WorldWideScience

Sample records for machined aluminum surface

  1. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    Science.gov (United States)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-09-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  2. Experimental Investigation of Effect of Process Parameters on Mrr and Surface Roughness In Turning Operation on Conventional Lathe Machine For Aluminum 6082 Grade Material Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Mihir T. Patel

    2014-01-01

    Full Text Available In this study, the effect of the machining parameters like spindle speed, feed, depth of cut and nose radius on material removal rate and surface roughness are investigated, also optimum process parameters are studied. An L8 orthogonal array (mixed level design, analysis of variance (ANOVA and the signal –to-noise (S/N ratio are used in this study. Mixed levels of machining parameters are used and experiments are done on conventional lathe machine. Aluminum Alloy - Al 6082 grade material is used in high stress applications, Trusses, Bridges, Cranes, Transport applications, Ore skips, Beer barrels, Milk churns etc. The most significant parameters for material removal rate are speed, depth of cut and least significant factor for MRR is nose radius For surface roughness speed, nose radius are the most significant parameters and least significant factor for surface roughness is depth of cut. The mathematical model obtained as a result of regression analysis can be reliable to predict MRR and surface roughness Ra.

  3. Effects of Machining on the Microstructure of Aluminum Alloy 7075

    Science.gov (United States)

    Tabei, A.; Liang, S. Y.; Garmestani, H.

    Experimental investigations show that depending on the parameters, aggressive machining of aluminum alloy 7075 can trigger several microstructural phenomena including recrystallization, grain growth and crystallographic texture modifications below the machined surface. Increasing the depth of cut will lead to a significant recrystallization and consequently grain refinement. On the other hand, increasing the feed rate will result into development of a unique crystallographic texture. The mechanical and thermal loads imposed to the material experiences by machining leads to such microstructural phenomena. Finite element analysis is used to determine these loads.

  4. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  5. Machining studies of die cast aluminum alloy-silicon carbide composites

    Science.gov (United States)

    Sornakumar, Thambu; Kathiresan, Marimuthu

    2010-10-01

    Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.

  6. An Investigation of Laser Assisted Machining of Al_2O_3 Particle Reinforced Aluminum Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Al 2O 3 particles reinforced aluminum matrix composite (Al 2O 3p/Al) are more and more widely used for their excellent physical and chemical properties. However, their poor machinability leads to severe tool wear and bad machined surface. In this paper laser assisted machining is adopted in machining Al 2O 3p/Al composite and good result was obtained. The result of experiment shows in machining Al 2O 3p/Al composites the cutting force is reduced in 30%~50%, the tool wear is reduced in 20%~30% an...

  7. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  8. Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy

    Directory of Open Access Journals (Sweden)

    Pujari Srinivasa Rao

    2016-06-01

    Full Text Available Wire electrical discharge machining (EDM possesses many advantages over the conventional manufacturing process. Hence, this process was used for machining of all conductive materials; especially, nowadays this is the most common process for machining of aerospace aluminum alloys. This process produces complex shapes in aluminum alloys with extremely tight tolerances in a single setup. But, for good surface integrity and longer service life, the residual stresses generated on the components should be as low as possible and it depends on the setting of process parameters and the material to be machined. In wire EDM, much of the work was concentrated on Titanium alloys, Inconel alloys and various types of steels and partly on aluminum alloys. The present investigation was a parametric analysis of wire EDM parameters on residual stresses in the machining of aluminum alloy using Taguchi method. The results obtained had shown a wide range of residual stresses from 8.2 to 405.6 MPa. It also influenced the formation of various intermetallics such as AlCu and AlCu3. Microscopic examination revealed absence of surface cracks on aluminum surface at all the machining conditions. Here, an attempt was made to compare the results of aluminum alloy with the available machined data for other metals.

  9. Machining of Complex Sculptured Surfaces

    CERN Document Server

    2012-01-01

    The machining of complex sculptured surfaces is a global technological topic in modern manufacturing with relevance in both industrialized and emerging in countries particularly within the moulds and dies sector whose applications include highly technological industries such as the automotive and aircraft industry. Machining of Complex Sculptured Surfaces considers new approaches to the manufacture of moulds and dies within these industries. The traditional technology employed in the manufacture of moulds and dies combined conventional milling and electro-discharge machining (EDM) but this has been replaced with  high-speed milling (HSM) which has been applied in roughing, semi-finishing and finishing of moulds and dies with great success. Machining of Complex Sculptured Surfaces provides recent information on machining of complex sculptured surfaces including modern CAM systems and process planning for three and five axis machining as well as explanations of the advantages of HSM over traditional methods ra...

  10. Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining

    Science.gov (United States)

    Schubert, A.; Götze, U.; Hackert-Oschätzchen, M.; Lehnert, N.; Herold, F.; Meichsner, G.; Schmidt, A.

    2016-03-01

    Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control.

  11. Process capability improvement through DMAIC for aluminum alloy wheel machining

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra

    2017-07-01

    This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.

  12. Characterization of aluminum surfaces: Sorption and etching

    Science.gov (United States)

    Polkinghorne, Jeannette Clera

    Aluminum, due to its low density and low cost, is a key material for future lightweight applications. However, like other structural materials, aluminum is subject to various forms of corrosion damage that annually costs the United States approximately 5% of its GNP [1]. The main goal is to investigate the effects of various solution anions on aluminum surfaces, and specifically probe pit initiation and inhibition. Using surface analysis techniques including X-ray photoelectron spectroscopy, Auger electron spectroscopy, and scanning electron microscopy, results have been correlated with those obtained from electrochemical methods and a radiolabeling technique developed in the Wieckowski laboratory. Analysis of data has indicated that important variables include type of anion, solution pH, and applied electrode potential. While aggressive anions such as chloride are usually studied to elucidate corrosion processes to work ultimately toward inhibition, its corrosive properties can be successfully utilized in the drive for higher energy and smaller-scale storage devices. Fundamental information gained regarding anion interaction with the aluminum surface can be applied to tailor etch processes. Standard electrochemical techniques and SEM are respectively used to etch and analyze the aluminum substrate. Aluminum electrolytic capacitors are comprised of aluminum anode foil covered by an anodically grown aluminum oxide dielectric film, electrolytic paper impregnated with electrolyte, and aluminum cathode foil. Two main processes are involved in the fabrication of aluminum electrolytic capacitors, namely etching and anodic oxide formation. Etching of the anode foil results in a higher surface area (up to 20 times area enlargement compared to unetched foil) that translates into a higher capacitance gain, permitting more compact and lighter capacitor manufacture. Anodic oxide formation on the anode, creates the required dielectric to withstand high voltage operation. A

  13. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  14. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA

    2011-01-01

    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  15. Comparison Between Cemented Carbide and PCD Tools on Machinability of a High Silicon Aluminum Alloy

    Science.gov (United States)

    Soares, R. B.; de Jesus, A. M. P.; Neto, R. J. L.; Chirita, B.; Rosa, P. A. R.; Reis, A.

    2017-08-01

    The high content of silicon of aluminum casting alloys challenges the tool life of conventional cemented carbide inserts, and polycrystalline diamond (PCD) tools appear as an interesting material to machine these alloys because they improve substantially the durability of cutting tools and consequently the productivity of machining. However, the surface roughness, cutting forces and chip morphology are equally important factors in machining evaluation. Therefore, an experimental study is performed aiming at comparing the performance of cemented carbide and PCD tools taking into account cutting forces, surface roughness and chip morphology, under dry longitudinal turning, performed for the AlSi9Cu3 alloy produced by permanent mold casting process. Different chip breaker geometries were also considered, and their influence on the referred parameters was also investigated. Analysis of variance was employed to study the different contributions of inserts, cutting speed, feed rate, depth of cut and their interactions in machinability performance. The results show low cutting forces and better results for surface roughness for uncoated cemented carbide tools, with simpler chip breakers and flat rake face PCD tool, but an efficient chip control was obtained for inserts with small grooves with high cutting forces and power consumption. Nevertheless, the feed rate and depth of cut have the highest influence on the machinability performance of the alloy under investigation.

  16. Investigation of Surfaces after Non Conventional Machining

    Science.gov (United States)

    Micietova, Anna; Neslusan, Miroslav; Cillikova, Maria

    2016-12-01

    This paper deals with analysis of surface integrity of steel after electro discharge machining (EDM), water jet machining, (WJM) laser beam machining (LBM) and plasma beam machining (PBM). The paper discusses surface integrity expressed in surface roughness, sample precision expressed in perpendicularity deviation as well as stress state. This study also demonstrates influence of the various non-conventional methods on structure transformations and reports about sensitivity of the different non-conventional methods of machining with regard to variable thickness of machined samples.

  17. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  18. Repairing sealing surfaces on aluminum castings

    Science.gov (United States)

    Hanna, T. L.

    1980-01-01

    Approach using stylus nickel plating instead of copper and cadmium plating has simplified repair procedure. Damaged sealing surfaces are stylus nickelplated in one step. Superficial scratches and porous areas are removed more easily from repaired surface by simply lapping sealing areas to required finish. Although method is aimed for aerospace components, it may be easily incorporated into conventional aluminumcasting technology. One-step repair can be considered for cast-aluminum automobile and aircraft engines to reduce time and costs.

  19. EXPERIMENTAL INVESTIGATION ON ELECTRICAL DISCHARGE MACHINING OF TITANIUM ALLOY USING COPPER, BRASS AND ALUMINUM ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. DHANABALAN

    2015-01-01

    Full Text Available In the present study, an evaluation has been done on Material Removal Rate (MRR, Surface Roughness (SR and Electrode Wear Rate (EWR during Electrical Discharge Machining (EDM of titanium alloy using copper, brass and aluminum electrodes. Analyzing previous work in this field, it is found that electrode wear and material removal rate increases with an increase current. It is also found that the electrode wear ratio increases with an increase in current. The higher wear ratio is found during machining of titanium alloy using a brass electrode. An attempt has been made to correlate the thermal conductivity and melting point of electrode with the MRR and electrode wear. The MRR is found to be high while machining titanium alloy using brass electrode. During machining of titanium alloy using copper electrodes, a comparatively smaller quantity of heat is absorbed by the work material due to low thermal conductivity. Due to the above reason, the MRR becomes very low. Duringmachining of titanium alloy using aluminium electrodes, the material removal rate and electrode wear rate are only average value while machining of titanium alloy using brass and copper electrodes.

  20. EXPERIMENTAL EVALUATION OF WEDM MACHINED SURFACE WAVINESS

    Directory of Open Access Journals (Sweden)

    Katerina Mouralova

    2016-10-01

    Full Text Available Wire Electrical Discharge Machining (WEDM an unconventional machining technology which has become indispensable in many industries. The typical morphology of a surface machined using the electrical discharge technology is characterized with a large number of craters caused by electro-spark discharges produced during the machining process. The study deals with an evaluation of the machine parameter setting on the profile parameters of surface waviness on samples made of two metal materials Al 99.5 and Ti-6Al-4V. Attention was also paid to an evaluation of the surface morphology using 3D colour filtered and non-filtered images.

  1. Influence of machining parameters on cutting tool life while machining aluminum alloy fly ash composite

    Science.gov (United States)

    Rao, C. R. Prakash; chandra, Poorna; Kiran, R.; Asha, P. B.

    2016-09-01

    Metal matrix composites containing fly ash as reinforcement are primarily preferred because these materials possess lower density and higher strength to weight ratio. The metal matrix composites possess hetrogeneous microstructure which is due to the presence of hard ceramic particles. While turning composites, the catastrophic failure of cutting tools is attributed to the presence of hard particles. Selection of optimal cutting conditions for a given machining process and grade of cutting tools are of utmost importance to enhance the tool life during turning operation. Thus the research work was aimed at the experimental investigation of the cutting tool life while machining aluminum alloy composite containing 0-15% fly-ash. The experiments carried out following ISO3685 standards. The carbide inserts of grade K10 and style CGGN120304 were the turning tools. The cutting speed selected was between 200m/min to 500m/min in step of 100m/min, feed of 0.08 & 0.16 mm/revolution and constant depth of cut of 1.0 mm. The experimental results revealed that the performance of K10 grade carbide insert found better while machining composite containing 5% filler, at all cutting speeds and 0.08mm/revolution feed. The failures of carbide tools are mainly due to notch wear followed by built up edge and edge chipping.

  2. Surface Acidity of Amorphous Aluminum Hydroxide

    Institute of Scientific and Technical Information of China (English)

    K. FUKUSHI; K. TSUKIMURA; H. YAMADA

    2006-01-01

    The surface acidity of synthetic amorphous Al hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the reacted solids. The synthetic specimen was characterized to be the amorphous material showing four broad peaks in XRD pattern. XRD analyses of reacted solids after the titration experiments showed that amorphous Al hydroxide rapidly transformed to crystalline bayerite at the alkaline condition (pH>10). The solution analyses after and during the titration experiments showed that the solubility of amorphous aluminum hydroxide, Ksp =aAl3+/a3H+,was 1010.3,The amount of consumption of added acid or base during the titration experiment was attributed to both the protonation/deprotonation of dissolved Al species and surface hydroxyl group. The surface acidity constants, surface hydroxyl density and specific surface area were estimated by FITEQL 4.0.

  3. Selection Of Cutting Inserts For Aluminum Alloys Machining By Using MCDM Method

    Science.gov (United States)

    Madić, Miloš; Radovanović, Miroslav; Petković, Dušan; Nedić, Bogdan

    2015-07-01

    Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.

  4. Advanced metrology of surface defects measurement for aluminum die casting

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2011-07-01

    Full Text Available The scientific objective of the research is to develop a strategy to build computer based vision systems for inspection of surface defects inproducts, especially discontinuities which appear in castings after machining. In addition to the proposed vision inspection method theauthors demonstrates the development of the advanced computer techniques based on the methods of scanning to measure topography ofsurface defect in offline process control. This method allow to identify a mechanism responsible for the formation of casting defects. Also,the method allow investigating if the, developed vision inspection system for identification of surface defects have been correctlyimplemented for an online inspection. Finally, in order to make casting samples with gas and shrinkage porosity defects type, the LGT gas meter was used . For this task a special camera for a semi-quantitative assessment of the gas content in aluminum alloy melts, using a Straube-Pfeiffer method was used. The results demonstrate that applied solution is excellent tool in preparing for various aluminum alloysthe reference porosity samples, identified next by the computer inspection system.

  5. Manufacturing Methods for High Speed Machining of Aluminum

    Science.gov (United States)

    1978-02-01

    by Aluminum 105 Effect of Feed Rate on Tool Life for Al-6061-TS . 122 106 Effect of Feed Rate on Tool Life for A1- A356 -T6 . . . 123 107 Effect of...Effect of Depths of Cut on Spindle Horsepower for Al- A356 -T6 Aluminum . . . . ........ . 145 127 Effect of Aluminm Alloy on Spindle Hornepower . . . 146...results obtained from end milling, drilling and turning tests on 7075-T631, 6061-TG51 and A356 -TG aluminum axe presented. This type of information should

  6. Switching surface chemistry with supramolecular machines.

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, Timothy D.; Kelly, Michael James; Jeppesen, Jan O. (University of California, Los Angeles, CA); Bunker, Bruce Conrad; Matzke, Carolyn M.; Stoddart, J. Fraser; Huber, Dale L.; Kushmerick, James G.; Flood, Amar H. (University of California, Los Angeles, CA); Perkins, Julie (University of California, Los Angeles, CA); Cao, Jianguo (University of California, Los Angeles, CA)

    2005-07-01

    Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved {pi}-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

  7. The Effects of Burnishing and Conventional Finishing Processes on Surface Roughness and Roundness of the Al 6061 Aluminum Parts

    Directory of Open Access Journals (Sweden)

    Adnan AKKURT

    2009-03-01

    Full Text Available Burnishing is used increasingly as a finishing operation which gives additional advantages such as increased hardness and optimum surface roughness and becoming more popular in satisfying the increasing demands of machine component performance. It is very difficult getting rounded surfaces which are desired where hole machining process (turning, honing, reaming and burnishing. In this study, surface characterizations of getting surface with burnishing and other machining process was evaluated. Especially, inner surface of hole was examined and machining process compared. In the present work, Al 6061 aluminum alloy is selected as work piece material. The experimental results showed that burnishing process must be used where roundness is important. In addition, advantage of burnishing process for Al 6061 aluminum alloy material come out when comparing hardness of hole surface.

  8. Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite

    Directory of Open Access Journals (Sweden)

    Gangadharudu Talla

    2015-09-01

    Full Text Available Low material removal rate (MRR and high surface roughness values hinder large-scale application of electro discharge machining (EDM in the fields like automobile, aerospace and medical industry. In recent years, however, EDM has gained more significance in these industries as the usage of difficult-to-machine materials including metal matrix composites (MMCs increased. In the present work, an attempt has been made to fabricate and machine aluminum/alumina MMC using EDM by adding aluminum powder in kerosene dielectric. Results showed an increase in MRR and decrease in surface roughness (Ra compared to those for conventional EDM. Semi empirical models for MRR and Ra based on machining parameters and important thermo physical properties were established using a hybrid approach of dimensional and regression analysis. A multi response optimization was also performed using principal component analysis-based grey technique (Grey-PCA to determine optimum settings of process parameters for maximum MRR and minimum Ra within the experimental range. The recommended setting of process parameters for the proposed process has been found to be powder concentration (Cp = 4 g/l, peak current (Ip = 3 A, pulse on time (Ton = 150 μs and duty cycle (Tau = 85%.

  9. Radiolysis of water with aluminum oxide surfaces

    Science.gov (United States)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  10. Optimizing cutting conditions on sustainable machining of aluminum alloy to minimize power consumption

    Science.gov (United States)

    Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus

    2017-06-01

    Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.

  11. Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity

    NARCIS (Netherlands)

    Hizal, Ferdi; Rungraeng, Natthakan; Lee, Junghoon; Jun, Soojin; Busscher, Henk J.; van der Mei, Henny C.; Choi, Chang-Hwan

    2017-01-01

    Bacterial adhesion and biofilm formation on surfaces are troublesome in many industrial processes. Here, nanoporous and nanopillared aluminum surfaces were engineered by anodizing and postetching processes and made hydrophilic (using the inherent oxide layer) or hydrophobic (applying a Teflon

  12. A liquid aluminum corrosion resistance surface on steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-05-31

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of {alpha}-Al{sub 2}O{sub 3}, followed by a thinner layer of FeAl{sub 3}, and then a much thicker one of Fe{sub 2}Al{sub 5} on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion.

  13. Self-Calibrating Surface Measuring Machine

    Science.gov (United States)

    Greenleaf, Allen H.

    1983-04-01

    A new kind of surface-measuring machine has been developed under government contract at Itek Optical Systems, a Division of Itek Corporation, to assist in the fabrication of large, highly aspheric optical elements. The machine uses four steerable distance-measuring interferometers at the corners of a tetrahedron to measure the positions of a retroreflective target placed at various locations against the surface being measured. Using four interferometers gives redundant information so that, from a set of measurement data, the dimensions of the machine as well as the coordinates of the measurement points can be determined. The machine is, therefore, self-calibrating and does not require a structure made to high accuracy. A wood-structured prototype of this machine was made whose key components are a simple form of air bearing steering mirror, a wide-angle cat's eye retroreflector used as the movable target, and tracking sensors and servos to provide automatic tracking of the cat's eye by the four laser beams. The data are taken and analyzed by computer. The output is given in terms of error relative to an equation of the desired surface. In tests of this machine, measurements of a 0.7 m diameter mirror blank have been made with an accuracy on the order of 0.2µm rms.

  14. Antibody immobilization on a nanoporous aluminum surface for immunosensor development

    Science.gov (United States)

    Chai, Changhoon; Lee, Jooyoung; Park, Jiyong; Takhistov, Paul

    2012-12-01

    A method of antibody (Ab) immobilization on a nanoporous aluminum surface for an electrochemical immunosensor is presented. To achieve good attachment and stability of Ab on an aluminum surface, aluminum was silanized with 3-aminopropyltryethoxysilane (APTES), and then covalently cross-linked to self-assembled layers (SALs) of APTES. Both the APTES concentration and the silanization time affected the formation of APTES-SALs as Ab immobilization. The formation of APTES-SALs was confirmed using the water contact angle on the APTES-SALs surface. The reactivity of APTES-SALs with Ab was investigated by measuring the fluorescence intensity of fluorescein isothiocyanate-labeled Ab-immobilized on the aluminum surface. Silanization of aluminum in 2% APTES for 4 h resulted in higher water contact angles and greater amounts of immobilized Ab than other APTES concentrations or silanization times. More Ab was immobilized on the nanoporous surface than on a planar aluminum surface. Electrochemical immunosensors developed on the nanoporous aluminum via the Ab immobilization method established in this study responded functionally to the antigen concentration in the diagnostic solution.

  15. Jet Electrochemical Machining of Particle Reinforced Aluminum Matrix Composites with Different Neutral Electrolytes

    Science.gov (United States)

    Hackert-Oschätzchen, M.; Lehnert, N.; Martin, A.; Schubert, A.

    2016-03-01

    Conventional mechanical machining of particle reinforced aluminum matrix composites (AMCs) is challenging because the hard ceramic particles in the soft aluminum matrix lead to an increased tool wear. Furthermore, the mechanical and thermal impact during conventional machining affects the microstructure of the AMCs. Electrochemical machining (ECM) is an alternative method to machine AMCs. Based on anodic dissolution, ECM has a slight influence on the work piece material structure and is independent of material strength and hardness. So the microstructure of the work piece remains unaffected. One method of ECM is electrochemical machining with continuous electrolytic free jet (Jet-ECM). Hereby the electrochemical removal is localized by the geometry of the electrolyte jet. By moving the electrolyte jet micro-structures and microgeometries can be generated quickly and flexibly in metallic parts [1]. Another advantage of Jet-ECM is the low consumption of electrolyte which allows an easy and inexpensive change of electrolyte for investigations with different types of electrolyte. In this study AMCs reinforced with different amounts of SiC-particles are machined with two pH-neutral electrolytes using Jet-ECM. The results provide information about the suitability of the selected electrolytes for the machining of AMCs. In addition, the influence of the particle content on the electrochemical removal result will be evaluated.

  16. Environmental dust effects on aluminum surfaces in humid air ambient

    Science.gov (United States)

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser

    2017-01-01

    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems. PMID:28378798

  17. Chemical milling solution produces smooth surface finish on aluminum

    Science.gov (United States)

    Lorenzen, H. C.

    1966-01-01

    Elementary sulfur mixed into a solution of caustic soda and salts produces an etchant which will chemically mill end-grain surfaces on aluminum plate. This composition results in the least amount of thickness variation and pitting.

  18. Engineering wear-resistant surfaces in automotive aluminum

    Science.gov (United States)

    Kavorkijan, V.

    2003-02-01

    Inadequate wear resistance and low seizure loads prevent the direct use of aluminum alloys in automotive parts subject to intensive friction combined with high thermal and mechanical loading, such as brake discs, pistons, and cylinder liners. To enable the use of aluminum alloys in the production of automotive brake discs and other wear-resistant products, the insertion of a monolithic friction cladding rather than surface coating has been considered in this work. Three experimental approaches, two based on the pressure-less infiltration of porous ceramic preforms and one based on the subsequent hot rolling of aluminum and metal-matrix composite strips, are currently under investigation.

  19. A study on the surface shape and roughness of aluminum alloy for heat exchanger using ball end milling

    Science.gov (United States)

    Lee, E.; Kim, Y.; jeong, H.; Chung, H.

    2015-09-01

    Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball end milling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball end milling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

  20. Development of Virtual Simulation System for Remote Collaborative Surface Machining

    Institute of Scientific and Technical Information of China (English)

    R.S.Lee; Y.S.Lin; Y.C.Kao; C. H. She

    2006-01-01

    Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper, a virtual simulation system for remote collaborative surface machining is developed. The motion command of machine tool is generated by an interpolator, which can derive synchronized motion commands according to feedrate. Thus, the system can estimate the machining time. For universal assembly of five-axis virtual machine tool, it is based on the D-H notation representation and machining constraints consideration. The remote collaborative virtual manufacturing system based on the CORBA technology is proposed in this paper. It demonstrated that the developed virtual machine tool can be used to verify and simulate the machining process for the collaboration of the surface design and manufacturing team.

  1. Surface magnetic domains dynamic in machined steel

    Directory of Open Access Journals (Sweden)

    Blažek D.

    2014-07-01

    Full Text Available This contribution deals with an observation of the magnetic dynamic of different types of the machined surface of bearing steel. The Bakhausen noise (BN measurements are presented here as commonly introduced in industry for quality control due to the extremely sensitivity of the magnetic domains wall dynamics to the microstructure of material. The results of magneto-optical measurements are presented with the goal to explain the observed BN anisotropy. It is shown that BN anisotropy is associated with uniaxal magnetic anisotropy introduced by hard milling which causes the principally different magnetic reversals processes in orthogonal directions.

  2. Testing the performance of superhydrophobic aluminum surfaces.

    Science.gov (United States)

    Ruiz-Cabello, F Javier Montes; Ibáñez-Ibáñez, Pablo F; Gómez-Lopera, J Francisco; Martínez-Aroza, José; Cabrerizo-Vílchez, Miguel; Rodríguez-Valverde, Miguel A

    2017-12-15

    The analysis of wetting properties of superhydrophobic surfaces may be a difficult task due to the restless behavior of drops on this type of surfaces and the limitations of goniometry for high contact angles. A method to validate the performance of superhydrophobic surfaces, rather than standard goniometry, is required. In this work, we used bouncing drop dynamics as a useful tool to predict the water repellency of different superhydrophobic surfaces. From bouncing drop experiments conducted over a wide range of superhydrophobic surfaces, we found that those surfaces with a proper roughness degree and homogeneous chemical composition showed higher water-repellency. We also conducted a drop condensation study at saturating conditions aimed to determine whether there is direct correlation between water repellency and condensation delay. We found that the drop condensation process is strongly related to the surface topography, as well as the intrinsic wettability. The condensation is promoted on rough surfaces but it is delayed on intrinsically hydrophobic surfaces. However, the differences found in condensation delay between the superhydrophobic surfaces explored in this study cannot be justified by their chemical homogeneity nor their efficiency as water repellent surfaces, separately. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  4. Investigation of Surface Roughness in High-Speed Milling of Aeronautical Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    PAN Yong-zhi; AI Xing; ZHAO Jun; WAN Yi

    2008-01-01

    An approach is presented to optimize the surface roughness in high-speed finish milling of 7050-T7451 aeronautical aluminum alloy. In view of this, the multi-linear regression model for surface roughness has been developed in terms of slenderness ratio, cutting speed, radial depth-of-cut and feed per tooth by means of orthogonal experimental design. Variance analyses were applied to check the adequacy of the predictive model and the significances of the independent input parameters. Response contours of surface roughness were generated by using response surface methodology (RSM). From these contours, it was possible to select an optimum combination of cutting parameters that improves machining efficiency without increasing the surface roughness.

  5. Surface quality of cold rolling aluminum strips under lubrication condition

    Institute of Scientific and Technical Information of China (English)

    Jianlin Sun; Wang Lu; Yanli Ma; Qingbing Shi; Aihua Zhang; Jian Li

    2008-01-01

    The effects of oil fill on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were used to obtain different oil film thick-nesses. Results from experiment and calculation show that the thicker oil film protects the initial roughening surface so that it leads to an increase in roughness of the rolled surface, in particular when the surface roughness has the character of direction. The rolled surface roughness was determined by λ, which is the ratio of oil film thickness to the combined surface roughness. When λ > 3, the rolled surface roughness increases rapidly with the increase in oil viscosity, whereas the surface roughening has already occurred when λ < 3, but the increase of the rolled surface roughness with increasing viscosity is not distinct.

  6. Effect of Equal Channel Angular Pressing on the Surface Roughness of Solid State Recycled Aluminum Alloy 6061 Chips

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2017-01-01

    Full Text Available Solid state recycling through hot extrusion is a promising technique to recycle machining chips without remelting. Furthermore, equal channel angular pressing (ECAP technique coupled with the extruded recycled billet is introduced to enhance the mechanical properties of recycled samples. In this paper, the surface roughness of solid state recycled aluminum alloy 6061 turning chips was investigated. Aluminum chips were cold compacted and hot extruded under an extrusion ratio (ER of 5.2 at an extrusion temperature (ET of 425°C. In order to improve the properties of the extruded samples, they were subjected to ECAP up to three passes at room temperature using an ECAP die with a channel die angle (Φ of 90°. Surface roughness (Ra and Rz of the processed recycled billets machined by turning was investigated. Box-Behnken experimental design was used to investigate the effect of three machining parameters (cutting speed, feed rate, and depth of cut on the surface roughness of the machined specimens for four materials conditions, namely, extruded billet and postextrusion ECAP processed billets to one, two, and three passes. Quadratic models were developed to relate the machining parameters to surface roughness, and a multiobjective optimization scheme was conducted to maximize material removal rate while maintaining the roughness below a preset practical value.

  7. CONTROL OF METAL SURFACES MACHINED IN ACCORDANCE WITH THE DIAMOND NANOMACHINING TECHNOLOGY BASED ON THE ELECTRON WORK FUNCTION

    Directory of Open Access Journals (Sweden)

    G. V. Sharonov

    2015-01-01

    Full Text Available Dimensional machining technology is based on the use of integrated geometric parameters of machined surfaces. Technological impact of a pick results in oxidation processes and changes in physic-chemical parameters of surface. Control of only geometric parameters is insufficient to describe characteristics of machining and formation of ultra-smooth surfaces. The electron work function is therefore used. The aim of the work was to study electrophysical states of optic surfaces of non-ferrous metals and alloys in relation to geometric and physic-chemical parameters according to the distribution of the electron work function over the surface. We conducted the study on experimental metal samples made of copper and aluminum alloy, machined in accordance with the diamond nanomachining technology. The diamond nanomachining technology would be capable of ensuring the roughness of non-ferrous metals and alloys machined at the level of Ra ≤ 0,005 µm. Modernized Kelvin probe was used as the registration technique of the changes of the electron work function over the surface. Dependence between the electron work function value, as well as its alteration and the physicchemical and geometric parameters of a surface has been determined. It has been shown that the diamond nanomachining technology makes it possible to obtain electro-physically uniform optical surfaces on copper and aluminum alloy with the minimal range of the distribution of the electric potential over the surface

  8. Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material

    Institute of Scientific and Technical Information of China (English)

    Yong-Woo KIM; Soo-Chang CHOI; Jeung-Woo PARK; Deug-Woo LEE

    2009-01-01

    One of the ultra-precision machining methods was adapted for brittle material as well as soft material by using multi-arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because the particles of grinding tools are irregular size and material can be fragile. Therefore, we were able to design tool paths and machine controlled pattern on surface by multi-arrayed diamond tips with uniform size made in MEMS fabrication and high speed spindle, and the maximum speed was about 3×105 r/min. We defined several parameters that can affect the machining surface. Those were multi-array of diamond tips (n×n), speed of air spindle and feeding rate. The surface roughness and surface texture can be controlled by those parameters for micro machining.

  9. Dynamic wetting of ro1ling oil on aluminum surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ya-jun; ZHOU Hong-hui

    2007-01-01

    Static and dynamic contact angles of stock oil and its solutions with additives(fatty acid, fatty alcohol, fatty methyl ester usually used in rolling aluminum) were measured on aluminum surface (Alloy 1145) by sessile drop technique on an OCA35 dynamic contact angle tester. The effect of additive on the drop spreading was investigated as well. It is shown that the drop spreads very quickly in the first 500 ms after the lubricant contacts with the aluminum surface, and then does slowly later. The dynamic contact angle decreases exponentially with time. In contrast to the stock oil, although addition of polarity additive of long chain alkyl into stock oil is able to decrease the surface tension of solutions, it weakens the wetting dynamic, which results from the adsorption at the expanding solid/liquid interface. Among the same long chain polarity organic compounds used, dynamic wetting decreases in the order of fatty acid, fatty alcohol and fatty ester. The blend of fatty alcohol and fatty methyl ester can improve the oil wetting dynamics and promote the lubricant spreading.

  10. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  11. Surface grain coarsening and surface softening during machining of ultra-fine grained titanium

    Directory of Open Access Journals (Sweden)

    Symonova A.A.

    2012-01-01

    Full Text Available Experiments are run to show that different machining conditions applied to ultra-fine grained pure titanium lead to different levels of grain coarsening and softening near the machined surface. Under “hard” machining conditions the upper 40 microns of the machined surface are altered with a decreased microhardness. The experimental results are reasonably reproduced by model calculations. Expanding the parameter field of the model calculations, the surface coarsening diagram and the surface softening diagram due to machining are presented, showing the region of technological parameters, under which neither grain coarsening nor softening takes place along the machined surface.

  12. Surface mining machines problems of maintenance and modernization

    CERN Document Server

    Rusiński, Eugeniusz; Moczko, Przemysław; Pietrusiak, Damian

    2017-01-01

    This unique volume imparts practical information on the operation, maintenance, and modernization of heavy performance machines such as lignite mine machines, bucket wheel excavators, and spreaders. Problems of large scale machines (mega machines) are highly specific and not well recognized in the common mechanical engineering environment. Prof. Rusiński and his co-authors identify solutions that increase the durability of these machines as well as discuss methods of failure analysis and technical condition assessment procedures. "Surface Mining Machines: Problems in Maintenance and Modernization" stands as a much-needed guidebook for engineers facing the particular challenges of heavy performance machines and offers a distinct and interesting demonstration of scale-up issues for researchers and scientists from across the fields of machine design and mechanical engineering.

  13. Optical servoing for industrial surface machining

    Science.gov (United States)

    Koller, Norbert; Ofner, Ronald; O'Leary, Paul; Fauster, Ewald

    2006-02-01

    The surface machining of cracks is a key issue to ensure the quality of steel rods and billets. The aim is to grind these defects out of the material. This paper presents a real-time optical servo-system, consisting of three image processing systems and an industrial robot, which fully automate this process. A high resolution color progressive scan camera, placed at a suitable position above the roller conveyor, observes the material and detects color markings indicating the presence of a crack. This camera system controls the roller conveyor transporting the material until a marked crack is detected. Diffuse light sources provide homogeneous lighting to ensure reliable detection of the markings. A demosaicing algorithm, RGB to HSL color modeling and thresholding with statistical morphology are used to identify the marked areas. On detecting a crack the material is automatically positioned within the working area of an industrial robot. A collineation is used to generate metric two-dimensional coordinates corresponding to the bounding rectangle of the detected error. At this point two plane-of-light scanners are used to acquire a cross section of the material to the left and the right of the robot's working area. From this, a three-dimensional model for the rod or billet surface is calculated and the two-dimensional coordinates of the color marking are projected onto this surface to generate a patch. The coordinates of this patch are sent to the 6R industrial robot, which then grinds out the defect. A new concept has been implemented which enables the calibration of the three image processing systems and the industrial robot so as to have one common coordinate system. Operational results have shown the full functionality of the system concept in the harsh environment of a steel production facility.

  14. Advances on aluminum first-surface solar reflectors

    Science.gov (United States)

    Almanza, Rafael; Chen, Jiefeng; Mazari, Marcos

    1992-11-01

    Aluminum first surface mirrors have some advantages over second surface mirrors as has been discussed. At this stage of development some advantages are obtained: the first advantage was using two electron guns, one for aluminum evaporation permitting us to eliminate or to minimize the pinholes and the other to allow the evaporation of SiO without any mirror contamination as it was before due to the air when the chamber was opened to introduce the SiO, despite having only one e-gun in the laboratory. The second advantage was a better adherence between the aluminum film and the Si2O3, this last substance obtained with an oxidation of SiO with some oxygen inside the evaporation chamber (10-4 Torr). This improvement was due to the use of two e-guns that permit us not to open the chamber. These mirrors are actually under test in the environmental chamber for accelerated weather evaluations. One important aspect is the cleaning of the glass substrate. The chromic mixture cleaning is one of the most effective.

  15. Efficient machining of ultra precise steel moulds with freeform surfaces

    Science.gov (United States)

    Bulla, B.; Robertson, D. J.; Dambon, O.; Klocke, F.

    2013-09-01

    Ultra precision diamond turning of hardened steel to produce optical quality surfaces can be realized by applying an ultrasonic assisted process. With this technology optical moulds used typically for injection moulding can be machined directly from steel without the requirement to overcoat the mould with a diamond machinable material such as Nickel Phosphor. This has both the advantage of increasing the mould tool lifetime and also reducing manufacture costs by dispensing with the relatively expensive plating process. This publication will present results we have obtained for generating free form moulds in hardened steel by means of ultrasonic assisted diamond turning with a vibration frequency of 80 kHz. To provide a baseline with which to characterize the system performance we perform plane cutting experiments on different steel alloys with different compositions. The baseline machining results provides us information on the surface roughness and on tool wear caused during machining and we relate these to material composition. Moving on to freeform surfaces, we will present a theoretical background to define the machine program parameters for generating free forms by applying slow slide servo machining techniques. A solution for optimal part generation is introduced which forms the basis for the freeform machining experiments. The entire process chain, from the raw material through to ultra precision machining is presented, with emphasis on maintaining surface alignment when moving a component from CNC pre-machining to final machining using ultrasonic assisted diamond turning. The free form moulds are qualified on the basis of the surface roughness measurements and a form error map comparing the machined surface with the originally defined surface. These experiments demonstrate the feasibility of efficient free form machining applying ultrasonic assisted diamond turning of hardened steel.

  16. Learning surface molecular structures via machine vision

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  17. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement.

    Science.gov (United States)

    Zhang, Xiaodong; Zeng, Zhen; Liu, Xianlei; Fang, Fengzhou

    2015-09-21

    Freeform surface is promising to be the next generation optics, however it needs high form accuracy for excellent performance. The closed-loop of fabrication-measurement-compensation is necessary for the improvement of the form accuracy. It is difficult to do an off-machine measurement during the freeform machining because the remounting inaccuracy can result in significant form deviations. On the other side, on-machine measurement may hides the systematic errors of the machine because the measuring device is placed in situ on the machine. This study proposes a new compensation strategy based on the combination of on-machine and off-machine measurement. The freeform surface is measured in off-machine mode with nanometric accuracy, and the on-machine probe achieves accurate relative position between the workpiece and machine after remounting. The compensation cutting path is generated according to the calculated relative position and shape errors to avoid employing extra manual adjustment or highly accurate reference-feature fixture. Experimental results verified the effectiveness of the proposed method.

  18. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis.

    Science.gov (United States)

    Hozumi, Atsushi; McCarthy, Thomas J

    2010-02-16

    Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis for probe liquids were prepared by chemical vapor deposition (CVD) of bis((tridecafluoro-1,1,2,2,-tetrahydrooctyl)-dimethylsiloxy)methylsilane (CF(3)(CF(2))(5)CH(2)CH(2)Si(CH(3))(2)O)(2)SiCH(3)H, (R(F)Si(Me)(2)O)(2)SiMeH). Oxidized aluminum surfaces were prepared by photooxidation/cleaning of sputter-coated aluminum on silicon wafers (Si/Al(Al(2)(O(3)))) using oxygen plasma. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) confirmed that this facile CVD method produces a monolayer with a thickness of 1.1 nm on the Si/Al(Al(2)(O(3))) surface without a discernible change in surface morphology. After monolayer deposition, the hydrophilic Si/Al(Al(2)(O(3))) surface became both hydrophobic and oleophobic and exhibited essentially no contact angle hysteresis for water and n-hexadecane (advancing/receding contact angles (theta(A)/theta(R)) = 110 degrees/109 degrees and 52 degrees/50 degrees, respectively). Droplets move very easily on this surface and roll off of slightly tilted surfaces, independently of the contact angle (which is a practical definition of ultralyophobic). A conventional fluoroalkylsilane monolayer was also prepared from 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3), R(F)Si(OMe)(3)) for comparison. The theta(A)/theta(R) values for water and n-hexadecane are 121 degrees/106 degrees and 76 degrees/71 degrees, respectively. The larger hysteresis values indicate the "pinning" of probe liquids, even though advancing contact angles are larger than those of the (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers. The (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers have excellent hydrolytic stability in water. We propose that the (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers are flexible and liquidlike and that drops in contact with these surfaces experience very low energy barriers between metastable states, leading to the

  19. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Science.gov (United States)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  20. Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data

    Directory of Open Access Journals (Sweden)

    Tzu-Liang Bill Tseng

    2014-04-01

    Full Text Available This study investigates the effects of machining parameters as they relate to the quality characteristics of machined features. Two most important quality characteristics are set as the dimensional accuracy and the surface roughness. Before any newly acquired machine tool is put to use for production, it is important to test the machine in a systematic way to find out how different parameter settings affect machining quality. The empirical verification was made by conducting a Design of Experiment (DOE with 3 levels and 3 factors on a state-of-the-art Cincinnati Hawk Arrow 750 Vertical Machining Center (VMC. Data analysis revealed that the significant factor was the Hardness of the material and the significant interaction effect was the Hardness + Feed for dimensional accuracy, while the significant factor was Speed for surface roughness. Since the equally important thing is the capability of the instruments from which the quality characteristics are being measured, a comparison was made between the VMC touch probe readings and the measurements from a Mitutoyo coordinate measuring machine (CMM on bore diameters. A machine mounted touch probe has gained a wide acceptance in recent years, as it is more suitable for the modern manufacturing environment. The data vindicated that the VMC touch probe has the capability that is suitable for the production environment. The test results can be incorporated in the process plan to help maintain the machining quality in the subsequent runs.

  1. A study of electrodischarge machining–pulse electrochemical machining combined machining for holes with high surface quality on superalloy

    Directory of Open Access Journals (Sweden)

    Ning Ma

    2015-11-01

    Full Text Available Noncircular holes on the surface of turbine rotor blades are usually machined by electrodischarge machining. A recast layer containing numerous micropores and microcracks is easily generated during the electrodischarge machining process due to the rapid heating and cooling effects, which restrict the wide applications of noncircular holes in aerospace and aircraft industries. Owing to the outstanding advantages of pulse electrochemical machining, electrodischarge machining–pulse electrochemical machining combined technique is provided to improve the overall quality of electrodischarge machining-drilled holes. The influence of pulse electrochemical machining processing parameters on the surface roughness and the influence of the electrodischarge machining–pulse electrochemical machining method on the surface quality and accuracy of holes have been studied experimentally. The results indicate that the pulse electrochemical machining processing time for complete removal of the recast layer decreases with the increase in the pulse electrochemical machining current. The low pulse electrochemical machining current results in uneven dissolution of the recast layer, while the higher pulse electrochemical machining current induces relatively homogeneous dissolution. The surface roughness is reduced from 4.277 to 0.299 µm, and the hole taper induced by top-down electrodischarge machining process was reduced from 1.04° to 0.17° after pulse electrochemical machining. On account of the advantages of electrodischarge machining and the pulse electrochemical machining, the electrodischarge machining–pulse electrochemical machining combined technique could be applied for machining noncircular holes with high shape accuracy and surface quality.

  2. Non-machined Surface Protection Process of Electrochemical Machining Based on Repaired Turbine Blade

    Directory of Open Access Journals (Sweden)

    LIU Wei-dong

    2016-11-01

    Full Text Available In order to improve the efficiency of turbine blade repairing, protection processes of non-machined surface in Electrochemical Machining (ECM based on blade repairing were studied. Mathematical model of electric field was developed to obtain current density distribution on anode surface, and to study the repairing principle and consequently analyze the defects forming mechanism by conventional electrolytic repair process. Sacrificial layer process was proposed to protect the non-machined surface in this work and an experimental system was developed to shape overlay welded TC4 blades. The results show that directly shaping process and insulated layer process produce stray dissolution and "stair" defects respectively,while sacrificial layer process achieves acceptable machining performance. With shaping time of 60s, the efficiency is improved; shaped blades have higher precision and surface roughness is Ra≤0.6μm, and with higher repeatability, the design requirements can be met.

