WorldWideScience

Sample records for machines fast support

  1. NESVM: a Fast Gradient Method for Support Vector Machines

    CERN Document Server

    Zhou, Tianyi; Wu, Xindong

    2010-01-01

    Support vector machines (SVMs) are invaluable tools for many practical applications in artificial intelligence, e.g., classification and event recognition. However, popular SVM solvers are not sufficiently efficient for applications with a great deal of samples as well as a large number of features. In this paper, thus, we present NESVM, a fast gradient SVM solver that can optimize various SVM models, e.g., classical SVM, linear programming SVM and least square SVM. Compared against SVM-Perf \\cite{SVM_Perf}\\cite{PerfML} (its convergence rate in solving the dual SVM is upper bounded by $\\mathcal O(1/\\sqrt{k})$, wherein $k$ is the number of iterations.) and Pegasos \\cite{Pegasos} (online SVM that converges at rate $\\mathcal O(1/k)$ for the primal SVM), NESVM achieves the optimal convergence rate at $\\mathcal O(1/k^{2})$ and a linear time complexity. In particular, NESVM smoothes the non-differentiable hinge loss and $\\ell_1$-norm in the primal SVM. Then the optimal gradient method without any line search is ado...

  2. Fast and Accurate Support Vector Machines on Large Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vishnu, Abhinav; Narasimhan, Jayenthi; Holder, Larry; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-09-08

    Support Vector Machines (SVM) is a supervised Machine Learning and Data Mining (MLDM) algorithm, which has become ubiquitous largely due to its high accuracy and obliviousness to dimensionality. The objective of SVM is to find an optimal boundary --- also known as hyperplane --- which separates the samples (examples in a dataset) of different classes by a maximum margin. Usually, very few samples contribute to the definition of the boundary. However, existing parallel algorithms use the entire dataset for finding the boundary, which is sub-optimal for performance reasons. In this paper, we propose a novel distributed memory algorithm to eliminate the samples which do not contribute to the boundary definition in SVM. We propose several heuristics, which range from early (aggressive) to late (conservative) elimination of the samples, such that the overall time for generating the boundary is reduced considerably. In a few cases, a sample may be eliminated (shrunk) pre-emptively --- potentially resulting in an incorrect boundary. We propose a scalable approach to synchronize the necessary data structures such that the proposed algorithm maintains its accuracy. We consider the necessary trade-offs of single/multiple synchronization using in-depth time-space complexity analysis. We implement the proposed algorithm using MPI and compare it with libsvm--- de facto sequential SVM software --- which we enhance with OpenMP for multi-core/many-core parallelism. Our proposed approach shows excellent efficiency using up to 4096 processes on several large datasets such as UCI HIGGS Boson dataset and Offending URL dataset.

  3. Incremental support vector machines for fast reliable image recognition

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L., E-mail: makili_le@yahoo.com [Instituto Superior Politécnico da Universidade Katyavala Bwila, Benguela (Angola); Vega, J. [Asociación EURATOM/CIEMAT para Fusión, Madrid (Spain); Dormido-Canto, S. [Dpto. Informática y Automática – UNED, Madrid (Spain)

    2013-10-15

    Highlights: ► A conformal predictor using SVM as the underlying algorithm was implemented. ► It was applied to image recognition in the TJ–II's Thomson Scattering Diagnostic. ► To improve time efficiency an approach to incremental SVM training has been used. ► Accuracy is similar to the one reached when standard SVM is used. ► Computational time saving is significant for large training sets. -- Abstract: This paper addresses the reliable classification of images in a 5-class problem. To this end, an automatic recognition system, based on conformal predictors and using Support Vector Machines (SVM) as the underlying algorithm has been developed and applied to the recognition of images in the Thomson Scattering Diagnostic of the TJ–II fusion device. Using such conformal predictor based classifier is a computationally intensive task since it implies to train several SVM models to classify a single example and to perform this training from scratch takes a significant amount of time. In order to improve the classification time efficiency, an approach to the incremental training of SVM has been used as the underlying algorithm. Experimental results show that the overall performance of the new classifier is high, comparable to the one corresponding to the use of standard SVM as the underlying algorithm and there is a significant improvement in time efficiency.

  4. Fast Fourier Transform-based Support Vector Machine for Subcellular Localization Prediction Using Different Substitution Models

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are approximately 109 proteins in a cell. A hotspot in bioinformatics is how to identify a protein's subcellular localization, if its sequence is known. In this paper, a method using fast Fourier transform-based support vector machine is developed to predict the subcellular localization of proteins from their physicochemical properties and structural parameters. The prediction accuracies reached 83% in prokaryotic organisms and 84% in eukaryotic organisms with the substitution model of the c-p-v matrix (c, composition; p, polarity; and v, molecular volume). The overall prediction accuracy was also evaluated using the "leave-one-out" jackknife procedure. The influence of the substitution model on prediction accuracy has also been discussed in the work. The source code of the new program is available on request from the authors.

  5. Fast Training of Support Vector Machines Using Error-Center-Based Optimization

    Institute of Scientific and Technical Information of China (English)

    L. Meng; Q. H. Wu

    2005-01-01

    This paper presents a new algorithm for Support Vector Machine (SVM) training, which trains a machine based on the cluster centers of errors caused by the current machine. Experiments withvarious training sets show that the computation time of this new algorithm scales almost linear with training set size and thus may be applied to much larger training sets, in comparison to standard quadratic programming (QP) techniques.

  6. NOISE REDUCTION FOR FAST FADING CHANNEL BY RECURRENT LEAST SQUARES SUPPORT VECTOR MACHINES IN EMBEDDING PHASE SPACES

    Institute of Scientific and Technical Information of China (English)

    Xiang Zheng; Zhang Taiyi; Sun Jiancheng

    2006-01-01

    A new strategy for noise reduction of fast fading channel is presented. Firstly, more information is acquired utilizing the reconstructed embedding phase space. Then, based on the Recurrent Least Squares Support Vector Machines (RLS-SVM), noise reduction of the fast fading channel is realized. This filtering technique does not make use of the spectral contents of the signal. Based on the stability and the fractal of the chaotic attractor, the RLS-SVM algorithm is a better candidate for the nonlinear time series noise-reduction. The simulation results shows that better noise-reduction performance is acquired when the signal to noise ratio is 12dB.

  7. Support vector machines applications

    CERN Document Server

    Guo, Guodong

    2014-01-01

    Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

  8. Boosting Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Elkin Eduardo García Díaz

    2006-11-01

    Full Text Available En este artículo, se presenta un algoritmo de clasificación binaria basado en Support Vector Machines (Máquinas de Vectores de Soporte que combinado apropiadamente con técnicas de Boosting consigue un mejor desempeño en cuanto a tiempo de entrenamiento y conserva características similares de generalización con un modelo de igual complejidad pero de representación más compacta./ In this paper we present an algorithm of binary classification based on Support Vector Machines. It is combined with a modified Boosting algorithm. It run faster than the original SVM algorithm with a similar generalization error and equal complexity model but it has more compact representation.

  9. [Application of infrared spectroscopy technique to protein content fast measurement in milk powder based on support vector machines].

    Science.gov (United States)

    Wu, Di; Cao, Fang; Feng, Shui-Juan; He, Yong

    2008-05-01

    In the present study, the JASCO Model FTIR-4 000 fourier transform infrared spectrometer (Japan) was used, with a valid range of 7 800-350 cm(-1). Seven brands of milk powder were bought in a local supermarket. Milk powder was compressed into a uniform tablet with a diameter of 5 mm and a thickness of 2 mm, and then scanned by the spectrometer. Each sample was scanned 40 times and the data were averaged. About 60 samples were measured for each brand, and data for 409 samples were obtained. NIRS analysis was based on the range of 4 000 to 6 666 cm(-1), while MIRS analysis was between 400 and 4 000 cm(-1). The protein content was determined by kjeldahl method and the factor 6.38 was used to convert the nitrogen values to protein. The protein content value is the weight of protein per 100 g of milk powder. The NIR data of the milk powder exhibited slight differences. Univariate analysis was not really appropriate for analyzing the data sets. From NIRS region, it could be observed that the trend of different curves is similar. The one around 4 312 cm(-1) embodies the vibration of protein. From MIRS region, it could be determined that there are many differences between transmission value curves. Two troughs around 1 545 and 1 656 cm(-1) stand for the vibration of amide I and II bands of protein. The smoothing way of Savitzky-Golay with 3 segments and zero polynomials and multiplicative scatter correction (MSC) were applied for denoising. First 8 important principle components (PCs), which were obtained from principle component analysis (PCA), were the optimal input feature subset. Least-squares support vector machines was applied to build the protein prediction model based on infrared spectral transmission value. The prediction result was better than that of traditional PLS regression model as the determination coefficient for prediction (R(p)2) is 0.951 7 and root mean square error for prediction (RMSEP) is 0.520 201. These indicate that LS-SVM is a powerful tool for

  10. The Neural Support Vector Machine

    NARCIS (Netherlands)

    Wiering, Marco; van der Ree, Michiel; Embrechts, Mark; Stollenga, Marijn; Meijster, Arnold; Nolte, A; Schomaker, Lambertus

    2013-01-01

    This paper describes a new machine learning algorithm for regression and dimensionality reduction tasks. The Neural Support Vector Machine (NSVM) is a hybrid learning algorithm consisting of neural networks and support vector machines (SVMs). The output of the NSVM is given by SVMs that take a

  11. The Neural Support Vector Machine

    NARCIS (Netherlands)

    Wiering, Marco; van der Ree, Michiel; Embrechts, Mark; Stollenga, Marijn; Meijster, Arnold; Nolte, A; Schomaker, Lambertus

    2013-01-01

    This paper describes a new machine learning algorithm for regression and dimensionality reduction tasks. The Neural Support Vector Machine (NSVM) is a hybrid learning algorithm consisting of neural networks and support vector machines (SVMs). The output of the NSVM is given by SVMs that take a centr

  12. Cascade Support Vector Machines with Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Oliver Kramer

    2015-01-01

    Full Text Available Cascade support vector machines have been introduced as extension of classic support vector machines that allow a fast training on large data sets. In this work, we combine cascade support vector machines with dimensionality reduction based preprocessing. The cascade principle allows fast learning based on the division of the training set into subsets and the union of cascade learning results based on support vectors in each cascade level. The combination with dimensionality reduction as preprocessing results in a significant speedup, often without loss of classifier accuracies, while considering the high-dimensional pendants of the low-dimensional support vectors in each new cascade level. We analyze and compare various instantiations of dimensionality reduction preprocessing and cascade SVMs with principal component analysis, locally linear embedding, and isometric mapping. The experimental analysis on various artificial and real-world benchmark problems includes various cascade specific parameters like intermediate training set sizes and dimensionalities.

  13. A Fast Reduced Kernel Extreme Learning Machine.

    Science.gov (United States)

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred.

  14. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  15. Differentially Private Support Vector Machines

    CERN Document Server

    Sarwate, Anand; Monteleoni, Claire

    2009-01-01

    This paper addresses the problem of practical privacy-preserving machine learning: how to detect patterns in massive, real-world databases of sensitive personal information, while maintaining the privacy of individuals. Chaudhuri and Monteleoni (2008) recently provided privacy-preserving techniques for learning linear separators via regularized logistic regression. With the goal of handling large databases that may not be linearly separable, we provide privacy-preserving support vector machine algorithms. We address general challenges left open by past work, such as how to release a kernel classifier without releasing any of the training data, and how to tune algorithm parameters in a privacy-preserving manner. We provide general, efficient algorithms for linear and nonlinear kernel SVMs, which guarantee $\\epsilon$-differential privacy, a very strong privacy definition due to Dwork et al. (2006). We also provide learning generalization guarantees. Empirical evaluations reveal promising performance on real and...

  16. Prediction of Machine Tool Condition Using Support Vector Machine

    Science.gov (United States)

    Wang, Peigong; Meng, Qingfeng; Zhao, Jian; Li, Junjie; Wang, Xiufeng

    2011-07-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  17. A New Incremental Support Vector Machine Algorithm

    Directory of Open Access Journals (Sweden)

    Wenjuan Zhao

    2012-10-01

    Full Text Available Support vector machine is a popular method in machine learning. Incremental support vector machine algorithm is ideal selection in the face of large learning data set. In this paper a new incremental support vector machine learning algorithm is proposed to improve efficiency of large scale data processing. The model of this incremental learning algorithm is similar to the standard support vector machine. The goal concept is updated by incremental learning. Each training procedure only includes new training data. The time complexity is independent of whole training set. Compared with the other incremental version, the training speed of this approach is improved and the change of hyperplane is reduced.

  18. Support vector machines with a reject option

    CERN Document Server

    Wegkamp, Marten; 10.3150/10-BEJ320

    2012-01-01

    This paper studies $\\ell_1$ regularization with high-dimensional features for support vector machines with a built-in reject option (meaning that the decision of classifying an observation can be withheld at a cost lower than that of misclassification). The procedure can be conveniently implemented as a linear program and computed using standard software. We prove that the minimizer of the penalized population risk favors sparse solutions and show that the behavior of the empirical risk minimizer mimics that of the population risk minimizer. We also introduce a notion of classification complexity and prove that our minimizers adapt to the unknown complexity. Using a novel oracle inequality for the excess risk, we identify situations where fast rates of convergence occur.

  19. Color Image Classification Using Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    冯霞

    2003-01-01

    An efficient method using various histogram-based (high-dimensional) image content descriptors for automatically classifying general color photos into relevant categories is presented. Principal component analysis(PCA) is used to project the original high dimensional histograms onto their eigenspaees. Lower dimensional eigenfeatures are then used to train support vector machines(SVMs) to classify images into their categories. Experimental results show that even though different descriptors perform differently,they are all highly redundant. It is shown that the dimensionality of all these descriptors,regardless of their performances,can be significantly reduced without affecting classification accuracy, Such scheme would be useful when it is used in an interactive setting for relevant feedback in content-based image retrieval,where low dimensional content descriptors will enable fast online learning and reclassification of results.

  20. New approach to training support vector machine

    Institute of Scientific and Technical Information of China (English)

    Tang Faming; Chen Mianyun; Wang Zhongdong

    2006-01-01

    Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets.

  1. Deep Support Vector Machines for Regression Problems

    NARCIS (Netherlands)

    Wiering, Marco; Schutten, Marten; Millea, Adrian; Meijster, Arnold; Schomaker, Lambertus

    2013-01-01

    In this paper we describe a novel extension of the support vector machine, called the deep support vector machine (DSVM). The original SVM has a single layer with kernel functions and is therefore a shallow model. The DSVM can use an arbitrary number of layers, in which lower-level layers contain su

  2. Clustering Categories in Support Vector Machines

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Nogales-Gómez, Amaya; Morales, Dolores Romero

    2017-01-01

    The support vector machine (SVM) is a state-of-the-art method in supervised classification. In this paper the Cluster Support Vector Machine (CLSVM) methodology is proposed with the aim to increase the sparsity of the SVM classifier in the presence of categorical features, leading to a gain in in...

  3. Deep Support Vector Machines for Regression Problems

    NARCIS (Netherlands)

    Wiering, Marco; Schutten, Marten; Millea, Adrian; Meijster, Arnold; Schomaker, Lambertus

    2013-01-01

    In this paper we describe a novel extension of the support vector machine, called the deep support vector machine (DSVM). The original SVM has a single layer with kernel functions and is therefore a shallow model. The DSVM can use an arbitrary number of layers, in which lower-level layers contain

  4. Dynamic Analysis of Foundation Supporting Rotary Machine

    Directory of Open Access Journals (Sweden)

    Utkarsh S. Patel

    2015-08-01

    Full Text Available With the advancement of technology in the field of industry, high speed machinery has been developed. As the speed of machinery has increased, vibrations also increased. Machines transmit vibrations to the structure supporting them. Hence, it is important to design and develop such structure which sustains the vibrations of machinery. Hence, in this study it has been aimed to execute the study on foundations supporting rotary type of machine like blower. In this paper, the most important parameters like frequency and amplitude are considered while execution of analysis of machine foundation supporting blower type machine. This paper shows, better interface between foundation designer and machine manufacturer for better performance of machine. The design aids/approaches for foundation design is also described in this paper and an attempt has been made to study the dynamic behaviour of a foundation structure for blower type machine subjected to forces due to operation of blower machine. Two different types of foundations for Rotary type Machine that is Blower have been studied in this paper

  5. A NEW HYPERSPHERE SUPPORT VECTOR MACHINE ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Zhang Xinfeng; Shen Lansun

    2006-01-01

    The hypersphere support vector machine is a new algorithm in pattern recognition. By studying three kinds ofhypersphere support vector machines, it is found that their solutions are identical and the margin between two classes of samples is zero or is not unique. In this letter, a new kind ofhypersphere support vector machine is proposed. By introducing a parameter n(n>l), a unique solution of the margin can be obtained.Theoretical analysis and experimental results show that the proposed algorithm can achieve better generalization performance.

  6. SIMULATION OF MULTI-SUPPORT MACHINE VIBRATIONS

    Directory of Open Access Journals (Sweden)

    N. N. Hurski

    2009-01-01

    Full Text Available The paper considers problems pertaining to simulation of multi-support machine vibrations by means of  ADMOS programming product. A mathematical model of the multi-support machine is presented and its main geometric and physical and mechanical parameters are given in the paper. The paper reveals analysis results of the vibration processes and observes variables in time and frequency areas. The investigations have made it possible to obtain amplitude and frequency and statistical characteristics  of  the machine mass centre acceleration during its motion along various types of roads

  7. Fast, Continuous Audiogram Estimation Using Machine Learning.

    Science.gov (United States)

    Song, Xinyu D; Wallace, Brittany M; Gardner, Jacob R; Ledbetter, Noah M; Weinberger, Kilian Q; Barbour, Dennis L

    2015-01-01

    Pure-tone audiometry has been a staple of hearing assessments for decades. Many different procedures have been proposed for measuring thresholds with pure tones by systematically manipulating intensity one frequency at a time until a discrete threshold function is determined. The authors have developed a novel nonparametric approach for estimating a continuous threshold audiogram using Bayesian estimation and machine learning classification. The objective of this study was to assess the accuracy and reliability of this new method relative to a commonly used threshold measurement technique. The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 18 and 90 years with varying degrees of hearing ability. Two repetitions of automated machine learning audiogram estimation and one repetition of conventional modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). The two threshold estimate methods delivered very similar estimates at standard audiogram frequencies. Specifically, the mean absolute difference between estimates was 4.16 ± 3.76 dB HL. The mean absolute difference between repeated measurements of the new machine learning procedure was 4.51 ± 4.45 dB HL. These values compare favorably with those of other threshold audiogram estimation procedures. Furthermore, the machine learning method generated threshold estimates from significantly fewer samples than the modified Hughson-Westlake procedure while returning a continuous threshold estimate as a function of frequency. The new machine learning audiogram estimation technique produces continuous threshold audiogram estimates accurately, reliably, and efficiently, making it a strong candidate for widespread application in clinical and research audiometry.

  8. Ranking Support Vector Machine with Kernel Approximation.

    Science.gov (United States)

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  9. Evolutionary Support Vector Machines for Transient Stability Monitoring

    Science.gov (United States)

    Dora Arul Selvi, B.; Kamaraj, N.

    2012-03-01

    Currently, power systems are in the need of fast and reliable contingency monitoring systems for the purpose of maintaining stability in the presence of deregulated and open market environment. In this paper, a quick and unfailing transient stability monitoring algorithm that considers both the symmetrical and unsymmetrical faults is presented. support vector machines (SVMs) are employed as pattern classifiers so as to construct fast relation mappings between the transient stability results and the selected input attributes using mutual information. The type of fault is recognized by a SVM classifier and the critical clearing time of the fault is estimated by a support vector regression machine. The SVM parameters are tuned by an elitist multi-objective non-dominated sorting genetic algorithm in such a manner that the best classification and regression performance are accomplished. To demonstrate the good potential of the scheme, IEEE 3 generator system and a South Indian Grid are utilized.

  10. Support vector machine applied in QSAR modelling

    Institute of Scientific and Technical Information of China (English)

    MEI Hu; ZHOU Yuan; LIANG Guizhao; LI Zhiliang

    2005-01-01

    Support vector machine (SVM), partial least squares (PLS), and Back-Propagation artificial neural network (ANN) were employed to establish QSAR models of 2 dipeptide datasets. In order to validate predictive capabilities on external dataset of the resulting models, both internal and external validations were performed. The division of dataset into both training and test sets was carried out by D-optimal design. The results showed that support vector machine (SVM) behaved well in both calibration and prediction. For the dataset of 48 bitter tasting dipeptides (BTD), the results obtained by support vector regression (SVR) were superior to that by PLS in both calibration and prediction. When compared with BP artificial neural network, SVR showed less calibration power but more predictive capability. For the dataset of angiotensin-converting enzyme (ACE) inhibitors, the results obtained by support vector machine (SVM) regression were equivalent to those by PLS and BP artificial neural network. In both datasets, SVR using linear kernel function behaved well as that using radial basis kernel function. The results showed that there is wide prospect for the application of support vector machine (SVM) into QSAR modeling.

  11. Weighted Twin Support Vector Machine with Universum

    Directory of Open Access Journals (Sweden)

    Shuxia Lu

    Full Text Available Universum is a new concept proposed recently, which is defined to be the sample that does not belong to any classes concerned. Support Vector Machine with Universum (..-SVM is a new algorithm, which can exploit Universum samples to improve the classifica ...

  12. Efficient Multiplicative Updates for Support Vector Machines

    DEFF Research Database (Denmark)

    Potluru, Vamsi K.; Plis, Sergie N; Mørup, Morten

    2009-01-01

    The dual formulation of the support vector machine (SVM) objective function is an instance of a nonnegative quadratic programming problem. We reformulate the SVM objective function as a matrix factorization problem which establishes a connection with the regularized nonnegative matrix factorization...

  13. Efficient Multiplicative Updates for Support Vector Machines

    DEFF Research Database (Denmark)

    Potluru, Vamsi K.; Plis, Sergie N; Mørup, Morten

    2009-01-01

    The dual formulation of the support vector machine (SVM) objective function is an instance of a nonnegative quadratic programming problem. We reformulate the SVM objective function as a matrix factorization problem which establishes a connection with the regularized nonnegative matrix factorization...

  14. A Comparison Study of Extreme Learning Machine and Least Squares Support Vector Machine for Structural Impact Localization

    OpenAIRE

    Qingsong Xu

    2014-01-01

    Extreme learning machine (ELM) is a learning algorithm for single-hidden layer feedforward neural network dedicated to an extremely fast learning. However, the performance of ELM in structural impact localization is unknown yet. In this paper, a comparison study of ELM with least squares support vector machine (LSSVM) is presented for the application on impact localization of a plate structure with surface-mounted piezoelectric sensors. Both basic and kernel-based ELM regression models have b...

  15. Learning from Distributions via Support Measure Machines

    CERN Document Server

    Muandet, Krikamol; Fukumizu, Kenji; Dinuzzo, Francesco

    2012-01-01

    This paper presents a kernel-based discriminative learning framework on probability measures. Rather than relying on large collections of vectorial training examples, our framework learns using a collection of probability distributions that have been constructed to meaningfully represent training data. By representing these probability distributions as mean embeddings in the reproducing kernel Hilbert space (RKHS), we are able to apply many standard kernel-based learning techniques in straightforward fashion. To accomplish this, we construct a generalization of the support vector machine (SVM) called a support measure machine (SMM). Our analyses of SMMs provides several insights into their relationship to traditional SVMs. Based on such insights, we propose a flexible SVM (Flex-SVM) that places different kernel functions on each training example. Experimental results on both synthetic and real-world data demonstrate the effectiveness of our proposed framework.

  16. Support vector machine for automatic pain recognition

    Science.gov (United States)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  17. Computerized Interactive Gaming via Supporting Vector Machines

    OpenAIRE

    Jiang, Yang; Jiang, Jianmin; Palmer, Ian

    2008-01-01

    Computerized interactive gaming requires automatic processing of large volume of random data produced by players on spot, such as shooting, football kicking, and boxing. This paper describes a supporting vector machine-based artificial intelligence algorithm as one of the possible solutions to the problem of random data processing and the provision of interactive indication for further actions. In comparison with existing techniques, such as rule-based and neural networks, and so forth, our S...

  18. Image Segmentation Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    XU Hai-xiang; ZHU Guang-xi; TIAN Jin-wen; ZHANG Xiang; PENG Fu-yuan

    2005-01-01

    Image segmentation is a necessary step in image analysis. Support vector machine (SVM) approach is proposed to segment images and its segmentation performance is evaluated.Experimental results show that: the effects of kernel function and model parameters on the segmentation performance are significant; SVM approach is less sensitive to noise in image segmentation; The segmentation performance of SVM approach is better than that of back-propagation multi-layer perceptron (BP-MLP) approach and fuzzy c-means (FCM) approach.

  19. Fast Affinity Propagation Clustering based on Machine Learning

    OpenAIRE

    Shailendra Kumar Shrivastava; J. L. Rana; DR.R.C.JAIN

    2013-01-01

    Affinity propagation (AP) was recently introduced as an un-supervised learning algorithm for exemplar based clustering. In this paper a novel Fast Affinity Propagation clustering Approach based on Machine Learning (FAPML) has been proposed. FAPML tries to put data points into clusters based on the history of the data points belonging to clusters in early stages. In FAPML we introduce affinity learning constant and dispersion constant which supervise the clustering process. FAPML also enforces...

  20. Support Vector Machine%支持向量机

    Institute of Scientific and Technical Information of China (English)

    张浩然; 韩正之; 李昌刚

    2002-01-01

    This paper gives a introduction of the basic ideas, basic theory, key techniques, and application of the sup-port vector machine (SVM), and indicates the similarities and differences between support vector machines and neuralnetworks.

  1. Mechanical Fault Diagnosis Using Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    LI Ling-jun; ZHANG Zhou-suo; HE Zheng-jia

    2003-01-01

    The Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory ( SLT) , which can get good classification effects even with a few learning samples. SVM represents a new approach to pattern classification and has been shown to be particularly successful in many fields such as image identification and face recognition. It also provides us with a new method to develop intelligent fault diagnosis. This paper presents a SVM-based approach for fault diagnosis of rolling bearings. Experimentation with vibration signals of bearings is conducted. The vibration signals acquired from the bearings are used directly in the calculating without the preprocessing of extracting its features. Compared with the methods based on Artificial Neural Network (ANN), the SVM-based meth-od has desirable advantages. It is applicable for on-line diagnosis of mechanical systems.

  2. Fast DSP Using FPGAs and DSOs for Machine Diagnostics

    CERN Document Server

    Naylor, G A

    2003-01-01

    Digital signal processing using digital signal processors is now a mature field for machine diagnostics, giving significant benefits, in particular when used to analyze BPM signals for tune measurement and fast feedback systems. We discuss here digital signal processing using Field Programmable Gate arrays (FPGAs) with large gate counts and intelligent oscilloscopes. These offer great potential for the analysis of very fast signals to maximize the information extracted from high bandwidth sensors. FPGAs allow data to be filtered numerically and treated at the speed of data collection of A/D converters in the 100 MHz range. Parallel, fast and continuous treatment of BPM and FCT signals is possible. Examples are given of injection efficiency, turn by turn injection efficiency, turn by turn beam position, amplitude and phase calculation with averaging over each turn or many turns. Modern oscilloscopes include much computational power. In-built DSPs can perform correlations on the traces allowing the applicat...

  3. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    Science.gov (United States)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  4. A new support vector machine based multiuser detection scheme

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-jian; ZHAO Hong-lin

    2008-01-01

    In order to suppress the multiple access interference(MAI)in 3G,which limits the capacity of a CDMA communication system,a fast relevance vector machine(FRVM)is employed in the muhinser detection (MUD)scheme.This method aims to overcome the shortcomings of many ordinary support vector machine (SVM)based MUD schemes,such as the long training time and the inaccuracy of the decision data,and enhance the performance of a CDMA communication system.Computer simulation results demonstrate that the proposed FRVM based muhiuser detection has lower bit error rate,costs short training time,needs fewer kernel functions and possesses better near-far resistance.

  5. Quintic spline smooth semi-supervised support vector classification machine

    Institute of Scientific and Technical Information of China (English)

    Xiaodan Zhang; Jinggai Ma; Aihua Li; Ang Li

    2015-01-01

    A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi-cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti-mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori-gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spline function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient.

  6. TWIN SUPPORT TENSOR MACHINES FOR MCS DETECTION

    Institute of Scientific and Technical Information of China (English)

    Zhang Xinsheng; Gao Xinbo; Wang Ying

    2009-01-01

    Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonable constraint to reduce the number of unknown parameters used to model a classifier.In this paper,we generalize the vector-based learning algorithm TWin Support Vector Machine (TWSVM)to the tensor-based method TWin Support Tensor Machines(TWSTM),which accepts general tensors as input.To examine the effectiveness of TWSTM,we implement the TWSTM method for Microcalcification Clusters (MCs) detection.In the tensor subspace domain,the MCs detection procedure is formulated as a supervised learning and classification problem.and TWSTM is used as a classifier to make decision for the presence of MCs or not.A large number of experiments were carried out to evaluate and compare the performance of the proposed MCs detection algorithm.By comparison with TWSVM,the tensor version reduces the overfitting problem.

  7. Density Based Support Vector Machines for Classification

    Directory of Open Access Journals (Sweden)

    Zahra Nazari

    2015-04-01

    Full Text Available Support Vector Machines (SVM is the most successful algorithm for classification problems. SVM learns the decision boundary from two classes (for Binary Classification of training points. However, sometimes there are some less meaningful samples amongst training points, which are corrupted by noises or misplaced in wrong side, called outliers. These outliers are affecting on margin and classification performance, and machine should better to discard them. SVM as a popular and widely used classification algorithm is very sensitive to these outliers and lacks the ability to discard them. Many research results prove this sensitivity which is a weak point for SVM. Different approaches are proposed to reduce the effect of outliers but no method is suitable for all types of data sets. In this paper, the new method of Density Based SVM (DBSVM is introduced. Population Density is the basic concept which is used in this method for both linear and non-linear SVM to detect outliers. Experiments on artificial data sets, real high-dimensional benchmark data sets of Liver disorder and Heart disease, and data sets of new and fatigued banknotes’ acoustic signals can prove the efficiency of this method on noisy data classification and the better generalization that it can provide compared to the standard SVM.

  8. Support Vector Machine for mechanical faults classification

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-qiang; FU Han-guang; LI Ling-jun

    2005-01-01

    Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory (SLT), which can get good classification effects with a few learning samples. SVM represents a new approach to pattern classification and has been shown to be particularly successful in many fields such as image identification and face recognition. It also provides us with a new method to develop intelligent fault diagnosis. This paper presents an SVM based approach for fault diagnosis of rolling bearings. Experimentation with vibration signals of bearing was conducted. The vibration signals acquired from the bearings were directly used in the calculating without the preprocessing of extracting its features. Compared with the Artificial Neural Network (ANN) based method, the SVM based method has desirable advantages. Also a multi-fault SVM classifier based on binary classifier is constructed for gear faults in this paper. Other experiments with gear fault samples showed that the multi-fault SVM classifier has good classification ability and high efficiency in mechanical system. It is suitable for online diagnosis for mechanical system.

  9. Supernova Recognition using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris

    2006-10-01

    We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.

  10. Support Vector Machines and Generalisation in HEP

    Science.gov (United States)

    Bethani, A.; Bevan, A. J.; Hays, J.; Stevenson, T. J.

    2016-10-01

    We review the concept of support vector machines (SVMs) and discuss examples of their use. One of the benefits of SVM algorithms, compared with neural networks and decision trees is that they can be less susceptible to over fitting than those other algorithms are to over training. This issue is related to the generalisation of a multivariate algorithm (MVA); a problem that has often been overlooked in particle physics. We discuss cross validation and how this can be used to improve the generalisation of a MVA in the context of High Energy Physics analyses. The examples presented use the Toolkit for Multivariate Analysis (TMVA) based on ROOT and describe our improvements to the SVM functionality and new tools introduced for cross validation within this framework.

  11. Support Vector Machines and Generalisation in HEP

    CERN Document Server

    Bethani, A; Hays, J; Stevenson, T J

    2016-01-01

    We review the concept of support vector machines (SVMs) and discuss examples of their use. One of the benefits of SVM algorithms, compared with neural networks and decision trees is that they can be less susceptible to over fitting than those other algorithms are to over training. This issue is related to the generalisation of a multivariate algorithm (MVA); a problem that has often been overlooked in particle physics. We discuss cross validation and how this can be used to improve the generalisation of a MVA in the context of High Energy Physics analyses. The examples presented use the Toolkit for Multivariate Analysis (TMVA) based on ROOT and describe our improvements to the SVM functionality and new tools introduced for cross validation within this framework.

  12. Applications of Support Vector Machines in Astronomy

    Science.gov (United States)

    Zhang, Y.; Zhao, Y.

    2014-05-01

    We review Support Vector Machines (SVMs) as applied in astronomy. SVMs are mainly used for solving the and regression issues. Take classification for example, selecting of cataclysmic variables from large spectroscopic survey, detecting quasar candidates from multiwavelength photometric data, identification of blue horizontal branch stars from photometric data, classification of galactic spectra, supernova search; for regression problem, photometric redshift estimation of galaxies and quasars, physical parameter measurement (metallicity, gravity, effective temperature) of stars. Comparatively, SVMs show better performance in classification than in regression. Nevertheless, SVMs has its disadvantages, which needs large computation cost on training. Based on this problem, CUDA-Accelerated SVMs is put forward. As for accuracy of SVMs, SVMs combined with other algorithms has further improvement, such as SVM-KNN.

  13. SUPPORT VECTOR MACHINE METHOD FOR PREDICTING INVESTMENT MEASURES

    Directory of Open Access Journals (Sweden)

    Olga V. Kitova

    2016-01-01

    Full Text Available Possibilities of applying intelligent machine learning technique based on support vectors for predicting investment measures are considered in the article. The base features of support vector method over traditional econometric techniques for improving the forecast quality are described. Computer modeling results in terms of tuning support vector machine models developed with programming language Python for predicting some investment measures are shown.

  14. LHC Machine Protection Against Very Fast Crab Cavity Failures

    CERN Document Server

    Baer, T; Tomas, R; Tuckmantel, J; Wenninger, J; Zimmermann, F

    2011-01-01

    For the high-luminosity LHC upgrade program (HLLHC), the installation of crab cavities (CCs) is essential to compensate the geometric luminosity loss due to the crossing angle [1]. The baseline is a local scheme with CCs around the ATLAS and CMS experiments. In a failure case (e.g. a CC quench), the voltage and/or phase of a CC can change significantly with a fast time constant of the order of a LHC turn [2]. This can lead to large, global betatron oscillations of the beam. Against the background of machine protection, the influence of a CC failure on the beam dynamics is discussed. The results from dedicated tracking studies, including the LHC upgrade optics, are presented. Necessary countermeasures to limit the impact of CC failures to an acceptable level are proposed.

  15. Fast Affinity Propagation Clustering based on Machine Learning

    Directory of Open Access Journals (Sweden)

    Shailendra Kumar Shrivastava

    2013-01-01

    Full Text Available Affinity propagation (AP was recently introduced as an un-supervised learning algorithm for exemplar based clustering. In this paper a novel Fast Affinity Propagation clustering Approach based on Machine Learning (FAPML has been proposed. FAPML tries to put data points into clusters based on the history of the data points belonging to clusters in early stages. In FAPML we introduce affinity learning constant and dispersion constant which supervise the clustering process. FAPML also enforces the exemplar consistency and one of 'N constraints. Experiments conducted on many data sets such as Olivetti faces, Mushroom, Documents summarization, Thyroid, Yeast, Wine quality Red, Balance etc. show that FAPML is up to 54 % faster than the original AP with better Net Similarity.

  16. Least squares weighted twin support vector machines with local information

    Institute of Scientific and Technical Information of China (English)

    花小朋; 徐森; 李先锋

    2015-01-01

    A least squares version of the recently proposed weighted twin support vector machine with local information (WLTSVM) for binary classification is formulated. This formulation leads to an extremely simple and fast algorithm, called least squares weighted twin support vector machine with local information (LSWLTSVM), for generating binary classifiers based on two non-parallel hyperplanes. Two modified primal problems of WLTSVM are attempted to solve, instead of two dual problems usually solved. The solution of the two modified problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems along with two systems of linear equations in WLTSVM. Moreover, two extra modifications were proposed in LSWLTSVM to improve the generalization capability. One is that a hot kernel function, not the simple-minded definition in WLTSVM, is used to define the weight matrix of adjacency graph, which ensures that the underlying similarity information between any pair of data points in the same class can be fully reflected. The other is that the weight for each point in the contrary class is considered in constructing equality constraints, which makes LSWLTSVM less sensitive to noise points than WLTSVM. Experimental results indicate that LSWLTSVM has comparable classification accuracy to that of WLTSVM but with remarkably less computational time.

  17. A Novel Kernel for Least Squares Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    FENG Wei; ZHAO Yong-ping; DU Zhong-hua; LI De-cai; WANG Li-feng

    2012-01-01

    Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel.ELM kernel based methods are able to solve the nonlinear problems by inducing an explicit mapping compared with the commonly-used kernels such as Gaussian kernel.In this paper,the ELM kernel is extended to the least squares support vector regression(LSSVR),so ELM-LSSVR was proposed.ELM-LSSVR can be used to reduce the training and test time simultaneously without extra techniques such as sequential minimal optimization and pruning mechanism.Moreover,the memory space for the training and test was relieved.To confirm the efficacy and feasibility of the proposed ELM-LSSVR,the experiments are reported to demonstrate that ELM-LSSVR takes the advantage of training and test time with comparable accuracy to other algorithms.

  18. SUPPORT VECTOR MACHINE FOR STRUCTURAL RELIABILITY ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    LI Hong-shuang; L(U) Zhen-zhou; YUE Zhu-feng

    2006-01-01

    Support vector machine (SVM) was introduced to analyze the reliability of the implicit performance function, which is difficult to implement by the classical methods such as the first order reliability method (FORM) and the Monte Carlo simulation (MCS). As a classification method where the underlying structural risk minimization inference rule is employed, SVM possesses excellent learning capacity with a small amount of information and good capability of generalization over the complete data. Hence,two approaches, i.e., SVM-based FORM and SVM-based MCS, were presented for the structural reliability analysis of the implicit limit state function. Compared to the conventional response surface method (RSM) and the artificial neural network (ANN), which are widely used to replace the implicit state function for alleviating the computation cost,the more important advantages of SVM are that it can approximate the implicit function with higher precision and better generalization under the small amount of information and avoid the "curse of dimensionality". The SVM-based reliability approaches can approximate the actual performance function over the complete sampling data with the decreased number of the implicit performance function analysis (usually finite element analysis), and the computational precision can satisfy the engineering requirement, which are demonstrated by illustrations.

  19. Face Behavior Recognition Through Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Haval A. Ahmed

    2016-01-01

    Full Text Available Communication between computers and humans has grown to be a major field of research. Facial Behavior Recognition through computer algorithms is a motivating and difficult field of research for establishing emotional interactions between humans and computers. Although researchers have suggested numerous methods of emotion recognition within the literature of this field, as yet, these research works have mainly focused on one method for their system output i.e. used one facial database for assessing their works. This may diminish the generalization method and additionally it might shrink the comparability range. A proposed technique for recognizing emotional expressions that are expressed through facial aspects of still images is presented. This technique uses the Support Vector Machines (SVM as a classifier of emotions. Substantive problems are considered such as diversity in facial databases, the samples included in each database, the number of facial expressions experienced an accurate method of extracting facial features, and the variety of structural models. After many experiments and the results of different models being compared, it is determined that this approach produces high recognition rates.

