in the dynamics of sandy beach food webs, determining the trophic niche space and productivity. Our study provides valuable insights on shifting foraging behavior by beach fauna in response to changes in resource availability.

  1. Summertime community structure of intertidal macrobenthos in Changdao Archipelago, Shandong Province, China

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaochen; LI Xinzheng; LI Baoquan; WANG Hongfa

    2009-01-01

    The community structure of intertidal macrobenthos in Changdao Archipelago (north of Shandong Peninsula, between Bohai Bay and the northern Yellow Sea) was examined based on samples collected from 14 stations in five transects in June 2007. Three stations corresponding to high, medium and low tidal areas were set up for each transect. A total of 68 macrobenthic species were found in the research region, most of which belonged to Mollusca and Crustacea. The average abundance and biomass of the macrobenthos was 1 383 ind./m2 and 372.41 g/m2, respectively. The use of an arbitrary similarity level of 20% resulted in identification of five groups among the 14 stations in the research region. There were remarkable differences in the biomass, abundance and Shannon-Wiener diversity index of the different sediments. Specifically, the order of biomass was rocky shores > gravel > mud-sand > coarse sand > stiff mud, while the order of abundance was rocky shores > coarse sand > mud-sand > gravel > stiff mud, and that of the diversity index was mud-sand > gravel > stiff mud > rocky shores > coarse sand. The above results revealed that the sediment type was the most important factor affecting the structure of the macrobenthic community of the intertidal zone.

  2. Trophic ecology of reef sharks determined using stable isotopes and telemetry

    Science.gov (United States)

    Speed, C. W.; Meekan, M. G.; Field, I. C.; McMahon, C. R.; Abrantes, K.; Bradshaw, C. J. A.

    2012-06-01

    Establishing the ecological role of predators within an ecosystem is central to understanding community dynamics and is useful in designing effective management and conservation strategies. We analysed differences in the trophic ecology of four species of reef sharks ( Carcharhinus melanopterus, Carcharhinus amblyrhynchos, Triaenodon obesus and Negaprion acutidens) at Ningaloo Reef, Western Australia, by analysing tissue stable isotopes (δ15N and δ13C). We also monitored animals using acoustic telemetry to determine long-term residency patterns in a bay at the southern end of the reef, Coral Bay. Overall, mean δ13C was similar among species, ranging between -10.9 and -11.8‰, suggesting a food-web dependency on coastal producers. Classification and regression tree analysis identified an effect of species on δ15N that separated C. amblyrhynchos and C. melanopterus from N. acutidens and T. obesus. For C. amblyrhynchos and C. melanopterus, animals were also divided by size classes, with smaller sharks having lower average δ15N than larger animals; this suggests that δ15N increases with size for these two species. Juvenile C. melanopterus, juvenile N. acutidens and adult T. obesus had trophic levels of 3.7, for juvenile C. amblyrhynchos and adult C. melanopterus it was 4, and adult C. amblyrhynchos had a value of 4.3. Trophic-level estimates for C. melanopterus and C. amblyrhynchos corroborate previous conclusions based on diet studies. We found no evidence for a difference in isotopic composition between resident and non-resident sharks. The lack of variation in isotopic composition was consistent with high mean residency of these species recorded using acoustic telemetry, which was 79% (±0.09 SE) of days monitored for T. obesus, followed by N. acutidens (57 ± 19.55%), C. amblyrhynchos (54 ± 13%) and C. melanopterus (33 ± 8.28%). High δ13C composition in reef sharks and long-term residency behaviour suggest that coastal marine reserves might provide

  3. Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN

    Science.gov (United States)

    Bergmann, Melanie; Dannheim, Jennifer; Bauerfeind, Eduard; Klages, Michael

    2009-03-01

    Deep-seafloor communities, especially those from the ice-covered Arctic, are subject to severe food limitation as the amount of particulate organic matter (POM) from the surface is attenuated with increasing depth. Here, we use naturally occurring stable isotope tracers ( δ15N) to broaden our rudimentary knowledge of food web structure and the response of benthic organisms to decreasing food supplies along the bathymetric transect (˜1300-5600 m water depth) of the deep-sea observatory HAUSGARTEN. Encompassing five trophic levels, the HAUSGARTEN food web is among the longest indicating continuous recycling of organic material typical of food-limited deep-sea ecosystems. The δ15N signatures ranged from 3.0‰ for Foraminifera to 21.4‰ (±0.4) for starfish ( Poraniomorpha tumida). The majority of organisms occupied the second and third trophic level. Demersal fish fed at the third trophic level, consistent with results from stomach contents analysis. There were significant differences in the δ15N signatures of different functional groups with highest δ15N values in predators/scavengers (13.2±0.2‰) followed by suspension feeders (11.2±0.2‰) and deposit feeders (10.2±0.3‰). Depth (=increasing food limitation) affected functional groups in different ways. While the isotopic signatures of predators/scavengers did not change, those of suspension feeders increased with depth, and the reverse was found for deposit feeders. In contrast to the results of other studies, the δ15N signatures in POM samples obtained below 800 m did not vary significantly with depth indicating that changes in δ15N values are unlikely to be responsible for the depth-related δ15N signature changes observed for benthic consumers. However, the δ15N signatures of sediments decreased with increasing depth, which also explains the decrease found for deposit feeders. Suspension feeders may rely increasingly on particles trickling down the HAUSGARTEN slope and carrying higher δ15N

  4. Assessing the effects of salmon farming seabed enrichment using bacterial community diversity and high-throughput sequencing.

    Science.gov (United States)

    Dowle, Eddy; Pochon, Xavier; Keeley, Nigel; Wood, Susanna A

    2015-08-01

    Aquaculture is an extremely valuable and rapidly expanding sector of the seafood industry. The sediment below active aquaculture farms receives inputs of organic matter from uneaten food and faecal material and this has led to concerns related to environmental sustainability. The impacts of organic enrichment on macrobenthic infauna are well characterized; however, much less is known about effect on bacterial communities. In this study, sediment, macrobenthic infauna samples and environmental data were collected along an enrichment gradient radiating out from a Chinook salmon (Oncorhynchus tshawytscha) farm (Marlborough Sounds; New Zealand). DNA and RNA were extracted and 16S rRNA metabarcodes from bacterial communities characterized using high-throughput sequencing. Desulfobacterales dominated at the cage (DNA and RNA), and at sites 50 m (DNA and RNA) and 150 m (RNA) from the farm. In contrast, unclassified bacteria from the class Gammaproteobacteria were the most abundant taxa at control sites (625 and 4000 m). Pronounced differences among DNA and RNA samples occurred at the cage site where Desulfobacterales abundance was markedly higher in RNA samples. There were strong correlations between shifts in bacterial communities and total organic matter and redox. This suggests that bacterial composition is strongly influenced by organic enrichment, a trait that may make them useful for assessing impacts associated with aquaculture farms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities

    DEFF Research Database (Denmark)

    Zhang, Lai; Andersen, Ken Haste; Dieckmann, Ulf

    2015-01-01

    -structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze...... the formation of diverse communities with complex trophic structure only at high levels of interference intensity. By contrast, survival interference does so already at intermediate levels, while reproductive interference can only support relatively smaller communities with simpler trophic structure. Taken...

  6. Long term patterns in the late summer trophic niche of the invasive pumpkinseed sunfish Lepomis gibbosus

    Directory of Open Access Journals (Sweden)

    Gkenas C.

    2016-01-01

    Full Text Available Quantifying the trophic dynamics of invasive species in novel habitats is important for predicting the success of potential invaders and evaluating their ecological effects. The North American pumpkinseed sunfish Lepomis gibbosus is a successful invader in Europe, where it has caused negative ecological effects primarily through trophic interactions. Here, we quantified variations in the late summer trophic niche of pumpkinseed during establishment and integration in the mainstem of the Guadiana river, using stomach content analyses over a period of 40 years. Pumpkinseed showed a shift from trophic specialization during establishment to trophic generalism during integration. These results were concomitant with an increase in diet breadth that was accompanied by higher individual diet specialization particularly in large individuals. Irrespective of their drivers, these changes in trophic niche suggest that the potential ecological effects of pumpkinseed on recipient ecosystems can vary temporally along the invasion process.

  7. Ocean acidification effect on prokaryotic metabolism tested in two diverse trophic regimes in the Mediterranean Sea

    Science.gov (United States)

    Celussi, Mauro; Malfatti, Francesca; Annalisa, Franzo; Gazeau, Frédéric; Giannakourou, Antonia; Pitta, Paraskevi; Tsiola, Anastasia; Del Negro, Paola

    2017-02-01

    Notwithstanding the increasing amount of researches on the effect of ocean acidification (OA) on marine ecosystems, no consent has emerged on its consequences on many prokaryote-mediated processes. Two mesocosm experiments were performed in coastal Mediterranean areas with different trophic status: the summer oligotrophic Bay of Calvi (BC, Corsica, France) and the winter mesotrophic Bay of Villefranche (BV, France). During these experiments, nine enclosures (∼54 m3) were deployed: 3 unamended controls and 6 elevated CO2, following a gradient up to 1250 μatm. We present results involving free-living viral and prokaryotic standing stocks, bacterial carbon production, abundance of highly active cells (CTC+), and degradation processes (beta-glucosidase, chitinase, leucine-aminopeptidase, lipase and alkaline phosphatase activities). The experiments revealed clear differences in the response of the two prokaryotic communities to CO2 manipulation. Only abundances of heterotrophic prokaryotes, viruses and lipase activity were not affected by CO2 manipulation at both locations. On the contrary, the percent of CTC+ was positively correlated to CO2 only in BC, concomitantly to a bulk reduction of [3H]-leucine uptake. The other tested parameters showed a different response at the two sites suggesting that the trophic regime of the systems plays a fundamental role on the effect of OA on prokaryotes through indirect modifications of the available substrate. Modified degradation rates may affect considerably the export of organic matter to the seafloor and thus ecosystem functioning within the water column. Our results highlight the need to further analyse the consequences of OA in oligotrophic ecosystems with particular focus on dissolved organic matter.

  8. Responses of Cryptofaunal Species Richness and Trophic Potential to Coral Reef Habitat Degradation

    Directory of Open Access Journals (Sweden)

    Derek P. Manzello

    2012-02-01

    Full Text Available Coral reefs are declining worldwide as a result of many anthropogenic disturbances. This trend is alarming because coral reefs are hotspots of marine biodiversity and considered the ‘rainforests of the sea. As in the rainforest, much of the diversity on a coral reef is cryptic, remaining hidden among the cracks and crevices of structural taxa. Although the cryptofauna make up the majority of a reef’s metazoan biodiversity, we know little about their basic ecology or how these communities respond to reef degradation. Emerging research shows that the species richness of the motile cryptofauna is higher among dead (framework vs. live coral substrates and, surprisingly, increases within successively more eroded reef framework structures, ultimately reaching a maximum in dead coral rubble. Consequently, the paradigm that abundant live coral is the apex of reef diversity needs to be clarified. This provides guarded optimism amidst alarming reports of declines in live coral cover and the impending doom of coral reefs, as motile cryptic biodiversity should persist independent of live coral cover. Granted, the maintenance of this high species richness is contingent on the presence of reef rubble, which will eventually be lost due to physical, chemical, and biological erosion if not replenished by live coral calcification and mortality. The trophic potential of a reef, as inferred from the abundance of cryptic organisms, is highest on live coral. Among dead framework substrates, however, the density of cryptofauna reaches a peak at intermediate levels of degradation. In summary, the response of the motile cryptofauna, and thus a large fraction of the reef’s biodiversity, to reef degradation is more complex and nuanced than currently thought; such that species richness may be less sensitive than overall trophic function.

  9. Macrobenthic community response to the Marenzelleria viridis (Polychaeta) invasion of a Danish estuary

    DEFF Research Database (Denmark)

    Delefosse, Matthieu; Banta, Gary Thomas; Canal Vergés, Paula

    2012-01-01

    with focus on the 2 common polychaetes, Nereis (Hediste) diversicolor and Arenicola marina. Marenzelleria viridis colonized Odense Fjord rapidly, and within 3 yr it had spread to ~50% of the estuary. The population development of M. viridis in Odense Fjord followed the ‘boom-bust’ pattern that is typical...

  10. Intertidal Macrobenthic Community Structural Features in Huiquan Bay%汇泉湾潮间带大型底栖动物群落结构特征

    Institute of Scientific and Technical Information of China (English)

    白雪原

    2011-01-01

    文章根据2009-2010年四个季度在汇泉湾潮间带开展的大型底栖动物调查,对不同季节不同断面的大型底栖动物的种类组成、群落结构作了分析.经鉴定汇泉湾潮间带大型底栖动物共有92种,包括软体类39种,多毛类29种,甲壳类15种,鱼类4种,棘皮类3种,还有腔肠和纽虫各1种.优势种是短滨螺Littorina(L) brevicula(Philippi).均匀度跟总个体数具有一定的负相关关系.MDS排序结果与群落分布聚类分析结果基本一致.

  11. Trophic polymorphism, habitat and diet segregation in Percichthys trucha (Pisces : Percichthyidae) in the Andes

    DEFF Research Database (Denmark)

    Ruzzante, D.E.; Walde, S.J.; Cussac, V.E.;

    1998-01-01

    Divergent natural selection affecting specific trait combinations that lead to greater efficiency in resource exploitation is believed to be a major mechanism leading to trophic polymorphism and adaptive radiation. We present evidence of trophic polymorphism involving two benthic morphs within...... influence the relative efficiency of suction feeding for the two morphs. This is the first evidence of trophic polymorphism in fishes from temperate South America. (C) 1998 The Linnean Society of London...