  3. Experimental investigation of micro-channels produced in aluminum alloy (AA 2024) through laser machining

    Science.gov (United States)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Khan, Awais Ahmad

    2016-11-01

    Aluminum and its alloys are growingly used in various applications including micro-channel heat exchangers and heat sinks to facilitate heat transfer though micro-fluidic flows. Micro-channels with precise control over geometrical features are very important in order to design micro-fluidic flow dynamics and its characteristics. In this research, Nd:YAG laser beam micro-milling has been utilized to produce micro-channels in aluminum alloy (AA 2024) having cross-sectional size of 400 × 200 µm2. The objective was to control the material removal rate (MRR) of the process in order to get the micro-channels' geometries (width, depth and taperness of sidewalls) close to the designed geometries. In this context, parametric effects of predominant laser parameters on the process performance have been categorically studied. Quadratic mathematical models have further been developed to estimate the MRR and each geometrical aspect of micro-channels over different levels of laser parameters. Additionally, multi-objective optimization has been performed to get an optimized set of laser parameters generating the accurate machining geometries with appropriate material removal per laser scan. Finally, the models and optimization results were validated through confirmatory experimental tests. The results reveal that the précised micro-channel geometries can be obtained through laser beam micro-milling by selecting the appropriate combination of laser parameters (lamp current intensity of 84.48 %, laser pulse frequency of 35.70 kHz and laser scanning speed of 300 mm/s) that can collectively remove a required amount of material thickness per laser scan.

  4. EQUIVALENT NORMAL CURVATURE APPROACH MILLING MODEL OF MACHINING FREEFORM SURFACES

    Institute of Scientific and Technical Information of China (English)

    YI Xianzhong; MA Weiguo; QI Haiying; YAN Zesheng; GAO Deli

    2008-01-01

    A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given.

  5. Machining Performance Study on Metal Matrix Composites-A Response Surface Methodology Approach

    Directory of Open Access Journals (Sweden)

    A. Srinivasan

    2012-01-01

    Full Text Available Problem statement: Metal Matrix Composites (MMC have become a leading material among composite materials and in particular, particle reinforced aluminum MMCs have received considerable attention due to their excellent engineering properties. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement element-like Alumina (Al2O3. Approach: In this study, an attempt has been made to model the machinability evaluation through the response surface methodology in machining of homogenized 10% micron Al2O3 LM25 Al MMC manufactured through stir casting method. Results: The combined effects of three machining parameters including cutting speed (s, feed rate (f and depth of cut (d on the basis of three performance characteristics of tool wear (VB, surface Roughness (Ra and cutting Force (Fz were investigated. The contour plots were generated to study the effect of process parameters as well as their interactions. Conclusion: The process parameters are optimized using desirability-based approach response surface methodology.

  6. Surface Analysis of Metal Materials After Water Jet Abrasive Machining

    Directory of Open Access Journals (Sweden)

    Pavel Polák

    2015-01-01

    Full Text Available In this article, we deal with a progressive production technology using the water jet cutting technology with the addition of abrasives for material removal. This technology is widely used in cutting various shapes, but also for the technology of machining such as turning, milling, drilling and cutting of threads. The aim of this article was to analyse the surface of selected types of metallic materials after abrasive machining, i.e. by assessing the impact of selected machining parameters on the surface roughness of metallic materials.

  7. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  8. Enhanced osteoblast response to electrical discharge machining surface.

    Science.gov (United States)

    Otsuka, Fukunaga; Kataoka, Yu; Miyazaki, Takashi

    2012-01-01

    The purpose of this study is to investigate the surface characteristics and biocompatibility of titanium (Ti) surfaces modified by wire electrical discharge machining (EDM). EDM surface characteristics were evaluated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thin-film X-ray diffractometry (XRD) and contact angle measurements. MC3T3-E1 cell morphology, attachment and proliferation, as well as analysis of osteoblastic gene expressions, on machined surfaces and EDM surfaces were also evaluated. EDM surfaces exhibited high super hydrophilicity, due to high surface energy. XPS and XRD revealed that a passive oxide layer with certain developing thickness onto. EDM surfaces promoted cell attachment, but restrained proliferation. Counted cell numbers increased significantly on the machined surfaces as compared to the EDM surfaces. Real-time PCR analyses showed significantly higher relative mRNA expression levels of osteoblastic genes (ALP, osteocalcin, Runx2, Osterix) in cells cultured on the EDM surfaces as compared to cells cultured on the machined surfaces.

  9. Surface modification of piezoelectric aluminum nitride with functionalizable organosilane adlayers

    Science.gov (United States)

    Chan, Edmund; Jackson, Nathan; Mathewson, Alan; Galvin, Paul; Alamin Dow, Ali B.; Kherani, Nazir P.; Blaszykowski, Christophe; Thompson, Michael

    2013-10-01

    The world of biosensors is expanding at a rapid pace with an ever-increasing demand for more sensitive miniaturized devices. Acoustic wave biosensors are not spared from this trend. In this domain, the search for enhanced sensitivity is increasingly oriented toward the rational design of new piezoelectric materials with superior properties to substitute for prevalent quartz. With respect to surface chemistry, construction of the biorecognition element, more often than not, requires the use of bifunctional molecules that can spontaneously assemble on the substrate and form organic surfaces readily biofunctionalizable in a subsequent, ideally single step. In this context, we present herein the surface modification of aluminum nitride (AlN) with alkyltrichlorosilane cross-linking molecules bearing a functionalizable benzenethiosulfonate moiety. This latter feature is next demonstrated through the straightforward, preactivation-free immobilization of thiolated biotin probes. To date, AlN has only received little attention in the field of piezoelectric biosensors despite its many attractive properties and the perspective to operate devices at ultra-high frequencies (GHz) with unprecedented sensitivity. To our knowledge, this work describes one of the first examples of direct surface derivatization of AlN with bifunctional trichlorosilane molecules. It also constitutes a first step toward the development of electrodeless GHz piezoelectric biosensing platforms based on AlN and trichlorosilane surface chemistry.

  10. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleema, N., E-mail: saleema.noormohammed@imi.cnrc-nrc.gc.ca [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), University of Quebec at Chicoutimi (UQAC), 555 Boulevard University East, Saguenay, Quebec G7H 2B1 (Canada); Paynter, R.W. [Institut National de la Recherche Scientifique Energie Materiaux Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Gallant, D.; Eskandarian, M. [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. Black-Right-Pointing-Pointer Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. Black-Right-Pointing-Pointer Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. Black-Right-Pointing-Pointer Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure

  11. Generation of gear tooth surfaces by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.

    1994-01-01

    This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.

  12. Environmental performance assessment of a company of aluminum surface treatment

    Directory of Open Access Journals (Sweden)

    Susan Catieri Ramalho

    2013-08-01

    Full Text Available The purpose of this article was to evaluate the environmental performance of a medium-sized company that provides services for surface treatment of aluminum. The treatment is known as anodizing. The research method was qualitative numerical modeling. The environmental performance of the company was organized into five constructs: atmosphere, wastewater, energy and natural resources, solid waste, and legislation and management. Nineteen indicators were chosen to explain the five constructs. Ten employees of the company prioritized the constructs and evaluated the situation of the indicators by means of a scale of assessment. By means of a mathematical model, the general performance of the environmental operation was calculated at 74.5% of the maximum possible. The indicators that most contributed to the performance not to reach 100% were consumption of electricity and water consumption. The construct of worse performance was natural and energy resources. These are the priorities for future environmental improvement actions that the company may promote.

  13. The Development of a Distributed Surface Machining System

    Institute of Scientific and Technical Information of China (English)

    Y.C.Kao; M.S.Chen

    2006-01-01

    This paper focuses on the development of a distributed surface machining system. Traditional manufacturing engineering activity analysis has been conducted in developing the proposed system structure. The advantages of a distributed system structure such as easy to manage, high expandability and flexibility will enhance the efficiency of an integral system operation, and achieve the goal of networked manufacture. The IDEF0 was used to describe each stage of the traditional surface machining activities, and then UML (Unified Modeling Language) technology was adopted to verify the feasibility and accuracy of the established integrated system. The developed distributed system structure and sub-functional modules (CAD/CAM/CAPP) have been implemented based on the proposed systematic approach; and a freeform surface has been used as an example for verification. The proposed approach has been successfully implemented and could be adopted to assist engineers in integrating machining activities that are located in dispersed places; and various domains experts also can exchange their expertise among themselves. Thus, the development time of a product machining processes can be shortened and so is its enhancement on the competitive advantages. In addition, this distributed system has also integrated multi-functional ontology and service agent to facilitate the selection and reconfiguration in manufacturing customization.The proposed system has presented the feasibility in incorporating the agent-based technology in a distributed freeform surface machining environment. Service agents communicate via pre-defined performatives underlying knowledge query and manipulation language (KQML) for the surface machining capability. The developed system has then successfully demonstrated the feasibility in implementing the agent-based technology into a distributed surface machining system.

  14. Machining of Additively Manufactured Parts: Implications for Surface Integrity

    OpenAIRE

    Oyelola, O.; Crawforth, P.; M'Saoubi, R.; Clare, A.T.

    2016-01-01

    Additive manufacturing methods continue to move towards production ready technologies with the widely extolled virtues of rapid transition from design to part and enhanced design freedoms. However, due to fundamental limitations of laser based processes for metal additive manufacturing, there is a significant ongoing need for these parts to be subject to additional machining operations. This paper reports on a study to investigate the machining behavior and surface integrity of Ti-6Al-4 V com...

  15. Machining of Additively Manufactured Parts: Implications for Surface Integrity

    OpenAIRE

    Oyelola, O.; Crawforth, P.; M'Saoubi, R.; Clare, A.T.

    2016-01-01

    Additive manufacturing methods continue to move towards production ready technologies with the widely extolled virtues of rapid transition from design to part and enhanced design freedoms. However, due to fundamental limitations of laser based processes for metal additive manufacturing, there is a significant ongoing need for these parts to be subject to additional machining operations. This paper reports on a study to investigate the machining behavior and surface integrity of Ti-6Al-4 V com...

  16. Characterization of micro machined surface from TRIP/TWIP steels

    Directory of Open Access Journals (Sweden)

    Smaga M.

    2015-01-01

    Full Text Available In this contribution micro machining induced changes in surface morphology, including phase transformation from fcc-austenite into hcp- and bcc-martensite as well as defined surface topography of TRIP/TWIP steel was characterized by scanning electron microscopy using electron backscatter diffraction (EBSD technique. For this, applying micro milling and micro grinding processes with tool diameter of 45 µm, structures were machined into flat specimen surfaces of X30MnAl17–1 steel in defined areas previously characterized by EBSD.

  17. SPARK MACHINING FOR STEEL SURFACES TO IMPROVE PAINT COATINGS QUALITY

    Directory of Open Access Journals (Sweden)

    Sergey Levchenko

    2015-12-01

    Full Text Available Spark machining of steel surfaces enhances the subsequent paint coatings adhesion and protective properties. These factors improvement was confirmed at the salt-spray chamber testing and by both adhesion to the surface and depth of corrosion penetration below the paint coating layer measurements.

  18. Surface errors in the course of machining precision optics

    Science.gov (United States)

    Biskup, H.; Haberl, A.; Rascher, R.

    2015-08-01

    Precision optical components are usually machined by grinding and polishing in several steps with increasing accuracy. Spherical surfaces will be finished in a last step with large tools to smooth the surface. The requested surface accuracy of non-spherical surfaces only can be achieved with tools in point contact to the surface. So called mid-frequency errors (MSFE) can accumulate with zonal processes. This work is on the formation of surface errors from grinding to polishing by conducting an analysis of the surfaces in their machining steps by non-contact interferometric methods. The errors on the surface can be distinguished as described in DIN 4760 whereby 2nd to 3rd order errors are the so-called MSFE. By appropriate filtering of the measured data frequencies of errors can be suppressed in a manner that only defined spatial frequencies will be shown in the surface plot. It can be observed that some frequencies already may be formed in the early machining steps like grinding and main-polishing. Additionally it is known that MSFE can be produced by the process itself and other side effects. Beside a description of surface errors based on the limits of measurement technologies, different formation mechanisms for selected spatial frequencies are presented. A correction may be only possible by tools that have a lateral size below the wavelength of the error structure. The presented considerations may be used to develop proposals to handle surface errors.

  19. RF Magnetron Sputtering Aluminum Oxide Film for Surface Passivation on Crystalline Silicon Wafers

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2013-01-01

    Full Text Available Aluminum oxide films were deposited on crystalline silicon substrates by reactive RF magnetron sputtering. The influences of the deposition parameters on the surface passivation, surface damage, optical properties, and composition of the films have been investigated. It is found that proper sputtering power and uniform magnetic field reduced the surface damage from the high-energy ion bombardment to the silicon wafers during the process and consequently decreased the interface trap density, resulting in the good surface passivation; relatively high refractive index of aluminum oxide film is benefic to improve the surface passivation. The negative-charged aluminum oxide film was then successfully prepared. The surface passivation performance was further improved after postannealing by formation of an SiOx interfacial layer. It is demonstrated that the reactive sputtering is an effective technique of fabricating aluminum oxide surface passivation film for low-cost high-efficiency crystalline silicon solar cells.

  20. Single point diamond machining of optical and related mounting surfaces

    Science.gov (United States)

    Mladjan, Gary J.

    2002-09-01

    Over the past several years we have designed and fabricated several variations of a three mirror anistigmat Telescope for a Risk Reduction effort. In order to achieve passive athermalization, use of the same materials for both mirrors and structures is desirable. We fabricated 2 telescopes using investment cast aluminum alloy A356 in the first and investment cast Aluminum/Beryllium alloy 191 in the second, for all components. All optical surfaces and corresponding mounting surfaces are nickel plated and single point diamond tuned. The telescopes were assembled to meet the optical prescription tolerances with no alignment required other than focus. Components and performance levels are totally interchangeable between the telescopes, except for athermalization issues.

  1. Contributions to understanding the high speed machining effects on aeronautic part surface integrity

    Science.gov (United States)

    Jomaa, Walid

    To remain competitive, the aeronautic industry has increasing requirements for mechanical components and parts with high functional performance and longer in-service life. The improvement of the in-service life of components can be achieved by mastering and optimizing the surface integrity of the manufactured parts. Thus, the present study attempted to investigate, experimentally and theoretically, the tool/work material interactions on part surface integrity during the machining of aluminium alloys and hardened materials (low alloy steels) using orthogonal machining tests data. The studied materials are two aluminum alloys (6061-T6 and 7075-T651) and AISI 4340 steel. The AISI 4340 steel was machined after been induction heat treated to 58-60 HRC. These materials were selected in an attempt to provide a comprehensive study for the machining of metals with different behaviours (ductile and hard material). The proposed approach is built on three steps. First, we proposed a design of experiment (DOE) to analyse, experimentally, the chip formation and the resulting surface integrity during the high speed machining under dry condition. The orthogonal cutting mode, adopted in these experiments, allowed to explore, theoretically, the effects of technological (cutting speed and feed) and physical (cutting forces, temperature, shear angle, friction angle, and length Contact tool/chip) parameters on the chip formation mechanisms and the machined surface characteristics (residual stress, plastic deformation, phase transformation, etc.). The cutting conditions were chosen while maintaining a central composite design (CCD) with two factors (cutting speed and feed per revolution). For the aluminum 7075-T651, the results showed that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles are the main causes of the machined surface damage. The BUE formation increases with the cutting feed while the increase of the cutting speed

  2. MAGNETO-ABRASIVE MACHINING OF SURFACES FORMED BY ELECTROMAGNET SURFACING WITH PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results pertaining to magneto-abrasive machining of product surfaces formed by electromagnet surfacing with a plastic deformation of P6M5K5 powder. 

  3. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  4. Investigation on Surface Roughness of Inconel 718 in Photochemical Machining

    Directory of Open Access Journals (Sweden)

    Nitin D. Misal

    2017-01-01

    Full Text Available The present work is focused on estimating the optimal machining parameters required for photochemical machining (PCM of an Inconel 718 and effects of these parameters on surface topology. An experimental analysis was carried out to identify optimal values of parameters using ferric chloride (FeCl3 as an etchant. The parameters considered in this analysis are concentration of etchant, etching time, and etchant temperature. The experimental analysis shows that etching performance as well as surface topology improved by appropriate selection of etching process parameters. Temperature of the etchant found to be dominant parameter in the PCM of Inconel 718 for surface roughness. At optimal etching conditions, surface roughness was found to be 0.201 μm.

  5. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  6. A study of electrodischarge machining–pulse electrochemical machining combined machining for holes with high surface quality on superalloy

    OpenAIRE

    Ning Ma; Xiaolong Yang; Mingqian Gao; Jinlong Song; Ganlin Liu; Wenji Xu

    2015-01-01

    Noncircular holes on the surface of turbine rotor blades are usually machined by electrodischarge machining. A recast layer containing numerous micropores and microcracks is easily generated during the electrodischarge machining process due to the rapid heating and cooling effects, which restrict the wide applications of noncircular holes in aerospace and aircraft industries. Owing to the outstanding advantages of pulse electrochemical machining, electrodischarge machining–pulse electrochemic...

  7. Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gühlke, Marina; Kneipp, Janina;

    2014-01-01

    We observed strong surface-enhanced Raman scattering on discontinuous nanostructured aluminum films using 785 nm excitation even though dielectric constants of this metal suggest plasmon supported spectroscopy in the ultraviolet range. The excitation of SERS correlates with plasmon resonances...

  8. Development and mean life of aluminum first-surface mirrors for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Almanza, Rafael; Hernandez, Perla; Martinez, Ivan [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF, 04510 (Mexico); Mazari, Marcos [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF, 04510 (Mexico)

    2009-09-15

    Aluminum solar mirrors are an alternative for solar concentrators. This paper presents the first aluminum-surface solar mirrors, which, after 12 years of exposure to the aggressive weather conditions of Mexico City, have a reflectance decrease of only 3% (from 0.85 to 0.82), with only small scratches on the SiO{sub 2} layer. Furthermore, two alternatives are presented for solar aluminum mirrors: mirrors with integrated first and second surfaces and first-surface compound mirrors. Each mirror and its fabrication are described, along with their weather tests. The aluminum first-surface solar mirror lasts for at least 12 years, and is a good alternative material for parabolic troughs, heliostats, CPC, Fresnel technology and dish concentrators. (author)

  9. Corrosion control of aluminum surfaces by polypyrrole films: influence of electrolyte

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2007-06-01

    Full Text Available Polypyrrole (PPy films were galvanostatically deposited on 99.9 wt. (% aluminum electrodes from aqueous solutions containing each carboxylic acid: tartaric, oxalic or citric. Scanning Electron Microscopy (SEM was used to analyze the morphology of the aluminum surfaces coated with the polymeric films. It was observed that the films deposited from tartaric acid medium presented higher homogeneity than those deposited from oxalic and citric acid. Furthermore, the corrosion protection of aluminum surfaces by PPy films was also investigated by potentiodynamic polarization experiments.

  10. Surface passivation of aluminum alloy 6061 with gaseous trichlorosilane: A surface investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ngongang, Rickielle, E-mail: rickielle.ngongang@airliquide.com [Centre de Recherche Claude Delorme, Air Liquide, 1 Chemin de la Porte des Loges Les-Loges en Josas, 78350 Jouy-en-Josas (France); Laboratoire de Réactivité de Surface, UMR CNRS 7197, UPMC (Université Pierre et Marie Curie-Paris 6), site d’Ivry, 3 rue Galilée, 94200 Ivry-sur-Seine (France); Marceau, Eric; Carrier, Xavier; Pradier, Claire-Marie; Methivier, Christophe [Laboratoire de Réactivité de Surface, UMR CNRS 7197, UPMC (Université Pierre et Marie Curie-Paris 6), site d’Ivry, 3 rue Galilée, 94200 Ivry-sur-Seine (France); Blanc, Jean-Luc; Carre, Martine [Centre de Recherche Claude Delorme, Air Liquide, 1 Chemin de la Porte des Loges Les-Loges en Josas, 78350 Jouy-en-Josas (France)

    2014-02-15

    A molecular-scale investigation of the interaction at room temperature between gaseous trichlorosilane (HSiCl{sub 3}), used as a passivating agent, and surfaces of aluminum alloy AA6061 in a polished or hydroxylated state is conducted. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) provide information on the topography and morphology of AA6061 before and after hydroxylation and surface passivation, while surface chemistry has been investigated by Polarization Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Oxidation and hydroxylation of the polished alloy surface in boiling water strongly modifies the roughness of the surface, with formation of platelets and needles of oxyhydroxide AlOOH. PM-IRRAS and XPS reveal that, upon adsorption, HSiCl{sub 3} dissociates and mainly forms HSiOH{sub n}(OAl){sub 3−n}, HSi(OSi){sub n}(OAl){sub 3−n} and condensed HSiO{sub x} species, by reaction with -OH groups from the AlOOH surface phase. The amount of deposited Si-containing species is larger on the rough surface of the hydroxylated alloy and this deposit is accompanied by a decrease of the amount of free -OH groups evidenced by PM-IRRAS. These results can find applications in the field of functionalization of aluminum alloys. It is suggested that a homogeneous oxidation of the alloy surface prior to exposure to gaseous HSiCl{sub 3} may enhance the adsorption of the passivating agent.

  11. Topographical Parameter Characteristics of Dry Sliding Surfaces of Particle-Reinforced Aluminum Composites

    Institute of Scientific and Technical Information of China (English)

    陈跃; 上官宝; 张永振; 孙乐民; 铁喜顺; 夏跃虹

    2004-01-01

    Generally, friction and wear occur on the surface of the materials.It is necessary to investigate the dry sliding friction and wear behavior of surface.In this paper, 3-D topographical parameters were used to investigate the topographical characteristics of dry sliding surfaces for particle-reinforced aluminum composites on semi-metallic friction material.The experimental results indicate that the surface topography of the particle-reinforced aluminum composites can be divided into two types, the flaking-off pit type and the groove type.The composites whose surface topography is the flaking-off pit type possess superior heat conductivity and bearing area, lower wear rate, and higher friction coefficient than the groove type.Consequently, the flaking-off pit type surface topography is much better than the groove type for particle-reinforced aluminum composites on semi-metallic friction materials in dry sliding.

  12. Machine-tool control system for turning nonaxisymmetric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, S.S.; Green, W.L.

    1979-09-01

    A development program has been initiated to allow on-axis turning of nonaxisymmetric surfaces. A short-travel high-speed slide is mounted on a precision, numerically controlled, two-axis turning machine. The motion of the auxiliary slide is synchronized with the spindle and the two remaining slides. The report defines the workpiece geometry and requirements, calculations for the slide motion, techniques for real-time command generation, and planned equipment set.

  13. A Tool Path Generation Strategy for Sculptured Surfaces Machining

    Institute of Scientific and Technical Information of China (English)

    Chen Tao; Zhong Yifang; Zhou Ji

    2001-01-01

    This paper presents a strategy to generate interference-free tool paths for machiningsculptured surfaces. The strategy proposed here is first to determine the tool path topology. Thevalues of the step length and the path interval are then calculated based on the machining tolerancerequirements. After detecting and eliminating the tool interference, the interference-free tool path isgenerated. The effectiveness of the developed algorithm is demonstrated through simulation andactual cutting tests.

  14. Machine Learning Tools for Geomorphic Mapping of Planetary Surfaces

    OpenAIRE

    Stepinski, Tomasz F.; Vilalta, Ricardo

    2010-01-01

    Geomorphic auto-mapping of planetary surfaces is a challenging problem. Here we have described how machine learning techniques, such as clustering or classification, can be utilized to automate the process of geomorphic mapping for exploratory and exploitation purposes. Relatively coarse resolution of planetary topographic data limits the number of features that can be used in the learning process and makes planetary auto-mapping more challenging than terrestrial auto-mapping. With this cavea...

  15. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Science.gov (United States)

    2010-07-01

    ... the organic HAP content of aluminum recreational boat surface coatings? (a) Use equation 1 of this... 12 months. ER22AU01.017 Where: HAPSC = weighted-average organic HAP content for all aluminum coating materials, kilograms of organic HAP per liter of coating solids. m = number of different aluminum...

  16. Anomalous hexagonal superstructure of aluminum oxide layer grown on NiAl(110) surface

    Science.gov (United States)

    Krukowski, Pawel; Chaunchaiyakul, Songpol; Minagawa, Yuto; Yajima, Nami; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    2016-11-01

    A modified method for the fabrication of a highly crystallized layer of aluminum oxide on a NiAl(110) surface is reported. The fabrication method involves the multistep selective oxidation of aluminum atoms on a NiAl(110) surface resulting from successive oxygen deposition and annealing. The surface morphology and local electronic structure of the novel aluminum oxide layer were investigated by high-resolution imaging using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy. In contrast to the standard fabrication method of aluminum oxide on a NiAl(110) surface, the proposed method produces an atomically flat surface exhibiting a hexagonal superstructure. The superstructure exhibits a slightly distorted hexagonal array of close-packed bright protrusions with a periodicity of 4.5 ± 0.2 nm. Atomically resolved STM imaging of the aluminum oxide layer reveals a hexagonal arrangement of dark contrast spots with a periodicity of 0.27 ± 0.02 nm. On the basis of the atomic structure of the fabricated layer, the formation of α-Al2O3(0001) on the NiAl(110) surface is suggested.

  17. Hierarchical planning for a surface mounting machine placement

    Institute of Scientific and Technical Information of China (English)

    曾又姣; 马登哲; 金烨; 严隽琪

    2004-01-01

    For a surface mounting machine (SMM) in printed circuit board (PCB) assembly line, there are four problems, e.g. CAD data conversion, nozzle selection, feeder assignment and placement sequence determination. A hierarchical planning for them to maximize the throughput rate of an SMM is presented here. To minimize set-up time, a CAD data conversion system was first applied that could automatically generate the data for machine placement from CAD design data files. Then an effective nozzle selection approach was implemented to minimize the time of nozzle changing. And then, to minimize picking time, an algorithm for feeder assignment was used to make picking multiple components simultaneously as much as possible. Finally, in order to shorten pick-and-place time, a heuristic algorithm was used to determine optimal component placement sequence according to the decided feeder positions. Experiments were conducted on a four head SMM. The experimental results were used to analyse the assembly line performance.

  18. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  19. DIFFUSION COUPLE BETWEEN HIGH STRENGTH WEAR-RESISTING ALUMINUM BRONZE AND MACHINING TOOLS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Diffusion couples of tool materials (prepared from commercially available high speed steel and YW1 carbide tools) and the wear-resisting aluminum bronze (KK) were prepared by casting to study the diffusion pattern and phase formation sequence in order to clarify the diffusion wear of the tools during the turning of the wear-resisting aluminum bronze. Optical micrographs show that good contact was obtained at the tool material-KK interface. After annealed at 900 ℃ for 6 h, strong inter-diffusion across the interface was observed. Microprobe analysis was used to study the elemental distribution across the interface and X-ray diffractometry was used to study the phases formed at the interface.

  20. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  1. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  2. Sub-surface and surface analysis of high speed machined Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, J.D. Puerta [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM), CNRS FRE 3143, Ecole Nationale d' Ingenieurs de Metz (ENIM), F-57012 Metz Cedex 01 (France); Tidu, A., E-mail: tidu@enim.fr [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM), CNRS FRE 3143, Ecole Nationale d' Ingenieurs de Metz (ENIM), F-57012 Metz Cedex 01 (France); Bolle, B. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM), CNRS FRE 3143, Ecole Nationale d' Ingenieurs de Metz (ENIM), F-57012 Metz Cedex 01 (France); Chevrier, P. [Laboratoire de Mecanique Biomecanique, Polymere Structures (LaBPS), EA 4632 Ecole Nationale d' Ingenieurs de Metz (ENIM), F-57012 Metz Cedex 01 (France); Fundenberger, J.-J. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM), CNRS FRE 3143, Universite Paul Verlaine de Metz (UPVM), F-57012 Metz Cedex 01 (France)

    2010-04-25

    To understand the effects of cutting the surface integrity is an important goal to control the quality of a work piece. The current paper summarizes an extensive experimental study of the surface integrity and the sub-surface microstructure during high speed machining in orthogonal cutting condition. This study includes measurements of residual stresses and crystallographic texture in addition to electron microscopy observations. Our observations and conclusions are primarily focused on the effect of cutting speed considering a set of constant machining parameters on the microstructure evolution of the sub-surface of the material. The results allow a better understanding of the cutting process in high speed machining of titanium alloy Ti-6Al-4V.

  3. Study on Surface Engineering of Normalized Steels Subjected To Machine

    Institute of Scientific and Technical Information of China (English)

    Hardening

    2004-01-01

    Engineering the surfaces of components to improve the life and performance of parts used in automotive and aerospace engineering is the active area of research. Suitable Thermal/Mechanical/Thermo mechanical surface engineering treatments will produce extensive rearrangement of atoms in metals and alloys and corresponding marked variations in Physical, Chemical and Mechanical properties. Among the more important of these treatments are heat treatment processes such as hardening by Quenching, Induction hardening and Case Carburizing which rely on phase transformations to produce desired changes in mechanical properties. Other processes where phase transformation occur are casting, welding and machining etc. [1] Phase transformation may be homogeneous or heterogeneous. Homogeneous involves rearrangements in the structure of the material taking place simultaneously in all parts of the solid, while the heterogeneous transformation involves structural changes which are more localized. Alternatively they could be called as Isothermal and Nonisothermal transformation. But irrespective of the classification, these transformations alter the structure of the material giving rise to changes in the mechanical and physical properties of the processed material. It is of interest to review some consequences of surface modification in isothermal (Normalizing) and nonisothermal transformations (Machining) of low carbon steels.

  4. Surface development of an aluminum brazing sheet during heating studied by XPEEM and XPS

    Science.gov (United States)

    Rullik, L.; Bertram, F.; Niu, Y. R.; Evertsson, J.; Stenqvist, T.; Zakharov, A. A.; Mikkelsen, A.; Lundgren, E.

    2016-10-01

    X-ray photoelectron emission microscopy (XPEEM) was used in combination with other microscopic and spectroscopic techniques to follow the surface development of an aluminum brazing sheet during heating. The studied aluminum alloy sheet is a composite material designed for vacuum brazing. Its surface is covered with a native aluminum oxide film. Changes in the chemical state of the alloying elements and the composition of the surface layer were detected during heating to the melting temperature. It was found that Mg segregates to the surface upon heating, and the measurements indicate the formation of magnesium aluminate. During the heating the aluminum oxide as well as the silicon is observed to disappear from the surface. Our measurements is in agreement with previous studies observing a break-up of the oxide and the outflow of the braze cladding onto the surface, a process assisted by the Mg segregation and reaction with surface oxygen. This study also demonstrates how XPEEM can be utilized to study complex industrial materials.

  5. Adaptive compensation of sculptured surface machining errors by open architecture manufacturing system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the adaptive compensation of sculptured surfacemachining errors by using the open architecture intelligent manufacturing system to ensure real-time high-precision machining of sculptured surface, and the tool deflection model constructed for prediction of machining errors to be compensated and analysis of the effect of tool deflection on machining errors, and concludes from experimental results that the open architecture intelligent manufacturing system can effectively improve the machining precision and reduce the machining errors by 30%.

  6. Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations

    Science.gov (United States)

    Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi

    2017-07-01

    The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.

  7. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin

    Science.gov (United States)

    Kwon, Young-Soon; Gromov, Alexander A.; Strokova, Julia I.

    2007-04-01

    The results of investigation and analysis of electro-exploded aluminum nanopowders, whose surface were passivated with the following substances: liquids - nitrocellulose (NC), oleic acid (C 17H 33COOH) and stearic acid (C 17H 35COOH), suspended in kerosene and ethanol, fluoropolymer; solids - boron and nickel; gases - N 2, CO 2 and air (for a comparison) are discussed. The surface protection for the aluminum nanopowders by coatings of different chemical origins leads to the some advantages of the powders properties for an application in energetic systems, e.g. solid propellants and "green" propellants (Al-H 2O). Aluminum nanopowders with a protected surface showed the increased stability to oxidation in air during the storage period and higher reactivity by heating. The TEM-visual diagram of the formation and stabilization of the coatings on the particles has been proposed on the basis of experimental results. The kinetics of the interaction of aluminum nanopowders with air has been discussed. The recommendations concerning an efficiency of the protective "non-Al 2O 3" layers on aluminum nanoparticles were proposed.

  8. Standard surface grinder for precision machining of thin-wall tubing

    Science.gov (United States)

    Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.

    1967-01-01

    Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.

  9. A study of Corrosion Protection of Aluminum Metal by Tetraethoxysilane Plasma Polymerized Coatings-Influence of Aluminum Surface Pretreatments-

    Institute of Scientific and Technical Information of China (English)

    YoshihiroMomose; TatsuyaYabuki

    2004-01-01

    The corrosion-protective performance of plasma-polymerized (PP) coatings on pretreated aluminum substrates has been investigated by cathodic polarization curve measurement. The surface composition and electronic properties of the pretreated and PP film coated metal surfaces were also characterized by XPS and the temperature-programmed photoelectron emission (TPPE). A PP coating was prepared on the pretreated surfaces by plasma polymerization of a mixture of tetraethoxysilane (TEOS) monomer vapor and oxygen using a 13.56MHz radiofrequency generator. The polarization curve of PP film coated samples was measured in NaC1 aqueous solution. The weight loss rate calculated from the value of the corrosion current of the curve was used to estimate the protective performance of the PP film coated samples. Argon plasma treatment of the metal surface gave much better corrosion-protective performance than pretreatments such as oxidation by heating in air and diamond scratching. The XPS analysis indicated that the silicon oxide assigned to SiO2 was formed on the PP film coated surface. The TPPE analysis revealed that the electron emission characteristics for the metal surfaces pretreated only were strongly influenced by the pretreatments, while all the PP film coated samples exhibited nearly the same electron emission trend with a much decreased intensity.

  10. A study of Corrosion Protection of Aluminum Metal by Tetraethoxysilane Plasma Polymerized Coatings -Influence of Aluminum Surface Pretreatments-

    Institute of Scientific and Technical Information of China (English)

    Yoshihiro Momose; Tatsuya Yabuki

    2004-01-01

    The corrosion-protective performance of plasma-polymerized (PP) coatings on pretreated aluminum substrates has been investigated by cathodic polarization curve measurement. The surface composition and electronic properties of the pretreated and PP film coated metal surfaces were also characterized by XPS and the temperature-programmed photoelectron emission (TPPE). A PP coating was prepared on the pretreated surfaces by plasma polymerization of a mixture of tetraethoxysilane (TEOS) monomer vapor and oxygen using a 13.56MHz radiofrequency generator. The polarization curve of PP film coated samples was measured in NaCl aqueous solution. The weight loss rate calculated from the value of the corrosion current of the curve was used to estimate the protective performance of the PP film coated samples. Argon plasma treatment of the metal surface gave much better corrosion-protective performance than pretreatments such as oxidation by heating in air and diamond scratching. The XPS analysis indicated that the silicon oxide assigned to SiO2 was formed on the PP film coated surface. The TPPE analysis revealed that the electron emission characteristics for the metal surfaces pretreated only were strongly influenced by the pretreatments, while all the PP film coated samples exhibited nearly the same electron emission trend with a much decreased intensity.

  11. Microstructural and Hardness Study of Pulsed Nd:YAG Laser Surface Alloyed Aluminum with Iron

    Science.gov (United States)

    Ansari, Mohammad; Soltani, Reza; Heydarzadeh Sohi, Mahmoud; Valefi, Zia

    2016-04-01

    In the present study, the feasibility of the formation of surface layers containing hard iron aluminides on AA6061-T6 aluminum via pre-plasma spraying with iron and subsequently double surface melting by pulsed Nd:YAG laser is studied. The effects of single and double laser surface melting on microstructure, phase formation, and hardness of the treated layers are examined. Single-step laser treatment resulted in the presence of undissolved iron particles surrounded by lump-like Al5Fe2 and needle-like Al3Fe intermetallic compounds. Double laser surface melting dissolved the retained undissolved irons and resulted in the formation of Al-Al3Fe eutectic structure. Microhardness profiles along cross section and top surface of the treated layers indicated that laser surface alloying with iron enhanced the hardness of the aluminum to more than twice of that of the base material.

  12. The Role of Surface Preparation Parameters on Cold Roll Bonding of Aluminum Strips

    Science.gov (United States)

    Jamaati, Roohollah; Toroghinejad, Mohammad Reza

    2011-03-01

    It is the objective of this article to investigate the influence of surface preparation on the cold roll bonding (CRB) process. In this context, the effects of surface preparation parameters consisting of surface preparation method, surface roughness, scratch-brushing parameters, and the delay time between surface preparation and rolling are investigated on the bond strength of aluminum strips. The bond strength of two adjacent aluminum strips produced by the CRB process is evaluated by the peeling test. Furthermore, the interface region is investigated by metallographic observations. Our findings indicate that higher surface roughness values and shorter delay times improve the bond strength. It is also found that degreasing followed by scratch-brushing yield the best bonding properties.

  13. Experimental force modeling for deformation machining stretching mode for aluminum alloys

    Indian Academy of Sciences (India)

    ARSHPREET SINGH; ANUPAM AGRAWAL

    2017-02-01

    Deformation machining is a hybrid process that combines two manufacturing processes—thin structure machining and single-point incremental forming. This process enables the creation of complex structures and geometries, which would be rather difficult or sometimes impossible to manufacture. A comprehensive experimental study of forces induced in deformation machining stretching mode has been performedin the present work. A table-type force dynamometer has been used to record the deforming forces in three Cartesian directions. The influence of five process parameters—floor thickness, tool diameter, wall angle,incremental step size, and floor size on the deforming forces—is investigated. Individual as well as combined empirical models of the parameters with regard to the forces have been formed. The results of this study indicatethat the average resultant force primarily depends on the floor thickness to be deformed and the incremental depth in the tool path. This could be due to the variation in local stiffness of the sheet with change in floor thickness. The effect of tool diameter, deforming wall angle, and floor size is not significant.

  14. Effect of shock wave risetime on material ejection from aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.

    1977-09-15

    The effect of shock wave risetime on material ejection in aluminum has been studied for loading stresses of 21 GPa. Uniform loading was accomplished with plate impact techniques by mounting specimens on a ramp wave generator. Projectile impact on one side of the wave generator produced a wave which dispersed with propagation distance. This wave was then made incident to an aluminum specimen, so that the specimen experienced non-shock loading. It was found that mass ejection from aluminum surfaces can be reduced by over two orders of magnitude relative to shock loading conditions by accelerating the surface with a wave risetime greater than about 35 ns. These results suggest an explanation for the apparent discrepancies which are sometimes observed in mass ejection measurements utilizing either plate impact or electron beam deposition to generate stress waves.

  15. Influence of surface treatment on the biocompatibility of aluminum substrates promising for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kiradzhiyska, D. D., E-mail: denica.kiradjiiska@gmail.com; Mantcheva, R. D., E-mail: r-manch@abv.bg [Medical University - Plovdiv, Faculty of Pharmacy, Department of Chemical Science15A Vassil Aprilov blvd., 4002 Plovdiv (Bulgaria); Feodorova, Y. N.; Draganov, M. M. [Medical University - Plovdiv, Medical Faculty, Department of Medical Biology, 15A Vassil Aprilov blvd., 4002 Plovdiv (Bulgaria); Girginov, Ch. A. [University of Chemical Technology and Metallurgy -Sofia, Department of Chemical Science, Subdepartment of Physical Chemistry, 8 Kliment Ohridski Blvd. 1756 Sofia (Bulgaria); Viraneva, A. P.; Yovcheva, T. A. [University of Plovdiv “Paisiy Hilendarski”, Faculty of Physics, Department of Experimental Physic, 24 Tsar Assen str., 4000 Plovdiv (Bulgaria)

    2016-03-25

    Materials for medical implants should have suitable mechanical properties, excellent biocompatibility and high corrosion resistance. They should not stimulate allergic and immunologic reactions and should not cause cancer. The use of aluminum as a construction material in implantology is continuously expanding. There are various methods for surface treatment to improve its biocompatibility. In this study aluminum samples anodized in 15% H{sub 2} SO{sub 4} or treated with positive or negative corona discharge were investigated. PDL-cell line of immortalized cells, precursors of periodontal ligament and RAW 264.7 cell line from mouse macrophages are used for the bioassays. The results show that 10 and 20 μm thick oxide film provides better development of the PLD cells, compared to untreated aluminum. Metal surfaces with 10 μm thick oxide film show the best properties in terms of cells vitality, proliferation and growth. Polymer treated but uncharged samples show good results.

  16. [Backscattering Characteristics of Machining Surfaces and Retrieval of Surface Multi-Parameters].

    Science.gov (United States)

    Tao, Hui-rong; Zhang, Fu-min; Qu, Xing-hua

    2015-07-01

    For no cooperation target laser ranging, the backscattering properties of the long-range and real machined surfaces are uncertain which seriously affect the ranging accuracy. It is an important bottleneck restricting the development of no cooperation ranging technology. In this paper, the backscattering characteristics of three typical machining surfaces (vertidal milling processing method, horizontal milling processing method and plain grinding processing method) under the infrared laser irradiation with 1550 nm were measured. The relation between the surface nachining texture, incident azimuth, roughness and the backscattering distribution were analyzed and the reasons for different processing methods specific backscattering field formed were explored. The experimental results show that the distribution of backscattering spectra is greatly affected by the machined processing methods. Incident angle and roughness have regularity effect on the actual rough surface of each mode. To be able to get enough backscattering, knowing the surface texture direction and the roughness of machined metal is essential for the optimization of the non-contact measurement program in industry. On this basis, a method based on an artificial neural network (ANN) and genetic algorithm (GA), is proposed to retrieve the surface multi-parameters of the machined metal. The generalized regression neural network (GRNN) was investigated and used in this application for the backscattering modeling. A genetic algorithm was used to retrieve the multi-parameters of incident azimuth angle, roughness and processing methods of machined metal sur face. Another processing method of sample (planer processing method) was used to validate data. The final results demonstrated that the method presented was efficient in parameters retrieval tasks. This model can accurately distinguish processing methods and the relative error of incident azimuth and roughness is 1.21% and 1.03%, respectively. The inversion

  17. Ester oxidation on an aluminum surface using chemiluminescence

    Science.gov (United States)

    Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo

    1986-01-01

    The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin film microoxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing .001 M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period, or the time to reach one-half of maximum intensity was inversely proportional to test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

  18. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Science.gov (United States)

    2010-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...

  19. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  20. Nicotine-magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    DEFF Research Database (Denmark)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle...

  1. Laser surface alloying of aluminum (AA1200) with Ni and SiC Powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-12-01

    Full Text Available An Nd:YAG laser was used for surface alloying of aluminum AA1200. The alloying powder was a mixture of Ni and SiC in different ratios. A study of the microstructures obtained after alloying was conducted using optical and scanning electron...

  2. Hierarchical planning for a surface mounting machine placement

    Institute of Scientific and Technical Information of China (English)

    曾又姣; 马登哲; 金烨; 严隽琪

    2004-01-01

    For a surface mounting machine(SMM)in printed circuit board(PCB)assembly line,there are four problems,e.g. CAD data conversion,nozzle selection,feeder assignment and placement sequence determination. A hierarchical planning for them to maximize the throughput rate of an SMM is presented here. To minimize set-up time,a CAD data conversion system was first applied that could automatically generate the data for machine placement from CAD design data files. Then an effective nozzle selection approach was implemented to minimize the time of nozzle changing. And then,to minimize picking time,an algorithm for feeder assignment was used to make picking multiple components simultaneously as much as possible. Finally,in order to shorten pick-and-place time,a heuristic algorithm was used to determine optimal component placement sequence according to the decided feeder positions. Experiments were conducted on a four head SMM.The experimental results were used to analyse the assembly line performance.

  3. The Influence of Surface Anisotropy Crystalline Structure on Wetting of Sapphire by Molten Aluminum

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2013-05-01

    The wetting of sapphire by molten aluminum was investigated by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) at PO2 <10-15 Pa under Ar atmosphere. This study focuses on sapphire crystalline structure and its principle to the interface. The planes " a" and " b" are oxygen terminated structures and wet more by Al, whereas the " c" plane is an aluminum terminated structure. A wetting transition at 1273 K (1000 °C) was obtained and a solid surface tension proves the capillarity trends of the couple.

  4. Material ejection from shock-loaded free surfaces of aluminum and lead

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.

    1976-10-01

    A discussion is presented regarding interferometer experiments conducted on free surfaces which are impulsively loaded with high amplitude shock waves. It is shown that material ejection from shocked surfaces can significantly degrade interferometer experiments. In particular, loss of both light intensity and contrast of interferometer signals can result from various scattering and absorption processes occurring in a cloud of ejected material. An experimental technique is presented which allows determination of the mass and velocity of material ejected from free surfaces during shock loading. The technique has been applied to a study of mass ejection occurring naturally from shocked surfaces of two aluminium alloys and from lead. These results show that the total ejected mass ranges from a few ..mu..g/cm/sup 2/ in the aluminum alloys studied to a few mg/cm/sup 2/ in lead, for shock pressures ranging from about 10 to 50 GPa (100 to 500 kbar). Surface defects, such as pits and scratches, are thought to strongly influence mass ejection in aluminum; whereas in lead, localized shock-induced melting and vaporization are thought to be the dominant mechanisms at the higher shock pressures. Experimental results are also presented for aluminum surfaces which contain artificial defects in the form of wedge-shaped cavities. These results show that the maximum ejecta velocities of approximately two to four times the free surface velocity which are observed in these experiments can be correlated with predictions of steady jetting theory.