  20. Recursive support vector machines for dimensionality reduction.

    Science.gov (United States)

    Tao, Qing; Chu, Dejun; Wang, Jue

    2008-01-01

    The usual dimensionality reduction technique in supervised learning is mainly based on linear discriminant analysis (LDA), but it suffers from singularity or undersampled problems. On the other hand, a regular support vector machine (SVM) separates the data only in terms of one single direction of maximum margin, and the classification accuracy may be not good enough. In this letter, a recursive SVM (RSVM) is presented, in which several orthogonal directions that best separate the data with the maximum margin are obtained. Theoretical analysis shows that a completely orthogonal basis can be derived in feature subspace spanned by the training samples and the margin is decreasing along the recursive components in linearly separable cases. As a result, a new dimensionality reduction technique based on multilevel maximum margin components and then a classifier with high accuracy are achieved. Experiments in synthetic and several real data sets show that RSVM using multilevel maximum margin features can do efficient dimensionality reduction and outperform regular SVM in binary classification problems.

  1. Prediction in Marketing Using the Support Vector Machine

    OpenAIRE

    Dapeng Cui; David Curry

    2005-01-01

    Many marketing problems require accurately predicting the outcome of a process or the future state of a system. In this paper, we investigate the ability of the support vector machine to predict outcomes in emerging environments in marketing, such as automated modeling, mass-produced models, intelligent software agents, and data mining. The support vector machine (SVM) is a semiparametric technique with origins in the machine-learning literature of computer science. Its approach to prediction...

  2. Support vector machine based on chaos particle swarm optimization for fault diagnosis of rotating machine

    Institute of Scientific and Technical Information of China (English)

    TANG Xian-lun; ZHUANG Ling; QIU Guo-qing; CAI Jun

    2009-01-01

    The performance of the support vector machine models depends on a proper setting of its parameters to a great extent. A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed. A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines. The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine, and the precision and reliability of the fault classification results can meet the requirement of practical application. It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.

  3. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  4. Supporting visual quality assessment with machine learning

    NARCIS (Netherlands)

    Gastaldo, P.; Zunino, R.; Redi, J.

    2013-01-01

    Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality

  5. Weighted K-means support vector machine for cancer prediction

    OpenAIRE

    Kim, Sunghwan

    2016-01-01

    To date, the support vector machine (SVM) has been widely applied to diverse bio-medical fields to address disease subtype identification and pathogenicity of genetic variants. In this paper, I propose the weighted K-means support vector machine (wKM-SVM) and weighted support vector machine (wSVM), for which I allow the SVM to impose weights to the loss term. Besides, I demonstrate the numerical relations between the objective function of the SVM and weights. Motivated by general ensemble tec...

  6. Support Vector Machine Optimized by Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiang Chang Sheng

    2013-07-01

    Full Text Available Parameters of support vector machines (SVM which is optimized by standard genetic algorithm is easy to trap into the local minimum, in order to get the optimal parameters of support vector machine, this paper proposed a parameters optimization method for support vector machines based on improved genetic algorithm, the simulation experiment is carried out on 5 benchmark datasets. The simulation show that the proposed method not only can assure the classification precision, but also can reduce training time markedly compared with standard genetic algorithm.

  7. Evaluating automatically parallelized versions of the support vector machine

    NARCIS (Netherlands)

    Codreanu, Valeriu; Droge, Bob; Williams, David; Yasar, Burhan; Yang, Fo; Liu, Baoquan; Dong, Feng; Surinta, Olarik; Schomaker, Lambertus; Roerdink, Jos; Wiering, Marco

    2014-01-01

    The support vector machine (SVM) is a supervised learning algorithm used for recognizing patterns in data. It is a very popular technique in machine learning and has been successfully used in applications such as image classification, protein classification, and handwriting recognition. However, the

  8. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    DNA regulatory motif selection based on support vector machine (SVM) and its application in microarray ... African Journal of Biotechnology ... experiments to explore the underlying relationships between motif types and gene functions.

  9. An Introduction to Support Vector Machines: A Review

    OpenAIRE

    Chen, Yiling; Councill, Isaac G.

    2003-01-01

    Review of "An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Nello Cristianini and John Shawe-Taylor, New York, Cambridge University Press, 2000, 189 pp., $45, ISBN 0-521-78019-5.

  10. A support vector machine approach to the development of an ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Abstract. This paper demonstrated the use of support vector machine (SVM) model to develop an ... system application and implementation was carried out with java programming language.

  11. Twin support vector machines models, extensions and applications

    CERN Document Server

    Jayadeva; Chandra, Suresh

    2017-01-01

    This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.

  12. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    Science.gov (United States)

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  13. Fleet Assistance and Support Team (FAST) Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The FAST team was established by PMA-264 for introduction of multistatic ASW systems into the Fleet.FAST provides Air ASW mission planning, tactics/tactical sensor...

  14. Fleet Assistance and Support Team (FAST) Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The FAST team was established by PMA-264 for introduction of multistatic ASW systems into the Fleet.FAST provides Air ASW mission planning, tactics/tactical sensor...

  15. Diagnosis of Acute Coronary Syndrome with a Support Vector Machine.

    Science.gov (United States)

    Berikol, Göksu Bozdereli; Yildiz, Oktay; Özcan, I Türkay

    2016-04-01

    Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium's metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used indiagnosis. However in emergency departments, there are some difficulties for physicians to decide whether hospitalizing, following up or discharging the patient. The aim of the study is to diagnose ACS and helping the physician with his decisionto discharge or to hospitalizevia machine learning techniques such as support vector machine (SVM) by using patient data including age, sex, risk factors, and cardiac enzymes (CK-MB, Troponin I) of patients presenting to emergency department with chest pain. Clinical, laboratory, and imaging data of 228 patients presenting to emergency department with chest pain were reviewedand the performance of support vector machine. Four different methods (Support vector machine (SVM), Artificial neural network (ANN), Naïve Bayes and Logistic Regression) were tested and the results of SVM which has the highest accuracy is reported. Among 228 patients aged 19 to 91 years who were included in the study, 99 (43.4 %) were qualified as ACS, while 129 (56.5 %) had no ACS. The classification model using SVM attained a 99.13 % classification success. The present study showed a 99.13 % classification success for ACS diagnosis attained by Support Vector Machine. This study showed that machine learning techniques may help emergency department staff make decisions by rapidly producing relevant data.

  16. Image Reconstruction Using Pixel Wise Support Vector Machine SVM Classification.

    Directory of Open Access Journals (Sweden)

    Mohammad Mahmudul Alam Mia

    2015-02-01

    Full Text Available Abstract Image reconstruction using support vector machine SVM has been one of the major parts of image processing. The exactness of a supervised image classification is a function of the training data used in its generation. In this paper we studied support vector machine for classification aspects and reconstructed an image using support vector machine. Firstly value of the random pixels is used as the SVM classifier. Then the SVM classifier is trained by using those values of the random pixels. Finally the image is reconstructed after cross-validation with the trained SVM classifier. Matlab result shows that training with support vector machine produce better results and great computational efficiency with only a few minutes of runtime is necessary for training. Support vector machine have high classification accuracy and much faster convergence. Overall classification accuracy is 99.5. From our experiment It can be seen that classification accuracy mostly depends on the choice of the kernel function and best estimation of parameters for kernel is critical for a given image.

  17. Masquerade Detection Using Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Li-na; ZHANG Huan-guo; CHEN Wei

    2005-01-01

    A new method using support vector data description (SVDD) to distinguish legitimate users from masqueraders based on UNIX user command sequences is proposed. Sliding windows are used to get low detection delay.Experiments demonstrate that the detection effect using en riched sequences is better than that of using truncated sequences. As a SVDD profile is composed of a small amount of support vectors, our SVDD-based method can achieve computation and storage advantage when the detection performance is similar to existing method.

  18. Virtual Class Support at the Virtual Machine Level

    DEFF Research Database (Denmark)

    Nielsen, Anders Bach; Ernst, Erik

    2009-01-01

    This paper describes how virtual classes can be supported in a virtual machine.  Main-stream virtual machines such as the Java Virtual Machine and the .NET platform dominate the world today, and many languages are being executed on these virtual machines even though their embodied design choices...... conflict with the design choices of the virtual machine.  For instance, there is a non-trivial mismatch between the main-stream virtual machines mentioned above and dynamically typed languages.  One language concept that creates an even greater mismatch is virtual classes, in particular because fully...... general support for virtual classes requires generation of new classes at run-time by mixin composition.  Languages like CaesarJ and ObjectTeams can express virtual classes restricted to the subset that does not require run-time generation of classes, because of the restrictions imposed by the Java...

  19. MULTI SUPPORT VECTOR MACHINES DECISION MODEL AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    阎威武; 陈治纲; 邵惠鹤

    2002-01-01

    Support Vector Machines (SVM) is a powerful machine learning method developed from statistical learning theory and is currently an active field in artificial intelligent technology. SVM is sensitive to noise vectors near hyperplane since it is determined only by few support vectors. In this paper, Multi SVM decision model(MSDM)was proposed. MSDM consists of multiple SVMs and makes decision by synthetic information based on multi SVMs. MSDM is applied to heart disease diagnoses based on UCI benchmark data set. MSDM somewhat inproves the robust of decision system.

  20. Image denoising using least squares wavelet support vector machines

    Institute of Scientific and Technical Information of China (English)

    Guoping Zeng; Ruizhen Zhao

    2007-01-01

    We propose a new method for image denoising combining wavelet transform and support vector machines (SVMs). A new image filter operator based on the least squares wavelet support vector machines (LSWSVMs) is presented. Noisy image can be denoised through this filter operator and wavelet thresholding technique. Experimental results show that the proposed method is better than the existing SVM regression with the Gaussian radial basis function (RBF) and polynomial RBF. Meanwhile, it can achieve better performance than other traditional methods such as the average filter and median filter.

  1. An extended Lagrangian support vector machine for classifications

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaowei; SHU Lei; HAO Zhifeng; LIANG Yanchun; LIU Guirong; HAN Xu

    2004-01-01

    Lagrangian support vector machine (LSVM) cannot solve large problems for nonlinear kernel classifiers. In order to extend the LSVM to solve very large problems, an extended Lagrangian support vector machine (ELSVM) for classifications based on LSVM and SVMlight is presented in this paper. Our idea for the ELSVM is to divide a large quadratic programming problem into a series of subproblems with small size and to solve them via LSVM. Since the LSVM can solve small and medium problems for nonlinear kernel classifiers, the proposed ELSVM can be used to handle large problems very efficiently. Numerical experiments on different types of problems are performed to demonstrate the high efficiency of the ELSVM.

  2. Classification using least squares support vector machine for reliability analysis

    Institute of Scientific and Technical Information of China (English)

    Zhi-wei GUO; Guang-chen BAI

    2009-01-01

    In order to improve the efficiency of the support vector machine (SVM) for classification to deal with a large amount of samples,the least squares support vector machine (LSSVM) for classification methods is introduced into the reliability analysis.To reduce the computational cost,the solution of the SVM is transformed from a quadratic programming to a group of linear equations.The numerical results indicate that the reliability method based on the LSSVM for classification has higher accuracy and requires less computational cost than the SVM method.

  3. WAVELET KERNEL SUPPORT VECTOR MACHINES FOR SPARSE APPROXIMATION

    Institute of Scientific and Technical Information of China (English)

    Tong Yubing; Yang Dongkai; Zhang Qishan

    2006-01-01

    Wavelet, a powerful tool for signal processing, can be used to approximate the target function. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with better sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target funciton with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation experiment show the feasibility and validity of wavelet kernel support vector machines.

  4. Adjustable entropy function method for support vector machine

    Institute of Scientific and Technical Information of China (English)

    Wu Qing; Liu Sanyang; Zhang Leyou

    2008-01-01

    Based on KKT complementary condition in optimization theory,an unconstrained non-differential optimization model for support vector machine is proposed.An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution.The proposed method can find an optimal solution with a relatively small parameter p,which avoids the numerical overflow in the traditional entropy function methods.It is a new approach to solve support vector machine.The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.

  5. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  6. A Novel Support Vector Machine with Globality-Locality Preserving

    Directory of Open Access Journals (Sweden)

    Cheng-Long Ma

    2014-01-01

    Full Text Available Support vector machine (SVM is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM, is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM.

  7. Monitoring Grinding Wheel Redress-life Using Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    Xun Chen; Thitikorn Limchimchol

    2006-01-01

    Condition monitoring is a very important aspect in automated manufacturing processes. Any malfunction of a machining process will deteriorate production quality and efficiency. This paper presents an application of support vector machines in grinding process monitoring. The paper starts with an overview of grinding behaviour. Grinding force is analysed through a Short Time Fourier Transform (STFT) to identify features for condition monitoring. The Support Vector Machine (SVM) methodology is introduced as a powerful tool for the classification of different wheel wear situations.After training with available signal data, the SVM is able to identify the state of a grinding process. The requirement and strategy for using SVM for grinding process monitoring is discussed, while the result of the example illustrates how effective SVMs can be in determining wheel redress-life.

  8. Team Machine: A Decision Support System for Team Formation

    Science.gov (United States)

    Bergey, Paul; King, Mark

    2014-01-01

    This paper reports on the cross-disciplinary research that resulted in a decision-support tool, Team Machine (TM), which was designed to create maximally diverse student teams. TM was used at a large United States university between 2004 and 2012, and resulted in significant improvement in the performance of student teams, superior overall balance…

  9. Analog neural network for support vector machine learning.

    Science.gov (United States)

    Perfetti, Renzo; Ricci, Elisa

    2006-07-01

    An analog neural network for support vector machine learning is proposed, based on a partially dual formulation of the quadratic programming problem. It results in a simpler circuit implementation with respect to existing neural solutions for the same application. The effectiveness of the proposed network is shown through some computer simulations concerning benchmark problems.

  10. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  11. GenSVM: a generalized multiclass support vector machine

    NARCIS (Netherlands)

    G.J.J. van den Burg (Gerrit); P.J.F. Groenen (Patrick)

    2016-01-01

    textabstractTraditional extensions of the binary support vector machine (SVM) to multiclass problems are either heuristics or require solving a large dual optimization problem. Here, a generalized multiclass SVM is proposed called GenSVM. In this method classification boundaries for a K-class proble

  12. Support Vector Machine-Based Nonlinear System Modeling and Control

    Institute of Scientific and Technical Information of China (English)

    张浩然; 韩正之; 冯瑞; 于志强

    2003-01-01

    This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM.At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.

  13. Support vector machine classifiers for large data sets.

    Energy Technology Data Exchange (ETDEWEB)

    Gertz, E. M.; Griffin, J. D.

    2006-01-31

    This report concerns the generation of support vector machine classifiers for solving the pattern recognition problem in machine learning. Several methods are proposed based on interior point methods for convex quadratic programming. Software implementations are developed by adapting the object-oriented packaging OOQP to the problem structure and by using the software package PETSc to perform time-intensive computations in a distributed setting. Linear systems arising from classification problems with moderately large numbers of features are solved by using two techniques--one a parallel direct solver, the other a Krylov-subspace method incorporating novel preconditioning strategies. Numerical results are provided, and computational experience is discussed.

  14. Quantum support vector machine for big data classification.

    Science.gov (United States)

    Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth

    2014-09-26

    Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

  15. Twin Support Vector Machine: A review from 2007 to 2014

    Directory of Open Access Journals (Sweden)

    Divya Tomar

    2015-03-01

    Full Text Available Twin Support Vector Machine (TWSVM is an emerging machine learning method suitable for both classification and regression problems. It utilizes the concept of Generalized Eigen-values Proximal Support Vector Machine (GEPSVM and finds two non-parallel planes for each class by solving a pair of Quadratic Programming Problems. It enhances the computational speed as compared to the traditional Support Vector Machine (SVM. TWSVM was initially constructed to solve binary classification problems; later researchers successfully extended it for multi-class problem domain. TWSVM always gives promising empirical results, due to which it has many attractive features which enhance its applicability. This paper presents the research development of TWSVM in recent years. This study is divided into two main broad categories - variant based and multi-class based TWSVM methods. The paper primarily discusses the basic concept of TWSVM and highlights its applications in recent years. A comparative analysis of various research contributions based on TWSVM is also presented. This is helpful for researchers to effectively utilize the TWSVM as an emergent research methodology and encourage them to work further in the performance enhancement of TWSVM.

  16. Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques

    Science.gov (United States)

    Lee, Hanbong

    2016-01-01

    Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.

  17. Packet Classification using Support Vector Machines with String Kernels

    Directory of Open Access Journals (Sweden)

    Sarthak Munshi

    2016-08-01

    Full Text Available Since the inception of internet many methods have been devised to keep untrusted and malicious packets away from a user’s system . The traffic / packet classification can be used as an important tool to detect intrusion in the system. Using Machine Learning as an efficient statistical based approach for classifying packets is a novel method in practice today . This paper emphasizes upon using an advanced string kernel method within a support vector machine to classify packets .There exists a paper related to a similar problem using Machine Learning [2]. But the researches mentioned in their paper are not up-to date and doesn’t account for modern day string kernels that are much more efficient . My work extends their research by introducing different approaches to classify encrypted / unencrypted traffic / packets .

  18. Canon multifunction copier machines – now with onsite support!

    CERN Multimedia

    2013-01-01

    Following a retendering process in 2012, the IT Department is pleased to announce that leased multifunction copier machines are now covered by onsite support, provided by Canon technicians via the CERN Service Desk support system.   You can now contact the Service Desk regarding any problems or requests for toner: Telephone: 77777 Email: Service-Desk@cern.ch Please remember to quote the machine printer name and/or serial number (marked on the side of the machine). The following submission forms are available online: Report a failure with a printer or copier Request for network printer or copier installation or move Request toner/ink for my printer or copier The website below details the range of models available, all of which include print, photocopy and scan-to-mail functions as standard. These multifunction copier machines are leased subject to a monthly charge (minimum of 48 months) plus a “per click” charge to cover consumables (except staples), leaving you noth...

  19. Support vector machine classification trees based on fuzzy entropy of classification.

    Science.gov (United States)

    de Boves Harrington, Peter

    2017-02-15

    The support vector machine (SVM) is a powerful classifier that has recently been implemented in a classification tree (SVMTreeG). This classifier partitioned the data by finding gaps in the data space. For large and complex datasets, there may be no gaps in the data space confounding this type of classifier. A novel algorithm was devised that uses fuzzy entropy to find optimal partitions for situations when clusters of data are overlapped in the data space. Also, a kernel version of the fuzzy entropy algorithm was devised. A fast support vector machine implementation is used that has no cost C or slack variables to optimize. Statistical comparisons using bootstrapped Latin partitions among the tree classifiers were made using a synthetic XOR data set and validated with ten prediction sets comprised of 50,000 objects and a data set of NMR spectra obtained from 12 tea sample extracts.

  20. Robust support vector machine-trained fuzzy system.

    Science.gov (United States)

    Forghani, Yahya; Yazdi, Hadi Sadoghi

    2014-02-01

    Because the SVM (support vector machine) classifies data with the widest symmetric margin to decrease the probability of the test error, modern fuzzy systems use SVM to tune the parameters of fuzzy if-then rules. But, solving the SVM model is time-consuming. To overcome this disadvantage, we propose a rapid method to solve the robust SVM model and use it to tune the parameters of fuzzy if-then rules. The robust SVM is an extension of SVM for interval-valued data classification. We compare our proposed method with SVM, robust SVM, ISVM-FC (incremental support vector machine-trained fuzzy classifier), BSVM-FC (batch support vector machine-trained fuzzy classifier), SOTFN-SV (a self-organizing TS-type fuzzy network with support vector learning) and SCLSE (a TS-type fuzzy system with subtractive clustering for antecedent parameter tuning and LSE for consequent parameter tuning) by using some real datasets. According to experimental results, the use of proposed approach leads to very low training and testing time with good misclassification rate.

  1. Study on Support Vector Machine Based on 1-Norm

    Institute of Scientific and Technical Information of China (English)

    PAN Mei-qin; HE Guo-ping; HAN Cong-ying; XUE Xin; SHI You-qun

    2006-01-01

    The model of optimization problem for Support Vector Machine(SVM) is provided, which based on the definitions of the dual norm and the distance between a point and its projection onto a given plane. The model of improved Support Vector Machine based on 1-norm (1 - SVM) is provided from the optimization problem, yet it is a discrete programming. With the smoothing technique and optimality knowledge, the discrete programming is changed into a continuous programming. Experimental results show that the algorithm is easy to implement and this method can select and suppress the problem features more efficiently.Illustrative examples show that the 1 - SVM deal with the linear or nonlinear classification well.

  2. Support vector machine-based multi-model predictive control

    Institute of Scientific and Technical Information of China (English)

    Zhejing BA; Youxian SUN

    2008-01-01

    In this paper,a support vector machine-based multi-model predictive control is proposed,in which SVM classification combines well with SVM regression.At first,each working environment is modeled by SVM regression and the support vector machine network-based model predictive control(SVMN-MPC)algorithm corresponding to each environment is developed,and then a multi-class SVM model is established to recognize multiple operating conditions.As for control,the current environment is identified by the multi-class SVM model and then the corresponding SVMN.MPCcontroller is activated at each sampling instant.The proposed modeling,switching and controller design is demonstrated in simulation results.

  3. Novel algorithm for constructing support vector machine regression ensemble

    Institute of Scientific and Technical Information of China (English)

    Li Bo; Li Xinjun; Zhao Zhiyan

    2006-01-01

    A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression(SVMR) ensemble is proposed by resampling from given training data sets repeatedly and aggregating several independent SVMRs, each of which is trained to use a replicated training set. After training, several independently trained SVMRs need to be aggregated in an appropriate combination manner. Generally, the linear weighting is usually used like expert weighting score in Boosting Regression and it is without optimization capacity. Three combination techniques are proposed, including simple arithmetic mean,linear least square error weighting and nonlinear hierarchical combining that uses another upper-layer SVMR to combine several lower-layer SVMRs. Finally, simulation experiments demonstrate the accuracy and validity of the presented algorithm.

  4. Sistem Deteksi Retinopati Diabetik Menggunakan Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wahyudi Setiawan

    2014-02-01

    Full Text Available Diabetic Retinopathy is a complication of Diabetes Melitus. It can be a blindness if untreated settled as early as possible. System created in this thesis is the detection of diabetic retinopathy level of the image obtained from fundus photographs. There are three main steps to resolve the problems, preprocessing, feature extraction and classification. Preprocessing methods that used in this system are Grayscale Green Channel, Gaussian Filter, Contrast Limited Adaptive Histogram Equalization and Masking. Two Dimensional Linear Discriminant Analysis (2DLDA is used for feature extraction. Support Vector Machine (SVM is used for classification. The test result performed by taking a dataset of MESSIDOR with number of images that vary for the training phase, otherwise is used for the testing phase. Test result show the optimal accuracy are 84% .   Keywords : Diabetic Retinopathy, Support Vector Machine, Two Dimensional Linear Discriminant Analysis, MESSIDOR

  5. Estimating coal reserves using a support vector machine

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-kai; WANG Rui-fang; ZHENG Xiao-juan

    2008-01-01

    The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support vector machine method, based on statistical learning theory, is put forward. The SVM model was trained and tested by using the existing exploration and exploitation data of Chencun mine of Yima bureau's as the input data. Then coal reserves within a particular region were calculated. These cal-culated results and the actual results of the exploration block were compared. The maximum relative error was 10.85%, within the scope of acceptable error limits. The results show that the SVM coal reserve calculation method is reliable. This method is simple, practical and valuable.

  6. Digital VLSI algorithms and architectures for support vector machines.

    Science.gov (United States)

    Anguita, D; Boni, A; Ridella, S

    2000-06-01

    In this paper, we propose some very simple algorithms and architectures for a digital VLSI implementation of Support Vector Machines. We discuss the main aspects concerning the realization of the learning phase of SVMs, with special attention on the effects of fixed-point math for computing and storing the parameters of the network. Some experiments on two classification problems are described that show the efficiency of the proposed methods in reaching optimal solutions with reasonable hardware requirements.

  7. Saudi License Plate Recognition Algorithm Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    Khaled Suwais; Rana Al-Otaibi; Ali Alshahrani

    2013-01-01

    License plate recognition (LPR) is an image processing technology that is used to identify vehicles by their license plates. This paper presents a license plate recognition algorithm for Saudi car plates based on the support vector machine (SVM) algorithm. The new algorithm is efficient in recognizing the vehicles from the Arabic part of the plate. The performance of the system has been investigated and analyzed. The recognition accuracy of the algorithm is about 93.3%.

  8. Chord Recognition Based on Temporal Correlation Support Vector Machine

    OpenAIRE

    Zhongyang Rao; Xin Guan; Jianfu Teng

    2016-01-01

    In this paper, we propose a method called temporal correlation support vector machine (TCSVM) for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and...

  9. Inverse Learning Control of Nonlinear Systems Using Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    HU Zhong-hui; LI Yuan-gui; CAI Yun-ze; XU Xiao-ming

    2005-01-01

    An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs overcome the problems of local minimum and curse of dimensionality. Additionally, the good generalization performance of SVMs increases the robustness of control system. The method of designing SVM inverselearning controller was presented. The proposed method is demonstrated on tracking problems and the performance is satisfactory.

  10. Characterization of digital medical images utilizing support vector machines

    Directory of Open Access Journals (Sweden)

    Zafiropoulos Elias P

    2004-03-01

    Full Text Available Abstract Background In this paper we discuss an efficient methodology for the image analysis and characterization of digital images containing skin lesions using Support Vector Machines and present the results of a preliminary study. Methods The methodology is based on the support vector machines algorithm for data classification and it has been applied to the problem of the recognition of malignant melanoma versus dysplastic naevus. Border and colour based features were extracted from digital images of skin lesions acquired under reproducible conditions, using basic image processing techniques. Two alternative classification methods, the statistical discriminant analysis and the application of neural networks were also applied to the same problem and the results are compared. Results The SVM (Support Vector Machines algorithm performed quite well achieving 94.1% correct classification, which is better than the performance of the other two classification methodologies. The method of discriminant analysis classified correctly 88% of cases (71% of Malignant Melanoma and 100% of Dysplastic Naevi, while the neural networks performed approximately the same. Conclusion The use of a computer-based system, like the one described in this paper, is intended to avoid human subjectivity and to perform specific tasks according to a number of criteria. However the presence of an expert dermatologist is considered necessary for the overall visual assessment of the skin lesion and the final diagnosis.

  11. Approximate entropy and support vector machines for electroencephalogram signal classification*****

    Institute of Scientific and Technical Information of China (English)

    Zhen Zhang; Yi Zhou; Ziyi Chen; Xianghua Tian; Shouhong Du; Ruimei Huang

    2013-01-01

    The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index-approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epi-leptic seizures were included in this study. They were al diagnosed with neocortex localized epi-lepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was con-structed with the approximate entropy extracted from one epileptic case, and then electroence-phalogram waves of the other three cases were classified, reaching a 93.33%accuracy rate. Our findings suggest that the use of approximate entropy al ows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.

  12. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    The efficiency of digital hydraulic machines is strongly dependent on the valve switching time. Recently, fast switching have been achieved by using a direct electromagnetic moving coil actuator as the force producing element in fast switching hydraulic valves suitable for digital hydraulic...... machines. Mathematical models of the valve switching, targeted for design optimisation of the moving coil actuator, are developed. A detailed analytical model is derived and presented and its accuracy is evaluated against transient electromagnetic finite element simulations. The model includes...... an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which...

  13. Application of support vector machine and quantum genetic algorithm in infrared target recognition

    Science.gov (United States)

    Wang, Hongliang; Huang, Yangwen; Ding, Haifei

    2010-08-01

    In this paper, a kind of classifier based on support vector machine (SVM) is designed for infrared target recognition. In allusion to the problem how to choose kernel parameter and error penalty factor, quantum genetic algorithm (QGA) is used to optimize the parameters of SVM model, it overcomes the shortcoming of determining its parameters after trial and error in the past. Classification experiments of infrared target features extracted by this method show that the convergence speed is fast and the rate of accurate recognition is high.

  14. Support Vector Machines for decision support in electricity markets׳ strategic bidding

    DEFF Research Database (Denmark)

    Pinto, Tiago; Sousa, Tiago M.; Praça, Isabel

    2015-01-01

    . The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated...... – Iberian market operator....

  15. A Fast Algorithm for Support Vector Clustering

    Institute of Scientific and Technical Information of China (English)

    吕常魁; 姜澄宇; 王宁生

    2004-01-01

    Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for each pairs of points. Based on the proximity graph model[3] , the Euclidean distance in Hilbert space is calculated using a Gaussian kernel, which is the right criterion to generate a minimum spanning tree using Kruskal's algorithm. Then the connectivity estimation is lowered by only checking the linkages between the edges that construct the main stem of the MST (Minimum Spanning Tree), in which the non-compatibility degree is originally defined to support the edge selection during linkage estimations. This new approach is experimentally analyzed.The results show that the revised algorithm has a better performance than the proximity graph model with faster speed, optimized clustering quality and strong ability to noise suppression, which makes SVC scalable to large data sets.

  16. Decision Support System for Diabetes Mellitus through Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Tarik A. Rashid

    2016-07-01

    Full Text Available recently, the diseases of diabetes mellitus have grown into extremely feared problems that can have damaging effects on the health condition of their sufferers globally. In this regard, several machine learning models have been used to predict and classify diabetes types. Nevertheless, most of these models attempted to solve two problems; categorizing patients in terms of diabetic types and forecasting blood surge rate of patients. This paper presents an automatic decision support system for diabetes mellitus through machine learning techniques by taking into account the above problems, plus, reflecting the skills of medical specialists who believe that there is a great relationship between patient’s symptoms with some chronic diseases and the blood sugar rate. Data sets are collected from Layla Qasim Clinical Center in Kurdistan Region, then, the data is cleaned and proposed using feature selection techniques such as Sequential Forward Selection and the Correlation Coefficient, finally, the refined data is fed into machine learning models for prediction, classification, and description purposes. This system enables physicians and doctors to provide diabetes mellitus (DM patients good health treatments and recommendations.

  17. Optimization of Support Vector Machine (SVM) for Object Classification

    Science.gov (United States)

    Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.

  18. MULTI-RESOLUTION LEAST SQUARES SUPPORT VECTOR MACHINES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM.Combined the LS-SVM with the Multi-Resolution Analysis (MRA), this letter proposes the Multi-resolution LS-SVM (MLS-SVM). The proposed algorithm has the same theoretical framework as MRA but with better approximation ability. At a fixed scale MLS-SVM is a classical LS-SVM, but MLS-SVM can gradually approximate the target function at different scales. In experiments, the MLS-SVM is used for nonlinear system identification, and achieves better identification accuracy.

  19. Debris Flow Hazard Assessment Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    YUAN Lifeng; ZHANG Youshui

    2006-01-01

    Seven factors, including the maximum volume of once flow , occurrence frequency of debris flow , watershed area , main channel length , watershed relative height difference , valley incision density and the length ratio of sediment supplement are chosen as evaluation factors of debris flow hazard degree. Using support vector machine (SVM) theory, we selected 259 basic data of 37 debris flow channels in Yunnan Province as learning samples in this study. We create a debris flow hazard assessment model based on SVM. The model was validated though instance applications and showed encouraging results.

  20. Support vector machine for predicting protein interactions using domain scores

    Institute of Scientific and Technical Information of China (English)

    PENG Xin-jun; WANG Yi-fei

    2009-01-01

    Protein-protein interactions play a crucial role in the cellular process such as metabolic pathways and immunological recognition. This paper presents a new domain score-based support vector machine (SVM) to infer protein interactions, which can be used not only to explore all possible domain interactions by the kernel method, but also to reflect the evolutionary conservation of domains in proteins by using the domain scores of proteins. The experimental result on the Saccharomyces cerevisiae dataset demonstrates that this approach can predict protein-protein interactions with higher performances compared to the existing approaches.

  1. Estimation of underdetermined mixing matrix based on support vector machine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In underdetermined blind source separation (BSS), a novel algorithm based on extended support vector machine(SVM) is proposed to estimate the mixing matrix in this paper, including the number of the active sources. Instead of traditional clustering algorithms, it mainly takes the modulus of observations and the number in each direction of arrival, without any prior knowledge about the sources except for sparsity, and it is not sensitive to the initial values. Simulations are given to illustrate availability and robustness of our algorithm.

  2. Improved Support Vector Machine Approach Based on Determining Thresholds Automatically

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hua; YAN Xue-mei; WANG Xiao-guang

    2007-01-01

    To improve the training speed of support vector machine (SVM), a method called improved center distance ratio method (ICDRM) with determining thresholds automatically is presented here without reduce the identification rate. In this method border vectors are chosen from the given samples by comparing sample vectors with center distance ratio in advance. The number of training samples is reduced greatly and the training speed is improved. This method is used to the identification for license plate characters. Experimental results show that the improved SVM method-ICDRM does well at identification rate and training speed.

  3. Cross-Validation, Bootstrap, and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Masaaki Tsujitani

    2011-01-01

    Full Text Available This paper considers the applications of resampling methods to support vector machines (SVMs. We take into account the leaving-one-out cross-validation (CV when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.

  4. Hybrid Optimization of Support Vector Machine for Intrusion Detection

    Institute of Scientific and Technical Information of China (English)

    XI Fu-li; YU Song-nian; HAO Wei

    2005-01-01

    Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it's an effective method and can improve the perfornance of SVM-based intrusion detection system further.

  5. Probability output of multi-class support vector machines

    Institute of Scientific and Technical Information of China (English)

    忻栋; 吴朝晖; 潘云鹤

    2002-01-01

    A novel approach to interpret the outputs of multi-class support vector machines is proposed in this paper. Using the geometrical interpretation of the classifying heperplane and the distance of the pattern from the hyperplane, one can calculate the posterior probability in binary classification case. This paper focuses on the probability output in multi-class phase where both the one-against-one and one-against-rest strategies are considered. Experiment on the speaker verification showed that this method has high performance.

  6. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  7. Novel cascade FPGA accelerator for support vector machines classification.

    Science.gov (United States)

    Papadonikolakis, Markos; Bouganis, Christos-Savvas

    2012-07-01

    Support vector machines (SVMs) are a powerful machine learning tool, providing state-of-the-art accuracy to many classification problems. However, SVM classification is a computationally complex task, suffering from linear dependencies on the number of the support vectors and the problem's dimensionality. This paper presents a fully scalable field programmable gate array (FPGA) architecture for the acceleration of SVM classification, which exploits the device heterogeneity and the dynamic range diversities among the dataset attributes. An adaptive and fully-customized processing unit is proposed, which utilizes the available heterogeneous resources of a modern FPGA device in efficient way with respect to the problem's characteristics. The implementation results demonstrate the efficiency of the heterogeneous architecture, presenting a speed-up factor of 2-3 orders of magnitude, compared to the CPU implementation. The proposed architecture outperforms other proposed FPGA and graphic processor unit approaches by more than seven times. Furthermore, based on the special properties of the heterogeneous architecture, this paper introduces the first FPGA-oriented cascade SVM classifier scheme, which exploits the FPGA reconfigurability and intensifies the custom-arithmetic properties of the heterogeneous architecture. The results show that the proposed cascade scheme is able to increase the heterogeneous classifier throughput even further, without introducing any penalty on the resource utilization.

  8. Ecological Footprint Model Using the Support Vector Machine Technique

    Science.gov (United States)

    Ma, Haibo; Chang, Wenjuan; Cui, Guangbai

    2012-01-01

    The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It aims to quantify the Earth's biological resources required to support human activity. In this paper, we summarize relevant previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product (GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient), export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the EF model based on SVM has good calculation performance. PMID:22291949

  9. Chord Recognition Based on Temporal Correlation Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongyang Rao

    2016-05-01

    Full Text Available In this paper, we propose a method called temporal correlation support vector machine (TCSVM for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and the sparse component to contain the vocal signals. Then, we extract a new logarithmic pitch class profile (LPCP feature called enhanced LPCP from the low-rank part. To exploit the temporal correlation among the LPCP features of chords, we propose an improved support vector machine algorithm called TCSVM. We perform this study using the MIREX’09 (Music Information Retrieval Evaluation eXchange Audio Chord Estimation dataset. Furthermore, we conduct comprehensive experiments using different pitch class profile feature vectors to examine the performance of TCSVM. The results of our method are comparable to the state-of-the-art methods that entered the MIREX in 2013 and 2014 for the MIREX’09 Audio Chord Estimation task dataset.

  10. Clifford support vector machines for classification, regression, and recurrence.

    Science.gov (United States)

    Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy

    2010-11-01

    This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids.

  11. Reducing Support Vector Machine Classification Error by Implementing Kalman Filter

    Directory of Open Access Journals (Sweden)

    Muhsin Hassan

    2013-08-01

    Full Text Available The aim of this is to demonstrate the capability of Kalman Filter to reduce Support Vector Machine classification errors in classifying pipeline corrosion depth. In pipeline defect classification, it is important to increase the accuracy of the SVM classification so that one can avoid misclassification which can lead to greater problems in monitoring pipeline defect and prediction of pipeline leakage. In this paper, it is found that noisy data can greatly affect the performance of SVM. Hence, Kalman Filter + SVM hybrid technique has been proposed as a solution to reduce SVM classification errors. The datasets has been added with Additive White Gaussian Noise in several stages to study the effect of noise on SVM classification accuracy. Three techniques have been studied in this experiment, namely SVM, hybrid of Discrete Wavelet Transform + SVM and hybrid of Kalman Filter + SVM. Experiment results have been compared to find the most promising techniques among them. MATLAB simulations show Kalman Filter and Support Vector Machine combination in a single system produced higher accuracy compared to the other two techniques.

  12. Object-Oriented Support for Adaptive Methods on Paranel Machines

    Directory of Open Access Journals (Sweden)

    Sandeep Bhatt

    1993-01-01

    Full Text Available This article reports on experiments from our ongoing project whose goal is to develop a C++ library which supports adaptive and irregular data structures on distributed memory supercomputers. We demonstrate the use of our abstractions in implementing "tree codes" for large-scale N-body simulations. These algorithms require dynamically evolving treelike data structures, as well as load-balancing, both of which are widely believed to make the application difficult and cumbersome to program for distributed-memory machines. The ease of writing the application code on top of our C++ library abstractions (which themselves are application independent, and the low overhead of the resulting C++ code (over hand-crafted C code supports our belief that object-oriented approaches are eminently suited to programming distributed-memory machines in a manner that (to the applications programmer is architecture-independent. Our contribution in parallel programming methodology is to identify and encapsulate general classes of communication and load-balancing strategies useful across applications and MIMD architectures. This article reports experimental results from simulations of half a million particles using multiple methods.

  13. Support Vector Machine Diagnosis of Acute Abdominal Pain

    Science.gov (United States)

    Björnsdotter, Malin; Nalin, Kajsa; Hansson, Lars-Erik; Malmgren, Helge

    This study explores the feasibility of a decision-support system for patients seeking care for acute abdominal pain, and, specifically the diagnosis of acute diverticulitis. We used a linear support vector machine (SVM) to separate diverticulitis from all other reported cases of abdominal pain and from the important differential diagnosis non-specific abdominal pain (NSAP). On a database containing 3337 patients, the SVM obtained results comparable to those of the doctors in separating diverticulitis or NSAP from the remaining diseases. The distinction between diverticulitis and NSAP was, however, substantially improved by the SVM. For this patient group, the doctors achieved a sensitivity of 0.714 and a specificity of 0.963. When adjusted to the physicians' results, the SVM sensitivity/specificity was higher at 0.714/0.985 and 0.786/0.963 respectively. Age was found as the most important discriminative variable, closely followed by C-reactive protein level and lower left side pain.

  14. Research on Project Cost Fast Forecasting Method Based on the Fuzzy Least Square Support Vector Machine%基于模糊最小二乘支持向量机的建设工程造价快速预测方法研究

    Institute of Scientific and Technical Information of China (English)

    郝宽胜; 张桐林

    2012-01-01

    为实现建设工程造价的快速和准确预测,此文提出基于模糊最小二乘支持向量机的建设工程造价预测方法。该方法可较好解决小样本预测问题,适合于当前工程造价样本数据量少的现状。通过隶属度函数对样本进行模糊化和加权,实现对历史数据和相似数据的优化选择,提高了预测准确性。将标准SVM的二次规划问题转化为线性方程组求解,提高了预测速度。通过对某市地铁建设中区间隧道延米造价估算实例的计算,验证了所提出预测方法的有效性。%To realize the fast and accurate prediction of construction engineering cost, the fuzzy least square support vector machine forecasting method of the project cost is put forward. This method can solve prediction problem of small sample well, which is suitable for the small sample data problem in the current project cost. Through fuzzifing and weighting by the membership functions, the historical data and the optimal selection of similar data is realized, which improves the prediction accuracy. The standard SVM quadratic programming problem is transformed into solving linear equations to improve the prediction speed. Taking the subway tunnels Yanmi cost estimate as an example, the validity of the proposed prediction method is veryfied.