  12. Trophic eggs compensate for poor offspring feeding capacity in a subsocial burrower bug

    OpenAIRE

    Baba, Narumi; Hironaka, Mantaro; Hosokawa, Takahiro; Mukai, Hiromi; Nomakuchi, Shintaro; Ueno, Takatoshi

    2010-01-01

    Various animals produce inviable eggs or egg-like structures called trophic eggs, which are presumed to be an extended maternal investment for the offspring. However, there is little knowledge about the ecological or physiological constraints associated with their evolutionary origin. Trophic eggs of the seminivorous subsocial burrower bug (Canthophorus niveimarginatus) have some unique characteristics. Trophic eggs are obligate for nymphal survival, and first-instar nymphs die without them. ...

  13. Baseline identification in stable -isotope studies of temperate lotic systems and implications for calculated trophic positions

    DEFF Research Database (Denmark)

    Kristensen, Peter Brinkmann; Riis, Tenna; Dylmer, Hans Erik;

    2016-01-01

    of two common fish species (three-spined stickleback, Gasterosteus aculeatus, and brown trout Salmo trutta) differed markedly depending on the baseline chosen. The estimated trophic position was lowest when based on Baetidae and highest when using Simuliidae. The trophic position of Gasterosteus...... in the catchment and had a slope deviating from zero for both fish species, despite gut content analysis revealed no such trophic level dependency of land use. This suggests that Baetidae are not good baseline indicators of trophic position, perhaps because their main food item (periphyton) may include nitrogen...

  14. Rotifer trophic state indices as ecosystem indicators in brackish coastal waters

    Directory of Open Access Journals (Sweden)

    Agnieszka Gutkowska

    2013-11-01

    Full Text Available Thanks to their short life cycles, rotifers react rapidly to changes in environmental conditions and so may be useful for biological monitoring. The objective of this paper was to investigate the applicability of rotifer trophic state indices as indicators of the trophic state of brackish waters, as exemplified by the Vistula Lagoon. Carried out in summer from 2007 to 2011, this study showed no significant correlation between the Lagoon's trophic state and the rotifer structure. This confirms the limited applicability of rotifer trophic state indices for evaluating water quality in brackish water bodies.

  15. Trophic structure and interactions in Lake Ayamé (Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    A. Traore

    2008-07-01

    Full Text Available The Ecopath software with Ecosim and Ecospace was used to describe structure and trophic relationships in Lake Ayamé. The total biomass of fish is 8 t.km-2. The trophic levels assessment revealed that the highest value (3.83 was observed in Hepsetus odoe. The mean trophic level of catch (2.94 indicates that fisheries are targeting mainly the fish groups of high trophic levels. Resources are not exploited properly. Competition between species occurs for Sarotherodon melanotheron and Oreochromis niloticus for the first group and Chrysichthys spp. and Heterotis niloticus for the second group. Transfer efficiency is high from producers.

  16. Diet and trophic niche of Lithobates catesbeianus (Amphibia: Anura

    Directory of Open Access Journals (Sweden)

    Peterson T. Leivas

    2012-10-01

    Full Text Available Lithobates catesbeianus (Shaw, 1802 is an invasive anuran introduced in Brazil that is associated with the displacement and the decline of populations of native species worldwide. There is evidence that biological invasions are facilitated by certain attributes of the invading species, for instance niche breath, and that invasive species have a broader ecological niche with respect to native ones. We designed a study to ascertain the temporal, ontogenetic, and sex differences in the niche dynamics of the American bullfrog. We sampled monthly from June 2008 to May 2009 in the state of Paraná, southern Brazil. For each individual, we gathered biometric and stomach content data. We then estimated the niche breath of the juveniles and adults, and compared it between the sexes. A total of 104 females and 77 males were sampled. Lithobates catesbeianus has a generalist diet, preying upon invertebrates and vertebrates. Even though the diet of the studied population varied seasonally, it did not differ between the sexes nor did it respond to biometric variables. Niche breadth was more restricted in the winter than in the autumn. The trophic niche of juveniles and adults did not overlap much when compared with the trophic niche overlap between males and females. Adult males and females had a considerable niche overlap, but females had a broader trophic niche than males in the winter and in the spring. These niche characteristics point to an opportunistic predation strategy that may have facilitated the process of invasion and establishment of this species in the study area.

  17. Variability of Lekanesphaera monodi metabolic rates with habitat trophic status

    Science.gov (United States)

    Vignes, Fabio; Fedele, Marialaura; Pinna, Maurizio; Mancinelli, Giorgio; Basset, Alberto

    2012-05-01

    Regulation of metabolism is a common strategy used by individuals to respond to a changing environment. The mechanisms underlying the variability of metabolic rates in macroinvertebrates are of primary importance in studying benthic-pelagic energy transfer in transitional water ecosystems. Lekanesphaera monodi is an isopod endemic to transitional water ecosystems that can modify its metabolic rate in response to environmental changes. Therefore it is a useful model in studying the influence of environmental factors on metabolism. This study focused on the interpopulation variability of standard metabolic rates (SMR) in L. monodi populations sampled in three transitional water ecosystems differing in their trophic status. The standard metabolic rates of L. monodi individuals across the same range of body size spectra were inferred from oxygen consumption measurements in a flow-through respirometer in the three populations and a body condition index was assessed for each population. Habitat trophic status was evaluated by monthly measurement of the basic physical-chemical parameters of the water column in the ecosystems for one year. Standard metabolic rates showed high variability, ranging from 0.27 to 10.14 J d-1. Body size accounted for more than 38% of total variability. In terms of trophic status, individuals from the eutrophic ecosystem had significantly higher standard metabolic rates than individuals from the other ecosystems (SMR = 2.3 J d-1 in Spunderati Sud vs. 1.36 J d-1 in Alimini and 0.69 J d-1 in Acquatina). The body conditions index was also higher in the population from the eutrophic ecosystem. Results show that standard metabolic rates and growth rates are directly related to habitat productivity in accordance with the expectations of the food habits hypothesis. A possible extension of this hypothesis to benthic invertebrates is proposed.

  18. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research.

    Science.gov (United States)

    Svenning, Jens-Christian; Pedersen, Pil B M; Donlan, C Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M; Sandel, Brody; Sandom, Christopher J; Terborgh, John W; Vera, Frans W M

    2016-01-26

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human-wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology.

  19. 'End to end' planktonic trophic web and its implications for the mussel farms in the Mar Piccolo of Taranto (Ionian Sea, Italy).

    Science.gov (United States)

    Karuza, Ana; Caroppo, Carmela; Monti, Marina; Camatti, Elisa; Di Poi, Elena; Stabili, Loredana; Auriemma, Rocco; Pansera, Marco; Cibic, Tamara; Del Negro, Paola

    2016-07-01

    The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013-2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.

  20. Trophic level responses differ as climate warms in Ireland

    Science.gov (United States)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( Psupply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  1. EVALUATION OF THE WATER TROPHIC STATE OF WAPIENICA DAM RESERVOIR

    Directory of Open Access Journals (Sweden)

    Ewa Jachniak

    2015-01-01

    Full Text Available In this publication the trophy level of Wapienica dam reservoir, based on the composition species of planktonic algae and their biomass, and concentrations of chlorophyll a, was defined. The research was conducted during the vegetative season in 2013 year; the samples were taken from two research points (W1 – the part of river Wapienica inflow to reservoir and W2 – the part of the reservoir dam by using bathometer. The whole biomass of planktonic algae and concentration of chlorophyll a from two research areas were low and it allowed to classify water of this reservoir to oligo-/ mesotrophic. Only in the part of the reservoir dam, in summer season, an increased trophy level was observed (Heinonen 1980. A similar trophic character (oligo-/ mesotrophic of the water reservoir was also indicated by algae species: Achnanthes lanceolata (Bréb. Grun. in Cl. and Grun., Chrysoccoccus minutus (Fritsch Nygaard. For a temporary increase of the trophy level, the diatom Nitzschia acicularis (Kütz. W. Sm. could indicate, because it is a typical species in poorly eutrophic water. The green algae (Pediastrum and Coelastrum, which were observed in summer season could also indicate for a rise of the trophic state, because they are typical for eutrophic water.

  2. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas.

    Science.gov (United States)

    Olson, R J; Young, J W; Ménard, F; Potier, M; Allain, V; Goñi, N; Logan, J M; Galván-Magaña, F

    Tunas are highly specialized predators that have evolved numerous adaptations for a lifestyle that requires large amounts of energy consumption. Here we review our understanding of the bioenergetics and feeding dynamics of tunas on a global scale, with an emphasis on yellowfin, bigeye, skipjack, albacore, and Atlantic bluefin tunas. Food consumption balances bioenergetics expenditures for respiration, growth (including gonad production), specific dynamic action, egestion, and excretion. Tunas feed across the micronekton and some large zooplankton. Some tunas appear to time their life history to take advantage of ephemeral aggregations of crustacean, fish, and molluscan prey. Ontogenetic and spatial diet differences are substantial, and significant interdecadal changes in prey composition have been observed. Diet shifts from larger to smaller prey taxa highlight ecosystem-wide changes in prey availability and diversity and provide implications for changing bioenergetics requirements into the future. Where tunas overlap, we show evidence of niche separation between them; resources are divided largely by differences in diet percentages and size ranges of prey taxa. The lack of long-term data limits the ability to predict impacts of climate change on tuna feeding behaviour. We note the need for systematic collection of feeding data as part of routine monitoring of these species, and we highlight the advantages of using biochemical techniques for broad-scale analyses of trophic relations. We support the continued development of ecosystem models, which all too often lack the regional-specific trophic data needed to adequately investigate climate and fishing impacts. © 2016 Elsevier Ltd. All rights reserved.

  3. Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease.

    Science.gov (United States)

    Reyes, Stefanie; Fu, Yuhong; Double, Kay L; Cottam, Veronica; Thompson, Lachlan H; Kirik, Deniz; Paxinos, George; Watson, Charles; Cooper, Helen M; Halliday, Glenda M

    2013-03-01

    Recent studies suggest a variety of factors characterize substantia nigra neurons vulnerable to Parkinson's disease, including the transcription factors pituitary homeobox 3 (Pitx3) and orthodenticle homeobox 2 (Otx2) and the trophic factor receptor deleted in colorectal cancer (DCC), but there is limited information on their expression and localization in adult humans. Pitx3, Otx2, and DCC were immunohistochemically localized in the upper brainstem of adult humans and mice and protein expression assessed using relative intensity measures and online microarray data. Pitx3 was present and highly expressed in most dopamine neurons. Surprisingly, in our elderly subjects no Otx2 immunoreactivity was detected in dopamine neurons, although Otx2 gene expression was found in younger cases. Enhanced DCC gene expression occurred in the substantia nigra, and higher amounts of DCC protein characterized vulnerable ventral nigral dopamine neurons. Our data show that, at the age when Parkinson's disease typically occurs, there are no significant differences in the expression of transcription factors in brainstem dopamine neurons, but those most vulnerable to Parkinson's disease rely more on the trophic factor receptor DCC than other brainstem dopamine neurons.

  4. Platelet Rich Plasma: Efficacy in Treating Trophic Ulcers in Leprosy

    Science.gov (United States)

    Anandan, V.; Jameela, W. Afthab; Saraswathy, P.

    2016-01-01

    Introduction Trophic ulcers secondary to leprosy pose a great stigma to the patients and remain a challenge to the treating dermatologists. The discovery of Platelet Rich Plasma (PRP) with its favourable role in wound healing is a boon for the patients. PRP introduces the growth factors directly into the wound and aids in rapid healing. Aim To study the efficacy and safety of PRP in the healing of trophic ulcers secondary to Hansen’s disease in a tertiary care centre in Southern India. Materials and Methods Based on inclusion and exclusion criteria, 50 patients were enrolled in the study. PRP was prepared by manual double spin method. After wound bed preparation, activated PRP was sprayed over the ulcer and occlusive dressings were applied. Same procedure was repeated every week until complete re-epithelisation or up to six sittings whichever occurred earlier. Results In our study, 46 patients (92%) showed complete healing. In 4 patients (8%), there was marked reduction in wound size with partial re-epithelization. In 88%, complete healing was seen after the fourth sitting. Mean time for ulcer healing was around 4.38 weeks. Conclusion PRP therapy leads to faster rate of induction of granulation tissue with rapid healing. Healing had no direct statistical correlation with the size, site and duration of ulcer, the leprosy spectrum and associated motor deformities. It is a simple, safe and cost effective in-office procedure, albeit requiring an optimal set-up and expertise. PMID:27891436

  5. Ecosystem structure and trophic analysis of Angolan fishery landings

    Directory of Open Access Journals (Sweden)

    Ronaldo Angelini

    2011-06-01

    Full Text Available Information on the mean trophic level of fishery landings in Angola and the output from a preliminary Ecopath with Ecosim (EwE model were used to examine the dynamics of the Angolan marine ecosystem. Results were compared with the nearby Namibian and South African ecosystems, which share some of the exploited fish populations. The results show that: (i The mean trophic level of Angola’s fish landings has not decreased over the years; (ii There are significant correlations between the landings of Angola, Namibia and South Africa; (iii The ecosystem attributes calculated by the EwE models for the three ecosystems were similar, and the main differences were related to the magnitude of flows and biomass; (iv The similarity among ecosystem trends for Namibia, South Africa and Angola re-emphasizes the need to continue collaborative regional studies on the fish stocks and their ecosystems. To improve the Angolan model it is necessary to gain a better understanding of plankton dynamics because plankton are essential for Sardinella spp. An expanded analysis of the gut contents of the fish species occupying Angola’s coastline is also necessary.