  5. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG

    2009-01-01

    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  6. Boric Acid as an Accelerator of Cerium Surface Treatment on Aluminum

    Directory of Open Access Journals (Sweden)

    K. Cruz-Hernández

    2014-01-01

    Full Text Available Aluminum pieces are often used in various industrial processes like automotive and aerospace manufacturing, as well as in ornamental applications, so it is necessary to develop processes to protect these materials, processes that can be industrialized to protect the aluminum as well or better than chromate treatments. The purpose of this research is to evaluate boric acid as an accelerator by optimizing its concentration in cerium conversion coatings (CeCC with 10-minute immersion time with a concentration of 0.1 g L−1 over aluminum to protect it. The evaluation will be carried out by measuring anticorrosion properties with electrochemical techniques (polarization resistance, Rp, polarization curves, PC, and electrochemical impedance spectroscopy, EIS in NaCl 3.5% wt. aqueous solution and surface characterization with scanning electron microscopy (SEM.

  7. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  8. Enabling ultra high precision on hard steels using surface defect machining

    OpenAIRE

    2014-01-01

    This paper is an extension to an idea coined during the 13th EUSPEN Conference (P6.23) named "surface defect machining" (SDM). The objective of this work was to demonstrate how a conventional CNC turret lathe can be used to obtain ultra high precision machined surface finish on hard steels without recourse to a sophisticated ultra precision machine tool. An AISI 4340 hard steel (69 HRC) workpiece was machined using a CBN cutting tool with and without SDM. Post-machining measurements by a Form...

  9. Influence of Motion Errors of Feed Drive Systems on Machined Surface

    Science.gov (United States)

    Nishio, Kentaro; Sato, Ryuta; Shirase, Keiichi

    The purpose of this study is to clarify the relationship between the dynamic motion errors of feed drive systems and the machined surfaces. To achieve this purpose, a simulation method for a machined surface by peripheral milling is proposed. In the proposed method, the motion errors of a feed drive system and the machined surface are simulated based on tool diameter, number of flutes, spindle speed, and feed speed. In addition, to clarify the correctness of the proposed method, actual cutting tests are carried out. In the cutting tests, the control parameters of the machine tool are intentionally changed to obtain the motion errors. As the results of the cutting tests, it is confirmed that the influence of the motion errors of feed drive systems on machined surface can be predicted by the proposed simulation method. The relationship between the motion errors and machined surfaces is also examined based on the simulations.

  10. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  11. Study on mild and severe wear of 7075 aluminum alloys by high-speed wire electrical discharge machining

    Science.gov (United States)

    Xu, Jinkai; Qiu, Rongxian; Xia, Kui; Wang, Zhichao; Xu, Lining; Yu, Huadong

    2017-01-01

    The recast and the carbon layers were fabricated on 7075Al alloys surface by the high-speed wire electrical discharge machining (HS-WEDM) technologyunder various working parameters. The mechanical properties and friction behaviors of the layers were investigated by UMT. 7075 Al alloys were used to do dry sliding wear tests on a pin-ondisk wear tester at room temperature under various contact pressures. 7075 Al alloys had almost the same wear regularity as a function of sliding velocity and rated frequency. The hardness of recast layer was improved. And this method can enhance durability of 7075 Al alloy effectively.The transition to severe wear occurred at a higher load (12N) for asmachined samples, compared with 7075 matrix (9N), the as-machined samples exhibited lower wear rates within the tested loading range.

  12. Surface roughness analysis after machining of direct laser deposited tungsten carbide

    Science.gov (United States)

    Wojciechowski, S.; Twardowski, P.; Chwalczuk, T.

    2014-03-01

    In this paper, an experimental surface roughness analysis in machining of tungsten carbide is presented. The tungsten carbide was received using direct laser deposition technology (DLD). Experiments carried out included milling of tungsten carbide samples using monolithic torus cubic boron nitride (CBN) tool and grinding with the diamond cup wheel. The effect of machining method on the generated surface topography was analysed. The 3D surface topographies were measured using optical surface profiler. The research revealed, that surface roughness generated after the machining of tungsten carbide is affected by feed per tooth (fz) value related to kinematic-geometric projection only in a minor extent. The main factor affecting machined surface roughness is the occurrence of micro grooves and protuberances on the machined surface, as well as other phenomena connected, inter alia, with the mechanism for material removal.

  13. Surface quality analysis of die steels in powder-mixed electrical discharge machining using titan powder in fine machining

    Directory of Open Access Journals (Sweden)

    Banh Tien Long

    2016-06-01

    Full Text Available Improving the quality of surface molds after electrical discharge machining is still being considered by many researchers. Powder-mixed dielectric in electrical discharge machining showed that it is one of the processing methods with high efficiency. This article reports on the results of surface quality of mold steels after powder-mixed electrical discharge machining using titanium powder in fine machining. The process parameters such as electrode material, workpiece material, electrode polarity, pulse on-time, pulse off-time, current, and titanium powder concentration were considered in the research. These materials are most commonly used with die-sinking electrical discharge machining in the manufacture of molds and has been selected as the subject of research: workpiece materials were SKD61, SKT4, and SKD11 mold steels, and electrode materials were copper and graphite. Taguchi’s method is used to design experiments. The influence of the parameters on surface roughness was evaluated through the average value and ratio (S/N. Results showed that the parameters such as electrical current, electrode material, pulse on-time, electrode polarity, and interaction between the electrode materials with concentration powder mostly influence surface roughness and surface roughness at optimal parameters SRopt = 1.73 ± 0.39 µm. Analysis of the surface layer after powder-mixed electrical discharge machining using titanium powder in optimal conditions has shown that the white layer with more uniform thickness and increased hardness (≈861.0 HV, and amount and size of microscopic cracks, is reduced. This significantly leads to the increase in the quality of the surface layer.

  14. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Directory of Open Access Journals (Sweden)

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  15. Iss observations of aluminum surfaces under hydrogen ion bombardment

    Science.gov (United States)

    Sagara, A.; Kamada, K.; Higashida, Y.

    1984-12-01

    The shadowing effect of ISS was applied to observe the surface behavior of H atoms implanted with 500 eV/atom on a high-purity A1 sample. This study confirmed that this technique is powerful to observe the retention kinetics of H atoms especially on the topmost material surface with simultaneous analysis for surface contaminants such as oxygen during irradiation with hydrogen ions. The result obtained from the initially cleaned surface showed a remarkable increase in the H retention with increasing fluence of H2+ up to about 1018 H/cm2 at room temperature, depending on the fluence of predamage given by He+ ions, but showed no increase in the retention at the temperatures above 100 ° C. Therefore, because Al is a metal well known to be passive for chemisorption of H2 molecules and H atoms, it was concluded that the observed H retention originates from the traps produced by radiation damage. The activation energy for thermal desorption of the trapped H atoms was estimated to be 1.1±0.4 eV by ISS measurements. The oxygen-covered surface showed a rapid increase in the retention at fluence of less than 1017 H/cm2.

  16. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    Science.gov (United States)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  17. Influence of Paper Surface Compounds on Corrosion of Printing Machines

    Directory of Open Access Journals (Sweden)

    Kresimir Dragcevic

    2013-01-01

    Full Text Available This paper deals with investigation of corrosion processes on construction steel in contact with aqueous solutions of surface coatings of high gloss and standard uncoated papers for sheet-fed printing. During the period of four months, changes in the mass of steel specimens were measured (loss of material, as well as changes in pH values and conductivity of the examined solutions. Formation of corrosion products on the surface was identified by changes of spectrophotometric reemission in the visible portion of the steel spectrum and by FT-IR spectral recordings. In addition, the electrochemical potentiodynamic measurements were carried out with the direct current and the method of linear polarization and Tafel’s extrapolation, by which the corrosion parameters were determined: corrosion potential, corrosion current density, polarization resistance cathodic and anodic inclination of Tafel’s lines, as well as the corrosion rate. The results show that the dynamics of the corrosion in printing machines is directly influenced by the type of the paper used for printing. This investigation gave an insight into dynamics and mechanisms of corrosion under conditions close to those in printing production, thus facilitating better understanding of the entire process.

  18. Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2017-03-01

    Full Text Available Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening.

  19. Prediction and Optimization of Residual Stresses on Machined Surface and Sub-Surface in MQL Turning

    Science.gov (United States)

    Ji, Xia; Zou, Pan; Li, Beizhi; Rajora, Manik; Shao, Yamin; Liang, Steven Y.

    Residual stress in the machined surface and subsurface is affected by materials, machining conditions, and tool geometry and can affect the component life and service quality significantly. Empirical or numerical experiments are commonly used for determining residual stresses but these are very expensive. There has been an increase in the utilization of minimum quantity lubrication (MQL) in recent years in order to reduce the cost and tool/part handling efforts, while its effect on machined part residual stress, although important, has not been explored. This paper presents a hybrid neural network that is trained using Simulated Annealing (SA) and Levenberg-Marquardt Algorithm (LM) in order to predict the values of residual stresses in cutting and radial direction on the surface and within the work piece after the MQL face turning process. Once the ANN has successfully been trained, an optimization procedure, using Genetic Algorithm (GA), is applied in order to find the best cutting conditions in order to minimize the surface tensile residual stresses and maximize the compressive residual stresses within the work piece. The optimization results show that the usage of MQL decreases the surface tensile residual stresses and increases the compressive residual stresses within the work piece.

  20. The characteristics of machined surface controlled by multi tip arrayed tool and high speed spindle.

    Science.gov (United States)

    Kim, Yong Woo; Choi, Soo Chang; Park, Jeong Woo; Lee, Deug Woo

    2010-07-01

    In this study, we propose one of the ultra-precision machining methods that can be adapted brittle material as well as soft material by using multi arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because particles of grinding tools are irregular size and material can be fragile. Therefore we were able to design tool paths and machine controlled pattern on surface by multi arrayed diamond tips which has uniform size made in MEMS fabrication and high speed spindle of which maximum speed is about 300,000 rpm. We defined several parameters that can have effect on machining surface. Those are multi array of diamond tips (n * n), speed of the air spindle, and feeding rate. Surface roughness and surface texture can be controlled by those parameters for micro machining.

  1. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    Science.gov (United States)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer

  2. Investigations of Aluminum-Doped Self-Healing Zircaloy Surfaces in Context of Accident-Tolerant Fuel Cladding Research

    Science.gov (United States)

    Carr, James; Vasudevamurthy, Gokul; Snead, Lance; Hinderliter, Brian; Massey, Caleb

    2016-06-01

    We present here some important results investigating aluminum as an effective surface dopant for increased oxidation resistance of zircaloy nuclear fuel cladding. At first, the transport behavior of aluminum into reactor grade zircaloy was studied using simple diffusion couples at temperatures greater than 770 K. The experiments revealed the formation of tens of microns thick graded Zr-Al layers. The activation energy of aluminum in zircaloy was found to be ~175 kJ/mol (~1.8 eV), indicating the high mobility of aluminum in zircaloy. Subsequently, aluminum sputter-coated zircaloy coupons were heat-treated to achieve surface doping and form compositionally graded layers. These coupons were then tested in steam environments at 1073 and 1273 K. The microstructure of the as-fabricated and steam-corroded specimens was compared to those of pure zircaloy control specimens. Analysis of data revealed that aluminum effectively competed with zircaloy for oxygen up until 1073 K blocking oxygen penetration, with no traces of large scale spalling, indicating mechanically stable interfaces and surfaces. At the highest steam test temperatures, aluminum was observed to segregate from the Zr-Al alloy under layers and migrate to the surface forming discrete clusters. Although this is perceived as an extremely desirable phenomenon, in the current experiments, oxygen was observed to penetrate into the zirconium-rich under layers, which could be attributed to formation of surface defects such as cracks in the surface alumina layers.

  3. Influence of Surface Roughness on Morphology of Aluminum Alloy After Pulsed-Laser Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of); Shin, Wan Soon [Agency for Defense Development, Daejeon (Korea, Republic of)

    2011-09-15

    The objective of this study is to investigate the influence of surface roughness on the morphology of aluminum 6061- T6 alloy after irradiation with a Nd:YAG pulsed laser. The test specimen was prepared by a polishing process using a diamond paste (1 {mu}m) and emery polishing papers (100, 220, 600, 2400) to obtain different initial surface roughness. After irradiation with ten pulsed-laser shots, the surface morphology was examined by using scanning electron microscopy (SEM), optical microscopy (OM), and atomic force microscopy (AFM). The diameter of the melted zone increased with the surface roughness because the multiple reflections and absorption of the laser beam occurred on the surface because of the surface roughness, so that the absorptance of the laser beam changed. This result was verified using the relative absorptance calculated from the diameter of the melted zone with the surface roughness and the diameter increased with the average surface roughness.

  4. Vibration characteristics of aluminum surface subjected to ultrasonic waves and their effect on wetting behavior of solder droplets.

    Science.gov (United States)

    Ma, Lin; Xu, Zhiwu; Zheng, Kun; Yan, Jiuchun; Yang, Shiqin

    2014-03-01

    The vibration characteristics of an aluminum surface subjected to ultrasonic waves were investigated with a combination of numerical simulation and experimental testing. The wetting behavior of solder droplets on the vibrating aluminum surface was also examined. The results show that the vibration pattern of the aluminum surface is inhomogeneous. The amplitude of the aluminum surface exceeds the excitation amplitude in some zones, while the amplitude decreases nearly to zero in other zones. The distribution of the zero-amplitude zones is much less dependent on the strength of the vibration than on the location of the vibration source. The surface of the liquid solder vibrates at an ultrasonic frequency that is higher than the vibration source, and the amplitude of the liquid solder is almost twice that of the aluminum surface. The vibration of the surface of the base metal (liquid solder) correlates with the oxide film removal effect. Significant removal of the oxide film can be achieved within 2s when the amplitude of the aluminum surface is higher than 5.4 μm or when the amplitude of the liquid solder surface is higher than 10.2 μm.

  5. Thermal oxidation of the surface of binary aluminum alloys with rare-earth metals

    Science.gov (United States)

    Akashev, L. A.; Popov, N. A.; Kuznetsov, M. V.; Shevchenko, V. G.

    2015-05-01

    The kinetics of oxidation of the surface of Al alloys with 1-2.5 at % rare-earth metals (REMs) at 400-500°C in air was studied by ellipsometry and X-ray photoelectron spectroscopy (XPS). The addition (1-2.5 at % REM) of all rare-earth metals to aluminum was shown to increase the thickness of the oxide layer. The addition of surfactant and chemically active REMs (Yb, Sm, La, and Ce) increased the rate of oxidation of solid aluminum most effectively. The oxidation can be accelerated by the polymorphic transformations of the individual REM oxides in the film. The surface activity of Sm with respect to solid Al was confirmed by XRS.

  6. Binary collision model for neon Auger spectra from neon ion bombardment of the aluminum surface

    Science.gov (United States)

    Pepper, S. V.

    1986-01-01

    A model is developed to account for the angle-resolved Auger spectra from neon ion bombardment of the aluminum surface recently obtained by Pepper and Aron. The neon is assumed to be excited in a single asymmetric neon-aluminum-collision and scattered back into the vacuum where it emits an Auger electron. The velocity of the Auger electron acquires a Doppler shift by virtue of the emission from a moving source. The dependence of the Auger peak shape and energy on the incident ion energy, angle of incidence and on the angle of Auger electron emission with respect to the surface is presented. Satisfactory agreement with the angle resolved experimental observations is obtained. The dependence of the angle-integrated Auger yield on the incident ion energy and angle of incidence is also obtained and shown to be in satisfactory agreement with available experimental evidence.

  7. Effect of machining parameters on surface finish of Inconel 718 in end milling

    Directory of Open Access Journals (Sweden)

    Sarkar Bapi

    2017-01-01

    Full Text Available Surface finish is an important criteria in machining process and selection of proper machining parameters is important to obtain good surface finish. In the present work effects of the machining parameters in end milling of Inconel 718 were investigated. Central composite design was used to design the total number of experiments. A Mathematical model for surface roughness has been developed using response surface methodology. In this study, the influence of cutting parameters such as cutting speed, feed rate and depth of cut on surface roughness was analyzed. The study includes individual effect of cutting parameters on surface roughness as well as their interaction. The analysis of variance (ANOVA was employed to find the validity of the developed model. The results show that depth of cut mostly affected the surface roughness. It is also observed that surface roughness values are comparable in both dry and wet machining conditions.

  8. The influence of surface topography on the forming friction of automotive aluminum sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Pamela Ann [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1998-05-01

    Interest in utilizing aluminum alloys in automobiles has increased in recent years as a result of the desire to lower automobile weight and, consequently, increase fuel economy. While aluminum alloy use in cast parts has increased, outer body panel applications are still being investigated. The industry is interested in improving the formability of these sheet alloys by a combination of alloy design and processing. A different avenue of improving the formability of these alloys may be through patterning of the sheet surface. Surface patterns hold the lubricant during the forming process, with a resulting decrease in the sheet-die surface contact. While it has been speculated that an optimum surface pattern would consist of discrete cavities, detailed investigation into the reduction of forming friction by utilizing discrete patterns is lacking. A series of discrete patterns were investigated to determine the dependence of the forming friction of automotive aluminum alloys on pattern lubricant carrying capacity and on material strength. Automotive aluminum alloys used in outer body panel applications were rolled on experimental rolls that had been prepared with a variety of discrete patterns. All patterns for each alloy were characterized before and after testing both optically and, to determine pattern lubricant capacity, using three dimensional laser profilometry. A draw bead simulation (DBS) friction tester was designed and fabricated to determine the forming friction of the patterned sheets. Tensile testing and frictionless DBS testing were performed to ascertain the material properties of each sheet. The most striking result of this work was the inversely linear dependence of forming friction on the lubricant carrying capacity of the discrete patterns.

  9. Wetting of the (0001) α-Al2O3 Sapphire Surface by Molten Aluminum: Effect of Surface Roughness

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2010-03-01

    The wetting of molten aluminum on the “ c”-plane (0001) of single-crystal α-Al2O3 (sapphire) was studied by the sessile drop technique from 800 °C (1073 K) to 1200 °C (1473 K). Systematically increasing the (0001) surface roughness by SiC abrasion increased the wetting contact angle, resulting in reduced wetting. The surface roughness factor R originally defined by Wenzel, was determined as a function of the abrasion, temperature, and time. The wetting decreases as the surface roughness increases. Rough surfaces also create time and temperature effects on wetting, changing those for a smoothly polished surface. The existence of a high-temperature surface structural transition for (0001) of α-Al2O3, which has been previously suggested, was confirmed. Increased roughness R accents the effect of the surface structural transition, increasing the wetting contact angle changes during the transition.

  10. One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation

    Science.gov (United States)

    Jagdheesh, R.; García-Ballesteros, J. J.; Ocaña, J. L.

    2016-06-01

    Inspired by the micro and nano structures of biological surface such as lotus leaf, rice leaves, etc. a functional near superhydrophobic surface of pure aluminum has been fabricated using one-step nanosecond laser processing. Thin aluminum sheets are micro-patterned with ultraviolet laser pulses to create near superhydrophobic surface in one-step direct laser writing technique. The impact of number of pulses/microhole with respect to the geometry and static contact angle measurements has been investigated. The microstructure shows the formation of blind microholes along with the micro-wall by laser processing, which improves the composite interface between the three phases such as water, air and solid, thus enhance the wetting property of the surface. The geometrical changes are supported by the chemical changes induced on the surface for improving the degree of hydrophobicity. Laser processed microholes exhibited near superhydrophobic surface with SCA measurement of 148 ± 3°. The static contact angle values are very consistent for repeated measurement at same area and across the laser patterned surface.

  11. Dioxygen molecule adsorption and oxygen atom diffusion on clean and defective aluminum(111) surface using first principles calculations

    Science.gov (United States)

    Guiltat, Mathilde; Brut, Marie; Vizzini, Sébastien; Hémeryck, Anne

    2017-03-01

    First principles calculations are conducted to investigate kinetic behavior of oxygen species at the surface of clean and defective Al(111) substrate. Oxygen island, aluminum vacancy, aluminum sub-vacancy, aluminum ad-atom and aluminum terraces defects are addressed. Adsorption of oxygen molecule is first performed on all these systems resulting in dissociated oxygen atoms in main cases. The obtained adsorbed configurations are then picked to study the behavior of atomic oxygen specie and get a detailed understanding on the effect of the local environment on the ability of the oxygen atom to diffuse on the surface. We pointed out that local environment impacts energetics of oxygen atom diffusion. Close packed oxygen island, sub-vacancy and ad-atoms favor oxygen atom stability and decrease mobility of oxygen atom on the surface, to be seen as surface area for further nucleation of oxygen island.

  12. Surface characteristics of aluminum 6061 T6 subjected to Nd:YAG pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young; Shin, Wan Soon [Hanyang University, Seoul (Korea, Republic of)

    2012-07-15

    The objective of this study was to investigate the surface characteristics of an aluminum 6061 T6 alloy subjected to Nd:YAG pulsedlaser irradiation. The test specimens were prepared by a mechanical polishing process using diamond paste and emery polishing paper to obtain different levels of initial surface roughness. After ten pulsed laser shots, the surface morphology was observed via optical microscopy (OM) and scanning electron microscopy (SEM). Nano indentation hardness testing was also conducted on the irradiated surface. The diameter of the melted zone increased with surface roughness because of the multiple reflection and absorption of the laser beam. The relative absorbance was measured as a function of the diameter of the melted zone with varied surface roughness.

  13. Fractal Characteristics and Fractal Dimension Measurement on Broken Surfaces of Aluminum Electric Porcelain

    Institute of Scientific and Technical Information of China (English)

    YANG Zhiyuan; ZHOU Anning

    2005-01-01

    The characteristics of broken surfaces were researched by a scanning electron microscope (SEM) and a reflection microscope, and the fractal dimensions of broken surfaces were measured by the Slit Island method. The experimental results indicate that the broken surface of aluminum electric porcelain is a fractal body in statistics, and the fractal dimensions of broken surfaces are different with the different amplification multiple value.In all of measured fractal dimensions,both of values measured in 100× under reflection microscope and in 500× under SEM are maximum, whereas the values measured in 63× under reflection microscope and in 2000× under SEM are obviously minimum. The fractal dimensions of broken surfaces are also affected by the degrees of gray comparison and the kinds of measuring methods. The relationships between the fractal dimensions of broken surfaces and porcelain bend strengths are that they are in positive correlation on the low multiples and in negative correlation on the high multiples.

  14. Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tao, E-mail: liutao@shmtu.edu.c [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China); Dong Lihua; Liu Tong; Yin Yansheng [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China)

    2010-07-15

    Electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy were carried out to determine the effect of super-hydrophobic surfaces on the marine bacterium Vibrio natriegens (V. natriegens) adhesion. Four different samples were prepared in order to investigate the anti-biocorrosion mechanism of super-hydrophobic surfaces. Potentiodynamic polarization suggested that the V. natriegens attached on the surface mainly enhanced the reaction kinetics of the anodic reaction and accelerated the dissolution of aluminum. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that neither anodization nor chemical modification could decrease the bacterial adhesion and corrosion rate individually. V. natriegens showed only weak attachment to the super-hydrophobic surface, and the biocorrosion mechanism was closely associated with surface energy and surface topography.

  15. ANALYSIS OF SURFACE DEFECTS OF ALUMINUM AND ITS ALLOYS WITH A SCANNING KELVIN PROBE

    Directory of Open Access Journals (Sweden)

    A. K. Tyavlovsky

    2017-01-01

    Full Text Available Currently, the use of probe electrometry in non-destructive testing is constrained by the complexity of measurement results interpretation. An output signal of electrometric probe depends on a number of physical and chemical parameters of surface including chemical composition variations, stresses, dislocations, crystallographic orientation of a surface, etc. The study aims to the use of probe electrometry methods for nondestructive testing and analysis of precision metal surfaces’ defects after different treatment or processing.Control of surface defects of aluminum and its alloys was performed with a scanning Kelvin probe technique. The results of scanning were plotted in a form of contact potential difference (CPD distribution map. Additionally, a histogram of CPD values distribution and statistical characteristics including the expectation of CPD mean value and histogram half-width were calculated either for the whole distribution or for each individual mode in a case of multimodal distribution.The spatial CPD distribution of A99 aluminum and AMG-2 alloy surfaces after electrochemical polishing and diamond finishing was studied. An additional study was held for AMG-2 surface after the formation of 30 microns thick specific nanostructured alumina oxide surface layer. Higher quality surfaces have characterized as more homogeneous distribution of the physical properties (at half-width distribution histogram. Surfaces with higher mechanical strength and overall better mechanical properties found to have lower CPD values that correspond to higher electron work function and surface energy. The presence of the second mode in the CPD distribution histogram indicates the significant proportion of defect areas on the sample surface.Analysis of visualized CPD distribution maps using defined criteria allows detecting and characterizing such defects as residual stress areas, areas with reduced microhardness, surface contamination spots, corrosion

  16. Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface

    Science.gov (United States)

    Zuo, Zhiping; Liao, Ruijin; Guo, Chao; Yuan, Yuan; Zhao, Xuetong; Zhuang, Aoyun; Zhang, YiYi

    2015-03-01

    Aluminum is one of the most widely used metals in transmission lines. Accumulation of ice on aluminum may cause serious consequences such as tower collapse and power failure. Here we develop a method to fabricate a coral-like superhydrophobic surface to improve its anti-icing performance via chemical etching and hot-water treatment. The as-prepared surface exhibited superhydrophobicity with a contact angle (CA) of 164.8 ± 1.1° and the sliding angle smaller than 1°. The static and dynamic anti-icing behaviors of the superhydrophobic surface in different conditions were systematically investigated using a self-made device and artificial climate laboratory. Results show that the coral-like superhydrophobic structure displayed excellent anti-icing property. The water droplet remained unfrozen on the as-prepared surface at -6 °C for over 110 min. 71% of the surface was free of ice when exposed in "glaze ice" for 30 min. This investigation proposed a new way to design an anti-icing surface which may have potential future applications in transmission lines against ice accumulation.

  17. The study of corrosion behavior of laser induced surface improvement (LISI) on steel and aluminum substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, N.; Vasanth, K.L.

    1999-07-01

    Laser Induced Surface Improvement (LISI) is a new process developed by University of Tennessee Space Institute (UTSI) which employs lasers to melt precursor coatings and portions of the substrate to form a durable corrosion resistant surface. The LISI surface can be tailored to yield a composition that provides minimum impact to the base substrate material while giving good corrosion characteristics. The LISI surface treatment of tungsten carbide was applied on 7075 and 6061 aluminum alloys. The LISI treatment uses a chromium/nickel mixture and a stainless steel type mixture (pseudo stainless steel of 18 wt% chromium, 8 wt% nickel and a trace amount of manganese and silicon) on steel alloy 1010. The corrosion characteristics of these samples were determined in 3.5 wt% NaCl aqueous solution using linear polarization resistance technique. Potentiodynamic scans were run to determine the corrosion rates and optical microscopy was used to examine pitting characteristics of the different surface coatings. The effectiveness of the LISI modified surfaces to protect both steel and aluminum substrates is discussed.

  18. Study of Influencing Factors and the Mechanism of Preparing Triazinedithiol Polymeric Nanofilms on Aluminum Surfaces

    Directory of Open Access Journals (Sweden)

    Yanni Li

    2010-11-01

    Full Text Available Triazinedithiol polymeric nanofilm was prepared on a pure aluminum surface by electrochemical polymerization of AF17N. The mechanism of the process was proposed and electrochemical polymerization parameters were investigated. The triazinedithiol polymeric nanofilm had notable lubricity, high dielectric property and superhydrophobic property due to the allyl and fluoro alkyl groups in the AF17N monomer. The chemical structure of poly (6-(N-allyl-1,1,2,2-tetrahydroperfluorodecylamino-1,3,5-triazine-2,4-dithiol monosodium nanofilm (PAF17 was investigated by analysis of FT-IR spectra and X-ray photoelectron spectroscopy (XPS. The optimal conditions for the preparation process were based on the data of film weight and thickness. The optimal parameters of monomer concentration, electropolymerization time and temperature were 5 mM, 6 min and 15 °C, respectively. The electropolymerization mechanism was a radical polymerization reaction. It is expected that this technique will be applied in industrial fields for aluminum and aluminum alloy to achieve functional surfaces.

  19. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    Science.gov (United States)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  20. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    Science.gov (United States)

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting.

  1. Surface topographic characterization for polyamide composite injection molds made of aluminum and copper alloys.

    Science.gov (United States)

    Pereira, A; Hernández, P; Martinez, J; Pérez, J A; Mathia, T G

    2014-01-01

    In order to ensure flexibility and rapid new product development, the mold industry made use of soft materials for cavity inserts in injection molds. However, materials of this kind are prone to wear. This article analyzes the topographic characterization of the surface and wear processes in injection molds cavities. Two materials have been used to produce the cavities: aluminum alloy EN AW‐6082 T4 and copper alloy Cu Zn39 Pb3. The surface topography was measured with the use of optical interferometry profiling technology; roughness and surface parameters were determined according to ISO 4287, ISO 25178, and EUR 15178N. In order to complete this research, an experimental part with different thicknesses and shapes was designed, and cavity inserts of aluminum and copper were made. Polyamide PA6, with 30% fiberglass reinforcement, was employed in the experimental procedure. Measurements of cavity mold surfaces were performed after 9,200 cycles on each mold and at different locations on the mold. The surface measurement was made with a white light vertical scanning interferometry, also known as coherence scanning interferometry (ISO DIS 25178‐604). The results are analyzed and differences between the two types of cavity inserts materials are discussed.

  2. Development of a copy-peeling machine for machining the surface of hot rolled square billets

    Science.gov (United States)

    Koch, R. E.; Fangmeier, R.; Seppelt, B.

    1986-01-01

    A copy-peeling system to replace the high-pressure grinding method, especially for stainless steel qualities, was developed. The copy-peeling process for square billets was accomplished on an existing planing machine with special test attachments as well as on a specially developed copy-peeling machine. The attainable material removals and the tool life reached during the tests with stainless steel are not sufficient to offer an economic and technically advanced alternative to high-pressure grinding. The advantages of copy peeling with respect to safety and health of the operational personnel are obvious. However, it cannot be expected that this process will be applied extensively.

  3. Multi-Parameter Analysis of Surface Finish in Electro-Discharge Machining of Tool Steels

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2006-10-01

    Full Text Available The paper presents a multi- parameter analysis of surface finish imparted to tool-steel plates by electro-discharge machining (EDM is presented. The interrelationship between surface texture parameters and process parameters is emphasized. An increased number of parameters is studied including amplitude, spacing, hybrid and fractal parameters,, as well. The correlation of these parameters with the machining conditions is investigated. Observed characteristics become more pronounced, when intensifying machining conditions. Close correlation exists between certain surface finish parameters and EDM input variables and single and multiple statistical regression models are developed.

  4. Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion

    NARCIS (Netherlands)

    Spekken, Mark; Bruin, De Sytze; Molin, José Paulo; Sparovek, Gerd

    2016-01-01

    Soil erosion in arable fields is intensified on irregular surfaces. Although machine and crop-row patterns following terrain contours reduce runoff and increase water infiltration, these contours are almost never parallel while machine operations always are. In this work, a method is presented to

  5. Current Situation and Development Trend of Saw Machine for Wrought Aluminum and Aluminum Alloy Ingot/Billet%变形铝及铝合金铸锭锯切机现状及发展趋势

    Institute of Scientific and Technical Information of China (English)

    何向问

    2016-01-01

    通过对变形铝及铝加工行业锯切机使用现状的描述,介绍了几种常见的锯切形式和锯头配置方式,并通过对每种特点的分析,给出各自的适用场合;最后指出在工业4.0大背景下,自动化、智能化、系统化是其发展的趋势。%Based on the review of application of saw machine in wrought aluminum and aluminum processing industry,the paper presented some common types of saws and configuration of saw heads,it accordingly described applicable situations through the characteristic analysis;it pointed out that automation, intel ectualization and systematization should be the development trend for saw machine in the context of Industry 4.0.

  6. Optimization of Surface Finish in Turning Operation by Considering the Machine Tool Vibration using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Muhammad Munawar

    2012-01-01

    Full Text Available Optimization of surface roughness has been one of the primary objectives in most of the machining operations. Poor control on the desired surface roughness generates non conforming parts and results into increase in cost and loss of productivity due to rework or scrap. Surface roughness value is a result of several process variables among which machine tool condition is one of the significant variables. In this study, experimentation was carried out to investigate the effect of machine tool condition on surface roughness. Variable used to represent machine tool\\'s condition was vibration amplitude. Input parameters used, besides vibration amplitude, were feed rate and insert nose radius. Cutting speed and depth of cut were kept constant. Based on Taguchi orthogonal array, a series of experimentation was designed and performed on AISI 1040 carbon steel bar at default and induced machine tool\\'s vibration amplitudes. ANOVA (Analysis of Variance, revealed that vibration amplitude and feed rate had moderate effect on the surface roughness and insert nose radius had the highest significant effect on the surface roughness. It was also found that a machine tool with low vibration amplitude produced better surface roughness. Insert with larger nose radius produced better surface roughness at low feed rate.

  7. Near-Surface Microstructure on Twin-Roll Cast 8906 Aluminum Alloy

    Science.gov (United States)

    Wang, Junjie; Zhou, Xiaorong; Thompson, George E.; Hunter, John A.; Yuan, Yudie

    2015-06-01

    The microstructure of the near-surface region of twin-roll cast foil stock 8906 AlFeSi alloy has been investigated. It was revealed that a near-surface layer with microstructure differing from that of the underlying bulk alloy was generated due to severe surface shear strain during twin-roll casting. Scanning and transmission electron microscopy showed that the near-surface layer consists of nano-sized grains with diameters varying in the range of 50 to 600 nm. Energy dispersive X-ray spectroscopy revealed that grain boundaries within the near-surface layer were decorated by aluminum oxide particles and carbon-containing lubricant inclusions. Preferential precipitation of a high population density of cubic α-AlFeSi dispersoids, of 30 to 150 nm diameter, was observed within the near-surface layer. The near-surface layer was associated with shingles on the twin-roll cast alloy surface and the maximum layer thickness of approximately 6 µm was observed at the shingles. Other areas of the surface were either free of the near-surface layer or had a thinner near-surface layer.

  8. Experimental investigation and multi-objective optimization of wire electrical discharge machining (WEDM) of 5083 aluminum alloy%电火花线切割5083 Al合金的实验研究和参数优化

    Institute of Scientific and Technical Information of China (English)

    G. SELVAKUMAR; G. SORNALATHA; S. SARKAR; S. MITRA

    2014-01-01

    通过实验分析,优化电火花线切割5083 Al合金的工艺参数。基于Taguchi优化法,将脉宽、脉间、峰电流和线张力作为输入参数进行了系列实验。将表面粗糙度和切割速度作为响应,基于信噪比,测定了输入参数对响应的影响。通过Taguchi优化方法,得到了最大切割速度和最小表面粗糙度的最佳加工参数。再采用附加的模型预测可能的加工组合。最后,通过使用Pareto优化法,得到一个简明的工艺参数表。%The experimental analysis presented aims at the selection of the most optimal machining parameter combination for wire electrical discharge machining (WEDM) of 5083 aluminum alloy. Based on the Taguchi experimental design (L9 orthogonal array) method, a series of experiments were performed by considering pulse-on time, pulse-off time, peak current and wire tension as input parameters. The surface roughness and cutting speed were considered responses. Based on the signal-to-noise (S/N) ratio, the influence of the input parameters on the responses was determined. The optimal machining parameters setting for the maximum cutting speed and minimum surface roughness were found using Taguchi methodology. Then, additive model was employed for prediction of all (34) possible machining combinations. Finally, a handy technology table has been reported using Pareto optimality approach.

  9. Laser irradiation effects on thin aluminum plates subjected to surface flow

    Science.gov (United States)

    Jiang, Houman; Zhao, Guomin; Chen, Minsun; Peng, Xin

    2016-10-01

    The irradiation effects of LD laser on thin aluminum alloy plates are studied in experiments characterized by relatively large laser spot and the presence of 0.3Ma surface airflow. A high speed profilometer is used to record the profile change along a vertical line in the rear surface of the target, and the history of the displacement along the direction of thickness of the central point at the rear surface is obtained. The results are compared with those without airflow and those by C. D. Boley. We think that it is the temperature rise difference along the direction of thickness instead of the pressure difference caused by the airflow that makes the thin target bulge into the incoming beam, no matter whether the airflow is blown or not, and that only when the thin aluminum target is heated thus softened enough by the laser irradiation, can the aerodynamic force by the surface airflow cause non-ignorable localized plastic deformation and result a burn-through without melting in the target. However, though the target isn't softened enough in terms of the pressure difference, it might have experienced notable deformation as it is heated from room temperature to several hundred degree centigrade.

  10. A molecular beacon biosensor based on the nanostructured aluminum oxide surface.

    Science.gov (United States)

    Che, Xiangchen; He, Yuan; Yin, Haocheng; Que, Long

    2015-10-15

    A new class of molecular beacon biosensors based on the nanostructured aluminum oxide or anodic aluminum oxide (AAO) surface is reported. In this type of sensor, the AAO surface is used to enhance the fluorescent signals of the fluorophore-labeled hairpin DNA. When a target DNA with a complementary sequence to that of the hairpin DNA is applied on the sensor, the fluorophores are forced to move away from the AAO surface due to the hybridization between the hairpin DNA and the target DNA, resulting in the significant decrease of the fluorescent signals. The observed signal reduction is sufficient to achieve a demonstrated detection limit of 10nM, which could be further improved by optimizing the AAO surface. The control experiments have also demonstrated that the bioassay used in the experiments has excellent specificity and selectivity, indicating the great promise of this type of sensor for diagnostic applications. Since the arrayed AAO micropatterns can be fabricated on a single chip in a cost-effective manner, the arrayed sensors could provide an ideal technical platform for studying fundamental biological process and monitoring disease biomarkers.

  11. Laser surface infiltration of tungsten-carbide in steel and aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dahotre, N.B.; Mukherjee, K. (Michigan State Univ., East Lansing (USA))

    It has been demonstrated that surface modification in metals and alloys can be achieved by laser melting in conjunction with injection of particulate alloying elements in the heated zone. In our current experiments the authors have successfully implanted tungsten-carbide particles on the surface of several grades of carbon-steels as well as on the surface of a structural aluminum alloy. In both cases a significant increase in microhardness has been detected. Hardness profile from the interaction zone to the heat affected zone (HAZ) has been determined. The microstructural features of both the implanted zone and HAZ also have been determined. Effect of laser input energy, nature of tungsten-carbide particle size, size distribution and method of powder injection on the hardness profile have been investigated. Some preliminary examination of surface wear of such implanted material is also conducted. These results are discussed in detail.

  12. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    Science.gov (United States)

    Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.

    2012-07-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  13. Redesigned Surface Based Machining Strategy and Method in Peripheral Milling of Thin-walled Parts

    Institute of Scientific and Technical Information of China (English)

    JIA Zhenyuan; GUO Qiang; SUN Yuwen; GUO Dongming

    2010-01-01

    Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.

  14. Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials.

    Science.gov (United States)

    Zhang, Qi; Qu, Da-Hui

    2016-06-17

    Artificial molecular machines have received significant attention from chemists because of their unique ability to mimic the behaviors of biological systems. Artificial molecular machines can be easily modified with functional groups to construct new types of functional molecular switches. However, practical applications of artificial molecular machines are still challenging, because the working platform of artificial molecular machines is mostly in solution. Artificial molecular machine immobilized surfaces (AMMISs) are considered a promising platform to construct functional materials. Herein, we provide a minireview of some recent advances of functional AMMISs. The functions of AMMISs are highlighted and strategies for their construction are also discussed. Furthermore, a brief perspective of the development of artificial molecular machines towards functional materials is given.

  15. Assessment of airborne nanoparticles present in industry of aluminum surface treatments.

    Science.gov (United States)

    Santos, R J; Vieira, M T

    2017-03-01

    Conventional industrial processes are emission sources of unintended nanoparticles which are potentially harmful for the environment and human health. The aim of this study is to assess airborne nanoparticle release from aluminum surface treatment processes in various workplaces. Two direct reading instruments, a scanning mobility particle sizer to measure size distribution and a nanoparticle surface area monitoring to measure the surface area of particles deposited in the human lung, were employed to perform area monitoring. The lacquering paint was the process which released the highest concentration of particles from 10-487 nm (7.06 × 10(6) particles/cm(3)). The lacquering baths process emitted particles of the largest average size (76.9 nm) and the largest surface area deposited in the human lung (167.4 µm(2)/cm(3)). Conversely, the anodizing bath process generated particles of the smallest average size (44.3 nm) and the lowest human lung-deposited surface area (1.2 µm(2)/cm(3)). The total number of particles and the surface area can only be fairly correlated for environments in which the surface area presented higher values. The transmission electron microscopy analysis confirmed the presence of aluminum oxide particles of different dimensions near the LB and AB areas and polymeric-based particles near the LP areas. The findings of this study indicated that lacquering and anodizing surface treatments are indeed responsible for the emission of airborne nanoparticles. It also highlights the importance of control strategies as a means of protecting workers' health and environment.

  16. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  17. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Science.gov (United States)

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  18. Influence of Combined Hard and Fine Machining on the Surface Properties of Cemented Carbides

    Directory of Open Access Journals (Sweden)

    U. Engel

    2012-09-01

    Full Text Available As a result of recent developments in cold forging cemented carbides are increasingly used as tool materials. Due to their high hardness only electrical discharge machining (EDM and grinding are suitable for tool machining. The structure of tool surface has significant influence on dominating failure mechanisms wear and fatigue. For improvement of tribological conditions the surface is polished in a finale processing step. The result of hard and fine machining is a specific combination of coarse and fine structure which is determined by processing parameters. The different surface structures lead to a particular tool behavior in forming process. This paper aims to show the influence of combined hard and fine machining on the surface properties of cemented carbides.

  19. Application of atmospheric pressure plasma polishing method in machining of silicon ultra-smooth surfaces

    Institute of Scientific and Technical Information of China (English)

    Jufan ZHANG; Bo WANG; Shen DONG

    2008-01-01

    The modern optics industry demands rigorous surface quality with minimum defects, which presents challenges to optics machining technologies. There are always certain defects on the final surfaces of the compo-nents formed in conventional contacting machining proc-esses, such as micro-cracks, lattice disturbances, etc. It is especially serious for hard-brittle functional materials, such as crystals, glass and ceramics because of their special characteristics. To solve these problems, the atmospheric pressure plasma polishing (APPP) method is developed. It utilizes chemical reactions between reactive plasma and surface atoms to perform atom-scale material removal. Since the machining process is chemical in nature, APPP avoids the surface/subsurface defects mentioned above. As the key component, a capacitance coupled radio-fre-quency plasma torch is first introduced. In initial opera-tions, silicon wafers were machined as samples. Before applying operations, both the temperature distribution on the work-piece surface and the spatial gas diffusion in the machining process were studied qualitatively by finite element analysis. Then the following temperature measurement experiments demonstrate the formation of the temperature gradient on the wafer surface predicted by the theoretical analysis and indicated a peak temper-ature about 90℃ in the center. By using commercialized form talysurf, the machined surface was detected and the result shows regular removal profile that corresponds well to the flow field model. Moreover, the removal profile also indicates a 32 mm3/min removal rate. By using atomic force microscopy (AFM), the surface roughness was also measured and the result demonstrates an Ra 0.6 nm surface roughness. Then the element composition of the machined surface was detected and analyzed by X-ray photoelectron spectroscopy (XPS) technology. The results also demonstrate the occurrence of the anticipated main reactions. All the experiments have proved that

  20. Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art

    Science.gov (United States)

    Grzesik, Wit

    2016-10-01

    This survey overviews the functional performance of manufactured components produced by typical finishing machining operations in terms of their topographical characteristics. Surface topographies were characterized using both profile (2D) and 3D (areal) surface roughness parameters. The prediction of typical functional properties such as fatigue, friction, wear, bonding and corrosion is discussed based on appropriate surface roughness parameters. Some examples of real 3D surface topographies produced with desired functional characteristics are provided. This survey highlights technological possibilities of producing surfaces with enhanced functional properties by machining processes.