  15. Estimation of sand liquefaction based on support vector machines

    Institute of Scientific and Technical Information of China (English)

    苏永华; 马宁; 胡检; 杨小礼

    2008-01-01

    The origin and influence factors of sand liquefaction were analyzed, and the relation between liquefaction and its influence factors was founded. A model based on support vector machines (SVM) was established whose input parameters were selected as following influence factors of sand liquefaction: magnitude (M), the value of SPT, effective pressure of superstratum, the content of clay and the average of grain diameter. Sand was divided into two classes: liquefaction and non-liquefaction, and the class label was treated as output parameter of the model. Then the model was used to estimate sand samples, 20 support vectors and 17 borderline support vectors were gotten, then the parameters were optimized, 14 support vectors and 6 borderline support vectors were gotten, and the prediction precision reaches 100%. In order to verify the generalization of the SVM method, two other practical samples’ data from two cities, Tangshan of Hebei province and Sanshui of Guangdong province, were dealt with by another more intricate model for polytomies, which also considered some influence factors of sand liquefaction as the input parameters and divided sand into four liquefaction grades: serious liquefaction, medium liquefaction, slight liquefaction and non-liquefaction as the output parameters. The simulation results show that the latter model has a very high precision, and using SVM model to estimate sand liquefaction is completely feasible.

  16. A support vector machine approach to detect financial statement fraud in South Africa: A first look

    CSIR Research Space (South Africa)

    Moepya, SO

    2014-04-01

    Full Text Available Auditors face the difficult task of detecting companies that issue manipulated financial statements. In recent years, machine learning methods have provided a feasible solution to this task. This study develops support vector machine (SVM) models...

  17. A comparative study of slope failure prediction using logistic regression, support vector machine and least square support vector machine models

    Science.gov (United States)

    Zhou, Lim Yi; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee

    2017-08-01

    A comparative study of logistic regression, support vector machine (SVM) and least square support vector machine (LSSVM) models has been done to predict the slope failure (landslide) along East-West Highway (Gerik-Jeli). The effects of two monsoon seasons (southwest and northeast) that occur in Malaysia are considered in this study. Two related factors of occurrence of slope failure are included in this study: rainfall and underground water. For each method, two predictive models are constructed, namely SOUTHWEST and NORTHEAST models. Based on the results obtained from logistic regression models, two factors (rainfall and underground water level) contribute to the occurrence of slope failure. The accuracies of the three statistical models for two monsoon seasons are verified by using Relative Operating Characteristics curves. The validation results showed that all models produced prediction of high accuracy. For the results of SVM and LSSVM, the models using RBF kernel showed better prediction compared to the models using linear kernel. The comparative results showed that, for SOUTHWEST models, three statistical models have relatively similar performance. For NORTHEAST models, logistic regression has the best predictive efficiency whereas the SVM model has the second best predictive efficiency.

  18. Using support vector machines for anomalous change detonation

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Steinwart, Ingo [UNIV STUTTGART; Llamocca, Daniel [UNM

    2010-01-01

    We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution. In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger training sets, which in turn places more of a computational burden on the SVM. We initially considered three different approaches to to address the need to work in the very low false alarm rate regime. The first is a standard SVM which is trained at one threshold (where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime. The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the threshold in a straightforward manner. The third approach employs a weighted support vector machine, where the weights for the two types of errors (false alarm and missed detection) are automatically adjusted to achieve the desired false alarm rate. We have found in previous experiments (not shown here) that the first two types can in some cases work well, while in other cases they do not. This renders both approaches unreliable for automated change detection. By contrast, the third approach reliably produces good results, but at

  19. Hybrid Support Vector Machines-Based Multi-fault Classification

    Institute of Scientific and Technical Information of China (English)

    GAO Guo-hua; ZHANG Yong-zhong; ZHU Yu; DUAN Guang-huang

    2007-01-01

    Support Vector Machines (SVM) is a new general machine-learning tool based on structural risk minimization principle. This characteristic is very signific ant for the fault diagnostics when the number of fault samples is limited. Considering that SVM theory is originally designed for a two-class classification, a hybrid SVM scheme is proposed for multi-fault classification of rotating machinery in our paper. Two SVM strategies, 1-v-1 (one versus one) and 1-v-r (one versus rest), are respectively adopted at different classification levels. At the parallel classification level, using 1-v-1 strategy, the fault features extracted by various signal analysis methods are transferred into the multiple parallel SVM and the local classification results are obtained. At the serial classification level, these local results values are fused by one serial SVM based on 1-v-r strategy. The hybrid SVM scheme introduced in our paper not only generalizes the performance of signal binary SVMs but improves the precision and reliability of the fault classification results. The actually testing results show the availability suitability of this new method.

  20. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    Science.gov (United States)

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  1. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2012-01-01

    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  2. Fuzzy support vector machines based on linear clustering

    Science.gov (United States)

    Xiong, Shengwu; Liu, Hongbing; Niu, Xiaoxiao

    2005-10-01

    A new Fuzzy Support Vector Machines (FSVMs) based on linear clustering is proposed in this paper. Its concept comes from the idea of linear clustering, selecting the data points near to the preformed hyperplane, which is formed on the training set including one positive and one negative training samples respectively. The more important samples near to the preformed hyperplane are selected by linear clustering technique, and the new FSVMs are formed on the more important data set. It integrates the merit of two kinds of FSVMs. The membership functions are defined using the relative distance between the data points and the preformed hyperplane during the training process. The fuzzy membership decision functions of multi-class FSVMs adopt the minimal value of all the decision functions of two-class FSVMs. To demonstrate the superiority of our methods, the benchmark data sets of machines learning databases are selected to verify the proposed FSVMs. The experimental results indicate that the proposed FSVMs can reduce the training data and running time, and its recognition rate is greater than or equal to that of FSVMs through selecting a suitable linear clustering parameter.

  3. Detection of Splice Sites Using Support Vector Machine

    Science.gov (United States)

    Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika

    Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.

  4. Data filtering with support vector machines in geometric camera calibration.

    Science.gov (United States)

    Ergun, B; Kavzoglu, T; Colkesen, I; Sahin, C

    2010-02-01

    The use of non-metric digital cameras in close-range photogrammetric applications and machine vision has become a popular research agenda. Being an essential component of photogrammetric evaluation, camera calibration is a crucial stage for non-metric cameras. Therefore, accurate camera calibration and orientation procedures have become prerequisites for the extraction of precise and reliable 3D metric information from images. The lack of accurate inner orientation parameters can lead to unreliable results in the photogrammetric process. A camera can be well defined with its principal distance, principal point offset and lens distortion parameters. Different camera models have been formulated and used in close-range photogrammetry, but generally sensor orientation and calibration is performed with a perspective geometrical model by means of the bundle adjustment. In this study, support vector machines (SVMs) using radial basis function kernel is employed to model the distortions measured for Olympus Aspherical Zoom lens Olympus E10 camera system that are later used in the geometric calibration process. It is intended to introduce an alternative approach for the on-the-job photogrammetric calibration stage. Experimental results for DSLR camera with three focal length settings (9, 18 and 36 mm) were estimated using bundle adjustment with additional parameters, and analyses were conducted based on object point discrepancies and standard errors. Results show the robustness of the SVMs approach on the correction of image coordinates by modelling total distortions on-the-job calibration process using limited number of images.

  5. Image segmentation and classification of white blood cells with the extreme learning machine and the fast relevance vector machine.

    Science.gov (United States)

    Ravikumar, S

    2016-05-01

    White blood cells (WBCs) or leukocytes are an important part of the body's defense against infectious organisms and foreign substances. WBC segmentation is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. The standard ELM classification techniques are used for WBC segmentation. The generalization performance of the ELM classifier has not achieved the maximum nearest accuracy of image segmentation. This paper gives a novel technique for WBC detection based on the fast relevance vector machine (Fast-RVM). Firstly, astonishingly sparse relevance vectors (RVs) are obtained while fitting the histogram by RVM. Next, the relevant required threshold value is directly sifted from these limited RVs. Finally, the entire connective WBC regions are segmented from the original image. The proposed method successfully works for WBC detection, and effectively reduces the effects brought about by illumination and staining. To achieve the maximum accuracy of the RVM classifier, we design a search for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. Therefore, this proposed RVM method effectively works for WBC detection, and effectively reduces the computational time and preserves the images.

  6. Support vector machine approach for protein subcellular localization prediction.

    Science.gov (United States)

    Hua, S; Sun, Z

    2001-08-01

    Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.

  7. Finger vein image quality evaluation using support vector machines

    Science.gov (United States)

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-02-01

    In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.

  8. Application of Support Vector Machine to Ship Steering

    Institute of Scientific and Technical Information of China (English)

    LUO Wei-lin; ZOU Zao-jian; LI Tie-shan

    2009-01-01

    System identification is an effective way for modeling ship manoeuvring motion and ship manoeuvrability prediction. Support vector machine is proposed to identify the manoeuvring indices in four different response models of ship steering motion, including the first order linear, the first order nonlinear, the second order linear and the second order nonlinear models. Predictions of manoeuvres including trained samples by using the identified parameters are compared with the results of free-running model tests. It is discussed that the different four categories are consistent with each other both analytically and numerically. The generalization of the identified model is verified by predicting different untrained manoeuvres. The simulations and comparisons demonstrate the validity of the proposed method.

  9. BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    V. Dheepa

    2012-07-01

    Full Text Available Along with the great increase of internet and e-commerce, the use of credit card is an unavoidable one. Due to the increase of credit card usage, the frauds associated with this have also increased. There are a lot of approaches used to detect the frauds. In this paper, behavior based classification approach using Support Vector Machines are employed and efficient feature extraction method also adopted. If any discrepancies occur in the behaviors transaction pattern then it is predicted as suspicious and taken for further consideration to find the frauds. Generally credit card fraud detection problem suffers from a large amount of data, which is rectified by the proposed method. Achieving finest accuracy, high fraud catching rate and low false alarms are the main tasks of this approach.

  10. Hybrid Neural Network and Support Vector Machine Method for Optimization

    Science.gov (United States)

    Rai, Man Mohan (Inventor)

    2007-01-01

    System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.

  11. Support Vector Machine active learning for 3D model retrieval

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.

  12. Scorebox extraction from mobile sports videos using Support Vector Machines

    Science.gov (United States)

    Kim, Wonjun; Park, Jimin; Kim, Changick

    2008-08-01

    Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.

  13. Temperature prediction control based on least squares support vector machines

    Institute of Scientific and Technical Information of China (English)

    Bin LIU; Hongye SU; Weihua HUANG; Jian CHU

    2004-01-01

    A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity.The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel.In the process of system running,the off-line model is linearized at each sampling instant,and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant.The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay.The results of the experiment verify the effectiveness and merit of the algorithm.

  14. Reinforced Angle-based Multicategory Support Vector Machines

    Science.gov (United States)

    Zhang, Chong; Liu, Yufeng; Wang, Junhui; Zhu, Hongtu

    2015-01-01

    The Support Vector Machine (SVM) is a very popular classification tool with many successful applications. It was originally designed for binary problems with desirable theoretical properties. Although there exist various Multicategory SVM (MSVM) extensions in the literature, some challenges remain. In particular, most existing MSVMs make use of k classification functions for a k-class problem, and the corresponding optimization problems are typically handled by existing quadratic programming solvers. In this paper, we propose a new group of MSVMs, namely the Reinforced Angle-based MSVMs (RAMSVMs), using an angle-based prediction rule with k − 1 functions directly. We prove that RAMSVMs can enjoy Fisher consistency. Moreover, we show that the RAMSVM can be implemented using the very efficient coordinate descent algorithm on its dual problem. Numerical experiments demonstrate that our method is highly competitive in terms of computational speed, as well as classification prediction performance. Supplemental materials for the article are available online. PMID:27891045

  15. Application of support vector machine to synthetic earthquake prediction

    Institute of Scientific and Technical Information of China (English)

    Chun Jiang; Xueli Wei; Xiaofeng Cui; Dexiang You

    2009-01-01

    This paper introduces the method of support vector machine (SVM) into the field of synthetic earthquake prediction, which is a non-linear and complex seismogenic system. As an example, we apply this method to predict the largest annual magnitude for the North China area (30°E-42°E, 108°N-125°N) and the capital region (38°E-41.5°E, 114°N-120°N) on the basis of seismicity parameters and observed precursory data. The corresponding prediction rates for the North China area and the capital region are 64.1% and 75%, respectively, which shows that the method is feasible.

  16. SENSITIVITY ANALYSIS FOR ROLLING PROCESS BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    Huang Yanwei; Wu Tihua; Zhao Jingyi; Wang Yiqun

    2005-01-01

    A method for the calculation of the sensitivity factors of the rolling process has been obtained by differentiating the roll force model based on support vector machine. It can eliminate the algebraic loop of the analytical model of the rolling process. The simulations in the first stand of five stand cold tandem rolling mill indicate that the calculation for sensitivities by this proposed method can obtain a good accuracy, and an appropriate adjustment on the control variables determined directly by the sensitivity has an excellent compensation accuracy. Moreover, the roll gap has larger effect on the exit thickness than both front tension and back tension, and it is more efficient to select the roll gap as the controlvariable of the thickness control system in the first stand.

  17. Application of Support Vector Machine to Forex Monitoring

    Science.gov (United States)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  18. Speaker Identification using MFCC-Domain Support Vector Machine

    CERN Document Server

    Kamruzzaman, S M; Islam, Md Saiful; Haque, Md Emdadul; 10.3923/ijepe.2007.274.278

    2010-01-01

    Speech recognition and speaker identification are important for authentication and verification in security purpose, but they are difficult to achieve. Speaker identification methods can be divided into text-independent and text-dependent. This paper presents a technique of text-dependent speaker identification using MFCC-domain support vector machine (SVM). In this work, melfrequency cepstrum coefficients (MFCCs) and their statistical distribution properties are used as features, which will be inputs to the neural network. This work firstly used sequential minimum optimization (SMO) learning technique for SVM that improve performance over traditional techniques Chunking, Osuna. The cepstrum coefficients representing the speaker characteristics of a speech segment are computed by nonlinear filter bank analysis and discrete cosine transform. The speaker identification ability and convergence speed of the SVMs are investigated for different combinations of features. Extensive experimental results on several sam...

  19. Mandarin Digits Speech Recognition Using Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    XIE Xiang; KUANG Jing-ming

    2005-01-01

    A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speech feature sequence to make up time-aligned input patterns for SVM, and the decisions of several 2-class SVM classifiers were employed for constructing an N-class classifier. Four kinds of SVM kernel functions were compared in the experiments of speaker-independent speech recognition of mandarin digits. And the kernel of radial basis function has the highest accurate rate of 99.33%, which is better than that of the baseline system based on hidden Markov models (HMM) (97.08%). And the experiments also show that SVM can outperform HMM especially when the samples for learning were very limited.

  20. The seam offset identification based on support vector regression machines

    Institute of Scientific and Technical Information of China (English)

    Zeng Songsheng; Shi Yonghua; Wang Guorong; Huang Guoxing

    2009-01-01

    The principle of the support vector regression machine(SVR) is first analysed. Then the new data-dependent kernel function is constructed from information geometry perspective. The current waveforms change regularly in accordance with the different horizontal offset when the rotational frequency of the high speed rotational arc sensor is in the range from 15 Hz to 30 Hz. The welding current data is pretreated by wavelet filtering, mean filtering and normalization treatment. The SVR model is constructed by making use of the evolvement laws, the decision function can be achieved by training the SVR and the seam offset can be identified. The experimental results show that the precision of the offset identification can be greatly improved by modifying the SVR and applying mean filtering from the longitudinal direction.

  1. Threat Assessment of Targets Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    CAI Huai-ping; LIU Jing-xu; CHEN Ying-wu

    2006-01-01

    In the context of cooperative engagement of armored vehicles, the threat factors of offensive targets are analyzed, and a threat assessment (TA) model is built based on a support v.ector machine (SVM) method. The SVM-based model has some advantages over the traditional method-based models: the complex factors of threat are considered in the cooperative engagement; the shortcomings of neural networks, such as local minimum and "over fitting", are overcome to improve the generalization ability; its operation speed is high and meets the needs of real time C2 of cooperative engagement; the assessment results could be more reasonable because of its self-learning capability. The analysis and simulation indicate that the SVM method is an effective method to resolve the TA problems.

  2. FORECASTING NIKKEI 225 INDEX WITH SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; Yoshiteru Nakamori; WANG Shouyang; YU Lean

    2003-01-01

    Support Vector Machine (SVM) is a very specific type of learning algorithms characterized by the capacity control of the decision function, the use of the kernel functions and the sparsity of the solution. In this paper, we investigate the predictability of financial movement direction with SVM by forecasting the weekly movement direction of NIKKEI 225 index. To evaluate the forecasting ability of SVM, we compare the performance with those of Linear Discriminant Analysis, Quadratic Discriminant Analysis and Elman Backpropagation Neural Networks. The experiment results show that SVM outperforms other classification methods. Furthermore, we propose a combining model by integrating SVM with other classification methods. The combining model performs the best among the forecasting methods.

  3. Sensitivity of Support Vector Machine Classification to Various Training Features

    Directory of Open Access Journals (Sweden)

    Fuling Bian

    2013-07-01

    Full Text Available Remote sensing image classification is one of the most important techniques in image interpretation, which can be used for environmental monitoring, evaluation and prediction. Many algorithms have been developed for image classification in the literature. Support vector machine (SVM is a kind of supervised classification that has been widely used recently. The classification accuracy produced by SVM may show variation depending on the choice of training features. In this paper, SVM was used for land cover classification using Quickbird images. Spectral and textural features were extracted for the classification and the results were analyzed thoroughly. Results showed that the number of features employed in SVM was not the more the better. Different features are suitable for different type of land cover extraction. This study verifies the effectiveness and robustness of SVM in the classification of high spatial resolution remote sensing images.    

  4. Virtual screening with support vector machines and structure kernels

    CERN Document Server

    Mahé, Pierre

    2007-01-01

    Support vector machines and kernel methods have recently gained considerable attention in chemoinformatics. They offer generally good performance for problems of supervised classification or regression, and provide a flexible and computationally efficient framework to include relevant information and prior knowledge about the data and problems to be handled. In particular, with kernel methods molecules do not need to be represented and stored explicitly as vectors or fingerprints, but only to be compared to each other through a comparison function technically called a kernel. While classical kernels can be used to compare vector or fingerprint representations of molecules, completely new kernels were developed in the recent years to directly compare the 2D or 3D structures of molecules, without the need for an explicit vectorization step through the extraction of molecular descriptors. While still in their infancy, these approaches have already demonstrated their relevance on several toxicity prediction and s...

  5. Support vector machine ensemble using rough sets theory

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A support vector machine (SVM) ensemble classifier is proposed. Performance of SVM trained in an input space consisting of all the information from many sources is not always good. The strategy that the original input space is partitioned into several input subspaces usually works for improving the performance. Different from conventional partition methods, the partition method used in this paper, rough sets theory based attribute reduction, allows the input subspaces partially overlapped. These input subspaces can offer complementary information about hidden data patterns. In every subspace, an SVM sub-classifier is learned. With the information fusion techniques, those SVM sub-classifiers with better performance are selected and combined to construct an SVM ensemble. The proposed method is applied to decisionmaking of medical diagnosis. Comparison of performance between our method and several other popular ensemble methods is done. Experimental results demonstrate that our proposed approach can make full use of the information contained in data and improve the decision-making performance.

  6. An Efficient Audio Classification Approach Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Lhoucine Bahatti

    2016-05-01

    Full Text Available In order to achieve an audio classification aimed to identify the composer, the use of adequate and relevant features is important to improve performance especially when the classification algorithm is based on support vector machines. As opposed to conventional approaches that often use timbral features based on a time-frequency representation of the musical signal using constant window, this paper deals with a new audio classification method which improves the features extraction according the Constant Q Transform (CQT approach and includes original audio features related to the musical context in which the notes appear. The enhancement done by this work is also lay on the proposal of an optimal features selection procedure which combines filter and wrapper strategies. Experimental results show the accuracy and efficiency of the adopted approach in the binary classification as well as in the multi-class classification.

  7. Estimating Military Aircraft Cost Using Least Squares Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-yuan; ZHANG Xi-bin; ZHANG Heng-xi; REN Bo

    2004-01-01

    A multi-layer adaptive optimizing parameters algorithm is developed for improving least squares support vector machines(LS-SVM),and a military aircraft life-cycle-cost(LCC)intelligent estimation model is proposed based on the improved LS-SVM.The intelligent cost estimation process is divided into three steps in the model.In the first step,a cost-drive-factor needs to be selected,which is significant for cost estimation.In the second step,military aircraft training samples within costs and cost-drive-factor set are obtained by the LS-SVM.Then the model can be used for new type aircraft cost estimation.Chinese military aircraft costs are estimated in the paper.The results show that the estimated costs by the new model are closer to the true costs than that of the traditionally used methods.

  8. TYRE DYNAMICS MODELLING OF VEHICLE BASED ON SUPPORT VECTOR MACHINES

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shuibo; TANG Houjun; HAN Zhengzhi; ZHANG Yong

    2006-01-01

    Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented via support vector machines (SVMs). The feasibility of applying SVMs to steady-state tyre modelling is investigated by comparison with three-layer backpropagation(BP) neural network at pure slip and combined slip. The results indicate SVMs outperform the BP neural network in modelling the tyre characteristics with better generalization performance. The SVMs-tyre is implemented in 8-DOF vehicle model for vehicle dynamics simulation by means of the PAC 2002 Magic Formula as reference. The SVMs-tyre can be a competitive and accurate method to model a tyre for vehicle dynamics simulation.

  9. Explaining Support Vector Machines: A Color Based Nomogram

    Science.gov (United States)

    Van Belle, Vanya; Van Calster, Ben; Van Huffel, Sabine; Suykens, Johan A. K.; Lisboa, Paulo

    2016-01-01

    Problem setting Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. Objective In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. Results Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. Conclusions This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method. PMID:27723811

  10. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    Science.gov (United States)

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L1 norm or even sub-linear potentials corresponding to quasinorms Lp (0basic universal data approximation algorithms (k-means, principal components, principal manifolds and graphs, regularized and sparse regression), based on piece-wise quadratic error potentials of subquadratic growth (PQSQ potentials). We develop a new and universal framework to minimize arbitrary sub-quadratic error potentials using an algorithm with guaranteed fast convergence to the local or global error minimum. The theory of PQSQ potentials is based on the notion of the cone of minorant functions, and represents a natural approximation formalism based on the application of min-plus algebra. The approach can be applied in most of existing machine learning methods, including methods of data approximation and regularized and sparse regression, leading to the improvement in the computational cost/accuracy trade-off. We demonstrate that on synthetic and real-life datasets PQSQ-based machine learning methods achieve orders of magnitude faster computational performance than the corresponding state-of-the-art methods, having similar or better approximation accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Very Fast Losses of the Circulating LHC Beam, their Mitigation and Machine Protection

    CERN Document Server

    Baer, Tobias; Elsen, Eckhard

    The Large Hadron Collider (LHC) has a nominal energy of 362MJ stored in each of its two counter-rotating beams - over two orders of magnitude more than any previous accelerator and enough to melt 880kg of copper. Therefore, in case of abnormal conditions comprehensive machine protection systems extract the beams safely from the LHC within not more than three turns $\\approx$270$\\mu$s. The first years of LHC operation demonstrated a remarkable reliability of the major machine protection systems. However, they also showed that the LHC is vulnerable to losses of the circulating beams on very fast timescales, which are too fast to ensure an active protection. Very fast equipment failures, in particular of normal-conducting dipole magnets and the transverse damper can lead to such beam losses. Whereas these failures were already studied in the past, other unexpected beam loss mechanisms were observed after the LHC start-up: so-called (un)identified falling objects (UFOs), which are believed to be micrometer-sized m...

  12. Design Method for Fast Switching Seat Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.;

    2014-01-01

    Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... operation, where switching times must be performed within a few milliseconds. These valve requirements make a simulation based design approach essential, where mechanical strength, thermal dissipation, fluid dynamics and electro-magnetic dynamics must be taken into account. In this paper a complete design...... of the valves. A coupled optimization is finally conducted to optimize the electro-magnetic actuator, leading to a valve design based on the chosen valve topology. The design method is applied to an example DD machine and the resulting valve design fulfilling the requirements is presented....

  13. Design Method for Fast Switching Seat Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.

    2014-01-01

    Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... operation, where switching times must be performed within a few milliseconds. These valve requirements make a simulation based design approach essential, where mechanical strength, thermal dissipation, fluid dynamics and electro-magnetic dynamics must be taken into account. In this paper a complete design...... of the valves. A coupled optimization is finally conducted to optimize the electro-magnetic actuator, leading to a valve design based on the chosen valve topology. The design method is applied to an example DD machine and the resulting valve design fulfilling the requirements is presented....

  14. Measuring drift velocity and electric field in mirror machine by fast photography

    Science.gov (United States)

    Be'ery, I.; Seemann, O.; Fruchtman, A.; Fisher, A.; Nemirovsky, J.

    2013-02-01

    The flute instability in mirror machines is driven by spatial charge accumulation and the resulting E × B plasma drift. On the other hand, E × B drift due to external electrodes or coils can be used as a stabilizing feedback mechanism. Fast photography is used to visualize Hydrogen plasma in a small mirror machine and infer the plasma drift and the internal electric field distribution. Using incompressible flow and monotonic decay assumptions we obtain components of the velocity field from the temporal evolution of the plasma cross section. The electric field perpendicular to the density gradient is then deduced from E=-V × B. With this technique we analyzed the electric field of flute perturbations and the field induced by electrodes immersed in the plasma.

  15. Phase Space Prediction of Chaotic Time Series with Nu-Support Vector Machine Regression

    Institute of Scientific and Technical Information of China (English)

    YE Mei-Ying; WANG Xiao-Dong

    2005-01-01

    A new class of support vector machine, nu-support vector machine, is discussed which can handle both classification and regression. We focus on nu-support vector machine regression and use it for phase space prediction of compares nu-support vector machine with back propagation (BP) networks in order to better evaluate the performance of the proposed methods. The experimental results show that the nu-support vector machine regression obtains lower root mean squared error than the BP networks and provides an accurate chaotic time series prediction. These results can be attributable to the fact that nu-support vector machine implements the structural risk minimization principle and this leads to better generalization than the BP networks.

  16. Reinforced Extreme Learning Machines for Fast Robust Regression in the Presence of Outliers.

    Science.gov (United States)

    Frenay, Benoit; Verleysen, Michel

    2016-12-01

    Extreme learning machines (ELMs) are fast methods that obtain state-of-the-art results in regression. However, they are not robust to outliers and their meta-parameter (i.e., the number of neurons for standard ELMs and the regularization constant of output weights for L2 -regularized ELMs) selection is biased by such instances. This paper proposes a new robust inference algorithm for ELMs which is based on the pointwise probability reinforcement methodology. Experiments show that the proposed approach produces results which are comparable to the state of the art, while being often faster.

  17. Support vector machine for day ahead electricity price forecasting

    Science.gov (United States)

    Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti

    2015-05-01

    Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.

  18. Prediction of cell penetrating peptides by support vector machines.

    Directory of Open Access Journals (Sweden)

    William S Sanders

    2011-07-01

    Full Text Available Cell penetrating peptides (CPPs are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs. We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.

  19. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of roof support using mining machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters...

  20. Biologically relevant neural network architectures for support vector machines.

    Science.gov (United States)

    Jändel, Magnus

    2014-01-01

    Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Support Vector Machine Classification of Drunk Driving Behaviour

    Science.gov (United States)

    Chen, Huiqin; Chen, Lei

    2017-01-01

    Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R–R intervals (SDNN), the root mean square value of the difference of the adjacent R–R interval series (RMSSD), low frequency (LF), high frequency (HF), the ratio of the low and high frequencies (LF/HF), and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  2. Support Vector Machine Classification of Drunk Driving Behaviour

    Directory of Open Access Journals (Sweden)

    Huiqin Chen

    2017-01-01

    Full Text Available Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R–R intervals (SDNN, the root mean square value of the difference of the adjacent R–R interval series (RMSSD, low frequency (LF, high frequency (HF, the ratio of the low and high frequencies (LF/HF, and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  3. Support Vector Machine Classification of Drunk Driving Behaviour.

    Science.gov (United States)

    Chen, Huiqin; Chen, Lei

    2017-01-23

    Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R-R intervals (SDNN), the root mean square value of the difference of the adjacent R-R interval series (RMSSD), low frequency (LF), high frequency (HF), the ratio of the low and high frequencies (LF/HF), and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  4. Research on Application of Regression Least Squares Support Vector Machine on Performance Prediction of Hydraulic Excavator

    Directory of Open Access Journals (Sweden)

    Zhan-bo Chen

    2014-01-01

    Full Text Available In order to improve the performance prediction accuracy of hydraulic excavator, the regression least squares support vector machine is applied. First, the mathematical model of the regression least squares support vector machine is studied, and then the algorithm of the regression least squares support vector machine is designed. Finally, the performance prediction simulation of hydraulic excavator based on regression least squares support vector machine is carried out, and simulation results show that this method can predict the performance changing rules of hydraulic excavator correctly.

  5. A Machine Learning Classifier for Fast Radio Burst Detection at the VLBA

    CERN Document Server

    Wagstaff, Kiri L; Thompson, David R; Khudikyan, Shakeh; Wyngaard, Jane; Deller, Adam T; Palaniswamy, Divya; Tingay, Steven J; Wayth, Randall B

    2016-01-01

    Time domain radio astronomy observing campaigns frequently generate large volumes of data. Our goal is to develop automated methods that can identify events of interest buried within the larger data stream. The V-FASTR fast transient system was designed to detect rare fast radio bursts (FRBs) within data collected by the Very Long Baseline Array. The resulting event candidates constitute a significant burden in terms of subsequent human reviewing time. We have trained and deployed a machine learning classifier that marks each candidate detection as a pulse from a known pulsar, an artifact due to radio frequency interference, or a potential new discovery. The classifier maintains high reliability by restricting its predictions to those with at least 90% confidence. We have also implemented several efficiency and usability improvements to the V-FASTR web-based candidate review system. Overall, we found that time spent reviewing decreased and the fraction of interesting candidates increased. The classifier now c...

  6. Classification of Regional Ionospheric Disturbances Based on Support Vector Machines

    Science.gov (United States)

    Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil

    2016-07-01

    Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification

  7. Optimization of Filter by using Support Vector Regression Machine with Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    M. İlarslan

    2014-09-01

    Full Text Available Herein, a new methodology using a 3D Electromagnetic (EM simulator-based Support Vector Regression Machine (SVRM models of base elements is presented for band-pass filter (BPF design. SVRM models of elements, which are as fast as analytical equations and as accurate as a 3D EM simulator, are employed in a simple and efficient Cuckoo Search Algorithm (CSA to optimize an ultra-wideband (UWB microstrip BPF. CSA performance is verified by comparing it with other Meta-Heuristics such as Genetic Algorithm (GA and Particle Swarm Optimization (PSO. As an example of the proposed design methodology, an UWB BPF that operates between the frequencies of 3.1 GHz and 10.6 GHz is designed, fabricated and measured. The simulation and measurement results indicate in conclusion the superior performance of this optimization methodology in terms of improved filter response characteristics like return loss, insertion loss, harmonic suppression and group delay.

  8. Hardware support for software controlled fast reconfiguration of performance counters

    Science.gov (United States)

    Salapura, Valentina; Wisniewski, Robert W.

    2013-06-18

    Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.

  9. Hardware support for software controlled fast reconfiguration of performance counters

    Science.gov (United States)

    Salapura, Valentina; Wisniewski, Robert W

    2013-09-24

    Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.

  10. 基于最小二乘支持向量机的橄榄油掺杂拉曼快速鉴别方法%Fast Discrimination of Olive Oil Adulteration Based on Raman Spectra Using Least Squares Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    周秀军; 戴连奎

    2013-01-01

    提出了一种基于最小二乘支持向量机(LS-SVM)的橄榄油掺杂拉曼快速鉴别方法.首先,收集若干已知类别的橄榄油样作为训练样本,获取其拉曼谱图,并对其谱图进行预处理和波段选择,进而构建LSSVM分类器;对于未知类别的油样,获取其拉曼谱图,并进行相应的预处理和波段选择,由LSSVM分类器获得鉴别结果.实验以7种已知的特级初榨橄榄油为基础,分别掺入4种其它植物油(大豆油、菜籽油、玉米油、葵花籽油),获得112个掺杂油样.将全部样本随机分成训练集和测试集,对测试集样本的预测实验结果表明,本文方法能有效鉴别橄榄油掺杂,且掺杂量最低检测限为5%.与其它分类方法相比,LSSVM分类法具有最佳的分类性能.该方法快速、简便,为橄榄油掺杂鉴别提供了一种全新的方法.%A fast discrimination method to olive oil adulteration based on Raman spectra using least squares support vector machine LSSVM was presented.Firstly,some known class olive oil samples were chosen randomly as training samples and their original Raman spectra were obtained,then a pretreatment and band selection were made for those spectra,and then,the LSSVM classifier was built.Secondly,for the Raman spectra of unknown test samples,the same pretreatment and band selection were used.Finally,the discrimination results were attained through the LSSVM classifier.The experiment was based on seven known Extra virgin olive oil and 112 adulterated samples were acquired by mixing four other vegetable oils (soybean,rapeseed,corn and sunflower oil) into the basic oils.The whole samples were divided into training test and testing test randomly,the test result shows that this method was able to discriminate olive oil adulteration and the lowest detection limit of the doping amount was 5 %.Compared with other classification methods,LSSVM classifier has the best classification performance.The above method provided a new

  11. Incremental Support Vector Machine Framework for Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuichi Motai

    2007-01-01

    Full Text Available Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.

  12. Spatio-temporal avalanche forecasting with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    A. Pozdnoukhov

    2011-02-01

    Full Text Available This paper explores the use of the Support Vector Machine (SVM as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

  13. Cavitation detection of butterfly valve using support vector machines

    Science.gov (United States)

    Yang, Bo-Suk; Hwang, Won-Woo; Ko, Myung-Han; Lee, Soo-Jong

    2005-10-01

    Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur, resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, monitoring of cavitation is of economic interest and is very important in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals acquired from butterfly valves in the pumping stations. And the classification success rate is compared with that of self-organizing feature map neural network (SOFM).

  14. Nonlinear structural damage detection using support vector machines

    Science.gov (United States)

    Xiao, Li; Qu, Wenzhong

    2012-04-01

    An actual structure including connections and interfaces may exist nonlinear. Because of many complicated problems about nonlinear structural health monitoring (SHM), relatively little progress have been made in this aspect. Statistical pattern recognition techniques have been demonstrated to be competitive with other methods when applied to real engineering datasets. When a structure existing 'breathing' cracks that open and close under operational loading may cause a linear structural system to respond to its operational and environmental loads in a nonlinear manner nonlinear. In this paper, a vibration-based structural health monitoring when the structure exists cracks is investigated with autoregressive support vector machine (AR-SVM). Vibration experiments are carried out with a model frame. Time-series data in different cases such as: initial linear structure; linear structure with mass changed; nonlinear structure; nonlinear structure with mass changed are acquired.AR model of acceleration time-series is established, and different kernel function types and corresponding parameters are chosen and compared, which can more accurate, more effectively locate the damage. Different cases damaged states and different damage positions have been recognized successfully. AR-SVM method for the insufficient training samples is proved to be practical and efficient on structure nonlinear damage detection.

  15. River flow time series using least squares support vector machines

    Science.gov (United States)

    Samsudin, R.; Saad, P.; Shabri, A.

    2011-06-01

    This paper proposes a novel hybrid forecasting model known as GLSSVM, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM). The GMDH is used to determine the useful input variables which work as the time series forecasting for the LSSVM model. Monthly river flow data from two stations, the Selangor and Bernam rivers in Selangor state of Peninsular Malaysia were taken into consideration in the development of this hybrid model. The performance of this model was compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA), GMDH and LSSVM models using the long term observations of monthly river flow discharge. The root mean square error (RMSE) and coefficient of correlation (R) are used to evaluate the models' performances. In both cases, the new hybrid model has been found to provide more accurate flow forecasts compared to the other models. The results of the comparison indicate that the new hybrid model is a useful tool and a promising new method for river flow forecasting.

  16. Voice Activity Detection Using Fuzzy Entropy and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Johny Elton

    2016-08-01

    Full Text Available This paper proposes support vector machine (SVM based voice activity detection using FuzzyEn to improve detection performance under noisy conditions. The proposed voice activity detection (VAD uses fuzzy entropy (FuzzyEn as a feature extracted from noise-reduced speech signals to train an SVM model for speech/non-speech classification. The proposed VAD method was tested by conducting various experiments by adding real background noises of different signal-to-noise ratios (SNR ranging from −10 dB to 10 dB to actual speech signals collected from the TIMIT database. The analysis proves that FuzzyEn feature shows better results in discriminating noise and corrupted noisy speech. The efficacy of the SVM classifier was validated using 10-fold cross validation. Furthermore, the results obtained by the proposed method was compared with those of previous standardized VAD algorithms as well as recently developed methods. Performance comparison suggests that the proposed method is proven to be more efficient in detecting speech under various noisy environments with an accuracy of 93.29%, and the FuzzyEn feature detects speech efficiently even at low SNR levels.

  17. Support Vector Machine Ensemble Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Ye; YIN Ru-po; CAI Yun-ze; XU Xiao-ming

    2006-01-01

    Support vector machines (SVMs) have been introduced as effective methods for solving classification problems.However, due to some limitations in practical applications,their generalization performance is sometimes far from the expected level. Therefore, it is meaningful to study SVM ensemble learning. In this paper, a novel genetic algorithm based ensemble learning method, namely Direct Genetic Ensemble (DGE), is proposed. DGE adopts the predictive accuracy of ensemble as the fitness function and searches a good ensemble from the ensemble space. In essence, DGE is also a selective ensemble learning method because the base classifiers of the ensemble are selected according to the solution of genetic algorithm. In comparison with other ensemble learning methods, DGE works on a higher level and is more direct. Different strategies of constructing diverse base classifiers can be utilized in DGE.Experimental results show that SVM ensembles constructed by DGE can achieve better performance than single SVMs,bagged and boosted SVM ensembles. In addition, some valuable conclusions are obtained.

  18. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    Directory of Open Access Journals (Sweden)

    Jianzhao Qin

    2007-07-01

    Full Text Available As an emerging technology, brain-computer interfaces (BCIs bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM algorithm for brain-computer interface (BCI systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm.

  19. A Reformulation of Support Vector Machines for General Confidence Functions

    Science.gov (United States)

    Guo, Yuhong; Schuurmans, Dale

    We present a generalized view of support vector machines that does not rely on a Euclidean geometric interpretation nor even positive semidefinite kernels. We base our development instead on the confidence matrix—the matrix normally determined by the direct (Hadamard) product of the kernel matrix with the label outer-product matrix. It turns out that alternative forms of confidence matrices are possible, and indeed useful. By focusing on the confidence matrix instead of the underlying kernel, we can derive an intuitive principle for optimizing example weights to yield robust classifiers. Our principle initially recovers the standard quadratic SVM training criterion, which is only convex for kernel-derived confidence measures. However, given our generalized view, we are then able to derive a principled relaxation of the SVM criterion that yields a convex upper bound. This relaxation is always convex and can be solved with a linear program. Our new training procedure obtains similar generalization performance to standard SVMs on kernel-derived confidence functions, but achieves even better results with indefinite confidence functions.