  6. Building trophic modules into a persistent food web.

    Science.gov (United States)

    Kondoh, Michio

    2008-10-28

    Understanding what maintains species and perpetuates their coexistence in a network of feeding relationships (the food web) is of great importance for biodiversity conservation. A food web can be viewed as consisting of a number of simple subunits called trophic modules. Intraguild predation (IGP), in which a prey and its predator compete for the same resource, is one of the best-studied trophic modules. According to theory, there are two ways to yield a large persistent system from such modules: (i) to use persistent subunits as building blocks or (ii) to arrange the subunits in a way that externally supports the nonpersistent subunits. Here, I show that the complex food web of the Caribbean marine ecosystem is constructed in both ways. I show that IGP modules, which convey internal persistence because of the fact that prey are superior competitors for the resources, are overrepresented in the Caribbean ecosystem. The other modules, consisting of competitively inferior prey, are not persistent in isolation. However, competitively inferior prey in these modules tend to receive more advantage from extra-module interactions, which allows persistence of the IGP module. In addition, those exterior interactions tend to be provided by intrinsically persistent IGP modules to prevent cascading extinction of interacting IGP modules. The food web can be viewed as a set of interacting modules, nonrandomly arranged to enhance the maintenance of biodiversity.

  7. Trophic skin ulceration of leprosy: skin and serum zinc concentrations.

    Science.gov (United States)

    Oon, B B; Khong, K Y; Greaves, M W; Plummer, V M

    1974-06-08

    Skin and serum zinc measurements have been made in patients with leprosy with and without trophic skin ulceration and in several other groups. Serum zinc concentrations were decreased in leprosy irrespective of the presence or absence of skin ulceration. Serum zinc concentrations in leprosy were also unrelated to smears positive for Mycobacterium leprae and to the clinical type of leprosy. Since a decrease of the serum zinc was also found in patients with dermatitis herpetiformis and pulmonary tuberculosis it seems likely that the decreased serum zinc in leprosy is a nonspecific metabolic consequence of chronic skin and internal disease. The mean skin zinc concentration in leprosy did not differ significantly from the corresponding value in control subjects, the lack of agreement between serum and skin concentrations being possibly related to the presence of nonexchangeable keratin-bound zinc in skin. Though the clinical significance of lowered serum zinc concentrations in leprosy is uncertain therapeutic trials of zinc treatment in leprosy with trophic skin ulceration seem justifiable.

  8. Global change in the trophic functioning of marine food webs

    Science.gov (United States)

    Gascuel, Didier; Colléter, Mathieu; Palomares, Maria L. D.; Du Pontavice, Hubert; Pauly, Daniel; Cheung, William W. L.

    2017-01-01

    The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950–2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where ‘fishing down the marine food web’ are most intensive. PMID:28800358

  9. Mechanical Transgressive Segregation and the Rapid Origin of Trophic Novelty

    Science.gov (United States)

    Holzman, Roi; Hulsey, C. Darrin

    2017-01-01

    Hybrid phenotypes are often intermediate between those of parental species. However, hybridization can generate novel phenotypes when traits are complex. For instance, even when the morphologies of individual musculo-skeletal components do not segregate outside the parental range in hybrid offspring, complex functional systems can exhibit emergent phenotypes whose mechanics exceed the parental values. To determine if transgression in mechanics could facilitate divergence during an adaptive radiation, we examined three functional systems in the trophic apparatus of Lake Malawi cichlid fishes. We conducted a simulation study of hybridization between species pairs whose morphology for three functional systems was empirically measured, to determine how the evolutionary divergence of parental species influences the frequency that hybridization could produce mechanics that transgress the parental range. Our simulations suggest that the complex mechanical systems of the cichlid trophic apparatus commonly exhibit greater transgression between more recently diverged cichlid species. Because (1) all three mechanical systems produce hybrids with transgressive mechanics in Lake Malawi cichlids, (2) hybridization is common, and (3) single hybrid crosses often recapitulate a substantial diversity of mechanics, we conclude that mechanical transgressive segregation could play an important role in the rapid accumulation of phenotypic variation in adaptive radiations. PMID:28079133

  10. Does functional redundancy stabilize fish communities?

    DEFF Research Database (Denmark)

    Rice, Jake; Daan, Niels; Gislason, Henrik;

    2012-01-01

    time‐series of data on 83 species sampled in the International Bottom Trawl Survey. Our results were consistent with the hypothesis that functional redundancy leads to more stable (and by inference more resilient) communities. Over the time‐series trophic groups (assigned by diet, size (Lmax) group...

  11. Habitat filters in fungal endophyte community assembly

    Science.gov (United States)

    Fungal endophytes can influence host health, and more broadly, can instigate trophic cascades with effects scaling to the ecosystem level. Despite this, biotic mechanisms of endophyte community assembly are largely unknown. We used maize to investigate three potential habitat filters in endophyte co...

  12. Trophic niche of squids: Insights from isotopic data in marine systems worldwide

    Science.gov (United States)

    Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.

    2013-10-01

    Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.

  13. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior

    Science.gov (United States)

    Dean E. Pearson

    2009-01-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa...

  14. Predator effects on a detritus‐based food web are primarily mediated by non‐trophic interactions

    National Research Council Canada - National Science Library

    Majdi, Nabil; Boiché, Anatole; Traunspurger, Walter; Lecerf, Antoine; Rudolf, Volker

    2014-01-01

    .... Multiple lines of evidence suggest that, in detritus‐based food webs, non‐trophic interactions may prevail over purely trophic interactions in determining predator effects on plant litter decomposition...

  15. Trophic structure and energy flow in backwater lakes of two large floodplain rivers assessed using stable isotopes

    National Research Council Canada - National Science Library

    Herwig B.R; Soluk D.A; Dettmers J.M; Wahl D.H

    2004-01-01

    ... dependence and trophic structure within these habitats. We observed trophic enrichment values for 15N that were within the ranges observed for other aquatic systems but were often considerably lower than...

  16. Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners.

    Directory of Open Access Journals (Sweden)

    Antoine Collin

    Full Text Available Epi-macrobenthic species richness, abundance and composition are linked with type, assemblage and structural complexity of seabed habitat within coastal ecosystems. However, the evaluation of these habitats is highly hindered by limitations related to both waterborne surveys (slow acquisition, shallow water and low reactivity and water clarity (turbid for most coastal areas. Substratum type/diversity and bathymetric features were elucidated using a supervised method applied to airborne bathymetric LiDAR waveforms over Saint-Siméon-Bonaventure's nearshore area (Gulf of Saint-Lawrence, Québec, Canada. High-resolution underwater photographs were taken at three hundred stations across an 8-km(2 study area. Seven models based upon state-of-the-art machine learning techniques such as Naïve Bayes, Regression Tree, Classification Tree, C 4.5, Random Forest, Support Vector Machine, and CN2 learners were tested for predicting eight epi-macrobenthic species diversity metrics as a function of the class number. The Random Forest outperformed other models with a three-discretized Simpson index applied to epi-macrobenthic communities, explaining 69% (Classification Accuracy of its variability by mean bathymetry, time range and skewness derived from the LiDAR waveform. Corroborating marine ecological theory, areas with low Simpson epi-macrobenthic diversity responded to low water depths, high skewness and time range, whereas higher Simpson diversity relied upon deeper bottoms (correlated with stronger hydrodynamics and low skewness and time range. The degree of species heterogeneity was therefore positively linked with the degree of the structural complexity of the benthic cover. This work underpins that fully exploited bathymetric LiDAR (not only bathymetrically derived by-products, coupled with proficient machine learner, is able to rapidly predict habitat characteristics at a spatial resolution relevant to epi-macrobenthos diversity, ranging from clear to

  17. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches

    Directory of Open Access Journals (Sweden)

    Cooper W James

    2009-01-01

    Full Text Available Abstract Background Damselfishes (Perciformes, Pomacentridae are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe patterns of morphological diversity and determine positions of functional groups in a skull morphospace. These landmarks define the lever and linkage structures of the damselfish feeding system, and biomechanical analyses of this data were performed using the software program JawsModel4 in order to calculate the simple mechanical advantage (MA employed by different skull elements during feeding, and to compute kinematic transmission coefficients (KT that describe the efficiency with which angular motion is transferred through the complex linkages of damselfish skulls. Results Our results indicate that pomacentrid planktivores are significantly different from other damselfishes, that biting MA values and protrusion KT ratios are correlated with pomacentrid trophic groups more tightly than KT scores associated with maxillary rotation and gape angle, and that the MAs employed by their three biting muscles have evolved independently. Most of the biomechanical parameters examined have experienced low levels of phylogenetic constraint, which suggests that they have evolved quickly. Conclusion Joint morphological and biomechanical analyses of the same anatomical data provided two reciprocally illuminating arrays of information. Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding. Our

  18. Mercury accumulation by lower trophic-level organisms in lentic systems within the Guadalupe River watershed, California

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Moon, Gerald E.; Husby, Peter; Lincoff, Andrew; Carter, James L.; Croteau, Marie-Noële

    2005-01-01

    the first measurements of mercury trophic transfer through planktonic communities in this watershed. It is worth reemphasizing that this data set represents a single ?snap shot? of conditions in water bodies within the Guadalupe River watershed to: (1) fill gaps in trophic transfer information, and (2) provide a scientific basis for future process-based studies with enhanced temporal and spatial coverage. This electronic document was unconventionally formatted to enhance the accessibility of information to a wide range of interest groups.

  19. Trophic ecology of the invasive argentine ant: spatio-temporal variation in resource assimilation and isotopic enrichment.

    Science.gov (United States)

    Menke, Sean B; Suarez, Andy V; Tillberg, Chadwick V; Chou, Cheng T; Holway, David A

    2010-11-01

    Studies of food webs often employ stable isotopic approaches to infer trophic position and interaction strength without consideration of spatio-temporal variation in resource assimilation by constituent species. Using results from laboratory diet manipulations and monthly sampling of field populations, we illustrate how nitrogen isotopes may be used to quantify spatio-temporal variation in resource assimilation in ants. First, we determined nitrogen enrichment using a controlled laboratory experiment with the invasive Argentine ant (Linepithema humile). After 12 weeks, worker δ(15)N values from colonies fed an animal-based diet had δ(15)N values that were 5.51% greater compared to colonies fed a plant-based diet. The shift in δ(15)N values in response to the experimental diet occurred within 10 weeks. We next reared Argentine ant colonies with or without access to honeydew-producing aphids and found that after 8 weeks workers from colonies without access to aphids had δ(15)N values that were 6.31% larger compared to colonies with access to honeydew. Second, we sampled field populations over a 1-year period to quantify spatio-temporal variability in isotopic ratios of L. humile and those of a common native ant (Solenopsis xyloni). Samples from free-living colonies revealed that fluctuations in δ(15)N were 1.6-2.4‰ for L. humile and 1.8-2.9‰ for S. xyloni. Variation was also detected among L. humile castes: time averaged means of δ(15)N varied from 1.2 to 2.5‰ depending on the site, with δ(15)N values for queens ≥ workers > brood. The estimated trophic positions of L. humile and S. xyloni were similar within a site; however, trophic position for each species differed significantly at larger spatial scales. While stable isotopes are clearly useful for examining the trophic ecology of arthropod communities, our results suggest that caution is warranted when making ecological interpretations when stable isotope collections come from single time periods or

  20. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions

    Science.gov (United States)

    Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana

    2016-08-01

    The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.

  1. Interacting trophic forcing and the population dynamics of herring

    DEFF Research Database (Denmark)

    Lindegren, Martin; Ostman, Orjan; Gardmark, Anna

    2011-01-01

    Small pelagic fish occupy a central position in marine ecosystems worldwide, largely by determining the energy transfer from lower trophic levels to predators at the top of the food web, including humans. Population dynamics of small pelagic fish may therefore be regulated neither strictly bottom......-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue....... Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life...

  2. Trophic flexibility and opportunism in pike Esox lucius.

    Science.gov (United States)

    Pedreschi, D; Mariani, S; Coughlan, J; Voigt, C C; O'Grady, M; Caffrey, J; Kelly-Quinn, M

    2015-10-01

    The first comprehensive investigation of pike Esox lucius trophic ecology in a region (Ireland) where they have long been thought to be a non-native species is presented. Diet was investigated across habitat types (lake, river and canal) through the combined methods of stable-isotope and stomach content analyses. Variations in niche size, specialization and the timing of the ontogenetic dietary switch were examined, revealing pronounced opportunism and feeding plasticity in E. lucius, along with a high occurrence of invertivory (up to 60 cm fork length, LF ) and a concomitant delayed switch to piscivory. Furthermore, E. lucius were found to primarily prey upon the highly available non-native roach Rutilus rutilus, which may alleviate predation pressure on brown trout Salmo trutta, highlighting the complexity of dynamic systems and the essential role of research in informing effective management.