  1. Surface Modification Process by Electrical Discharge Machining with Ti Powder Green Compact Electrode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the wo...

  2. The Role of Friction Stir Processing (FSP Parameters on TiC Reinforced Surface Al7075-T651 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Felipe García-Vázquez

    Full Text Available Abstract: Aluminum alloys are very promising for structural applications in aerospace, military and transportation industries due to their light weight, high strength-to-weight ratio and excellent resistance to corrosion. In comparison to unreinforced aluminum alloys, aluminum/aluminum alloy matrix composites reinforced with ceramic phases exhibit higher strength and hardness, improved tribological characteristics. A novel surface modifying technique, friction stir processing (FSP, has been developed for fabrication of surface composite with an improved performance. The effect of FSP parameters such as number of passes, direction of each pass, sealed or unsealed groove on microstructure was investigated. In this work, nano-particles of TiC (2% in weight were added to aluminum alloy AA7075-T651 to produce a functional surface. Fixed parameters for this AA7075 alloy were used; rotation speed of 1000 rpm, travel speed of 300 mm/min and pin penetration of 2.8 mm. Optical microscopy (OM, scanning electron microscopy (SEM and atomic force microscopy (AFM were employed to study the microstructure of the fabricated surface composites. The results indicated that the selected FSP parameters influenced the area of surface composite, distribution of TiC particles and micro-hardness of the surface composites. Finally, in order to evaluate rate wear the pin on disk test was carried out.

  3. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-07

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  4. Characterization of an Effective Cleaning Procedure for Aluminum Alloys: Surface Enhanced Raman Spectroscopy and Zeta Potential Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, N J; Shen, T H; Esposito, A P; Tillotson, T M

    2004-06-02

    We have developed a cleaning procedure for aluminum alloys for effective minimization of surface-adsorbed sub-micron particles and non-volatile residue. The procedure consists of a phosphoric acid etch followed by an alkaline detergent wash. To better understand the mechanism whereby this procedure reduces surface contaminants, we characterized the aluminum surface as a function of cleaning step using Surface Enhanced Raman Spectroscopy (SERS). SERS indicates that phosphoric acid etching re-establishes a surface oxide of different characteristics, including deposition of phosphate and increased hydration, while the subsequent alkaline detergent wash appears to remove the phosphate and modify the new surface oxide, possibly leading to a more compact surface oxide. We also studied the zeta potential of <5 micron pure aluminum and aluminum alloy 6061-T6 particles to determine how surface electrostatics may be affected during the cleaning process. The particles show a decrease in the magnitude of their zeta potential in the presence of detergent, and this effect is most pronounced for particles that have been etched with phosphoric acid. This reduction in magnitude of the surface attractive potential is in agreement with our observation that the phosphoric acid etch followed by detergent wash results in a decrease in surface-adsorbed sub-micron particulates.

  5. Shaping of steel mold surface of lens array by electrical discharge machining with single rod electrode.

    Science.gov (United States)

    Takino, Hideo; Hosaka, Takahiro

    2014-11-20

    We propose a method for fabricating a lens array mold by electrical discharge machining (EDM). In this method, the tips of rods are machined individually to form a specific surface, and then a number of the machined rods are arranged to construct an electrode for EDM. The repetition of the EDM process using the electrode enables a number of lens elements to be produced on the mold surface. The effectiveness of our proposed method is demonstrated by shaping a lens array mold made of stainless steel with 16 spherical elements, in which the EDM process with a single rod electrode is repeatedly conducted.

  6. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    Science.gov (United States)

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  7. THE EFFECTS OF CUTTING METHODS OF SURFACE ROUGHNESS OF ALUMINUM POROUS MATERIALPRODUCED VIA VACUUM METHOD

    Directory of Open Access Journals (Sweden)

    Lütfiye DAHIL

    2015-04-01

    Full Text Available In this study, the surface roughness values of 3 aluminum porous materials, which were produced via vacuum method and have different porous structures, depending on the implemented cutting method after processing them were assessed comparatively. 3 different cutting methods have been implemented on each of samples, as Water Jet, Wire Erosion, and Band Saw. Setting the speed to 20 m/min, the methods were compared under same conditions. The smoothness measurement has been executed by taking the mean of 3 measurements in parallel with surface and 3 measurements in vertical to surface. By comparing the obtained results, it has been determined that the most advantageous method is the Wire Erosion method.

  8. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys

    Science.gov (United States)

    Xie, Degang; Li, Wen

    2011-11-01

    A novel two-step methodology is successfully developed to fabricate superhydrophobic surfaces of aluminum alloys. The essential procedure is that samples are first immersed and etched in a boiling aqueous solution of NaOH for 5 min without preprocessing, and then they are modified for 30 min in an ethanol solution of lauric acid, cheaper and more efficient than the fluorinated silane frequently adopted by other researchers. If the concentration of NaOH solution is larger than 5 g/L, the contact angle of the prepared surfaces will be larger than 150° with a negligible hysteresis. Such a fast, low-cost, and reliable method for superhydrophobic surfaces implies significant promising industrial applications.

  9. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  10. Oxidation-Induced Surface Roughening of Aluminum Nanoparticles Formed in an Ablation Plume

    Science.gov (United States)

    Förster, Georg Daniel; Girault, Marie; Menneveux, Jérôme; Lavisse, Luc; Jouvard, Jean-Marie; Marco de Lucas, Maria del Carmen; Potin, Valérie; Ouf, François-Xavier; Kerkar, Moussa; Le Garrec, Jean-Luc; Carvou, Erwann; Carles, Sophie; Rabilloud, Franck; Calvo, Florent; Yu, Jin; Mitchell, James Brian

    2015-12-01

    Nanoparticles formed within an ablation plume produced by the impact of a nanosecond laser pulse on the surface of an aluminum target have been directly measured using small-angle x-ray scattering. The target was immersed in an oxygen-nitrogen gas mixture at atmospheric pressure with the O2/N2 ratio being precisely controlled. The results for an increasing oxygen content reveal remarkable effects on the morphology of the generated particles, which include a decrease in the particle volume but a marked increase in its surface ruggedness. Molecular dynamics simulations using a reactive potential and performed under similar conditions as the experiment reproduce the experimental trends and show in detail how the shape and surface structure of the nanoparticles evolve with increasing oxygen content. This good agreement between in situ observations in the plume and atomistic simulations emphasizes the key role of chemical reactivity together with thermodynamic conditions on the morphology of the particles thus produced.

  11. Response surface and artificial neural network prediction model and optimization for surface roughness in machining

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Sahoo

    2015-04-01

    Full Text Available The present paper deals with the development of prediction model using response surface methodology and artificial neural network and optimizes the process parameter using 3D surface plot. The experiment has been conducted using coated carbide insert in machining AISI 1040 steel under dry environment. The coefficient of determination value for RSM model is found to be high (R2 = 0.99 close to unity. It indicates the goodness of fit for the model and high significance of the model. The percentage of error for RSM model is found to be only from -2.63 to 2.47. The maximum error between ANN model and experimental lies between -1.27 and 0.02 %, which is significantly less than the RSM model. Hence, both the proposed RSM and ANN prediction model sufficiently predict the surface roughness, accurately. However, ANN prediction model seems to be better compared with RSM model. From the 3D surface plots, the optimal parametric combination for the lowest surface roughness is d1-f1-v3 i.e. depth of cut of 0.1 mm, feed of 0.04 mm/rev and cutting speed of 260 m/min respectively.

  12. Image potential resonances of the aluminum (100) surface; Bildpotentialresonanzen der Aluminium-(100)-Oberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Matthias

    2011-07-08

    Image-potential resonances on the (100) surface of pure Aluminum are investigated experimentally and theoretically. The experiments are conducted both energy- and time-resolved using the method of two-photon photoemission spectroscopy. The main attention of the theoretical examination and extensive numerical calculations is devoted to the interaction between surface and bulk states. Image-potential resonances on Al(100) are a system in which a complete series of discrete Rydberg states strongly couples to a continuum of states. As a simple metal it also provides a good opportunity to test theoretical models of the structure of the potential at metal surfaces. This work represents the first high-resolution investigation of image-potential resonances with such strong resonance character. For the first time, it is demonstrated experimentally that isolated image-potential resonances exist on an Aluminum surface. On the (100) surface of Aluminum the second through fifth image-potential resonance are resolved and both, their energies and lifetimes are measured. The binding energies of the image-potential resonances form a Rydberg series of states {epsilon}{sub n}=-(0,85 eV)/((n+a){sup 2}). Within the accuracy of the measurement it is not necessary to introduce a quantum defect a (a=0.022{+-}0.035). Using angle-resolved two-photon photoemission spectroscopy the effective mass of electrons in the second image-potential resonance is measured to 1.01{+-}0.11 electron masses. The lifetimes of the resonances increase as {tau}{sub n} = (1.0{+-}0.2)fs.n{sup 3} starting from n=2. Calculations using the density matrix formalism show that the experimentally observed lifetimes can be explained well by electrons decaying into the bulk. The effect of resonance trapping leads to extended lifetimes in the process. Contrary to common theoretical models of image-potential states at metal surfaces the first image-potential resonance cannot be observed in two-photon photoemission on Al(100

  13. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651.

    Science.gov (United States)

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe

    2014-02-28

    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining.

  14. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  15. Detecting Milling Deformation in 7075 Aluminum Alloy Aeronautical Monolithic Components Using the Quasi-Symmetric Machining Method

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2016-04-01

    Full Text Available The deformation of aeronautical monolithic components due to CNC machining is a bottle-neck issue in the aviation industry. The residual stress releases and redistributes in the process of material removal, and the distortion of the monolithic component is generated. The traditional one-side machining method will produce oversize deformation. Based on the three-stage CNC machining method, the quasi-symmetric machining method is developed in this study to reduce deformation by symmetry material removal using the M-symmetry distribution law of residual stress. The mechanism of milling deformation due to residual stress is investigated. A deformation experiment was conducted using traditional one-side machining method and quasi-symmetric machining method to compare with finite element method (FEM. The deformation parameters are validated by comparative results. Most of the errors are within 10%. The reason for these errors is determined to improve the reliability of the method. Moreover, the maximum deformation value of using quasi-symmetric machining method is within 20% of that of using the traditional one-side machining method. This result shows the quasi-symmetric machining method is effective in reducing deformation caused by residual stress. Thus, this research introduces an effective method for reducing the deformation of monolithic thin-walled components in the CNC milling process.

  16. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation.

    Science.gov (United States)

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-04

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  17. On Machine Capacitance Dimensional and Surface Profile Measurement System

    Science.gov (United States)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  18. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  19. Composition and hardness of mullite coatings formed with direct current power supply on LY12 aluminum alloy surface

    Institute of Scientific and Technical Information of China (English)

    XIN Shi-gang; JIANG Zhao-hua; LI Yan-ping; ZHANG Ji-lin

    2005-01-01

    The surface modification of aluminum and its alloys using plasma technology is increasingly being investigated. Thick ceramic coatings with high hardness on aluminum alloys can be prepared successfully using a micro-plasma oxidation (MPO) technique. In this work, the composition, microstructure and elemental distribution of ceramic coatings formed by MPO on LY 12 aluminum alloy and its hardness are investigated using XRD, EPMA and microhardness instruments. The results show that the ceramic coatings consist of mullite, γ -Al2 O3 and a lot of amorphous matter. The content of silicon in the coatings increases from interface to the coatings, however, the content of aluminum decreases along this direction. The maximum hardness of ceramic coatings is up to 9. 2 GPa.

  20. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  1. A Method for Identification and Compensation of Machining Errors of Digital Gear Tooth Surfaces

    Institute of Scientific and Technical Information of China (English)

    WANG Fulin; YI Chuanyun; CHEN Jing; YANG Shuzi

    2006-01-01

    In order to generate the digital gear tooth surfaces (DGTS) with high efficiency and high precision, a method for identification and compensation of machining errors is demonstrated in this paper. Machining errors are analyzed directly from the real tooth surfaces. The topography data of the part are off-line measured in the post-process. A comparison is made between two models: CAD model of DGTS and virtual model of the physical measured surface. And a matching rule is given to determine these two surfaces in an appropriate fashion. The developed error estimation model creates a point-to-point map of the real surface to the theoretical surface in the normal direction. A "pre-calibration error compensation" strategy is presented. Through processing the results of the first trail cutting, the total compensation error is predicted and an imaginary digital tooth surface is reconstructed. The machining errors in the final manufactured surfaces are minimized by generating this imaginary surface. An example of machining 2-D DGTS verifies the developed method. The research is of important theoretical and practical value to manufacture the DGTS and other digital conjugate surfaces.

  2. New Method to Characterize Degradation of First Surface Aluminum Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, F.; Heller, P.; Meyen, S.; Pitz-Paal, R.; Kennedy, C.; Fernandez-Garcia, A.; Schmucker, M.

    2010-10-01

    This paper reports the development of a new optical instrument capable of characterizing the aging process of enhanced first surface aluminum reflectors for concentrating solar power (CSP) application. Samples were exposed outdoors at different sites and in accelerated exposure tests. All samples exposed outdoors showed localized corrosion spots. Degradation originated from points of damage in the protective coating, but propagated underneath the protective coating. The degraded samples were analyzed with a microscope and with a newly designed space-resolved specular reflectometer (SR)2 that is capable of optically detecting and characterizing the corrosion spots. The device measures the specular reflectance at three acceptance angles and the wavelengths with spatial resolution using a digital camera's CMOS sensor. It can be used to measure the corrosion growth rate during outdoor and accelerated exposure tests. These results will allow a correlation between the degraded mirror surface and its specular reflectance.

  3. Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces.

    Science.gov (United States)

    Giza, M; Thissen, P; Grundmeier, G

    2008-08-19

    Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.

  4. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang; CAI Jie; WAN Ming-Zhen; LV Peng; GUAN Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along gra,in boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.%The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.High-current pulsed electron beams (HCPEBs)have attracted much attention in the field of material surface modification.[1-7] During the transient bombardment process a high energy (108-109 W·cm-2) is deposited only in a very thin layer (less than tens of micrometers) within a very short time (a few microseconds) and thereby causes ultrafast heating and cooling on the irradiated surface of materials.The dynamic stress fields induced in these processes can induce intense deformation on the material surface.

  5. Hardening Effect on Machined Surface for Precise Hard Cutting Process with Consideration of Tool Wear

    Institute of Scientific and Technical Information of China (English)

    YANG Yongheng

    2014-01-01

    During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.

  6. Dry Machining Aeronautical Aluminum Alloy AA2024-T351: Analysis of Cutting Forces, Chip Segmentation and Built-Up Edge Formation

    Directory of Open Access Journals (Sweden)

    Badis Haddag

    2016-08-01

    Full Text Available In this paper, machining aeronautical aluminum alloy AA2024-T351 in dry conditions was investigated. Cutting forces, chip segmentation, and built-up edge formation were analyzed. Machining tests revealed that the chip formation process depends on cutting conditions and tool geometry. So continuous and segmented chips are generated. Under some cutting conditions, built-up edge formation occurs. A predictive machining theory, based on a finite elements method (FEM, was applied to reproduce and explain these phenomena. Thermomechanical behaviors of the work material and the tool-work material interface were considered. Results of the proposed modelling were compared to experimental data for a wide range of cutting speed. It was shown that the feed force is well reproduced by the ALE-FE (arbitrary lagrangian-eulerian finite element formulation and highly underestimated by the lagrangian finite element (LAG-FE one. While, the periodic localized shear band, leading to a chip segmentation, is well reproduced with the Lagrangian FE formulation. It was found that the chip segmentation can be correlated to the cutting force evolution using the defined chip segmentation intensity parameter. For the built-up edge (BUE phenomenon, it was shown that it depends on the contact/friction at the tool-chip interface, and this is possible to simulate by making the friction coefficient time-dependent.

  7. Surface performance of workpieces processed by electrical discharge machining in gas

    Institute of Scientific and Technical Information of China (English)

    LI Li-qing; BAI Ji-cheng; GUO Yong-feng; WANG Zhen-long

    2009-01-01

    The surface performance of workpieces processed by electrical discharge machining in gas (dry EDM) was studied in this paper. Firstly, the composition, micro hardness and recast layer of electrical discharge machined (EDMed) surface of 45 carbon steels in air were investigated through different test analysis methods. The results show that the workpiece surface EDMed in air contains a certain quantity of oxide, and oxidation occurs on the workpiece surface. Compared with the surface of workpieces processed in kerosene, fewer cracks exist on the dry EDMed workpiece surface, and the surface recast layer is thinner than that obtained by conventional EDM. The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene, and higher than that of the matrix. In addition, experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved, and it is related with tool material and dielectric.

  8. THIRD-ORDER LOCAL CONTACT AND APPLICATION IN 5-AXIS MACHINING OF SCULPTURED SURFACES

    Institute of Scientific and Technical Information of China (English)

    LIU Guran

    2006-01-01

    In order to increase the efficiency in the machining of the sculptured surfaces, the contact principle of differential geometry is applied to the 5-axis NC machining; The best contact condition between tool and the surfaces is researched. Through analysis the contact degree of the intersection line of the cutter and the surfaces is known. In comparison to previous studies, the theory is more restricted and accurate by going beyond the second-order parameters into the third-order, suiting both the primary surfaces of analytical geometry and the computer-generated surfaces of the computation geometry. It has definite procedure of calculation, and the equations are easy to solve. The thought process is very clear: First, suppose that there is a surface of third-order, the coefficients of which are arbitrary; Then find out the best posture of the circle in order that the circle and the surface will most closely contact with each other at the origin position; Finally, develop the surface into a third-order surface at every point of machining and employ the results mentioned above to find the best cutter posture at every point of machining. As a result, the equations are easy to solve, and the concept is clear.

  9. Trim cut machining and surface integrity analysis of Nimonic 80A alloy using wire cut EDM

    Directory of Open Access Journals (Sweden)

    Amitesh Goswami

    2017-02-01

    Full Text Available This present work deals with the features of trim cut wire EDM machining of Nimonic 80A in terms of machining parameters, to predict material removal rate (MRR, surface roughness (Ra, wire wear ratio (WWR and microstructure analysis. Trim cut is performed after rough cut to remove the rough layer deposited after machining due to melting and re-solidification of the eroded metal from workpiece as well as from wire electrode. Taguchi’s design of experiments methodology has been used for planning and designing the experiments. The relative significance of various factors has also been evaluated and analyzed using ANOVA. The results clearly indicate trim cut potential for high surface finish compared to rough cut machining.

  10. Machinability study on discontinuously reinforced aluminium composites (DRACs using response surface methodology and Taguchi’s design of experiments under dry cutting condition

    Directory of Open Access Journals (Sweden)

    Raviraj Shetty1

    2008-03-01

    Full Text Available The development of metal matrix composites with discontinuous reinforcement represents a well-established method for improving the strength and stiffness of a material. This paper discusses the use of Taguchi’s design of experiments and response surface methodology (RSM for minimising the surface roughness in turning of discontinuously reinforced aluminium composites (DRACs having aluminum alloy 6061 as the matrix and containing 15 vol. % of silicon carbide particles with a mean diameter of 25µm under dry cutting condition. The measured results are then collected and analysed with the help of a commercial software package MINITAB15. The experiments are conducted using Taguchi’s experimental design technique. The matrices of test conditions include cutting speed, feed rates and depth of cut. The effect of cutting parameters on surface roughness is evaluated and the optimum cutting condition for minimising the surface roughness is determined. A second-order model is established between the cutting parameters and the surface roughness using RSM. The experimental results reveal that the most significant machining parameter for surface roughness is feed, followed by cutting speed. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the surface roughness in the machining of DRACs.

  11. Behavior of Aluminum Based Coagulants in Treatment of Surface Water–Assessment of Chemical and Microbiological Properties of Treated Water

    Directory of Open Access Journals (Sweden)

    Spînu (Gologan Daniela

    2014-03-01

    Full Text Available Pre-polymerized inorganic aluminum coagulants have high efficiency in reducing turbidity, total, dissolved, biodegradable organic carbon and microbiological content of surface waters used for drinking, while obtaining low concentrations of residual aluminum after the coagulation phase. Correlation between turbidity raw water and coagulant dose is logarithmic being influenced by temperature and organic content of surface waters. The coagulant’s effect on the organic content of the raw water is closely related to the microbiological concentration and can thus determine the mathematical correlations between the two types of parameters after the coagulation-flocculation stage that can be used to assess the water biostability coagulant action.

  12. Robust non-wetting PTFE surfaces by femtosecond laser machining.

    Science.gov (United States)

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-08-08

    Nature shows many examples of surfaces with extraordinary wettability,which can often be associated with particular air-trapping surface patterns. Here,robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters,both of which make it a strong candidate for industrial applications.

  13. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    Directory of Open Access Journals (Sweden)

    Fang Liang

    2014-08-01

    Full Text Available Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE. The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications.

  14. Investigating Effect of Machining Parameters of CNC Milling on Surface Finish by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Amit Joshi

    2012-08-01

    Full Text Available CNC End milling is a unique adaption of the conventional milling process which uses an end mill tool for the machining process. CNC Vertical End Milling Machining is a widely accepted material removal process used to manufacture components with complicated shapes and profiles. During the End milling process, the material is removed by the end mill cutter. The effects of various parameters of end milling process like spindle speed, depth of cut, feed rate have been investigated to reveal their Impact on surface finish using Taguchi Methodology. Experimental plan is performed by a Standard Orthogonal Array. The results of analysis of variance (ANOVA indicate that the feed Rate is most influencing factor for modeling surface finish. The graph of S-N Ratio indicates the optimal setting of the machining parameter which gives the optimum value of surface finish. The optimal set of process parameters has also been predicted to maximize the surface finish.

  15. Investigating Effect of Machining Parameters of CNC Milling on Surface Finish by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Amit Joshi

    2013-08-01

    Full Text Available CNC End milling is a unique adaption of the conventional milling process which uses an end mill tool for the machining process. CNC Vertical End Milling Machining is a widely accepted material removal process used to manufacture components with complicated shapes and profiles. During the End milling process, the material is removed by the end mill cutter. The effects of various parameters of end milling process like spindle speed, depth of cut, feed rate have been investigated to reveal their Impact on surface finish using Taguchi Methodology. Experimental plan is performed by a Standard Orthogonal Array. The results of analysis of variance (ANOVA indicate that the feed Rate is most influencing factor for modelling surface finish. The graph of S-N Ratio indicates the optimal setting of the machining parameter which gives the optimum value of surface finish. The optimal set of process parameters has also been predicted to maximize the surface finish.

  16. Phase-locked loop based on machine surface topography measurement using lensed fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin-Ho; Lee, ChaBum; Joo, Jae-Young; Lee, Sun-Kyu

    2011-02-01

    We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers--the ball type and the tapered type--were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications.

  17. A multi-perspective dynamic feature concept in adaptive NC machining of complex freeform surfaces

    OpenAIRE

    Liu, Xu; Li, Yingguang; Gao, James

    2016-01-01

    This paper presents a new concept of feature for freeform surface machining that defines the changes in feature status during real manufacturing situations which have not been sufficiently addressed by current international standards and previous research in feature technology. These changes are multi-perspective, including (i) changes in depth-of-cut: the geometry of a feature in the depth-of-cut direction changes during different machining operations such as roughing, semi-finishing and fin...

  18. Standard Methods of Analysis of Sulfochromate Etch Solution Used in Surface Preparation of Aluminum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2012-01-01

    1.1 These methods offer a means for controlling the effectiveness of the etchant which is normally used for preparing the surface of aluminum alloys for subsequent adhesive bonding. As the etchant reacts with the aluminum, hexavalent chromium is converted to trivalent chromium; a measure of the two and the difference can be used to determine the amount of dichromate used. 1.2 The sulfochromate solution can be replenished by restoring the sodium dichromate and the sulfuric acid to the original formulation levels. The lower limit of usefulness will vary depending upon solution storage, adhesives used, critical nature of bond capability, variety of metals processed, etc. and should be determined. Replenishment will be limited to the number of times the chemical ingredients can be restored and maintained to the required levels and should be determined by the user. Sludge collecting in the bottom of a tank should be minimized by periodic removal of sludge. For some applications, the hexavalent chromium should not ...

  19. Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert

    Science.gov (United States)

    Ezilarasan, C.; Senthil kumar, V. S.; Velayudham, A.

    2013-06-01

    Whisker-reinforced ceramic inserts were used to conduct turning trials on nimonic C-263 super alloy to study the effect of different combinations of cutting parameters on surface integrity (roughness, microhardness, and residual stress) by employing energy dispersive spectroscopy, scanning electron microscopy, x-ray diffraction, and Vicker's microhardness test. Abrasion, adhesion and diffusion were found to be the main tool wear mechanisms in turning nimonic C-263 alloy. Based on characterization of surface roughness, a combination of 190 m/min cutting speed and 0.102 mm/rev feed rate was found to be the critical condition for turning nimonic C-263 alloy. Microhardness varied between 550 and 690 HV at the feed rates of 0.102-0.143 mm/rev for a cutting speed of 250 m/min after 9 min of turning. A tensile residual stress of 725-850 MPa on the machined surface was recorded at the preceding combination of cutting parameters. Cutting speed and cutting time had a dominant effect on the magnitude of the residual stress. No evidence of thermal relaxation and reduction in the degree of work hardening was noted during machining at high cutting speed.

  20. Optical micro-metrology of structured surfaces micro-machined by jet-ECM

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Islam, Aminul

    2015-01-01

    A procedure for statistical analysis and uncertainty evaluation is presented with regards to measurements of step height and surface texture. Measurements have been performed with a focus-variation microscope over jet electrochemical micro-machined surfaces. Traceability has been achieved using...

  1. Optical micro-metrology of structured surfaces micro-machined by jet-ECM

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Islam, Aminul

    A procedure for statistical analysis and uncertainty evaluation is presented with regards to measurements of step height and surface texture. Measurements have been performed with a focus-variation microscope over jet electrochemical micro-machined surfaces. Traceability has been achieved using...

  2. Development of nanostructured coatings for protecting the surface of aluminum alloys against corrosion and ice accretion

    Science.gov (United States)

    Farhadi, Shahram

    Ice and wet snow accretion on outdoor structures is a severe challenge for cold climate countries. A variety of de-icing and anti-icing techniques have been developed so far to counter this problem. Passive approaches such as anti-icing or icephobic coatings that inhibit or retard ice accumulation on the surfaces are gaining in popularity. Metal corrosion should also be taken into account as metallic substrates are subject to corrosion problems when placed in humid or aggressive environments. Development of any ice-releasing coatings on aluminum structures, as they must be durable enough, is therefore closely related to anti-corrosive protection of that metal. Accordingly, series of experiments have been carried out to combine reduced ice adhesion and improved corrosion resistance on flat AA2024 substrates via thin films of single and double layer alkyl-terminated SAMs coatings. More precisely, alkyl-terminated aluminum substrates were prepared by depositing layer(s) of 18C-SAMs on BTSE-grafted AA2024 or mirror-polished AA2024 surfaces. This alloy is among the most widely used aluminum alloys in transportation systems (including aircraft), the military, etc. The stability of the coatings in an aggressive environment, their overall ice-repellent performance as well as their corrosion resistance was systematically studied. The stability of one-layer and two-layer coatings in different media was tested by means of CA measurements, demonstrating gradual loss of the hydrophobic property after ~1100-h-long immersion in water, associated by decrease in water CA. Surface corrosion was observed in all cases, except that the double-layer coating system provided improved anti-corrosive protection. All single layer coatings showed initial shear stress of ice detachment values of ~1.68 to 2 times lower than as-received aluminum surfaces and about ~1.22 to 1.5 times lower than those observed on mirror-polished surfaces. These values gradually increased after as many as 5 to 9

  3. Determination of real machine-tool settings and minimization of real surface deviation by computerized inspection

    Science.gov (United States)

    Litvin, Faydor L.; Kuan, Chihping; Zhang, YI

    1991-01-01

    A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.

  4. Surface quality of marble machined by abrasive water jet

    Directory of Open Access Journals (Sweden)

    Ramy Abdullah

    2016-12-01

    Full Text Available This paper presents a study conducted to examine the effect of cutting parameters, namely standoff distance, nozzle traverse speed (TS, abrasive flow rate (AFR, and material type on cutting performance for two types of marble workpieces, Carrara white and Indian green. Statistical analysis was undertaken to assess the influence of the cutting parameters on the process performances in terms of surface roughness, surface waviness, and Kerf taper ratio. The results showed that the TS and material type were the most significant factors that affected surface roughness and Kerf taper ratio. Also, although AFR was found to have significant effect on surface waviness, it had no noticeable influence on surface roughness nor Kerf taper ratio.

  5. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    Science.gov (United States)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  6. Laser Peening on Aluminum Alloy 7049 Using Black Paint Surface Coating

    Directory of Open Access Journals (Sweden)

    Alalkawi H. J. M.

    2015-09-01

    Full Text Available Black paint laser peening (bPLP technique is currently applied for many engineering materials , especially for aluminum alloys due to high improvement in fatigue life and strength . Constant and variable bending fatigue tests have been performed at RT and stress ratio R= -1 . The results of the present work observed that the significance of the surface work hardening which generated high negative residual stresses in bPLP specimens .The fatigue life improvement factor (FLIF for bPLP constant fatigue behavior was from 2.543 to 3.3 compared to untreated fatigue and the increase in fatigue strength at 107 cycle was 21% . The bPLP cumulative fatigue life behavior was improved by 1.786 at L-H and 1.55 at H-L due to black paint coating .

  7. Laser assembly nanostructured Al2O3/TiO2 coating on cast aluminum surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-jun; DAI Jian-qiang; WANG Hui-ping; YAN Min-jie; XI Wen-long; ZOU Chang-gu; GE Da-fang

    2004-01-01

    CO2 laser quick assembly technology is adopted on the surface of cast aluminum ZL104 to form a dense ceramic coating containing a great deal of nanometer Al2O3/TiO2 particles which eliminate cracks and porosities.The major phases of the coating are α-Al2O3 andβ-TiO2. The micro-hardness distribution of the coating is 1 813,1 504, 1 485 and 1 232 (HV0.05). The bonding strength of the coating LC1 is 11.4 N, which is 7.26 times higher than that of the conventional hot-spraying Al2O3/TiO2 coating. It has been proved by analysis that the bonding strength is achieved because of the effects of both super-quick laser consolidation and the nanometer effect of nanometer ceramic material.

  8. Tribological properties of aluminum lubricated with palm olein at different load using pin-on-disk machine

    OpenAIRE

    N. Nuraliza; S. Syahrullail; M.H. Faizal

    2016-01-01

    The increased global demand for biofuels has prompted the search for alternatives to edible oils for bio-lubricant production. Today, vegetable oil much desired for its application as lubricant in various application because it is a renewable resources and has high biodegradability compared mineral oil.Thus,this paper presents an experimental analysis on the tribological behavior for aluminum alloy materials under the effect of sliding speed and different loads, where the apparatus pin on dis...

  9. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Deepak, K. L. N. [Department of Physics and Center for Research in Photonics, University of Ottawa, 150 Louis Pasteur, Ottawa K1N6N5, Ontario (Canada)

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  10. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    Science.gov (United States)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Deepak, K. L. N.; Rao, D. Narayana

    2014-09-01

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C2H5OH) and water (H2O) using linearly polarized Ti:sapphire fs laser pulses of ˜110 fs pulse duration and ˜800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  11. Metrological Aspects of Surface Topographies Produced by Different Machining Operations Regarding Their Potential Functionality

    Directory of Open Access Journals (Sweden)

    Żak Krzysztof

    2017-06-01

    Full Text Available This paper presents a comprehensive methodology for measuring and characterizing the surface topographies on machined steel parts produced by precision machining operations. The performed case studies concern a wide spectrum of topographic features of surfaces with different geometrical structures but the same values of the arithmetic mean height Sa. The tested machining operations included hard turning operations performed with CBN tools, grinding operations with Al2O3 ceramic and CBN wheels and superfinish using ceramic stones. As a result, several characteristic surface textures with the Sa roughness parameter value of about 0.2 μm were thoroughly characterized and compared regarding their potential functional capabilities. Apart from the standard 2D and 3D roughness parameters, the fractal, motif and frequency parameters were taken in the consideration.

  12. Research on postprocessing of seven-axis linkage parallel kinematics machine with complicated surfaces

    Institute of Scientific and Technical Information of China (English)

    WEI Yong-geng; SHI Yong; ZHAO Kun

    2007-01-01

    Because of restriction of workspace of parallel kinematics Machine (PKM), 6 DOF PKM can't finish machining of workpiece with complicated surfaces under only once locating. It is necessary to fit workpiece beyond twice and to lead to low machining precision. Therefore the seven-axis linkage PKM is implemented by fixing a turntable on the worktable of the six-axis linkage PKM. However, the turntable angle decomposing problem from the CL file should be well considered. If the traditional decomposing methods are adopted, the nutation angle usually goes beyond the workspace of the machine. Therefore, according to the relation of the machine coordinate system and the workpiece coordinate system, the turntable angle decomposition algorithmic of the consistent coordinate system and the turntable angle decomposition algorithmic of the non-consistent coordinate system are developed to resolve the problem mentioned above. The turntable angle decomposition of the non-consistent coordinate system processes the decomposition which is based on the consistent coordinate system again. It calculates the initial angle of the locating workpiece, and the decomposed angle of the turntable at the machine coordinate system results in the nutation angle not going beyond workspace of the machine, thereby the decomposition process can be simplified.

  13. Study on the nano machining process with a vibrating AFM tip on the polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Weitao [State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin 150080 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Yan Yongda, E-mail: yanyongda@yahoo.com.cn [State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin 150080 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Hu Zhenjiang; Zhao Xuesen; Yan Jiucun; Dong Shen [Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)

    2012-01-15

    The polymer has been proved to be nano machined by a vibrating tip in tapping mode of Atomic Force Microscope (AFM). The force between the tip and the surface is an important factor which determines success of the machining process. Controlling this force with high accuracy is the foundation of nanomachining in AFM tapping mode. To achieve a deeper understanding on this process, the tip is modeled as a driving oscillator with damping. Factors affecting the nano machining process are studied. The Hertz elastic contact theory is used to calculate the maximum contact pressure applied by the tip which is employed as a criterion to judge the deformation state of the sample. The simulation results show that: The driven amplitude can be used as a main parameter of controlling the machined depth. Sharper tips and harder cantilevers should be used for successful nanomachining with the vibrating tip. Under the same conditions, a larger tip radius will not only result in the machining error, but also lead to failure of the nanomachining process. The higher driving frequency will lead to a larger tapping force. However it cannot be used as a parameter to control the machined depth because of its narrow variation range. But it is a main error source for the nanomachining process in AFM tapping mode. Moreover, a larger Young's modulus polymer sample will induce a smaller machined depth, a larger maximum contact pressure and a bigger tapping force.

  14. Influence of Surface Oxide Films on Elastic Behaviors of Straight Screw Dislocations Parallel to the Surface of Pure Aluminum

    Institute of Scientific and Technical Information of China (English)

    Weimin MAO; Dong LI; Yongning YU

    2007-01-01

    The image stress of straight screw dislocations parallel to the medium surface covered by thin heterogeneous films was analyzed and deduced, in order to calculate the image shear stress. The relationship between image stress and distance from the screw dislocation to the interface of pure aluminum and its oxide covering was calculated based on the analysis. It was shown quantitatively that a sign conversion of the image stress appears in the case of thin oxide covering, while dislocation would pile up near the interface because of the possible slips of the screw dislocations induced by the image stress, which might break down the very thin oxide covering. Further investigation on edge dislocations or other dislocation configurations need to be done.

  15. Modification and characterization of aluminum nitride surfaces for an acoustic wave biosensor

    Science.gov (United States)

    Rosenberger, Leland W.

    Aluminum nitride (AlN) is a piezoelectric material that is being developed for use in a surface acoustic wave sensor for the detection of bacteria in fluid media. An AlN film is deposited on a sapphire or silicon substrate. After conductor deposition, an electronic signal is applied across the device and the signal is modified by changes in the mass immobilized on the sensor surface. Bacteria are immobilized on the surface by antibodies specific to the bacterial species. The problem addressed in this dissertation is how to form a bridge between the inorganic surface and the antibodies. The approach used is to form a new chemical layer on the AlN by using silanes. Functional groups on the silane surface can then be used as anchor points for the antibodies. This approach was carried out in three steps: (1) characterize the AlN surface, (2) explore four surface treatment methods that prepare the AlN surface for silanization and (3) silanize the resulting surface. AlN films were deposited by a Plasma Source Molecular Beam Epitaxy method. The films were characterized by RHEED, X-ray diffraction, air/water contact angle, atomic force microscopy (AFM), ellipsometry and X-ray photoelectron spectroscopy (XPS). The four surface treatment methods explored were: immersion in boiling water, exposure to laser light, immersion in piranha solution and treatment with plasma. Samples were characterized by contact angle, AFM and XPS. Plasma treatment was preferred because it prepared the surface most effectively, without any loss of sub-surface AlN. Samples of AlN were silanized with two types of silane, along with silicon controls. Samples were characterized by contact angle, AFM and XPS. The effectiveness of silanes on AlN was equal to or somewhat less than that observed on silicon. AlN samples were also co-deposited with two different silanes and then the end group on one of the silanes was chemically modified. This demonstrated that the density of functional groups on the

  16. Gas-tungsten arc welding of aluminum alloys

    Science.gov (United States)

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  17. MICRO/NANO-MACHINING ON SILICON SURFACE WITH A MODIFIED ATOMIC FORCE MICROSCOPE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To understand the deformation and removal mechanism of material on nano-scale and at ultralow loads, a systemic study on AFM micro/nano-machining on single crystal silicon is conducted. The results indicate that AFM nanomachining has a precisely dimensional controllability and a good surface quality on nanometer scale. A SEM is adopted to observe nano-machined region and chips, the results indicate that the material removal mechanisms change with the applied normal load. An XPS is used to analyze the changes of chemical composition inside and outside the nano-machined region respectively. The nano-indentation which is conducted with the same AFM diamond tip on the machined region shows a big discrepancy compared with that on the macro-scale. The calculated results show higher nano-hardness and elastic modulus than normal values. This phenomenon can be regarded as the indentation size effect(ISE).

  18. The use of frequency and wavelet analysis for monitoring surface quality of wood machining applications.

    Science.gov (United States)

    Lemaster, Richard L

    2010-01-01

    The research described in this study is part of a project to provide the technology and theory to quantify surface quality for a variety of wood and wood-based products. The ultimate goal is to provide a means of monitoring trends in surface quality, which can be used to discriminate between "good" products and "bad" products (the methods described in this research are not intended to provide "grading" of individual workpieces) as well as to provide information to the machine operator as to the source of poor-quality machined surfaces. This research investigates the use of both frequency domain analysis as well as the more advanced joint time frequency analysis (JTFA). The disadvantages of traditional frequency analysis as well as the potential of the JTFA are illustrated. Sample surface profiles from actual machining defects were analyzed using traditional frequency analysis. A surface with multiple machining defects was analyzed with both traditional frequency analysis and JTFA (harmonic wavelet). Although the analysis was empirical in nature, the results show that the harmonic wavelet transform is able to detect both stationary and non-stationary surface irregularities as well as pulses (localized defects).

  19. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651

    Directory of Open Access Journals (Sweden)

    Walid Jomaa

    2014-02-01

    Full Text Available The surface finish was extensively studied in usual machining processes (turning, milling, and drilling. For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining.

  20. Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; List III, Frederick Alyious [ORNL; Carver, Keith [ORNL

    2015-09-23

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in the expansion of United States operations for ECM Technologies.

  1. An experimental result of surface roughness machining performance in deep hole drilling

    Directory of Open Access Journals (Sweden)

    Mohamad Azizah

    2016-01-01

    Full Text Available This study presents an experimental result of a deep hole drilling process for Steel material at different machining parameters which are feed rate (f, spindle speed (s, the depth of the hole (d and MQL, number of drops (m on surface roughness, Ra. The experiment was designed using two level full factorial design of experiment (DoE with centre points to collect surface roughness, Ra values. The signal to noise (S/N ratio analysis was used to discover the optimum level for each machining parameters in the experiment.

  2. Technical note: Evaluation of three machine learning models for surface ocean CO2 mapping

    Science.gov (United States)

    Zeng, Jiye; Matsunaga, Tsuneo; Saigusa, Nobuko; Shirai, Tomoko; Nakaoka, Shin-ichiro; Tan, Zheng-Hong

    2017-04-01

    Reconstructing surface ocean CO2 from scarce measurements plays an important role in estimating oceanic CO2 uptake. There are varying degrees of differences among the 14 models included in the Surface Ocean CO2 Mapping (SOCOM) inter-comparison initiative, in which five models used neural networks. This investigation evaluates two neural networks used in SOCOM, self-organizing maps and feedforward neural networks, and introduces a machine learning model called a support vector machine for ocean CO2 mapping. The technique note provides a practical guide to selecting the models.

  3. Laser surface modification treatment of aluminum bronze with B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Matthews, A. [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Department of Materials Science and Engineering, Sheffield University (United Kingdom); Leyland, A. [Department of Materials Science and Engineering, Sheffield University (United Kingdom); Karatas, C. [Engineering Faculty, Hacettepe University (Turkey); Akhtar, S.S.; Abdul Aleem, B.J. [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Fine grains and dense layer were formed in the surface vicinity; in which Cu{sub 3}N compound was present. Black-Right-Pointing-Pointer Due to volume shrinkage of the dense layer, a few locally scattered voids were formed below the surface. Black-Right-Pointing-Pointer Formation of Cu{sub 3}N compound in the surface region enhanced microhardness at the surface. Black-Right-Pointing-Pointer In-plane residual stress was compressive at surface and it was on the order of -400 MPa. Black-Right-Pointing-Pointer Self-annealing effect of lately formed laser scanning tracks reduced residual stress at the surface. - Abstract: One technique to improve tribological properties of aluminum bronze surfaces is to introduce laser controlled melting at the surface in the presence of a composition-modifying film. In this work, a 40 {mu}m thick organic film, containing B{sub 4}C particles, was formed at the workpiece surface prior to laser treatment. The organic coating provides enhanced absorption of the incident laser radiation and distributes the B{sub 4}C particles uniformly across the surface. Morphological and microstructural changes in the laser treated layer were examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The microhardness of the laser treated layer was measured and the residual stress formed at the treated surface was evaluated by X-ray diffraction using the sin{sup 2} {psi} technique. It was found that the laser treated surface produced is relatively free from defects and asperities with a microhardness that is notably higher than that of the as-received bronze substrate. This hardening effect can be attributed to the development of a dense layer consisting of fine grains, partially dissolved B{sub 4}C particles, and formation of Cu{sub 3}N compounds. The residual compressive stress obtained from X-ray diffraction peak evaluation is of the order of -400 MPa.

  4. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  5. An Axial Sliding Test for machine elements surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran

    2012-01-01

    liners. To prove the efficacy of a particular textured surface, it is paramount to perform experimental tests under controlled laboratory conditions. In this paper a new test rig simulating pure sliding conditions is presented, dubbed Axial Sliding Test. It presents four major components: a rod, a sleeve......, a housing and a stripwound container. The rod and the sleeve are the two surfaces in relative sliding motion; the stripwound container maintains a constant, but adjustable normal pressure and the housing serves as interface between the sleeve and the container. For carrying out the test, two machineries...... turned rod against a mirror-polished sleeve. Qualitatively the multifunctional surfaces improve the friction conditions, but a more structured test campaign is required....

  6. Porosity and surface roughness simulation of nickel-aluminum coating in plasma spray forming

    Institute of Scientific and Technical Information of China (English)

    ZENG Hao-ping; FANG Jian-cheng; XU Wen-ji; ZHAO Zi-yu; WANG Li

    2006-01-01

    As the important evaluation parameters concerning the spray qualities, the porosity and surface roughness of the coatings obtained by thermal spray forming have great influence on their forming accuracy, mechanical properties and service lifetime. But it is difficult to predict or control the two parameters for such a highly nonlinear process. A two-dimensional simulation of coating porosity and surface roughness of nickel-aluminum alloy (Ni-5%Al) in plasma spray forming was presented, which was based on the multi-dimensional statistical behaviors of the droplets as well as the simplification and digitization of the typical splat cross sections. Further analysis involving the influence of the droplet diameters and the scanning velocities of the spray gun on the two parameters was conducted. The simulation and analysis results indicate that the porosity and surface roughness are more influenced by the droplet diameters, but less influenced by the spray gun velocities. The results will provide basis for the prediction or control of coating mechanical properties by depositing parameters.