  20. Classification of Cotton Leaf Spot Disease Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Prof. Sonal P. Patil

    2014-05-01

    Full Text Available In order to obtain more value added products, a product quality control is essentially required Many studies show that quality of agriculture products may be reduced from many causes. One of the most important factors of such quality plant diseases. Consequently, minimizing plant diseases allows substantially improving quality of the product Suitable diagnosis of crop disease in the field is very critical for the increased production. Foliar is the major important fungal disease of cotton and occurs in all growing Indian cotton regions. In this paper I express Technological Strategies uses mobile captured symptoms of Cotton Leaf Spot images and categorize the diseases using support vector machine. The classifier is being trained to achieve intelligent farming, including early detection of disease in the groves, selective fungicide application, etc. This proposed work is based on Segmentation techniques in which, the captured images are processed for enrichment first. Then texture and color Feature extraction techniques are used to extract features such as boundary, shape, color and texture for the disease spots to recognize diseases.

  1. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    Science.gov (United States)

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

    Directory of Open Access Journals (Sweden)

    Fang Su

    2013-01-01

    Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.

  3. Kernel Learning in Support Vector Machines using Dual-Objective Optimization

    NARCIS (Netherlands)

    Pietersma, Auke-Dirk; Schomaker, Lambertus; Wiering, Marco

    2011-01-01

    Support vector machines (SVMs) are very popular methods for solving classification problems that require mapping input features to target labels. When dealing with real-world data sets, the different classes are usually not linearly separable, and therefore support vector machines employ a particula

  4. Profiled support vector machines for antisense oligonucleotide efficacy prediction

    Directory of Open Access Journals (Sweden)

    Martín-Guerrero José D

    2004-09-01

    Full Text Available Abstract Background This paper presents the use of Support Vector Machines (SVMs for prediction and analysis of antisense oligonucleotide (AO efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1 feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE, and (2 AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions. Results In the first stage, the SVM-RFE technique was most efficient and robust in the presence of low number of samples and high input space dimension. This method yielded an optimal subset of 14 representative features, which were all related to energy and sequence motifs. The second stage evaluated the performance of the predictors (overall correlation coefficient between observed and predicted efficacy, r; mean error, ME; and root-mean-square-error, RMSE using 8-fold and minus-one-RNA cross-validation methods. The profiled SVM produced the best results (r = 0.44, ME = 0.022, and RMSE= 0.278 and predicted high (>75% inhibition of gene expression and low efficacy (http://aosvm.cgb.ki.se/. Conclusions The SVM approach is well suited to the AO prediction problem, and yields a prediction accuracy superior to previous methods. The profiled SVM was found to perform better than the standard SVM, suggesting that it could lead to improvements in other prediction problems as well.

  5. CLOUD DETECTION OF OPTICAL SATELLITE IMAGES USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    K.-Y. Lee

    2016-06-01

    Full Text Available Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012 uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate

  6. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    Science.gov (United States)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  7. GA-Based Autonomous Design of Robust Fast and Precise Positioning Considering Machine Stand Vibration Suppression

    Science.gov (United States)

    Ito, Kazuaki; Nagata, Ryo; Iwasaki, Makoto; Matsui, Nobuyuki

    This paper presents a novel Genetic Algorithm (GA)-based autonomous compensator design and position command shaping considering the stand vibration suppression for the fast-response and high-precision positioning of mechatronic systems. The positioning system is mainly composed of a robust 2-degrees-of-freedom (2DOF) controller based on the coprime factorization description. The feedback compensator based on H∞ design framework in the 2DOF controller ensures the robustness against the variations of resonant vibration mode. The feedforward compensator and position command, on the other hand, can be autonomously designed by the optimization capability of GA, in order to achieve the desired positioning performance and to suppress the machine stand vibration. The effectiveness of the proposed optimal design has been verified by experiments using a table drive system with ball screw.

  8. Vessel and In-Vessel Components Design Upgrade of the FAST machine

    Energy Technology Data Exchange (ETDEWEB)

    Crescenzi, F., E-mail: fabio.crescenzi@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Roccella, S.; Brolatti, G. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Cao, L. [Institute of Plasma Physics, Chinese Academy of Science, Shushanhu Road 350, Hefei 230031 (China); Crisanti, F.; Cucchiaro, A. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Di Gironimo, G.; Labate, C. [Association Euratom/ENEA/CREATE, DiME, Università Federico II di Napoli, 80125 Napoli (Italy); Lucca, F. [LT Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Maddaluno, G.; Ramogida, G. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Renno, F. [Association Euratom/ENEA/CREATE, DiME, Università Federico II di Napoli, 80125 Napoli (Italy)

    2013-10-15

    Highlights: • One of the most important part of the FAST machine is the Divertor and many efforts have been made to improve the design, the mock-ups manufacturing and so on. • This work deals with the design analysis of the Divertor to help and suggest indications for the mock-ups manufacturing. • The data coming from the results confirm many experimental data, then it could be very useful for the future design optimization. -- Abstract: The Fusion Advanced Study Torus (FAST), with its compact Tokamak design, high toroidal field and plasma current, will face many of the problems that ITER will meet and will anticipate many DEMO relevant physics and technology issues. The Design Upgrade of the Vessel and In-Vessel Components is presented in this paper. Relevant modifications were performed to the Vacuum Vessel (VV) and to the Plasma Facing Components (PFCs), i.e. the First Wall (FW) and the Divertor. The VV was modified to insert active reduction coils (ARC), between VV and the toroidal field (TF) coils to keep toroidal field magnet ripple lower than 0.3% and to allow Remote Handling for the FW and the Divertor. The FW, was modified to house coils for ELMs control and other plasma instabilities. A 3D thermo-hydraulic analysis using ANSYS code was performed to check FW heat removal capability. A new Divertor was designed to withstand the largest thermal loads of the high performance, low density, H-mode and to be able to comply with a recent magnetic topology called as “Snow Flake”, increasing up a factor 4 the flux expansion. An exhaustive 3D thermo-hydraulic analysis using ANSYS code was carried out to show the capability of the Divertor to comply these high requirements. Design criteria were satisfied by present components of the upgraded machine.

  9. Scenario Machine: Fast Radio Bursts, Short GRB, Dark Energy and LIGO silence

    Science.gov (United States)

    Pruzhinskaya, Maria; Lipunov, Vladimir

    We discuss the recently reported discovery of fast radio bursts (FRBs) in the frame- work of the neutron star-neutron star (NS+NS) or neutron star-black hole (NS+BH) binary merger model. We concentrate on what we consider to be an issue of greatest im- portance: what is the NS merger rate given that the FRB rate (1/1000 yr (-1) per galaxy) is inconsistent with gamma-ray burst rate as discussed by Thornton and should be significantly higher. We show that there is no discrepancy between NS merger rate and observed FRB rates in the framework of the Scenario Machine population syn- thesis - for a kick velocity of 100-150 km s (-1) an average NS merger rate is 1/500- 1/2000 yr (-1) per galaxy up to z = 0.5-1. Based on the Scenario Machine NS merger rate estimates, we discuss the lack of positive detections on the ground-based interferom- eters, considering the LIGO (Laser Interferometer Gravitational-wave Observatory).

  10. Support vector machines for TEC seismo-ionospheric anomalies detection

    Directory of Open Access Journals (Sweden)

    M. Akhoondzadeh

    2013-02-01

    Full Text Available Using time series prediction methods, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the predefined threshold value. Support Vector Machines (SVMs are widely used due to their many advantages for classification and regression tasks. This study is concerned with investigating the Total Electron Content (TEC time series by using a SVM to detect seismo-ionospheric anomalous variations induced by the three powerful earthquakes of Tohoku (11 March 2011, Haiti (12 January 2010 and Samoa (29 September 2009. The duration of TEC time series dataset is 49, 46 and 71 days, for Tohoku, Haiti and Samoa earthquakes, respectively, with each at time resolution of 2 h. In the case of Tohoku earthquake, the results show that the difference between the predicted value obtained from the SVM method and the observed value reaches the maximum value (i.e., 129.31 TECU at earthquake time in a period of high geomagnetic activities. The SVM method detected a considerable number of anomalous occurrences 1 and 2 days prior to the Haiti earthquake and also 1 and 5 days before the Samoa earthquake in a period of low geomagnetic activities. In order to show that the method is acting sensibly with regard to the results extracted during nonevent and event TEC data, i.e., to perform some null-hypothesis tests in which the methods would also be calibrated, the same period of data from the previous year of the Samoa earthquake date has been taken into the account. Further to this, in this study, the detected TEC anomalies using the SVM method were compared to the previous results (Akhoondzadeh and Saradjian, 2011; Akhoondzadeh, 2012 obtained from the mean, median, wavelet and Kalman filter methods. The SVM detected anomalies are similar to those detected using the previous methods. It can be concluded that SVM can be a suitable learning method

  11. Smart dynamic software components enabling decision support in Machine-to-machine networks

    Directory of Open Access Journals (Sweden)

    Alexander Dannies

    2013-01-01

    Full Text Available The future Internet of Things will be extended by machine-to-machine communication technologies in order to include sensor information. The overwhelming amount of data will require autonomous decision making processes which are directly executed at the location where data is generated or measured. An intelligent sensor system needs to be able to adapt to new parameters in its surrounding unknown at the time of deployment. In our paper we show that Java enables software updates on mobile devices and also that it is possible to run algorithms required for decision making processes on wireless sensor platforms based on Java.

  12. A Machine Learning Classifier for Fast Radio Burst Detection at the VLBA

    Science.gov (United States)

    Wagstaff, Kiri L.; Tang, Benyang; Thompson, David R.; Khudikyan, Shakeh; Wyngaard, Jane; Deller, Adam T.; Palaniswamy, Divya; Tingay, Steven J.; Wayth, Randall B.

    2016-08-01

    Time domain radio astronomy observing campaigns frequently generate large volumes of data. Our goal is to develop automated methods that can identify events of interest buried within the larger data stream. The V-FASTR fast transient system was designed to detect rare fast radio bursts within data collected by the Very Long Baseline Array. The resulting event candidates constitute a significant burden in terms of subsequent human reviewing time. We have trained and deployed a machine learning classifier that marks each candidate detection as a pulse from a known pulsar, an artifact due to radio frequency interference, or a potential new discovery. The classifier maintains high reliability by restricting its predictions to those with at least 90% confidence. We have also implemented several efficiency and usability improvements to the V-FASTR web-based candidate review system. Overall, we found that time spent reviewing decreased and the fraction of interesting candidates increased. The classifier now classifies (and therefore filters) 80%-90% of the candidates, with an accuracy greater than 98%, leaving only the 10%-20% most promising candidates to be reviewed by humans.

  13. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    Science.gov (United States)

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-15

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  14. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Han Zou

    2015-01-01

    Full Text Available Nowadays, developing indoor positioning systems (IPSs has become an attractive research topic due to the increasing demands on location-based service (LBS in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  15. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    Science.gov (United States)

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  16. Towards a Tool for Computer Supported Configuring of Machine Systems

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp

    1996-01-01

    An engineering designer designing a product determines not only the product's component structure, but also a set of different structures which carry product behaviour and performance and make the product suited for its life phases. Whereas the nature of the elements of a machine system is fairly...

  17. Prediction of protein binding sites in protein structures using hidden Markov support vector machine

    Directory of Open Access Journals (Sweden)

    Lin Lei

    2009-11-01

    Full Text Available Abstract Background Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. Recent research on protein binding site prediction has been mainly based on widely known machine learning techniques, such as artificial neural networks, support vector machines, conditional random field, etc. However, the prediction performance is still too low to be used in practice. It is necessary to explore new algorithms, theories and features to further improve the performance. Results In this study, we introduce a novel machine learning model hidden Markov support vector machine for protein binding site prediction. The model treats the protein binding site prediction as a sequential labelling task based on the maximum margin criterion. Common features derived from protein sequences and structures, including protein sequence profile and residue accessible surface area, are used to train hidden Markov support vector machine. When tested on six data sets, the method based on hidden Markov support vector machine shows better performance than some state-of-the-art methods, including artificial neural networks, support vector machines and conditional random field. Furthermore, its running time is several orders of magnitude shorter than that of the compared methods. Conclusion The improved prediction performance and computational efficiency of the method based on hidden Markov support vector machine can be attributed to the following three factors. Firstly, the relation between labels of neighbouring residues is useful for protein binding site prediction. Secondly, the kernel trick is very advantageous to this field. Thirdly, the complexity of the training step for hidden Markov support vector machine is linear with the number of training samples by using the cutting-plane algorithm.

  18. Scaling Support Vector Machines On Modern HPC Platforms

    Energy Technology Data Exchange (ETDEWEB)

    You, Yang; Fu, Haohuan; Song, Shuaiwen; Randles, Amanda; Kerbyson, Darren J.; Marquez, Andres; Yang, Guangwen; Hoisie, Adolfy

    2015-02-01

    We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.

  19. CLASSIFICATION OF GEAR FAULTS USING HIGHER-ORDER STATISTICS AND SUPPORT VECTOR MACHINES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Gears alternately mesh and detach in driving process, and then working conditions of gears are alternately changing, so they are easy to be spalled and worn. But because of the effect of additive gaussian measurement noises, the signal-to-noises ratio is low; their fault features are difficult to extract. This study aims to propose an approach of gear faults classification,using the cumulants and support vector machines. The cumulants can eliminate the additive gaussian noises, boost the signal-to-noises ratio. Generalisation of support vector machines as classifier, which is employed structural risk minimisation principle, is superior to that of conventional neural networks, which is employed traditional empirical risk minimisation principle. Support vector machines as the classifier, and the third and fourth order cumulants as input, gears faults are successfully recognized. The experimental results show that the method of fault classification combining cumulants with support vector machines is very effective.

  20. Protein domain boundary prediction by combining support vector machine and domain guess by size algorithm

    Institute of Scientific and Technical Information of China (English)

    Dong Qiwen; Wang Xiaolong; Lin Lei

    2007-01-01

    Successful prediction of protein domain boundaries provides valuable information not only for the computational structure prediction of multi-domain proteins but also for the experimental structure determination. A novel method for domain boundary prediction has been presented, which combines the support vector machine with domain guess by size algorithm. Since the evolutional information of multiple domains can be detected by position specific score matrix, the support vector machine method is trained and tested using the values of position specific score matrix generated by PSI-BLAST. The candidate domain boundaries are selected from the output of support vector machine, and are then inputted to domain guess by size algorithm to give the final results of domain boundary prediction. The experimental results show that the combined method outperforms the individual method of both support vector machine and domain guess by size.

  1. Mass detection algorithm based on support vector machine and relevance feedback

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Xinbo GAO

    2008-01-01

    To improve the detection of mass with appearance that borders on the similarity between mass and density tissues in the breast,an support vector machine classifier based on typical features iS designed to classify the region of interest(ROI).Furthermore,relevance feedback is introduced to improve the performance of support vector machines.A new mass detection scheme based on the support vector machine and the relevance feedback is proposed.Simulation experiments on mammograms illustrate that the novel support vector machine classifier based on typical features can improve the detection performance of the featureless classifier by 5%,while the introduction of relevance feedback can further improve the detection performance to about 90%.

  2. Aero-engine fault diagnosis applying new fast support vector algorithm

    Institute of Scientific and Technical Information of China (English)

    XU Qi-hua; GENG Shuai; SHI Jun

    2012-01-01

    A new fast learning algorithm was presented to solve the large-scale support vector machine ( SVM ) training problem of aero-engine fault diagnosis.The relative boundary vectors ( RBVs ) instead of all the original training samples were used for the training of the binary SVM fault classifiers.This pruning strategy decreased the number of final training sample significantly and can keep classification accuracy almost invariable.Accordingly , the training time was shortened to 1 / 20compared with basic SVM classifier.Meanwhile , owing to the reduction of support vector number , the classification time was also reduced.When sample aliasing existed , the aliasing sample points which were not of the same class were eliminated before the relative boundary vectors were computed.Besides , the samples near the relative boundary vectors were selected for SVM training in order to prevent the loss of some key sample points resulted from aliasing.This can improve classification accuracy effectively.A simulation example to classify 5classes of combination fault of aero-engine gas path components was finished and the total fault classification accuracy reached 96.1%.Simulation results show that this fast learning algorithm is effective , reliable and easy to be implemented for engineering application.

  3. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    Science.gov (United States)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2016-12-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  4. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    Science.gov (United States)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2017-07-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  5. Particle Filter with Binary Gaussian Weighting and Support Vector Machine for Human Pose Interpretation

    OpenAIRE

    Indah Agustien; Muhammad Rahmat Widyanto; Sukmawati Endah; Tarzan Basaruddin

    2010-01-01

    Human pose interpretation using Particle filter with Binary Gaussian Weighting and Support Vector Machine is proposed. In the proposed system, Particle filter is used to track human object, then this human object is skeletonized using thinning algorithm and classified using Support Vector Machine. The classification is to identify human pose, whether a normal or abnormal behavior. Here Particle filter is modified through weight calculation using Gaussiandistribution to reduce t...

  6. Chaotic time series prediction using mean-field theory for support vector machine

    Institute of Scientific and Technical Information of China (English)

    Cui Wan-Zhao; Zhu Chang-Chun; Bao Wen-Xing; Liu Jun-Hua

    2005-01-01

    This paper presents a novel method for predicting chaotic time series which is based on the support vector machines approach, and it uses the mean-field theory for developing an easy and efficient learning procedure for the support vector machine. The proposed method approximates the distribution of the support vector machine parameters to a Gaussian process and uses the mean-field theory to estimate these parameters easily, and select the weights of the mixture of kernels used in the support vector machine estimation more accurately and faster than traditional quadratic programming-based algorithms. Finally, relationships between the embedding dimension and the predicting performance of this method are discussed, and the Mackey-Glass equation is applied to test this method. The stimulations show that the mean-field theory for support vector machine can predict chaotic time series accurately, and even if the embedding dimension is unknown, the predicted results are still satisfactory. This result implies that the mean-field theory for support vector machine is a good tool for studying chaotic time series.

  7. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  8. Coordinated machine learning and decision support for situation awareness.

    Energy Technology Data Exchange (ETDEWEB)

    Draelos, Timothy John; Zhang, Peng-Chu.; Wunsch, Donald C. (University of Missouri, Rolla, MO); Seiffertt, John (University of Missouri, Rolla, MO); Conrad, Gregory N.; Brannon, Nathan Gregory

    2007-09-01

    For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator's input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario.

  9. Execution time support for scientific programs on distributed memory machines

    Science.gov (United States)

    Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey

    1990-01-01

    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.

  10. Hardware support for software controlled fast multiplexing of performance counters

    Science.gov (United States)

    Salapura, Valentina; Wisniewski, Robert W.

    2013-01-01

    Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.

  11. Support vector machine method for forecasting future strong earthquakes in Chinese mainland

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Statistical learning theory is for small-sample statistics. And support vector machine is a new machine learning method based on the statistical learning theory. The support vector machine not only has solved certain problems in many learning methods, such as small sample, over fitting, high dimension and local minimum, but also has a higher generalization (forecasting) ability than that of artificial neural networks. The strong earthquakes in Chinese mainland are related to a certain extent to the intensive seismicity along the main plate boundaries in the world,however, the relation is nonlinear. In the paper, we have studied this unclear relation by the support vector machine method for the purpose of forecasting strong earthquakes in Chinese mainland.

  12. Simulation and Experimental Testing of an Actuator for a Fast Switching On-Off Valve Suitable to Efficient Displacement Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Bech, Michael Møller

    2014-01-01

    for the valve design process. In this paper simulation of such fast switching valve is presented and the transient actuator performance is experimentally validated against transient Finite Element Analysis (FEA). Models predict a switching time of approximately 1ms for the valve and a pressure loss of 0.5 bar......Digital Displacement (DD) fluid power machines are upcoming technology, improving the efficiency compared to traditional variable displacement machines, especially at low displacements where currently available fluid power pumps/motors suffer from mediocre efficiency. This efficiency improvement...

  13. Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine

    Science.gov (United States)

    Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung

    Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.

  14. [Comparative Efficiency of Algorithms Based on Support Vector Machines for Regression].

    Science.gov (United States)

    Kadyrova, N O; Pavlova, L V

    2015-01-01

    Methods of construction of support vector machines do not require additional a priori information and can be used to process large scale data set. It is especially important for various problems in computational biology. The main set of algorithms of support vector machines for regression is presented. The comparative efficiency of a number of support-vector-algorithms for regression is investigated. A thorough analysis of the study results found the most efficient support vector algorithms for regression. The description of the presented algorithms, sufficient for their practical implementation is given.

  15. Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.

  16. Off-Line Signature Authentication Based on Moment Invariants Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    k. R. Radhika

    2010-01-01

    Full Text Available Problem statement: The research addressed the computational load reduction in off-line signature verification based on minimal features using bayes classifier, fast Fourier transform, linear discriminant analysis, principal component analysis and support vector machine approaches. Approach: The variation of signature in genuine cases is studied extensively, to predict the set of quad tree components in a genuine sample for one person with minimum variance criteria. Using training samples, with a high degree of certainty the Minimum Variance Quad tree Components (MVQC of a signature for a person are listed to apply on imposter sample. First, Hu moment is applied on the selected subsections. The summation values of the subsections are provided as feature to classifiers. Results: Results showed that the SVM classifier yielded the most promising 8% False Rejection Rate (FRR and 10% False Acceptance Rate (FAR. The signature is a biometric, where variations in a genuine case, is a natural expectation. In the genuine signature, certain parts of signature vary from one instance to another. Conclusion: The proposed system aimed to provide simple, faster robust system using less number of features when compared to state of art works.

  17. Variance inflation in high dimensional Support Vector Machines

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2013-01-01

    Many important machine learning models, supervised and unsupervised, are based on simple Euclidean distance or orthogonal projection in a high dimensional feature space. When estimating such models from small training sets we face the problem that the span of the training data set input vectors...... is not the full input space. Hence, when applying the model to future data the model is effectively blind to the missed orthogonal subspace. This can lead to an inflated variance of hidden variables estimated in the training set and when the model is applied to test data we may find that the hidden variables...... follow a different probability law with less variance. While the problem and basic means to reconstruct and deflate are well understood in unsupervised learning, the case of supervised learning is less well understood. We here investigate the effect of variance inflation in supervised learning including...

  18. Design and Development of Decision Support System for Equipping Farm Machines

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-06-01

    Full Text Available Equipping farm machines is the key link of agricultural production process. The decision support system of equipping farm machines is able to aid managers to make scientific and effective decision. In this paper, the decision support system of equipping farm machines is designed and developed based on the related theories and the thought of prototype. The system chooses Delphi 7.0 as development language, and uses three classic equipping methods to establish system models. For the complex linear programming model, firstly it is established by M-file of Matlab, then COM components are generated; finally Delphi calls the COM components to solve. The database of the system is established and managed by SQL Server 2005. It can be seen from the result of the system application study that the system could assist users to equip farm machines more scientifically and dynamically

  19. An Approach with Support Vector Machine using Variable Features Selection on Breast Cancer Prognosis

    Directory of Open Access Journals (Sweden)

    Sandeep Chaurasia

    2013-09-01

    Full Text Available Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of machine learning. In this paper we have used an approach by using support vector machine classifier to construct a model that is useful for the breast cancer survivability prediction. We have used both 5 cross and 10 cross validation of variable selection on input feature vectors and the performance measurement through bio-learning class performance while measuring AUC, specificity and sensitivity. The performance of the SVM is much better than the other machine learning classifier.

  20. Performance and optimization of support vector machines in high-energy physics classification problems

    Science.gov (United States)

    Sahin, M. Ö.; Krücker, D.; Melzer-Pellmann, I.-A.

    2016-12-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications.

  1. Support Vector Machine Learning-based fMRI Data Group Analysis*

    OpenAIRE

    Wang, Ze; Childress, Anna R.; Wang, Jiongjiong; Detre, John A.

    2007-01-01

    To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference be...

  2. [Comparative efficiency of algorithms based on support vector machines for binary classification].

    Science.gov (United States)

    Kadyrova, N O; Pavlova, L V

    2015-01-01

    Methods of construction of support vector machines require no further a priori infoimation and provide big data processing, what is especially important for various problems in computational biology. The question of the quality of learning algorithms is considered. The main algorithms of support vector machines for binary classification are reviewed and they were comparatively explored for their efficiencies. The critical analysis of the results of this study revealed the most effective support-vector-classifiers. The description of the recommended algorithms, sufficient for their practical implementation, is presented.

  3. Strategic Bidding for Electri city Markets Negotiation Using Support Vector Machines

    DEFF Research Database (Denmark)

    Pereira, Rafael; Sousa, Tiago; Pinto, Tiago

    2014-01-01

    . The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated...

  4. Data fusion for fault diagnosis using multi-class Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space.Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are processed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.

  5. Simulation and Prediction of Alkalinity in Sintering Process Based on Grey Least Squares Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    SONG Qiang; WANG Ai-min

    2009-01-01

    The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.

  6. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification

    Directory of Open Access Journals (Sweden)

    Wang Lily

    2008-07-01

    Full Text Available Abstract Background Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of gene expression microarray technology with several molecular signatures on their way toward clinical deployment. Use of the most accurate classification algorithms available for microarray gene expression data is a critical ingredient in order to develop the best possible molecular signatures for patient care. As suggested by a large body of literature to date, support vector machines can be considered "best of class" algorithms for classification of such data. Recent work, however, suggests that random forest classifiers may outperform support vector machines in this domain. Results In the present paper we identify methodological biases of prior work comparing random forests and support vector machines and conduct a new rigorous evaluation of the two algorithms that corrects these limitations. Our experiments use 22 diagnostic and prognostic datasets and show that support vector machines outperform random forests, often by a large margin. Our data also underlines the importance of sound research design in benchmarking and comparison of bioinformatics algorithms. Conclusion We found that both on average and in the majority of microarray datasets, random forests are outperformed by support vector machines both in the settings when no gene selection is performed and when several popular gene selection methods are used.

  7. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  8. Breast cancer diagnosis using level-set statistics and support vector machines.

    Science.gov (United States)

    Liu, Jianguo; Yuan, Xiaohui; Buckles, Bill P

    2008-01-01

    Breast cancer diagnosis based on microscopic biopsy images and machine learning has demonstrated great promise in the past two decades. Various feature selection (or extraction) and classification algorithms have been attempted with success. However, some feature selection processes are complex and the number of features used can be quite large. We propose a new feature selection method based on level-set statistics. This procedure is simple and, when used with support vector machines (SVM), only a small number of features is needed to achieve satisfactory accuracy that is comparable to those using more sophisticated features. Therefore, the classification can be completed in much shorter time. We use multi-class support vector machines as the classification tool. Numerical results are reported to support the viability of this new procedure.

  9. A Support Vector Machine-Based Dynamic Network for Visual Speech Recognition Applications

    Directory of Open Access Journals (Sweden)

    Mihaela Gordan

    2002-11-01

    Full Text Available Visual speech recognition is an emerging research field. In this paper, we examine the suitability of support vector machines for visual speech recognition. Each word is modeled as a temporal sequence of visemes corresponding to the different phones realized. One support vector machine is trained to recognize each viseme and its output is converted to a posterior probability through a sigmoidal mapping. To model the temporal character of speech, the support vector machines are integrated as nodes into a Viterbi lattice. We test the performance of the proposed approach on a small visual speech recognition task, namely the recognition of the first four digits in English. The word recognition rate obtained is at the level of the previous best reported rates.

  10. Application of support vector machine in the prediction of mechanical property of steel materials

    Institute of Scientific and Technical Information of China (English)

    Ling Wang; Zhichun Mu; Hui Guo

    2006-01-01

    The investigation of the influences of important parameters including steel chemical composition and hot rolling parameters on the mechanical properties of steel is a key for the systems that are used to predict mechanical properties. To improve the prediction accuracy, support vector machine was used to predict the mechanical properties of hot-rolled plain carbon steel Q235B. Support vector machine is a novel machine learning method, which is a powerful tool used to solve the problem characterized by small sample, nonlinearity, and high dimension with a good generalization performance. On the basis of the data collected from the supervisor of hotrolling process, the support vector regression algorithm was used to build prediction models, and the off-line simulation indicates that predicted and measured results are in good agreement.

  11. Small-time scale network traffic prediction based on a local support vector machine regression model

    Institute of Scientific and Technical Information of China (English)

    Meng Qing-Fang; Chen Yue-Hui; Peng Yu-Hua

    2009-01-01

    In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.

  12. DDoS detection based on wavelet kernel support vector machine

    Institute of Scientific and Technical Information of China (English)

    YANG Ming-hui; WANG Ru-chuan

    2008-01-01

    To enhance the detection accuracy and deduce false positive rate of distributed denial of service (DDoS) attack detection, a new machine learning method was proposed. With the analysis of support vector machine (SVM) and the wavelet kernel function theory, an admissive support vector kernel, which is a wavelet kernel constructed in this article, implements the combination of the wavelet technique with SVM. Then, wavelet support vector machine (WSVM) is applied to DDoS attack detections and as a classifying means to test the validity of the wavelet kernel function. Simulation experiments show that under the same conditions, the predictive ability of WSVM is improved and the computation burden is alleviated. The detection accuracy of WSVM is higher than the traditional SVM by about 4%, while its false positive is lower than the traditional SVM. Thus, for DDoS detections, WSVM shows better detection performance and is more adaptive to the changing network environment.

  13. Lithium-ion battery remaining useful life prediction based on grey support vector machines

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    2015-12-01

    Full Text Available In this article, an improved grey prediction model is proposed to address low-accuracy prediction issue of grey forecasting model. The first step is using a trigonometric function to transform the original data sequence to smooth the data, which is called smoothness of grey prediction model, and then a grey support vector machine model by integrating the improved grey model with support vector machine is introduced. At the initial stage of the model, trigonometric functions and accumulation generation operation can be used to preprocess the data, which enhances the smoothness of the data and reduces the associated randomness. In addition, support vector machine is implemented to establish a prediction model for the pre-processed data and select the optimal model parameters via genetic algorithms. Finally, the data are restored through the ‘regressive generate’ operation to obtain the forecasting data. To prove that the grey support vector machine model is superior to the other models, the battery life data from the Center for Advanced Life Cycle Engineering are selected, and the presented model is used to predict the remaining useful life of the battery. The predicted result is compared to that of grey model and support vector machines. For a more intuitive comparison of the three models, this article quantifies the root mean square errors for these three different models in the case of different ratio of training samples and prediction samples. The results show that the effect of grey support vector machine model is optimal, and the corresponding root mean square error is only 3.18%.

  14. A reliability assessment method based on support vector machines for CNC equipment

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the applications of high technology,a catastrophic failure of CNC equipment rarely occurs at normal operation conditions.So it is difficult for traditional reliability assessment methods based on time-to-failure distributions to deduce the reliability level.This paper presents a novel reliability assessment methodology to estimate the reliability level of equipment with machining performance degradation data when only a few samples are available.The least squares support vector machines(LS-SVM) are introduced to analyze the performance degradation process on the equipment.A two-stage parameter optimization and searching method is proposed to improve the LS-SVM regression performance and a reliability assessment model based on the LS-SVM is built.A machining performance degradation experiment has been carried out on an OTM650 machine tool to validate the effectiveness of the proposed reliability assessment methodology.

  15. A reliability assessment method based on support vector machines for CNC equipment

    Institute of Scientific and Technical Information of China (English)

    WU Jun; DENG Chao; SHAO XinYu; XIE S Q

    2009-01-01

    With the applications of high technology, a catastrophic failure of CNC equipment rarely occurs at normal operation conditions. So it is difficult for traditional reliability assessment methods based on time-to-failure distributions to deduce the reliability level. This paper presents a novel reliability assessment methodology to estimate the reliability level of equipment with machining performance degradation data when only a few samples are available. The least squares support vector machines(LS-SVM) are introduced to analyze the performance degradation process on the equipment. A two-stage parameter optimization and searching method is proposed to improve the LS-SVM regression performance and a reliability assessment model based on the LS-SVM is built. A machining performance degradation experiment has been carried out on an OTM650 machine tool to validate the effectiveness of the proposed reliability assessment methodology.

  16. Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization

    Science.gov (United States)

    Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun

    2016-01-01

    Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656

  17. Combination of Multi-class Probability Support Vector Machines for Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To deal with multi-source multi-class classification problems, the method of combining multiple multi-class probability support vector machines (MPSVMs) using Bayesian theory is proposed in this paper. The MPSVMs are designed by mapping the output of standard support vector machines into a calibrated posterior probability by using a learned sigmoid function and then combining these learned binary-class probability SVMs. Two Bayes based methods for combining multiple MPSVMs are applied to improve the performance of classification. Our proposed methods are applied to fault diagnosis of a diesel engine. The experimental results show that the new methods can improve the accuracy and robustness of fault diagnosis.

  18. Gear Fault Diagnosis Based on Rough Set and Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    TIAN Huifang; SUN Shanxia

    2006-01-01

    By introducing Rough Set Theory and the principle of Support vector machine, a gear fault diagnosis method based on them is proposed. Firstly, diagnostic decision-making is reduced based on rough set theory, and the noise and redundancy in the sample are removed, then, according to the chosen reduction, a support vector machine multi-classifier is designed for gear fault diagnosis. Therefore, SVM' training data can be reduced and running speed can quicken. Test shows its accuracy and efficiency of gear fault diagnosis.

  19. Flexure bearing support, with particular application to stirling machines

    Science.gov (United States)

    Beckett, Carl D.; Lauhala, Victor C.; Neely, Ron; Penswick, Laurence B.; Ritter, Darren C.; Nelson, Richard L.; Wimer, Burnell P.

    1996-01-01

    The use of flexures in the form of flat spiral springs cut from sheet metal materials provides support for coaxial nonrotating linear reciprocating members in power conversion machinery, such as Stirling cycle engines or heat pumps. They permit operation with little or no rubbing contact or other wear mechanisms. The relatively movable members include one member having a hollow interior structure within which the flexures are located. The flexures permit limited axial movement between the interconnected members, but prevent adverse rotational movement and radial displacement from their desired coaxial positions.

  20. A fast, simple, and naturally machine-precision algorithm for calculating both symmetric and asymmetric MT2, for any physical inputs

    CERN Document Server

    Lester, Chrisopher G

    2014-01-01

    This document describes a stransverse-mass calculation algorithm that has better numerical stability, and therefore accuracy, than the fastest existing implementations. The new algorithm naturally permits computation of MT2 to machine-precision for any valid set of inputs. In addition to being more accurate than existing fast calculators, the new implementation is arguably simpler to understand, comprises fewer lines of active code, and provides the first fast machine-precision asymmetric-MT2 calculator known to the authors.

  1. Predicting metabolic syndrome using decision tree and support vector machine methods

    Science.gov (United States)

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-01-01

    BACKGROUND Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. METHODS This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. RESULTS SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. CONCLUSION The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in

  2. A support vector machine to search for metal-poor galaxies

    Science.gov (United States)

    Shi, Fei; Liu, Yu-Yan; Kong, Xu; Chen, Yang; Li, Zhong-Hua; Zhi, Shu-Teng

    2014-10-01

    To develop a fast and reliable method for selecting metal-poor galaxies (MPGs), especially in large surveys and huge data bases, a support vector machine (SVM) supervized learning algorithms is applied to a sample of star-forming galaxies from the Sloan Digital Sky Survey data release 9 provided by the Max Planck Institute and the Johns Hopkins University (http://www.sdss3.org/dr9/spectro/spectroaccess.php). A two-step approach is adopted: (i) the SVM must be trained with a subset of objects that are known to be either MPGs or metal-rich galaxies (MRGs), treating the strong emission line flux measurements as input feature vectors in n-dimensional space, where n is the number of strong emission line flux ratios. (ii) After training on a sample of star-forming galaxies, the remaining galaxies are classified in the automatic test analysis as either MPGs or MRGs using a 10-fold cross-validation technique. For target selection, we have achieved an acquisition accuracy for MPGs of ˜96 and ˜95 per cent for an MPG threshold of 12 + log(O/H) = 8.00 and 12 + log(O/H) = 8.39, respectively. Running the code takes minutes in most cases under the MATLAB 2013a software environment. The code in the Letter is available on the web (http://fshi5388.blog.163.com). The SVM method can easily be extended to any MPGs target selection task and can be regarded as an efficient classification method particularly suitable for modern large surveys.

  3. On-line least squares support vector machine algorithm in gas prediction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-hu; WANG Gang; ZHAO Ke-ke; TAN De-jian

    2009-01-01

    Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions. The Support Vector Machine (SVM) is a new machine learning algorithm that has excellent properties. The least squares support vector machine (LS-SVM) algorithm is an improved algorithm of SVM. But the common LS-SVM algorithm, used directly in safety predictions, has some problems. We have first studied gas prediction problems and the basic theory of LS-SVM. Given these problems, we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm, based on LS-SVM. Finally, given our observed data, we used the on-line algorithm to predict gas emissions and used other related algorithm to com- pare its performance. The simulation results have verified the validity of the new algorithm.

  4. Interpreting linear support vector machine models with heat map molecule coloring

    Directory of Open Access Journals (Sweden)

    Rosenbaum Lars

    2011-03-01

    Full Text Available Abstract Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor.

  5. Dynamic Modeling and Analysis of the Large-Scale Rotary Machine with Multi-Supporting

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2011-01-01

    Full Text Available The large-scale rotary machine with multi-supporting, such as rotary kiln and rope laying machine, is the key equipment in the architectural, chemistry, and agriculture industries. The body, rollers, wheels, and bearings constitute a chain multibody system. Axis line deflection is a vital parameter to determine mechanics state of rotary machine, thus body axial vibration needs to be studied for dynamic monitoring and adjusting of rotary machine. By using the Riccati transfer matrix method, the body system of rotary machine is divided into many subsystems composed of three elements, namely, rigid disk, elastic shaft, and linear spring. Multiple wheel-bearing structures are simplified as springs. The transfer matrices of the body system and overall transfer equation are developed, as well as the response overall motion equation. Taken a rotary kiln as an instance, natural frequencies, modal shape, and response vibration with certain exciting axis line deflection are obtained by numerical computing. The body vibration modal curves illustrate the cause of dynamical errors in the common axis line measurement methods. The displacement response can be used for further measurement dynamical error analysis and compensation. The response overall motion equation could be applied to predict the body motion under abnormal mechanics condition, and provide theory guidance for machine failure diagnosis.

  6. Physicists purchase materials testing machine in support of pioneering particle physics experiments

    CERN Multimedia

    Sharpe, Suzanne

    2007-01-01

    "The particle physics group at Liverpool University has purchased an LRXPlus singlecolumn materials testing machine from Lloyd Instruments, which will be used to help characterise the carbon-fibre support frames for detectors used for state-of-the-art particle physics experiments." (1 page)

  7. SVM-Maj: a majorization approach to linear support vector machines with different hinge errors

    NARCIS (Netherlands)

    P.J.F. Groenen (Patrick); G.I. Nalbantov (Georgi); J.C. Bioch (Cor)

    2007-01-01

    textabstractSupport vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal suppor

  8. Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification

    Indian Academy of Sciences (India)

    B T Abe; O O Olugbara; T Marwala

    2014-06-01

    The performances of regular support vector machines and random forests are experimentally compared for hyperspectral imaging land cover classification. Special characteristics of hyperspectral imaging dataset present diverse processing problems to be resolved under robust mathematical formalisms such as image classification. As a result, pixel purity index algorithm is used to obtain endmember spectral responses from Indiana pine hyperspectral image dataset. The generalized reduced gradient optimization algorithm is thereafter executed on the research data to estimate fractional abundances in the hyperspectral image and thereby obtain the numeric values for land cover classification. The Waikato environment for knowledge analysis (WEKA) data mining framework is selected as a tool to carry out the classification process by using support vector machines and random forests classifiers. Results show that performance of support vector machines is comparable to that of random forests. This study makes a positive contribution to the problem of land cover classification by exploring generalized reduced gradient method, support vector machines, and random forests to improve producer accuracy and overall classification accuracy. The performance comparison of these classifiers is valuable for a decision maker to consider tradeoffs in method accuracy versus method complexity.