  3. Trace metals in barnacles: the significance of trophic transfer

    Institute of Scientific and Technical Information of China (English)

    Philip; S.; RAINBOW; WANG; Wen-Xiong

    2005-01-01

    Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters,identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the highest known in marine invertebrates.

  4. Trophic convergence drives morphological convergence in marine tetrapods.

    Science.gov (United States)

    Kelley, Neil P; Motani, Ryosuke

    2015-01-01

    Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets-even across large phylogenetic distances-are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.

  5. Ecosystem Responses To Plant Phenology Across Scales And Trophic Levels

    Science.gov (United States)

    Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.

    2015-12-01

    Plant phenology in arid and semi-arid ecoregions is constrained by water availability and governs the life history characteristics of primary and secondary consumers. We related the behavior, demography, and distribution of mammalian herbivores and their principal predator to remotely sensed vegetation and climatological indices across the western United States for the period 2000-2014. Across scales, terrain and topographic position moderates the effects of climatological drought on primary productivity, resulting in differential susceptibility among plant functional types to water stress. At broad scales, herbivores tie parturition to moist sites during the period of maximum increase in local forage production. Consequently, juvenile mortality is highest in regions of extreme phenological variability. Although decoupled from primary production by one or more trophic levels, carnivore home range size and density is negatively correlated to plant productivity and growing season length. At the finest scales, predation influences the behavior of herbivore prey through compromised habitat selection, in which maternal females trade nutritional benefits of high plant biomass for reduced mortality risk associated with increased visibility. Climate projections for the western United States predict warming combined with shifts in the timing and form of precipitation. Our analyses suggest that these changes will propagate through trophic levels as increased phenological variability and shifts in plant distributions, larger consumer home ranges, altered migration behavior, and generally higher volatility in wildlife populations. Combined with expansion and intensification of human land use across the region, these changes will likely have economic implications stemming from increased human-wildlife conflict (e.g., crop damage, vehicle collisions) and changes in wildlife-related tourism.

  6. Cryptic population dynamics: rapid evolution masks trophic interactions.

    Directory of Open Access Journals (Sweden)

    Takehito Yoshida

    2007-09-01

    Full Text Available Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution.

  7. Macrophytes shape trophic niche variation among generalist fishes

    Science.gov (United States)

    Vejřík, Lukáš; Šmejkal, Marek; Čech, Martin; Sajdlová, Zuzana; Frouzová, Jaroslava; Kiljunen, Mikko; Peterka, Jiří

    2017-01-01

    Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall

  8. Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture

    Directory of Open Access Journals (Sweden)

    S. Sumoharjo

    2013-06-01

    Full Text Available Integrated multi-trophic aquaculture pays more attention as a bio-integrated food production system that serves as a model of sustainable aquaculture, minimizes waste discharge, increases diversity and yields multiple products. The objectives of this research were to analyze the efficiency of total ammonia nitrogen biofiltration and its effect on carrying capacity of fish rearing units. Pilot-scale bioreactor was designed with eight run-raceways (two meters of each that assembled in series. Race 1-3 were used to stock silky worm (Tubifex sp as detrivorous converter, then race 4-8 were used to plant three species of leaf-vegetable as photoautotrophic converters, i.e; spinach (Ipomoea reptana, green mustard (Brassica juncea and basil (Ocimum basilicum. The three plants were placed in randomized block design based on water flow direction. Mass balance of nutrient analysis, was applied to figure out the efficiency of bio-filtration and its effect on carrying capacity of rearing units. The result of the experiment showed that 86.5 % of total ammonia nitrogen removal was achieved in 32 days of culturing period. This efficiency able to support the carrying capacity of the fish tank up to 25.95 kg/lpm with maximum density was 62.69 kg/m3 of fish biomass productionDoi: http://dx.doi.org/10.12777/ijse.4.2.2013.80-85 [How to cite this article: Sumoharjo, S.  and Maidie, A. (2013. Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture.  International Journal of  Science and Engineering, 4(2,80-85. Doi: http://dx.doi.org/10.12777/ijse.4.2.2013.80-85

  9. Attractiveness of native mammal's feces of different trophic guilds to dung beetles (Coleoptera: Scarabaeinae).

    Science.gov (United States)

    Bogoni, Juliano A; Hernández, Malva I M

    2014-01-01

    Mammal feces are the primary food and nesting resource for the majority of dung beetle species, and larval development depends on the quantity and quality of that resource. Physiological necessities, competitive interactions, and resource sharing are common and suggest that dung beetles may show preferences for feces of greater nutritional quality, which may in turn impact beetle assemblages and community structure. This study investigated whether attractiveness of dung beetles to different resource (feces) types varies depending on mammal trophic guild and associated nutritional content. This study was conducted in Atlantic Forest fragments in the Parque Estadual da Serra do Tabuleiro, Santa Catarina, Brazil. To evaluate attractiveness, the feces of the carnivore Puma concolor, the omnivores Cerdocyon thous and Sapajus nigritus, and the herbivore Tapirus terrestris were utilized as bait. Dung was collected from zoo animals fed a standard diet. Sampling was performed in triplicate in five areas in the summer of 2013. Four pitfall traps were established in each area, and each trap was baited with one type of mammal feces. Food preference of the species was analyzed by calculating Rodgers' index for cafeteria-type experiments. In total, 426 individuals from 17 species were collected. Rodgers' index showed that omnivorous mammal feces (C. thous) were most attractive to all dung beetle species, although it is known that dung beetles are commonly opportunistic with respect to search for and allocation of food resources. These results suggest that mammal loss could alter competitive interactions between dung beetles.

  10. Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades.

    Science.gov (United States)

    Rudolf, Volker H W

    2007-12-01

    Cannibalistic and asymmetrical behavioral interactions between stages are common within stage-structured predator populations. Such direct interactions between predator stages can result in density- and trait-mediated indirect interactions between a predator and its prey. A set of structured predator-prey models is used to explore how such indirect interactions affect the dynamics and structure of communities. Analyses of the separate and combined effects of stage-structured cannibalism and behavior-mediated avoidance of cannibals under different ecological scenarios show that both cannibalism and behavioral avoidance of cannibalism can result in short- and long-term positive indirect connections between predator stages and the prey, including "apparent mutualism." These positive interactions alter the strength of trophic cascades such that the system's dynamics are determined by the interaction between bottom-up and top-down effects. Contrary to the expectation of simpler models, enrichment increases both predator and prey abundance in systems with cannibalism or behavioral avoidance of cannibalism. The effect of behavioral avoidance of cannibalism, however, depends on how strongly it affects the maturation rate of the predator. Behavioral interactions between predator stages reduce the short-term positive effect of cannibalism on the prey density, but can enhance its positive long-term effects. Both interaction types reduce the destabilizing effect of enrichment. These results suggest that inconsistencies between data and simple models can be resolved by accounting for stage-structured interactions within and among species.

  11. Mean trophic level of coastal fisheries landings in the Persian Gulf (Hormuzgan Province), 2002-2011

    Science.gov (United States)

    Razzaghi, Marzieh; Mashjoor, Sakineh; Kamrani, Ehsan

    2017-05-01

    Fishing activities can alter the structure of marine food webs by the selective removal of some species. The changes in the marine food webs of the Hormuzgan waters of the Persian Gulf, Iran were assessed, based on estimates of the mean trophic index (MTI) and Fishing in Balance index (FiB), and on landing profile of the exploited marine community (49 species) during the period, 2002-2011. The total landings ( Y t) ( R=0.88, Ptrend, which indicates exploitation of marine resources. The FiB index also showed a downward trend and negative values from 2002 to 2009, which may be associated with unbalanced structure in the fisheries, but an upward trend from 2009 to 2011. The time variation of the landing profile showed two periods with significant diff erences in their species composition ( R=0.88; P =0.005), and based on analysis of similarity, species have been identified as discriminator species, namely Thunnus albacores and Benthosema pterotum. Results indicate that changes in MTI reflected changes in the Hormuzgan landing structure. The examination of the MTI, FBI, and landing profile (LP) temporal pattern suggests that the status of fishery resources in Hormuzgan inshore waters is overexploited, and provides evidence of the probability that a fishing down process is occurring in this area, and that this trend may continue in the long-term. Therefore, environmental fisheries management and conservation programs should be prioritized for these valuable resources.

  12. Influence of nutrient input on the trophic state of a tropical brackish water lagoon

    Indian Academy of Sciences (India)

    D Ganguly; Sivaji Patra; Pradipta R Muduli; K Vishnu Vardhan; Abhilash K R; R S Robin; B R Subramanian

    2015-07-01

    Ecosystem level changes in water quality and biotic communities in coastal lagoons have been associated with intensification of anthropogenic pressures. In light of incipient changes in Asia’s largest brackish water lagoon (Chilika, India), an examination of different dissolved nutrients distribution and phytoplankton biomass, was conducted through seasonal water quality monitoring in the year 2011. The lagoon showed both spatial and temporal variation in nutrient concentration, mostly altered by fresh-water input, regulated the chlorophyll distribution as well. Dissolved inorganic N:P ratio in the lagoon showed nitrogen limitation in May and December, 2011. Chlorophyll in the lagoon varied between 3.38 and 17.66 mg m−3. Spatially, northern part of the lagoon showed higher values of DIN and chlorophyll during most part of the year, except in May, when highest DIN was recorded in the southern part. Statistical analysis revealed that dissolved NH$^{+}_{4}$–N and urea could combinedly explain 43% of Chlorophyll- (Chl-) variability which was relatively higher than that explained by NO$^{-}_{3}$–N and NO$^{-}_{2}$–N (12.4%) in lagoon water. Trophic state index calculated for different sectors of the lagoon confirmed the inter-sectoral and inter-seasonal shift from mesotrophic to eutrophic conditions largely depending on nutrient rich freshwater input.

  13. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.

    Science.gov (United States)

    Wang, Gang; Or, Dani

    2014-10-24

    The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.

  14. Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy

    Directory of Open Access Journals (Sweden)

    Luis B Tovar-y-Romo

    2014-02-01

    Full Text Available Motor neuron physiology and development depend on a continuous and tightly regulated trophic support from a variety of cellular sources. Trophic factors guide the generation and positioning of motor neurons during every stage of the developmental process. As well, they are involved in axon guidance and synapse formation. Even in the adult spinal cord an uninterrupted trophic input is required to maintain neuronal functioning and protection from noxious stimuli. Among the trophic factors that have been demonstrated to participate in motor neuron physiology are vascular endothelial growth factor (VEGF, glial-derived neurotrophic factor (GDNF, ciliary neurotrophic factor (CNTF and insulin-like growth factor 1 (IGF-1. Upon binding to membrane receptors expressed in motor neurons or neighboring glia, these trophic factors activate intracellular signaling pathways that promote cell survival and have protective action on motor neurons, in both in vivo and in vitro models of neuronal degeneration. For these reasons these factors have been considered a promising therapeutic method for amyotrophic lateral sclerosis (ALS and other neurodegenerative diseases, although their efficacy in human clinical trials have not yet shown the expected protection. In this review we summarize experimental data on the role of these trophic factors in motor neuron function and survival, as well as their mechanisms of action. We also briefly discuss the potential therapeutic use of the trophic factors and why these therapies may have not been yet successful in the clinical use.

  15. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    Science.gov (United States)

    Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  16. Complex, Dynamic Combination of Physical, Chemical and Nutritional Variables Controls Spatio-Temporal Variation of Sandy Beach Community Structure

    Science.gov (United States)

    Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  17. L-Lake macroinvertebrate community

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.

  18. Intersexual trophic niche partitioning in an ant-eating spider (Araneae: Zodariidae.

    Directory of Open Access Journals (Sweden)

    Stano Pekár

    Full Text Available BACKGROUND: Divergence in trophic niche between the sexes may function to reduce competition between the sexes ("intersexual niche partitioning hypothesis", or may be result from differential selection among the sexes on maximizing reproductive output ("sexual selection hypothesis". The latter may lead to higher energy demands in females driven by fecundity selection, while males invest in mate searching. We tested predictions of the two hypotheses underlying intersexual trophic niche partitioning in a natural population of spiders. Zodarion jozefienae spiders specialize on Messor barbarus ants that are polymorphic in body size and hence comprise potential trophic niches for the spider, making this system well-suited to study intersexual trophic niche partitioning. METHODOLOGY/PRINCIPAL FINDINGS: Comparative analysis of trophic morphology (the chelicerae and body size of males, females and juveniles demonstrated highly female biased SSD (Sexual Size Dimorphism in body size, body weight, and in the size of chelicerae, the latter arising from sex-specific growth patterns in trophic morphology. In the field, female spiders actively selected ant sub-castes that were larger than the average prey size, and larger than ants captured by juveniles and males. Female fecundity was highly positively correlated with female body mass, which reflects foraging success during the adult stage. Females in laboratory experiments preferred the large ant sub-castes and displayed higher capture efficiency. In contrast, males occupied a different trophic niche and showed reduced foraging effort and reduced prey capture and feeding efficiency compared with females and juveniles. CONCLUSIONS/SIGNIFICANCE: Our data indicate that female-biased dimorphism in trophic morphology and body size correlate with sex-specific reproductive strategies. We propose that intersexual trophic niche partitioning is shaped primarily by fecundity selection in females, and results from sex

  19. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    Science.gov (United States)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi

  20. The ecological module of BOATS-1.0: a bioenergetically-constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    Science.gov (United States)

    Carozza, D. A.; Bianchi, D.; Galbraith, E. D.