  7. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    Science.gov (United States)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  8. Study of cutting forces in machining of magnesium composite by response surface methodology

    Directory of Open Access Journals (Sweden)

    M. Saravanakumar

    2015-01-01

    Full Text Available Metal Matrix composites (MMCs has many excellent engineering properties like good strength to weight ratio, stiffness and increased wear resistance etc., These properties are the main requirements in aerospace, automotive industries and hence the MMCs are extensively used in these industries. This paper presents the detailed experimental study on cutting forces and surface roughness aspects in turning of 5% Graphite reinforced AZ91D Magnesium alloy metal matrix composite (AZ91D Magnesium alloy matrix + 5 % Graphite reinforcement. The stir casting process under inert atmosphere is followed for synthesis of the composite. The turning process is followed using Tungsten carbide cutting tool, in a lathe. The effect of machining parameters viz., cutting speed, feed rate and depth of cut, on the cutting forces and surface roughness (Ra achieved during the machining are analysed and modelled through the response surface methodology (RSM. Study of effect of machining parameters and their interactions are carried out by using the surface, contour plots of RSM. The experimental result shows that the most significant machining parameter affecting surface roughness and cutting forces is cutting speed. The experimental results and predicted values are observed as in good agreement.

  9. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  10. Effect of Aluminum Substrate Surface Modification on Wettability and Freezing Delay of Water Droplet at Subzero Temperatures

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza; Thormann, Esben

    2016-01-01

    In this study, we have investigated the freezing delay of a water droplet on precooled substrates of an aluminum alloy that is commonly used for heat-exchanger fins. The surfaces of the substrates were modified to obtain surfaces with different hydrophilicity/hydrophobicity and different surface...... hydrophobic substrates. We suggest that this is because this particular surface chemistry prevents ice formation at the interface of the substrate, prior to the deposition of the water droplet. On the basis of our results, we suggest that not only wettability and topography but also the concrete surface...

  11. Modeling the Effects of Tool Shoulder and Probe Profile Geometries on Friction Stirred Aluminum Welds Using Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    H.K.Mohanty; M.M.Mahapatra; P.Kumar; P.Biswas; N.R.Mandal

    2012-01-01

    The present paper discusses the modeling of tool geometry effects on the friction stir aluminum welds using response surface methodology.The friction stir welding tools were designed with different shoulder and tool probe geometries based on a design matrix.The matrix for the tool designing was made for three types of tools,based on three types of probes,with three levels each for defining the shoulder surface type and probe profile geometries.Then,the effects of tool shoulder and probe geometries on friction stirred aluminum welds were experimentally investigated with respect to weld strength,weld cross section area,grain size of weld and grain size of thermo-mechanically affected zone.These effects were modeled using multiple and response surface regression analysis.The response surface regression modeling were found to be appropriate for defining the friction stir weldment characteristics.

  12. Assessment of factors influencing surface roughness on the machining of Al/SiC particulate composites

    Energy Technology Data Exchange (ETDEWEB)

    Palanikumar, K. [Department of Mechanical and Production Engineering, Sathyabama Institute of Science and Technology, Deemed University, Chennai 600 119, Tamilnadu (India)]. E-mail: palanikumar_k@yahoo.com; Karthikeyan, R. [Department of Manufacturing Engineering, Annamalai University, Chidambaram 608001 (India)

    2007-07-01

    The utilization of Al/SiC particulate composite materials in many different engineering fields has undergone a tremendous increase. Accordingly, the need for accurate machining of composites has increased enormously. In the present study, an attempt has been made to assess the factors influencing surface roughness on the machining of Al/SiC particulate composites. Experimental design concept has been used for experimentation. The machining experiments were conducted on lathe using tungsten carbide tool inserts (K10) with two levels of factors. The factors considered were: % volume fraction of SiC, cutting speed, depth of cut and feed rate. A procedure has been developed to assess and optimize the chosen factors to attain minimum surface roughness by incorporating: (i) response table and response graph, (ii) normal probability plot (iii) interaction graphs and (iv) analysis of variance (ANOVA) technique.

  13. Comparisons of computer-controlled chamber measurements for soil-skin adherence from aluminum and carpet surfaces.

    Science.gov (United States)

    Ferguson, Alesia; Bursac, Zoran; Coleman, Sheire; Johnson, Wayne

    2009-04-01

    A computer-controlled mechanical chamber was used to control the contact between carpet and aluminum sheet samples laden with soil, and human cadaver skin and cotton sheet samples for the measurement of mass soil transfer. The contact parameters of pressure (10-50 kPa) and time (10-50s) were varied for 768 experiments of mass soil transfer, where two soil types (play sand and lawn soil) and two soil particle sizes (soil mass transfer to cadaver skin was higher than mean transfer to cotton sheets for both carpet and aluminum transfers, and also generally higher pressure was associated with larger amounts of soil transfer for all contact scenarios. The mean soil adherence from carpet was 0.37+/-0.4 mg/cm(2), while the mean soil adherence from aluminum was 0.42+/-0.6 mg/cm(2). For aluminum, smaller soil particle size was associated with more transfer (p=0.0349), while for carpet, larger soil size was associated with more transfer (pSoil type was significant but only for aluminum surface, where sand was associated with higher adherence (psoils and dust present in indoor environments.

  14. Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution

    Science.gov (United States)

    Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min

    2013-10-01

    An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

  15. Machining process influence on the chip form and surface roughness by neuro-fuzzy technique

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan

    2017-04-01

    The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.

  16. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...

  17. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides.

    Science.gov (United States)

    Chen, Wan-Ru; Huang, Ching-Hua

    2012-08-15

    Aromatic organoarsenicals roxarsone (ROX) and p-arsanilic acid (ASA) are common feed additives for livestock and could be released into the environment via animal manure and agricultural runoff. To evaluate their environmental fate, the adsorption behavior of ROX and ASA was investigated with two common soil metal oxides, goethite (FeOOH) and aluminum oxide (Al(2)O(3)), under different reactant loading, water pH and competing ion conditions. ROX and ASA exhibit essentially identical adsorption characteristics. FeOOH and Al(2)O(3) exhibit similar adsorption trends for both organoarsenicals; however, the adsorption efficiency on the surface site basis was about three times lower for Al(2)O(3) than for FeOOH. The adsorption reaction is favorable at neutral and acidic pH. Phosphate and natural organic matter significantly interfere with aromatic arsenical adsorption on both metal oxides, whereas sulfate and nitrate do not. Pre-adsorbed aromatic arsenicals can be quickly but not completely displaced by phosphate, indicating that ion exchange is not the only mechanism governing the adsorption process. The adsorption envelope was successfully modeled by a diffuse double layer surface complexation model, identifying the critical role of di-anionic organoarsenic species in the adsorption. Results of this research can help predict and control the mobility of aromatic arsenicals in the environment.

  18. Experimental study of surface roughness in Electric Discharge Machining (EDM based on Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Mat Deris Ashanira

    2016-01-01

    Full Text Available Electric Discharge Machining (EDM is one of the modern machining which is capable in handling hard and difficult-to-machine material. The successful of EDM basically depends on its performances such as surface roughness (Ra, material removal rate (MRR, electrode wear rate (EWR and dimensional accuracy (DA. Ra is considered as the most important performance due to it role as a technological quality measurement for a product and also a factor that significantly affects the manufacturing process. This paper presents the experimental study of surface roughness in die sinking EDM using stainless steel SS316L with copper impregnated graphite electrode. The machining experimental is conducted based on the two levels full factorial design of design of experiment (DOE with five machining parameters which are peak current, servo voltage, servo speed, pulse on time and pulse off time. The results were analyzed using grey relational analysis (GRA and it was found that pulse on time and servo voltage give the most influence to the Ra value.

  19. Prediction of Surface Roughness Based on Machining Condition and Tool Condition in Boring EN31 Steel

    Directory of Open Access Journals (Sweden)

    P. Mohanaraman

    2016-04-01

    Full Text Available Prediction of Surface roughness plays a vital role in manufacturing process. In manufacturing industries, productions of metallic materials require high surface finish in various components. In the present work, the effect of spindle speed, feed rate, depth of cut and flank wear of the tool on the surface roughness has been studied. Carbide tipped insert was used for boring operation. Experiments were conducted in CNC lathe. The experimental setup was prepared with sixteen levels of cutting parameters and was conducted with two tool tip conditions in dry machining. A piezoelectric accelerometer was used to measure the vibrational signals while machining. The data acquisition card which connected between accelerometer and lab-view software to record the signals. Simple linear and least median regression models were used for prediction of surface roughness. The models were developed by weka analysis software. The best suitable regression model is implemented based on maximum correlation coefficient and the minimum error values.

  20. Vibration reliability analysis for aeroengine compressor blade based on support vector machine response surface method

    Institute of Scientific and Technical Information of China (English)

    GAO Hai-feng; BAI Guang-chen

    2015-01-01

    To ameliorate reliability analysis efficiency for aeroengine components, such as compressor blade, support vector machine response surface method (SRSM) is proposed. SRSM integrates the advantages of support vector machine (SVM) and traditional response surface method (RSM), and utilizes experimental samples to construct a suitable response surface function (RSF) to replace the complicated and abstract finite element model. Moreover, the randomness of material parameters, structural dimension and operating condition are considered during extracting data so that the response surface function is more agreeable to the practical model. The results indicate that based on the same experimental data, SRSM has come closer than RSM reliability to approximating Monte Carlo method (MCM); while SRSM (17.296 s) needs far less running time than MCM (10958 s) and RSM (9840 s). Therefore, under the same simulation conditions, SRSM has the largest analysis efficiency, and can be considered a feasible and valid method to analyze structural reliability.

  1. The influence of mixing water and abrasives on the quality of machined surface

    Directory of Open Access Journals (Sweden)

    A. Stoić

    2014-04-01

    Full Text Available This paper shows the impact of mixing water and abrasives in water jet cutting process on the quality of the machined surface. The tests were done with polymer material SIPAS, where the influence of cutting parameters was researched (cutting pressure, cutting feed and abrasive mass flow. The surface roughness was measured on several zones, regarding the depth of materials, because the roughness is increased with the material thickness.

  2. Influence of roughness of machined surface on adhesion of anticorrosion system

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available The goal of this experiment is to analyse dependence of roughness of machined surface on adhesion performance of various anticorrosion systems. In order to prepare samples for the experiment, samples were milled on a knee and column type of a horizontal milling machine. Depending on cutting conditions and machining tool, there were set intervals of roughness of machined surface which are commonly achievable on this type of machine. It is a roughness in the interval of 0.4–1.6 µm (finishing, 1.6–6.3 µm (standard milling a 6.3–12.5 µm (roughening. Removable cutting tips were used as a machining tool and for roughening, a shell end milling cutter NAREX 63x40 HSS 90 was used. Three types of anticorrosion systems were used in order to analyse the adhesion, that is a water-thinnable system Eternal, synthetic single layer coating Hostagrund and a duplex system, whose first layer is formed by dipped zinc and a top layer by a single-layer acrylate system Zinorex. Testing of the influence of surface roughness (anchoring system on adhesion of the individual anticorrosion systems were processed in compliance with the norm ČSN EN ISO 4624, a tearing test. The main criterion of adhesion of anticorrosion system is defined as a power which needed for tear-off testing object stuck to a tested sample. This analysis was processed also during the corrosion test in the salt spray environment according to the norm ČSN EN ISO 9227. In order to better identify the adhesion of the individual anticorrosion systems, the analysis of undercorrosion according to the norm ISO 4628-8 was processed.

  3. Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology

    Directory of Open Access Journals (Sweden)

    Avinash A. Thakre

    2016-09-01

    Full Text Available Exit burrs produced during various machining processes degrade the product quality and functionality of different parts of assembly. It is essential to select the optimum tool geometry and process parameters for minimizing the burr formation during machining. In this paper, the effects of cutting speed, feed rate, point angle of drill bits and concentration of the reinforcements on the burrs produced were investigated. Response surface methodology has been adopted to create the quadratic model for the height and thickness of the burrs produced during drilling of AlSiC composites. Analysis of means and variance were used to find the significance of the process parameters on the responses and to find the optimum combination of parameters to minimize the burr formation. Feed rate, point angle and concentration of reinforcements in the matrix are found to be the significant factors. Both the responses were found to be minimum for lower feed rate, higher point angle and higher concentration of reinforcements. Scanning electron microscopy was used to understand the mechanism of burr formation.

  4. Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics.

    Science.gov (United States)

    Zhu, Zhiwei; To, Suet

    2015-08-10

    Fast tool servo/ slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of freeform optics. However, the currently adopted constant scheme for azimuth sampling and side-feeding motion possesses no adaptation to surface shape variation, leading to the non-uniform surface quality and low machining efficiency. To overcome this defect, this paper reports on a novel adaptive tool servo (ATS) diamond turning technique which is essentially based on the novel two-degree-of-freedom (2-DOF) FTS/STS. In the ATS, the sampling interval and the side-feeding motion are actively controlled at any cutting point to adapt the machining process to shape variation of the desired surface, making both the sampling induced interpolation error and the side-feeding induced residual tool mark be within the desired tolerances. Characteristic of the required cutting motion suggests that besides the conventional z-axis servo motion, another servo motion along the x-axis synthesizing by the c-axis is mandatory for implementing the ATS. Comparative studies of surface generation of typical micro-structured surfaces in FTS/STS and ATS are thoroughly conducted both theoretically and experimentally. The result demonstrates that the ATS outperforms the FTS/STS with improved surface quality while simultaneously enhanced machining efficiency.

  5. Analytical modelling of modular and unequal tooth width surface-mounted permanent magnet machines

    OpenAIRE

    Li, G. J.; Zhu, Z-Q.

    2015-01-01

    This paper presents simple analytical modelling for 2 types of 3-phase surface-mounted permanent magnet (SPM) machines such as modular and unequal tooth width (UNET) machines with different slot/pole number combinations. It is based on the slotless open-circuit air-gap flux density and the slotted air-gap relative permeance calculations. This model allows calculating the open-circuit air-gap flux density, phase flux linkage and back electromotive force (EMF), average torque of both the modula...

  6. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity.

    Science.gov (United States)

    Geng, Daxi; Zhang, Deyuan; Xu, Yonggang; He, Fengtao; Liu, Dapeng; Duan, Zuoheng

    2015-05-01

    The rotary ultrasonic elliptical machining (RUEM) has been recognized as a new effective process to machining circular holes on CFRP materials. In CFRP face machining, the application of grinding tools is restricted for the tool clogging and the machined surface integrity. In this paper, we proposed a novel approach to extend the RUEM process to side milling of CFRP for the first time, which kept the effect of elliptical vibration in RUEM. The experiment apparatus was developed, and the preliminary experiments were designed and conducted, with comparison to conventional grinding (CG). The experimental results showed that when the elliptical vibration was applied in RUEM, a superior cutting process can be obtained compared with that in CG, including providing reduced cutting forces (2-43% decrement), an extended tool life (1.98 times), and improved surface integrity due to the intermittent material removal mechanism and the excellent chip removal conditions achieved in RUEM. It was concluded that the RUEM process is suitable to mill flat surface on CFRP composites.

  7. Effect of Fe- and Si-Enriched Secondary Precipitates and Surface Roughness on Pore Formation on Aluminum Plate Surfaces During Anodizing

    Science.gov (United States)

    Zhu, Yuanzhi; Wang, Shizhi; Yang, Qingda; Zhou, Feng

    2014-09-01

    Two twin roll casts (TRCs) and one hot rolled (HR) AA 1235 aluminum alloy plates with different microstructures are prepared. The plates were electrolyzed in a 1.2 wt% HCl solution with a voltage of 21 V and a current of 1.9 mA. The shape, size, and number of pores formed on the surfaces of these plates were analyzed and correlated with the microstructures of the plates. It is found that pores are easier to form on the alloy plates containing subgrains with a lower dislocation density inside the subgrains, rather than along the grain boundaries. Furthermore, Fe- and Si-enriched particles in the AA1235 aluminum alloys lead to the formation of pores on the surface during electrolyzing; the average precipitate sizes of 4, 3.5, and 2 μm in Alloy 1#, Alloy 2# and Alloy 3# result in the average pore sizes of 3.78, 2.76, and 1.9 μm on the surfaces of the three alloys, respectively; The G.P zone in the alloy also facilitates the surface pore formation. High-surface roughness enhances the possibility of entrapping more lubricants into the plate surface, which eventually blocks the formation of the pores on the surface of the aluminum plates in the following electrolyzing process.

  8. Proceedings of the first workshop on Peripheral Machine Interfaces: Going beyond traditional surface electromyography

    Directory of Open Access Journals (Sweden)

    Claudio eCastellini

    2014-08-01

    Full Text Available One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive PNS-Machine Interfaces was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PNS-Machine Interface (PMI has been selected to denote human-machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the peripheral nervous system (PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.

  9. Single step method to fabricate durable superliquiphobic coating on aluminum surface with self-cleaning and anti-fogging properties.

    Science.gov (United States)

    Nanda, D; Varshney, P; Satapathy, M; Mohapatra, S S; Bhushan, B; Kumar, A

    2017-12-01

    The development of self-cleaning and anti-fogging durable superliquiphobic coatings for aluminum surfaces has raised tremendous interest in materials science. In this study, a superliquiphobic coating is fabricated on an aluminum surface by a single-step dip-coating method using 1H,1H,2H,2H-Perfluorooctyltrichlorosilane-modified SiO2 nanoparticles. The successful implementation of the aforesaid coating in different applications requires extensive investigations of its characteristics and stability. To understand the properties of the coating, surface morphology, contact angle, self-cleaning, anti-fogging, and water repellency were investigated under perturbation conditions. Additionally, the dynamics of water and oil on the coated sample also were studied. Furthermore, the durability of the coating also was examined by performing thermal, chemical, and mechanical stability tests. It was found that the coating is superliquiphobic for water, ethylene glycol, glycerol and hexadecane, and shows thermal, chemical, and mechanical stability. Further, it exhibits self-cleaning and anti-fogging properties. This approach can be applied to any size and shape aluminum surface; thus, it has great industrial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Imaging textural variation in the acoustoelastic coefficient of aluminum using surface acoustic waves.

    Science.gov (United States)

    Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G

    2015-11-01

    Much interest has arisen in nonlinear acoustic techniques because of their reported sensitivity to variations in residual stress, fatigue life, and creep damage when compared to traditional linear ultrasonic techniques. However, there is also evidence that the nonlinear acoustic properties are also sensitive to material microstructure. As many industrially relevant materials have a polycrystalline structure, this could potentially complicate the monitoring of material processes when using nonlinear acoustics. Variations in the nonlinear acoustoelastic coefficient on the same length scale as the microstructure of a polycrystalline sample of aluminum are investigated in this paper. This is achieved by the development of a measurement protocol that allows imaging of the acoustoelastic response of a material across a samples surface at the same time as imaging the microstructure. The development, validation, and limitations of this technique are discussed. The nonlinear acoustic response is found to vary spatially by a large factor (>20) between different grains. A relationship is observed when the spatial variation of the acoustoelastic coefficient is compared to the variation in material microstructure.

  11. Machine integrated optical measurement of honed surfaces in presence of cooling lubricant

    Science.gov (United States)

    Schmitt, R.; König, N.; Zheng, H.

    2011-08-01

    The measurement of honed surfaces is one of the most important tasks in tribology. Although many established techniques exist for texture characterization, such as SEM, tactile stylus or white-light interferometry, none of them is suited for a machine integrated measurement. Harsh conditions such as the presence of cooling lubricant or vibrations prohibit the use of commercial sensors inside a honing machine. Instead, machined engine blocks need time-consuming cleaning and preparation while taken out of the production line for inspection. A full inspection of all produced parts is hardly possible this way. Within this paper, an approach for a machine-integrated measurement is presented, which makes use of optical sensors for texture profiling. The cooling lubricant here serves as immersion medium. The results of test measurements with a chromatic-confocal sensor and a fiber-optical low-coherence interferometer show the potential of both measuring principles for our approach. Cooling lubricant temperature and flow, scanning speed and measurement frequency have been varied in the tests. The sensor with best performance will later be chosen for machine integration.

  12. Machine integrated optical measurement of honed surfaces in presence of cooling lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R; Koenig, N; Zheng, H, E-mail: n.koenig@wzl.rwth-aachen.de [Laboratory for Machine Tools and Production Engineering of RWTH Aachen University, Steinbachstr. 19, 52074 Aachen (Germany)

    2011-08-19

    The measurement of honed surfaces is one of the most important tasks in tribology. Although many established techniques exist for texture characterization, such as SEM, tactile stylus or white-light interferometry, none of them is suited for a machine integrated measurement. Harsh conditions such as the presence of cooling lubricant or vibrations prohibit the use of commercial sensors inside a honing machine. Instead, machined engine blocks need time-consuming cleaning and preparation while taken out of the production line for inspection. A full inspection of all produced parts is hardly possible this way. Within this paper, an approach for a machine-integrated measurement is presented, which makes use of optical sensors for texture profiling. The cooling lubricant here serves as immersion medium. The results of test measurements with a chromatic-confocal sensor and a fiber-optical low-coherence interferometer show the potential of both measuring principles for our approach. Cooling lubricant temperature and flow, scanning speed and measurement frequency have been varied in the tests. The sensor with best performance will later be chosen for machine integration.

  13. Ensuring uniformity of strengthening for machine parts surfaces by shot-peening

    Directory of Open Access Journals (Sweden)

    Z.A. Stotsko

    2010-11-01

    Full Text Available Purpose: of this paper is developing the mathematical models of shot-peening, in which is reflected moving shot-peening head or machine parts surfaces during treating that will achieve uniformity of treatment machine parts.Design/methodology/approach: The main methods used for the theoretical research are mathematical modelling, integral calculus, fundamentals of analytic geometry, probability theory. It is used approved enough and well known numerical methods for calculations after mathematical models.Findings: Method of mathematical modeling for shot-peening is developed based on the energy conception. Mathematical model in which is reflected moving shot-peened head or machine parts surfaces during treating is created. It allows forecasting the characteristics of surface quality depending on the technological modes of treatment.Research limitations/implications: It is planned developing and improving the methods of shot-peening mathematical modeling in future research by extending theirs for the curvilinear treated surfaces, which has movement relative to the nozzle of shot-peening head after the different laws of motion, and for different kinds of materials, especially for metal joint endoprosthesis biomaterials.Practical implications: has the applied software, elaborated on the basis of the models, that allows providing for automation of calculations of the characteristics of surface quality depending on the technological modes of treatment.Originality/value: It is pioneered receiving functional dependences in which is reflected moving shot-peened head or machine parts surfaces during treating. Created functional dependences takes into account the distribution of characteristics of working medium (mass and velocity all along the cross-sections of shot blast.

  14. Surface scanning inspection system particle detection dependence on aluminum film morphology

    Science.gov (United States)

    Prater, Walter; Tran, Natalie; McGarvey, Steve

    2012-03-01

    Physical vapor deposition (PVD) aluminum films present unique challenges when detecting particulate defects with a Surface Scanning Inspection System (SSIS). Aluminum (Al) films 4500Å thick were deposited on 300mm particle grade bare Si wafers at two temperatures using a Novellus Systems INOVA® NExT,.. Film surface roughness and morphology measurements were performed using a Veeco Vx310® atomic force microscope (AFM). AFM characterization found the high deposition temperature (TD) Al roughness (Root Mean Square 16.5 nm) to be five-times rougher than the low-TD Al roughness (rms 3.7 nm). High-TD Al had grooves at the grain boundaries that were measured to be 20 to 80 nm deep. Scanning electron microscopy (SEM) examination, with a Hitachi RS6000 defect review SEM, confirmed the presence of pronounced grain grooves. SEM images established that the low-TD filmed wafers have fine grains (0.1 to 0.3 um diameter) and the high-TD film wafers have fifty-times larger equiaxed plateletshape grains (5 to 15 um diameter). Calibrated Poly-Styrene Latex (PSL) spheres ranging in size from 90 nm to 1 μm were deposited in circular patterns on the wafers using an aerosol deposition chamber. PSL sphere depositions at each spot were controlled to yield 2000 to 5000 counts. A Hitachi LS9100® dark field full wafer SSIS was used to experimentally determine the relationship of the PSL sphere scattered light intensity with S-polarized light, a measure of scattering cross-section, with respect to the calibrated PSL sphere diameter. Comparison of the SSIS scattered light versus PSL spot size calibration curves shows two distinct differences. Scattering cross-section (intensity) of the PSL spheres increased on the low-TD Al film with smooth surface roughness and the low-TD Al film defect detection sensitivity was 126 nm compared to 200 nm for the rougher high- TD Al film. This can be explained by the higher signal to noise attributed to the smooth low-TD Al. Dark field defect detection on

  15. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  16. Effects of the technolology of machining on the surface quality of selected wood

    Directory of Open Access Journals (Sweden)

    Michal Svatoš

    2011-01-01

    Full Text Available The paper deals with the dependence of using basic types of machining technologies on the surface quality of most common wood. In wood-processing industry, cutting by circular-saw blades and milling are the most often used technology to machining wood materials. The quality and accuracy of the machining are derived from the machine construction, shape and the amount of saw teeth, kind of wood species, feed per tooth and the size of the tool. Research was carried out on an experimental milling stand at setting various feed speeds and the spindle rpm, on an experimental cutting stand at using three types of circular-saw blades in the field of optimum and resonance rpm. Evaluation of the surface quality was carried out on a top multisensor apparatus Taylor Hobson-Talysurf CLI 1000 using a contactless method by a confocal sensor. Software equipment of a powerful computer was provided by the Talymap platinum program. Tree species were evaluated generally from the aspect of roughness and waviness altogether. An expert evaluation is carried out from two aspects. The first aspect is selection of the best technology for actual wood and the second aspect is selection of the best species for the actual technology. Particular relationships between wood and technology are evidently best described by graphs.

  17. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water.

    Science.gov (United States)

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Deng, Yang

    2015-06-12

    Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM) as a pretreatment prior to polyvinylidene fluoride (PVDF) microfiltration (MF) membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW) distributions of NOM in the tested surface raw water were concentrated at 3-5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3-5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2-30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM) image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  18. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-06-01

    Full Text Available Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM as a pretreatment prior to polyvinylidene fluoride (PVDF microfiltration (MF membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  19. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    Science.gov (United States)

    Bagheri, Hossein; Aghajani, Farzaneh

    2015-01-01

    Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). Conclusions: The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372

  20. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.

    Science.gov (United States)

    Takino, Hideo; Yamamura, Kazuya; Sano, Yasuhisa; Mori, Yuzo

    2012-01-20

    We propose a plasma chemical vaporization machining device with a hemispherical tip electrode for optical fabrication. Radio-frequency plasma is generated close to the electrode under atmospheric conditions, and a workpiece is scanned relative to the stationary electrode under three-axis motion control to remove target areas on a workpiece surface. Experimental results demonstrate that surface removal progresses although process gas is not forcibly supplied to the plasma. The correction of shape errors on conventionally polished spheres is performed. As a result, highly accurate smooth surfaces with the desired rms shape accuracy of 3 nm are successfully obtained, which confirms that the device is effective for the fabrication of optics.

  1. Tribological properties of aluminum lubricated with palm olein at different load using pin-on-disk machine

    Directory of Open Access Journals (Sweden)

    N. Nuraliza

    2016-06-01

    Full Text Available The increased global demand for biofuels has prompted the search for alternatives to edible oils for bio-lubricant production. Today, vegetable oil much desired for its application as lubricant in various application because it is a renewable resources and has high biodegradability compared mineral oil.Thus,this paper presents an experimental analysis on the tribological behavior for aluminum alloy materials under the effect of sliding speed and different loads, where the apparatus pin on disk has been used to study the performance of tribological performance. The experiments had been performed under different parameters, different loads (10N, 50N, 100N, and constant speeds at 3 m/s. This paper evaluates through pin on disc tribotester using hemispherical pin as workpiece material. The test was tested using double fractionated palm olein (DFPO as lubricating oil. The results show that load 100N show high coefficient of friction compared to 10 N and 50N. Authors found that palm olein has better performance properties in terms of friction reduction (coefficient of friction and wear resistance (anti-wear properties at low and high speed. Pin that lubricated with palm olein showed small wear scar diameter compared to the mineral based oil. Therefore, palm olein has possibility to use as a lubricant of mating components.

  2. Analyzing the Effect of Machining Parameters Setting to the Surface Roughness during End Milling of CFRP-Aluminium Composite Laminates

    Directory of Open Access Journals (Sweden)

    M. Nurhaniza

    2016-01-01

    Full Text Available The quality of the machining is measured from surface finished and it is considered as the most important aspect in composite machining. An appropriate and optimum machining parameters setting is crucial during machining operation in order to enhance the surface quality. The objective of this research is to analyze the effect of machining parameters on the surface quality of CFRP-Aluminium in CNC end milling operation with PCD tool. The milling parameters evaluated are spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal arrays, signal-to-noise (S/N ratio, and analysis of variance (ANOVA are employed to analyze the effect of these cutting parameters. The analysis of the results indicates that the optimal cutting parameters combination for good surface finish is high cutting speed, low feed rate, and low depth of cut.

  3. Continuous Cast Forming Machine with Vertical Core-Filling for Copper Cladding Aluminum Composite Bars%铜包铝复合扁排立式充芯连铸设备的研制

    Institute of Scientific and Technical Information of China (English)

    张建宇; 王屹峰; 万长清; 曾祥勇; 蔡鹏; 吴春京

    2013-01-01

    A new continuous core-filling casting machine for copper cladding aluminum composite bars was designed and produced. The machine installed the upper and bottom graphite crucibles in the vertical direction for heating inner core of aluminum and the outer layer of copper. During continuous casting, copper tube was formed in the crystallizer continuously firstly, then liquid aluminum was injected into the copper tube through mandrel. Finally, the metallurgical bonded layer was formed by inter-diffusion between copper and aluminum. The copper cladding aluminum composite bars with the core thickness of 10 mm and the sheath thickness of 2 mm and the width of 60 mm were fabricated successfully by the machine.%设计和制造了一台制备铜包铝复合扁排的立式充芯连铸试验设备,该设备的特点是在高度方向上设置上下两个加热坩埚分别熔化铜和铝;外层铜管在结晶器中首先形成,铝液随之通过充芯管充填到铜管中,铜、铝界面通过互扩散实现冶金结合.利用此设备,成功地连铸出铜层厚度为2 mm,芯部铝厚度为10 mm,宽为60 mm的铜包铝复合扁排.

  4. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  5. Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining

    Science.gov (United States)

    Prakash, Chander; Kansal, H. K.; Pabla, B. S.; Puri, Sanjeev

    2015-09-01

    Herein, a β-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (β-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to β-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.

  6. Investigation and Evaluation on Influence of Machining (CNC Conditions on Surface Quality of Paulownia Wood

    Directory of Open Access Journals (Sweden)

    Mohammad Aghajani

    2012-01-01

    Full Text Available The aim of this study was to investigate the effective factors on surface quality of paulownia wood during machining by advanced computer numerical controled (CNC machine. For this aim paulownia logs were provided and were converted to proper sizes (2.5 x 10 x 15 cm and then air dried. The Variable of this study were cutting speed (8.37 and 15.07 m/s, feeding rate (6 and 12 m/min, cutting depth (1and 5 mm, cutting method (down and up-milling and cutting pattern (tangential and radial. Roughness of cut specimens edge were evaluated by profilometer method according to ISO 13565 standard. For evaluation of surface quality, average roughness (Ra, maximum roughness (R max, valley roughness (Rv and peak roughness (Rp were used. Degrees of effectiveness of the parameters were evaluated by fractional factorial design as completely random design at confidence level of 95%. The result showed that cutting speed, cutting method and feed rate are influencive factors on surface quality of machined specimens and their effects were significant. With increasing cutting speed and decreasing feeding rate the roughness decreased and surface quality improved. In up-milling cutting method, degree of roughness was higher and consequently surface quality was inferior. It is to be noted that cutting method in comparison to other factors had the high influence on surface quality. The rest variables did now have independent influence on surface quality at 95% Confidence level. This study for achieving the optimum surface quality recommends that cutting speed of 15.07 m/s, feeding rate of 6 m/min, cutting method of down-milling and cutting depth of 1 mm for tangential cross section.

  7. Electrochemical machining process for forming surface roughness elements on a gas turbine shroud

    Science.gov (United States)

    Lee, Ching-Pang; Johnson, Robert Alan; Wei, Bin; Wang, Hsin-Pang

    2002-01-01

    The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

  8. Microstructural Analysis of Machined Surface Integrity in Drilling a Titanium Alloy

    Science.gov (United States)

    Varote, Nilesh; Joshi, Suhas S.

    2017-08-01

    Severe mechanical deformation coupled with high heat generation prevails during drilling. Establishing correlations between microstructure and surface integrity has always been a challenge, which is the main focus of this work. High-speed drilling experiments were performed by varying speed, feed rate and machining environments (dry and wet). The changes in microhardness, residual stresses and microstructure on the drilled surfaces were analyzed. A dominant mechanical deformation is found to lower grain size and increase grain boundary misorientation angle, whereas under a dominant thermal deformation higher grain size and lower grain boundary misorientation angle was evident. In dry drilling, a combined effect of temperature and mechanical deformation, the deformed and then recrystallized grains are observed to have < {0001} \\rangle orientation. The drilling parameters that increase strain rate aggravate machining-affected zone, whereas heat accumulation increases heat-affected zone, only in dry drilling. An empirical model for predicting grain size has been developed.

  9. Characterization of Aluminum-Based-Surface Matrix Composites with Iron and Iron Oxide Fabricated by Friction Stir Processing

    Directory of Open Access Journals (Sweden)

    Essam R. I. Mahmoud

    2016-06-01

    Full Text Available Surface composite layers were successfully fabricated on an A 1050-H24 aluminum plate by dispersed iron (Fe and magnetite (Fe3O4 particles through friction stir processing (FSP. Fe and Fe3O4 powders were packed into a groove of 3 mm in width and 1.5 mm in depth, cut on the aluminum plate, and covered with an aluminum sheet that was 2-mm thick. A friction stir processing (FSP tool of square probe shape, rotated at a rate of 1000–2000 rpm, was plunged into the plate through the cover sheet and the groove, and moved along the groove at a travelling speed of 1.66 mm/s. Double and triple passes were applied. As a result, it is found that the Fe particles were homogenously distributed in the whole nugget zone at a rotation speed of 1000 rpm after triple FSP passes. Limited interfacial reactions occurred between the Fe particles and the aluminum matrix. On the other hand, the lower rotation speed (1000 rpm was not enough to form a sound nugget when the dispersed particles were changed to the larger Fe3O4. The Fe3O4 particles were dispersed homogenously in a sound nugget zone when the rotation speed was increased to 1500 rpm. No reaction products could be detected between the Fe3O4 particles and the aluminum matrix. The saturation magnetization (Ms of the Fe-dispersed nugget zone was higher than that of the Fe3O4-dispersed nugget zone. Moreover, there were good agreement between the obtained saturation magnetization values relative to that of pure Fe and Fe3O4 materials and the volume content of the dispersed particles in the nugget zone.

  10. Microstructure & performance of laser cladding on pick surface of coal mining machine

    Institute of Scientific and Technical Information of China (English)

    SUN Hui-lai; ZHAO Fang-fang; ZHANG Shou-xin; QI Xiang-yang

    2006-01-01

    Laser cladding of 316 L steel powders on pick substrate of coal mining machine was conducted, and microstructure of laser cladding coating was analyzed. The micro-hardness of laser cladding coating was examined. The results show that microstructure of laser cladding zone is exiguous dentrite, and there are hard spots dispersible distribution in the laser cladding zone. Performances of erode-resistant, surface micro-hardness and wear-resistant are improved obviously.

  11. Artificial immune algorithm implementation for optimized multi-axis sculptured surface CNC machining

    Science.gov (United States)

    Fountas, N. A.; Kechagias, J. D.; Vaxevanidis, N. M.

    2016-11-01

    This paper presents the results obtained by the implementation of an artificial immune algorithm to optimize standard multi-axis tool-paths applied to machine free-form surfaces. The investigation for its applicability was based on a full factorial experimental design addressing the two additional axes for tool inclination as independent variables whilst a multi-objective response was formulated by taking into consideration surface deviation and tool path time; objectives assessed directly from computer-aided manufacturing environment A standard sculptured part was developed by scratch considering its benchmark specifications and a cutting-edge surface machining tool-path was applied to study the effects of the pattern formulated when dynamically inclining a toroidal end-mill and guiding it towards the feed direction under fixed lead and tilt inclination angles. The results obtained form the series of the experiments were used for the fitness function creation the algorithm was about to sequentially evaluate. It was found that the artificial immune algorithm employed has the ability of attaining optimal values for inclination angles facilitating thus the complexity of such manufacturing process and ensuring full potentials in multi-axis machining modelling operations for producing enhanced CNC manufacturing programs. Results suggested that the proposed algorithm implementation may reduce the mean experimental objective value to 51.5%

  12. Dental enamel: qualitative evaluation of the surface after application of aluminum oxide (microetching using the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    SILVA Paulo César Gomes

    2000-01-01

    Full Text Available Dentistry nowadays can count on a wide range of resources to treat patients. With the development of adhesive materials and several newly introduced restorative techniques, the dental structure can be subjected to different sorts of surface treatment. The use of aluminum oxide flow at high speed to remove dental structure was described by Black in 1945, however, the literature regarding the use of aluminum oxide jet is still scarce, as far as the alterations occurring in the dental structure are concerned. At the present, with the development of new abrasive air equipment, microabrasion has been added to several adhesive restorative techniques, in the preparation of the dental surface and of inner surfaces of indirect restorations, which will receive the application of adhesive materials. The aim of this study was to assess the alterations produced by abrasive air applied on the dental enamel by means of electronic microscopy, taking into consideration micromorphological surface alterations. The importance of this study is based on the fact that alternative surface treatments both chemical and mechanical could be introduced in surface priming, including dental enamel priming.

  13. Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition

    Science.gov (United States)

    Ogawa, Fumio; Masuda, Chitoshi

    2015-01-01

    The van der Waals agglomeration of carbon nanofibers (CNFs) and the weight difference and poor wettability between CNFs and aluminum hinder the fabrication of dense CNF-reinforced aluminum matrix composites with superior properties. In this study, to improve this situation, CNFs were coated with aluminum by a simple and low-cost in situ chemical vapor deposition (in situ CVD). Iodine was used to accelerate the transport of aluminum atoms. The coating layer formed by the in situ CVD was characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Fourier transform-infrared spectroscopy, and x-ray photoelectron spectroscopy. The results confirmed that the CNFs were successfully coated with aluminum. The composites were fabricated to investigate the effect of the aluminum coating formed on the CNFs. The dispersion of CNFs, density, Vickers micro-hardness and thermal conductivity of the composites fabricated by powder metallurgy were improved. Pressure-less infiltration experiments were conducted to fabricate composites by casting. The results demonstrated that the wettability and infiltration were dramatically improved by the aluminum coating layer on CNFs. The aluminum coating formed by the in situ CVD technique was proved to be effective for the fabrication of CNF-reinforced aluminum matrix composites.

  14. DIAGNOSTICS OF WORKPIECE SURFACE CONDITION BASED ON CUTTING TOOL VIBRATIONS DURING MACHINING

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2015-05-01

    Full Text Available The paper presents functional relationships between surface geometry parameters, feed and vibrations level in the radial direction of the workpiece. Time characteristics of the acceleration of cutting tool vibration registered during C45 steel and stainless steel machining for separate axes (X, Y, Z were presented as a function of feedrate f. During the tests surface geometric accuracy assessment was performed and 3D surface roughness parameters were determined. The Sz parameter was selected for the analysis, which was then collated with RMS vibration acceleration and feedrate f. The Sz parameter indirectly provides information on peak to valley height and is characterised by high generalising potential i.e. it is highly correlated to other surface and volume parameters of surface roughness. Test results presented in this paper may constitute a valuable source of information considering the influence of vibrations on geometric accuracy of elements for engineers designing technological processes.

  15. Inner surface roughness of complete cast crowns made by centrifugal casting machines.

    Science.gov (United States)

    Ogura, H; Raptis, C N; Asgar, K

    1981-05-01

    Six variables that could affect the surface roughness of a casting were investigated. The variables were (1) type of alloy, (2) mold temperature, (3) metal casting temperature, (4) casting machine, (5) sandblasting, and (6) location of each section. It was determined that the training portion of a complete cast crown had rougher surfaces than the leading portion. Higher mold and casting temperatures produced rougher castings, and this effect was more pronounced in the case of the base metal alloy. Sandblasting reduced the roughness, but produced scratched surfaces. Sandblasting had a more pronounced affect on the surface roughness of the base metal alloy cast either at a higher mold temperature or metal casting temperature. The morphology and the roughness profile of the original cast surface differed considerably with the type of alloy used.

  16. Response surface modelling of tool electrode wear rate and material removal rate in micro electrical discharge machining of Inconel 718

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    conductivity and high strength causing it extremely difficult tomachine. Micro-Electrical Discharge Machining (Micro-EDM) is a non-conventional method that has a potential toovercome these restrictions for machining of Inconel 718. Response Surface Method (RSM) was used for modelling thetool Electrode Wear...

  17. Analysis of surface orange peel of aluminum-alloy automobile sheet by using of EBSD and X-ray diffraction

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; Sun Zhifu; Wang Zhiwe; Lu Hongzhou; Zhou Mingbo

    2012-01-01

    The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction (EBSD). The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process. The grain size has significant effect on deformation uniform and texture formation. Coarse grains were easy to produce nonuniform deformation and texture, which would produce surface orange peel after tensile deformation.

  18. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    Science.gov (United States)

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  19. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  20. Uniform surface polished method of complex holes in abrasive flow machining

    Institute of Scientific and Technical Information of China (English)

    A-Cheng WANG; Lung TSAI; Kuo-Zoo LIANG; Chun-Ho LIU; Shi-Hong WENG

    2009-01-01

    Abrasive flow machining(AFM) is an effective method that can remove the recasting layer produced by wire electrical discharge machining(WEDM). However, the surface roughness will not be easily uniform when a complex hole is polished by this method. CFD numerical method is aided to design good passageways to find the smooth roughness on the complex hole in AFM. Through the present method, it reveals that the shear forces in the polishing process and the flow properties of the medium in AFM play the roles in controlling the roughness on the entire surface. A power law model was firstly set up by utilizing the effect of shear rates on the medium viscosities, and the coefficients of the power law would be found by solving the algebraic equation from the relations between the shear rates and viscosities. Then the velocities, strain rates and shear forces of the medium acting on the surface would be obtained in the constant pressure by CFD software. Finally, the optimal mold core put into the complex hole could be designed after these simulations. The results show that the shear forces and strain rates change sharply on the entire surface if no mold core is inserted into the complex hole, whereas they hardly make any difference when the core shape is similar to the complex hole. Three experimental types of mold core were used. The results demonstrate that the similar shape of the mold core inserted into the hole could find the uniform roughness on the surface.

  1. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques.

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-05

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  2. Surface Roughness Prediction Model in Machining of Carbon Steel by PVD Coated Cutting Tools

    Directory of Open Access Journals (Sweden)

    Yusuf Sahin

    2004-01-01

    Full Text Available The surface roughness model in the turning of AISI 1040 carbon steel was developed in terms of cutting speed, feed rate and depth of cut using response surface methodology. Machining tests were carried out using PVD-coated tools under different cutting conditions. The surface roughness equations of cutting tools when machining the carbon steels were achieved by using the experimental data. The results are presented in terms of mean values and confidence levels. The established equation shows that the feed rate was found to be a main influencing factor on the surface roughness. It increased with increasing the feed rate, but decreased with increasing the cutting speed and the depth of cut, respectively. The variance analysis for the second-order model shows that the interaction terms and the square terms were statically insignificant. However, it could be seen that the first-order effect of feed rate was significant while cutting speed and depth of cut was insignificant. The predicted surface roughness of the samples was found to lie close to that of the experimentally observed ones with 95% confident intervals.