  9. Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates

    Science.gov (United States)

    Methods based on sequence data analysis facilitate the tracking of disease outbreaks, allow relationships between strains to be reconstructed and virulence factors to be identified. However, these methods are used postfactum after an outbreak has happened. Here, we show that support vector machine a...

  10. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study.

    LENUS (Irish Health Repository)

    Mourao-Miranda, J

    2012-05-01

    To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode.

  11. Estimation of the wind turbine yaw error by support vector machines

    DEFF Research Database (Denmark)

    Sheibat-Othman, Nida; Othman, Sami; Tayari, Raoaa

    2015-01-01

    Wind turbine yaw error information is of high importance in controlling wind turbine power and structural load. Normally used wind vanes are imprecise. In this work, the estimation of yaw error in wind turbines is studied using support vector machines for regression (SVR). As the methodology...

  12. Alcohols' Classification by Infrared Spectra Segment Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    Wei XIE; Fu Sheng NIE; Meng Long LI; Guang Ming LI; Min Chun LU

    2006-01-01

    This paper studies various classifiers to identify primary, secondary or tertiary alcohols by using segmental spectra and their combinations to support vector machines (SVMs). The results showed that the O-H in-plane bending absorption contributed most to identification their substitute. This conclusion disagrees with related known research results.

  13. Online Handwritten Character Recognition of Devanagari and Telugu Characters using Support Vector Machines

    OpenAIRE

    Swethalakshmi, H.; Jayaraman, Anitha; Chakravarthy, V. Srinivasa; Sekhar, C. Chandra

    2006-01-01

    http://www.suvisoft.com; A system for recognition of online handwritten characters has been presented for Indian writing systems. A handwritten character is represented as a sequence of strokes whose features are extracted and classied. Support vector machines have been used for constructing the stroke recognition engine. The results have been presented after testing the system on Devanagari and Telugu scripts.

  14. Support Vector Machine for Discrimination Between Fault and Magnetizing Inrush Current in Power Transformer

    Directory of Open Access Journals (Sweden)

    V. Malathi

    2007-01-01

    Full Text Available This study presents a novel technique based on Support Vector Machine (SVM for the classification of transient phenomena in power transformer. The SVM is a powerful method for statistical classification of data. The input data to this SVM for training comprises fault current and magnetizing inrush current. SVM classifier produces significant accuracy for classification of transient phenomena in power transformer.

  15. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods

    OpenAIRE

    Zhang, Tong

    2001-01-01

    This book is an introduction to support vector machines and related kernel methods in supervised learning, whose task is to estimate an input-output functional relationship from a training set of examples. A learning problem is referred to as classification if its output take discrete values in a set of possible categories and regression if it has continuous real-valued output.

  16. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    Science.gov (United States)

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor.

  17. Discussion About Nonlinear Time Series Prediction Using Least Squares Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    XU Rui-Rui; BIAN Guo-Xing; GAO Chen-Feng; CHEN Tian-Lun

    2005-01-01

    The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction.First, the parameter γ and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved.

  18. Performance and optimization of support vector machines in high-energy physics classification problems

    CERN Document Server

    Sahin, Mehmet Özgür; Melzer-Pellmann, Isabell-Alissandra

    2016-01-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new- physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery- significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.

  19. PENETRATION QUALITY EVALUATION IN ROBOTIZED ARC WELDING BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    Ye Feng; Song Yonglun; Li Di; Lai Yizong

    2003-01-01

    A quality monitoring method by means of support vector machines (SVM) for robotized gas metal arc welding (GMAW) is introduced. Through the feature extraction of the welding process signal,a SVM classifier is constructed to establish the relationship between the feature of process parameters and the quality of weld penetration. Under the samples obtained from auto parts welding production line, the learning machine with a radial basis function kernel shows good performance. And this method can be feasible to identify defect online in welding production.

  20. Applying the Support Vector Machine Method to Matching IRAS and SDSS Catalogues

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2007-10-01

    Full Text Available This paper presents results of applying a machine learning technique, the Support Vector Machine (SVM, to the astronomical problem of matching the Infra-Red Astronomical Satellite (IRAS and Sloan Digital Sky Survey (SDSS object catalogues. In this study, the IRAS catalogue has much larger positional uncertainties than those of the SDSS. A model was constructed by applying the supervised learning algorithm (SVM to a set of training data. Validation of the model shows a good identification performance (∼ 90% correct, better than that derived from classical cross-matching algorithms, such as the likelihood-ratio method used in previous studies.

  1. Performance and optimization of support vector machines in high-energy physics classification problems

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, M.Oe.; Kruecker, D.; Melzer-Pellmann, I.A.

    2016-01-15

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.

  2. Modelling habitat requirements of white-clawed crayfish (Austropotamobius pallipes using support vector machines

    Directory of Open Access Journals (Sweden)

    Favaro L.

    2011-07-01

    Full Text Available The white-clawed crayfish’s habitat has been profoundly modified in Piedmont (NW Italy due to environmental changes caused by human impact. Consequently, native populations have decreased markedly. In this research project, support vector machines were tested as possible tools for evaluating the ecological factors that determine the presence of white-clawed crayfish. A system of 175 sites was investigated, 98 of which recorded the presence of Austropotamobius pallipes. At each site 27 physical-chemical, environmental and climatic variables were measured according to their importance to A. pallipes. Various feature selection methods were employed. These yielded three subsets of variables that helped build three different types of models: (1 models with no variable selection; (2 models built by applying Goldberg’s genetic algorithm after variable selection; (3 models built by using a combination of four supervised-filter evaluators after variable selection. These different model types helped us realise how important it was to select the right features if we wanted to build support vector machines that perform as well as possible. In addition, support vector machines have a high potential for predicting indigenous crayfish occurrence, according to our findings. Therefore, they are valuable tools for freshwater management, tools that may prove to be much more promising than traditional and other machine-learning techniques.

  3. Reducing U2R and R2L category false negative rates with support vector machines

    Directory of Open Access Journals (Sweden)

    Maček Nemanja

    2014-01-01

    Full Text Available The KDD Cup '99 is commonly used dataset for training and testing IDS machine learning algorithms. Some of the major downsides of the dataset are the distribution and the proportions of U2R and R2L instances, which represent the most dangerous attack types, as well as the existence of R2L attack instances identical to normal traffic. This enforces minor category detection complexity and causes problems while building a machine learning model capable of detecting these attacks with sufficiently low false negative rate. This paper presents a new support vector machine based intrusion detection system that classifies unknown data instances according both to the feature values and weight factors that represent importance of features towards the classification. Increased detection rate and significantly decreased false negative rate for U2R and R2L categories, that have a very few instances in the training set, have been empirically proven.

  4. Leveraging Expert Knowledge to Improve Machine-Learned Decision Support Systems

    Science.gov (United States)

    Kuusisto, Finn; Dutra, Inês; Elezaby, Mai; Mendonça, Eneida A.; Shavlik, Jude; Burnside, Elizabeth S.

    2015-01-01

    While the use of machine learning methods in clinical decision support has great potential for improving patient care, acquiring standardized, complete, and sufficient training data presents a major challenge for methods relying exclusively on machine learning techniques. Domain experts possess knowledge that can address these challenges and guide model development. We present Advice-Based-Learning (ABLe), a framework for incorporating expert clinical knowledge into machine learning models, and show results for an example task: estimating the probability of malignancy following a non-definitive breast core needle biopsy. By applying ABLe to this task, we demonstrate a statistically significant improvement in specificity (24.0% with p=0.004) without missing a single malignancy. PMID:26306246

  5. Support vector machine used to diagnose the fault of rotor broken bars of induction motors

    DEFF Research Database (Denmark)

    Zhitong, Cao; Jiazhong, Fang; Hongpingn, Chen

    2003-01-01

    The data-based machine learning is an important aspect of modern intelligent technology, while statistical learning theory (SLT) is a new tool that studies the machine learning methods in the case of a small number of samples. As a common learning method, support vector machine (SVM) is derived...... for the SVM. After a SVM is trained with learning sample vectors, so each kind of the rotor broken bar faults of induction motors can be classified. Finally the retest is demonstrated, which proves that the SVM really has preferable ability of classification. In this paper we tried applying the SVM...... from the SLT. Here we were done some analogical experiments of the rotor broken bar faults of induction motors used, analyzed the signals of the sample currents with Fourier transform, and constructed the spectrum characteristics from low frequency to high frequency used as learning sample vectors...

  6. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine

    Science.gov (United States)

    Sheng, Hanmin; Xiao, Jian

    2015-05-01

    The aim of this study is to estimate the state of charge (SOC) of the lithium iron phosphate (LiFePO4) battery pack by applying machine learning strategy. To reduce the noise sensitive issue of common machine learning strategies, a kind of SOC estimation method based on fuzzy least square support vector machine is proposed. By applying fuzzy inference and nonlinear correlation measurement, the effects of the samples with low confidence can be reduced. Further, a new approach for determining the error interval of regression results is proposed to avoid the control system malfunction. Tests are carried out on modified COMS electric vehicles, with two battery packs each consists of 24 50 Ah LiFePO4 batteries. The effectiveness of the method is proven by the test and the comparison with other popular methods.

  7. PSO-based support vector machine with cuckoo search technique for clinical disease diagnoses.

    Science.gov (United States)

    Liu, Xiaoyong; Fu, Hui

    2014-01-01

    Disease diagnosis is conducted with a machine learning method. We have proposed a novel machine learning method that hybridizes support vector machine (SVM), particle swarm optimization (PSO), and cuckoo search (CS). The new method consists of two stages: firstly, a CS based approach for parameter optimization of SVM is developed to find the better initial parameters of kernel function, and then PSO is applied to continue SVM training and find the best parameters of SVM. Experimental results indicate that the proposed CS-PSO-SVM model achieves better classification accuracy and F-measure than PSO-SVM and GA-SVM. Therefore, we can conclude that our proposed method is very efficient compared to the previously reported algorithms.

  8. PSO-Based Support Vector Machine with Cuckoo Search Technique for Clinical Disease Diagnoses

    Directory of Open Access Journals (Sweden)

    Xiaoyong Liu

    2014-01-01

    Full Text Available Disease diagnosis is conducted with a machine learning method. We have proposed a novel machine learning method that hybridizes support vector machine (SVM, particle swarm optimization (PSO, and cuckoo search (CS. The new method consists of two stages: firstly, a CS based approach for parameter optimization of SVM is developed to find the better initial parameters of kernel function, and then PSO is applied to continue SVM training and find the best parameters of SVM. Experimental results indicate that the proposed CS-PSO-SVM model achieves better classification accuracy and F-measure than PSO-SVM and GA-SVM. Therefore, we can conclude that our proposed method is very efficient compared to the previously reported algorithms.

  9. Leveraging Expert Knowledge to Improve Machine-Learned Decision Support Systems.

    Science.gov (United States)

    Kuusisto, Finn; Dutra, Inês; Elezaby, Mai; Mendonça, Eneida A; Shavlik, Jude; Burnside, Elizabeth S

    2015-01-01

    While the use of machine learning methods in clinical decision support has great potential for improving patient care, acquiring standardized, complete, and sufficient training data presents a major challenge for methods relying exclusively on machine learning techniques. Domain experts possess knowledge that can address these challenges and guide model development. We present Advice-Based-Learning (ABLe), a framework for incorporating expert clinical knowledge into machine learning models, and show results for an example task: estimating the probability of malignancy following a non-definitive breast core needle biopsy. By applying ABLe to this task, we demonstrate a statistically significant improvement in specificity (24.0% with p=0.004) without missing a single malignancy.

  10. A Numerical Comparison of Rule Ensemble Methods and Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Meza, Juan C.; Woods, Mark

    2009-12-18

    Machine or statistical learning is a growing field that encompasses many scientific problems including estimating parameters from data, identifying risk factors in health studies, image recognition, and finding clusters within datasets, to name just a few examples. Statistical learning can be described as 'learning from data' , with the goal of making a prediction of some outcome of interest. This prediction is usually made on the basis of a computer model that is built using data where the outcomes and a set of features have been previously matched. The computer model is called a learner, hence the name machine learning. In this paper, we present two such algorithms, a support vector machine method and a rule ensemble method. We compared their predictive power on three supernova type 1a data sets provided by the Nearby Supernova Factory and found that while both methods give accuracies of approximately 95%, the rule ensemble method gives much lower false negative rates.

  11. Automated Classification of Epiphyses in the Distal Radius and Ulna using a Support Vector Machine.

    Science.gov (United States)

    Wang, Ya-hui; Liu, Tai-ang; Wei, Hua; Wan, Lei; Ying, Chong-liang; Zhu, Guang-you

    2016-03-01

    The aim of this study was to automatically classify epiphyses in the distal radius and ulna using a support vector machine (SVM) and to examine the accuracy of the epiphyseal growth grades generated by the support vector machine. X-ray images of distal radii and ulnae were collected from 140 Chinese teenagers aged between 11.0 and 19.0 years. Epiphyseal growth of the two elements was classified into five grades. Features of each element were extracted using a histogram of oriented gradient (HOG), and models were established using support vector classification (SVC). The prediction results and the validity of the models were evaluated with a cross-validation test and independent test for accuracy (PA ). Our findings suggest that this new technique for epiphyseal classification was successful and that an automated technique using an SVM is reliable and feasible, with a relative high accuracy for the models.

  12. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.

    Science.gov (United States)

    Mazumder, Oishee; Kundu, Ananda Sankar; Lenka, Prasanna Kumar; Bhaumik, Subhasis

    2016-10-01

    Ambulatory activity classification is an active area of research for controlling and monitoring state initiation, termination, and transition in mobility assistive devices such as lower-limb exoskeletons. State transition of lower-limb exoskeletons reported thus far are achieved mostly through the use of manual switches or state machine-based logic. In this paper, we propose a postural activity classifier using a 'dendogram-based support vector machine' (DSVM) which can be used to control a lower-limb exoskeleton. A pressure sensor-based wearable insole and two six-axis inertial measurement units (IMU) have been used for recognising two static and seven dynamic postural activities: sit, stand, and sit-to-stand, stand-to-sit, level walk, fast walk, slope walk, stair ascent and stair descent. Most of the ambulatory activities are periodic in nature and have unique patterns of response. The proposed classification algorithm involves the recognition of activity patterns on the basis of the periodic shape of trajectories. Polynomial coefficients extracted from the hip angle trajectory and the centre-of-pressure (CoP) trajectory during an activity cycle are used as features to classify dynamic activities. The novelty of this paper lies in finding suitable instrumentation, developing post-processing techniques, and selecting shape-based features for ambulatory activity classification. The proposed activity classifier is used to identify the activity states of a lower-limb exoskeleton. The DSVM classifier algorithm achieved an overall classification accuracy of 95.2%.

  13. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    Science.gov (United States)

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a

  14. Managing magnetic resonance imaging machines: support tools for scheduling and planning.

    Science.gov (United States)

    Carpenter, Adam P; Leemis, Lawrence M; Papir, Alan S; Phillips, David J; Phillips, Grace S

    2011-06-01

    We devise models and algorithms to estimate the impact of current and future patient demand for examinations on Magnetic Resonance Imaging (MRI) machines at a hospital radiology department. Our work helps improve scheduling decisions and supports MRI machine personnel and equipment planning decisions. Of particular novelty is our use of scheduling algorithms to compute the competing objectives of maximizing examination throughput and patient-magnet utilization. Using our algorithms retrospectively can help (1) assess prior scheduling decisions, (2) identify potential areas of efficiency improvement and (3) identify difficult examination types. Using a year of patient data and several years of MRI utilization data, we construct a simulation model to forecast MRI machine demand under a variety of scenarios. Under our predicted demand model, the throughput calculated by our algorithms acts as an estimate of the overtime MRI time required, and thus, can be used to help predict the impact of different trends in examination demand and to support MRI machine staffing and equipment planning.

  15. The Model of Information Support for Management of Investment Attractiveness of Machine-Building Enterprises

    Directory of Open Access Journals (Sweden)

    Chernetska Olga V.

    2016-11-01

    Full Text Available The article discloses the content of the definition of “information support”, identifies basic approaches to the interpretation of this economic category. The main purpose of information support for management of enterprise investment attractiveness is determined. The key components of information support for management of enterprise investment attractiveness are studied. The main types of automated information systems for management of the investment attractiveness of enterprises are identified and characterized. The basic computer programs for assessing the level of investment attractiveness of enterprises are considered. A model of information support for management of investment attractiveness of machine-building enterprises is developed.

  16. Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine

    Indian Academy of Sciences (India)

    Liu Zhong-bao; Song Wen-ai; Zhang Jing; Zhao Wen-juan

    2017-06-01

    Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher’s Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.

  17. Credit Scoring by Fuzzy Support Vector Machines with a Novel Membership Function

    Directory of Open Access Journals (Sweden)

    Jian Shi

    2016-11-01

    Full Text Available Due to the recent financial crisis and European debt crisis, credit risk evaluation has become an increasingly important issue for financial institutions. Reliable credit scoring models are crucial for commercial banks to evaluate the financial performance of clients and have been widely studied in the fields of statistics and machine learning. In this paper a novel fuzzy support vector machine (SVM credit scoring model is proposed for credit risk analysis, in which fuzzy membership is adopted to indicate different contribution of each input point to the learning of SVM classification hyperplane. Considering the methodological consistency, support vector data description (SVDD is introduced to construct the fuzzy membership function and to reduce the effect of outliers and noises. The SVDD-based fuzzy SVM model is tested against the traditional fuzzy SVM on two real-world datasets and the research results confirm the effectiveness of the presented method.

  18. Quality Monitoring for Laser Welding Based on High-Speed Photography and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Teng Wang

    2017-03-01

    Full Text Available In order to improve the prediction ability of welding quality during high-power disk laser welding, a new approach was proposed and applied in the classification of the dynamic features of metal vapor plume. Six features were extracted through the color image processing method. Three features, including the area of plume, number of spatters, and horizontal coordinate of plume centroid, were selected based on the classification accuracy rates and Pearson product-moment correlation coefficients. A support vector machine model was adopted to classify the welding quality status into two categories, good or poor. The results demonstrated that the support vector machine model established according to the selected features had satisfactory prediction and generalization ability. The classification accuracy rate was higher than 90%, and the model could be applied in the prediction of welding quality during high-power disk laser welding.

  19. A Parallel Decision Model Based on Support Vector Machines and Its Application to Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    Yan Weiwu(阎威武); Shao Huihe

    2004-01-01

    Many industrial process systems are becoming more and more complex and are characterized by distributed features. To ensure such a system to operate under working order, distributed parameter values are often inspected from subsystems or different points in order to judge working conditions of the system and make global decisions. In this paper, a parallel decision model based on Support Vector Machine (PDMSVM) is introduced and applied to the distributed fault diagnosis in industrial process. PDMSVM is convenient for information fusion of distributed system and it performs well in fault diagnosis with distributed features. PDMSVM makes decision based on synthetic information of subsystems and takes the advantage of Support Vector Machine. Therefore decisions made by PDMSVM are highly reliable and accurate.

  20. Evaluation and recognition of skin images with aging by support vector machine

    Science.gov (United States)

    Hu, Liangjun; Wu, Shulian; Li, Hui

    2016-10-01

    Aging is a very important issue not only in dermatology, but also cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The evaluation and classification of aging is an important issue with the medical cosmetology workers nowadays. The purpose of this study is to assess chronological-age-related and photo-age-related of human skin. The texture features of skin surface skin, such as coarseness, contrast were analyzed by Fourier transform and Tamura. And the aim of it is to detect the object hidden in the skin texture in difference aging skin. Then, Support vector machine was applied to train the texture feature. The different age's states were distinguished by the support vector machine (SVM) classifier. The results help us to further understand the mechanism of different aging skin from texture feature and help us to distinguish the different aging states.

  1. Metabolic changes in rat urine after acute paraquat poisoning and discriminated by support vector machine.

    Science.gov (United States)

    Wen, Congcong; Wang, Zhiyi; Zhang, Meiling; Wang, Shuanghu; Geng, Peiwu; Sun, Fa; Chen, Mengchun; Lin, Guanyang; Hu, Lufeng; Ma, Jianshe; Wang, Xianqin

    2016-01-01

    Paraquat is quick-acting and non-selective, killing green plant tissue on contact; it is also toxic to human beings and animals. In this study, we developed a urine metabonomic method by gas chromatography-mass spectrometry to evaluate the effect of acute paraquat poisoning on rats. Pattern recognition analysis, including both partial least squares discriminate analysis and principal component analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the levels of benzeneacetic acid and hexadecanoic acid of the acute paraquat poisoning group (intragastric administration 36 mg/kg) increased, while the levels of butanedioic acid, pentanedioic acid, altronic acid decreased. Based on these urinary metabolomics data, support vector machine was applied to discriminate the metabolomic change of paraquat groups from the control group, which achieved 100% classification accuracy. In conclusion, metabonomic method combined with support vector machine can be used as a useful diagnostic tool in paraquat-poisoned rats.

  2. Modelling of chaotic systems based on modified weighted recurrent least squares support vector machines

    Institute of Scientific and Technical Information of China (English)

    Sun Jian-Cheng; Zhang Tai-Yi; Liu Feng

    2004-01-01

    Positive Lyapunov exponents cause the errors in modelling of the chaotic time series to grow exponentially. In this paper, we propose the modified version of the support vector machines (SVM) to deal with this problem. Based on recurrent least squares support vector machines (RLS-SVM), we introduce a weighted term to the cost function to compensate the prediction errors resulting from the positive global Lyapunov exponents. To demonstrate the effectiveness of our algorithm, we use the power spectrum and dynamic invariants involving the Lyapunov exponents and the correlation dimension as criterions, and then apply our method to the Santa Fe competition time series. The simulation results shows that the proposed method can capture the dynamics of the chaotic time series effectively.

  3. A Novel Soft Sensor Modeling Approach Based on Least Squares Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    Feng Rui(冯瑞); Song Chunlin; Zhang Yanzhu; Shao Huihe

    2004-01-01

    Artificial Neural Networks (ANNs) such as radial basis function neural networks (RBFNNs) have been successfully used in soft sensor modeling. However, the generalization ability of conventional ANNs is not very well. For this reason, we present a novel soft sensor modeling approach based on Support Vector Machines (SVMs). Since standard SVMs have the limitation of speed and size in training large data set, we hereby propose Least Squares Support Vector Machines (LS_SVMs) and apply it to soft sensor modeling. Systematic analysis is performed and the result indicates that the proposed method provides satisfactory performance with excellent approximation and generalization property. Monte Carlo simulations show that our soft sensor modeling approach achieves performance superior to the conventional method based on RBFNNs.

  4. New Fuzzy Support Vector Machine for the Class Imbalance Problem in Medical Datasets Classification

    Directory of Open Access Journals (Sweden)

    Xiaoqing Gu

    2014-01-01

    Full Text Available In medical datasets classification, support vector machine (SVM is considered to be one of the most successful methods. However, most of the real-world medical datasets usually contain some outliers/noise and data often have class imbalance problems. In this paper, a fuzzy support machine (FSVM for the class imbalance problem (called FSVM-CIP is presented, which can be seen as a modified class of FSVM by extending manifold regularization and assigning two misclassification costs for two classes. The proposed FSVM-CIP can be used to handle the class imbalance problem in the presence of outliers/noise, and enhance the locality maximum margin. Five real-world medical datasets, breast, heart, hepatitis, BUPA liver, and pima diabetes, from the UCI medical database are employed to illustrate the method presented in this paper. Experimental results on these datasets show the outperformed or comparable effectiveness of FSVM-CIP.

  5. Vibration reliability analysis for aeroengine compressor blade based on support vector machine response surface method

    Institute of Scientific and Technical Information of China (English)

    GAO Hai-feng; BAI Guang-chen

    2015-01-01

    To ameliorate reliability analysis efficiency for aeroengine components, such as compressor blade, support vector machine response surface method (SRSM) is proposed. SRSM integrates the advantages of support vector machine (SVM) and traditional response surface method (RSM), and utilizes experimental samples to construct a suitable response surface function (RSF) to replace the complicated and abstract finite element model. Moreover, the randomness of material parameters, structural dimension and operating condition are considered during extracting data so that the response surface function is more agreeable to the practical model. The results indicate that based on the same experimental data, SRSM has come closer than RSM reliability to approximating Monte Carlo method (MCM); while SRSM (17.296 s) needs far less running time than MCM (10958 s) and RSM (9840 s). Therefore, under the same simulation conditions, SRSM has the largest analysis efficiency, and can be considered a feasible and valid method to analyze structural reliability.

  6. Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications

    CERN Document Server

    Yang, Xin-She; Fong, Simon

    2012-01-01

    Business optimization is becoming increasingly important because all business activities aim to maximize the profit and performance of products and services, under limited resources and appropriate constraints. Recent developments in support vector machine and metaheuristics show many advantages of these techniques. In particular, particle swarm optimization is now widely used in solving tough optimization problems. In this paper, we use a combination of a recently developed Accelerated PSO and a nonlinear support vector machine to form a framework for solving business optimization problems. We first apply the proposed APSO-SVM to production optimization, and then use it for income prediction and project scheduling. We also carry out some parametric studies and discuss the advantages of the proposed metaheuristic SVM.

  7. Suspended Sediment Load Prediction Using Support Vector Machines in the Goodwin Creek Experimental Watershed

    Science.gov (United States)

    Chiang, Jie-Lun; Tsai, Kuang-Jung; Chen, Yie-Ruey; Lee, Ming-Hsi; Sun, Jai-Wei

    2014-05-01

    Strong correlation exists between river discharge and suspended sediment load. The relationship of discharge and suspended sediment load was used to estimate suspended sediment load by using regression model, artificial neural network and support vector machine in this study. Records of river discharges and suspended sediment loads in the Goodwin Creek Experimental Watershed in United States were investigated as a case study. Seventy percent of the records were used as training data set to develop prediction models. The other thirty percent records were used as verification data set. The performances of those models were evaluated by mean absolute percentage error (MAPE). The MAPEs show that support vector machine outperforms the artificial neural network and regression model. The results show that the MAPE of the proposed SVM can achieve less than 14% for 120 minutes prediction (four time steps). As a result, we believe that the proposed SVM model has high potential for predicting suspended sediment load.

  8. Application of support vector machine and particle swarm optimization in micro near infrared spectrometer

    Science.gov (United States)

    Xiong, Yuhong; Liu, Yunxiang; Shu, Minglei

    2016-10-01

    In the process of actual measurement and analysis of micro near infrared spectrometer, genetic algorithm is used to select the wavelengths and then partial least square method is used for modeling and analyzing. Because genetic algorithm has the disadvantages of slow convergence and difficult parameter setting, and partial least square method in dealing with nonlinear data is far from being satisfactory, the practical application effect of partial least square method based on genetic algorithm is severely affected negatively. The paper introduces the fundamental principles of particle swarm optimization and support vector machine, and proposes a support vector machine method based on particle swarm optimization. The method can overcome the disadvantage of partial least squares method based on genetic algorithm to a certain extent. Finally, the method is tested by an example, and the results show that the method is effective.

  9. A support vector machine based test for incongruence between sets of trees in tree space

    Science.gov (United States)

    2012-01-01

    Background The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need to determine whether a set of gene trees significantly deviate from the phylogenetic patterns of other genes. Such unusual gene trees may have been influenced by other evolutionary processes such as selection, gene duplication, or horizontal gene transfer. Results Motivated by this problem we propose a nonparametric goodness-of-fit test for two empirical distributions of gene trees, and we developed the software GeneOut to estimate a p-value for the test. Our approach maps trees into a multi-dimensional vector space and then applies support vector machines (SVMs) to measure the separation between two sets of pre-defined trees. We use a permutation test to assess the significance of the SVM separation. To demonstrate the performance of GeneOut, we applied it to the comparison of gene trees simulated within different species trees across a range of species tree depths. Applied directly to sets of simulated gene trees with large sample sizes, GeneOut was able to detect very small differences between two set of gene trees generated under different species trees. Our statistical test can also include tree reconstruction into its test framework through a variety of phylogenetic optimality criteria. When applied to DNA sequence data simulated from different sets of gene trees, results in the form of receiver operating characteristic (ROC) curves indicated that GeneOut performed well in the detection of differences between sets of trees with different distributions in a multi-dimensional space. Furthermore, it controlled false positive and false negative rates very well, indicating a high degree of accuracy. Conclusions The non-parametric nature of our statistical test provides fast and efficient analyses, and makes it an applicable test for any scenario where evolutionary or other factors can lead to trees with different multi-dimensional distributions. The

  10. Integrated application of uniform design and least-squares support vector machines to transfection optimization

    Directory of Open Access Journals (Sweden)

    Pan Jin-Shui

    2009-05-01

    Full Text Available Abstract Background Transfection in mammalian cells based on liposome presents great challenge for biological professionals. To protect themselves from exogenous insults, mammalian cells tend to manifest poor transfection efficiency. In order to gain high efficiency, we have to optimize several conditions of transfection, such as amount of liposome, amount of plasmid, and cell density at transfection. However, this process may be time-consuming and energy-consuming. Fortunately, several mathematical methods, developed in the past decades, may facilitate the resolution of this issue. This study investigates the possibility of optimizing transfection efficiency by using a method referred to as least-squares support vector machine, which requires only a few experiments and maintains fairly high accuracy. Results A protocol consists of 15 experiments was performed according to the principle of uniform design. In this protocol, amount of liposome, amount of plasmid, and the number of seeded cells 24 h before transfection were set as independent variables and transfection efficiency was set as dependent variable. A model was deduced from independent variables and their respective dependent variable. Another protocol made up by 10 experiments was performed to test the accuracy of the model. The model manifested a high accuracy. Compared to traditional method, the integrated application of uniform design and least-squares support vector machine greatly reduced the number of required experiments. What's more, higher transfection efficiency was achieved. Conclusion The integrated application of uniform design and least-squares support vector machine is a simple technique for obtaining high transfection efficiency. Using this novel method, the number of required experiments would be greatly cut down while higher efficiency would be gained. Least-squares support vector machine may be applicable to many other problems that need to be optimized.

  11. Application of higher order spectral features and support vector machines for bearing faults classification.

    Science.gov (United States)

    Saidi, Lotfi; Ben Ali, Jaouher; Fnaiech, Farhat

    2015-01-01

    Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals.

  12. TV-SVM: Total Variation Support Vector Machine for Semi-Supervised Data Classification

    OpenAIRE

    Bresson, Xavier; Zhang, Ruiliang

    2012-01-01

    We introduce semi-supervised data classification algorithms based on total variation (TV), Reproducing Kernel Hilbert Space (RKHS), support vector machine (SVM), Cheeger cut, labeled and unlabeled data points. We design binary and multi-class semi-supervised classification algorithms. We compare the TV-based classification algorithms with the related Laplacian-based algorithms, and show that TV classification perform significantly better when the number of labeled data is small.

  13. A NOVEL MULTICLASS SUPPORT VECTOR MACHINE ALGORITHM USING MEAN REVERSION AND COEFFICIENT OF VARIANCE

    Directory of Open Access Journals (Sweden)

    Bhusana Premanode

    2013-01-01

    Full Text Available Inaccuracy of a kernel function used in Support Vector Machine (SVM can be found when simulated with nonlinear and stationary datasets. To minimise the error, we propose a new multiclass SVM model using mean reversion and coefficient of variance algorithm to partition and classify imbalance in datasets. By introducing a series of test statistic, simulations of the proposed algorithm outperformed the performance of the SVM model without using multiclass SVM model.

  14. Support Vector Machines and Kd-tree for Separating Quasars from Large Survey Databases

    OpenAIRE

    2008-01-01

    We compare the performance of two automated classification algorithms: k-dimensional tree (kd-tree) and support vector machines (SVMs), to separate quasars from stars in the databases of the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) catalogs. The two algorithms are trained on subsets of SDSS and 2MASS objects whose nature is known via spectroscopy. We choose different attribute combination as input patterns to train the classifier using photometric data only an...

  15. Discussion of Some Problems About Nonlinear Time Series Prediction Using v-Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    GAO Cheng-Feng; CHEN Tian-Lun; NAN Tian-Shi

    2007-01-01

    Some problems in using v-support vector machine (v-SVM) for the prediction of nonlinear time series are discussed. The problems include selection of various net parameters, which affect the performance of prediction, mixture of kernels, and decomposition cooperation linear programming v-SVM regression, which result in improvements of the algorithm. Computer simulations in the prediction of nonlinear time series produced by Mackey-Glass equation and Lorenz equation provide some improved results.

  16. An improved method of support vector machine and its applications to financial time series forecasting

    Institute of Scientific and Technical Information of China (English)

    LIANG Yanchun; SUN Yanfeng

    2003-01-01

    A novel method for kernel function of support vector machine is presented based on the information geometry theory. The kernel function is modified using a conformal mapping to make the kernel data-dependent so as to increase the ability of predicting high noise data of the method. Numerical simulations demonstrate the effectiveness of the method. Simulated results on the prediction of the stock price show that the improved approach possesses better forecasting precision and ability of generalization than the conventional models.

  17. A Support Vector Machine-based Evaluation Model of Customer Satisfaction Degree in Logistics

    Institute of Scientific and Technical Information of China (English)

    SUN Hua-li; XIE Jian-ying

    2007-01-01

    This paper pressnts a novel evaluation model of the customer satisfaction degree (CSD) in logistics based on support vector machine (SVM). Firstly, the relation between the suppliers and the customers is analyzed. Secondly, the evaluation index system and fuzzy quantitative methods are provided. Thirdly, the CSD evaluation system including eight indexes and three ranks rinsed on one-against-one mode of SVM is built. Last simulation experiment is presented to illustrate the theoretical results.

  18. A Multiple Model Approach to Modeling Based on Fuzzy Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    冯瑞; 张艳珠; 宋春林; 邵惠鹤

    2003-01-01

    A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines (F SVMs). By applying the proposed approach to a pH neutralization titration experi-ment, F_SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs.

  19. Drifting model approach to modeling based on weighted support vector machines

    Institute of Scientific and Technical Information of China (English)

    冯瑞; 宋春林; 邵惠鹤

    2004-01-01

    This paper proposes a novel drifting modeling (DM) method. Briefly, we first employ an improved SVMs algorithm named weighted support vector machines (W_SVMs), which is suitable for locally learning, and then the DM method using the algorithm is proposed. By applying the proposed modeling method to Fluidized Catalytic Cracking Unit (FCCU), the simulation results show that the property of this proposed approach is superior to global modeling method based on standard SVMs.

  20. Generating Fuzzy Rule-based Systems from Examples Based on Robust Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    JIA Jiong; ZHANG Hao-ran

    2006-01-01

    This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR,then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.

  1. Novel Method of Predicting Network Bandwidth Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    沈伟; 冯瑞; 邵惠鹤

    2004-01-01

    In order to solve the problems of small sample over-fitting and local minima when neural networks learn online, a novel method of predicting network bandwidth based on support vector machines(SVM) is proposed. The prediction and learning online will be completed by the proposed moving window learning algorithm(MWLA). The simulation research is done to validate the proposed method, which is compared with the method based on neural networks.

  2. A New Hybrid Algorithm for Bankruptcy Prediction Using Switching Particle Swarm Optimization and Support Vector Machines

    OpenAIRE

    2015-01-01

    Bankruptcy prediction has been extensively investigated by data mining techniques since it is a critical issue in the accounting and finance field. In this paper, a new hybrid algorithm combining switching particle swarm optimization (SPSO) and support vector machine (SVM) is proposed to solve the bankruptcy prediction problem. In particular, a recently developed SPSO algorithm is exploited to search the optimal parameter values of radial basis function (RBF) kernel of the SVM. The new algori...

  3. Kinematic Analysis of Cpm Machine Supporting to Rehabilitation Process after Surgical Knee Arthroscopy and Arthroplasty

    Science.gov (United States)

    Trochimczuk, R.; Kuźmierowski, T.

    2014-11-01

    Existing commercial solutions of the CPM (Continuous Passive Motion) machines are described in the paper. Based on the analysis of existing solutions we present our conceptual solution to support the process of rehabilitation of the knee joint which is necessary after arthroscopic surgery. For a given novel structure we analyze and present proprietary algorithms and the computer application to simulate the operation of our PCM device. In addition, we suggest directions for further research.

  4. Optical diagnosis of colon and cervical cancer by support vector machine

    Science.gov (United States)

    Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Dey, Rajib; Das, Nandan K.; Pradhan, Sanjay; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.; Mohanty, Samarendra

    2016-05-01

    A probabilistic robust diagnostic algorithm is very much essential for successful cancer diagnosis by optical spectroscopy. We report here support vector machine (SVM) classification to better discriminate the colon and cervical cancer tissues from normal tissues based on elastic scattering spectroscopy. The efficacy of SVM based classification with different kernel has been tested on multifractal parameters like Hurst exponent, singularity spectrum width in order to classify the cancer tissues.

  5. Semi-Supervised and Unsupervised Novelty Detection using Nested Support Vector Machines

    OpenAIRE

    de Morsier, Frank; Borgeaud, Maurice; Gass, Volker; Küchler, Christoph; Thiran, Jean-Philippe

    2012-01-01

    Very often in change detection only few labels or even none are available. In order to perform change detection in these extreme scenarios, they can be considered as novelty detection problems, semi-supervised (SSND) if some labels are available otherwise unsupervised (UND). SSND can be seen as an unbalanced classification between labeled and unlabeled samples using the Cost-Sensitive Support Vector Machine (CS-SVM). UND assumes novelties in low density regions and can be approached using th...

  6. Detection of Glutamic Acid in Oilseed Rape Leaves Using Near Infrared Spectroscopy and the Least Squares-Support Vector Machine

    Science.gov (United States)

    Bao, Yidan; Kong, Wenwen; Liu, Fei; Qiu, Zhengjun; He, Yong

    2012-01-01

    Amino acids are quite important indices to indicate the growth status of oilseed rape under herbicide stress. Near infrared (NIR) spectroscopy combined with chemometrics was applied for fast determination of glutamic acid in oilseed rape leaves. The optimal spectral preprocessing method was obtained after comparing Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, first and second derivatives, detrending and direct orthogonal signal correction. Linear and nonlinear calibration methods were developed, including partial least squares (PLS) and least squares-support vector machine (LS-SVM). The most effective wavelengths (EWs) were determined by the successive projections algorithm (SPA), and these wavelengths were used as the inputs of PLS and LS-SVM model. The best prediction results were achieved by SPA-LS-SVM (Raw) model with correlation coefficient r = 0.9943 and root mean squares error of prediction (RMSEP) = 0.0569 for prediction set. These results indicated that NIR spectroscopy combined with SPA-LS-SVM was feasible for the fast and effective detection of glutamic acid in oilseed rape leaves. The selected EWs could be used to develop spectral sensors, and the important and basic amino acid data were helpful to study the function mechanism of herbicide. PMID:23203052

  7. Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R. W. [CompX, Del Mar, CA (United States)

    2009-11-12

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over

  8. Support vector machine based fault classification and location of a long transmission line

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2016-09-01

    Full Text Available This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21% and least fault distance estimation error (0.29%.

  9. Semi-supervised least squares support vector machine algorithm: application to offshore oil reservoir

    Science.gov (United States)

    Luo, Wei-Ping; Li, Hong-Qi; Shi, Ning

    2016-06-01

    At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semisupervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.

  10. A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.

    Science.gov (United States)

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.

  11. Implementation of algorithms based on support vector machine (SVM for electric systems: topic review

    Directory of Open Access Journals (Sweden)

    Jefferson Jara Estupiñan

    2016-06-01

    Full Text Available Objective: To perform a review of implementation of algorithms based on support vectore machine applied to electric systems. Method: A paper search is done mainly on Biblio­graphic Indexes (BI and Bibliographic Bases with Selection Committee (BBSC about support vector machine. This work shows a qualitative and/or quan­titative description about advances and applications in the electrical environment, approaching topics such as: electrical market prediction, demand predic­tion, non-technical losses (theft, alternative energy source and transformers, among others, in each work the respective citation is done in order to guarantee the copy right and allow to the reader a dynamic mo­vement between the reading and the cited works. Results: A detailed review is done, focused on the searching of implemented algorithms in electric sys­tems and innovating application areas. Conclusion: Support vector machines have a lot of applications due to their multiple benefits, however in the electric energy area; they have not been tota­lly applied, this allow to identify a promising area of researching.