    2015-12-01

    Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modeling fish biomass at the global scale. The ecological model is designed to be used on an Earth System model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how the change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modeling efforts, while retaining realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies

  1. The ecological module of BOATS-1.0: a bioenergetically constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    Science.gov (United States)

    Carozza, David Anthony; Bianchi, Daniele; Galbraith, Eric Douglas

    2016-04-01

    Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modelling fish biomass at the global scale. The ecological model is designed to be used on an Earth-system model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how they change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modelling efforts, while retaining reasonably realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for

  2. The ecological module of BOATS-1.0: a bioenergetically-constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    Directory of Open Access Journals (Sweden)

    D. A. Carozza

    2015-12-01

    Full Text Available Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS model, which takes an Earth-system approach to modeling fish biomass at the global scale. The ecological model is designed to be used on an Earth System model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how the change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modeling efforts, while retaining realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for

  3. [Applications of stable isotope analysis in the trophic ecology studies of cephalopods].

    Science.gov (United States)

    Li, Yun-Kai; Gong, Yi; Chen, Xin-Jun

    2014-05-01

    Cephalopods play an important role in marine food webs, however, knowledge about their complex life history, especially their feeding ecology, remains limited. With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement of traditional methods for investigating the trophic ecology and migration patterns of invertebrates. Here, after summarizing the current methods for trophic ecology investigation of cephalopods, applications of SIA in studying the trophic ecology of cephalopods were reviewed, including the key issues such as standardization of available tissues for SIA analyzing, diet shift and migration patterns of cephalopods, with the aim of advancing its application in the biology of cephalopods in the future.

  4. Wolves trigger a trophic cascade to berries as alternative food for grizzly bears.

    Science.gov (United States)

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2015-05-01

    This is a Forum article in response to: Barber-Meyer, S. (2015) Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods? Journal of Animal Ecology, 83, doi: 10.1111/1365-2656.12338. We used multiple data sets and study areas as well as several lines of evidence to investigate potential trophic linkages in Yellowstone National Park. Our results suggest that a trophic cascade from wolves to elk to berry production to berry consumption by grizzly bears may now be underway in the Park.

  5. [Impacts of urbanization on the water quality and macrobenthos community structure of the tributaries in middle reach of Qiantang River, East China].

    Science.gov (United States)

    Liu, Dong-Xiao; Yu, Hai-Yan; Liu, Shuo-Ru; Hu, Zun-Ying; Yu, Jian; Wang, Bei-Xin

    2012-05-01

    The 59 1st-3rd order tributaries in the middle reach of Qiantang River are negatively affected by different intensities of urbanization. In April 2010, an investigation was conducted on the water bodies' physical and chemical properties and macrobenthos communities of the tributaries, with the relationships between the tributaries' water quality and biological communities and the percentage of ground surface impervious area (PIA), an indicator of urbanization intensity. The Spearman correlation analysis showed that the water bodies' NH(4+)-N, PO4(3-)-P, TP, COD(Mn), conductivity, width, depth, and fine sand/silt ratio were positively correlated with PIA, and negatively correlated with forest land area. The fitted nonlinear regression equations revealed that all the test macro-benthic invertebrate's parameters had significant relationships with PIA, of which, the total number of taxa, Shannon diversity index, richness index, EPT (%), predators (%), shredders (%), filterers (%) and scrapers (%) were negatively correlated to PIA but positively correlated to forest land area, and the BI, collectors (%), tolerance taxa (%) and oligochaeta (%) were positively correlated to the PIA. Our study indicated that under the impact of urbanization, these tributaries presented the common features of degradation, i. e., high concentrations of nitrogen and phosphorus, degradation of physical habitat, disappearance of pollution-sensitive macro-benthic invertebrate species, and dramatic increase of pollution-tolerant species individuals.

  6. The influence of productivity and width of littoral zone on the trophic position of a large-bodied omnivore.

    Science.gov (United States)

    Stenroth, Patrik; Holmqvist, Niklas; Nyström, Per; Berglund, Olof; Larsson, Per; Granéli, Wilhelm

    2008-06-01

    Omnivory is common in many food webs. Omnivores in different habitats can potentially change their feeding behaviour and alter their trophic position and role according to habitat conditions. Here we examine the trophic level and diet of the omnivorous signal crayfish (Pacifastacus leniusculus) in gradients of trophic status and lake size, both of which have been previously suggested to affect trophic position of predators separately or combined as productive space. We found the trophic position of omnivorous crayfish to be positively correlated with lake trophic status, but found no evidence for any influence of lake size or productive space on crayfish trophic position. The higher trophic position of crayfish in eutrophic lakes was largely caused by a shift in crayfish diet and not by an increase in trophic links in basal parts of the food web. Hence, our results support the "productivity hypothesis," suggesting that food chains can be longer in more productive systems. Furthermore, stable isotope data indicated that larger crayfish are more predatory than smaller crayfish in lakes with wider littoral zones. Wider littoral zones promoted the development of intrapopulation differences in trophic position whereas narrow littoral zones did not. Hence, differences in habitat quality between and within lakes seem to influence the trophic positions of omnivorous crayfish.

  7. Modelling species invasions using thermal and trophic niche dynamics under climate change

    Directory of Open Access Journals (Sweden)

    Simone eLibralato

    2015-05-01

    Full Text Available Changing marine temperatures modify the distributional ranges of natural populations, but the success of invasion of new areas depends on local physical and ecological conditions. We explore the invasion by thermophilic species and their ecosystem effects by simulating a sea surface temperature increase using a trophodynamic model for the northern Adriatic Sea (NAS, in which thermal and trophic niches are explicitly represented for each thermophilic non-indigenous species and native species. The NAS acts as a cul-de-sac for local species, preventing a further poleward migration as a response to temperature rise. In this situation, model results showed that effects of warming and invasion produced complex, non-linear changes on biomasses but never resulted in a complete overturn of a group of native species and/or a bloom of invasive ones. Despite this, the diversity index stabilizes at increased values after simulating invasion, possibly indicating that in such enclosed systems the establishment of invasive species could represent enrichment in ecosystem structure. In addition, the absence of complete species substitution clearly showed the contribution of resident species towards increasing the resilience, i.e. the capability of the system to cope with invasion without changing substantially. Contrasting scenarios highlighted that changes in ecosystem primary production and species adaptation had secondary effects in ecosystem structure, while results for scenarios with different exploitation levels indicated that fishing can destabilize community structure in these change contexts, e.g. reducing community resilience. The results confirmed the importance of an ecological niche approach to analyze possible effects of invasion and highlighted the complexity of dynamics linked to temperature-driven species invasion’, in terms of both the predicted strength of impacts and the direction of biomass change.

  8. Multi-trophic consequences of plant genetic variation in sex and growth.

    Science.gov (United States)

    Abdala-Roberts, Luis; Pratt, Jessica D; Pratt, Riley; Schreck, Tadj K; Hanna, Victoria; Mooney, Kailen A

    2016-03-01

    There is growing evidence for the influence of plant intraspecific variation on associated multi-trophic communities, but the traits driving such effects are largely unknown. We conducted a field experiment with selected genetic lines of the dioecious shrub Baceharis salicifolia to investigate the effects of plant growth rate (two-fold variation) and gender (males vs. females of the same growth rate) on above- and belowground insect and fungal associates. We documented variation in associate density to test for effects occurring through plant-based habitat quality (controlling for effects of plant size) as well as variation in associate abundance to test for effects occurring through both habitat quality and abundance (including effects of plant size). Whereas the dietary specialist aphid Uroleucon macaolai was unaffected by plant sex and growth rate, the generalist aphid Aphis gossypii and its tending ants (Linepithema humile) had higher abundances and densities on male (vs. female) plants, suggesting males provide greater habitat quality. In contrast, Aphis and ant abundance and density were unaffected by plant growth rate, while Aphis parasitoids were unaffected by either plant sex or growth rate. Arbuscular mycorrhizal fungi had higher abundance and density (both marginally significant) on females (vs. males), suggesting females provide greater habitat quality, but lower abundances (marginally significant) and higher densities on slow- (vs. fast-) growing genotypes, suggesting slow-growing genotypes provided lower resource abundance but greater habitat quality. Overall, plant sex and growth rate effects on associates acted independently (i.e., no interactive effects), and these effects were of a greater magnitude than those coming from other axes of plant genetic variation. These findings thus demonstrate that plant genetic effects on associated communities may be driven by a small number of trait-specific mechanisms.

  9. Consistent Richness-Biomass Relationship across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula

    Science.gov (United States)

    Valdivia, Nelson; Díaz, María José; Garrido, Ignacio; Gómez, Iván

    2015-01-01

    Biodiversity loss has spurred the biodiversity-ecosystem functioning research over a range of ecosystems. In Antarctica, however, the relationship of taxonomic and functional diversity with ecosystem properties (e.g., community biomass) has received less attention, despite the presence of sharp and dynamic environmental stress gradients that might modulate these properties. Here, we investigated whether the richness-biomass relationship in macrobenthic subtidal communities is still apparent after accounting for environmental stress gradients in Fildes Bay, King George Island, Antarctica. Measurements of biomass of mobile and sessile macrobenthic taxa were conducted in the austral summer 2013/4 across two environmental stress gradients: distance from nearest glaciers and subtidal depth (from 5 to 30 m). In general, community biomass increased with distance from glaciers and water depth. However, generalised additive models showed that distance from glaciers and depth accounted for negligible proportions of variation in the number of functional groups (i.e., functional richness) and community biomass when compared to taxonomic richness. Functional richness and community biomass were positive and saturating functions of taxonomic richness. Large endemic, canopy-forming brown algae of the order Desmarestiales dominated the community biomass across both gradients. Accordingly, differences in the composition of taxa accounted for a significant and large proportion (51%) of variation in community biomass in comparison with functional richness (10%). Our results suggest that the environmental factors here analysed may be less important than biodiversity in shaping mesoscale (several km) biomass patterns in this Antarctic system. We suggest that further manipulative, hypothesis-driven research should address the role of biodiversity and species’ functional traits in the responses of Antarctic subtidal communities to environmental variation. PMID:26381149

  10. Consistent Richness-Biomass Relationship across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula.

    Science.gov (United States)

    Valdivia, Nelson; Díaz, María José; Garrido, Ignacio; Gómez, Iván

    2015-01-01

    Biodiversity loss has spurred the biodiversity-ecosystem functioning research over a range of ecosystems. In Antarctica, however, the relationship of taxonomic and functional diversity with ecosystem properties (e.g., community biomass) has received less attention, despite the presence of sharp and dynamic environmental stress gradients that might modulate these properties. Here, we investigated whether the richness-biomass relationship in macrobenthic subtidal communities is still apparent after accounting for environmental stress gradients in Fildes Bay, King George Island, Antarctica. Measurements of biomass of mobile and sessile macrobenthic taxa were conducted in the austral summer 2013/4 across two environmental stress gradients: distance from nearest glaciers and subtidal depth (from 5 to 30 m). In general, community biomass increased with distance from glaciers and water depth. However, generalised additive models showed that distance from glaciers and depth accounted for negligible proportions of variation in the number of functional groups (i.e., functional richness) and community biomass when compared to taxonomic richness. Functional richness and community biomass were positive and saturating functions of taxonomic richness. Large endemic, canopy-forming brown algae of the order Desmarestiales dominated the community biomass across both gradients. Accordingly, differences in the composition of taxa accounted for a significant and large proportion (51%) of variation in community biomass in comparison with functional richness (10%). Our results suggest that the environmental factors here analysed may be less important than biodiversity in shaping mesoscale (several km) biomass patterns in this Antarctic system. We suggest that further manipulative, hypothesis-driven research should address the role of biodiversity and species' functional traits in the responses of Antarctic subtidal communities to environmental variation.

  11. Plant genetics shapes inquiline community structure across spatial scales.

    Science.gov (United States)

    Crutsinger, Gregory M; Cadotte, Marc W; Sanders, Nathan J

    2009-04-01

    Recent research in community genetics has examined the effects of intraspecific genetic variation on species diversity in local communities. However, communities can be structured by a combination of both local and regional processes and to date, few community genetics studies have examined whether the effects of instraspecific genetic variation are consistent across levels of diversity. In this study, we ask whether host-plant genetic variation structures communities of arthropod inquilines within distinct habitat patches--rosette leaf galls on tall goldenrod (Solidago altissima). We found that genetic variation determined inquiline diversity at both local and regional spatial scales, but that trophic-level responses varied independently of one another. This result suggests that herbivores and predators likely respond to heritable plant traits at different spatial scales. Together, our results show that incorporating spatial scale is essential for predicting the effects of genetically variable traits on different trophic levels and levels of diversity within the communities that depend on host plants.