  3. Cratering and penetration experiments in aluminum and teflon: Implications for space-exposed surfaces

    Science.gov (United States)

    Hörz, Friedrich

    2012-04-01

    of either crater diameter or penetration-hole size in Al1100 and TeflonFEP targets of arbitrary thickness. We also placed witness plates behind penetrated targets to intercept the down-range debris plume, which is generally a mixture of both target and impactor fragments and melts. These witness plates also reveal that the debris plume systematically and diagnostically depends on D*. Thick targets shed spall debris only, and target thickness must be less than crater depth (Tc) to allow projectile material on the witness plate. Concentric plume patterns, accented by characteristic "hole saw" rings, characterize penetrated Al-targets at D* = 1-10, but they give way to distinctly radial geometries at D* = 10-20. Most of the target debris occupies the periphery of the plume, while the projectile fragments or melts reside in its central parts. The periphery of the plume is also typically more fine-grained than its center. At D* > 50, the exit plume is dominated by solid projectile fragments that progressively coagulate and overlap with each other, giving rise to compound craters. The latter have irregular crater interiors on account of the heterogeneous mass distribution of a collisionally produced, aggregate impactor. Similarly, complex craters are observed on LDEF and Stardust and they are produced by aggregate cosmic-dust particles containing large, dense components within a relatively low-density, fine-grained matrix. The witness-plate observations can also be used to address the enigmatic clustering of impact sites observed on Stardust's aerogel and aluminum surfaces. We suggest that this clustering is difficult to produce by the collision of particles from comet Wild 2 with the Stardust spacecraft, and that it is more likely due to particle disaggregation in the comet's coma.

  4. Optimizing the Machining Parameters for Minimum Surface Roughness in Turning of GFRP Composites Using Design of Experiments

    Institute of Scientific and Technical Information of China (English)

    K. Palanikumar; L.Karunamoorthy; R.Karthikeyan

    2004-01-01

    In recent years, glass fiber reinforced plastics (GFRP) are being extensively used in variety of engineering applications in many different fields such as aerospace, oil, gas and process industries. However, the users of FRP are facing difficulties to machine it, because of fiber delamination, fiber pull out, short tool life, matrix debonding, burning and formation of powder like chips. The present investigation focuses on the optimization of machining parameters for surface roughness of glass fiber reinforced plastics (GFRP) using design of experiments (DoE). The machining parameters considered were speed, feed, depth of cut and workpiece (fiber orientation). An attempt was made to analyse the influence of factors and their interactions during machining. The results of the present study gives the optimal combination of machining parameters and this will help to improve the machining requirements of GFRP composites.

  5. DECREASING HEAT TREATMENT COST OF SURFACE HARDENED MACHINE PARTS BY CASE CARBURIZATION

    Directory of Open Access Journals (Sweden)

    Ahmet Çetin CAN

    1997-03-01

    Full Text Available Machine parts are surface hardened to increase fatigue strength and wear resistance. Carburization is the most common surface hardening process in practice. In order to have optimum properties, a machine part must have certain hardness depth. To obtain required hardness depth, the parts must be kept in a carburizing medium at certain temperature for certain time. As the time and temperature is increased hardness depth increases. In practice, carburization temperature is about 930 °C. Machine parts are kept at this temperature for required time depending on required hardness depth. The increase of temperature reduces treatment time, considerably. But, heat treaters do not tend to use high temperatures due to the concern of distortion of parts, and deterioration of mechanical properties. In this study, the increase of temperature for reducing carburization time in salt bath, and consequently change of mechanical properties have been investigated using DIN C20 case carburization steel. As a result of experiments, it was found that mechanical properties were not effected negatively.

  6. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    Science.gov (United States)

    Bertram, F.; Zhang, F.; Evertsson, J.; Carlà, F.; Pan, J.; Messing, M. E.; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.

    2014-07-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  7. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F., E-mail: florian.bertram@sljus.lu.se; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F.; Pan, J. [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, 10044 Stockholm (Sweden); Carlà, F. [ESRF, B. P. 220, 38043 Grenoble (France); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden)

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  8. Development of an automatic weld surface appearance inspection system using machine vision

    Institute of Scientific and Technical Information of China (English)

    Lin Sanbao; Fu Xibin; Fan Chenglei; Yang Chunli; Luo Lu

    2009-01-01

    In this paper, an automatic inspection system for weld surface appearance using machine vision has been developed to recognize weld surface defects such as porosities, cracks, etc. It can replace conventional manual visual inspection method, which is tedious, time-consuming, subjective, experience-depended, and sometimes biased. The system consists of a CCD camera, a self-designed annular light source, a sensor controller, a frame grabbing card, a computer and so on. After acquiring weld surface appearance images using CCD, the images are preprocessed using median filtering and a series of image enhancement algorithms. Then a dynamic threshold and morphology algorithms are applied to segment defect object. Finally, defect features information is obtained by eight neighborhoods boundary chain code algorithm. Experimental results show that the developed system is capable of inspecting most surface defects such as porosities, cracks with high reliability and accuracy.

  9. Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography.

    Science.gov (United States)

    Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M; Rupp, Rüdiger; Scheme, Erik

    2014-01-01

    One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)-Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human-machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.

  10. Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography

    Science.gov (United States)

    Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B.; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M.; Rupp, Rüdiger; Scheme, Erik

    2014-01-01

    One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it. PMID:25177292

  11. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  12. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    Science.gov (United States)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  13. The influence of cooling techniques on cutting forces and surface roughness during cryogenic machining of titanium alloys

    Science.gov (United States)

    Wstawska, Iwona; Ślimak, Krzysztof

    2016-12-01

    Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter) values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.

  14. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    Science.gov (United States)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  15. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

    Science.gov (United States)

    Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco

    2017-06-01

    Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

  16. Research on automatic inspection system for defects on precise optical surface based on machine vision

    Institute of Scientific and Technical Information of China (English)

    WANG Xue; XIE Zhi-jiang

    2006-01-01

    In manufacture of precise optical products, it is important to inspect and classify the potential defects existing on the products' surfaces after precise machining in order to obtain high quality in both functionality and aesthetics. The existing methods for detecting and classifying defects all are low accuracy or efficiency or high cost in inspection process. In this paper, a new inspection system based on machine vision has been introduced, which uses automatic focusing and image mosaic technologies to rapidly acquire distinct surface image, and employs Case-Based Reasoning(CBR)method in defects classification. A modificatory fuzzy similarity algorithm in CBR has been adopted for more quick and robust need of pattern recognition in practice inspection. Experiments show that the system can inspect surface diameter of 500mm in half an hour with resolving power of 0.8μm diameter according to digs or 0.5μm transverse width according to scratches. The proposed inspection principles and methods not only have meet manufacturing requirements of precise optical products, but also have great potential applications in other fields of precise surface inspection.

  17. Error Analysis and Its Offset on the NC Lathe Machine in Cutting a Semi-Sphere Surface

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu-cai; LI Cheng-zhi; LIU Chang-rong; LIU Tao; GUO Xiu-hua

    2007-01-01

    This paper analyzed the errors that occurred by leaving the shape of the cutting edge out of consideration on a NC lathe machine in cutting a semi-sphere surface and brought forward a method to offset these errors and the correct calculated formula for some parameters on the basis of experiments. It has increased the manufacturing accuracy of the semi-sphere surface on the NC lathe machine.

  18. Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    Resistance spot welding (RSW) of aluminum alloys implies a major problem of inconsistent quality from weld to weld due to problems of varying thickness of the oxide layer. The high resistivity of oxide layer causes strong heat development, which has significant influence on electrode life and weld...

  19. Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces

    Directory of Open Access Journals (Sweden)

    Taro Yoshikawa

    2016-11-01

    Full Text Available Electrostatic self-assembly of diamond nanoparticles (DNPs onto substrate surfaces (so-called nanodiamond seeding is a notable technique, enabling chemical vapor deposition (CVD of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar c-axis oriented sputtered aluminum nitride (AlN film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.

  20. Conceptual Design of the Aluminum Reflector Antenna for DATE5

    Science.gov (United States)

    Qian, Yuan; Kan, Frank W.; Sarawit, Andrew T.; Lou, Zheng; Cheng, Jing-Quan; Wang, Hai-Ren; Zuo, Ying-Xi; Yang, Ji

    2016-08-01

    DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.

  1. An investigation on surface roughness of granite machined by abrasive waterjet

    Indian Academy of Sciences (India)

    Gokhan Aydin; Izzet Karakurt; Kerim Aydiner

    2011-07-01

    Abrasive waterjet (AWJ) cutting is an emerging technology which enables the shaping of practically all engineering materials. However, AWJ cutting may cause roughness and waviness on the cut surface. This significantly affects the dimensional accuracy of the machined part and the quality of surface finish. In this study, the surface roughness of three granites is experimentally investigated for varying process parameters in abrasive waterjet. The philosophy of the Taguchi design is followed in the experimental study. Effects of the control (process) factors on the surface roughness are presented in terms of the mean of means responses. Additionally, the data obtained are evaluated statistically using the analysis of variance (ANOVA) to determine significant process parameters affecting the surface roughness. Furthermore, effects of the material properties on the surface roughness are assessed. It was statistically found that the water pressure and the abrasive flow rate are the most significant factors influencing the surface roughness of granites. Additionally, a consistent relationship between the material grain size and surface roughness of the granites was observed.

  2. 铝基体超疏水表面结冰结霜特性研究%Characteristics of Ice and Frost Formation on Superhydrophobic Surfaces on Aluminum Substrates

    Institute of Scientific and Technical Information of China (English)

    徐文骥; 宋金龙; 孙晶; 窦庆乐

    2011-01-01

    采用中性电解液,通过电化学加工技术及氟化处理方法制备出铝基体超疏水表面,接触角达160°,滚动角小于5°,并在其上进行了结冰和结霜研究.在不同实验条件下研究超疏水表面的形貌、霜高随时间的变化,并与相同条件下的普通铝表面、吸水性表面进行了对比.结果表明,该超疏水表面经过50多次结霜、除霜后,仍具有很好的超疏水性能,表现出良好的重复性和耐久性;与普通铝表面相比,铝基体超疏水表面具有明显的抗结冰结霜性能,霜晶先出现在四周边缘处并逐渐蔓延到中间,但抑霜能力随着冷表面温度的降低而减小;与吸水性表面相比,超疏水表面在抗结冰结霜的同时能有效抑制表面质量的增加.%The superhydrophobic surface on aluminum substrate with water contact angle of 160° and contact angle hysteresis lower than 5° was fabricated by electrochemical machining with the neutral electrolyte and fluorination, then ice and frost formation on it was studied. The surface topography and frost thickness under different experimental conditions were investigated and compared with the superhydrophobic surface, ordinary aluminum surface and hydrophilic surface, respectively. The experimental results show that the surface still has good hydrophobic properties in reproducibility and durability after SO times frost and defrosting. Moreover, the superhydrophobic surface demonstrates the anti-icing and frosting capability eminently compared with ordinary aluminum surface, frost crystals appear arounding the edge of the superhydrophobic surface firstly, then spread gradually to the entire surface, but the anti-icing and frosting capability will reduce with the decrease of temperature of cold surfaces. Furthermore, the superhydrophbic surface can prevent the increasement of ice mass effectively compared with hydrophilic surface.

  3. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  4. Statistical analysis of surface roughness of machined graphite by means of CNC milling

    Directory of Open Access Journals (Sweden)

    Orquídea Sánchez López

    2016-09-01

    Full Text Available The aim of this research is to analyze the influence of cutting speed, feed rate and cutting depth on the surface finish of grade GSP-70 graphite specimens for use in electrical discharge machining (EDM for material removal by means of Computer Numerical Control (CNC milling with low-speed machining (LSM. A two-level factorial design for each of the three established factors was used for the statistical analysis. The analysis of variance (ANOVA indicates that cutting speed and feed rate are the two most significant factors with regard to the roughness obtained with grade GSP-70 graphite by means of CNC milling. A second order regression analysis was also conducted to estimate the roughness average (Ra in terms of the cutting speed, feed rate and cutting depth. Finally, the comparison between predicted roughness by means of a second order regression model and the roughness obtained by machined specimens considering the combinations of low and high levels of roughness is also presented.

  5. The Use of Response Surface Methodology to Optimize Parameter Adjustments in CNC Machine Tools

    Directory of Open Access Journals (Sweden)

    Shao-Hsien Chen

    2014-01-01

    Full Text Available This paper mainly covers a research intended to improve the circular accuracy of CNC machine tools and the adjustment and analysis of the main controller parameters applied to improve accuracy. In this study, controller analysis software was used to detect the adjustment status of the servo parameters of the feed axis. According to the FANUC parameter manual, the parameter address, frequency, response measurements, and the one-fourth corner acceleration and deceleration measurements of the machine tools were adjusted. The experimental design (DOE was adopted in this study for taking circular measurements and engaging in the planning and selection of important parameter data. The Minitab R15 software was adopted to predict the experimental data analysis, while the seminormal probability map, Plato, and analysis of variance (ANOVA were adopted to determine the impacts of the significant parameter factors and the interactions among them. Additionally, based on the response surface map and contour plot, the optimal values were obtained. In addition, comparison and verification were conducted through the Taguchi method, regression analysis to improved machining accuracy and efficiency. The unadjusted error was 7.8 μm; through the regression analysis method, the error was 5.8 μm and through the Taguchi analysis method, the error was 6.4 μm.

  6. Forecasting of Machined Surface Waviness on the Basis of Self-oscillations Analysis

    Science.gov (United States)

    Belov, E. B.; Leonov, S. L.; Markov, A. M.; Sitnikov, A. A.; Khomenko, V. A.

    2017-01-01

    The paper states a problem of providing quality of geometrical characteristics of machined surfaces, which makes it necessary to forecast the occurrence and amount of oscillations appearing in the course of mechanical treatment. Objectives and tasks of the research are formulated. Sources of oscillation onset are defined: these are coordinate connections and nonlinear dependence of cutting force on the cutting velocity. A mathematical model of forecasting steady-state self-oscillations is investigated. The equation of the cutter tip motion is a system of two second-order nonlinear differential equations. The paper shows an algorithm describing a harmonic linearization method which allows for a significant reduction of the calculation time. In order to do that it is necessary to determine the amplitude of oscillations, frequency and a steady component of the first harmonic. Software which allows obtaining data on surface waviness parameters is described. The paper studies an example of the use of the developed model in semi-finished lathe machining of the shaft made from steel 40H which is a part of the BelAZ wheel electric actuator unit. Recommendations on eliminating self-oscillations in the process of shaft cutting and defect correction of the surface waviness are given.

  7. Study on Surface Engineering of Normalized Steels Subjected To Machine Hardening

    Institute of Scientific and Technical Information of China (English)

    N.Alagurmurthi; K.Palaniradja; V.Soundararajan

    2004-01-01

    Engineering the surfaces of components to improve the life and performance of parts used in automotive and aerospace engineering is the active area of research. Suitable Thermal/Mechanical/Thermo mechanical surface engineerin gtreatments will produce extensive rearrangement of atoms in metals and alloys and corresponding marked variations in Physical, Chemical and Mechanical properties. Among the more important of these treatments are heat treatment processes such as hardening by Quenching, Induction hardening and Case Carburizing which rely on phase transformations to produce desired changes in mechanical properties. Other processes where phase transformation occur are casting, welding and machining etc. [1] Phase transformation may be homogeneous or heterogeneous. Homogeneous involvesrear rangements in the structure of the material taking place simultaneously in all parts of the solid, while the heterogeneous transformation involves structural changes which are more localized. Alternatively they could be called as Isothermal and Nonisothermal transformation. But irrespective of the classification, these transformations alter the structure of the material giving rise to changes in the mechanical and physical properties of the processed material. It is of interest to review some consequences of surface modification in isothermal (Normalizing) and nonisothermal transformations (Machining) of low carbon steels.

  8. Diagnostic measurements on the great machines conditions of lignite surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Helebrant, F.; Jurman, J.; Fries, J. [Technical University of Ostrava, Ostrava-Poruba (Czech Republic)

    2005-07-01

    An analysis of the diagnosis of loading and service dependability of a rail-mounted excavator used in surface lignite mining is described. Wheel power vibrations in electric motor bearings and electric motor input bearings to the gearbox were measured in situ, in horizontal, vertical, and axial directions. The data were analyzed using a mathematical relationship. The results are presented in a loading diagram that shows the deterioration and the acceptable lower bound of machine conditions over time. Work is continuing. 5 refs., 1 fig.

  9. MOUNTABILITY PARTS OF MACHINE WITH ROTATING SURFACE, FITTED WITH POSITIVE CLEARANCE

    Directory of Open Access Journals (Sweden)

    Zbigniew BUDNIAK

    2014-06-01

    Full Text Available In this paper demonstrates the conditions of automatic assembly the parts of machines with rotating surfaces, fitted with positive clearance. Determination of the general condition of asseblability allowed for designation of the acceptable relative displacement and torsion axle, combined parts on the mounting position. The designation of depending allowed for assess the technological capacity of the installation equipment. On the basis of this mathematical model was developed a computer program that allows to determine the effect of geometric, strength and dynamic parameters of the assembly process. The examples of results of numerical calculations are shown in the graphs

  10. Mask synthesis and verification based on geometric model for surface micro-machined MEMS

    Institute of Scientific and Technical Information of China (English)

    LI Jian-hua; LIU Yu-sheng; GAO Shu-ming

    2005-01-01

    Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test results are given.

  11. Analysis of surface roughening behavior of 6063 aluminum alloy by tensile testing of a trapezoidal uniaxial specimen

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang, Xiaosong, E-mail: hitxswang@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Yuan, Shijian [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-30

    To determine the quantitative relationship between surface roughness and strain, the surface roughening behavior of a 6063 aluminum alloy tube was examined by tensile testing of a trapezoidal uniaxial specimen, that can provide a continuous strain distribution after tensile deformation. The surface roughness was measured using a laser scanning confocal microscope to reflect the degree of roughening. The microstructure and surface morphology were examined using electron back-scattered diffraction and in-situ scanning electron microscopy to determine the grain orientation and surface topography evolution. The surface roughness increased with strain when the strain was less than 0.067 and then decreased slightly, with a maximum surface roughness of 23.73 µm. Inhomogeneous deformation at the grain boundaries and inside the grains was enhanced with increasing strain, resulting in an increase of surface roughness when the strain was below a critical value. As the strain increased, a greater number of slip systems contributed to the further deformation. Thus, the strain became more homogeneous, and accordingly, the surface roughness slightly decreased.

  12. FFT and Wavelet-Based Analysis of the Influence of Machine Vibrations on Hard Turned Surface Topographies

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With hard turning, which is an attractive alternative to existing grinding processes, surface quality is of great importance. Signal processing techniques were used to relate workpiece surface topography to the dynamic behavior of the machine tool. Spatial domain frequency analyses based on fast Fourier transform were used to analyze the tool behavior. Wavelet reconstruction was used for profile filtering. The results show that machine vibration remarkably affects the surface topography at small feed rates, but has negligible effect at high feed rates. The analyses also show how to control the surface quality during hard turning.

  13. Tool selection and collision-free in 5-axis numerical control machining of free-form surfaces

    Institute of Scientific and Technical Information of China (English)

    杨长祺; QIN; Datong; 等

    2002-01-01

    The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented.The combination of different cutters is adopt aiming at short machining time and high precision.The optimal small cutter is determined based on the geometric information of the points where a cutter most probably collide with the machined surface.Several larger cutters are slected to machine the surface in order to find the interference-free area.The difference of machining time for this area between the optimal small cutter and the large cutters is calculated.The functional relationship between the machining time and the radius of a cutter is established,by which the optimal number of cutters is obtained.The combination of cutters,which possesses the minimum overall machining time,is selected as the optimal cutter sizes.A case study has demonstrated the validity of the proposed methodology and algorithms.

  14. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  15. Surface Free Energy and Dynamic Wettability of Differently Machined Poplar Woods

    Directory of Open Access Journals (Sweden)

    Zhiyong Qin

    2014-04-01

    Full Text Available The surface free energy and dynamic wettability of wood are important to the performance of its adhesive bonding strength. In this work, the surface free energy of poplar wood samples machined with different processes were calculated by the OWRK (geometric mean and vOCG (acid-base methods, and the dynamic wettability of adhesives on wood samples was studied using the S-D wetting model. The results indicate that the contact angles of reference liquids on rotary wood samples were greater than those on planed or sawn wood, and the rotary wood samples were more hydrophobic. The effect of surface roughness on contact angle was insignificant compared with surface structure morphology. The total surface free energy was almost the same for the planed and sawn wood, as calculated by the OWRK and vOCG methods, and the surface free energy of rotary wood samples was lower than that of planed or sawn wood samples. The initial and equilibrium contact angle increased as the viscosity of adhesive increased for all the wood samples, and the contact angles of rotary wood samples were greater than those of planed or sawn wood; however, the K-value was lower. The wettability of the loose side was higher than that of the tight side. Contact angles decreased when surface free energy increased, while the K-value increased.

  16. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Science.gov (United States)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-02-01

    Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  17. Low Temperature Curing of Hydrogen Silsesquioxane Surface Coatings for Corrosion Protection of Aluminum

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette Hindhede; Møller, Per

    2016-01-01

    Hydrogen Silsesquioxane (HSQ) has shown to be a promising precursor for corrosion protective glass coatings for metallic substrates due to the excellent barrier properties of the films, especially in the application of protective coatings for aluminum in the automotive industry where high chemical...... stability in alkaline environments is required. The coatings have been successfully applied to stainless steel substrates. However the traditional thermal curing of HSQ involves heating to elevated temperatures, which are beyond those applicable for most industrial applications of aluminum. In this study...... low temperature processes are tested and evaluated as possible alternatives to the traditional high temperature cure. Thin HSQ films are deposited onsilicon wafers to model the degree of curing induced by the low temperature methods in comparison to thermal curing.Furthermore, the coatings are applied...

  18. Studies of the structure and properties of Ni-P and Ni-P/Si3N4 surface layers deposited on aluminum by the electroless method

    Directory of Open Access Journals (Sweden)

    M. Trzaska

    2010-11-01

    Full Text Available Purpose: The paper presents the results of studies on the structure and properties of the nickel Ni-P surface layers and composite Ni-P/Si3N4 surface layers deposited on the surfaces of aluminum 1200 (A2 and its 7075 (PA9 alloy by the electroless method.Design/methodology/approach: The aluminum substrate, the sample surfaces were treated by: degreasing, etching and zincking. The composite layers were produced from a disperse Si3N4 ceramic phase with an amorphous structure and nanometric size grains.Findings: The structure of the ceramic disperse phase Si3N4 and the layer materials was determined. The topography and morphology of the layers were examined. The content of the Si3N4 phase in the layer material was determined. The microhardness of the Ni-P and Ni-P/Si3N4 layers and of the substrate material was examined. The adhesion of the nickel phosphorus and composite layers to the aluminum substrate was determined. The results of studies of the corrosion resistance of the layers are presented. The anodic polarization characteristics, corrosion current densities and corrosion potentials were determined. The results of measurements of the impedance characteristics and the counterpart results obtained by modeling with the use of equivalent electrical circuits are presented. Both the nickel Ni-P and composite Ni-P/Si3N4 layers ensure excellent properties of the aluminum products.Practical implications: A good quality of final the nickel Ni-P surface layers and composite Ni-P/Si3N4 surface layers on the surfaces of aluminum are obtained. The surface layers are characterized by high hardness, frictional wear resistance and ensure excellent protection of the aluminum substrate against corrosion.Originality/value: The produced nickel and composite surface layers have show high hardness as well as very good resistances not only to corrosion but also to mechanical wear.

  19. Aluminum surface layer strengthening using intense pulsed beam radiation of substrate film system

    Science.gov (United States)

    Klopotov, A. A.; Ivanov, Yu F.; Vlasov, V. A.; Kondratyuk, A. A.; Teresov, A. D.; Shugurov, V. V.; Petrikova, E. A.

    2016-11-01

    The paper presents formation of the substrate film system (Zr-Ti-Cu/Al) by electric arc spraying of cathode having the appropriate composition. It is shown that the intense beam radiation of the substrate film system is accompanied by formation of the multi-phase state, the microhardness of which exceeds the one of pure A7 aluminum by ≈4.5 times.

  20. Preparation and Surface Analysis of PPY/SDBS Films on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Lisete C. Scienza

    2001-09-01

    Full Text Available Polypyrrole films were generated on high purity aluminum substrates under anodic polarization from aqueous electrolytes comprised of pyrrole and sodium dodecylbenzene sulfonate. The methods employed to characterize the polymer films included scanning electron microscopy, Fourier-transform infrared and X-photoelectron spectroscopy and X-ray diffraction. PPY/SDBS films revealed nodular morphology with occasional appearing of "dendrites", high level of protonation, excess of counter-anions ([S]/[N] > [N+]/[N] and high degrees of disorder.

  1. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...

  2. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  3. Tool-path planning for free-form surface high-speed high-resolution machining using torus cutter

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-han; LI Ru-qiong; WU Zu-yu; CHEN Zhao-neng

    2006-01-01

    In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for highspeed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore,a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated.

  4. Influence of the surface pre-treatment of aluminum on the processes of formation of cerium oxides protective films

    Science.gov (United States)

    Andreeva, R.; Stoyanova, E.; Tsanev, A.; Stoychev, D.

    2016-03-01

    It is known that there is special interest in the contemporary investigations on conversion treatment of aluminum aimed at promoting its corrosion stability, which is focused on electrolytes on the basis of salts of metals belonging to the group of rare-earth elements. Their application is especially attractive, as it enables a successful substitution of the presently applied highly efficient, but at the same time toxic Cr6+-containing electrolytes. The present paper presents a study on the influence of the preliminary alkaline activation and acidic de-oxidation of the aluminum surface on the processes of immersion formation of protective cerium oxides films on Al 1050. The results obtained show that their deposition from simple electrolytes (containing only salts of Ce3+ ions) on the Al surface, treated only in alkaline solution, occurs at a higher rate, which leads to preparing thicker oxide films having a better protective ability. In the cases when the formation of oxide films is realized in a complex electrolyte (containing salts of Ce3+ and Cu2+ ions), better results are obtained with respect to the morphology and protective action of cerium oxides film on samples that have been consecutively activated in alkaline solution and deoxidized in acidic solution. Electrochemical investigations were carried out in a model corrosion medium (0.1 M NaCl); it was shown that the cerium protective films, deposited by immersion, have a cathodic character with regard to the aluminum support and inhibit the occurrence of the depolarizing corrosion process -- the reaction of oxygen reduction.

  5. Mathematical modeling and analysis of WEDM machining parameters of nickel-based super alloy using response surface methodology

    Indian Academy of Sciences (India)

    M P GARG; ANISH KUMAR; C K SAHU

    2017-06-01

    Inconel 625 is one of the most versatile nickel-based super alloy used in the aerospace, automobile, chemical processing, oil refining, marine, waste treatment, pulp and paper, and power industries. Wire electrical discharge machining (WEDM) is the process considered in the present text for machining of Inconel 625 as it can provide an effective solution for machining ultra-hard, high-strength and temperature-resistant materials and alloys, overcoming the constraints of the conventional processes. The present work is mainly focused on the analysis and optimization of the WEDM process parameters of Inconel 625. The four machining parameters, that is, pulse on time, pulse off time, spark gap voltage and wire feed have been varied to investigate their effects onthree output responses, such as cutting speed, gap current, and surface roughness. Response surface methodology was used to develop the experimental models. The parametric analysis-based results revealed that pulse on time and pulse off time were significant, spark gap voltage is the least significant, and wire feed as a single factor is insignificant. Multi-objective optimization technique was employed using desirability approach to obtain theoptimal parameters setting. Furthermore, surface topography in terms of machining parameters revealed that pulse on time and pulse off time significantly deteriorate the surface of the machined samples, which produce thedeeper, wider overlapping craters and globules of debris.

  6. Bi-objective robust optimization of machined surface quality and productivity under vibrations limitation

    Directory of Open Access Journals (Sweden)

    Sahali M.A.

    2015-01-01

    Full Text Available In this contribution, a bi-objective robust optimization of cutting parameters, with the taking into account uncertainties inherent in the tool wear and the tool deflection for a turning operation is presented. In a first step, we proceed to the construction of substitution models that connect the cutting parameters to the variables of interest based on design of experiments. Our two objectives are the best machined surface quality and the maximum productivity under consideration of limitations related to the vibrations and the range of the three cutting parameters. Then, using the developed genetic algorithm that based on a robust evaluation mechanism of chromosomes by Monte-Carlo simulations, the influence and interest of the uncertainties integration in the machining optimization is demonstrated. After comparing the classical and robust Pareto fronts, A surface quality less efficient but robust can be obtained with the consideration of uncontrollable factors or uncertainties unlike that provides the deterministic and classical optimization for the same values of productivity.

  7. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  8. Charpy Impact Response of the Cracked Aluminum Plates Repaired with FML Patches using the Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Faramarz Ashenai Ghasemi

    2016-09-01

    Full Text Available Here, the effect of fiber metal laminate (FMLs patches was studied for repairing of single-sided cracked aluminum plates experimentally to see their response to Charpy impact tests. The main desired parameters were composite patch lay-up, crack length, and crack angle each one in three levels. All experimental attempts generated and followed based on the design of experiments method by using of response surface methodology. The predicted energy absorption values obtained from the model were in good agreement with the experimental results. No matter the specimens were repaired or not, as the crack length was increased the energy absorption of the structure was decreased. The experimental results also showed that for lengthen cracks, increasing of the crack angle had more effect on energy absorption. Also it was observed that the patch lay-up effective on the impact response of the specimens. The more the metal layer was departed from the aluminum plate and the FML patches interfacial surface, the less energy was absorbed in the structure.

  9. Temperature and phase transformations fields during surfacing by welding of CCS machine roll

    Directory of Open Access Journals (Sweden)

    J. Winczek

    2008-08-01

    Full Text Available In work have been presented models of temperature fields and kinetics of phase transformations in continuous casting steel machine roll surfacing spiral welding sequence with swinging motion of welding head. The temperature field was determined by analytical solution for massive body heated by moving voluminal heat source. The progress of diffusional phase transformations was described basing on equation of kinetics JMA-K and Koistinen-Marburger’s for martensitic transfomation. Deliberations were illustrated by computational example of surfaced roll made from steel 13CrMo4. The temperature field and structural components fraction was calcualated in section of regenerated area of material decline (along the roll axis. Considering critical temperatures, heat-affected zones have been determined: A1 and A3 – austenitic transformation, and solidus - fusion line. Accepted technological parameters of rebuilding gave results that reproduce geometry of padding weld heat-affected zones confirmed experimentally.

  10. Shaping of steel mold surface of lens array by electrical discharge machining with spherical ball electrode.

    Science.gov (United States)

    Takino, Hideo; Hosaka, Takahiro

    2016-06-20

    We propose a method for fabricating a spherical lens array mold by electrical discharge machining (EDM) with a ball-type electrode. The electrode is constructed by arranging conductive spherical balls in an array. To fundamentally examine the applicability of the proposed EDM method to the fabrication of lens array molds, we use an electrode having a single ball to shape a lens array mold made of stainless steel with 16 spherical elements, each having a maximum depth of 0.5 mm. As a result, a mold surface is successfully shaped with a peak-to-valley shape accuracy of approximately 10 μm, and an average surface roughness of 0.85 μm.

  11. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  12. Effect of High-speed Milling tool path strategies on the surface roughness of Stavax ESR mold insert machining

    Science.gov (United States)

    Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.

    2016-02-01

    High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.

  13. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM

    Directory of Open Access Journals (Sweden)

    Ladeesh V. G.

    2017-01-01

    Full Text Available Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of machining parameters on surface roughness. Voltage, duty factor, frequency and tool feed rate are identified as the significant factors for controlling surface roughness of the channels produced by G-ECDM. A mathematical model was developed for surface roughness by considering the grinding action and thermal effects of electrochemical discharges in material removal. Experiments are conducted to validate the model and the results obtained are in good agreement with that predicted by the model.

  14. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM)

    OpenAIRE

    Ladeesh V. G.; Manu R

    2017-01-01

    Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of mac...

  15. A novel approach to predict surface roughness in machining operations using fuzzy set theory

    Directory of Open Access Journals (Sweden)

    Tzu-Liang (Bill Tseng

    2016-01-01

    Full Text Available The increase of consumer needs for quality metal cutting related products with more precise tolerances and better product surface roughness has driven the metal cutting industry to continuously improve quality control of metal cutting processes. In this paper, two different approaches are discussed. First, design of experiments (DOE is used to determine the significant factors and then fuzzy logic approach is presented for the prediction of surface roughness. The data used for the training and checking the fuzzy logic performance is derived from the experiments conducted on a CNC milling machine. In order to obtain better surface roughness, the proper sets of cutting parameters are determined before the process takes place. The factors considered for DOE in the experiment were the depth of cut, feed rate per tooth, cutting speed, tool nose radius, the use of cutting fluid and the three components of the cutting force. Finally the significant factors were used as input factors for fuzzy logic mechanism and surface roughness is predicted with empirical formula developed. Test results show good agreement between the actual process output and the predicted surface roughness.

  16. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining.

    Science.gov (United States)

    Bae, Won Gyu; Song, Ki Young; Rahmawan, Yudi; Chu, Chong Nam; Kim, Dookon; Chung, Do Kwan; Suh, Kahp Y

    2012-07-25

    We present a direct one-step method to fabricate dual-scale superhydrophobic metallic surfaces using wire electrical discharge machining (WEDM). A dual-scale structure was spontaneously formed by the nature of exfoliation characteristic of Al 7075 alloy surface during WEDM process. A primary microscale sinusoidal pattern was formed via a programmed WEDM process, with the wavelength in the range of 200 to 500 μm. Notably, a secondary roughness in the form of microcraters (average roughness, Ra: 4.16 to 0.41 μm) was generated during the exfoliation process without additional chemical treatment. The low surface energy of Al 7075 alloy (γ = 30.65 mJ/m(2)) together with the presence of dual-scale structures appears to contribute to the observed superhydrophobicity with a static contact angle of 156° and a hysteresis less than 3°. To explain the wetting characteristics on dual-scale structures, we used a simple theoretical model. It was found that Cassie state is likely to present on the secondary roughness in all fabricated surfaces. On the other hand, either Wenzel or Cassie state can present on the primary roughness depending on the characteristic length of sinusoidal pattern. In an optimal condition of the serial cutting steps with applied powers of ∼30 and ∼8 kW, respectively, a stable, superhydrophobic metallic surface was created with a sinusoidal pattern of 500 μm wavelength.

  17. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  18. Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering

    Science.gov (United States)

    Saprykina, N. A.; Saprykin, A. A.; Ibragimov, E. A.; Arkhipova, D. A.

    2016-07-01

    The paper presents data on state of the art in selective laser sintering of products. Layer-by-layer sintering is shown to be a future-oriented technology, making it possible to synthesize products of metal powder materials. Factors, influencing the quality of a sintered product, are revealed in the paper. It presents outcomes of experiments, focused on the dependence of surface layer thickness of sintered aluminum powder PA-4 on laser processing conditions. Basic factors, influencing the quality of a sintered surface layer include laser power, speeds of scanning and moving the laser beam on the layer of powder. Thickness of the sintered layer varies from 0.74 to 1.55 mm, as the result of changing the laser processing conditions.

  19. Wear Characterization of Cemented Carbides (WC–CoNi Processed by Laser Surface Texturing under Abrasive Machining Conditions

    Directory of Open Access Journals (Sweden)

    Shiqi Fang

    2017-06-01

    Full Text Available Cemented carbides are outstanding engineering materials widely used in quite demanding material removal applications. In this study, laser surface texturing is implemented for enhancing, at the surface level, the intrinsic bulk-like tribological performance of these materials. In this regard, hexagonal pyramids patterned on the cutting surface of a tungsten cemented carbide grade (WC–CoNi have been successfully introduced by means of laser surface texturing. It simulates the surface topography of conventional honing stones for abrasive application. The laser-produced structure has been tested under abrasive machining conditions with full lubrication. Wear of the structure has been characterized and compared, before and after the abrasive machining test, in terms of changes in geometry aspect and surface integrity. It is found that surface roughness of the machined workpiece was improved by the laser-produced structure. Wear characterization shows that laser treatment did not induce any significant damage to the cemented carbide. During the abrasive machining test, the structure exhibited a high wear resistance. Damage features were only discerned at the contacting surface, whereas geometrical shape of pyramids remained unchanged.

  20. Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2009-01-01

    Full Text Available Electrodeposition of polypyrrole films on aluminum from aqueous solutions containing p-toluene sulfonic acid and pyrrole was performed by cyclic voltammetry and galvanostatic technique. The influence of applied current density on the morphology of the films was studied by Scanning Electron Microscopy. The films displayed a cauliflower-like structure consisting of micro-spherical grains. This structure is related to dopand intercalation in the polymeric chain. Films deposited at higher current density were more susceptible to the formation of pores and defects along the polymeric chain than films deposited at lower current density. These pores allow the penetration of aggressive species, thereby favoring the corrosion process.

  1. Impulse transfer to the surface of aluminum and copper from a pulsed Nd: YAG laser

    Science.gov (United States)

    Xu, Bingzhang; Wang, Qingpu; Zhang, Xingyu; Zhao, Shenzi; Xia, Yueyuan; Mei, Liangmo; Wang, Xiangtai; Wang, Gongtong

    1993-10-01

    Impulse coupling coefficients in air from 1.06 μm, 10 ns, Nd: YAG pulsed-laser radiation to aluminum and copper targets are measured using the ballistic pendulum method in the laser power-density range from 2.0×108 W/cm2 to 4.0×109 W/cm2. A modified laser-supported detonation (LSD) wave and cylindrical blast wave theory incorporating the vaporization model is proposed to calculate the impulse coupling coefficients. It is found that the theoretical results obtained with the modified model agree well with the experimental data.

  2. Study on adhesively-bonded surface of tapered double cantilever specimen made of aluminum foam affected with shear force

    Institute of Scientific and Technical Information of China (English)

    孙洪鹏; CHO Jae-ung

    2015-01-01

    Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials. It presents a number of advantages, such as low density, incombustibility, non-rigidity, excellent energy absorptivity, sound absorptivity and low heat conductivity. The aluminum foam with an air cell structure was placed under the TDCB Mode II tensile load by using Landmark equipment manufactured by MTS to examine the shear failure behavior. The angle of the tapered adhesively-bonded surfaces of specimens was designated as a variable, and three models were developed with the inclined angles differing from one another at 6°, 8° and 10°. The specimens with the inclined angles of 6°, 8° and 10° have the maximum reaction forces of 168 N, 194 N when the forced displacements are 6, 5 and 4.2 mm respectively. There are three specimens with the inclined angles of 10°, 8° and 6° in the order of maximum reaction force. As the analysis result, the maximum equivalent stresses of 0.813 MPa and 0.895 MPa happened when the forced displacements of 6 mm and 5 mm proceeded at the models of 6° and 8°, respectively. A simulation was carried out on the basis of finite element method and the experimental design. The results of the experiment and the simulation analysis are shown not different from each other significantly. Thus, only a simulation could be confirmed to be performed in substitution of an experiment, which is costly and time-consuming in order to determine the shearing properties of materials made of aluminum foam with artificial data.

  3. Study on the Surface Integrity of a Thin-Walled Aluminum Alloy Structure after a Bilateral Slid Rolling Process

    Directory of Open Access Journals (Sweden)

    Laixiao Lu

    2016-04-01

    Full Text Available For studying the influence of a bilateral slid rolling process (BSRP on the surface integrity of a thin-walled aluminum alloy structure, and revealing the generation mechanism of residual stresses, a self-designed BSRP appliance was used to conduct rolling experiments. With the aid of a surface optical profiler, an X-ray stress analyzer, and a scanning electron microscope (SEM, the differences in surface integrity before and after BSRP were explored. The internal changing mechanism of physical as well as mechanical properties was probed. The results show that surface roughness (Ra is reduced by 23.7%, microhardness is increased by 21.6%, and the depth of the hardening layer is about 100 μm. Serious plastic deformation was observed within the subsurface of the rolled region. The residual stress distributions along the depth of the rolling surface and milling surface were tested respectively. Residual stresses with deep and high amplitudes were generated via the BSRP. Based on the analysis of the microstructure, the generation mechanism of the residual stresses was probed. The residual stress of the rolling area consisted of two sections: microscopic stresses caused by local plastic deformation and macroscopic stresses caused by overall non-uniform deformation.

  4. Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology

    Directory of Open Access Journals (Sweden)

    Ramanjaneyulu Kadaganchi

    2015-09-01

    Full Text Available The heat treatable aluminum–copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-to-weight ratio and good ductility. Friction stir welding (FSW process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology (RSM was employed to develop the regression models to predict the responses. The mechanical properties, such as yield strength (YS, ultimate tensile strength (UTS and percentage elongation (%El, are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.

  5. Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae.

    Science.gov (United States)

    Kim, Hong-Kyun; Woo, Kyung Mi; Shon, Won-Jun; Ahn, Jin-Soo; Cha, Seunghee; Park, Young-Seok

    2015-01-01

    The aim of this study was to compare osseointegration and surface characteristics of zirconia implants made by the powder injection molding (PIM) technique against those made by the conventional milling procedure in rabbit tibiae. Surface characteristics of 2 types of implants were evaluated. Sixteen rabbits received 2 types of external hex implants with similar geometry, either machined zirconia implants or PIM zirconia implants, in the tibiae. Removal torque tests and histomorphometric analyses were performed. The roughness of the PIM zirconia implants was higher than that of machined zirconia implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined zirconia implants (pmold etching technique, can produce substantially rougher surfaces on zirconia implants.

  6. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai

    2016-12-01

    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  7. Experimental investigation of surface quality in ultrasonic machining of WC-Co composites through Taguchi method

    Directory of Open Access Journals (Sweden)

    B. S. Pabla

    2016-08-01

    Full Text Available In manufacturing industries, the demand of WC-Co composite is flourishing because of the distinctive characteristics it offers such as: toughness (with hardness, good dimensional stability, higher mechanical strength etc. However, the difficulties in its machining restrict the application and competitiveness of this material. The current article has been targeted at evaluation of the effect of process conditions (varying power rating, cobalt content, tool material, part thickness, tool geometry, and size of abrasive particle on surface roughness in ultrasonic drilling of WC-Co composite. Results showed that abrasive grit size is most influential factor. From the microstructure analysis, the mode of material deformation has been observed and the parameters, i.e. work material properties, grit size, and power rating was revealed as the most crucial for the deformation mode.

  8. Precision Measurement of Cylinder Surface Profile on an Ultra-Precision Machine Tool

    Science.gov (United States)

    Lee, J. C.; Noh, Y. J.; Arai, Y.; Gao, W.; Park, C. H.

    2009-01-01

    This paper describes the measurement of the surface straightness profile of a cylinder workpiece on an ultra-precision machine tool which has a T-base design with a spindle, an X-slide and a Z-slide. The movement range of the X-slide is 220 mm and that of the Z-slide is 150 mm, which have roller bearings in common. Two capacitive sensors are employed to scan a cylinder workpiece mounted on the spindle along the Z-axis. The straightness error motion of the Z-slide is measured to be approximately 100 nm by the reversal method. The straightness profile of the cylinder workpiece is evaluated to be approximately 400 nm by separation of the motion error, simultaneously.

  9. Surface topography of machined fibre reinforced plastics obtained by stylus instruments and optical profilometers

    DEFF Research Database (Denmark)

    Eriksen, Else; Hansen, Hans Nørgaard

    1998-01-01

    introduced. They use another working principle to obtain the same parameters, but the settings of most of the measuring variables are not standardized. The present study has investigated aspects that have to be taken into account when the roughness of short fibre reinforced thermoplastics is measured...... identical values, whereas significantly higher roughnesses were measured with one of the two optical instruments. The optical instruments were identical but with different settings of the control parameters, which resulted in large deviations between the values measured. Some of the differences between...... by stylus instruments and by optical profilometers. The measurements were performed on machined surfaces with three distinct different roughness levels. The materials were two thermoplastics, polyoxymethylene and polypropylene, reinforced with short glass fibres. The two stylus instruments gave almost...

  10. Machining of the Flat Surfaces with Abrasive-metallic Lapping Tools

    Institute of Scientific and Technical Information of China (English)

    Adam Barylski

    2004-01-01

    The constructional principle of abrasion metal disc is that abrasive insertions are spread uniformly on the working surface of a metal base. During lapping by means of such tools only the machining fluid is dosed and that by drop.Abrasive elements of circular shape pellets are produced by mixing boron carbide BC400 micrograins with electrographite components, the pellets were pressed with a load of about 12 kN. Next they were heated in furnace at about 520K for hours,then cooled together with the furnace. Tests were carried out on the making of circular abrasive insertions of which the main components were born carbide and micrograins of electric copper mixed the epoxide resins.