  12. Fast machine-learning online optimization of ultra-cold-atom experiments.

    Science.gov (United States)

    Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R

    2016-05-16

    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.

  13. Active Learning for Transductive Support Vector Machines with Applications to Text Classification

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    This paper presents a novel active learning approach for transductive support vector machines with applications to text classification. The concept of the centroid of the support vectors is proposed so that the selective sampling based on measuring the distance from the unlabeled samples to the centroid is feasible and simple to compute. With additional hypothesis, active learning offers better performance with comparison to regular inductive SVMs and transductive SVMs with random sampling,and it is even competitive to transductive SVMs on all available training data. Experimental results prove that our approach is efficient and easy to implement.

  14. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which...

  15. SU-E-T-373: A Motorized Stage for Fast and Accurate QA of Machine Isocenter

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J; Velarde, E; Wong, J [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-01

    Purpose: Precision delivery of radiation dose relies on accurate knowledge of the machine isocenter under a variety of machine motions. This is typically determined by performing a Winston-Lutz test consisting of imaging a known object at multiple gantry/collimator/table angles and ensuring that the maximum offset is within specified tolerance. The first step in the Winston-Lutz test is careful placement of a ball bearing at the machine isocenter as determined by repeated imaging and shifting until accurate placement has been determined. Conventionally this is performed by adjusting a stage manually using vernier scales which carry the limitation that each adjustment must be done inside the treatment room with the risks of inaccurate adjustment of the scale and physical bumping of the table. It is proposed to use a motorized system controlled outside of the room to improve the required time and accuracy of these tests. Methods: The three dimensional vernier scales are replaced by three motors with accuracy of 1 micron and a range of 25.4mm connected via USB to a computer in the control room. Software is designed which automatically detects the motors and assigns them to proper axes and allows for small shifts to be entered and performed. Input values match calculated offsets in magnitude and sign to reduce conversion errors. Speed of setup, number of iterations to setup, and accuracy of final placement are assessed. Results: Automatic BB placement required 2.25 iterations and 13 minutes on average while manual placement required 3.76 iterations and 37.5 minutes. The average final XYZ offsets is 0.02cm, 0.01cm, 0.04cm for automatic setup and 0.04cm, 0.02cm, 0.04cm for manual setup. Conclusion: Automatic placement decreased time and repeat iterations for setup while improving placement accuracy. Automatic placement greatly reduces the time required to perform QA.

  16. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

    CERN Document Server

    Rupp, Matthias; Müller, Klaus-Robert; von Lilienfeld, O Anatole

    2011-01-01

    We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schr\\"odinger equation is mapped onto a non-linear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross-validation over more than seven thousand small organic molecules yields a mean absolute error of ~10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

  17. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods.

    Science.gov (United States)

    Polat, Huseyin; Danaei Mehr, Homay; Cetin, Aydin

    2017-04-01

    As Chronic Kidney Disease progresses slowly, early detection and effective treatment are the only cure to reduce the mortality rate. Machine learning techniques are gaining significance in medical diagnosis because of their classification ability with high accuracy rates. The accuracy of classification algorithms depend on the use of correct feature selection algorithms to reduce the dimension of datasets. In this study, Support Vector Machine classification algorithm was used to diagnose Chronic Kidney Disease. To diagnose the Chronic Kidney Disease, two essential types of feature selection methods namely, wrapper and filter approaches were chosen to reduce the dimension of Chronic Kidney Disease dataset. In wrapper approach, classifier subset evaluator with greedy stepwise search engine and wrapper subset evaluator with the Best First search engine were used. In filter approach, correlation feature selection subset evaluator with greedy stepwise search engine and filtered subset evaluator with the Best First search engine were used. The results showed that the Support Vector Machine classifier by using filtered subset evaluator with the Best First search engine feature selection method has higher accuracy rate (98.5%) in the diagnosis of Chronic Kidney Disease compared to other selected methods.

  18. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified).

  19. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging.

    Science.gov (United States)

    Gaonkar, Bilwaj; T Shinohara, Russell; Davatzikos, Christos

    2015-08-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier's decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification.

  20. Multi-Scale Analysis Based Ball Bearing Defect Diagnostics Using Mahalanobis Distance and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chun-Chieh Wang

    2013-01-01

    Full Text Available The objective of this research is to investigate the feasibility of utilizing the multi-scale analysis and support vector machine (SVM classification scheme to diagnose the bearing faults in rotating machinery. For complicated signals, the characteristics of dynamic systems may not be apparently observed in a scale, particularly for the fault-related features of rotating machinery. In this research, the multi-scale analysis is employed to extract the possible fault-related features in different scales, such as the multi-scale entropy (MSE, multi-scale permutation entropy (MPE, multi-scale root-mean-square (MSRMS and multi-band spectrum entropy (MBSE. Some of the features are then selected as the inputs of the support vector machine (SVM classifier through the Fisher score (FS as well as the Mahalanobis distance (MD evaluations. The vibration signals of bearing test data at Case Western Reserve University (CWRU are utilized as the illustrated examples. The analysis results demonstrate that an accurate bearing defect diagnosis can be achieved by using the extracted machine features in different scales. It can be also noted that the diagnostic results of bearing faults can be further enhanced through the feature selection procedures of FS and MD evaluations.

  1. Support vector machine-based feature extractor for L/H transitions in JETa)

    Science.gov (United States)

    González, S.; Vega, J.; Murari, A.; Pereira, A.; Ramírez, J. M.; Dormido-Canto, S.; Jet-Efda Contributors

    2010-10-01

    Support vector machines (SVM) are machine learning tools originally developed in the field of artificial intelligence to perform both classification and regression. In this paper, we show how SVM can be used to determine the most relevant quantities to characterize the confinement transition from low to high confinement regimes in tokamak plasmas. A set of 27 signals is used as starting point. The signals are discarded one by one until an optimal number of relevant waveforms is reached, which is the best tradeoff between keeping a limited number of quantities and not loosing essential information. The method has been applied to a database of 749 JET discharges and an additional database of 150 JET discharges has been used to test the results obtained.

  2. Splicing-site recognition of rice (Oryza sativa L.)DNA sequences by support vector machines

    Institute of Scientific and Technical Information of China (English)

    彭司华; 樊龙江; 彭小宁; 庄树林; 杜维; 陈良标

    2003-01-01

    Motivation: It was found that high accuracy splicing-site recognition of rice (Oryza sativa L.) DNA sequence is especially difficult. We described a new method for the splicing-site recognition of rice DNA sequences. Method: Based on the intron in eukaryotic organisms conforming to the principle of GT-AG, we used support vector machines (SVM) to predict the splicing sites. By machine learning, we built a model and used it to test the effect of the test data set of true and pseudo splicing sites. Results: The prediction accuracy we obtained was 87.53% at the true 5' end splicing site and 87.37% at the true 3' end splicing sites. The results suggested that the SVM approach could achieve higher accuracy than the previous approaches.

  3. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM).

    Science.gov (United States)

    Khan, Saranjam; Ullah, Rahat; Khan, Asifullah; Wahab, Noorul; Bilal, Muhammad; Ahmed, Mushtaq

    2016-06-01

    The current study presents the use of Raman spectroscopy combined with support vector machine (SVM) for the classification of dengue suspected human blood sera. Raman spectra for 84 clinically dengue suspected patients acquired from Holy Family Hospital, Rawalpindi, Pakistan, have been used in this study.The spectral differences between dengue positive and normal sera have been exploited by using effective machine learning techniques. In this regard, SVM models built on the basis of three different kernel functions including Gaussian radial basis function (RBF), polynomial function and linear functionhave been employed to classify the human blood sera based on features obtained from Raman Spectra.The classification model have been evaluated with the 10-fold cross validation method. In the present study, the best performance has been achieved for the polynomial kernel of order 1. A diagnostic accuracy of about 85% with the precision of 90%, sensitivity of 73% and specificity of 93% has been achieved under these conditions.

  4. A font and size-independent OCR system for printed Kannada documents using support vector machines

    Indian Academy of Sciences (India)

    T V Ashwin; P S Sastry

    2002-02-01

    This paper describes an OCR system for printed text documents in Kannada, a South Indian language. The input to the system would be the scanned image of a page of text and the output is a machine editable file compatible with most typesetting software. The system first extracts words from the document image and then segments the words into sub-character level pieces. The segmentation algorithm is motivated by the structure of the script. We propose a novel set of features for the recognition problem which are computationally simple to extract. The final recognition is achieved by employing a number of 2-class classifiers based on the Support Vector Machine (SVM) method. The recognition is independent of the font and size of the printed text and the system is seen to deliver reasonable performance.

  5. Deep learning of support vector machines with class probability output networks.

    Science.gov (United States)

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated.

  6. Support vector machines for prediction of protein signal sequences and their cleavage sites.

    Science.gov (United States)

    Cai, Yu-Dong; Lin, Shuo-liang; Chou, Kuo-Chen

    2003-01-01

    Given a nascent protein sequence, how can one predict its signal peptide or "Zipcode" sequence? This is an important problem for scientists to use signal peptides as a vehicle to find new drugs or to reprogram cells for gene therapy (see, e.g. K.C. Chou, Current Protein and Peptide Science 2002;3:615-22). In this paper, support vector machines (SVMs), a new machine learning method, is applied to approach this problem. The overall rate of correct prediction for 1939 secretary proteins and 1440 nonsecretary proteins was over 91%. It has not escaped our attention that the new method may also serve as a useful tool for further investigating many unclear details regarding the molecular mechanism of the ZIP code protein-sorting system in cells. Copyright 2002 Elsevier Science Inc.

  7. Comparison on neural networks and support vector machines in suppliers' selection

    Institute of Scientific and Technical Information of China (English)

    Hu Guosheng; Zhang Guohong

    2008-01-01

    Suppliers' selection in supply chain management (SCM) has attracted considerable research interests in recent years. Recent literatures show that neural networks achieve better performance than traditional statistical methods. However, neural networks have inherent drawbacks, such as local optimization solution, lack generalization,and uncontrolled convergence. A relatively new machine learning technique, support vector machine (SVM), which overcomes the drawbacks of neural networks, is introduced to provide a model with better explanatory power to select ideal supplier partners. Meanwhile, in practice, the suppliers' samples are very insufficient. SVMs are adaptive to deal with small samples' training and testing. The prediction accuracies for BPNN and SVM methods are compared to choose the appreciating suppliers. The actual examples illustrate that SVM methods are superior to BPNN.

  8. FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    LIU Guanjun; LIU Xinmin; QIU Jing; HU Niaoqing

    2007-01-01

    Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.

  9. Application of neural networks and support vector machine for significant wave height prediction

    Directory of Open Access Journals (Sweden)

    Jadran Berbić

    2017-07-01

    Full Text Available For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN and support vector machine (SVM. The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.

  10. Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm

    Science.gov (United States)

    Yuan, Shengfa; Chu, Fulei

    2007-04-01

    Support vector machines (SVM) is a new general machine-learning tool based on the structural risk minimisation principle that exhibits good generalisation when fault samples are few, it is especially fit for classification, forecasting and estimation in small-sample cases such as fault diagnosis, but some parameters in SVM are selected by man's experience, this has hampered its efficiency in practical application. Artificial immunisation algorithm (AIA) is used to optimise the parameters in SVM in this paper. The AIA is a new optimisation method based on the biologic immune principle of human being and other living beings. It can effectively avoid the premature convergence and guarantees the variety of solution. With the parameters optimised by AIA, the total capability of the SVM classifier is improved. The fault diagnosis of turbo pump rotor shows that the SVM optimised by AIA can give higher recognition accuracy than the normal SVM.

  11. Blind multiuser detector for chaos-based CDMA using support vector machine.

    Science.gov (United States)

    Kao, Johnny Wei-Hsun; Berber, Stevan Mirko; Kecman, Vojislav

    2010-08-01

    The algorithm and the results of a blind multiuser detector using a machine learning technique called support vector machine (SVM) on a chaos-based code division multiple access system is presented in this paper. Simulation results showed that the performance achieved by using SVM is comparable to existing minimum mean square error (MMSE) detector under both additive white Gaussian noise (AWGN) and Rayleigh fading conditions. However, unlike the MMSE detector, the SVM detector does not require the knowledge of spreading codes of other users in the system or the estimate of the channel noise variance. The optimization of this algorithm is considered in this paper and its complexity is compared with the MMSE detector. This detector is much more suitable to work in the forward link than MMSE. In addition, original theoretical bit-error rate expressions for the SVM detector under both AWGN and Rayleigh fading are derived to verify the simulation results.

  12. Operator functional state classification using least-square support vector machine based recursive feature elimination technique.

    Science.gov (United States)

    Yin, Zhong; Zhang, Jianhua

    2014-01-01

    This paper proposed two psychophysiological-data-driven classification frameworks for operator functional states (OFS) assessment in safety-critical human-machine systems with stable generalization ability. The recursive feature elimination (RFE) and least square support vector machine (LSSVM) are combined and used for binary and multiclass feature selection. Besides typical binary LSSVM classifiers for two-class OFS assessment, two multiclass classifiers based on multiclass LSSVM-RFE and decision directed acyclic graph (DDAG) scheme are developed, one used for recognizing the high mental workload and fatigued state while the other for differentiating overloaded and base-line states from the normal states. Feature selection results have revealed that different dimensions of OFS can be characterized by specific set of psychophysiological features. Performance comparison studies show that reasonable high and stable classification accuracy of both classification frameworks can be achieved if the RFE procedure is properly implemented and utilized.

  13. SOFT SENSING MODEL BASED ON SUPPORT VECTOR MACHINE AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Yan Weiwu; Shao Huihe; Wang Xiaofan

    2004-01-01

    Soft sensor is widely used in industrial process control.It plays an important role to improve the quality of product and assure safety in production.The core of soft sensor is to construct soft sensing model.A new soft sensing modeling method based on support vector machine (SVM) is proposed.SVM is a new machine learning method based on statistical learning theory and is powerful for the problem characterized by small sample, nonlinearity, high dimension and local minima.The proposed methods are applied to the estimation of frozen point of light diesel oil in distillation column.The estimated outputs of soft sensing model based on SVM match the real values of frozen point and follow varying trend of frozen point very well.Experiment results show that SVM provides a new effective method for soft sensing modeling and has promising application in industrial process applications.

  14. Parameter selection of support vector machine for function approximation based on chaos optimization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The support vector machine (SVM) is a novel machine learning method,which has the ability to approximate nonlinear functions with arbitrary accuracy.Setting parameters well is very crucial for SVM learning results and generalization ability,and now there is no systematic,general method for parameter selection.In this article,the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal parameter values.The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy.Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.

  15. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  16. Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    M. T. Mushtaq

    2015-04-01

    Full Text Available Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying based signals propagating through an AWGN (Additive White Gaussian Noise channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR values up to -50 dB.

  17. Web Page Classification using an ensemble of support vector machine classifiers

    Directory of Open Access Journals (Sweden)

    Shaobo Zhong

    2011-11-01

    Full Text Available Web Page Classification (WPC is both an important and challenging topic in data mining. The knowledge of WPC can help users to obtain useable information from the huge internet dataset automatically and efficiently. Many efforts have been made to WPC. However, there is still room for improvement of current approaches. One particular challenge in training classifiers comes from the fact that the available dataset is usually unbalanced. Standard machine learning algorithms tend to be overwhelmed by the major class and ignore the minor one and thus lead to high false negative rate. In this paper, a novel approach for Web page classification was proposed to address this problem by using an ensemble of support vector machine classifiers to perform this work. Principal Component Analysis (PCA is used for feature reduction and Independent Component Analysis (ICA for feature selection. The experimental results indicate that the proposed approach outperforms other existing classifiers widely used in WPC.

  18. Experimental Validation of Mathematical Framework for Fast Switching Valves used in Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based on an el......A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based...... of 10 kW during switching (mean of approximately 250 W) and a pressure loss below 0.5 bar at 600 l/min. The main goal of this article is validate parts of the mathematical framework based on a series of experiments. Furthermore, this article aims to document the experience gained from the experimental...... work and to study and assess a moving coil actuators suitability for the application....

  19. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.

    Science.gov (United States)

    Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho

    2017-03-01

    Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fast and scalable prediction of local energy at grain boundaries: machine-learning based modeling of first-principles calculations

    Science.gov (United States)

    Tamura, Tomoyuki; Karasuyama, Masayuki; Kobayashi, Ryo; Arakawa, Ryuichi; Shiihara, Yoshinori; Takeuchi, Ichiro

    2017-10-01

    We propose a new scheme based on machine learning for the efficient screening in grain-boundary (GB) engineering. A set of results obtained from first-principles calculations based on density functional theory (DFT) for a small number of GB systems is used as a training data set. In our scheme, by partitioning the total energy into atomic energies using a local-energy analysis scheme, we can increase the training data set significantly. We use atomic radial distribution functions and additional structural features as atom descriptors to predict atomic energies and GB energies simultaneously using the least absolute shrinkage and selection operator, which is a recent standard regression technique in statistical machine learning. In the test study with fcc-Al [110] symmetric tilt GBs, we could achieve enough predictive accuracy to understand energy changes at and near GBs at a glance, even if we collected training data from only 10 GB systems. The present scheme can emulate time-consuming DFT calculations for large GB systems with negligible computational costs, and thus enable the fast screening of possible alternative GB systems.

  1. A divide-and-combine method for large scale nonparallel support vector machines.

    Science.gov (United States)

    Tian, Yingjie; Ju, Xuchan; Shi, Yong

    2016-03-01

    Nonparallel Support Vector Machine (NPSVM) which is more flexible and has better generalization than typical SVM is widely used for classification. Although some methods and toolboxes like SMO and libsvm for NPSVM are used, NPSVM is hard to scale up when facing millions of samples. In this paper, we propose a divide-and-combine method for large scale nonparallel support vector machine (DCNPSVM). In the division step, DCNPSVM divide samples into smaller sub-samples aiming at solving smaller subproblems independently. We theoretically and experimentally prove that the objective function value, solutions, and support vectors solved by DCNPSVM are close to the objective function value, solutions, and support vectors of the whole NPSVM problem. In the combination step, the sub-solutions combined as initial iteration points are used to solve the whole problem by global coordinate descent which converges quickly. In order to balance the accuracy and efficiency, we adopt a multi-level structure which outperforms state-of-the-art methods. Moreover, our DCNPSVM can tackle unbalance problems efficiently by tuning the parameters. Experimental results on lots of large data sets show the effectiveness of our method in memory usage, classification accuracy and time consuming.

  2. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    Directory of Open Access Journals (Sweden)

    Liao Li

    2010-10-01

    Full Text Available Abstract Background Protein-protein interaction (PPI plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs, based on domains represented as interaction profile hidden Markov models (ipHMM where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB. Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD. Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure, an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on

  3. Mining protein function from text using term-based support vector machines

    Science.gov (United States)

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  4. 基于支持向量机的分段线性学习方法%A Subsection Learning Algorithm Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    杨强; 吴中福; 王茜

    2003-01-01

    In this paper, we discuss drawback of traditional subsection learning algorithm in pattern recognition and exiting support vector machines (including kernel functions), the necessity of using subsection learning algorithm based on support vector machines as well as. In turn, a subsection learning algorithm based on support vector machines, is proposed in this paper.

  5. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  6. Fast and intuitive programming of adaptive laser cutting of lace enabled by machine vision

    Science.gov (United States)

    Vaamonde, Iago; Souto-López, Álvaro; García-Díaz, Antón

    2015-07-01

    A machine vision system has been developed, validated, and integrated in a commercial laser robot cell. It permits an offline graphical programming of laser cutting of lace. The user interface allows loading CAD designs and aligning them with images of lace pieces. Different thread widths are discriminated to generate proper cutting program templates. During online operation, the system aligns CAD models of pieces and lace images, pre-checks quality of lace cuts and adapts laser parameters to thread widths. For pieces detected with the required quality, the program template is adjusted by transforming the coordinates of every trajectory point. A low-cost lace feeding system was also developed for demonstration of full process automation.

  7. Fast supersymmetry phenomenology at the Large Hadron Collider using machine learning techniques

    CERN Document Server

    Buckley, A; White, M J

    2011-01-01

    A pressing problem for supersymmetry (SUSY) phenomenologists is how to incorporate Large Hadron Collider search results into parameter fits designed to measure or constrain the SUSY parameters. Owing to the computational expense of fully simulating lots of points in a generic SUSY space to aid the calculation of the likelihoods, the limits published by experimental collaborations are frequently interpreted in slices of reduced parameter spaces. For example, both ATLAS and CMS have presented results in the Constrained Minimal Supersymmetric Model (CMSSM) by fixing two of four parameters, and generating a coarse grid in the remaining two. We demonstrate that by generating a grid in the full space of the CMSSM, one can interpolate between the output of an LHC detector simulation using machine learning techniques, thus obtaining a superfast likelihood calculator for LHC-based SUSY parameter fits. We further investigate how much training data is required to obtain usable results, finding that approximately 2000 po...

  8. Oil Stiction in Fast Switching Annular Seat Valves for Digital Displacement Fluid Power Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.

    2014-01-01

    valves suitable for DD applications based on the Reynolds equation and considers contact surface curvature and attack angle. A dynamic cavitation zone is included in the stiction model, and cavitation is found to be present even for seat valves surrounded by high pressure levels....... to the dynamic behaviour of the seat valves must be considered to optimize the machine efficiency. A significant effect influencing the valves switching performance is the presence of oil stiction when separating the contact surfaces in valve opening movement. This oil stiction force is limited by cavitation...... for low pressure levels, e.g. valves connected to the low pressure manifold, however for valves operated at higher pressure levels, the oil stiction force is dominating when the separating surfaces are close to contact. This paper presents an analytic solution to the oil stiction force for annular seat...

  9. Fast and accurate semantic annotation of bioassays exploiting a hybrid of machine learning and user confirmation

    Directory of Open Access Journals (Sweden)

    Alex M. Clark

    2014-08-01

    Full Text Available Bioinformatics and computer aided drug design rely on the curation of a large number of protocols for biological assays that measure the ability of potential drugs to achieve a therapeutic effect. These assay protocols are generally published by scientists in the form of plain text, which needs to be more precisely annotated in order to be useful to software methods. We have developed a pragmatic approach to describing assays according to the semantic definitions of the BioAssay Ontology (BAO project, using a hybrid of machine learning based on natural language processing, and a simplified user interface designed to help scientists curate their data with minimum effort. We have carried out this work based on the premise that pure machine learning is insufficiently accurate, and that expecting scientists to find the time to annotate their protocols manually is unrealistic. By combining these approaches, we have created an effective prototype for which annotation of bioassay text within the domain of the training set can be accomplished very quickly. Well-trained annotations require single-click user approval, while annotations from outside the training set domain can be identified using the search feature of a well-designed user interface, and subsequently used to improve the underlying models. By drastically reducing the time required for scientists to annotate their assays, we can realistically advocate for semantic annotation to become a standard part of the publication process. Once even a small proportion of the public body of bioassay data is marked up, bioinformatics researchers can begin to construct sophisticated and useful searching and analysis algorithms that will provide a diverse and powerful set of tools for drug discovery researchers.

  10. Support vector machines as multivariate calibration model for prediction of blood glucose concentration using a new non-invasive optical method named Pulse Glucometry.

    Science.gov (United States)

    Ogawa, Mitsuhiro; Yamakoshi, Yasuhiro; Satoh, Makoto; Nogawa, Masamichi; Yamakoshi, Takehiro; Tanaka, Shinobu; Rolfe, Peter; Tamura, Toshiyo; Yamakoshi, Ken-ichi

    2007-01-01

    A novel optical non-invasive in vivo blood glucose concentration (BGL) measurement technique, named "Pulse Glucometry", was combined with a kernel method; support vector machines. The total transmitted radiation intensity (I lambda) and the cardiac-related pulsatile changes superimposed on I lambda in human adult fingertips were measured over the wavelength range from 900 to 1700 nm using a very fast spectrophotometer, obtaining a differential optical density (delta OD lambda) related to the blood component in the finger tissues. Subsequently, a calibration model using paired data of a family of delta OD lambda s and the corresponding known BGLs was constructed with support vector machines regression instead of using calibration by a conventional partial least squares regression (PLS). Our results show that the calibration model based on the support vector machines can provide a good regression for the 183 paired data, in which the BGLs ranged from 89.0-219 mg/dl (4.94-12.2 mmol/l). The resultant regression was evaluated by the Clarke error grid analysis and all data points fell within the clinically acceptable regions (region A: 93%, region B: 7%).

  11. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials

    Science.gov (United States)

    Dolgirev, Pavel E.; Kruglov, Ivan A.; Oganov, Artem R.

    2016-08-01

    We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.

  12. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials

    Directory of Open Access Journals (Sweden)

    Pavel E. Dolgirev

    2016-08-01

    Full Text Available We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.

  13. Experimental Validation of Mathematical Framework for Fast Switching Valves used in Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller;

    2015-01-01

    A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based...... on an elaborate optimization method the valve is designed to maximize the efficiency of a digital hydraulic motor targeted to a wind turbine transmission system. The optimisation method comprises a mathematical framework which predicts a valve switching time of approximately 1 ms with a peak actuator input power...

  14. "Nutritional Wastelands": Vending Machines, Fast Food Outlets, and the Fight over Junk Food in Canadian Schools.

    Science.gov (United States)

    Gidney, Catherine

    2015-01-01

    In light of a growing obesity crisis among children and concern about junk food in schools, this article investigates the attempt by food and beverage companies to gain entry into Canadian schools. Focusing in particular on the introduction of fast-food franchises in cafeterias and on school boards' secret exclusivity deals with soft drink manufacturers in the 1990s, it examines how and why this process occurred, public reactions to it, and government responses. Placing this phenomenon within a larger pattern of commercialization in North American schools, it argues that long-lasting reforms require government intervention and enforcement.

  15. Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masayuki Yarimizu

    2015-01-01

    Full Text Available Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP and UniProtKB, filtered them by removing sequence redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is based on support vector machines (SVMs, and we evaluated several input features suitable for tyrosine kinase for machine learning and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that obtained from general protein-protein interaction pair predictions.

  16. Inferring the location of buried UXO using a support vector machine

    Science.gov (United States)

    Fernández, Juan Pablo; Sun, Keli; Barrowes, Benjamin; O'Neill, Kevin; Shamatava, Irma; Shubitidze, Fridon; Paulsen, Keith D.

    2007-04-01

    The identification of unexploded ordnance (UXO) using electromagnetic-induction (EMI) sensors involves two essentially independent steps: Each anomaly detected by the sensor has to be located fairly accurately, and its orientation determined, before one can try to find size/shape/composition properties that identify the object uniquely. The dependence on the latter parameters is linear, and can be solved for efficiently using for example the Normalized Surface Magnetic Charge model. The location and orientation, on the other hand, have a nonlinear effect on the measurable scattered field, making their determination much more time-consuming and thus hampering the ability to carry out discrimination in real time. In particular, it is difficult to resolve for depth when one has measurements taken at only one instrument elevation. In view of the difficulties posed by direct inversion, we propose using a Support Vector Machine (SVM) to infer the location and orientation of buried UXO. SVMs are a method of supervised machine learning: the user can train a computer program by feeding it features of representative examples, and the machine, in turn, can generalize this information by finding underlying patterns and using them to classify or regress unseen instances. In this work we train an SVM using measured-field information, for both synthetic and experimental data, and evaluate its ability to predict the location of different buried objects to reasonable accuracy. We explore various combinations of input data and learning parameters in search of an optimal predictive configuration.

  17. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results.

    Science.gov (United States)

    Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo

    2015-01-01

    Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice.

  18. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Antonio Cerasa

    2015-01-01

    Full Text Available Presently, there are no valid biomarkers to identify individuals with eating disorders (ED. The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa were compared against 17 body mass index-matched healthy controls (HC. Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice.

  19. Support vector machine for classification of walking conditions using miniature kinematic sensors.

    Science.gov (United States)

    Lau, Hong-Yin; Tong, Kai-Yu; Zhu, Hailong

    2008-06-01

    A portable gait analysis and activity-monitoring system for the evaluation of activities of daily life could facilitate clinical and research studies. This current study developed a small sensor unit comprising an accelerometer and a gyroscope in order to detect shank and foot segment motion and orientation during different walking conditions. The kinematic data obtained in the pre-swing phase were used to classify five walking conditions: stair ascent, stair descent, level ground, upslope and downslope. The kinematic data consisted of anterior-posterior acceleration and angular velocity measured from the shank and foot segments. A machine learning technique known as support vector machine (SVM) was applied to classify the walking conditions. SVM was also compared with other machine learning methods such as artificial neural network (ANN), radial basis function network (RBF) and Bayesian belief network (BBN). The SVM technique was shown to have a higher performance in classification than the other three methods. The results using SVM showed that stair ascent and stair descent could be distinguished from each other and from the other walking conditions with 100% accuracy by using a single sensor unit attached to the shank segment. For classification results in the five walking conditions, performance improved from 78% using the kinematic signals from the shank sensor unit to 84% by adding signals from the foot sensor unit. The SVM technique with the portable kinematic sensor unit could automatically recognize the walking condition for quantitative analysis of the activity pattern.

  20. Clustering technique-based least square support vector machine for EEG signal classification.

    Science.gov (United States)

    Siuly; Li, Yan; Wen, Peng Paul

    2011-12-01

    This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extracted features to classify two-class EEG signals. To demonstrate the effectiveness of the proposed method, several experiments have been conducted on three publicly available benchmark databases, one for epileptic EEG data, one for mental imagery tasks EEG data and another one for motor imagery EEG data. Our proposed approach achieves an average sensitivity, specificity and classification accuracy of 94.92%, 93.44% and 94.18%, respectively, for the epileptic EEG data; 83.98%, 84.37% and 84.17% respectively, for the motor imagery EEG data; and 64.61%, 58.77% and 61.69%, respectively, for the mental imagery tasks EEG data. The performance of the CT-LS-SVM algorithm is compared in terms of classification accuracy and execution (running) time with our previous study where simple random sampling with a least square support vector machine (SRS-LS-SVM) was employed for EEG signal classification. We also compare the proposed method with other existing methods in the literature for the three databases. The experimental results show that the proposed algorithm can produce a better classification rate than the previous reported methods and takes much less execution time compared to the SRS-LS-SVM technique. The research findings in this paper indicate that the proposed approach is very efficient for classification of two-class EEG signals.

  1. Particle Filter with Binary Gaussian Weighting and Support Vector Machine for Human Pose Interpretation

    Directory of Open Access Journals (Sweden)

    Indah Agustien

    2010-10-01

    Full Text Available Human pose interpretation using Particle filter with Binary Gaussian Weighting and Support Vector Machine is proposed. In the proposed system, Particle filter is used to track human object, then this human object is skeletonized using thinning algorithm and classified using Support Vector Machine. The classification is to identify human pose, whether a normal or abnormal behavior. Here Particle filter is modified through weight calculation using Gaussiandistribution to reduce the computational time. The modified particle filter consists of four main phases. First, particles are generated to predict target’s location. Second, weight of certain particles is calculated and these particles are used to build Gaussian distribution. Third, weight of all particles is calculated based on Gaussian distribution. Fourth, update particles based on each weight. The modified particle filter could reduce computational time of object tracking since this method does not have to calculate particle’s weight one by one. To calculate weight, the proposed method builds Gaussian distribution and calculates particle’s weight using this distribution. Through experiment using video data taken in front of cashier of convenient store, the proposed method reduced computational time in tracking process until 68.34% in average compare to the conventional one, meanwhile the accuracy of tracking with this new method is comparable with particle filter method i.e. 90.3%. Combination particle filter with binary Gaussian weighting and support vector machine is promising for advanced early crime scene investigation.

  2. Support vector echo-state machine for chaotic time-series prediction.

    Science.gov (United States)

    Shi, Zhiwei; Han, Min

    2007-03-01

    A novel chaotic time-series prediction method based on support vector machines (SVMs) and echo-state mechanisms is proposed. The basic idea is replacing "kernel trick" with "reservoir trick" in dealing with nonlinearity, that is, performing linear support vector regression (SVR) in the high-dimension "reservoir" state space, and the solution benefits from the advantages from structural risk minimization principle, and we call it support vector echo-state machines (SVESMs). SVESMs belong to a special kind of recurrent neural networks (RNNs) with convex objective function, and their solution is global, optimal, and unique. SVESMs are especially efficient in dealing with real life nonlinear time series, and its generalization ability and robustness are obtained by regularization operator and robust loss function. The method is tested on the benchmark prediction problem of Mackey-Glass time series and applied to some real life time series such as monthly sunspots time series and runoff time series of the Yellow River, and the prediction results are promising.

  3. Radar Emitter Signal Recognition Using Wavelet Packet Transform and Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    Jin Weidong; Zhang Gexiang; Hu Laizhao

    2006-01-01

    This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.

  4. Prediction and Classification of Human G-protein Coupled Receptors Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    Yun-Fei Wang; Huan Chen; Yan-Hong Zhou

    2005-01-01

    A computational system for the prediction and classification of human G-protein coupled receptors (GPCRs) has been developed based on the support vector machine (SVM) method and protein sequence information. The feature vectors used to develop the SVM prediction models consist of statistically significant features selected from single amino acid, dipeptide, and tripeptide compositions of protein sequences. Furthermore, the length distribution difference between GPCRsand non-GPCRs has also been exploited to improve the prediction performance.The testing results with annotated human protein sequences demonstrate that this system can get good performance for both prediction and classification of human GPCRs.

  5. Biometric gait recognition for mobile devices using wavelet transform and support vector machines

    DEFF Research Database (Denmark)

    Hestbek, Martin Reese; Nickel, C.; Busch, C.

    2012-01-01

    The ever growing number of mobile devices has turned the attention to security and usability. If a mobile device is lost or stolen this can lead to loss of personal information and the possibility of identity theft. People often tend not to use passwords which leads to lack of personal security...... obtained from mobile devices. Gait templates were constructed of Bark-frequency cepstral coefficients (BFCC) from the wavelet coefficients and these were arranged to train a support vector machine (SVM). A cross-day scenario demonstrates that the proposed approach shows competitive recognition performance...

  6. Thrust estimator design based on least squares support vector regression machine

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-ping; SUN Jian-guo

    2010-01-01

    In order to realize direct thrust control instead of traditional sensor-based control for nero-engines,it is indispensable to design a thrust estimator with high accuracy,so a scheme for thrust estimator design based on the least square support vector regression machine is proposed to solve this problem.Furthermore,numerical simulations confirm the effectiveness of our presented scheme.During the process of estimator design,a wrap per criterion that can not only reduce the computational complexity but also enhance the generalization performance is proposed to select variables as input variables for estimator.

  7. Identification of handwriting by using the genetic algorithm (GA) and support vector machine (SVM)

    Science.gov (United States)

    Zhang, Qigui; Deng, Kai

    2016-12-01

    As portable digital camera and a camera phone comes more and more popular, and equally pressing is meeting the requirements of people to shoot at any time, to identify and storage handwritten character. In this paper, genetic algorithm(GA) and support vector machine(SVM)are used for identification of handwriting. Compare with parameters-optimized method, this technique overcomes two defects: first, it's easy to trap in the local optimum; second, finding the best parameters in the larger range will affects the efficiency of classification and prediction. As the experimental results suggest, GA-SVM has a higher recognition rate.

  8. An Auto-flag Method of Radio Visibility Data Based on Support Vector Machine

    Science.gov (United States)

    Hui-mei, Dai; Ying, Mei; Wei, Wang; Hui, Deng; Feng, Wang

    2017-01-01

    The Mingantu Ultrawide Spectral Radioheliograph (MUSER) has entered a test observation stage. After the construction of the data acquisition and storage system, it is urgent to automatically flag and eliminate the abnormal visibility data so as to improve the imaging quality. In this paper, according to the observational records, we create a credible visibility set, and further obtain the corresponding flag model of visibility data by using the support vector machine (SVM) technique. The results show that the SVM is a robust approach to flag the MUSER visibility data, and can attain an accuracy of about 86%. Meanwhile, this method will not be affected by solar activities, such as flare eruptions.

  9. Performance and optimization of support vector machines in high-energy physics classification problems

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Mehmet Oezguer; Kruecker, Dirk; Melzer-Pellmann, Isabell [DESY, Hamburg (Germany)

    2016-07-01

    In this talk, the use of Support Vector Machines (SVM) is promoted for new-physics searches in high-energy physics. We developed an interface, called SVM HEP Interface (SVM-HINT), for a popular SVM library, LibSVM, and introduced a statistical-significance based hyper-parameter optimization algorithm for the new-physics searches. As example case study, a search for Supersymmetry at the Large Hadron Collider is given to demonstrate the capabilities of SVM using SVM-HINT.

  10. Ozone Monitoring Using Support Vector Machine and K-Nearest Neighbors Methods

    Directory of Open Access Journals (Sweden)

    FALEH Rabeb

    2017-05-01

    Full Text Available Due to health impacts caused by the pollutant gases, monitoring and controlling air quality is an important field of interest. This paper deals with ozone monitoring in four stations measuring air quality located in many Tunisian cities using numerous measuring instruments and polluting gas analyzers. Prediction of ozone concentrations in two Tunisian cities, Tunis and Sfax is screened based on supervised classification models. The K -Nearest neighbors results reached 98.7 % success rate in the recognition and ozone identification. Support Vector Machines (SVM with the linear, polynomial and RBF kernel were applied to build a classifier and full accuracy (100% was again achieved with the RBF kernel.

  11. Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification

    Directory of Open Access Journals (Sweden)

    R. Rajesh Sharma

    2015-01-01

    algorithm (RGSA. Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002. The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods.

  12. Analysis and prediction of nutritional requirements using structural properties of metabolic networks and support vector machines.

    Science.gov (United States)

    Tamura, Takeyuki; Christian, Nils; Takemoto, Kazuhiro; Ebenhöh, Oliver; Akutsu, Tatsuya

    2010-01-01

    Properties of graph representation of genome scale metabolic networks have been extensively studied. However, the relationship between these structural properties and functional properties of the networks are still very unclear. In this paper, we focus on nutritional requirements of organisms as a functional property and study the relationship with structural properties of a graph representation of metabolic networks. In order to examine the relationship, we study to what extent the nutritional requirements can be predicted by using support vector machines from structural properties, which include degree exponent, edge density, clustering coefficient, degree centrality, closeness centrality, betweenness centrality and eigenvector centrality. Furthermore, we study which properties are influential to the nutritional requirements.

  13. Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jian-Jiun Ding

    2012-07-01

    Full Text Available Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vector machine (SVM was applied to automate the fault diagnosis procedure. Simulation results demonstrated that the proposed method is a very powerful algorithm for bearing fault diagnosis and has much better performance than the methods based on single scale permutation entropy (PE and multiscale entropy (MSE.

  14. Impact of Health Care Employees’ Job Satisfaction On Organizational Performance Support Vector Machine Approach

    Directory of Open Access Journals (Sweden)

    Cemil Kuzey

    2012-05-01

    Full Text Available This study was undertaken to search for key factors that contribute to job satisfaction among health care workers, and also to determine the impact of these underlying dimensions of employee satisfaction on organizational performance. Exploratory Factor Analysis (EFA was applied to initially uncover the key factors, and then, in the next stage of analysis, a popular data mining technique, Support Vector Machine (SVM was employed on a sample of 249 to determine the impact of job satisfaction factors on organizational performance. According to the proposed model, the main factors were revealed to be management’s attitude, pay/reward, job security and colleagues.