  12. Trophic history of French sub-alpine lakes over the last ~150 years: phosphorus reconstruction and assessment of taphonomic biases

    Directory of Open Access Journals (Sweden)

    Vincent Berthon

    2013-09-01

    Full Text Available Like many lakes worldwide, French sub-alpine lakes (lakes Annecy, Bourget and Geneva have suffered from eutrophication in the mid-20th century. Although restoration measures have been undertaken and resulted in significant reductions in nutrient inputs and concentrations over the last 30 years in all three lakes, the limnological monitoring does not extend back far enough to establish the reference conditions, as defined by the European Water Framework Directive. The over-arching aim of this work was to reconstruct, using a paleolimnological approach, the pre-eutrophication levels and subsequent temporal changes in the lakes trophic status over the last century. The objectives were three-fold: i to test whether fossil diatoms archived in deep sediment cores adequately reflect past changes in the planktonic diatom communities for these deep sub-alpine lakes based on data from lake Geneva; ii to investigate changes in the diatom communities over the last 150 years in the three lakes; and iii to infer the past total phosphorus (TP concentrations of the lakes from a diatom based transfer function. Annual paleolimnological and limnological diatom countings for lake Geneva were strongly correlated over the last 30 years. Most notable differences essentially resulted from both taphonomic and depositional biases, as evidenced by the underestimation of thin skeleton species such as Asterionella formosa and Diatoma tenuis in the paleolimnological dataset and the presence of many benthic taxa.  The fossil diatom records revealed shifts in the communities in the three lakes over time, most of which were changes typically associated with nutrient enrichment. Indeed, in all three lakes, the proportion of Cyclotella spp. was very high before the 1950s, but these species were then replaced by more eutrophic taxa, such as Stephanodiscus spp, by the mid-20th century. From the 1980s, some but not all diatom species typical of re-oligotrophicated conditions (i

  13. Trophic fluxes in a beach seine fishery of the Campeche Bank

    National Research Council Canada - National Science Library

    Vega-Cendejas, M.E; Arreguin-Sanches, F; Hernandez, M

    1990-01-01

    The principal trophic interactions that occur between various species from a beach seine fishery of the Campeche Bank were determined through the ECOPATH II model using stomach contents data and biomass estimates...

  14. The winter feeding ecology and trophic relationships of marine birds in Kachemak Bay, Alaska [Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objectives of the study were; (1) to determine the kinds, amounts, and trophic levels of prey used by the main species of marine birds wintering on the...

  15. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing.

    Science.gov (United States)

    Liu, Pi-Jen; Shao, Kwang-Tsao; Jan, Rong-Quen; Fan, Tung-Yung; Wong, Saou-Lien; Hwang, Jiang-Shiou; Chen, Jen-Ping; Chen, Chung-Chi; Lin, Hsing-Juh

    2009-09-01

    Several coral reefs of Nanwan Bay, Taiwan have recently undergone shifts to macroalgal or sea anemone dominance. Thus, a mass-balance trophic model was constructed to analyze the structure and functioning of the food web. The fringing reef model was comprised of 18 compartments, with the highest trophic level of 3.45 for piscivorous fish. Comparative analyses with other reef models demonstrated that Nanwan Bay was similar to reefs with high fishery catches. While coral biomass was not lower, fish biomass was lower than those of reefs with high catches. Consequently, the sums of consumption and respiratory flows and total system throughput were also decreased. The Nanwan Bay model potentially suggests an overfished status in which the mean trophic level of the catch, matter cycling, and trophic transfer efficiency are extremely reduced.

  16. Taxonomic and trophic-level differences in the climate sensitivity of seasonal events

    Science.gov (United States)

    Høye, T. T.; Thackeray, S.; Henrys, P. A.; Hemming, D.; Bell, J. R.; Botham, M. S.; Burthe, S.; Helaouet, P.; Johns, D.; Jones, I. D.; Leech, D. I.; Mackay, E. B.; Massimino, D.; Atkinson, S.; Bacon, P. J.; Brereton, T. M.; Carvalho, L.; Clutton-Brock, T. H.; Duck, C.; Edwards, M.; Elliott, J. M.; Hall, S.; Harrington, R.; Pearce-Higgins, J. W.; Kruuk, L. E.; Pemberton, J. M.; Sparks, T. H.; Thompson, P. M.; White, I.; Winfield, I. J.; Wanless, S.

    2015-12-01

    Among-species differences in phenological responses to climate change are of sufficient magnitude to desynchronise key ecological interactions, threatening ecosystem function and services. To assess these threats, it is vital to quantify the relative impact of climate change on species at different trophic levels. Here we apply a novel Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, quantifying among-species variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms sharing taxonomic affinities or trophic position. Despite this, we detected a systematic difference in the direction and magnitude, but not seasonal timing, of phenological climate sensitivity among trophic levels. Secondary consumers showed consistently lower climate sensitivity than other groups and are projected to lag behind phenological changes at lower trophic levels, potentially making them at higher risk of disconnection with seasonal resources.

  17. Sources of trophic action on performance and intestinal morphometry of broiler chickens vaccinated against coccidiosis

    Directory of Open Access Journals (Sweden)

    MI Sakamoto

    2014-12-01

    Full Text Available The aim of this experiment was to evaluate the effect of sources of trophic action (glutamine alone, glutamine associated with glutamic acid and yeast associated with vaccination against coccidiosis on the performance and morphometry of the small intestine of broilers. In the trial, 1,200 broiler chicks were distributed according to a completely randomized design with a 3 x 2 + 2 (trophic action x vaccination or not + control - free trophic factor factorial arrangement, with five replicates of 30 birds each. Vaccination negatively affected performance parameters and the morphometry of the intestinal mucosa, but at the end of the experimental period, among the broilers vaccinated against coccidiosis, the group fed glutamine presented better recovery from epithelial losses of the intestinal mucosa compared with the control groups. Therefore, the dietary supplementation with the evaluated sources of trophic action could be a strategy to enhance the development of broilers submitted to vaccine stress, also considering the economic viability of the productive segment.

  18. Trophic dynamics and fishery potentials of the Indian Occean - critical assessment

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Parulekar, A.H.

    of the basic estimates from primary production; zooplankton-biomass and production; benthic and microbial production and the commonly used conversion efficiency at different trophic levels in relation to complexities of tropical marine food chain...

  19. Trophic ecology and persistence of invasive silver carp Hypophthalmichthys molitrix in an oligotrophic South African impoundment

    CSIR Research Space (South Africa)

    Lübcker, N

    2016-12-01

    Full Text Available to assess the trophic ecology of H. molitrix, which was then compared with indigenous Mozambique tilapia Oreochromis mossambicus, on a seasonal basis during 2011. Hypophthalmichthys molitrix are generalist filter feeders, with a diet consisting primarily...

  20. Trophic Magnification of PCBs and Its Relationship to the Octanol−Water Partition Coefficient

    Science.gov (United States)

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism trophic position (TP) at the Lake Hartwell Superfund (South Carolina, USA). We measured PCBs (127 congeners) and stable isotopes (δ15...

  1. Food-web structure in low- and high-dimensional trophic niche spaces

    Science.gov (United States)

    Rossberg, Axel G.; Brännström, Åke; Dieckmann, Ulf

    2010-01-01

    A question central to modelling and, ultimately, managing food webs concerns the dimensionality of trophic niche space, that is, the number of independent traits relevant for determining consumer–resource links. Food-web topologies can often be interpreted by assuming resource traits to be specified by points along a line and each consumer's diet to be given by resources contained in an interval on this line. This phenomenon, called intervality, has been known for 30 years and is widely acknowledged to indicate that trophic niche space is close to one-dimensional. We show that the degrees of intervality observed in nature can be reproduced in arbitrary-dimensional trophic niche spaces, provided that the processes of evolutionary diversification and adaptation are taken into account. Contrary to expectations, intervality is least pronounced at intermediate dimensions and steadily improves towards lower- and higher-dimensional trophic niche spaces. PMID:20462875

  2. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    Main distribution patterns of submerged macrophytes in a large number of Danish lakes were determined and relationships to environmental variables evaluated by different multivariate analysis techniques. The lakes varied greatly in location, size, depth, alkalinity and trophic status. There were ...

  3. Foraging behaviour at the fourth trophic level: a comparative study of host location in aphid hyperparasitoids

    NARCIS (Netherlands)

    Buitenhuis, R.; Vet, L.E.M.; Boivin, G.; Brodeur, J.

    2005-01-01

    In studies of foraging behaviour in a multitrophic context, the fourth trophic level has generally been ignored. We used four aphid hyperparasitoid species: Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae), Asaphes suspensus Walker (Hymenoptera: Pteromalidae), Alloxysta victrix (Westwood)

  4. Trophic significance of solitary cells of the prymnesiophyte Phaeocystis globosa depends on cell type

    DEFF Research Database (Denmark)

    Dutz, Jörg; Koski, Marja

    2006-01-01

    experiments, revealed that neither the production of transparent exopolymer particles and chitinous threads nor toxicity can explain the observed response. The cohesion of the threads into pentagonal stars was observed only in the avoided mesoflagellate and might cause a mechanical hindrance for the ingestion...... of mesoflagellates. Our results suggest that grazing loss and trophic transfer efficiency might be overestimated when solitary cells are treated as a single functional group with regard to their trophic position....

  5. Biomass changes and trophic amplification of plankton in a warmer ocean.

    Science.gov (United States)

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  6. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem

    2014-05-07

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  7. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    Directory of Open Access Journals (Sweden)

    Nicholas E.C. Fleming

    2015-07-01

    Full Text Available Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ13C and δ15N stable isotope values, we examined: (1 whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2 Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3 When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ15N (trophic position were evident between all three species, with size-based and temporal shifts in δ15N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous

  8. The disruption of the epithelial mesenchymal trophic unit in COPD.

    Science.gov (United States)

    Behzad, Ali R; McDonough, John E; Seyednejad, Nazgol; Hogg, James C; Walker, David C

    2009-12-01

    Progression of COPD is associated with a measurable increase in small airway wall thickness resulting from a repair and remodeling process that involves fibroblasts of the epithelial mesenchymal trophic unit (EMTU). The present study was designed to examine the organization of fibroblasts within the lamina propria of small airways with respect to their contacts with the epithelium and with each other in persons with COPD. Transmission electron microcopy (TEM) and three-dimensional (3D) reconstructions of serial TEM sections were used to estimate the frequency and determine the nature of the contacts between the epithelium and fibroblasts within the EMTU in small airways from 5 controls (smokers with normal lung function), from 6 persons with mild (GOLD-1) and 5 with moderate (GOLD-2) COPD. In airways from control lungs fibroblasts make frequent contact with cytoplasmic extensions of epithelial cells through apertures in the epithelial basal lamina, but the frequency of these fibroblast-epithelial contacts is reduced in both mild and moderate COPD compared to controls (p < 0.01). The 3D reconstructions showed that the cytoplasmic extensions of lamina propria fibroblasts form a reticulum with fibroblast-fibroblast contacts in an airway from a control subject but this reticulum may be reorganized in airways of COPD patients. Development of COPD is associated with significant disruption of the EMTU due to a reduction of contacts between fibroblasts and the epithelium.

  9. Trophic states and nutrient storage of reservoirs in Chongqing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sheng; LI Chongming; HUANG Shuming; ZHENG Jian

    2008-01-01

    The trophic states of 35 reservoirs were investigated in the region of Chongqing, Southwest China. The results showed that the concentrations of nutrients and chlorophyll a were high and organic pollution and transparence (SD) were low in the water body. The concentrations of total nitrogen (TN) range from 0.52 mg/L to 5.94 mg/L and those of total phosphorus (TP) range from 0.002 mg/L to 0.598 mg/L. Chemical oxygen demand (COD) ranges from 0.75 mg/L to 9.3 mg/L and SD ranges from 0.48 m to 3.2 m. There was a significant positive correlation between COD and chlorophyll a, but a significant negative correlation between SD and chlorophyll a. In terms of the integrated nutrition state index, the eutrophication states of the reservoirs were assessed. Of the investigated reservoirs, about 22 reached the grade of eutrophication. Only one reservoir was in the state of oligotropher, the rest were in the state of mestropher. Integrated nutrition state indices range from 25.4 to 74.5. The storage capacity of nutrients in the reservoirs was calculated. The stored TN, TP and COD were about 4731, 206 and 10259 t, respectively. The main pollution sources are industrial and domestic wastes. With the development of aquaculture, the contamination level increases gradually.

  10. Diel behaviour and trophic ecology of Scolopsis bilineatus (Nemipteridae)

    Science.gov (United States)

    Boaden, A. E.; Kingsford, M. J.

    2012-09-01

    Nemipterids are ubiquitous mid-sized fishes on Indo-Pacific reefs. We investigated the trophic ecology of the nemipterid species Scolopsis bilineatus at two locations on the Great Barrier Reef: One Tree Island and Orpheus Island. Fish ate a variety of benthic invertebrate taxa represented by rank: polychaetes, ophuiroids, sipunculids, nemerteans and small crustaceans. Polychaetes dominated the diet of fish of all sizes. Feeding behaviour and habitat utilization varied with the size of fish. Juveniles fed diurnally and adults nocturnally. Most juveniles fed rapidly in sand and rubble habitat during the day. In contrast, adults occupied shelter sites during the day, but dispersed onto sand to feed at night. A manipulative experiment demonstrated that small adult S. bilineatus exhibit opportunistic behaviour by responding to disturbance of the substratum for the purposes of feeding. Diurnal opportunistic feeding probably has a minimal influence on overall dietary intake. Identification of nocturnal feeding for adult S. bilineatus is of significant ecological importance, as nocturnal fishes often play unique and important roles in energy and nutrient cycling on reefs.