  11. Machining of the Flat Surfaces with Abrasive-metallic Lapping Tools

    Institute of Scientific and Technical Information of China (English)

    AdamBarylski

    2004-01-01

    The constructional principle of abrasion metal disc is that abrasive insertions are spread uniformly on the working surface of a metal base. During lapping by means of such tools only the machining fluid is dosed and that by drop. Abrasive elements of circular shape pellets are produced by mixing boron carbide BC400 micrograins with electrographite components, the pellets were pressed with a load of about 12 kN. Next they were heated in furnace at about 520K for hours, then cooled together with the furnace. Tests were carried out on the making of circular abrasive insertions of which the main components were born carbide and micrograins of electric copper mixed the epoxide resins.

  12. A Combined Experimental and Computational Approach for the Design of Mold Topography that Leads to Desired Ingot Surface and Microstructure in Aluminum Casting.

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Zabaras, N.J.; Samanta, D.; Tan, L.

    2005-10-30

    A design methodology will be developed with which casting mold surface topographies can be tuned to produce required surface features and micro-structural properties of Aluminum ingots. Both static and continuous casting processes will be examined with instrumented molds. Mold surface topographies, which consist of unidirectional and bi-directional groove textures, will be generated using contact and non-contact techniques to elicit a radiator-like effect at the mold-casting interface. The rate of heat extraction, the evolution of near-surface cast microstructure, and shell macro-morphology can be controlled once the proper balance between mold surface area extension and the degree of imperfect wetting at the instant solidification starts is determined. Once this control is achieved, it will be possible to minimize or even eliminate costly post-casting surface milling or scalping which is currently a major barrier to the development of new Aluminum casting processes.

  13. Finger milling-cutter CNC generating hypoid pinion tooth surfaces based on modified-roll method and machining simulation

    Science.gov (United States)

    Li, Genggeng; Deng, Xiaozhong; Wei, Bingyang; Lei, Baozhen

    2011-05-01

    The two coordinate systems of cradle-type hypoid generator and free-form CNC machine tool by application disc milling-cutter to generate hypoid pinion tooth surfaces based on the modified-roll method were set up, respectively, and transformation principle and method for machine-tool settings between the two coordinate systems was studied. It was presented that finger milling-cutter was mounted on imagined disc milling-cutter and its motion was controlled directly by CNC shafts to replace disc milling-cutter blades effective cutting motion. Finger milling-cutter generation accomplished by ordered circular interpolation was determined, and interpolation center, starting and ending were worked out. Finally, a hypoid pinion was virtually machined by using CNC machining simulation software VERICUT.

  14. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  15. Cutting force and machine kinematics constrained cutter location planning for five-axis flank milling of ruled surfaces

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2017-07-01

    Full Text Available Five-axis flank milling has been commonly used in the manufacturing of complex workpieces because of its greater productivity than that of three-axis or five-axis end milling. The advantage of this milling operation largely depends on effective cutter location planning. The finished surface sometimes suffers from large geometrical errors induced by improper tool positioning, due to the non-developability of most ruled surfaces in industrial applications. In addition, a slender flank-milling cutter may be deflected when subjected to large cutting forces during the machining process, further degrading the surface quality or even breaking the cutter. This paper proposes a novel tool path planning scheme to address those problems. A simple but effective algorithm is developed to adaptively allocate a series of cutter locations over the design surface with each one being confined within an angular rotation range. The allocation result satisfies a given constraint of geometrical errors on the finished surface, which consists of the tool positioning errors at each cutter location and the sweeping errors between consecutive ones. In addition, a feed rate scheduling algorithm is proposed to maximize the machining efficiency subject to the cutting force constraint and the kinematical constraints of a specific machine configuration. Simulation and experimental tests are conducted to validate the effectiveness of the proposed algorithms. Both the machining efficiency and finish surface quality are greatly improved compared with conventional cutter locations.

  16. Hot Extrusion of Aluminum Chips

    Science.gov (United States)

    Tekkaya, A. Erman; Güley, Volkan; Haase, Matthias; Jäger, Andreas

    The process of hot extrusion is a promising approach for the direct recycling of aluminum machining chips to aluminum profiles. The presented technology is capable of saving energy, as remelting of aluminum chips can be avoided. Depending on the deformation route and process parameters, the chip-based aluminum extradates showed mechanical properties comparable or superior to cast aluminum billets extruded under the same conditions. Using different metal flow schemes utilizing different extrusion dies the mechanical properties of the profiles extruded from chips can be improved. The energy absorption capacity of the profiles the rectangular hollow profiles extruded from chips and as-cast billets were analyzed using the drop hammer test set-up. The formability of the profiles extruded from chips and as-cast material were compared using tube bending tests in a three-roller-bending machine.

  17. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  18. Influence of Surface Carburization of Machinable Ceramics on Its Pulsed Flashover Characteristics in Vacuum%Influence of Surface Carburization of Machinable Ceramics on Its Pulsed Flashover Characteristics in Vacuum

    Institute of Scientific and Technical Information of China (English)

    郑楠; 黄学增; 穆海宝; 张冠军

    2011-01-01

    For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding strength of insulators, and it is found that surface treatment of material is useful to improve the surface flashover voltage. The carburization treatment is employed to modify the surface components of newly-developed machinable ceramics (MC) materials. A series of MC samples with different glucose solution concentration (0%, 10%, 20%, 30% and 40%) are prepared by chemical reactions for surface carburization modification, and their surface fiashover characteristics are investigated under pulsed voltage in vacuum. It is found that the surface carburization treatment greatly modifies the surface resistivity of MCs and hence the flashover behaviors. Based on the reduction of surface resistivity and the secondary electron emission avalanche (SEEA) theory, the adjustment of flashover withstanding ability can be reasonably explained.

  19. Surface chemistry and Fermi level movement during the self-cleaning of GaAs by trimethyl-aluminum

    Science.gov (United States)

    Tallarida, M.; Adelmann, C.; Delabie, A.; Van Elshocht, S.; Caymax, M.; Schmeisser, D.

    2011-07-01

    The removal of the native oxides from NH4OH-cleaned p-GaAs (100) by exposure to trimethyl-aluminum (TMA) was studied by in situ photoelectron spectroscopy using synchrotron radiation. The reduction of high-valence As- and Ga-oxides occurred through different routes: while As3+ was reduced to As(1±Δ)+ suboxides (with 0 ≤ Δ ≤ 1), Ga3+ was directly removed. The surface Fermi level was shifted by about 100 meV towards the valence band edge upon TMA exposure. This indicates that removing the native oxide of GaAs by TMA is insufficient to create interfaces between GaAs and Al2O3 with defects densities below the 1012 cm-2 range.

  20. The use of Erbium: Yttrium-aluminum-garnet laser in cavity preparation and surface treatment: 3-year follow-up.

    Science.gov (United States)

    Buyukhatipoglu, Isil; Secilmis, Asli

    2015-01-01

    From the currently available choices, esthetic restorative materials for posterior teeth are limited to composite and ceramic restoration. Ceramic inlays/onlays are reliable solutions for both of these treatments. For successful treatment planning, usable ceramic and adhesive systems should be chosen by the dentist. Since the Federal Drug Administration approval of the erbium: Yttrium-aluminum-garnet (Er:YAG) laser-for caries removal, cavity preparation and the conditioning of tooth substance-in 1997, there have been many reports on the use of this technique in combination with composite resins. In addition, cavity pretreatment with the Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. This case report presents the use of the Er:YAG in cavity preparation for composite resin restoration and surface treatment for ceramic onlay restoration of adjacent permanent molars.

  1. The use of Erbium: Yttrium-aluminum-garnet laser in cavity preparation and surface treatment: 3-year follow-up

    Science.gov (United States)

    Buyukhatipoglu, Isil; Secilmis, Asli

    2015-01-01

    From the currently available choices, esthetic restorative materials for posterior teeth are limited to composite and ceramic restoration. Ceramic inlays/onlays are reliable solutions for both of these treatments. For successful treatment planning, usable ceramic and adhesive systems should be chosen by the dentist. Since the Federal Drug Administration approval of the erbium: Yttrium-aluminum-garnet (Er:YAG) laser-for caries removal, cavity preparation and the conditioning of tooth substance-in 1997, there have been many reports on the use of this technique in combination with composite resins. In addition, cavity pretreatment with the Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. This case report presents the use of the Er:YAG in cavity preparation for composite resin restoration and surface treatment for ceramic onlay restoration of adjacent permanent molars. PMID:26038665

  2. Microstructure, Hardness and Impact Toughness of Heat-Treated Nanodispersed Surface and Friction Stir-Processed Aluminum Alloy AA7075

    Science.gov (United States)

    Refat, M.; Elashery, A.; Toschi, S.; Ahmed, M. M. Z.; Morri, A.; El-Mahallawi, I.; Ceschini, L.

    2016-11-01

    Friction stir processing (FSP) is a recent surface engineering processing technique that is gaining wide recognition for manufacturing nanodispersed surface composites, which are of high specific strength, hardness and resistance to wear and corrosion. Herein, four-pass FSP was applied on aluminum alloy 7075 (AA7075-O) with and without the addition of alumina nanoparticles (Al2O3) of average size 40 nm. All FSP parameters were constant at 40 mm/min transverse speed, 500 rpm and tilt angle of 3°. FSP rotation direction was reversed every other pass. The friction stir-processed materials were sectioned and solution treated at 515 °C for 1.5 h, followed by age hardening at 120 °C for 12, 24, 36, 48 and 60 h. The effect of heat treatment regimes on microstructure, hardness and toughness was examined, as well as the fracture mode. The new friction stir-processed surfaces without and with nanodispersion showed enhancement in the hardness of the surface of the AA7075-O material (65 HV) to almost a double (100 and 140 HV) after four-pass FSP (before heat treatment) without and with incorporating nanoalumina particles, respectively. After 48-h aging at 120 °C, a significant enhancement in impact toughness was achieved for both the friction stir-processed without and with nanodispersion (181 and 134 J, respectively), compared to the reference material AA7075 in T6 condition (104 J).

  3. DETERMINATION OF OPTIMAL BALL BURNISHING PARAMETERS FOR SURFACE ROUGHNESS OF ALUMINUM ALLOY

    Directory of Open Access Journals (Sweden)

    D.B. Patel

    2013-06-01

    Full Text Available Burnishing is a cold-working process, which easily produces a smooth and work-hardened surface through the plastic deformation of surface irregularities. In the present work, the influences of the main burnishing parameters (speed, feed, force, number of tool passes, and ball diameter on the surface roughness are studied. It is found that the burnishing forces and the number of tool passes are the parameters that have the greatest effect on the workpiece surface during the burnishing process.

  4. Morphology and optical properties of aluminum oxide formed into oxalic electrolyte with addition surface active agents

    Science.gov (United States)

    Kazarkin, B.; Stsiapanau, A.; Zhilinski, V.; Chernik, A.; Bezborodov, V.; Kozak, G.; Danilovich, S.; Smirnov, A.

    2016-08-01

    The article discusses the results of investigations of porous films of alumina, formed into oxalic electrolyte with addition surface active agents, in particular, ordering structure, roughness of a surface, the optical transparency of the electrolyte concentration and surface active agents. Also discusses the features of the formation of porous films of temperature and IR radiation.

  5. Very low surface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide

    NARCIS (Netherlands)

    Werner, F.; Veith, B.; Tiba, V.; Poodt, P.W.G.; Roozeboom, F.; Brendel, R.; Schmidt, J.

    2010-01-01

    Using aluminum oxide (Al2 O3) films deposited by high-rate spatial atomic layer deposition (ALD), we achieve very low surface recombination velocities of 6.5 cm/s on p -type and 8.1 cm/s on n -type crystalline silicon wafers. Using spatially separated reaction zones instead of

  6. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...

  7. Surface Characterizations of Fretting Fatigue Damage in Aluminum Alloy 7075-T6 Clamped Joints: The Beneficial Role of Ni–P Coatings

    Directory of Open Access Journals (Sweden)

    Reza H. Oskouei

    2016-02-01

    Full Text Available This paper aims to characterize the surface damage as a consequence of fretting fatigue in aluminum alloy 7075-T6 plates in double-lap bolted joints through XRD, surface profilometry, and SEM analyses. The main focus was on the surface roughness and chemical phase composition of the damaged zone along with the identification of fretting fatigue crack initiations over the surface of the material. The surface roughness of the fretted zone was found to increase when the joint was clamped with a higher tightening torque and tested under the same cyclic loading. Additionally, MgZn2 (η/ή precipitates and ZnO phase were found to form onto the surface of uncoated aluminum plate in the fretted and worn zones. The formation of the ZnO phase was understood to be a result of frictional heat induced between the surface of contacting uncoated Al 7075-T6 plates during cyclic loading and exposure to the air. The beneficial role of electroless nickel-phosphorous (Ni–P coatings in minimizing the fretting damage and thus improving the fretting fatigue life of the aluminum plates was also studied. The results showed that the surface roughness decreased by approximately 40% after applying Ni–P coatings to the Al 7075-T6 plates.

  8. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, Nils, E-mail: nils.holstein@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Krauss, Wolfgang; Konys, Jürgen [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Heuer, Simon; Weber, Thomas [Research Center Jülich, Institute of Energy- and Climate Research – Plasma Physics (IEK-4), D-52425 Jülich (Germany)

    2016-11-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  9. Downscaling of Aircraft-, Landsat-, and MODIS-based Land Surface Temperature Images with Support Vector Machines

    Science.gov (United States)

    Ha, W.; Gowda, P. H.; Oommen, T.; Howell, T. A.; Hernandez, J. E.

    2010-12-01

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at several spectral bandwidths including visible, near-infrared (NIR), shortwave-infrared, and thermal-infrared (TIR). The TIR images usually have coarser spatial resolutions than those from non-thermal infrared bands. Due to this technical constraint of the satellite sensors on these platforms, image downscaling has been proposed in the field of ET remote sensing. This paper explores the potential of the Support Vector Machines (SVM) to perform downscaling of LST images derived from aircraft (4 m spatial resolution), TM (120 m), and MODIS (1000 m) using normalized difference vegetation index images derived from simultaneously acquired high resolution visible and NIR data (1 m for aircraft, 30 m for TM, and 250 m for MODIS). The SVM is a new generation machine learning algorithm that has found a wide application in the field of pattern recognition and time series analysis. The SVM would be ideally suited for downscaling problems due to its generalization ability in capturing non-linear regression relationship between the predictand and the multiple predictors. Remote sensing data acquired over the Texas High Plains during the 2008 summer growing season will be used in this study. Accuracy assessment of the downscaled 1, 30, and 250 m LST images will be made by comparing them with LST data measured with infrared thermometers at a small spatial scale, upscaled 30 m aircraft-based LST images, and upscaled 250 m TM-based LST images, respectively.

  10. Machine vision method for online surface inspection of easy open can ends

    Science.gov (United States)

    Mariño, Perfecto; Pastoriza, Vicente; Santamaría, Miguel

    2006-10-01

    Easy open can end manufacturing process in the food canning sector currently makes use of a manual, non-destructive testing procedure to guarantee can end repair coating quality. This surface inspection is based on a visual inspection made by human inspectors. Due to the high production rate (100 to 500 ends per minute) only a small part of each lot is verified (statistical sampling), then an automatic, online, inspection system, based on machine vision, has been developed to improve this quality control. The inspection system uses a fuzzy model to make the acceptance/rejection decision for each can end from the information obtained by the vision sensor. In this work, the inspection method is presented. This surface inspection system checks the total production, classifies the ends in agreement with an expert human inspector, supplies interpretability to the operators in order to find out the failure causes and reduce mean time to repair during failures, and allows to modify the minimum can end repair coating quality.

  11. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available Traditional abrasive techniques such as grinding and lapping have long been used in the surface conditioning of engineering materials. However, in the processing of hard and brittle materials like silicon nitride (Si(sub3)N(sub4)), machining...

  12. INVESTIGATION OF SURFACE PROPERTIES IN MANGANESE POWDER MIXED ELECTRICAL DISCHARGE MACHINING OF OHNS AND D2 DIE STEELS

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2010-12-01

    Full Text Available The electrical discharge machining (EDM process is used for generating accurate internal profiles in hardened materials. An powder additive in the hydrocarbon dielectric affects the energy distribution and sparking efficiency, and consequently the surface finish and micro-hardness. In this paper the Taguchi approach has been used to optimize and compare the surface properties in manganese powder-mixed EDM of oil-hardening non-shrinkable (OHNS and high-carbon high-chromium (D2 die steels. The results of the study show an improvement of 73% and 71.6% in the micro-hardness of OHNS and D2 die steels, respectively. The machining parameters for the best value of micro-hardness are found to be the same for both work materials. A scanning electron microscopy and X-ray diffraction analysis of the machined surfaces show a transfer of manganese and carbon from the plasma channel in the form of manganese carbide. The chemical composition of the machined surface has been further checked on an optical emission spectrometer to verify and quantify the results.

  13. Determination of High-Frequency d- and q-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Vetuschi, M.; Rasmussen, Peter Omand;

    2010-01-01

    This paper presents a reliable method for the experimental determination of high-frequency d- and q -axis inductances for surface-mounted permanent-magnet synchronous machines (SMPMSMs). Knowledge of the high-frequency d- and q-axis inductances plays an important role in the efficient design...

  14. EVALUATION OF MACHINABILITY OF DUCTILE IRONS ALLOYED WITH Ni AND Cu IN TERMS OF CUTTING FORCES AND SURFACE QUALITY

    Directory of Open Access Journals (Sweden)

    Yücel AŞKUN

    2003-02-01

    Full Text Available Due to the enhanced strength, ductility and thoughness of Ductile Iron (DI when compared to the other types cast iron, its machinability is relatively poor. When a steel part is replaced with ductile iron, however, better machinability is considered to be the most important gain. This study presents the results of machining tests of ductile irons alloyed with Ni and Cu at various contents to determine the effect of their microstructure and mechanical properties on cutting forces and surface roughness. Six different specimen groups of ductile iron alloyed with various amounts of nickel and copper were subjected to machining tests and their machinabilities were investigated based on cutting forces and surface roughness criteria. The results were evaluated according to microstructure and mechanical properties of specimens determined before. In terms of both criterion, the best result obtained was specimen added 0.7 % Ni and 0.7 % Cu. When the specimens were evaluated according to their mechanical properties, the specimens alloyed 1 % Ni and 0.65 % Cu seemed promising.

  15. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  16. The Effect Of Two-Stage Age Hardening Treatment Combined With Shot Peening On Stress Distribution In The Surface Layer Of 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Kaczmarek Ł.

    2015-09-01

    Full Text Available The article present the results of the study on the improvement of mechanical properties of the surface layer of 7075 aluminum alloy via two-stage aging combined with shot peening. The experiments proved that thermo-mechanical treatment may significantly improve hardness and stress distribution in the surface layer. Compressive stresses of 226 MPa±5.5 MPa and hardness of 210±2 HV were obtained for selected samples.

  17. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    Science.gov (United States)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  18. A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Abdul’Azeez Abdu Aliyu

    2017-01-01

    Full Text Available Surface treatment remained a key solution to numerous problems of synthetic hard tissues. The basic methods of implant surface modification include various physical and chemical deposition techniques. However, most of these techniques have several drawbacks such as excessive cost and surface cracks and require very high sintering temperature. Additive mixed-electric discharge machining (AM-EDM is an emerging technology which simultaneously acts as a machining and surface modification technique. Aside from the mere molds, dies, and tool fabrication, AM-EDM is materializing to finishing of automobiles and aerospace, nuclear, and biomedical components, through the concept of material migrations. The mechanism of material transfer by AM-EDM resembles electrophoretic deposition, whereby the additives in the AM-EDM dielectric fluids are melted and migrate to the machined surface, forming a mirror-like finishing characterized by extremely hard, nanostructured, and nanoporous layers. These layers promote the bone in-growth and strengthen the cell adhesion. Implant shaping and surface treatment through AM-EDM are becoming a key research focus in recent years. This paper reports and summarizes the current advancement of AM-EDM as a potential tool for orthopedic and dental implant fabrication. Towards the end of this paper, the current challenges and future research trends are highlighted.

  19. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel

    2012-04-18

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  20. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces

    Science.gov (United States)

    Deng, R.; Hu, Y. M.; Wang, L.; Li, Zh. H.; Shen, T.; Zhu, Y.; Xiang, J. Zh.

    2017-04-01

    Superamphiphobic Al surfaces were achieved via an easy and environmentally-friendly approach. Aqueous mixed solution of 0.7 M CuSO4 and 1 M NaCl was used to etch polished Al surfaces to fabricate a rough morphology distributed with microscale step-like pits. The uniformly distributed nanoscale petals covered on the microscale pits were obtained by subsequent 96 °C hot deionized water bathing for 13 min. Thus, the hierarchical micro/nanometer scale roughness was formed which provided the structural basic of superamphiphobic Al surfaces. By 1H, 1H, 2H, 2H-Perfluorodecyl-triethoxysilane (PFDTS) derivatization, desirable superamphiphobic Al surfaces were achieved with the highest static contact angles of 162° for water, 156° for peanut oil, respectively. Meanwhile, the sliding angles were lower than 10° for both water and peanut oil droplets. The as-prepared Al surfaces were investigated by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and optical contact angle measurements. The FE-SEM images of as-prepared Al surfaces showed a hierarchical micro/nanometer scale morphology. XPS analyses demonstrated the PFDTS derivitization on Al surfaces. The superamphiphobic Al surfaces presented good mechanical durability and chemical stability which have a wide range of applications in fields such as self-cleaning, anti-icing, anti-corrosion, oil transportation, energy harvesting, microfluidics, and so forth. The approach reported in this paper may easily realize the industrial production of superamphiphobic Al surfaces owing to the advantage of facile, low cost and environmentally-friendly.

  1. A Combined Experimental and Computational Approach for the Design of Mold Topography that Leads to Desired Ingot Surface and Microstructure in Aluminum Casting.

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Zabaras, N.; Tan, L.

    2005-07-12

    A thermomechanical study of the effects of mold topography on the solidification of Aluminum alloys at early times is provided. The various coupling mechanisms between the solid-shell and mold deformation and heat transfer at the mold/solid-shell interface during the early stages of Aluminum solidification on molds with uneven topographies are investigated. The air-gap nucleation time, the stress evolution and the solid-shell growth pattern are examined for different mold topographies to illustrate the potential control of Aluminum cast surface morphologies during the early stages of solidification using proper design of mold topographies. The unstable shell growth pattern in the early solidification stages results mainly from the unevenness of the heat flux between the solid-shell and the mold surface. This heat flux is determined by the size of the air-gaps formed between the solidifying shell and mold surface or from the value of the contact pressure. Simulation results show that a sinusoidal mold surface with a smaller wavelength leads to nucleation of air-gaps at earlier times. In addition, the unevenness in the solid-shell growth pattern decreases faster for a smaller wavelength. Such studies can be used to tune mold surfaces for the control of cast surface morphologies.

  2. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    Science.gov (United States)

    Stráský, Josef; Havlíková, Jana; Bačáková, Lucie; Harcuba, Petr; Mhaede, Mansour; Janeček, Miloš

    2013-09-01

    Presented work aims at multi-method characterization of combined surface treatment of Ti-6Al-4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  3. Spontaneous magnetization of aluminum nanowires deposited on the NaCl(100) surface

    OpenAIRE

    Ayuela, A.; Räbiger, H.; Puska, M. J.; Nieminen, R. M.

    2001-01-01

    We investigate electronic structures of Al quantum wires, both unsupported and supported on the (100) NaCl surface, using the density-functional theory. We confirm that unsupported nanowires, constrained to be linear, show magnetization when elongated beyond the equilibrium length. Allowing ions to relax, the wires deform to zig-zag structures with lower magnetization but no dimerization occurs. When an Al wire is deposited on the NaCl surface, a zig-zag geometry emerges again. The magnetizat...

  4. Influence of Chatter of VMC Arising During End Milling Operation and Cutting Conditions on Quality of Machined Surface

    Directory of Open Access Journals (Sweden)

    A.K.M.N. Amin, M.A. Rizal, and M. Razman

    2012-08-01

    Full Text Available Machine tool chatter is a dynamic instability of the cutting process. Chatter results in poor part surface finish, damaged cutting tool, and an irritating and unacceptable noise. Exten¬sive research has been undertaken to study the mechanisms of chatter formation. Efforts have been also made to prevent the occurrence of chatter vibration. Even though some progress have been made, fundamental studies on the mechanics of metal cutting are necessary to achieve chatter free operation of CNC machine tools to maintain their smooth operating cycle. The same is also true for Vertical Machining Centres (VMC, which operate at high cutting speeds and are capable of offering high metal removal rates. The present work deals with the effect of work materials, cutting conditions and diameter of end mill cutters on the frequency-amplitude characteristics of chatter and on machined surface roughness. Vibration data were recorded using an experimental rig consisting of KISTLER 3-component dynamometer model 9257B, amplifier, scope meters and a PC.  Three different types of vibrations were observed. The first type was a low frequency vibration, associated with the interrupted nature of end mill operation. The second type of vibration was associated with the instability of the chip formation process and the third type was due to chatter. The frequency of the last type remained practically unchanged over a wide range of cutting speed.  It was further observed that chip-tool contact processes had considerable effect on the roughness of the machined surface.Key Words: Chatter, Cutting Conditions, Stable Cutting, Surface Roughness.

  5. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma.

    Science.gov (United States)

    Idlibi, Ahmad Nour; Al-Marrawi, Fuad; Hannig, Matthias; Lehmann, Antje; Rueppell, Andre; Schindler, Axel; Jentsch, Holger; Rupf, Stefan

    2013-01-01

    The decontamination of implant surfaces represents the basic procedure in the management of peri-implant diseases, but it is still a challenge. The study aimed to evaluate the degradation of oral biofilms grown in situ on machined titanium (Ti) discs by cold atmospheric plasma (CAP). ~200 Ti discs were exposed to the oral cavities of five healthy human volunteers for 72 h. The resulting biofilms were divided randomly between the following treatments: CAP (which varied in mean power, treatment duration, and/or the gas mixture), and untreated and treated controls (diode laser, air-abrasion, chlorhexidine). The viability, quantity, and morphology of the biofilms were determined by live/dead staining, inoculation onto blood agar, quantification of the total protein content, and scanning electron microscopy. Exposure to CAP significantly reduced the viability and quantity of biofilms compared with the positive control treatments. The efficacy of treatment with CAP correlated with the treatment duration and plasma power. No single method achieved complete biofilm removal; however, CAP may provide an effective support to established decontamination techniques for treatment of peri-implant diseases.

  6. Positioning method of a cylindrical cutter for ruled surface machining based on minimizing one-sided Hausdorff distance

    Institute of Scientific and Technical Information of China (English)

    Cao Lixin; Dong Lei

    2015-01-01

    Motivated by the definition of the machining errors induced by tool path planning methods, a mapping curve of the tool axis of a cylindrical cutter is constructed on the tool surface. The mapping curve is a typical one that can be used to express the closeness between the tool surface and the surface to be machined. A novel tool path planning method is proposed for flank or plunge milling ruled surfaces based on the minimization of the one-sided Hausdorff distance (HD) from the mapping curve to the surface to be machined. It is a nonlinear optimization problem in best uniform approximation (BUA) or Chebyshev sense. A mathematical programming model for computing the minimum one-sided HD is proposed. The linearization method of the programming model is provided and the final optimal solutions are obtained by simplex method. The effectiveness of the proposed BUA method is verified by two numerical examples and compared with the least squares (LS) and double point offset (DPO) methods. The variation in tool orientation induced by the optimization of the tool positions is also evaluated.

  7. The microstructure of aluminum A5083 butt joint by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Jasri, M. A. H. M.; Afendi, M. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh, 02600, Arau, Perlis (Malaysia); Ismail, A. [UniKL MIMET, JalanPantaiRemis, 32200, Lumut, Perak (Malaysia); Ishak, M. [Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 02600, Pekan, Pahang (Malaysia)

    2015-05-15

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  8. Influence of particle size on Cutting Forces and Surface Roughness in Machining of B4Cp - 6061 Aluminium Matrix Composites

    Science.gov (United States)

    Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.

    2016-02-01

    Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.

  9. Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys

    Science.gov (United States)

    Pakkanen, Jukka; Calignano, Flaviana; Trevisan, Francesco; Lorusso, Massimo; Ambrosio, Elisa Paola; Manfredi, Diego; Fino, Paolo

    2016-08-01

    Interest in additive manufacturing (AM) has gained considerable impetus over the past decade. One of the driving factors for AM success is the ability to create unique designs with intrinsic characteristics as, e.g., internal channels used for hydraulic components, cooling channels, and heat exchangers. However, a couple of the main problems in internal channels manufactured by AM technologies are the high surface roughness obtained and the distortion of the channel shape. There is still much to understand in these design aspects. In this study, a cylindrical geometry for internal channels to be built with different angles with respect to the building plane in AlSi10Mg and Ti6Al4V alloys by selective laser melting was considered. The internal surfaces of the channels produced in both materials were analyzed by means of a surface roughness tester and by optical and electron microscopy to evaluate the effects of the material and design choices.

  10. Control and Prevention of Ice Formation on the Surface of an Aluminum Alloy

    DEFF Research Database (Denmark)

    Rahimi, Maral

    In cold climates, mechanical ventilation systems with heat recovery, e.g. air-to-air exchangers, are often used to reduce energy demand for heating by recovering the heat from the exhausted air. This, however, creates a risk of ice accretion on the fins of the heat exchanger as warm and humid...... modified with (3-aminopropyl) triethoxy silane (APTES) exhibited longer freezing delays as compared to both more hydrophilic and more hydrophobic substrates. This is attributed to a particular surface chemistry of the APTES modification that prevents ice formation at the interface of the substrate due...... to presence of high local ion concentration (amino groups), hence leading to significant freezing point suppression. Furthermore, the results suggest that surface topography and wettability determine the freezing kinetics of a droplet placed on a precooled sample. Therefore, surface chemistry which may change...

  11. Engineering of surface microstructure transformations using high rate severe plastic deformation in machining

    Science.gov (United States)

    Abolghasem, Sepideh

    research effort, where Large Strain Machining (LSM) is presented as a controlled test of microstructure response. Sample conditions are created using LSM in Face Centered Cubic (FCC) metals, while characterizing the deformation using Digital Image Correlation(DIC) and Infrared(IR) thermography. Microstructural consequences such as grain size, subgrain size and grain boundary responses resulting from the characterized thermomechanical conditions are examined using Electron Back-Scattered Diffraction (EBSD). Once empirical data is generated across the broad thermomechanical conditions, reliable microstructure maps are populated. This characterization can help understand surface microstructures resulting from shear-based manufacturing processes such as turning, milling, shaping, etc. that are created under analogous thermomechanical conditions. Keywords: microstructure characterization, ultrafine grain microstructure, severe plastic deformation, high speed deformation.

  12. Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, Alexander M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Sheldon S. Q. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kanz, V. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LeBlanc, Mary M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lowdermilk, W. Howard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rotter, Mark D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stanley, Joel R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-17

    When modeling laser interaction with metals for various applications it requires a knowledge of absorption coefficients for real, commercially available materials with engineering grade (unpolished, oxidized) surfaces. But, most currently available absorptivity data pertain to pure metals with polished surfaces or vacuum-deposited thin films in controlled atmospheres. A simple laboratory setup is developed for the direct calorimetric absorptivity measurements using a diode-array laser emitting at 780 nm. A scheme eliminating the effect of convective and radiative losses is implemented. Futhermore, the obtained absorptivity results differ considerably from existing data for polished pure metals and are essential for the development of predictive laser-material interaction models.

  13. Experimental Investigation of Machining Parameters For Surface Roughness In High Speed CNC Turning of EN-24 Alloy Steel Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Puneet Saini

    2014-05-01

    Full Text Available Alloy Steel EN-24 (Medium Carbon Steel used in manufacturing of Automotive & aircraft components, Axles & Axles components, Shafts, Heavy duty Gears, Spindles, Studs, Pins, collets, bolts, couplings, sprockets, pinions & pinion arbors. Turning is the most common process used in manufacturing sector to produce smooth finish on cylindrical surfaces. Surface roughness is the important performance characteristics to be considered in the turning process is affected by several factors such as cutting tool material, spindle speed, feed rate, depth of cut and material properties. In this research Response surface methodology (RSM was applied to determine the optimum machining parameters leading to minimum surface roughness in turning process. The main purpose of this research is to study the effect of carbide inserts on EN-24 Alloy Steel surface by using three parameters (spindle speed, feed rate and depth of cut. This research was conducted by using 100 HS Stallion CNC Lathe machine. Seventeen sets of experiments were performed. In this work empirical models were developed for surface roughness by considering spindle speed, feed rate and depth of cut as main controlling factors using response surface methodology. The optimum value of the surface roughness (Ra comes out to be 0.48 µm. It is also concluded that feed rate is the most significant factor affecting surface roughness followed by depth of cut. As Cutting speed is the less significant factor affecting surface roughness. Optimum results are finally verified with the help of confirmation experiments. Keywords:

  14. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores t

  15. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores t

  16. Interactions of satellite-speed helium atoms with satellite surfaces. III. Drag coefficients from spatial and energy distributions of reflected helium atoms. [1235-O and 6061 T-6 aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.K.; Knuth, E.L.

    1977-12-01

    Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included.

  17. 铝锅表面导磁处理工艺%Surface treatment for making electromagnetic induction aluminum cooker

    Institute of Scientific and Technical Information of China (English)

    雷大法

    2014-01-01

    介绍了一种能使铝锅具备导磁性能的表面处理工艺。首先对铝锅进行喷砂处理,使其外表面的粗糙度Ra达到2.5~5.0μm,再电弧喷涂一层可导磁的铁涂层,并对铁层进行砂光处理,最后喷涂高温有机硅树脂保护涂层。经测试,铁涂层平均膜厚为207μm,表面孔隙率为1.28%,平均断裂载荷为21109.48 N,平均断裂强度为41.66 MPa;有机硅涂层的附着力、耐溶剂性、耐热性良好。最终产品的导磁性能达到企业标准。%A surface treatment, which enables aluminum cooker get electromagnetic induction, was introduced. The process mainly includes: sandblasting to achieve a surface roughness Ra of 2.5-5.0μm, electric arc spraying to form an iron coating, polishing, and spraying with a high-temperature silicone resin coating. The test results showed that the iron coating has the following properties:average thickness 207μm, surface porosity 1.28%, average breaking load 21 109.48 N, and average fracture strength 41.66 MPa. The organic silicon coating has good adhesion strength, solvent resistance, and thermal resistance. The electromagnetic induction performance of the cooker meets the enterprise standard.

  18. An autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools

    Science.gov (United States)

    Liu, Samuel M. Y.; Cheung, Benny C. F.; Whitehouse, David; Cheng, Ching-Hsiang

    2016-11-01

    An in situ measurement is of prime importance when trying to maintain the position of the workpiece for further compensation processes in order to improve the accuracy and efficiency of the precision machining of three dimensional (3D) surfaces. However, the coordinates of most of the machine tools with closed machine interfaces and control system are not accessible for users, which make it difficult to use the motion axes of the machine tool for in situ measurements. This paper presents an autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools. It makes use of a designed tool path and an additional motion sensor to assist the registration of time-space data for the position estimation of a 2D laser scanner which measures the surface with a high lateral resolution and large area without the need to interface with the machine tool system. A prototype system was built and integrated into an ultra-precision polishing machine. Experimental results show that it measures the 3D surfaces with high resolution, high repeatability, and large measurement range. The system not only improves the efficiency and accuracy of the precision machining process but also extends the capability of machine tools.

  19. Study of the processes of adsorption of amine-containing surface-active substance on the surface of Aluminum powder

    Directory of Open Access Journals (Sweden)

    Antonina Dyuryagina

    2012-03-01

    Full Text Available Equilibrium characteristics of adsorption on a surface of a pigment depending on concentration factors and temperature of the dispersive environment are defined. Kinetic laws of superficial activity of binary, threefold homogeneous and heterogeneous modeling systems are studied. The estimation of mechanisms of process of adsorption is carried out.

  20. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    Directory of Open Access Journals (Sweden)

    Lee Hee-Keun

    2015-07-01

    Full Text Available Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG hybrid (PMH welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  1. Imaging and Information Processing of Pitting-Corroded Aluminum Alloy Panels with Surface Metrology Methods

    Science.gov (United States)

    2014-12-23

    is the Senior Systems Engineer for Analatom, Inc. He received the bachelor of science degree in electrical engineering from the Rochester...Jiaming Li 3 , Javier Echauz 4 , Douglas Brown 5 , George J. Vachtsevanos 6 1, 2, 3, 6 Department of Electrical and Computer Engineering, Georgia...measurement covers a broad spectrum of technical approaches including acoustic, electrical and chemical methods. Surface metrology is an

  2. Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness.

    Science.gov (United States)

    Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang

    2017-01-28

    Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters.

  3. The formation and structure of the oxide and hydroxide chemisorbed phases at the aluminum surface, and relevance to hydrogen embrittlement

    Science.gov (United States)

    Francis, Michael; Kelly, Robert; Neurock, Matthew

    2010-03-01

    Aluminum alloys used in aerospace structures are susceptible to environmentally assisted cracking (EAC) induced by hydrogen embrittlement (HE) (Gangloff and Ives 1990). Crack growth experiments have demonstrated a linear relation between the relative humidity of the environment and crack growth rates, indicating the importance of water (Speidel and Hyatt 1972). While the presence of water has been demonstrated to be necessary for EAC of aluminum, crack growth rates have been linked to the diffusivity of hydrogen in aluminum (Gangloff 2003) and hydrogen densities at the crack tip as high as Al2H have been observed (Young and Scully 1998). While the mechanism by which hydrogen embrittles aluminum is yet not well understood, without the entry of hydrogen into the aluminum matrix, embrittlement would not occur. While at the crack tip high hydrogen concentrations exist, the solubility of hydrogen in aluminum is normal near 1 ppm (Wolverton 2004). In this work combined first principles and kinetic Monte Carlo methods will be used to examine the oxide and hydroxide structure resulting from exposure of aluminum to H2O or O2 and relevance to hydrogen entry as well as EAC is discussed.

  4. Optimization of the FeCo nanowire fabrication embedded in anodic aluminum oxide template by response surface methodology

    Directory of Open Access Journals (Sweden)

    Mina Salehi

    2014-06-01

    Full Text Available Anodic aluminum oxide (AAO fabricated by two step anodization technique, is used as a template to synthesize FeCo nanowire arrays by AC electrodeposition technique. Response surface methodology (RSM is applied to design the experiments, fit an empirical model and optimize the conditions to achieve the best magnetic properties. The magnetic properties, pore dimensions, composition and structure of the nanowires are characterized through alternating gradient force magnetometer (AGFM, scanning electron microscopy (SEM, scanning probe microscopy (SPM, energy dispersive spectoroscopy (EDS and X-ray diffraction (XRD, respectively. The effects of annealing temperature (Ta, Fe concentration (C, the pH of the deposition solution (pH and electrodeposition temperature (Td on the magnetic properties are investigated. Maximum experimental coercivity field (Hc = 191.4 KA/m is obtained in the following conditions: Ta = 550 °C; C = 50 wt%; pH = 6; Td = 40 °C. The optimum values to obtain maximum predicted coercivity field (Hc = 195.5 KA/m are predicted with a statistical technique as: Ta = 575 °C; C = 50.3 wt%; pH = 6; Td = 39 °C. Moreover, the results show that Td2 and Ta are the most important parameters affecting coercivity field. XRD results show that the crystal structure of nanowires is BCC with (1 1 0 preferred orientation along the nanowire axis.

  5. ENVELOPING THEORY BASED METHOD FOR THE DETERMINATION OF PATH INTERVAL AND TOOL PATH OPTIMIZATION FOR SURFACE MACHINING

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An enveloping theory based method for the determination of path interval in three-axis NC machining of free form surface is presented, and a practical algorithm and the measures for improving the calculating efficiency of the algorithm are given. Not only the given algorithm can be used for ball end cutter, flat end cutter, torus cutter and drum cutter, but also the proposed method can be extended to arbitrary milling cutters. Thus, the problem how to strictly calculate path interval in the occasion of three-axis NC machining of free form surfaces with non-ball end cutters has been resolved effectively. On this basis, the factors that affect path interval are analyzed, and the methods for optimizing tool path are explored.

  6. Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide

    Science.gov (United States)

    Saint-Cast, Pierre; Kania, Daniel; Hofmann, Marc; Benick, Jan; Rentsch, Jochen; Preu, Ralf

    2009-10-01

    Aluminum oxide layers can provide excellent passivation for lowly and highly doped p-type silicon surfaces. Fixed negative charges induce an accumulation layer at the p-type silicon interface, resulting in very effective field-effect passivation. This paper presents highly negatively charged (Qox=-2.1×1012 cm-2) aluminum oxide layers produced using an inline plasma-enhanced chemical vapor deposition system, leading to very low effective recombination velocities (˜10 cm s-1) on low-resistivity p-type substrates. A minimum static deposition rate (100 nm min-1) at least one order of magnitude higher than atomic layer deposition was achieved on a large carrier surfaces (˜1 m2) without significantly reducing the resultant passivation quality.

  7. Surface study of gallium- and aluminum- doped graphenes upon adsorption of cytosine: DFT calculations

    Science.gov (United States)

    Shokuhi Rad, Ali; Zareyee, Daryoush; Peyravi, Majid; Jahanshahi, Mohsen

    2016-12-01

    The adsorption of cytosine molecule on Al- and Ga- doped graphenes is studied using first-principles density functional theory (DFT) calculations. The energetically most stable geometries of cytosine on both Al- and Ga- doped graphenes are determined and the adsorption energies are calculated. The net charge of transfer as well as local charge of doped atoms upon adsorption of cytosine are studied by natural bond orbitals (NBO) analysis. Orbital hybridizing of complexes was searched by frontier molecular orbital theory (FMO), and density of states (DOS). Depending on the side of cytosine, there are four possible sites for its adsorption on doped graphene; denoted as P1, P2, P3, and P4, respectively. The order of binding energy in the case of Al-doped graphene is found as P1 ˃ P4 ˃ P3 ˃ P2. Interestingly, the order in the case of Ga-doped graphene changes to: P4 ∼ P1˃ P3˃ P2. Both surfaces show superior adsorbent property, resulting chemisorption of cytosine, especially at P1 and P4 position configurations. The NBO charge analysis reveals that the charge transfers from Al- and Ga- doped graphene sheets to cytosine. The electronic properties of both surfaces undertake important changes after cytosine adsorption, which indicates notable change in its electrical conductivity.

  8. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Kerr, A J; Chagarov, E; Gu, S; Kaufman-Osborn, T; Madisetti, S; Wu, J; Asbeck, P M; Oktyabrsky, S; Kummel, A C

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al2O3 gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001).

  9. Bactericidal Effect of Erbium-Doped Yttrium Aluminum Garnet Laser and Photodynamic Therapy on Aggregatibacter Actinomycetemcomitans Biofilm on Implant Surface.

    Science.gov (United States)

    Saffarpour, Anna; Fekrazad, Reza; Heibati, Maryam Naghavi; Bahador, Abbas; Saffarpour, Aida; Rokn, Amir R; Iranparvar, Aysel; KharaziFard, Mohammad J

    2016-01-01

    Peri-implantitis is a common complication of dental implants. The first step of treatment is elimination of bacterial biofilm and disinfection of the implant surface. This study sought to compare the effects of an erbium-doped yttrium aluminum garnet (Er:YAG) laser, photodynamic therapy using an indocyanin green-based photosensitizer (ICG-based PS) and diode laser, toluidine blue O (TBO) photosensitizer and light-emitting diode (LED) light source, and 2% chlorhexidine (CHX) on biofilm of Aggregatibacter actinomycetemcomitans to sandblasted, large-grit, acid-etched (SLA) implant surfaces. Fifty SLA implants were divided into five groups and were incubated with A actinomycetemcomitans bacteria to form bacterial biofilm. Group 1 underwent Er:YAG laser radiation (with 10-Hz frequency, 100-mJ energy, and 1-W power); group 2 was subjected to LED (with 630-nm wavelength and maximum output intensity of 2.000 to 4.000 mW/cm(2)) and TBO as a photosensitizer; group 3 was exposed to diode laser radiation (with 810-nm wavelength and 300-mW power) and ICG-based PS; and group 4 was immersed in 2% CHX. Group 5 was the control group, and the samples were rinsed with normal saline. The number of colony-forming units (CFU) per implant was then calculated. Data were analyzed using one-way analysis of variance (ANOVA), and the five groups were compared. Significant differences was found between the control group and the other groups (P laser was more effective than Er:YAG laser irradiation in suppression of this organism (P < .01). There was no significant difference between groups 2 and 3. The antibacterial effect of 2% CHX was greater than that of other understudy methods.