  15. Study on flaw identification of ultrasonic signal for large shafts based on optimal support vector machine

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiufen; Yin Guofu; Tian Guiyun; Yin Ying

    2008-01-01

    Automatic identification of flaws is very important for ultrasonic nondestructive testing and evaluation of large shaft. A novel automatic defect identification system is presented. Wavelet packet analysis (WPA) was applied to feature extraction of ultrasonic signal, and optimal Support vector machine (SVM) was used to perform the identification task. Meanwhile, comparative study on convergent velocity and classified effect was done among SVM and several improved BP network models. To validate the method, some experiments were performed and the results show that the proposed system has very high identification performance for large shafts and the optimal SVM processes better classification performance and spreading potential than BP manual neural network under small study sample condition.

  16. Speech/Music Classification Enhancement for 3GPP2 SMV Codec Based on Support Vector Machine

    Science.gov (United States)

    Kim, Sang-Kyun; Chang, Joon-Hyuk

    In this letter, we propose a novel approach to speech/music classification based on the support vector machine (SVM) to improve the performance of the 3GPP2 selectable mode vocoder (SMV) codec. We first analyze the features and the classification method used in real time speech/music classification algorithm in SMV, and then apply the SVM for enhanced speech/music classification. For evaluation of performance, we compare the proposed algorithm and the traditional algorithm of the SMV. The performance of the proposed system is evaluated under the various environments and shows better performance compared to the original method in the SMV.

  17. Hepatic CT image retrieval based on the combination of Gabor filters and support vector machine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Content-based image retrieval has been an active area of research for more than ten years.Gabor schemes and support vector machine (SVM) method have been proven effective in image representation and classification. In this paper,we propose a retrieval scheme based on Gabor filters and SVMs for hepatic computed tomography (CT) images query.In our experiments,a batch of hepatic CT images containing several types of CT findings are used for the retrieval test.Precision comparison between our scheme and existing methods is presented.

  18. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels.

    Science.gov (United States)

    Chen, S; Samingan, A K; Hanzo, L

    2001-01-01

    The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.

  19. Application of Support Vector Machine in Weld Defect Detection and Recognition of X-ray Images

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; GUO Hui

    2014-01-01

    Support vector machines(SVM) received wide attention for its excellent ability to learn, it has been applied in many fields. A review of the application of SVM in weld defect detection and recognition of X-ray image is been presented. We will show some commonly used methods of weld defect detection and recognition using SVM, and the advantages and disadvantages of each method will be discussed. SVM appears to be promising in weld defect detection and recognition, but future research is needed before it fully mature in this filed.

  20. Mixture gas component concentration analysis based on support vector machine and infrared spectrum

    Institute of Scientific and Technical Information of China (English)

    Peng Bai; Junhua Liu

    2006-01-01

    @@ A novel quantitative analysis method of multi-component mixture gas concentration based on support vector machine (SVM) and spectroscopy is proposed. Through transformation of the kernel function, the seriously overlapped and nonlinear spectrum data are transformed in high-dimensional space, but the highdimensional data can be processed in the original space. Some factors, such as kernel function, range of the wavelength, and penalty coefficient, are discussed. This method is applied to the quantitative analysis of natural gas components concentration, and the component concentration maximal deviation is 2.28%.

  1. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  2. Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier

    Institute of Scientific and Technical Information of China (English)

    张燕昆; 刘重庆

    2003-01-01

    Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an algorithm by combining SVM classifier with NNC to improve the correct recognition rate. We conduct the experiment on the Cambridge ORL face database. The result shows that our approach outperforms the standard eigenface approach and some other approaches.

  3. Accurate performance estimators for information retrieval based on span bound of support vector machines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Support vector machines have met with significant success in the information retrieval field, especially in handling text classification tasks. Although various performance estimators for SVMs have been proposed,these only focus on accuracy which is based on the leave-one-out cross validation procedure. Information-retrieval-related performance measures are always neglected in a kernel learning methodology. In this paper, we have proposed a set of information-retrieval-oriented performance estimators for SVMs, which are based on the span bound of the leave-one-out procedure. Experiments have proven that our proposed estimators are both effective and stable.

  4. Feature Subset Selection for Hot Method Prediction using Genetic Algorithm wrapped with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    S. Johnson

    2011-01-01

    Full Text Available Problem statement: All compilers have simple profiling-based heuristics to identify and predict program hot methods and also to make optimization decisions. The major challenge in the profile-based optimization is addressing the problem of overhead. The aim of this work is to perform feature subset selection using Genetic Algorithms (GA to improve and refine the machine learnt static hot method predictive technique and to compare the performance of the new models against the simple heuristics. Approach: The relevant features for training the predictive models are extracted from an initial set of randomly selected ninety static program features, with the help of the GA wrapped with the predictive model using the Support Vector Machine (SVM, a Machine Learning (ML algorithm. Results: The GA-generated feature subsets containing thirty and twenty nine features respectively for the two predictive models when tested on MiBench predict Long Running Hot Methods (LRHM and frequently called hot methods (FCHM with the respective accuracies of 71% and 80% achieving an increase of 19% and 22%. Further, inlining of the predicted LRHM and FCHM improve the program performance by 3% and 5% as against 4% and 6% with Low Level Virtual Machines (LLVM default heuristics. When intra-procedural optimizations (IPO are performed on the predicted hot methods, this system offers a performance improvement of 5% and 4% as against 0% and 3% by LLVM default heuristics on LRHM and FCHM respectively. However, we observe an improvement of 36% in certain individual programs. Conclusion: Overall, the results indicate that the GA wrapped with SVM derived feature reduction improves the hot method prediction accuracy and that the technique of hot method prediction based optimization is potentially useful in selective optimization.

  5. Studies of Machine Protections for Fast Crab Cavity Failures in the High Luminosity Large Hadron Collider

    CERN Document Server

    Yee Rendon, Bruce; Lopez, Ricardo

    2014-01-01

    Crab Cavities (CCs) play a main role in the High Luminosity Large Hadron Collider (HL-LHC) project for increasing the luminosity of the Large Hadron Collider (LHC). Their successful installation at KEKB accelerator allowed reaching a peak luminosity of 2.1x10^34/cm^2/s. However, CCs have exhibited abrupt changes of phase and voltage during a time period of the order of a few LHC turns. If similar scenarios take place in the HL-LHC, considering the significant stored energy in the beam, CC failures represent a serious threat in regard to LHC machine protection. This thesis presents and discusses the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a quasi-stationary state (QSS) distribution, before the failure is produced, in order to assess the particles losses for the HL-LHC. These distributions produce beam losses below the safe operation threshold for Gaussian tails, while, for non-Gaussian tails, they are on the sa...

  6. ECE diagnostic for the TARA tandem mirror machine using a fast-scanning Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Guharay, S.K.; Boyd, D.A.; Ellis, R.F.

    1986-08-01

    This ECE (electron cyclotron emission) diagnostic utilizes a fast-scanning Michelson interferometer to determine two parameters, the temperature and the loss cone angle, of the distribution function of the hot electrons (T-italicapprox. >100 keV) generated in the axisymmetric plug plasma of the TARA tandem mirror device. The radiation transport system employs a lens relay and a low-pass grating filter in order to transmit the synchrotron radiation over a spectral range of 2.9--18.6 cm/sup -1/. This enables us to study the emitted radiation spectrum up to the 40th harmonic of the electron--cyclotron frequency in the plug plasma (B-italic = 5 kG). Details of the design principles and the development of the diagnostic at TARA will be presented.

  7. A nonparametric Bayesian method of translating machine learning scores to probabilities in clinical decision support.

    Science.gov (United States)

    Connolly, Brian; Cohen, K Bretonnel; Santel, Daniel; Bayram, Ulya; Pestian, John

    2017-08-07

    Probabilistic assessments of clinical care are essential for quality care. Yet, machine learning, which supports this care process has been limited to categorical results. To maximize its usefulness, it is important to find novel approaches that calibrate the ML output with a likelihood scale. Current state-of-the-art calibration methods are generally accurate and applicable to many ML models, but improved granularity and accuracy of such methods would increase the information available for clinical decision making. This novel non-parametric Bayesian approach is demonstrated on a variety of data sets, including simulated classifier outputs, biomedical data sets from the University of California, Irvine (UCI) Machine Learning Repository, and a clinical data set built to determine suicide risk from the language of emergency department patients. The method is first demonstrated on support-vector machine (SVM) models, which generally produce well-behaved, well understood scores. The method produces calibrations that are comparable to the state-of-the-art Bayesian Binning in Quantiles (BBQ) method when the SVM models are able to effectively separate cases and controls. However, as the SVM models' ability to discriminate classes decreases, our approach yields more granular and dynamic calibrated probabilities comparing to the BBQ method. Improvements in granularity and range are even more dramatic when the discrimination between the classes is artificially degraded by replacing the SVM model with an ad hoc k-means classifier. The method allows both clinicians and patients to have a more nuanced view of the output of an ML model, allowing better decision making. The method is demonstrated on simulated data, various biomedical data sets and a clinical data set, to which diverse ML methods are applied. Trivially extending the method to (non-ML) clinical scores is also discussed.

  8. Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chenzhong Cao

    2009-07-01

    Full Text Available Skin sensitization is the most commonly reported occupational illness, causing much suffering to a wide range of people. Identification and labeling of environmental allergens is urgently required to protect people from skin sensitization. The guinea pig maximization test (GPMT and murine local lymph node assay (LLNA are the two most important in vivo models for identification of skin sensitizers. In order to reduce the number of animal tests, quantitative structure-activity relationships (QSARs are strongly encouraged in the assessment of skin sensitization of chemicals. This paper has investigated the skin sensitization potential of 162 compounds with LLNA results and 92 compounds with GPMT results using a support vector machine. A particle swarm optimization algorithm was implemented for feature selection from a large number of molecular descriptors calculated by Dragon. For the LLNA data set, the classification accuracies are 95.37% and 88.89% for the training and the test sets, respectively. For the GPMT data set, the classification accuracies are 91.80% and 90.32% for the training and the test sets, respectively. The classification performances were greatly improved compared to those reported in the literature, indicating that the support vector machine optimized by particle swarm in this paper is competent for the identification of skin sensitizers.

  9. Application of Support Vector Machine to Reliability Analysis of Engine Systems

    Directory of Open Access Journals (Sweden)

    Zhang Xinfeng

    2013-07-01

    Full Text Available Reliability analysis plays a very important role for assessing the performance and making maintenance plans of engine systems. This research presents a comparative study of the predictive performances of support vector machines (SVM , least square support vector machine (LSSVM and neural network time series models for forecasting failures and reliability in engine systems. Further, the reliability indexes of engine systems are computed by the weibull probability paper programmed with Matlab. The results shows that the probability distribution of the forecasting outcomes is consistent to the distribution of the actual data, which all follow weibull distribution and the predictions by SVM and LSSVM can provide accurate predictions of the characteristic life. So SVM and LSSVM are both another choice of engine system reliability analysis. Moreover, the predictive precise of the method based on LSSVM is higher than that of SVM. In small samples, the prediction by LSSVM will be more popular, because its compution cost is lower and the precise can be more satisfied.

  10. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Morshed, Nader [University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Echols, Nathaniel, E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Adams, Paul D., E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley, CA 94720 (United States)

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  11. River Flow Estimation from Upstream Flow Records Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Halil Karahan

    2014-01-01

    Full Text Available A novel architecture for flood routing model has been proposed and its efficiency is validated on several problems by employing support vector machines. The architecture is designed by including the inputs and observed and calculated outflows from the previous time step output. Whole observed data have been used for determining the model parameters in the heuristic methods given in the literature, which constitutes the major disadvantage of the existing approaches. Moreover, using the whole data for training may lead to overtraining problem that causes overfitting of estimations and data. Therefore, in this study, 60–90% of the data are randomly selected for training and then the remaining data are used for validation. In order to take the effects of the measurement errors into consideration, the data are corrupted by some additive noise. The results show that the proposed architecture improves the model performance under noisy and missing data conditions and that support vector machines can be powerful alternative in flood routing modeling.

  12. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  13. Human action recognition with group lasso regularized-support vector machine

    Science.gov (United States)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  14. CLASSIFICATION OF ENTREPRENEURIAL INTENTIONS BY NEURAL NETWORKS, DECISION TREES AND SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2010-12-01

    Full Text Available Entrepreneurial intentions of students are important to recognize during the study in order to provide those students with educational background that will support such intentions and lead them to successful entrepreneurship after the study. The paper aims to develop a model that will classify students according to their entrepreneurial intentions by benchmarking three machine learning classifiers: neural networks, decision trees, and support vector machines. A survey was conducted at a Croatian university including a sample of students at the first year of study. Input variables described students’ demographics, importance of business objectives, perception of entrepreneurial carrier, and entrepreneurial predispositions. Due to a large dimension of input space, a feature selection method was used in the pre-processing stage. For comparison reasons, all tested models were validated on the same out-of-sample dataset, and a cross-validation procedure for testing generalization ability of the models was conducted. The models were compared according to its classification accuracy, as well according to input variable importance. The results show that although the best neural network model produced the highest average hit rate, the difference in performance is not statistically significant. All three models also extract similar set of features relevant for classifying students, which can be suggested to be taken into consideration by universities while designing their academic programs.

  15. [NIR spectroscopy based on least square support vector machines for quality prediction of tomato juice].

    Science.gov (United States)

    Huang, Kang; Wang, Hui-jun; Xu, Hui-rong; Wang, Jian-ping; Ying, Yi-bin

    2009-04-01

    The application of least square support vector machines (LS-SVM) regression method based on statistics study theory to the analysis with near infrared (NIR) spectra of tomato juice was introduced in the present paper. In this method, LS-SVM was used for establishing model of spectral analysis, and was applied to predict the sugar contents (SC) and available acid (VA) in tomato juice samples. NIR transmission spectra of tomato juice were measured in the spectral range of 800-2,500 nm using InGaAs detector. The radial basis function (RBF) was adopted as a kernel function of LS-SVM. Sixty seven tomato juice samples were used as calibration set, and thirty three samples were used as validation set. The results of the method for sugar contents (SC) and available acid (VA) prediction were: a high correlation coefficient of 0.9903 and 0.9675, and a low root mean square error of prediction (RMSEP) of 0.0056 degree Brix and 0.0245, respectively. And compared to PLS and PCR methods, the performance of the LSSVM method was better. The results indicated that it was possible to built statistic models to quantify some common components in tomato juice using near-infrared (NIR) spectroscopy and least square support vector machines (LS-SVM) regression method as a nonlinear multivariate calibration procedure, and LS-SVM could be a rapid and accurate method for juice components determination based on NIR spectra.

  16. Fuzzy nonlinear proximal support vector machine for land extraction based on remote sensing image.

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhong

    Full Text Available Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM by basing on ETM(+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da'an in northern China. Two multi-category strategies, namely "one-against-one" and "one-against-rest" for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient, stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC, back propagation neural network (BPN, and the proximal support vector machine (PSVM under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments.

  17. Fuzzy Support Vector Machine-based Multi-agent Optimal Path

    Directory of Open Access Journals (Sweden)

    Gireesh Kumar T

    2010-07-01

    Full Text Available A mobile robot to navigate purposefully from a start location to a target location, needs three basic requirements: sensing, learning, and reasoning. In the existing system, the mobile robot navigates in a known environment on a predefined path. However, the pervasive presence of uncertainty in sensing and learning, makes the choice of a suitable tool of reasoning and decision-making that can deal with incomplete information, vital to ensure a robust control system. This problem can be overcome by the proposed navigation method using fuzzy support vector machine (FSVM. It proposes a fuzzy logic-based support vector machine (SVM approach to secure a collision-free path avoiding multiple dynamic obstacles. The navigator consists of an FSVM-based collision avoidance. The decisions are taken at each step for the mobile robot to attain the goal position without collision. Fuzzy-SVM rule bases are built, which require simple evaluation data rather than thousands of input-output training data. The effectiveness of the proposed method is verified by a series of simulations and implemented with a microcontroller for navigation.Defence Science Journal, 2010, 60(4, pp.387-391, DOI:http://dx.doi.org/10.14429/dsj.60.496

  18. Fuzzy-based multi-kernel spherical support vector machine for effective handwritten character recognition

    Indian Academy of Sciences (India)

    A K SAMPATH; N GOMATHI

    2017-09-01

    Due to constant advancement of computer tools, automated conversion of images of typed,handwritten and printed text is important for various applications, which has led to intense research for several years in the field of offline handwritten character recognition. Handwritten character recognition is complex because characters differ by writing style, shapes and writing devices. To resolve this problem, we propose a fuzzy-based multi-kernel spherical support vector machine. Initially, the input image is fed into the pre-processing step to acquire suitable images. Then, histogram of oriented gradient (HOG) descriptor is utilised forfeature extraction. The HOG descriptor constitutes a histogram estimation and normalisation computation. The features are then classified using the proposed classifier for character recognition. In the proposed classifier, we design a new multi-kernel function based on the fuzzy triangular membership function. Finally, a newly developed multi-kernel function is incorporated into the spherical support vector machine to enhance the performance significantly. The experimental results are evaluated and performance is analysed by metrics such as false acceptance rate, false rejection rate and accuracy, which is implemented in MATLAB. Then, the performance is compared with existing systems based on the percentage of training data samples. Thus, the outcome of our proposed system attains 99% higher accuracy, which ensures efficient recognition performance

  19. Support Vector Machine-Based Human Behavior Classification in Crowd through Projection and Star Skeletonization

    Directory of Open Access Journals (Sweden)

    Yogameena, B.

    2010-01-01

    Full Text Available Problem statement: Detection of individual’s abnormal human behaviors in the crowd has become a critical problem because in the event of terror strikes. This study presented a real-time video surveillance system which classifies normal and abnormal behaviors in crowds. The aim of this research was to provide a system which can aid in monitoring crowded urban environments. Approach: The proposed behaviour classification was through projection which separated individuals and using star skeletonization the features like body posture and the cyclic motion cues were obtained. Using these cues the Support Vector Machine (SVM classified the normal and abnormal behaviors of human. Results: Experimental results demonstrated the method proposed was robust and efficient in the classification of normal and abnormal human behaviors. A comparative study of classification accuracy between principal component analysis and Support Vector Machine (SVM classification was also presented. Conclusion: The proposed method classified the behavior such as running people in a crowded environment, bending down movement while most are walking or standing, a person carrying a long bar and a person waving hand in the crowd is classified.

  20. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings.

    Science.gov (United States)

    Khandoker, Ahsan H; Palaniswami, Marimuthu; Karmakar, Chandan K

    2009-01-01

    Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascular morbidity as well as excessive daytime sleepiness and poor quality of life. In this study, we apply a machine learning technique [support vector machines (SVMs)] for automated recognition of OSAS types from their nocturnal ECG recordings. A total of 125 sets of nocturnal ECG recordings acquired from normal subjects (OSAS - ) and subjects with OSAS (OSAS +), each of approximately 8 h in duration, were analyzed. Features extracted from successive wavelet coefficient levels after wavelet decomposition of signals due to heart rate variability (HRV) from RR intervals and ECG-derived respiration (EDR) from R waves of QRS amplitudes were used as inputs to the SVMs to recognize OSAS +/- subjects. Using leave-one-out technique, the maximum accuracy of classification for 83 training sets was found to be 100% for SVMs using a subset of selected combination of HRV and EDR features. Independent test results on 42 subjects showed that it correctly recognized 24 out of 26 OSAS + subjects and 15 out of 16 OSAS - subjects (accuracy = 92.85%; Cohen's kappa value of 0.85). For estimating the relative severity of OSAS, the posterior probabilities of SVM outputs were calculated and compared with respective apnea/hypopnea index. These results suggest superior performance of SVMs in OSAS recognition supported by wavelet-based features of ECG. The results demonstrate considerable potential in applying SVMs in an ECG-based screening device that can aid a sleep specialist in the initial assessment of patients with suspected OSAS.

  1. Least squares twin support vector machine with Universum data for classification

    Science.gov (United States)

    Xu, Yitian; Chen, Mei; Li, Guohui

    2016-11-01

    Universum, a third class not belonging to either class of the classification problem, allows to incorporate the prior knowledge into the learning process. A lot of previous work have demonstrated that the Universum is helpful to the supervised and semi-supervised classification. Moreover, Universum has already been introduced into the support vector machine (SVM) and twin support vector machine (TSVM) to enhance the generalisation performance. To further increase the generalisation performance, we propose a least squares TSVM with Universum data (?-TSVM) in this paper. Our ?-TSVM possesses the following advantages: first, it exploits Universum data to improve generalisation performance. Besides, it implements the structural risk minimisation principle by adding a regularisation to the objective function. Finally, it costs less computing time by solving two small-sized systems of linear equations instead of a single larger-sized quadratic programming problem. To verify the validity of our proposed algorithm, we conduct various experiments around the size of labelled samples and the number of Universum data on data-sets including seven benchmark data-sets, Toy data, MNIST and Face images. Empirical experiments indicate that Universum contributes to making prediction accuracy improved even stable. Especially when fewer labelled samples given, ?-TSVM is far superior to the improved LS-TSVM (ILS-TSVM), and slightly superior to the ?-TSVM.

  2. Reliable Fault Classification of Induction Motors Using Texture Feature Extraction and a Multiclass Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jia Uddin

    2014-01-01

    Full Text Available This paper proposes a method for the reliable fault detection and classification of induction motors using two-dimensional (2D texture features and a multiclass support vector machine (MCSVM. The proposed model first converts time-domain vibration signals to 2D gray images, resulting in texture patterns (or repetitive patterns, and extracts these texture features by generating the dominant neighborhood structure (DNS map. The principal component analysis (PCA is then used for the purpose of dimensionality reduction of the high-dimensional feature vector including the extracted texture features due to the fact that the high-dimensional feature vector can degrade classification performance, and this paper configures an effective feature vector including discriminative fault features for diagnosis. Finally, the proposed approach utilizes the one-against-all (OAA multiclass support vector machines (MCSVMs to identify induction motor failures. In this study, the Gaussian radial basis function kernel cooperates with OAA MCSVMs to deal with nonlinear fault features. Experimental results demonstrate that the proposed approach outperforms three state-of-the-art fault diagnosis algorithms in terms of fault classification accuracy, yielding an average classification accuracy of 100% even in noisy environments.

  3. Public support for restrictions on fast food company sponsorship of community events.

    Science.gov (United States)

    Pettigrew, Simone; Pescud, Melanie; Rosenberg, Michael; Ferguson, Renee; Houghton, Stephen

    2012-01-01

    This study investigated community attitudes to fast food companies' sponsorship of community events. The aim was to inform future efforts to introduce greater restrictions on these marketing activities to reduce child obesity. While previous research has focused on the sponsorship of sporting events, the present study included all community events and gauged public support for fast food company sponsorships in general as well as specific sponsorship activities such as securing event naming rights, advertising on event premises, and distributing free items to children in the form of food and redeemable vouchers. A large and diverse sample of Western Australian adults (n=2,005) responded to a community attitudes telephone survey that included questions relating to event sponsorship. Almost half of the respondents reported that the promotion of fast foods is inappropriate at community events, and only a third considered it appropriate at events where children are likely to be present. Around two-thirds agreed that promoting fast foods at such events sends contradictory messages to children and just a quarter of respondents considered it acceptable for free fast food to be distributed at events or for children to be rewarded for participation with fast food vouchers. The results suggest that efforts to reduce child obesity that involve restrictions on the sponsorship of community events by organisations promoting unhealthy foods may be supported by a substantial proportion of the population.

  4. Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Directory of Open Access Journals (Sweden)

    Mario Sansone

    2013-01-01

    Full Text Available Computer systems for Electrocardiogram (ECG analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units or in prompt detection of dangerous events (e.g., ventricular fibrillation. Together with clinical applications (arrhythmia detection and heart rate variability analysis, ECG is currently being investigated in biometrics (human identification, an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned.

  5. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    Science.gov (United States)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  6. A one-layer recurrent neural network for support vector machine learning.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2004-04-01

    This paper presents a one-layer recurrent neural network for support vector machine (SVM) learning in pattern classification and regression. The SVM learning problem is first converted into an equivalent formulation, and then a one-layer recurrent neural network for SVM learning is proposed. The proposed neural network is guaranteed to obtain the optimal solution of support vector classification and regression. Compared with the existing two-layer neural network for the SVM classification, the proposed neural network has a low complexity for implementation. Moreover, the proposed neural network can converge exponentially to the optimal solution of SVM learning. The rate of the exponential convergence can be made arbitrarily high by simply turning up a scaling parameter. Simulation examples based on benchmark problems are discussed to show the good performance of the proposed neural network for SVM learning.

  7. Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Directory of Open Access Journals (Sweden)

    Stefan Marr

    2010-02-01

    Full Text Available The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs, which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research.

  8. The new interpretation of support vector machines on statistical learning theory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is concerned with the theoretical foundation of support vector machines (SVMs). The purpose is to develop further an exact relationship between SVMs and the statistical learning theory (SLT). As a representative, the standard C-support vector classification (C-SVC) is considered here. More precisely, we show that the decision function obtained by C-SVC is just one of the decision functions obtained by solving the optimization problem derived directly from the structural risk minimization principle. In addition, an interesting meaning of the parameter C in C-SVC is given by showing that C corresponds to the size of the decision function candidate set in the structural risk minimization principle.

  9. A Gaussian Belief Propagation Solver for Large Scale Support Vector Machines

    CERN Document Server

    Bickson, Danny; Dolev, Danny

    2008-01-01

    Support vector machines (SVMs) are an extremely successful type of classification and regression algorithms. Building an SVM entails solving a constrained convex quadratic programming problem, which is quadratic in the number of training samples. We introduce an efficient parallel implementation of an support vector regression solver, based on the Gaussian Belief Propagation algorithm (GaBP). In this paper, we demonstrate that methods from the complex system domain could be utilized for performing efficient distributed computation. We compare the proposed algorithm to previously proposed distributed and single-node SVM solvers. Our comparison shows that the proposed algorithm is just as accurate as these solvers, while being significantly faster, especially for large datasets. We demonstrate scalability of the proposed algorithm to up to 1,024 computing nodes and hundreds of thousands of data points using an IBM Blue Gene supercomputer. As far as we know, our work is the largest parallel implementation of bel...

  10. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  11. Multiple support vector machines for land cover change detection: An application for mapping urban extensions

    Science.gov (United States)

    Nemmour, Hassiba; Chibani, Youcef

    The reliability of support vector machines for classifying hyper-spectral images of remote sensing has been proven in various studies. In this paper, we investigate their applicability for land cover change detection. First, SVM-based change detection is presented and performed for mapping urban growth in the Algerian capital. Different performance indicators, as well as a comparison with artificial neural networks, are used to support our experimental analysis. In a second step, a combination framework is proposed to improve change detection accuracy. Two combination rules, namely, Fuzzy Integral and Attractor Dynamics, are implemented and evaluated with respect to individual SVMs. Recognition rates achieved by individual SVMs, compared to neural networks, confirm their efficiency for land cover change detection. Furthermore, the relevance of SVM combination is highlighted.

  12. Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Bao Wang

    2012-11-01

    Full Text Available The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA, generalized regression neural network (GRNN and regression model.

  13. Sensitivity Analysis of a Spatio-Temporal Avalanche Forecasting Model Based on Support Vector Machines

    Science.gov (United States)

    Matasci, G.; Pozdnoukhov, A.; Kanevski, M.

    2009-04-01

    The recent progress in environmental monitoring technologies allows capturing extensive amount of data that can be used to assist in avalanche forecasting. While it is not straightforward to directly obtain the stability factors with the available technologies, the snow-pack profiles and especially meteorological parameters are becoming more and more available at finer spatial and temporal scales. Being very useful for improving physical modelling, these data are also of particular interest regarding their use involving the contemporary data-driven techniques of machine learning. Such, the use of support vector machine classifier opens ways to discriminate the ``safe'' and ``dangerous'' conditions in the feature space of factors related to avalanche activity based on historical observations. The input space of factors is constructed from the number of direct and indirect snowpack and weather observations pre-processed with heuristic and physical models into a high-dimensional spatially varying vector of input parameters. The particular system presented in this work is implemented for the avalanche-prone site of Ben Nevis, Lochaber region in Scotland. A data-driven model for spatio-temporal avalanche danger forecasting provides an avalanche danger map for this local (5x5 km) region at the resolution of 10m based on weather and avalanche observations made by forecasters on a daily basis at the site. We present the further work aimed at overcoming the ``black-box'' type modelling, a disadvantage the machine learning methods are often criticized for. It explores what the data-driven method of support vector machine has to offer to improve the interpretability of the forecast, uncovers the properties of the developed system with respect to highlighting which are the important features that led to the particular prediction (both in time and space), and presents the analysis of sensitivity of the prediction with respect to the varying input parameters. The purpose of the

  14. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles.

    Science.gov (United States)

    Feres, Magda; Louzoun, Yoram; Haber, Simi; Faveri, Marcelo; Figueiredo, Luciene C; Levin, Liran

    2017-08-02

    The existence of specific microbial profiles for different periodontal conditions is still a matter of debate. The aim of this study was to test the hypothesis that 40 bacterial species could be used to classify patients, utilising machine learning, into generalised chronic periodontitis (ChP), generalised aggressive periodontitis (AgP) and periodontal health (PH). Subgingival biofilm samples were collected from patients with AgP, ChP and PH and analysed for their content of 40 bacterial species using checkerboard DNA-DNA hybridisation. Two stages of machine learning were then performed. First of all, we tested whether there was a difference between the composition of bacterial communities in PH and in disease, and then we tested whether a difference existed in the composition of bacterial communities between ChP and AgP. The data were split in each analysis to 70% train and 30% test. A support vector machine (SVM) classifier was used with a linear kernel and a Box constraint of 1. The analysis was divided into two parts. Overall, 435 patients (3,915 samples) were included in the analysis (PH = 53; ChP = 308; AgP = 74). The variance of the healthy samples in all principal component analysis (PCA) directions was smaller than that of the periodontally diseased samples, suggesting that PH is characterised by a uniform bacterial composition and that the bacterial composition of periodontally diseased samples is much more diverse. The relative bacterial load could distinguish between AgP and ChP. An SVC classifier using a panel of 40 bacterial species was able to distinguish between PH, AgP in young individuals and ChP. © 2017 FDI World Dental Federation.

  15. Support vector machines for automated snoring detection: proof-of-concept.

    Science.gov (United States)

    Samuelsson, Laura B; Rangarajan, Anusha A; Shimada, Kenji; Krafty, Robert T; Buysse, Daniel J; Strollo, Patrick J; Kravitz, Howard M; Zheng, Huiyong; Hall, Martica H

    2017-03-01

    Snoring has been shown to be associated with adverse physical and mental health, independent of the effects of sleep disordered breathing. Despite increasing evidence for the risks of snoring, few studies on sleep and health include objective measures of snoring. One reason for this methodological limitation is the difficulty of quantifying snoring. Conventional methods may rely on manual scoring of snore events by trained human scorers, but this process is both time- and labor-intensive, making the measurement of objective snoring impractical for large or multi-night studies. The current study is a proof-of-concept to validate the use of support vector machines (SVM), a form of machine learning, for the automated scoring of an objective snoring signal. An SVM algorithm was trained and tested on a set of approximately 150,000 snoring and non-snoring data segments, and F-scores for SVM performance compared to visual scoring performance were calculated using the Wilcoxon signed rank test for paired data. The ability of the SVM algorithm to discriminate snore from non-snore segments of data did not differ statistically from visual scorer performance (SVM F-score = 82.46 ± 7.93 versus average visual F-score = 88.35 ± 4.61, p = 0.2786), supporting SVM snore classification ability comparable to visual scorers. In this proof-of-concept, we established that the SVM algorithm performs comparably to trained visual scorers, supporting the use of SVM for automated snoring detection in future studies.

  16. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  17. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2017-09-01

    Full Text Available Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83

  18. A Support Vector Machine Approach for Truncated Fingerprint Image Detection from Sweeping Fingerprint Sensors

    Directory of Open Access Journals (Sweden)

    Chi-Jim Chen

    2015-03-01

    Full Text Available A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS, successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM, based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates.

  19. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.

    Science.gov (United States)

    Orrù, Graziella; Pettersson-Yeo, William; Marquand, Andre F; Sartori, Giuseppe; Mechelli, Andrea

    2012-04-01

    Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions.

  20. Detection of segments with fetal QRS complex from abdominal maternal ECG recordings using support vector machine

    Science.gov (United States)

    Delgado, Juan A.; Altuve, Miguel; Nabhan Homsi, Masun

    2015-12-01

    This paper introduces a robust method based on the Support Vector Machine (SVM) algorithm to detect the presence of Fetal QRS (fQRS) complexes in electrocardiogram (ECG) recordings provided by the PhysioNet/CinC challenge 2013. ECG signals are first segmented into contiguous frames of 250 ms duration and then labeled in six classes. Fetal segments are tagged according to the position of fQRS complex within each one. Next, segment features extraction and dimensionality reduction are obtained by applying principal component analysis on Haar-wavelet transform. After that, two sub-datasets are generated to separate representative segments from atypical ones. Imbalanced class problem is dealt by applying sampling without replacement on each sub-dataset. Finally, two SVMs are trained and cross-validated using the two balanced sub-datasets separately. Experimental results show that the proposed approach achieves high performance rates in fetal heartbeats detection that reach up to 90.95% of accuracy, 92.16% of sensitivity, 88.51% of specificity, 94.13% of positive predictive value and 84.96% of negative predictive value. A comparative study is also carried out to show the performance of other two machine learning algorithms for fQRS complex estimation, which are K-nearest neighborhood and Bayesian network.

  1. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    Science.gov (United States)

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  2. Support vector machine based estimation of remaining useful life: current research status and future trends

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Wang, Hai Kun; Li, Yan Feng; Zhang, Longlong; Liu, Zhiliang [University of Electronic Science and Technology of China, Chengdu (China)

    2015-01-15

    Estimation of remaining useful life (RUL) is helpful to manage life cycles of machines and to reduce maintenance cost. Support vector machine (SVM) is a promising algorithm for estimation of RUL because it can easily process small training sets and multi-dimensional data. Many SVM based methods have been proposed to predict RUL of some key components. We did a literature review related to SVM based RUL estimation within a decade. The references reviewed are classified into two categories: improved SVM algorithms and their applications to RUL estimation. The latter category can be further divided into two types: one, to predict the condition state in the future and then build a relationship between state and RUL; two, to establish a direct relationship between current state and RUL. However, SVM is seldom used to track the degradation process and build an accurate relationship between the current health condition state and RUL. Based on the above review and summary, this paper points out that the ability to continually improve SVM, and obtain a novel idea for RUL prediction using SVM will be future works.

  3. Support vector machine as an alternative method for lithology classification of crystalline rocks

    Science.gov (United States)

    Deng, Chengxiang; Pan, Heping; Fang, Sinan; Amara Konaté, Ahmed; Qin, Ruidong

    2017-03-01

    With the expansion of machine learning algorithms, automatic lithology classification that uses well logging data is becoming significant in formation evaluation and reservoir characterization. In fact, the complicated composition and structural variations of metamorphic rocks result in more nonlinear features in well logging data and elevate requirements to algorithms. Herein, the application of the support vector machine (SVM) in classifying crystalline rocks from Chinese Continental Scientific Drilling Main Hole (CCSD-MH) data was reported. We found that the SVM performs poorly on the lithology classification of crystalline rocks when training samples are imbalanced. The fact is that training samples are generally limited and imbalanced as cores cannot be obtained balanced and at 100 percent. In this paper, we introduced the synthetic minority over-sampling technique (SMOTE) and Borderline-SMOTE to deal with imbalanced data. After experiments generating different quantities of training samples by SMOTE and Borderline-SMOTE, the most suitable classifier was selected to overcome the disadvantage of the SVM. Then, the popular supervised classifier back-propagation neural networks (BPNN), which has been proved competent for lithology classification of crystalline rocks in previous studies, was compared to evaluate the performance of the SVM. Results show that Borderline-SMOTE can improve the SVM with substantially increased accuracy even for minority classes in a reasonable manner, while the SVM outperforms BPNN in aspects of lithology prediction and CCSD-MH data generalization. We demonstrate the potential of the SVM as an alternative to current methods for lithology identification of crystalline rocks.

  4. Predictive modeling of human operator cognitive state via sparse and robust support vector machines.

    Science.gov (United States)

    Zhang, Jian-Hua; Qin, Pan-Pan; Raisch, Jörg; Wang, Ru-Bin

    2013-10-01

    The accurate prediction of the temporal variations in human operator cognitive state (HCS) is of great practical importance in many real-world safety-critical situations. However, since the relationship between the HCS and electrophysiological responses of the operator is basically unknown, complicated and uncertain, only data-based modeling method can be employed. This paper is aimed at constructing a data-driven computationally intelligent model, based on multiple psychophysiological and performance measures, to accurately estimate the HCS in the context of a safety-critical human-machine system. The advanced least squares support vector machines (LS-SVM), whose parameters are optimized by grid search and cross-validation techniques, are adopted for the purpose of predictive modeling of the HCS. The sparse and weighted LS-SVM (WLS-SVM) were proposed by Suykens et al. to overcome the deficiency of the standard LS-SVM in lacking sparseness and robustness. This paper adopted those two improved LS-SVM algorithms to model the HCS based solely on a set of physiological and operator performance data. The results showed that the sparse LS-SVM can obtain HCS models with sparseness with almost no loss of modeling accuracy, while the WLS-SVM leads to models which are robust in case of noisy training data. Both intelligent system modeling approaches are shown to be capable of capturing the temporal fluctuation trends of the HCS because of their superior generalization performance.

  5. Power Load Event Detection and Classification Based on Edge Symbol Analysis and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2012-01-01

    Full Text Available Energy signature analysis of power appliance is the core of nonintrusive load monitoring (NILM where the detailed data of the appliances used in houses are obtained by analyzing changes in the voltage and current. This paper focuses on developing an automatic power load event detection and appliance classification based on machine learning. In power load event detection, the paper presents a new transient detection algorithm. By turn-on and turn-off transient waveforms analysis, it can accurately detect the edge point when a device is switched on or switched off. The proposed load classification technique can identify different power appliances with improved recognition accuracy and computational speed. The load classification method is composed of two processes including frequency feature analysis and support vector machine. The experimental results indicated that the incorporation of the new edge detection and turn-on and turn-off transient signature analysis into NILM revealed more information than traditional NILM methods. The load classification method has achieved more than ninety percent recognition rate.

  6. Identification of small molecule aggregators from large compound libraries by support vector machines.

    Science.gov (United States)

    Rao, Hanbing; Li, Zerong; Li, Xiangyuan; Ma, Xiaohua; Ung, Choongyong; Li, Hu; Liu, Xianghui; Chen, Yuzong

    2010-03-01

    Small molecule aggregators non-specifically inhibit multiple unrelated proteins, rendering them therapeutically useless. They frequently appear as false hits and thus need to be eliminated in high-throughput screening campaigns. Computational methods have been explored for identifying aggregators, which have not been tested in screening large compound libraries. We used 1319 aggregators and 128,325 non-aggregators to develop a support vector machines (SVM) aggregator identification model, which was tested by four methods. The first is five fold cross-validation, which showed comparable aggregator and significantly improved non-aggregator identification rates against earlier studies. The second is the independent test of 17 aggregators discovered independently from the training aggregators, 71% of which were correctly identified. The third is retrospective screening of 13M PUBCHEM and 168K MDDR compounds, which predicted 97.9% and 98.7% of the PUBCHEM and MDDR compounds as non-aggregators. The fourth is retrospective screening of 5527 MDDR compounds similar to the known aggregators, 1.14% of which were predicted as aggregators. SVM showed slightly better overall performance against two other machine learning methods based on five fold cross-validation studies of the same settings. Molecular features of aggregation, extracted by a feature selection method, are consistent with published profiles. SVM showed substantial capability in identifying aggregators from large libraries at low false-hit rates. (c) 2009 Wiley Periodicals, Inc.