  11. TROPHICITY OF LACUSTRINE WATERS (LACUSTRINE WETLANDS ON THE ROMANIAN TERRITORY

    Directory of Open Access Journals (Sweden)

    Gheorghe ROMANESCU

    2010-06-01

    Full Text Available The lakes over the territory of Romania are relatively uniformly distributed in the majority of the physico-geographical regions. A low density is specific to the west, where significant draining works have been done, and the highest density is characteristic to the north-east, with numerous ponds, registered since 14-15th centuries. Most of the lakes on the Romanian territory, especially those analysed in the present study, are human made. Most of the natural lakes are small and they do not have a special ecologic or economic importance. The analysed lakes, although situated in different physico-geographical conditions, are included, in most cases, in the category of good waters from a qualitative point of view, and eutrophic, mesotrophic and hipertrophic, from a trophic point of view. As a result of the fact that most lakes are human made, it is obvious that they are maintained artificially at this stage. Most of the mountain lakes, or those in the volcanic areas, are ultra-oligotrophic and oligotrophic.

  12. Body size is negatively correlated with trophic position among cyprinids

    Science.gov (United States)

    Burress, Edward D.; Holcomb, Jordan M.; Bonato, Karine Orlandi; Armbruster, Jonathan W.

    2016-01-01

    Body size has many ecological and evolutionary implications that extend across multiple levels of organization. Body size is often positively correlated with species traits such as metabolism, prey size and trophic position (TP) due to physiological and mechanical constraints. We used stable isotope analysis to quantify TP among minnows across multiple assemblages that differed in their species composition, diversity and food web structure. Body size significantly predicted TP across different lineages and assemblages, and indicated a significant negative relationship. The observed negative relationship between body size and TP is contrary to conventional knowledge, and is likely to have arisen owing to highly clade-specific patterns, such that clades consist of either large benthic species or small pelagic species. Cyprinids probably subvert the physiological and mechanical constraints that generally produce a positive relationship between body size and TP using anatomical modifications and by consuming small-bodied prey, respectively. The need for herbivorous cyprinids to digest cellulose-rich foods probably selected for larger bodies to accommodate longer intestinal tracts and thereby to facilitate digestion of nutrient-poor resources, such as algae. Therefore, body size and TP are likely to have coevolved in cyprinids in association with specialization along the benthic to pelagic resource axis. PMID:27293777

  13. Trophic relationships in an estuarine environment: A quantitative fatty acid analysis signature approach

    Science.gov (United States)

    Magnone, Larisa; Bessonart, Martin; Gadea, Juan; Salhi, María

    2015-12-01

    In order to better understand the functioning of aquatic environments, it is necessary to obtain accurate diet estimations in food webs. Their description should incorporate information about energy flow and the relative importance of trophic pathways. Fatty acids have been extensively used in qualitative studies on trophic relationships in food webs. Recently a new method to estimate quantitatively single predator diet has been developed. In this study, a model of aquatic food web through quantitative fatty acid signature analysis was generated to identify the trophic interactions among the species in the Rocha Lagoon. The biological sampling over two consecutive annual periods was comprehensive enough to identify all functional groups in the aquatic food web (except birds and mammals). Heleobia australis seemed to play a central role in this estuarine ecosystem. As both, a grazer and a prey to several other species, probably H. australis is transferring a great amount of energy to upper trophic levels. Most of the species at Rocha Lagoon have a wide range of prey items in their diet reflecting a complex food web, which is characteristic of extremely dynamic environment as estuarine ecosystems. QFASA is a model in tracing and quantitative estimate trophic pathways among species in an estuarine food web. The results obtained in the present work are a valuable contribution in the understanding of trophic relationships in Rocha Lagoon.

  14. Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment.

    Science.gov (United States)

    Hughes, Adam D; Brunner, Lars; Cook, Elizabeth J; Kelly, Maeve S; Wilson, Ben

    2012-01-01

    The trophic interactions of sea urchins are known to be the agents of phase shifts in benthic marine habitats such as tropical and temperate reefs. In temperate reefs, the grazing activity of sea urchins has been responsible for the destruction of kelp forests and the formation of 'urchin barrens', a rocky habitat dominated by crustose algae and encrusting invertebrates. Once formed, these urchin barrens can persist for decades. Trophic plasticity in the sea urchin may contribute to the stability and resilience of this alternate stable state by increasing diet breadth in sea urchins. This plasticity promotes ecological connectivity and weakens species interactions and so increases ecosystem stability. We test the hypothesis that sea urchins exhibit trophic plasticity using an approach that controls for other typically confounding environmental and genetic factors. To do this, we exposed a genetically homogenous population of sea urchins to two very different trophic environments over a period of two years. The sea urchins exhibited a wide degree of phenotypic trophic plasticity when exposed to contrasting trophic environments. The two populations developed differences in their gross morphology and the test microstructure. In addition, when challenged with unfamiliar prey, the response of each group was different. We show that sea urchins exhibit significant morphological and behavioural phenotypic plasticity independent of their environment or their nutritional status.

  15. Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment.

    Directory of Open Access Journals (Sweden)

    Adam D Hughes

    Full Text Available The trophic interactions of sea urchins are known to be the agents of phase shifts in benthic marine habitats such as tropical and temperate reefs. In temperate reefs, the grazing activity of sea urchins has been responsible for the destruction of kelp forests and the formation of 'urchin barrens', a rocky habitat dominated by crustose algae and encrusting invertebrates. Once formed, these urchin barrens can persist for decades. Trophic plasticity in the sea urchin may contribute to the stability and resilience of this alternate stable state by increasing diet breadth in sea urchins. This plasticity promotes ecological connectivity and weakens species interactions and so increases ecosystem stability. We test the hypothesis that sea urchins exhibit trophic plasticity using an approach that controls for other typically confounding environmental and genetic factors. To do this, we exposed a genetically homogenous population of sea urchins to two very different trophic environments over a period of two years. The sea urchins exhibited a wide degree of phenotypic trophic plasticity when exposed to contrasting trophic environments. The two populations developed differences in their gross morphology and the test microstructure. In addition, when challenged with unfamiliar prey, the response of each group was different. We show that sea urchins exhibit significant morphological and behavioural phenotypic plasticity independent of their environment or their nutritional status.

  16. Effect of Cultivation on Spatial Distribution of Nematode Trophic Groups in Black Soil

    Institute of Scientific and Technical Information of China (English)

    LIANG WENJU; LI QI; JIANG YONG; CHEN WENBO; WEN DAZHONG

    2003-01-01

    Geostatistics combined with GIS was applied to assess the spatial distribution of nematode trophic groups following two contrasting soil uses in the black soil region of Northeast China. Two plots, one with fallow for 12 years and the other cultivated, were marked on regular square grids with 2-m spacing. Soil samples were collected from each sampling point, nematodes were extracted from these samples and classified into four trophic groups: bacterivores, fungivores, plant parasites, and omnivores/predators. The numbers of total nematodes and trophic groups analyzed had normal distributions on both fallow and cultivated plots. The absolute abundances of total nematodes and trophic groups were observed to be much more homogeneous on cultivated plot than on fallow one. Geostatistical analysis showed that the densities of total nematodes and trophic groups on both fallow and cultivated plots exhibited spatial dependence at the sampled scale and their experimental semivariograms were adjusted to a spherical or exponential model, except those of bacterivores and fungivores on cultivated plot. The spatial distribution of nematode trophic groups was found to be different for the two land uses, indicating that cultivation changed the native condition for soil nematode activities.

  17. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    Science.gov (United States)

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  18. Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs.

    Science.gov (United States)

    Au, Sarah Y; Lee, Cindy M; Weinstein, John E; van den Hurk, Peter; Klaine, Stephen J

    2017-05-01

    To evaluate the process of trophic transfer of microplastics, it is important to consider various abiotic and biotic factors involved in their ingestion, egestion, bioaccumulation, and biomagnification. Toward this end, a review of the literature on microplastics has been conducted to identify factors influencing their uptake and absorption; their residence times in organisms and bioaccumulation; the physical effects of their aggregation in gastrointestinal tracts; and their potential to act as vectors for the transfer of other contaminants. Limited field evidence from higher trophic level organisms in a variety of habitats suggests that trophic transfer of microplastics may be a common phenomenon and occurs concurrently with direct ingestion. Critical research needs include standardizing methods of field characterization of microplastics, quantifying uptake and depuration rates in organisms at different trophic levels, quantifying the influence that microplastics have on the uptake and/or depuration of environmental contaminants among different trophic levels, and investigating the potential for biomagnification of microplastic-associated chemicals. More integrated approaches involving computational modeling are required to fully assess trophic transfer of microplastics. Integr Environ Assess Manag 2017;13:505-509. © 2017 SETAC. © 2017 SETAC.

  19. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  20. Seagrass burial by dredged sediments: benthic community alteration, secondary production loss, biotic index reaction and recovery possibility.

    Science.gov (United States)

    Tu Do, V; de Montaudouin, Xavier; Blanchet, Hugues; Lavesque, Nicolas

    2012-11-01

    In 2005, dredging activities in Arcachon Bay (France) led in burying 320,000 m(2) of Zostera noltii intertidal seagrass. Recovery by macrobenthos and seagrass was monitored. Six months after works, seagrass was absent and macrobenthos drastically different from surrounding vegetated stations. Rapidly and due to sediment dispersal, disposal area was divided into a sandflat with a specific benthic community which maintained its difference until the end of the survey (2010), and a mudflat where associated fauna became similar to those in adjacent seagrass. Macrobenthic community needs 3 years to recover while seagrass needs 5 years to recover in the station impacted by mud. The secondary production loss due to works was low. In this naturally carbon enriched system, univariate biotic indices did not perform well to detect seagrass destruction and recovery. Multivariate index MISS gave more relevant conclusions and a simplified version was tested with success, at this local scale.

  1. A trophic cascade induced by predatory ants in a fig-fig wasp mutualism.

    Science.gov (United States)

    Wang, Bo; Geng, Xiang-Zong; Ma, Li-Bin; Cook, James M; Wang, Rui-Wu

    2014-09-01

    A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator-herbivore-plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators' offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the

  2. Delineating the boundary and structure of higher trophic level assemblages in the western North Pacific Ocean

    Science.gov (United States)

    Okuda, Takehiro; Kiyota, Masashi; Yonezaki, Shiroh; Murakami, Chisato; Kato, Yoshiki; Sakai, Mitsuo; Wakabayashi, Toshie; Okazaki, Makoto

    2017-06-01

    Understanding the community structure of oceanic higher trophic level (HTL) organisms (e.g., sharks, tunas, salmons, and squids) is fundamental to management of marine resources in a way that ensures their sustainable use and maintains marine ecosystem functionality and biodiversity. We analyzed the spatial structure of HTL assemblages in the western North Pacific Ocean using driftnet survey data collected at latitudes of 35-46 °N along transect lines at 144 °E, 155 °E, and 175.5 °E longitude in July and August 2011. We proposed a new dissimilarity metric segmentation procedure (Dissimilarity Segmentation) based on the differences of mean Bray-Curtis dissimilarity indices between two individual driftnet hauls within the same subarea or among different subareas. Dissimilarity Segmentation allowed us to divide the western North Pacific Ocean into three subareas: a northern subarea (>41 °N including 41 °N on the 175.5 °E transect), a transition subarea (37-41 °N), and a southern subarea (<37 °N). The HTL biomass in the northern subarea was high, and the species diversity was low; dominant and common species accounted for most of the biomass. The HTL assemblage in the southern subarea was composed of many species that were uncommon or rare; the biomass was lower, and the species diversity was higher than in the northern subarea. In the transition subarea, neon flying squid accounted for most of the biomass, and although the biomass was intermediate, species diversity was highest among the three subareas. Canonical correspondence analysis with oceanic environmental variables, principally chlorophyll a, sea surface salinity, and sea surface height, as the explanatory variables accounted for 43.6% of the variance of the HTL pelagic species composition. This result suggests that the HTL pelagic community in the western North Pacific is influenced largely by productivity and oceanic physical structure. These results suggest that an analytical approach based on

  3. Biotic interactions within the littoral community of Swedish forest lakes during acidification

    Energy Technology Data Exchange (ETDEWEB)

    Appelberg, M. (Inst. of Freshwater Research, Drottningholm (Sweden)); Henrikson, B.I. (Gothenburg Univ. (Sweden). Dept. of Zoology); Henrikson, L. (Municipality of Mark, Kinna (Sweden)); Svedaeng, M. (Uppsala Univ. (Sweden). Dept. of Limnology)

    1993-01-01

    This paper presents an integrated response of abiotic and biotic factors to the acidification process in littoral communities in Swedish forest lakes. In structuring the acidified community three major forces can be recognized. Firstly, abiotic variation, including changed water chemistry and habitat structure, has a strong impact on all trophic levels. Low pH and increased toxicity of metals, especially aluminium, are ultimate causes of the extinction and succession of species during acidification. In the acidified community, the abiotic factors affect both the top-down and bottom-up forces, and changes can be triggered at all trophic levels. The second force structuring the community is a bottom-up effect caused by reduced nutrient cycling and a shift in plant heterogeneity. This shift, mainly resulting from a shift in the CO[sub 2]-system of the water and increased water transparency, enhances the biomass of primary producers, e.g. Sphagnum and Juncus, and alters habitat heterogeneity in higher trophic levels. The third force structuring the acid community is a top-down effect; the loss of the fourth link in the food chain (fish) alters the impact on the third trophic level. From being mainly regulated by predation from fish, the heterogeneity of the third level will be regulated by abiotic variation and competition in the acid state. This effect cascades down the food web, and the second trophic level, the herbivores, will now be preyed upon by invertebrates instead of fish. (89 refs., 6 figs.)