  7. A Support Vector Machine Approach for Truncated Fingerprint Image Detection from Sweeping Fingerprint Sensors

    Science.gov (United States)

    Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox

    2015-01-01

    A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186

  8. Multi-classification algorithm and its realization based on least square support vector machine algorithm

    Institute of Scientific and Technical Information of China (English)

    Fan Youping; Chen Yunping; Sun Wansheng; Li Yu

    2005-01-01

    As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear optimal classifier. However, realizing SVM requires resolving quadratic programming under constraints of inequality, which results in calculation difficulty while learning samples gets larger. Besides, standard SVM is incapable of tackling multi-classification. To overcome the bottleneck of populating SVM, with training algorithm presented, the problem of quadratic programming is converted into that of resolving a linear system of equations composed of a group of equation constraints by adopting the least square SVM(LS-SVM) and introducing a modifying variable which can change inequality constraints into equation constraints, which simplifies the calculation. With regard to multi-classification, an LS-SVM applicable in multi-classification is deduced. Finally, efficiency of the algorithm is checked by using universal Circle in square and two-spirals to measure the performance of the classifier.

  9. Classifying Data Sets Using Support Vector Machines Based on Geometric Distance

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Support vector machines (SVMs) are not as favored for large-scale data mining as for pattern recognition and machine learning because the training complexity of SVMs is highly dependent on the size of data set. This paper presents a geometric distance-based SVM (GDB-SVM). It takes the distance between a point and classified hyperplane as classification rule,and is designed on the basis of theoretical analysis and geometric intuition. Experimental code is derived from LibSVM with Microsoft Visual C ++ 6.0 as system of translating and editing. Four predicted results of five of GDB-SVM are better than those of the method of one against all (OAA). Three predicted results of five of GDB-SVM are better than those of the method of one against one (OAO). Experiments on real data sets show that GDB-SVM is not only superior to the methods of OAA and OAO,but highly scalable for large data sets while generating high classification accuracy.

  10. Tackling EEG signal classification with least squares support vector machines: a sensitivity analysis study.

    Science.gov (United States)

    Lima, Clodoaldo A M; Coelho, André L V; Eisencraft, Marcio

    2010-08-01

    The electroencephalogram (EEG) signal captures the electrical activity of the brain and is an important source of information for studying neurological disorders. The proper analysis of this biological signal plays an important role in the domain of brain-computer interface, which aims at the construction of communication channels between human brain and computers. In this paper, we investigate the application of least squares support vector machines (LS-SVM) to the task of epilepsy diagnosis through automatic EEG signal classification. More specifically, we present a sensitivity analysis study by means of which the performance levels exhibited by standard and least squares SVM classifiers are contrasted, taking into account the setting of the kernel function and of its parameter value. Results of experiments conducted over different types of features extracted from a benchmark EEG signal dataset evidence that the sensitivity profiles of the kernel machines are qualitatively similar, both showing notable performance in terms of accuracy and generalization. In addition, the performance accomplished by optimally configured LS-SVM models is also quantitatively contrasted with that obtained by related approaches for the same dataset. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. BacHbpred: Support Vector Machine Methods for the Prediction of Bacterial Hemoglobin-Like Proteins

    Directory of Open Access Journals (Sweden)

    MuthuKrishnan Selvaraj

    2016-01-01

    Full Text Available The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM models were developed for predicting HbL proteins based upon amino acid composition (AC, dipeptide composition (DC, hybrid method (AC + DC, and position specific scoring matrix (PSSM. In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM profiles. The average accuracy, standard deviation (SD, false positive rate (FPR, confusion matrix, and receiver operating characteristic (ROC were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction.

  12. ANALISIS SENTIMEN PENGGUNA TWITTER MENGGUNAKAN METODE SUPPORT VECTOR MACHINE BERBASIS CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    Rizky Maulana

    2017-05-01

    Full Text Available Twitter merupakan jejaring sosial dengan pertumbuhan tercepat sejak tahun 2006 menurut MIT Technology Review (2013, Indonesia menempati Negara ketiga penyumbang tweet terbanyak dengan jumlah 1 milyar tweet. Fakta tersebut menjadikan Twitter menjadi salah satu sumber data text yang dapat digali dan dimanfaatkan untuk berbagai keperluan melalui metode-metode pengambilan data teks atau text mining, salah satunya adalah analisis sentimen pengguna terhadap tokoh-tokoh publik indonesia. Penelitian ini membuat sebuah sistem yang dapat melakukan analisis sentimen pengguna twitter terhadap tokoh publik secara real time dengan menggunakan Twitter Streming API dan metode Support Vectore Machine (SVM memanfaatkan pustaka libSVM sebagai salah satu machine learning untuk text classification. Algoritma Porter digunakan dalam proses stemming untuk ekstraksi fitur dan metode Term Frequency untuk pembobotan. Perangkat lunak dibangun dengan menggunakan bahasa pemrograman PHP untuk sisi server yang berjalan pada platform cloud Windows Azure dan Java untuk sisi client yang berjalan pada platform Android. Dari hasil penelitian dengan 1.400 tweet pada dataset dan 200 data uji didapatkan akurasi sebesar 79,5%.

  13. Identifying Sugarcane Plantation using LANDSAT-8 Images with Support Vector Machines

    Science.gov (United States)

    Mulyono, Sidik; Nadirah

    2016-11-01

    The use of remote sensing has been highly beneficial in the identification and also mapping and monitoring of plantations. The identification of plantations includes the physiology, disease, environmental conditions, and also the production and time of harvesting. It can be done by doing satellite imagery classification. However, to reach the final result of identification, it could be carried out by getting the solid ground truth information. This paper will discuss about detection of sugarcane plantation in Magetan district of East Java province area by using LANDSAT-8 image with specific approach of phenology profile using EVI (Enhanced Vegetation Index) value from satellite data, as an alternative vegetation index to address some of the limitation of the NDVI (Normalized Difference Vegetation Index). Method of classification used for detecting sugarcane plantation is Support Vector machines (SVM), which is a promising machine learning methodology. It has the ability to generalize well even with limited training samples and complex data. A number of samples of phenology profile for training purpose using SVMs are obtained from the area that identified as sugarcane plantation during field campaign in 2015. The same manner is also done for the objects instead of sugarcane plantation with relatively the same number of samples. The result of the research shows that Remote Sensing is able to detect the sugarcane plantation cross the district with good accuracy.

  14. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization

    Science.gov (United States)

    ch, Sudheer; Kumar, Deepak; Prasad, Ram Kailash; Mathur, Shashi

    2013-08-01

    A methodology based on support vector machine and particle swarm optimization techniques (SVM-PSO) was used in this study to determine an optimal pumping rate and well location to achieve an optimal cost of an in-situ bioremediation system. In the first stage of the two stage methodology suggested for optimal in-situ bioremediation design, the optimal number of wells and their locations was determined from preselected candidate well locations. The pumping rate and well location in the first stage were subsequently optimized in the second stage of the methodology. The highly nonlinear system of equations governing in-situ bioremediation comprises the equations of flow and solute transport coupled with relevant biodegradation kinetics. A finite difference model was developed to simulate the process of in-situ bioremediation using an Alternate-Direction Implicit technique. This developed model (BIOFDM) yields the spatial and temporal distribution of contaminant concentration for predefined initial and boundary conditions. BIOFDM was later validated by comparing the simulated results with those obtained using BIOPLUME III for the case study of Shieh and Peralta (2005). The results were found to be in close agreement. Moreover, since the solution of the highly nonlinear equation otherwise requires significant computational effort, the computational burden in this study was managed within a practical time frame by replacing the BIOFDM model with a trained SVM model. Support Vector Machine which generates fast solutions in real time was considered to be a universal function approximator in the study. Apart from reducing the computational burden, this technique generates a set of near optimal solutions (instead of a single optimal solution) and creates a re-usable data base that could be used to address many other management problems. Besides this, the search for an optimal pumping pattern was directed by a simple PSO technique and a penalty parameter approach was adopted

  15. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization.

    Science.gov (United States)

    ch, Sudheer; Kumar, Deepak; Prasad, Ram Kailash; Mathur, Shashi

    2013-08-01

    A methodology based on support vector machine and particle swarm optimization techniques (SVM-PSO) was used in this study to determine an optimal pumping rate and well location to achieve an optimal cost of an in-situ bioremediation system. In the first stage of the two stage methodology suggested for optimal in-situ bioremediation design, the optimal number of wells and their locations was determined from preselected candidate well locations. The pumping rate and well location in the first stage were subsequently optimized in the second stage of the methodology. The highly nonlinear system of equations governing in-situ bioremediation comprises the equations of flow and solute transport coupled with relevant biodegradation kinetics. A finite difference model was developed to simulate the process of in-situ bioremediation using an Alternate-Direction Implicit technique. This developed model (BIOFDM) yields the spatial and temporal distribution of contaminant concentration for predefined initial and boundary conditions. BIOFDM was later validated by comparing the simulated results with those obtained using BIOPLUME III for the case study of Shieh and Peralta (2005). The results were found to be in close agreement. Moreover, since the solution of the highly nonlinear equation otherwise requires significant computational effort, the computational burden in this study was managed within a practical time frame by replacing the BIOFDM model with a trained SVM model. Support Vector Machine which generates fast solutions in real time was considered to be a universal function approximator in the study. Apart from reducing the computational burden, this technique generates a set of near optimal solutions (instead of a single optimal solution) and creates a re-usable data base that could be used to address many other management problems. Besides this, the search for an optimal pumping pattern was directed by a simple PSO technique and a penalty parameter approach was adopted

  16. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer

    Science.gov (United States)

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P.

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network’s modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves

  17. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    Directory of Open Access Journals (Sweden)

    Salvador Gutiérrez

    Full Text Available The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L. varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years

  18. Barriers to avoiding fast-food consumption in an environment supportive of unhealthy eating.

    Science.gov (United States)

    Thornton, Lukar E; Jeffery, Robert W; Crawford, David A

    2013-12-01

    To investigate factors (ability, motivation and the environment) that act as barriers to limiting fast-food consumption in women who live in an environment that is supportive of poor eating habits. Cross-sectional study using self-reports of individual-level data and objectively measured environmental data. Multilevel logistic regression was used to assess factors associated with frequency of fast-food consumption. Socio-economically disadvantaged areas in metropolitan Melbourne, Australia. Women (n 932) from thirty-two socio-economically disadvantaged neighbourhoods living within 3 km of six or more fast-food restaurants. Women were randomly sampled in 2007–2008 as part of baseline data collection for the Resilience for Eating and Activity Despite Inequality (READI) study. Consuming low amounts of fast food was less likely in women with lower perceived ability to shop for and cook healthy foods, lower frequency of family dining, lower family support for healthy eating, more women acquaintances who eat fast food regularly and who lived further from the nearest supermarket. When modelled with the other significant factors, a lower perceived shopping ability, mid levels of family support and living further from the nearest supermarket remained significant. Among those who did not perceive fruits and vegetables to be of high quality, less frequent fast-food consumption was further reduced for those with the lowest confidence in their shopping ability. Interventions designed to improve women's ability and opportunities to shop for healthy foods may be of value in making those who live in high-risk environments better able to eat healthily.

  19. Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Mazanek, Daniel D.; Abell, Paul; Reeves, David M.; NASA Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST)

    2016-10-01

    The Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015. Additionally, the FAST was tasked with developing an initial list of potential mission investigations and providing input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads that could be provided by domestic and international partners were also investigated. The ARM FAST final report was publicly released on February 18, 2016 and represents the FAST's final product. The report and associated public comments are being used to support mission requirements formulation and serve as an initial inquiry to the science and engineering communities relating to the characteristics of the ARRM reference target asteroid. This report also provides a suggested list of potential investigations sorted and grouped based on their likely benefit to ARM and potential relevance to NASA science and exploration goals. These potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource

  20. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    Science.gov (United States)

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  1. A support vector machine approach for classification of welding defects from ultrasonic signals

    Science.gov (United States)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  2. Efficient Discriminate Component Analysis using Support Vector Machine Classifier on Invariant Pose and Illumination Face Images

    Directory of Open Access Journals (Sweden)

    R. Rajalakshmi

    2015-03-01

    Full Text Available Face recognition is the process of categorizing a person in an image by evaluating with a known face image library. The pose and illumination variations are two main practical confronts for an automatic face recognition system. This study proposes a novel face recognition algorithm known as Efficient Discriminant Component Analysis (EDCA for face recognition under varying poses and illumination conditions. This EDCA algorithm overcomes the high dimensionality problem in the feature space by extracting features from the low dimensional frequency band of the image. It combines the features of both LDA and PCA algorithms and these features are used in the training set and is classified using Support Vector Machine classifier. The experiments were performed on the CMU-PIE datasets. The experimental results show that the proposed algorithm produces a higher recognition rate than the existing LDA and PCA based face recognition techniques.

  3. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Lara del Val

    2015-06-01

    Full Text Available Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM. The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  4. Bio-signal analysis system design with support vector machines based on cloud computing service architecture.

    Science.gov (United States)

    Shen, Chia-Ping; Chen, Wei-Hsin; Chen, Jia-Ming; Hsu, Kai-Ping; Lin, Jeng-Wei; Chiu, Ming-Jang; Chen, Chi-Huang; Lai, Feipei

    2010-01-01

    Today, many bio-signals such as Electroencephalography (EEG) are recorded in digital format. It is an emerging research area of analyzing these digital bio-signals to extract useful health information in biomedical engineering. In this paper, a bio-signal analyzing cloud computing architecture, called BACCA, is proposed. The system has been designed with the purpose of seamless integration into the National Taiwan University Health Information System. Based on the concept of. NET Service Oriented Architecture, the system integrates heterogeneous platforms, protocols, as well as applications. In this system, we add modern analytic functions such as approximated entropy and adaptive support vector machine (SVM). It is shown that the overall accuracy of EEG bio-signal analysis has increased to nearly 98% for different data sets, including open-source and clinical data sets.

  5. Sleep–Wake Transition in Narcolepsy and Healthy Controls Using a Support Vector Machine

    DEFF Research Database (Denmark)

    Jensen, Julie B; Sorensen, Helge B D; Kempfner, Jacob

    2014-01-01

    transformation and were given as input to a support vector machine classifier. The classification algorithm was assessed by hold-out validation and 10-fold cross-validation. The data used to validate the classifier were derived from polysomnographic recordings of 47 narcoleptic patients (33 with cataplexy and 14...... without cataplexy) and 15 healthy controls. Compared with manual scorings, an accuracy of 90% was achieved in the hold-out validation, and the area under the receiver operating characteristic curve was 95%. Sensitivity and specificity were 90% and 88%, respectively. The 10-fold cross-validation procedure...... yielded an accuracy of 88%, an area under the receiver operating characteristic curve of 92%, a sensitivity of 87%, and a specificity of 87%. Narcolepsy with cataplexy patients experienced significantly more sleep-wake transitions during night than did narcolepsy without cataplexy patients (P = 0...

  6. Hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Jayadeva

    2010-10-01

    Myoelectric signal classification is one of the most difficult pattern recognition problems because large variations in surface electromyogram features usually exist. In the literature, attempts have been made to apply various pattern recognition methods to classify surface electromyography into components corresponding to the activities of different muscles, but this has not been very successful, as some muscles are bigger and more active than others. This results in dataset discrepancy during classification. Multicategory classification problems are usually solved by solving many, one-versus-rest binary classification tasks. These subtasks unsurprisingly involve unbalanced datasets. Consequently, we need a learning methodology that can take into account unbalanced datasets in addition to large variations in the distributions of patterns corresponding to different classes. Here, we attempt to address the above issues using hybrid features extracted from independent component analysis and twin support vector machine techniques.

  7. Ice breakup forecast in the reach of the Yellow River: the support vector machines approach

    Directory of Open Access Journals (Sweden)

    H. Zhou

    2009-04-01

    Full Text Available Accurate lead-time forecast of ice breakup is one of the key aspects for ice flood prevention and reducing losses. In this paper, a new data-driven model based on the Statistical Learning Theory was employed for ice breakup prediction. The model, known as Support Vector Machine (SVM, follows the principle that aims at minimizing the structural risk rather than the empirical risk. In order to estimate the appropriate parameters of the SVM, Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM-UA algorithm is performed through exponential transformation. A case study was conducted in the reach of the Yellow River. Results from the proposed model showed a promising performance compared with that from artificial neural network, so the model can be considered as an alternative and practical tool for ice breakup forecast.

  8. A Method for Extracting Important Segments from Documents Using Support Vector Machines

    Science.gov (United States)

    Suzuki, Daisuke; Utsumi, Akira

    In this paper we propose an extraction-based method for automatic summarization. The proposed method consists of two processes: important segment extraction and sentence compaction. The process of important segment extraction classifies each segment in a document as important or not by Support Vector Machines (SVMs). The process of sentence compaction then determines grammatically appropriate portions of a sentence for a summary according to its dependency structure and the classification result by SVMs. To test the performance of our method, we conducted an evaluation experiment using the Text Summarization Challenge (TSC-1) corpus of human-prepared summaries. The result was that our method achieved better performance than a segment-extraction-only method and the Lead method, especially for sentences only a part of which was included in human summaries. Further analysis of the experimental results suggests that a hybrid method that integrates sentence extraction with segment extraction may generate better summaries.

  9. Rapid authentication of adulteration of olive oil by near-infrared spectroscopy using support vector machines

    Science.gov (United States)

    Wu, Jingzhu; Dong, Jingjing; Dong, Wenfei; Chen, Yan; Liu, Cuiling

    2016-10-01

    A classification method of support vector machines with linear kernel was employed to authenticate genuine olive oil based on near-infrared spectroscopy. There were three types of adulteration of olive oil experimented in the study. The adulterated oil was respectively soybean oil, rapeseed oil and the mixture of soybean and rapeseed oil. The average recognition rate of second experiment was more than 90% and that of the third experiment was reach to 100%. The results showed the method had good performance in classifying genuine olive oil and the adulteration with small variation range of adulterated concentration and it was a promising and rapid technique for the detection of oil adulteration and fraud in the food industry.

  10. Mathematical support for automated geometry analysis of lathe machining of oblique peakless round–nose tools

    Science.gov (United States)

    Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2017-01-01

    Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.

  11. Automatic SLEEP staging: From young aduslts to elderly patients using multi-class support vector machine

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Jennum, Poul; Sorensen, Helge B. D.

    2013-01-01

    , and not the affected sleep events. The age-related influences are then reduced by robust subject-specific scaling. The classification of the three sleep stages are achieved by a multi-class support vector machine using the one-versus-rest scheme. It was possible to obtain a high classification accuracy of 0......Aging is a process that is inevitable, and makes our body vulnerable to age-related diseases. Age is the most consistent factor affecting the sleep structure. Therefore, new automatic sleep staging methods, to be used in both of young and elderly patients, are needed. This study proposes...... an automatic sleep stage detector, which can separate wakefulness, rapid-eye-movement (REM) sleep and non-REM (NREM) sleep using only EEG and EOG. Most sleep events, which define the sleep stages, are reduced with age. This is addressed by focusing on the amplitude of the clinical EEG bands...

  12. A SUPPORT VECTOR MACHINE APPROACH FOR DEVELOPING TELEMEDICINE SOLUTIONS: MEDICAL DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Mihaela GHEORGHE

    2015-06-01

    Full Text Available Support vector machine represents an important tool for artificial neural networks techniques including classification and prediction. It offers a solution for a wide range of different issues in which cases the traditional optimization algorithms and methods cannot be applied directly due to different constraints, including memory restrictions, hidden relationships between variables, very high volume of computations that needs to be handled. One of these issues relates to medical diagnosis, a subset of the medical field. In this paper, the SVM learning algorithm is tested on a diabetes dataset and the results obtained for training with different kernel functions are presented and analyzed in order to determine a good approach from a telemedicine perspective.

  13. Neutron–gamma discrimination based on the support vector machine method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xunzhen [School of Physical Science and Technology, Sichuan University, Chengdu 610041, Sichuan (China); Key Laboratory of High Energy Density Physics and Technology (Ministry of Education ), Sichuan University, Chengdu 610064 (China); Zhu, Jingjun [School of Physical Science and Technology, Sichuan University, Chengdu 610041, Sichuan (China); Lin, ShinTed [School of Physical Science and Technology, Sichuan University, Chengdu 610041, Sichuan (China); Key Laboratory of High Energy Density Physics and Technology (Ministry of Education ), Sichuan University, Chengdu 610064 (China); Wang, Li [School of Physical Science and Technology, Sichuan University, Chengdu 610041, Sichuan (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Xing, Haoyang, E-mail: xhy@scu.edu.cn [School of Physical Science and Technology, Sichuan University, Chengdu 610041, Sichuan (China); Key Laboratory of High Energy Density Physics and Technology (Ministry of Education ), Sichuan University, Chengdu 610064 (China); Zhang, Caixun; Xia, Yuxi; Liu, Shukui [School of Physical Science and Technology, Sichuan University, Chengdu 610041, Sichuan (China); Yue, Qian [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Wei, Weiwei; Du, Qiang [School of Physical Science and Technology, Sichuan University, Chengdu 610041, Sichuan (China); Tang, Changjian [School of Physical Science and Technology, Sichuan University, Chengdu 610041, Sichuan (China); Key Laboratory of High Energy Density Physics and Technology (Ministry of Education ), Sichuan University, Chengdu 610064 (China)

    2015-03-21

    In this study, the combination of the support vector machine (SVM) method with the moment analysis method (MAM) is proposed and utilized to perform neutron/gamma (n/γ) discrimination of the pulses from an organic liquid scintillator (OLS). Neutron and gamma events, which can be firmly separated on the scatter plot drawn by the charge comparison method (CCM), are detected to form the training data set and the test data set for the SVM, and the MAM is used to create the feature vectors for individual events in the data sets. Compared to the traditional methods, such as CCM, the proposed method can not only discriminate the neutron and gamma signals, even at lower energy levels, but also provide the corresponding classification accuracy for each event, which is useful in validating the discrimination. Meanwhile, the proposed method can also offer a predication of the classification for the under-energy-limit events.

  14. Process Optimization of Ultrasonic Extraction of Puerarin Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    Juan Chen; Xiaoyi Huang; Yanlei Qi; Xin Qi; Qing Guo

    2014-01-01

    In ultrasonic extraction technology, optimization of technical parameters often considers extraction medium only, without including ultrasonic parameters. This paper focuses on controlling the ultrasonic extraction process of puerarin, investigating the influence of ultrasonic parameters on extraction rate, and empirical y analyzing the main components of Pueraria, i.e., isoflavone compounds. A method is presented combining orthogonal experi-mental design with a support vector machine and a predictive model is established for optimization of technical parameters. From the analysis with the predictive model, appropriate process parameters are achieved for higher extraction rate. With these parameters in the ultrasonic extraction of puerarin, the experimental result is satisfactory. This method is of significance to the study of extracting root-stock plant medicines.

  15. Predicting and Classifying User Identification Code System Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In digital fingerprinting, preventing piracy of images by colluders is an important and tedious issue. Each image will be embedded with a unique User IDentification (U ID) code that is the fingerprint for tracking the authorized user. The proposed hiding scheme makes use of a random number generator to scramble two copies of a UID,which will then be hidden in the randomly selected medium frequency coefficients of the host image. The linear support vector machine (SVM) will be used to train classifications by calculating the normalized correlation (NC) for the 2-class UID codes. The trained classifications will be the models used for identifying unreadable UID codes.Experimental results showed that the success of predicting the unreadable UID codes can be increased by applying SVM. The proposed scheme can be used to provide protections to intellectual property rights of digital images and to keep track of users to prevent collaborative piracies.

  16. Improving linearity of position-sensitive detector using support vector machines

    Institute of Scientific and Technical Information of China (English)

    Meiying Ye

    2005-01-01

    An intelligent method for improving position linearity of position-sensitive detector (PSD), based on support vector machines (SVMs), is developed. The SVM is established based on the structural risk minimization principle rather than minimizing the empirical error commonly implemented in neural networks.SVM can achieve higher generalization performance. Training SVM is equivalent to solving a linearly constrained quadratic programming problem, thus the solution of SVM is always unique and globally optimal.The improving position linearity procedure has been illustrated using a two-dimensional (2D) PSD. It is pointed out that the position linearity of the measuring system with a proper SVM correction is improved by two orders of magnitude in the measurement range.

  17. Support-Vector-Machine-Based False Alarm Filter of Mechatronic Built-in Test

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Diagnosing intermittent fault is an important approach to reduce built-in test (BIT) false alarms. Aiming at solving the shortcoming of the present diagnostic method of intermittent fault, and according to the merit of support vector machines ( SVM) which can be trained with a small-sample, an SVM-based diagnostic model of 3 states that include OK state, intermittent state and faulty state is presented. With the features based on the reflection coefficients of an alarm rate(AR) model extracted from small vibration samples, these models are trained to diagnose intermittent faults. The experimental results show that this method can diagnose multiple intermittent faults accurately with small training samples and BIT false alarms are reduced.

  18. Water Quantity Prediction Using Least Squares Support Vector Machines (LS-SVM Method

    Directory of Open Access Journals (Sweden)

    Nian Zhang

    2014-08-01

    Full Text Available The impact of reliable estimation of stream flows at highly urbanized areas and the associated receiving waters is very important for water resources analysis and design. We used the least squares support vector machine (LS-SVM based algorithm to forecast the future streamflow discharge. A Gaussian Radial Basis Function (RBF kernel framework was built on the data set to optimize the tuning parameters and to obtain the moderated output. The training process of LS-SVM was designed to select both kernel parameters and regularization constants. The USGS real-time water data were used as time series input. 50% of the data were used for training, and 50% were used for testing. The experimental results showed that the LS-SVM algorithm is a reliable and efficient method for streamflow prediction, which has an important impact to the water resource management field.

  19. Particulate matter characterization by gray level co-occurrence matrix based support vector machines.

    Science.gov (United States)

    Manivannan, K; Aggarwal, P; Devabhaktuni, V; Kumar, A; Nims, D; Bhattacharya, P

    2012-07-15

    An efficient and highly reliable automatic selection of optimal segmentation algorithm for characterizing particulate matter is presented in this paper. Support vector machines (SVMs) are used as a new self-regulating classifier trained by gray level co-occurrence matrix (GLCM) of the image. This matrix is calculated at various angles and the texture features are evaluated for classifying the images. Results show that the performance of GLCM-based SVMs is drastically improved over the previous histogram-based SVMs. Our proposed GLCM-based approach of training SVM predicts a robust and more accurate segmentation algorithm than the standard histogram technique, as additional information based on the spatial relationship between pixels is incorporated for image classification. Further, the GLCM-based SVM classifiers were more accurate and required less training data when compared to the artificial neural network (ANN) classifiers.

  20. Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Nazira Mammadova

    2013-01-01

    Full Text Available This study presented a potentially useful alternative approach to ascertain the presence of subclinical and clinical mastitis in dairy cows using support vector machine (SVM techniques. The proposed method detected mastitis in a cross-sectional representative sample of Holstein dairy cattle milked using an automatic milking system. The study used such suspected indicators of mastitis as lactation rank, milk yield, electrical conductivity, average milking duration, and control season as input data. The output variable was somatic cell counts obtained from milk samples collected monthly throughout the 15 months of the control period. Cattle were judged to be healthy or infected based on those somatic cell counts. This study undertook a detailed scrutiny of the SVM methodology, constructing and examining a model which showed 89% sensitivity, 92% specificity, and 50% error in mastitis detection.

  1. Detection of ventricular suction in an implantable rotary blood pump using support vector machines.

    Science.gov (United States)

    Wang, Yu; Faragallah, George; Divo, Eduardo; Simaan, Marwan A

    2011-01-01

    A new suction detection algorithm for rotary Left Ventricular Assist Devices (LVAD) is presented. The algorithm is based on a Lagrangian Support Vector Machine (LSVM) model. Six suction indices are derived from the LVAD pump flow signal and form the inputs to the LSVM classifier. The LSVM classifier is trained and tested to classify pump flow patterns into three states: No Suction, Approaching Suction, and Suction. The proposed algorithm has been tested using existing in vivo data. When compared to three existing methods, the proposed algorithm produced superior performance in terms of classification accuracy, stability, and learning speed. The ability of the algorithm to detect suction provides a reliable platform in the development of a pump speed controller that has the capability of avoiding suction.

  2. Botnet Detection Using Support Vector Machines with Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Kuan-Cheng Lin

    2014-01-01

    Full Text Available Because of the advances in Internet technology, the applications of the Internet of Things have become a crucial topic. The number of mobile devices used globally substantially increases daily; therefore, information security concerns are increasingly vital. The botnet virus is a major threat to both personal computers and mobile devices; therefore, a method of botnet feature characterization is proposed in this study. The proposed method is a classified model in which an artificial fish swarm algorithm and a support vector machine are combined. A LAN environment with several computers which has infected by the botnet virus was simulated for testing this model; the packet data of network flow was also collected. The proposed method was used to identify the critical features that determine the pattern of botnet. The experimental results indicated that the method can be used for identifying the essential botnet features and that the performance of the proposed method was superior to that of genetic algorithms.

  3. Cervical cancer survival prediction using hybrid of SMOTE, CART and smooth support vector machine

    Science.gov (United States)

    Purnami, S. W.; Khasanah, P. M.; Sumartini, S. H.; Chosuvivatwong, V.; Sriplung, H.

    2016-04-01

    According to the WHO, every two minutes there is one patient who died from cervical cancer. The high mortality rate is due to the lack of awareness of women for early detection. There are several factors that supposedly influence the survival of cervical cancer patients, including age, anemia status, stage, type of treatment, complications and secondary disease. This study wants to classify/predict cervical cancer survival based on those factors. Various classifications methods: classification and regression tree (CART), smooth support vector machine (SSVM), three order spline SSVM (TSSVM) were used. Since the data of cervical cancer are imbalanced, synthetic minority oversampling technique (SMOTE) is used for handling imbalanced dataset. Performances of these methods are evaluated using accuracy, sensitivity and specificity. Results of this study show that balancing data using SMOTE as preprocessing can improve performance of classification. The SMOTE-SSVM method provided better result than SMOTE-TSSVM and SMOTE-CART.

  4. The Research and Application of Visual Saliency and Adaptive Support Vector Machine in Target Tracking Field

    Directory of Open Access Journals (Sweden)

    Yuantao Chen

    2013-01-01

    Full Text Available The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking’s accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM. Furthermore, the paper’s algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target’s saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  5. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    Science.gov (United States)

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  6. Prediction of chaotic systems with multidimensional recurrent least squares support vector machines

    Institute of Scientific and Technical Information of China (English)

    Sun Jian-Cheng; Zhou Ya-Tong; Luo Jian-Guo

    2006-01-01

    In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLSSVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the highdimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM.

  7. Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification.

    Science.gov (United States)

    Dutta, Saibal; Chatterjee, Amitava; Munshi, Sugata

    2010-12-01

    The present work proposes the development of an automated medical diagnostic tool that can classify ECG beats. This is considered an important problem as accurate, timely detection of cardiac arrhythmia can help to provide proper medical attention to cure/reduce the ailment. The proposed scheme utilizes a cross-correlation based approach where the cross-spectral density information in frequency domain is used to extract suitable features. A least square support vector machine (LS-SVM) classifier is developed utilizing the features so that the ECG beats are classified into three categories: normal beats, PVC beats and other beats. This three-class classification scheme is developed utilizing a small training dataset and tested with an enormous testing dataset to show the generalization capability of the scheme. The scheme, when employed for 40 files in the MIT/BIH arrhythmia database, could produce high classification accuracy in the range 95.51-96.12% and could outperform several competing algorithms.

  8. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    Science.gov (United States)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  9. Multiple mental tasks classification based on nonlinear parameter of mean period using support vector machines

    Institute of Scientific and Technical Information of China (English)

    Liu Hailong; Wang Jue; Zheng Chongxun

    2007-01-01

    Mental task classification is one of the most important problems in Brain-computer interface. This paper studies the classification of five-class mental tasks. The nonlinear parameter of mean period obtained from frequency domain information was used as features for classification implemented by using the method of SVM (support vector machines). The averaged classification accuracy of 85.6% over 7 subjects was achieved for 2-second EEG segments. And the results for EEG segments of 0.5s and 5.0s compared favorably to those of Garrett's. The results indicate that the parameter of mean period represents mental tasks well for classification. Furthermore, the method of mean period is less computationally demanding, which indicates its potential use for online BCI systems.

  10. USING ROUGH SET AND SUPPORT VECTOR MACHINE FOR NETWORK INTRUSION DETECTION

    Directory of Open Access Journals (Sweden)

    Rung-Ching Chen

    2009-04-01

    Full Text Available The main function of IDS (Intrusion Detection System is to protect the system, analyze and predict thebehaviors of users. Then these behaviors will be considered an attack or a normal behavior. Though IDShas been developed for many years, the large number of return alert messages makes managers maintainsystem inefficiently. In this paper, we use RST (Rough Set Theory and SVM (Support Vector Machine to detect intrusions. First, RST is used to preprocess the data and reduce the dimensions. Next, the features were selected by RST will be sent to SVM model to learn and test respectively. The method is effective to decrease the space density of data. The experiments will compare the results with different methods and show RST and SVM schema could improve the false positive rate and accuracy

  11. Constructing Support Vector Machine Ensembles for Cancer Classification Based on Proteomic Profiling

    Institute of Scientific and Technical Information of China (English)

    Yong Mao; Xiao-Bo Zhou; Dao-Ying Pi; You-Xian Sun

    2005-01-01

    In this study, we present a constructive algorithm for training cooperative support vector machine ensembles (CSVMEs). CSVME combines ensemble architecture design with cooperative training for individual SVMs in ensembles. Unlike most previous studies on training ensembles, CSVME puts emphasis on both accuracy and collaboration among individual SVMs in an ensemble. A group of SVMs selected on the basis of recursive classifier elimination is used in CSVME, and the number of the individual SVMs selected to construct CSVME is determined by 10-fold cross-validation. This kind of SVME has been tested on two ovarian cancer datasets previously obtained by proteomic mass spectrometry. By combining several individual SVMs, the proposed method achieves better performance than the SVME of all base SVMs.

  12. Aero-Engine Fault Diagnosis Using Improved Local Discriminant Bases and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jianwei Cui

    2014-01-01

    Full Text Available This paper presents an effective approach for aero-engine fault diagnosis with focus on rub-impact, through combination of improved local discriminant bases (LDB with support vector machine (SVM. The improved LDB algorithm, using both the normalized energy difference and the relative entropy as quantification measures, is applied to choose the optimal set of orthogonal subspaces for wavelet packet transform- (WPT- based signal decomposition. Then two optimal sets of orthogonal subspaces have been obtained and the energy features extracted from those subspaces appearing in both sets will be selected as input to a SVM classifier to diagnose aero-engine faults. Experiment studies conducted on an aero-engine rub-impact test system have verified the effectiveness of the proposed approach for classifying working conditions of aero-engines.

  13. Classification of power quality combined disturbances based on phase space reconstruction and support vector machines

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term disturbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.

  14. Text localization using standard deviation analysis of structure elements and support vector machines

    Directory of Open Access Journals (Sweden)

    Zagoris Konstantinos

    2011-01-01

    Full Text Available Abstract A text localization technique is required to successfully exploit document images such as technical articles and letters. The proposed method detects and extracts text areas from document images. Initially a connected components analysis technique detects blocks of foreground objects. Then, a descriptor that consists of a set of suitable document structure elements is extracted from the blocks. This is achieved by incorporating an algorithm called Standard Deviation Analysis of Structure Elements (SDASE which maximizes the separability between the blocks. Another feature of the SDASE is that its length adapts according to the requirements of the application. Finally, the descriptor of each block is used as input to a trained support vector machines that classify the block as text or not. The proposed technique is also capable of adjusting to the text structure of the documents. Experimental results on benchmarking databases demonstrate the effectiveness of the proposed method.

  15. Anomaly Detection System Based on Principal Component Analysis and Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    LI Zhanchun; LI Zhitang; LIU Bin

    2006-01-01

    This article presents an anomaly detection system based on principal component analysis (PCA) and support vector machine (SVM). The system first creates a profile defining a normal behavior by frequency-based scheme, and then compares the similarity of a current behavior with the created profile to decide whether the input instance is normal or anomaly. In order to avoid overfitting and reduce the computational burden, normal behavior principal features are extracted by the PCA method. SVM is used to distinguish normal or anomaly for user behavior after training procedure has been completed by learning. In the experiments for performance evaluation the system achieved a correct detection rate equal to 92.2% and a false detection rate equal to 2.8%.

  16. Artificial Neural Networks and Support Vector Machines for Water Demand Time Series Forecasting

    CERN Document Server

    Msiza, Ishmael S; Nelwamondo, Fulufhelo Vincent

    2007-01-01

    Water plays a pivotal role in many physical processes, and most importantly in sustaining human life, animal life and plant life. Water supply entities therefore have the responsibility to supply clean and safe water at the rate required by the consumer. It is therefore necessary to implement mechanisms and systems that can be employed to predict both short-term and long-term water demands. The increasingly growing field of computational intelligence techniques has been proposed as an efficient tool in the modelling of dynamic phenomena. The primary objective of this paper is to compare the efficiency of two computational intelligence techniques in water demand forecasting. The techniques under comparison are the Artificial Neural Networks (ANNs) and the Support Vector Machines (SVMs). In this study it was observed that the ANNs perform better than the SVMs. This performance is measured against the generalisation ability of the two.

  17. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, Ali [Department of Chemistry, Faculty of Sciences, Azad University of Arak, Arak (Iran, Islamic Republic of)], E-mail: ali.niazi@gmail.com; Jameh-Bozorghi, Saeed; Nori-Shargh, Davood [Department of Chemistry, Faculty of Sciences, Azad University of Arak, Arak (Iran, Islamic Republic of)

    2008-03-01

    A quantitative structure-property relationship (QSPR) study is suggested for the prediction of toxicity (IGC{sub 50}) of nitrobenzenes. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the IGC{sub 50} of nitrobenzenes as a function of molecular structures was established by means of the least squares support vector machines (LS-SVM). This model was applied for the prediction of the toxicity (IGC{sub 50}) of nitrobenzenes, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.0049 for LS-SVM. Results have shown that the introduction of LS-SVM for quantum chemical descriptors drastically enhances the ability of prediction in QSAR studies superior to multiple linear regression and partial least squares.

  18. Least squares support vector machine for short-term prediction of meteorological time series

    Science.gov (United States)

    Mellit, A.; Pavan, A. Massi; Benghanem, M.

    2013-01-01

    The prediction of meteorological time series plays very important role in several fields. In this paper, an application of least squares support vector machine (LS-SVM) for short-term prediction of meteorological time series (e.g. solar irradiation, air temperature, relative humidity, wind speed, wind direction and pressure) is presented. In order to check the generalization capability of the LS-SVM approach, a K-fold cross-validation and Kolmogorov-Smirnov test have been carried out. A comparison between LS-SVM and different artificial neural network (ANN) architectures (recurrent neural network, multi-layered perceptron, radial basis function and probabilistic neural network) is presented and discussed. The comparison showed that the LS-SVM produced significantly better results than ANN architectures. It also indicates that LS-SVM provides promising results for short-term prediction of meteorological data.

  19. FEATURE RANKING BASED NESTED SUPPORT VECTOR MACHINE ENSEMBLE FOR MEDICAL IMAGE CLASSIFICATION.

    Science.gov (United States)

    Varol, Erdem; Gaonkar, Bilwaj; Erus, Guray; Schultz, Robert; Davatzikos, Christos

    2012-01-01

    This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification.

  20. Prediction of Splitting Tensile Strength from Cylinder Compressive Strength of Concrete by Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Kezhen Yan

    2013-01-01

    Full Text Available Compressive strength and splitting tensile strength are both important parameters that are utilized for characterization concrete mechanical properties. This paper aims to show a possible applicability of support vector machine (SVM to predict the splitting tensile strength of concrete from compressive strength of concrete, a SVM model was built, trained, and tested using the available experimental data gathered from the literature. All of the results predicted by the SVM model are compared with results obtained from experimental data, and we found that the predicted splitting tensile strength of concrete is in good agreement with the experimental data. The splitting tensile strength results predicted by SVM are also compared to those obtained by using empirical results of the building codes and various models. These comparisons show that SVM has strong potential as a feasible tool for predicting splitting tensile strength from compressive strength.