  4. Effects of Trophic Status on Mercury Methylation Pathways in Peatlands

    Science.gov (United States)

    Hines, M. E.; Zhang, L.; Sampath, S.; Hu, R.; Barkay, T.

    2014-12-01

    Methyl mercury (MeHg) is a bioaccumulative toxicant. It was believed to be produced by sulfate (SO4)- and iron- reducing bacteria (SRB and FeRB), but recent studies suggest that organisms that possess the gene cluster (hgcAB) can methylate Hg, which includes other microbial groups besides SRB and FeRB. Many areas known to accumulate high levels of MeHg are freshwater wetlands that lack sufficient electron acceptors to support the production of MeHg. To test the hypothesis that oligotrophic wetlands are able to methylate Hg by pathways that are not respiratory, peat was collected from three wetland sites in Alaska and three in Massachusetts that represented a trophic gradient. We determined rates of gas (CH4, CO2, H2) and LMW organic acid (formate, acetate, propionate, butyrate) formation, and rates of Hg methylation using the short-lived radioisotope 197Hg (half life 2.67 days). Two temperate sites exhibited strong terminal respiration (methanogenesis) and syntrophy, while the Alaskan sites and an oligotrophic temperate site exhibited low rates of both. Primary fermentation was an important process in the latter sites. Hg methylation was most active at the minerotrophic sites that exhibited active syntrophy and methanogenesis. Methylation decreased greatly in the presence of a methanogenic inhibitor and was stimulated by H2 indicating that methanogens and perhaps syntrophs were primary methylators. In the oligotrophic sites, the addition of SO4 stimulated methylation while a SO4 reduction inhibitor decreased methylation. There was no evidence of SO4 reduction in these samples suggesting that methylation was conducted by SRB that were metabolizing via fermentation and not SO4 reduction. While further studies are required to decipher the role of syntrophs including SRB varieties such as Syntrophobacter sp., these results indicate that fermentative bacteria may be able to significantly methylate Hg in wetlands that do not support anaerobic respiration.

  5. Almost there: transmission routes of bacterial symbionts between trophic levels.

    Directory of Open Access Journals (Sweden)

    Elad Chiel

    transmission of symbionts across trophic levels. The possible mechanisms that lead to the differences in transmission of species of symbionts among species of hosts are discussed.

  6. Fas transduces dual apoptotic and trophic signals in hematopoietic progenitors.

    Science.gov (United States)

    Pearl-Yafe, Michal; Stein, Jerry; Yolcu, Esma S; Farkas, Daniel L; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2007-12-01

    Stem cells and progenitors are often required to realize their differentiation potential in hostile microenvironments. The Fas/Fas ligand (FasL) interaction is a major effector pathway of apoptosis, which negatively regulates the expansion of differentiated hematopoietic cells. The involvement of this molecular interaction in the function of hematopoietic stem and progenitor cells is not well understood. In the murine syngeneic transplant setting, both Fas and FasL are acutely upregulated in bone marrow-homed donor cells; however, the Fas(+) cells are largely insensitive to FasL-induced apoptosis. In heterogeneous populations of lineage-negative (lin(-)) bone marrow cells and progenitors isolated by counterflow centrifugal elutriation, trimerization of the Fas receptor enhanced the clonogenic activity. Inhibition of caspases 3 and 8 did not affect the trophic signals mediated by Fas, yet it efficiently blocked the apoptotic pathways. Fas-mediated tropism appears to be of physiological significance, as pre-exposure of donor cells to FasL improved the radioprotective qualities of hematopoietic progenitors, resulting in superior survival of myeloablated hosts. Under these conditions, the activity of long-term reconstituting cells was not affected, as determined in sequential secondary and tertiary transplants. Dual caspase-independent tropic and caspase-dependent apoptotic signaling place the Fas receptor at an important junction of activation and death. This regulatory mechanism of hematopoietic homeostasis activates progenitors to promote the recovery from aplasia and converts into a negative regulator in distal stages of cell differentiation. Disclosure of potential conflicts of interest is found at the end of this article.

  7. Revisiting "You are what you eat, +1‰": Bacterial Trophic Structure and the Sedimentary Record

    Science.gov (United States)

    Pearson, A.; Tang, T.; Mohr, W.; Sattin, S.

    2015-12-01

    "You are what you eat, +1‰" is a central principle of carbon stable isotope (δ13C) distributions and is widely applied to understand the structure and ordering of macrobiotic ecosystems. Although based on observations from multicellular organisms that are able to ingest "food", this idea also has been applied to Precambrian ecosystems dominated by unicellular, microbial life, with the suggestion that such systems could sustain ordered trophic structures observable in their isotopes. However, using a new approach to community profiling known as protein stable isotope fingerprinting (P-SIF), we find that the carbon isotope ratios of whole proteins separated from environmental samples show differences only between metabolically-distinct autotrophs; heterotrophs are not 13C-enriched. In parallel, a survey of the relative distribution of 13C between biochemical classes - specifically acetogenic lipids, isoprenoid lipids, amino acids, and nucleic acids/sugars - across a variety of bacterial species appears to be a function of the main carbon metabolite, not an indicator of heterotrophy vs. autotrophy. Indeed, autotrophy, heterotrophy, and mixotrophy all are indistinguishable when the primary food source is fresh photosynthate, i.e., sugar. Significant assimilation of acetate is diagnosed by acetogenic lipids that are relatively 13C-enriched vs. isoprenoid lipids. Mixed-substrate heterotrophy, in contrast, satisfies the classic "…+1‰" rule for bulk biomass, yet simultaneously it collapses the biochemical patterns of 13C almost completely. Together these observations point to a paradigm shift for understanding the preservation of bulk organic and lipid δ13C signatures in the rock record, suggesting that patterns of δ13Corg must primarily reflect changing carbon inputs, not the extent or intensity of heterotrophy.

  8. Consistent multi-level trophic effects of marine reserve protection across northern New Zealand

    Science.gov (United States)

    Edgar, Graham J.; Stuart-Smith, Rick D.; Thomson, Russell J.; Freeman, Debbie J.

    2017-01-01

    Through systematic Reef Life Survey censuses of rocky reef fishes, invertebrates and macroalgae at eight marine reserves across northern New Zealand and the Kermadec Islands, we investigated whether a system of no-take marine reserves generates consistent biodiversity outcomes. Ecological responses of reef assemblages to protection from fishing, including potential trophic cascades, were assessed using a control-impact design for the six marine reserves studied with associated reference sites, and also by comparing observations at reserve sites with predictions from random forest models that assume reserve locations are fished. Reserve sites were characterised by higher abundance and biomass of large fishes than fished sites, most notably for snapper Chrysophrys auratus, with forty-fold higher observed biomass inside relative to out. In agreement with conceptual models, significant reserve effects not only reflected direct interactions between fishing and targeted species (higher large fish biomass; higher snapper and lobster abundance), but also second order interactions (lower urchin abundance), third order interactions (higher kelp cover), and fourth order interactions (lower understory algal cover). Unexpectedly, we also found: (i) a consistent trend for higher (~20%) Ecklonia cover across reserves relative to nearby fished sites regardless of lobster and urchin density, (ii) an inconsistent response of crustose coralline algae to urchin density, (iii) low cover of other understory algae in marine reserves with few urchins, and (iv) more variable fish and benthic invertebrate communities at reserve relative to fished locations. Overall, reef food webs showed complex but consistent responses to protection from fishing in well-enforced temperate New Zealand marine reserves. The small proportion of the northeastern New Zealand coastal zone located within marine reserves (~0.2%) encompassed a disproportionately large representation of the full range of fish and

  9. Recovering aspen follow changing elk dynamics in Yellowstone: evidence of a trophic cascade?

    Science.gov (United States)

    Painter, Luke E; Beschta, Robert L; Larsen, Eric J; Ripple, William J

    2015-01-01

    To investigate the extent and causes of recent quaking aspen (Populus tremuloides) recruitment in northern Yellowstone National Park, we measured browsing intensity and height of young aspen in 87 randomly selected aspen stands in 2012, and compared our results to similar data collected in 1997-1998. We also examined the relationship between aspen recovery and the distribution of Rocky Mountain elk (Cervus elaphus) and bison (Bison bison) on the Yellowstone northern ungulate winter range, using ungulate fecal pile densities and annual elk count data. In 1998, 90% of young aspen were browsed and none were taller-than 200 cm, the height at which aspen begin to escape from elk browsing. In 2012, only 37% in the east and 63% in the west portions of the winter range were browsed, and 65% of stands in the east had young aspen taller than 200 cm. Heights of young aspen were inversely related to browsing intensity, with the least browsing and greatest heights in the eastern portion of the range, corresponding with recent changes in elk density and distribution. In contrast with historical elk distribution (1930s-1990s), the greatest densities of elk recently (2006-2012) have been north of the park boundary (approximately 5 elk/km2), and in the western part of the range (2-4 elk/km2), with relatively few elk in the eastern portion of the range (aspen stands have begun to recover. Increased predation pressure following the reintroduction of gray wolves (Canis lupius) in 1995-1996 played a role in these changing elk population dynamics, interacting with other influences including increased predation by bears (Ursus spp.), competition with an expanding bison population, and shifting patterns of human land use and hunting outside the park. The resulting new aspen recruitment is evidence of a landscape-scale trophic cascade in which a resurgent large carnivore community, combined with other ecological changes, has benefited aspen through effects on ungulate prey.

  10. Consistent multi-level trophic effects of marine reserve protection across northern New Zealand.

    Science.gov (United States)

    Edgar, Graham J; Stuart-Smith, Rick D; Thomson, Russell J; Freeman, Debbie J

    2017-01-01

    Through systematic Reef Life Survey censuses of rocky reef fishes, invertebrates and macroalgae at eight marine reserves across northern New Zealand and the Kermadec Islands, we investigated whether a system of no-take marine reserves generates consistent biodiversity outcomes. Ecological responses of reef assemblages to protection from fishing, including potential trophic cascades, were assessed using a control-impact design for the six marine reserves studied with associated reference sites, and also by comparing observations at reserve sites with predictions from random forest models that assume reserve locations are fished. Reserve sites were characterised by higher abundance and biomass of large fishes than fished sites, most notably for snapper Chrysophrys auratus, with forty-fold higher observed biomass inside relative to out. In agreement with conceptual models, significant reserve effects not only reflected direct interactions between fishing and targeted species (higher large fish biomass; higher snapper and lobster abundance), but also second order interactions (lower urchin abundance), third order interactions (higher kelp cover), and fourth order interactions (lower understory algal cover). Unexpectedly, we also found: (i) a consistent trend for higher (~20%) Ecklonia cover across reserves relative to nearby fished sites regardless of lobster and urchin density, (ii) an inconsistent response of crustose coralline algae to urchin density, (iii) low cover of other understory algae in marine reserves with few urchins, and (iv) more variable fish and benthic invertebrate communities at reserve relative to fished locations. Overall, reef food webs showed complex but consistent responses to protection from fishing in well-enforced temperate New Zealand marine reserves. The small proportion of the northeastern New Zealand coastal zone located within marine reserves (~0.2%) encompassed a disproportionately large representation of the full range of fish and

  11. The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes

    Science.gov (United States)

    Jeffreys, R. M.; Fisher, E. H.; Gooday, A. J.; Larkin, K. E.; Billett, D. S. M.; Wolff, G. A.

    2015-03-01

    The Arabian Sea is a region of elevated productivity with the highest globally recorded fluxes of particulate organic matter (POM) to the deep ocean, providing an abundant food source for fauna at the seafloor. However, benthic communities are also strongly influenced by an intense oxygen minimum zone (OMZ), which impinges on the continental slope from 100 to 1000 m water depth. We compared the trophic ecology of foraminifera on the Oman and Pakistan margins of the Arabian Sea (140-3185 m water depth). These two margins are contrasting both in terms of the abundance of sedimentary organic matter and the intensity of the OMZ. Organic carbon concentrations of surficial sediments were higher on the Oman margin (3.32 ± 1.4%) compared to the Pakistan margin (2.45 ± 1.1%) and sedimentary organic matter (SOM) quality estimated from the Hydrogen Index was also higher on the Oman margin (300-400 mg HC mg TOC-1) compared to the Pakistan margin (respiration; this was most notable on the Pakistan margin. Depleted foraminiferal δ15N values, particularly at the Oman margin, may reflect feeding on chemosynthetic bacteria. We suggest that differences in productivity regimes may be responsible for the differences observed in foraminiferal isotopic composition. In addition, at the time of sampling, whole jellyfish carcasses (Crambionella orsini) and a carpet of jelly detritus were observed across the Oman margin transect. Associated chemosynthetic bacteria may have provided an organic-rich food source for foraminifera at these sites. Our data suggest that foraminifera in OMZ settings can utilise a variety of food sources and metabolic pathways to meet their energetic demands.

  12. Evaluation of the Trophic Level of Kune and Vain Lagoons in Albania, Using Phytoplankton as a Bioindicator

    Directory of Open Access Journals (Sweden)

    Anni Koci Kallfa

    2014-03-01

    Full Text Available Concentration of chlorophyll is an adequate parameter for assessing the trophic state of lagoon ecosystems. Objectives of this study are: selection of a system of bioindicators to enable a good qualitative evaluation of the trophic state of the lagoons and their dynamics; evaluation of seasonal water quality variability and comparison between lagoons. The trophic state of the lagoons is analysed every month over