  10. Observation of multiple-harmonic radiation induced from a gold surface by picosecond neodymium-doped yttrium aluminum garnet laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, G.; Toth, C. (Research Institute for Solid-State Physics, P.O. Box 49, H-1525 Budapest (Hungary)); Moustaizis, S.D.; Papadogiannis, N.A.; Fotakis, C. (Foundation for Research and Technology, Hellas, P.O. Box 1527, Heraklion 711 10, Crete (Greece))

    1992-10-01

    Illuminating a gold surface by strong (5 GW/cm{sup 2}) picosecond neodymium-doped yttrium aluminum garnet laser pulses at grazing incidence, we observed a generation of coherent beams of both even and odd harmonics up to fifth order in the reflected direction with efficiencies 10{sup {minus}10--}10{sup {minus}13}. The observed decrease of the harmonic efficiencies with increasing harmonic order is much weaker than predicted by perturbative theories.

  11. The Surface Structure and Thermal Properties of Novel Polymer Composite Films Based on Partially Phosphorylated Poly(vinyl alcohol with Aluminum Phosphate

    Directory of Open Access Journals (Sweden)

    Asmalina Mohamed Saat

    2014-01-01

    Full Text Available Partially phosphorylated polyvinyl alcohol (PPVA with aluminum phosphate (ALPO4 composites was synthesized by solution casting technique to produce (PPVA100-y-(ALPO4y (y = 0, 1, and 2. The surface structure and thermal properties of the films were characterized using Fourier transform infrared (FTIR spectroscopy and thermogravimetric analysis (TGA. The results showed that the films have higher thermal stability with strong bonding between PPVA and ALPO4.

  12. 7075-T6铝合金单向超声振动车削表面质量及形貌特征%Research on unidirectional ultrasonic vibrations turning 7075 -T6 aluminum alloy surface quality and morphology

    Institute of Scientific and Technical Information of China (English)

    栾晓明; 胡斌梁; 周知进

    2014-01-01

    7075 -T6 aluminum alloy specimens were tested for machining experiments by using ordinary cutting (CT ) and the vibration cutting (UVC ) processing methods, to analyze the influence of cutting parameters on the work piece surface roughness.Experimental results show that:In the same amount of feed and depth of cut,speed with the turning changed,the surface roughness of ordinary cutting reduced first decreases and then increases again,but with the speed increased into the high -speed,the surface roughness become stable;The surface roughness uptrend with the feed rate increased of ultrasonic vibrations hard turning and ordinary hard cutting;In the same cutting speed and feed rate,with cutting depth increased ,7075 Aluminum ordinary hard cutting surface roughness increased,but the ultrasonic vibration cutting surface roughness first decrease and then increase.Through the analysis of experimental data obtained and the observations of the microscopic morphology of the machined surface after turning,the advantage of ultrasonic vibration machining in difficult materials processing is confirmed.%对7075-T6铝合金试件采用普通切削(CT)和振动切削(UVC)加工方法进行了加工实验,分析了2种切削加工方法在不同参数下对铝合金试件加工表面粗糙度的影响。试验研究结果表明:在相同的进给量和切削深度情况下,随着车削速度的变化,普通切削获得的加工表面粗糙度先减小后增大再减小,但随着转速的增大进入高速切削后,工件表面粗糙度值逐渐趋于稳定;随着进给量的增加超声振动硬车削与普通硬切削加工表面粗糙度都呈上升趋势,超声振动切削表面粗糙度较小;在切削速度、进给量相同的条件下,普通硬质切削7075铝合金加工表面粗糙度随着切削深度的增加而增加,而超声振动切削7075铝合金加工表面粗糙度随着切削深度的增加先减小后增加。通过对获得实验数

  13. Prediction of water surface elevation of Great Salt Lake using Support Vector Machine

    Science.gov (United States)

    Shrestha, N. K.; Urroz, G.

    2009-12-01

    Record breaking rises of Great Salt Lake (GSL) water levels that were observed in the period 1982-1987 resulted in severe economic impact to the State of Utah. Rising lake levels caused flooding that damaged highways, railways, recreation facilities and industries located in exposed lake bed. Prediction of GSL water levels necessitates the development of a model for accurate predictions of such levels in order to reduce or prevent economic loss due to flooding as happened in the past. A data-driven model, whose intent is to determine the relationship between inputs and outputs without knowing underlying physical process, was used in this project. A data-driven model can bridge the gap between classical regression-based and physically-based hydrological models. A Support Vector Machines (SVM) was used to predict water surface elevation of the GSL. The SVM-based reconstruction was used to develop time series forecast for multiple lead times. The model is able to extract the dynamics of the system by using only a few observed data points for training. The reliability of the algorithm in learning and forecasting the dynamics of the system was tested by changing two parameters: the integer time lag and the dimension (d) of the system. Parameter tau models the delay in which the dynamics unfolds by creating vectors of dimension d out of single measurements. For a given set of parameters tau and d, the discrepancy between observation and prediction is reduced by changing the cost parameter and a parameter called epsilon that controls the width of the SVM insensitive zone. All the data points within the epsilon insensitive zone are neglected in the SVM analysis. The analysis was performed for two time periods. The period of 1982 to 1987 was used to test the model performance in predicting the corresponding dramatic rise of GSL elevation. The period of 1987 to 2008 was used to test the performance of model for the normal water level rise and fall of the GSL. This analysis

  14. Thick and hard anodized aluminum film with large pores for surface composites

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; WANG Hao-wei

    2004-01-01

    Al-base surface self-lubricating composites need thick and hard alumina membranes with large pores to add lubricants easily. This kind of porous alumina layer was fabricated in additive-containing, phosphoric acid-based solution. The effects of additive containing organic carboxylic acid and Ce salt on the properties of the oxide film and mechanism were investigated in detail with SEM and EDAX analyses. The results show that the pore diameter is about 100 nm, the film thickness increases by 4 -5 times, and the Vickers hardness improves by about 50% through adding some amount of organic carboxylic acid and Ce salt. Such an improvement in properties is explained in terms of a lower film dissolving velocity and better film quality in compound solution.

  15. Surface morphology of titanium dioxide (TiO2) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    Science.gov (United States)

    Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-01

    Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO2 was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO2 on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  16. Study on corrosion resistance of the BTESPT silane cooperating with rare earth cerium on the surface of aluminum-tube

    Institute of Scientific and Technical Information of China (English)

    肖围; 满瑞林; 缪畅; 彭天兰

    2010-01-01

    Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the aluminum-tube against corrosion was investigated with potentiodynamic polarization curves,electrochemical impedance spectroscopy(EIS),and salt spray test(SST).The results of potentiodynamic polarization curves and EIS indicated that the self-corrosion current decreased by two orders of magnitude and the i...

  17. Fabrication of Sup erhydrophobic Surfaces on Aluminum Alloy Via Electro dep osition of Copp er Followed by Electro chemical Mo dification

    Institute of Scientific and Technical Information of China (English)

    Ying Huang; D. K. Sarkar∗; X-Grant Chen

    2011-01-01

    Superhydrophobic aluminum surfaces have been prepared by means of electrodeposition of copper on aluminum surfaces, followed by electrochemical modification using stearic acid organic molecules. Scanning electron microscopy (SEM) images show that the electrodeposited copper films follow“island growth mode”in the form of microdots and their number densities increase with the rise of the negative deposition potentials. At an electrodeposition potential of −0.2 V the number density of the copper microdots are found to be 4.5×104 cm−2 that are increased to 2.9×105 cm−2 at a potential of −0.8 V. Systematically, the distances between the microdots are found to be reduced from 26.6 µm to 11.03 µm with the increase of negative electrochemical potential from −0.2 V to −0.8 V. X-ray diffraction (XRD) analyses have confirmed the formation of copper stearate on the stearic acid modified copper films. The roughness of the stearic acid modified electrodeposited copper films is found to increase with the increase in the density of the copper microdots. A critical copper deposition potential of −0.6 V in conjunction with the stearic acid modification provides a surface roughness of 6.2 µm with a water contact angle of 157◦, resulting in superhydrophobic properties on the aluminum sub-strates.

  18. The Cleaning of OAB Universal Covers - An Origin of Smut in Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shen, T

    2002-05-14

    The smut that appeared on the universal covers after the OAB cleaning process consists of sub-micron size aluminum particles originating from the machining of these parts prior to cleaning. The rigorous gross and precision cleanings with Brulin in the OAB cleaning process could not completely wash these fine particles away from the surfaces. However, applying a phosphoric acid etch before the cleaning helped to remove these fine aluminum particles. Experimental results again showed that an acid etching before cleaning is essential in preventing the occurrence of smut in aluminum alloy after gross/precision cleaning. A mechanism, based on the electrostatic {zeta}-potential, is proposed to explain the occurrence of smut that is often encountered during the cleaning of aluminum alloys.

  19. Elements inter-diffusion in the turning of wear-resistance aluminum bronze

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inter-diffusion of elements between the tool and the workpiece during the turning of aluminum bronze using high-speed steel and cemented carbide tools have been studied. The tool wear samples were prepared by using M2 high-speed steel and YW1 cemented carbide tools to turn a novel high strength, wear-resistance aluminum bronze without coolant and lubricant. Adhesion of workpiece materials was found on all tools' surface. The diffusion couples made of tool materials and aluminum bronze were prepared to simulate the inter-diffusion during the machining. The results obtained from tool wear samples were compared with those obtained from diffusion couples. Strong inter-diffusion between the tool materials and the aluminum bronze was observed in all samples. It is concluded that diffusion plays a significant role in the tool wear mechanism.

  20. Fractal dimension analysis of aluminum oxide particle for sandblasting dental use.

    Science.gov (United States)

    Oshida, Y; Munoz, C A; Winkler, M M; Hashem, A; Itoh, M

    1993-01-01

    Aluminum oxide particles are commonly used as a sandblasting media, particularly in dentistry, for multiple purposes including divesting the casting investment materials and increasing effective surface area for enhancing the mechanical retention strengths of succeedingly applied fired porcelain or luting cements. Usually fine aluminum oxide particles are recycled within the sandblasting machine. Ceramics such as aluminum oxides are brittle, therefore, some portions of recycling aluminum oxide particles might be brittle fractured. If fractured sandblasting particles are involved in the recycling media, it might result in irregularity metallic materials surface as well as the recycling sandblasting media itself be contaminated. Hence, it is necessary from both clinical and practical reasons to monitor the particle conditions in terms of size/shape and effectiveness of sandblasting, so that sandblasting dental prostheses can be fabricated in optimum and acceptable conditions. In the present study, the effect of recycling aluminum oxide particles on the surface texture of metallic materials was evaluated by Fractal Dimension Analysis (FDA). Every week the alumina powder was sampled and analyzed for weight fraction and contaminants. Surface texture of sandblasted standard samples was also characterized by FDA. Results indicate very little change in particle size, while the fractal dimension increased. Fractal dimension analysis showed that the aluminum oxide particle as a sandblasting media should be replaced after 30 or 40 min of total accumulated operation time.

  1. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools(II): Tool positioning strategy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the mathematical model describing the third-order approximation of the cutter envelope surface according to one given cutter location(CL),a tool positioning strategy is proposed for efficiently machining free-form surfaces with non-ball-end cutters.The optimal CL is obtained by adjusting the inclination and tilt angles of the cutter until its envelope surface and the design surface have the third-order contact at the cutter contact(CC)point,which results in a wide machining strip.The strategy can handle the constraints of machine joint angle limits,global collision avoidance and tool path smoothness in a nature way,and can be applied to general rotary cutters and complex surfaces.Numerical examples demonstrate that the third-order point contact approach can improve the machining strip width greatly as compared with the recently reported second-order one.

  2. Electronic and Optical Properties of Aluminum Oxide Before and After Surface Reduction by Ar+ Bombardment

    Directory of Open Access Journals (Sweden)

    D. Tahir

    2014-08-01

    Full Text Available The electronic and optical properties of a-Al2O3 after induced by 3-keV Ar+ sputtering have been studied quantitatively by use of reflection electron energy loss spectroscopy (REELS spectra. The band gap values of a-Al2O3 was determined from the onset values of the energy loss spectrum to the background level of REELS spectra as a function of time Ar+ bombardment. The bandgap changes from 8.4 eV before sputtering to 6.2 eV after 4 minutes of sputtering.The optical properties of α-Al2O3 thin films have been determined by comparing the experimental cross section obtained from reflection electron energy loss spectroscopy with the theoretical inelastic scattering cross section, deduced from the simulated energy loss function (ELF by using QUEELS-ε(k-REELS software. The peak assignments are based on ELF and compared with reported data on the electronic structure of α-Al2O3 obtained using different techniques. The results demonstrate that the electronic and optical properties before and after surface reduction will provide further understanding in the fundamental properties of α-Al2O3 which will be useful in the design, modeling and analysis of devices applications performance.

  3. Local charge exchange of He{sup +} ions at Aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering University of Virginia, Charlottesville, VA 22904 (United States)

    2017-04-04

    We report on experiments designed to observe the correlation between the autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. The autoionizing states are formed when incident He{sup +*} and He{sup ++} are neutralized by resonant electron capture at the surface. 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact, where the dielectronic transition occurs after promotion of the 1s electron of incoming ions. - Highlights: • We observe the correlation between autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. • 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. • These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact.

  4. A Gradient-Simulated Annealing Algorithm of Pre-location-Based Best Fitting of Blank to Complex Surfaces Machining

    Institute of Scientific and Technical Information of China (English)

    MALi-ming; JIANGHong; WANGXiao-chun

    2004-01-01

    The algorithm is divided into two steps. The first step pre-locates the blank by aligning its centre of gravity and approximate normal vector with those of destination surfaces, with largest overlap of projections of two objects on a plane perpendicular to the normal vector. The second step is optimizing an objective function by means of gradient-simulated annealing algorithm to get the best matching of a set of distributed points on the blank and destination surfaces. An example for machining hydroelectric turbine blades is given to verify the effectiveness of algorithm.

  5. Energy transferred to the substrate surface during reactive magnetron sputtering of aluminum in Ar/O{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Thomann, A.L., E-mail: anne-lise.thomann@univ-orleans.fr [GREMI, UMR 7344 du CNRS et de l' Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orléans Cedex 2 (France); Cormier, P.A. [GREMI, UMR 7344 du CNRS et de l' Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orléans Cedex 2 (France); Dolique, V. [LMA, Université Claude Bernard Lyon I, Campus de la DOUA, Bâtiment Virgo 7 Avenue Pierre de Coubertin, 69622 Villeurbanne Cedex (France); Semmar, N.; Dussart, R.; Lecas, T. [GREMI, UMR 7344 du CNRS et de l' Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orléans Cedex 2 (France); Courtois, B. [CEMHTI, UPR3079 du CNRS, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2 (France); Brault, P. [GREMI, UMR 7344 du CNRS et de l' Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orléans Cedex 2 (France)

    2013-07-31

    A study of the reactive sputtering of aluminum was carried out by coupling energy flux measurements at the substrate location with conventional diagnostics of the gas phase and analyses of the deposited films. The main purpose was to get some insight into the elementary mechanisms involved at the substrate surface during the film growth in the well known metal and oxide regimes and at the transitions from one to another. Measurements were carried out in front of a 10 cm Al target at a power of 400 W (i.e. 5 W/cm{sup 2}) and a total pressure of 0.6 Pa. The flow rate ratio (O{sub 2}/O{sub 2} + Ar) was varied in the range 0 to 50%. Different kinetics and values of energy transfer, denoting different involved mechanisms, were evidenced at metal-oxide (increasing flow rate) and oxide-metal (decreasing flow rate) transitions. The metal-oxide transition was found to be a progressive process, in agreement with optical emission spectroscopy and deposit analysis, characterized by an increase of the energy flux that could be due to the oxidation of the growing metal film. On the contrary, oxide-metal transition is abrupt, and a high energy is released at the beginning that could not be attributed to a chemical reaction. The possible effect of O{sup −} ions at this step was discussed. - Highlights: • We use real-time energy flux measurements to study reactive magnetron sputtering. • At transitions rise of the energy flux transferred to the substrate is observed. • At the metal-oxide transition energy is released by oxidation of the Al growing film. • At the oxide-metal transition the energy transfer may be due to O{sup −} born at the target. • Energy flux study gives some insight into mechanisms involved in the film growth.

  6. Effect of Surface States on Joining Mechanisms and Mechanical Properties of Aluminum Alloy (A5052 and Polyethylene Terephthalate (PET by Dissimilar Friction Spot Welding

    Directory of Open Access Journals (Sweden)

    Farazila Yusof

    2016-04-01

    Full Text Available In this research, polyethylene terephthalate (PET, as a high-density thermoplastic sheet, and Aluminum A5052, as a metal with seven distinct surface roughnesses, were joined by friction spot welding (FSW. The effect of A5052’s various surface states on the welding joining mechanism and mechanical properties were investigated. Friction spot welding was successfully applied for the dissimilar joining of PET thermoplastics and aluminum alloy A5052. During FSW, the PET near the joining interface softened, partially melted and adhered to the A5052 joining surface. The melted PET evaporated to form bubbles near the joining interface and cooled, forming hollows. The bubbles have two opposite effects: its presence at the joining interface prevent PET from contacting with A5052, while bubbles or hollows are crack origins that induce crack paths which degrade the joining strength. On the other hand, the bubbles’ flow pushed the softened PET into irregularities on the roughened surface to form mechanical interlocking, which significantly improved the strength. The tensile-shear failure load for an as-received surface (0.31 μ m Ra specimen was about 0.4–0.8 kN while that for the treated surface (>0.31 μ m Ra specimen was about 4.8–5.2 kN.

  7. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  8. The effect of TWD estimation error on the geometry of machined surfaces in micro-EDM milling

    DEFF Research Database (Denmark)

    Puthumana, Govindan; Bissacco, Giuliano; Hansen, Hans Nørgaard

    In micro EDM (electrical discharge machining) milling, tool electrode wear must be effectively compensated in order to achieve high accuracy of machined features [1]. Tool wear compensation in micro-EDM milling can be based on off-line techniques with limited accuracy such as estimation....... The error propagation effect is demonstrated through a software simulation tool developed by the authors for determination of the correct TWD for subsequent use in compensation of electrode wear in EDM milling. The implemented model uses an initial arbitrary estimation of TWD and a single experiment...... and statistical characterization of the discharge population [3]. The TWD based approach permits the direct control of the position of the tool electrode front surface. However, TWD estimation errors will generate a self-amplifying error on the tool electrode axial depth during micro-EDM milling. Therefore...

  9. EXPERIMENTAL IMPACT ASSESSMENT OF PARAMETERS PERTAINING TO BLANK TWO-DIMENSIONAL CIRCULAR MOTION ON INTENSITY OF ITS CUTTING AND QUALITY OF MACHINED SURFACE

    National Research Council Canada - National Science Library

    M. G. Kiselev; A. V. Drozdov; S. G. Monich; D. A. Yamnaya

    2014-01-01

    The purpose of the paper is to make an experimental impact assessment of parameters pertaining to blank two-dimensional circular blank motion on intensity of its cutting and quality of the machined surfaces...

  10. Magnetron sputtering of silver nanowires using anodic aluminum oxide template: a new active substrate of surface enhanced Raman scattering and an investigation of its enhanced mechanism.

    Science.gov (United States)

    Zhang, Lisheng; Zhang, Pengxiang; Fang, Yan

    2007-05-22

    A high quality anodic aluminum oxide (AAO) template with ordered apertures about 50-80 nm was fabricated by anodizing aluminum in electrolytes through a two-step method, and silver nanowires with diameters from 40 nm to 70 nm were prepared on this AAO template by magnetron sputtering. On the glass covered with silver nanowires, high quality surface enhanced Raman scattering (SERS) spectra of sudan II (C18H16N2O) with enhancement factors of 10(5) were obtained. And comparison of SERS spectra on silver nanowires with the SERS spectra of silver colloids indicates that main enhanced mode is lightning rod effect of nanorods on the Sudan II/silver nanowires system.

  11. Study the effect of cryogenic cooling on orthogonal machining Process

    Directory of Open Access Journals (Sweden)

    Arvind Kaushal

    2016-06-01

    Full Text Available In present scenario , all the manufacturing organization aims to maximize the productivity of organization in respect of all the aspect of manufacturing process, in case of machining process, it associated with various factors which affect the productivity directly in sense of tool life . Temperature, cutting forces, shear angle, work-piece surface finishing & accuracy, amount of power consumed in machining process and other thing also. All the factors might be optimized by applying effective and efficient amount of coolant throughout the process, to get desired efficiency of process. A coolant play a vital role in machining operation but which must have specific properties which have been reviewed in previous article of various student , research scholars , scientist and industrial candidates .in this research paper , we were focusing on the effect of cryogenic cooling on cutting temperature , cutting forces , chip behavior , shear angle , when alloy steel EN-8 and aluminum alloy 6061-T89 was machined by carbide cutting tool (coated & uncoated & applying liquid nitrogen as a coolant and observed that temperature was decreased during the machining process about 16% to 27% and cutting forces improved to 13%when the machining was performed , the same without cooling of EN-8 alloy, similarly on the other hand in case of aluminum alloy 6061-T89 , temperature was decreased to 25% to 37% and cutting force improved to 9% .

  12. Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics.

    Science.gov (United States)

    Harcuba, Petr; Bačáková, Lucie; Stráský, Josef; Bačáková, Markéta; Novotná, Katarína; Janeček, Miloš

    2012-03-01

    This study investigated the properties of Ti-6Al-4V alloy after surface treatment by the electric discharge machining (EDM) process. The EDM process with high peak currents proved to induce surface macro-roughness and to cause chemical changes to the surface. Evaluations were made of the mechanical properties by means of tensile tests, and of surface roughness for different peak currents of the EDM process. The EDM process with peak current of 29 A was found to induce sufficient surface roughness, and to have a low adverse effect on tensile properties. The chemical changes were studied by scanning electron microscopy equipped with an energy dispersive X-ray analyser (EDX). The surface of the benchmark samples was obtained by plasma-spraying a titanium dioxide coating. An investigation of the biocompatibility of the surface-treated Ti-6Al-4V samples in cultures of human osteoblast-like MG 63 cells revealed that the samples modified by EDM provided better substrates for the adhesion, growth and viability of MG 63 cells than the TiO2 coated surface. Thus, EDM treatment can be considered as a promising surface modification to orthopaedic implants, in which good integration with the surrounding bone tissue is required.

  13. Diffusion-bonded beryllium aluminum optical structures

    Science.gov (United States)

    Grapes, Thomas F.

    2003-12-01

    Beryllium aluminum material can present significant advantages for optical support structures. A likely advantage of beryllium aluminum compared to aluminum or titanium for such structures is its higher specific stiffness. However, beryllium aluminum material is significantly more expensive than most competing materials. The cost problem with beryllium aluminum is exacerbated if fabrication methods that result in near net shape parts are not used. Near net shape methods result in the least amount of material "thrown away" in the fabrication process. Casting is a primary example of near net shape manufacturing that is appropriate for some optical support structures. Casting aluminum, and other materials as well, is common. Casting of beryllium aluminum is very difficult, however, and has not had significant success. Diffusion bonding - a different approach for achieving near net shape beryllium aluminum optical support structures, was pursued and accomplished. Diffusion bonding is a term used to describe the joining of solid metal pieces under high temperature and pressure, but without melting. Three different optical support structures were designed and built of beryllium aluminum using diffusion bonding. Relatively small solid beryllium aluminum pieces were arranged together and then joined under hot isostatic pressure conditions. The resulting relatively large pressure bonded part was then machined to achieve the final product. Significant cost savings as compared to machining the part from a solid block were realized. Difficulties achieving diffusion bonds in complex joints were experienced and addressed.

  14. Influence of Surface Position along the Working Range of Conoscopic Holography Sensors on Dimensional Verification of AISI 316 Wire EDM Machined Surfaces

    Directory of Open Access Journals (Sweden)

    Pedro Fernández

    2014-03-01

    Full Text Available Conoscopic holography (CH is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F and power (P until the quality indicators Signal-to-Noise Ratio (SNR and signal envelope (Total meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR. Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP on a CMM.

  15. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  16. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Stráský, Josef, E-mail: josef.strasky@gmail.com [Charles University, Department of Physics of Materials (Czech Republic); Havlíková, Jana; Bačáková, Lucie [Institute of Physiology, Academy of Sciences of the Czech Republic (Czech Republic); Harcuba, Petr [Charles University, Department of Physics of Materials (Czech Republic); Mhaede, Mansour [Clausthal University of Technology, Institute of Materials Science and Engineering (Germany); Faculty of Engineering, Zagazig University (Egypt); Janeček, Miloš [Charles University, Department of Physics of Materials (Czech Republic)

    2013-09-15

    Presented work aims at multi-method characterization of combined surface treatment of Ti–6Al–4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  17. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  18. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  19. Applications of high power lasers. [using reflection holograms for machining and surface treatment

    Science.gov (United States)

    Angus, J. C.

    1979-01-01

    The use of computer generated, reflection holograms in conjunction with high power lasers for precision machining of metals and ceramics was investigated. The Reflection holograms which were developed and made to work at both optical wavelength (He-Ne, 6328 A) and infrared (CO2, 10.6) meet the primary practical requirement of ruggedness and are relatively economical and simple to fabricate. The technology is sufficiently advanced now so that reflection holography could indeed be used as a practical manufacturing device in certain applications requiring low power densities. However, the present holograms are energy inefficient and much of the laser power is lost in the zero order spot and higher diffraction orders. Improvements of laser machining over conventional methods are discussed and addition applications are listed. Possible uses in the electronics industry include drilling holes in printed circuit boards making soldered connections, and resistor trimming.

  20. Optimization of Drilling Parameters for Reducing the Burr Height in Machining the Silicon Carbide Particle (SiCp) Coated with Multi Wall Carbon Nano Tubes (MWCNT) Reinforced in Aluminum Alloy (A 356) Using Meta Modeling Approach

    Science.gov (United States)

    Sangeetha, M.; Prakash, S.

    2017-05-01

    This paper explains the optimization of drilling parameters using meta modeling approach to reduce the burr height while machining Silicon Carbide Particle (SiCp) coated with Multi Wall Carbon Nano Tubes (MWCNT) and reinforced in aluminum alloy (A 356). The specimen is prepared by the combination of sonication and stir casting processes. The volume fraction of MWCNT used is 1.5% and the volume fraction of SiCp is 10%. The combination of input parameters for drilling the holes is designed using Taguchi experimental design technique. The input parameters chosen for drilling operations are spindle speed, feed rate and drill diameter. The ranges of input parameters are listed in Table 1. The tools used for drilling operation are made up of solid carbide drill bit. Meta model is a mathematical and statistical model whose second-order model can be fitted by factorial design. The optimization model can be improved significantly by the second-order model compared to the first-order model. Twenty-seven holes are drilled using vertical machining center in the prepared specimen (A 356/MWCNT coated SiCp). Desirability function shows the optimized values of input parameters to obtain minimum burr height. Meta modeling approach is used to design a model using input parameters and output response burr height. The residuals plot shows the predicted values are closer to the measured values. This plot explains that the Meta model is adequately used to predict the burr height. The optimized values of input parameters for obtaining minimum burr height are the combination of high speed, low feed and low drill diameter. The minimum value of burr height observed in this experiment is 0.002mm and it is obtained in the optimized combination of N3, f1 and d1.

  1. Online tomato sorting based on shape, maturity, size, and surface defects using machine vision

    OpenAIRE

    ARJENAKI, Omid Omidi; MOGHADDAM, Parviz Ahmadi; MOTLAGH, Asad Moddares

    2013-01-01

    Online sorting of tomatoes according to their features is an important postharvest procedure. The purpose of this research was to develop an efficient machine vision-based experimental sorting system for tomatoes. Relevant sorting parameters included shape (oblong and circular), size (small and large), maturity (color), and defects. The variables defining shape, maturity, and size of the tomatoes were eccentricity, average of color components, and 2-D pixel area, respectively. Tomato defects ...

  2. Physico-chemical surface characterization of a bacterial population isolated from a milking machine

    OpenAIRE

    Teixeira, P.; Lopes, Zulmira; Azeredo, Joana; Oliveira, Rosário; Vieira, M. J.

    2005-01-01

    The hydrophobicity of 26 species of bacteria representative of the main genera isolated from a rubber short milk tube, which is a constituent of a cluster from a milking machine, was determined. The materials forming the cluster namely rubber, stainless steel (SS) 316, stainless steel (SS) 304, glass and polymethylmethacrylate (PMMA) were also assayed in terms of hydrophobicity. In relation with the hydrophobicity of bacteria, all the strains of Lactobacillus lactis lactis as well as...

  3. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  4. A new geometrical construction using rounded surfaces proposed for the transverse flux machine for direct drive wind turbine

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Nica, Florin Valentin Traian; Ritchie, Ewen;

    2014-01-01

    This paper proposes a new construction for transverse flux machines (TFM) using a rounded surfaces core geometry. The new concept has been developed for TFM with U core geometry. In this case a new analytic design procedure was proposed. The analytic design of the new TFM construction is further...... improved by FEM modelling and analysis. Using the new concept, a significant reduction of the active materials is obtained. The innovative geometry also provides a uniform magnetic field in the core structure. According to the comparison of both the TFM with prismatic and rounded core geometries the new...

  5. RESEARCH ON MODELING AND CHARACTERISTICS OF THE SPINDLE DYNAMIC COUPLING ABSORBERING SYSTEM OF A SUPER-PRECISION SURFACE GRINDING MACHINE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The bearing is described by constrain matrix, and the spindle system of a NC surface grinding machine is simplified as elastic-coupling beam, then modal synthesis method is used to establish the dynamic model of beam.Moreover, the response of the end of rotor is analyzed, and the natural frequency, principle mode and other dynamic characteristics of the coupling system are studied, the law of bearing stiffness to coupling frequency and amplitude of rotor is also found.Finally, according to the actual condition, a dynamic absorber is designed.The simulation and experimental results show that the amplitude of spindle can be declined effectively when the dynamic absorber is attached.

  6. Corrosion Behavior of Top and Bottom Surfaces for Single-Side and Double-Side Friction Stir Welded 7085-T7651 Aluminum Alloy Thick Plate Joints

    Science.gov (United States)

    Xu, Weifeng; Zhang, Wei; Wu, Xiaoli

    2017-03-01

    Thick plate joints of 7085-T7451 aluminum alloy were obtained through both single-side and double-side friction stir welding (SS or DS-FSW). The chloride ions effects on the corrosion behavior of the top and bottom surfaces of the joints were examined by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Results show that the corrosion susceptibility was suppressed significantly in the weld nugget zone, while the base material and heat-affected zone were prone to be corrosion attacked. For the SS-FSWed joint, the top surface showed a higher corrosion resistance than that of the bottom surface, but the larger corrosive heterogeneity was observed between the top and bottom surfaces compared with the two welds of DS-FSWed joint, which was confirmed by the morphology of corrosion attack. A deep insight on the microstructure of the joints indicates that the intermetallic particles played a key role in the corrosion behavior of the FSWed AA7085 aluminum alloy joints in chloride solution.

  7. Corrosion Behavior of Top and Bottom Surfaces for Single-Side and Double-Side Friction Stir Welded 7085-T7651 Aluminum Alloy Thick Plate Joints

    Science.gov (United States)

    Xu, Weifeng; Zhang, Wei; Wu, Xiaoli

    2017-01-01

    Thick plate joints of 7085-T7451 aluminum alloy were obtained through both single-side and double-side friction stir welding (SS or DS-FSW). The chloride ions effects on the corrosion behavior of the top and bottom surfaces of the joints were examined by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Results show that the corrosion susceptibility was suppressed significantly in the weld nugget zone, while the base material and heat-affected zone were prone to be corrosion attacked. For the SS-FSWed joint, the top surface showed a higher corrosion resistance than that of the bottom surface, but the larger corrosive heterogeneity was observed between the top and bottom surfaces compared with the two welds of DS-FSWed joint, which was confirmed by the morphology of corrosion attack. A deep insight on the microstructure of the joints indicates that the intermetallic particles played a key role in the corrosion behavior of the FSWed AA7085 aluminum alloy joints in chloride solution.

  8. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  9. Innovative Design of Tidying Lid Machine about Antitheft Aluminum Foil Lid%铝箔防盗盖理盖器的创新设计

    Institute of Scientific and Technical Information of China (English)

    张有良; 孙建华; 戴明利; 苟向民; 王剑峰; 陈毅

    2016-01-01

    In order to shorten the running time of the covers in the tidying machine,there were two new technologies in design.For one thing,it was used the vac-sorb and the new technology of the blowing lid by compressed air,the lids were arrayed quickly by the vac-sorb ,using the blowing lids technology in order to blow the lapped and reverse lids,reduce the useless accumulation of lids and expedite the tidied speed.For an-other thing,it was controlled the tidying machine twirl effectively,and shorten the running time,and improved the efficiency of tidying lids by detecting the state of the lids which were on the track.%铝箔防盗盖新型理盖器设计目的是为了缩短瓶盖在理盖器中运动时间。设计中采用两项主要技术,一方面,新型理盖器采用真空吸附与多处压缩空气吹盖新技术,真空吸附使瓶盖快速朝同向排列,多处压缩空气吹盖,吹去浮盖、反盖,减少瓶盖的无效堆积,加快瓶盖理顺。另一方面,对于瓶盖输出轨道上瓶盖状态进行检测,有效控制理盖器转动。达到了瓶盖在理盖器中运动时间短的目的,提高理盖效率。

  10. 大尺寸自由曲面铝反射镜超精密抛光工艺%Ultra-Precision Polishing Process of Large Free-Form Surface Aluminum Miror

    Institute of Scientific and Technical Information of China (English)

    潘龙; 宫虎; 房丰洲

    2015-01-01

    Regarding the defects of large free-form surface aluminum mirror after single point diamond turning ( SPDT) , such as scratch and corrugation , the effects of polishing media and process parameters on the ultra-precision polishing results of free-form aluminum surface were studied in this paper .The AA6061 aluminum surface topography before and that after polishing and polishing results under different conditions were compared after detecting in WykoNT 9300 white light interferometer and VHX 500 digital microscope .Polishing experiments of both flat and free-form surfaces were conducted on a precision ma-chining center with different concentrations of diamond oily suspension as polishing liquid and wool wheel as polishing wheel respectively .The surface roughness Ra was reduced from 144.59 nm before polishing to 6.03 nm after polishing , wherein the oil lubricant played a key role in trace removal and reducing scratching and ideal mirror surface was achieved using optimized process parameters .%针对大尺寸自由曲面铝反射镜在单点金刚石车削(SPDT)后出现的划伤、波纹等缺陷,研究了抛光介质和加工参数对自由曲面铝合金超精密抛光结果的影响.利用WykoNT9300白光干涉仪和VHX500超景深显微镜对AA6061铝合金抛光表面进行了检测,将抛光前后的表面形貌以及不同条件下的抛光结果进行了比较.实验中采用质量分数不同的金刚石油性悬浮液作为抛光液,采用羊毛轮作为抛光轮,在一台精密加工中心上先后进行了平面抛光和自由曲面抛光实验.实验结果表明,工件的表面粗糙度Ra由抛光前的144.59nm降低到了抛光后的6.03nm,其中油性润滑剂在抛光过程中起微量去除和降低划擦几率的关键作用,使用优化的工艺参数在AA6061自由曲面上获得了理想镜面.

  11. Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment

    Science.gov (United States)

    Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander

    2016-11-01

    The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.

  12. Scanning compound surfaces with no existing CAD model by using laser probe of a coordinate measuring machine

    Science.gov (United States)

    Che, Chenggang

    1992-09-01

    In recent years, the manufacturing of parts with compound surfaces relies more and more on computer integrated manufacturing (CIM) because of the ever increasing complexity of surface features. For a standard CIM cycle, it starts from a computer aided design (CAD) model which was designed previously be experienced mechanical drafters. The CAD model is then interpreted as numerical controlled (NC) machining codes according to which the part is finally manufactured, this is usually referred to as the normal manufacturing process in Figure 1. However, in many cases, a CAD model of a part is not always readily available to begin the CIM cycle. For instance, in automobile industry, the development of new car models takes a long time from concept to model because of the tedious manual digitization process. Also, in some other cases, the mechanical design of a product may need frequent modification, such as ship hulls, aeroplane fuselages, wings and turbine blades, etc. This was traditionally done by copymilling of a master model. In a computer aided manufacturing (CAM) environment, a mathematical model or representation of a part is required to begin a CIM cycle. The automation of the whole manufacturing system requires a rapid part modeling tool. Fortunately, this becomes possible with the advent of recent development in optical sensing devices and many non-contact sensing techniques. Before a part model is established, surface digitization should first be implemented so that enough measurement points can be fitted later, and this is the most important step of the reverse engineering process as in Figure 1. And also, it is obvious that the efficiency and accuracy of the surface modeling relies heavily on the efficiency and accuracy of the surface digitization. The present paper aims at achieving surface digitization accurately and rapidly with a coordinate measurement machine (CMM) and an inexpensive laser range-finding probe. By making full use of the control system of

  13. A finite state machine read-out chip for integrated surface acoustic wave sensors

    Science.gov (United States)

    Rakshit, Sambarta; Iliadis, Agis A.

    2015-01-01

    A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.

  14. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    Science.gov (United States)

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  15. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source

    Directory of Open Access Journals (Sweden)

    K. Venkatesan

    2017-07-01

    Full Text Available Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60–150 m/min, feed rates of 0.05–0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  16. Experiment on high speed machining parametres for sport shoe sole mold making using aluminium alloy 5083, 6163 and 7075

    Directory of Open Access Journals (Sweden)

    S. Chartakom

    2008-12-01

    Full Text Available Purpose: The objective of this experiment is to obtain the fine surface roughness that is required less final polishing process as well as shortest manufacturing lead time.Design/methodology/approach: the aluminum Alloy 5058, 6163 and 7075 are selected for the experiment on a high speed machine. The machine used for testing is namely Mold Maker 200&2500 which is the high precision machining center. Secondly, the study is emphasizes on the suitable cutting tool and cutting parameters. Accurate surface roughness measured level is an important factor for injection mold making. This section explains the process of surface roughness measurement on the machine, namely MarSurf XCR 20 V1.20-4.Findings: The investigations are shown that the Aluminum graded Al 6163 and Al 7075 can be suitably used for the sport sole mold making in or to obtain the acceptable surface roughness without polishingPractical implications: The method can be adapted for all global shapes of tools, even in the case of complex geometriesOriginality/value: The investigations are shown that the Aluminum Al 6163 and Al 7075 can extremely save machining and polishing time.

  17. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    Science.gov (United States)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  18. Ultra fast laser machined hydrophobic stainless ateel surface for drag reduction in laminar flows

    NARCIS (Netherlands)

    Jagdheesh, R.; Pathiraj, B.; Martin, A.G.; Del Cerro, D.A.; Lammertink, R.G.H.; Lohse, D.; Huis in 't Veld, A.J.; Römer, G.R.B.E.

    2010-01-01

    Hydrophobic surfaces have attracted much attention due to their potential in microfluidics, lab on chip devices and as functional surfaces for the automotive and aerospace industry. The combination of a dual scale roughness with an inherent low-surface-energy coating material is the pre-requisite fa

  19. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-11-30

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10(-6) M is established.

  20. Minimization of energy and surface roughness of the products machined by milling

    Science.gov (United States)

    Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.

    2017-08-01

    Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.

  1. Predictive Models for Different Roughness Parameters During Machining Process of Peek Composites Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mata-Cabrera Francisco

    2013-10-01

    Full Text Available Polyetheretherketone (PEEK composite belongs to a group of high performance thermoplastic polymers and is widely used in structural components. To improve the mechanical and tribological properties, short fibers are added as reinforcement to the material. Due to its functional properties and potential applications, it’s impor- tant to investigate the machinability of non-reinforced PEEK (PEEK, PEEK rein- forced with 30% of carbon fibers (PEEK CF30, and reinforced PEEK with 30% glass fibers (PEEK GF30 to determine the optimal conditions for the manufacture of the parts. The present study establishes the relationship between the cutting con- ditions (cutting speed and feed rate and the roughness (Ra , Rt , Rq , Rp , by develop- ing second order mathematical models. The experiments were planned as per full factorial design of experiments and an analysis of variance has been performed to check the adequacy of the models. These state the adequacy of the derived models to obtain predictions for roughness parameters within ranges of parameters that have been investigated during the experiments. The experimental results show that the most influence of the cutting parameters is the feed rate, furthermore, proved that glass fiber reinforcements produce a worse machinability.

  2. The effects of different surface treatments on the shear bond strength of composite resin to machined titanium

    Science.gov (United States)

    Aljadi, Mohammad

    Purpose: The purpose of this study was to evaluate the shear bond strength between machined titanium and composite resin using different surface treatments. Materials and Methods: Titanium (Ti-6Al-4V) specimens were ground with 600 grit SiC paper and randomly divided into 6 groups (n=20/group). Group #1 (Control): samples were sandblasted with 110 microm Al2 O3 for 10 sec. Group #2 (Rocatec): samples were treated with the Rocatec system following the manufacturer's directions but the silanization step was eliminated. Group #3 (Silano Pen): samples were treated with the Silano Pen system. Group #4 (H2SO4 etched): samples were sandblasted with 110 microm Al2O3 for 10 sec and etched with 48% H2SO4 for 60 minutes at 60 oC. Group#5 (acid etching + Rocatec): samples received both treatments as described in Groups 4 and 2, respectively. Group #6 (acid etching + Silano Pen): samples received both treatments as described in Groups 4 and 3, respectively. Composite was bonded to the treated titanium surface, half of the specimens from each group (n=10/group) were subjected to thermocycling, and the samples were tested for shear bond strength in a universal testing machine. Representative samples from each group were evaluated with SEM. Results: Two-way ANOVA revealed that there were significant differences (p silanization step in the Rocatec system is a critical step and eliminating it may dramatically alter its effectiveness. 3) Combining two surface treatments may not always result in an additive effect. 4) Thermocycling significantly decreased the bond strength regardless of the surface treatment used.

  3. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    in plasmon-enhanced light harvesting,14 photocatalysis ,511 surface- enhanced spectroscopies,1216 optics-based sensing,1722 nonlinear optics,2326...optical response of Al nanoparticles has appeared inconsistent relative to calculated spectra, even forwell-characterized geometries. Some studies have...model- ing their optical response. These results pro- vide a method for estimating the metallic purity of aluminum nanoparticles directly from their

  4. Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology

    OpenAIRE

    Ramanjaneyulu Kadaganchi; Madhusudhan Reddy Gankidi; Hina Gokhale

    2015-01-01

    The heat treatable aluminum–copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-to-weight ratio and good ductility. Friction stir welding (FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum allo...

  5. Contribution of Iron and Aluminum Oxides to Electrokinetic Characteristics of Variable Charge Soils in Relation to Surface Charge

    Institute of Scientific and Technical Information of China (English)

    ZHANGHONG; ZHANGXIAO-NIAN

    1992-01-01

    The contribution of iron and aluminum oxides to electrokinetic characteristics of variable charge soils was studied through determination of electrophoretic mobilities of the red soils treated with either removal of iron oxides or coating of aluminum oxides,and of those deferrated under natural conditions.After removal of the iron oxides,zeta potentials of the latosol and the red earth decreased obviously with a shift of IEP to a lower pH,from 6.4 to 5.3 and 4.1 to 2.4 for the former and the latter,respectively,and the electrokinetic change for the latosol was greater than for the red earth.Zeta potentials of the kaolinite sample increased markedly after coated with iron oxides.The striking effect of iron oxides on electrokinetix properties of the soils was also demonstrated by the electrokinetic differences between the samples from the red and white zones of a plinthitic horizon formed naturally,and between the samples from the gley and bottom horizons of a paddy soil derived from a red earth.The coatings of aluminum oxides on the latosol and the yellow earth made their zeta potentials rise pronouncedly and their IEFs move toward higher pHs,from 6.2 to 6.8 and 4.3 to 5.3 for the former and the latter,respectively.The samples with different particle sizes also exhibited some electrokinetic variation.The experiment showed that the effects of iron and aluminum oxides were closely related to the pH and type of the soils.

  6. Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, Mohamed Walid; Belhadi, Salim; Yallese, Mohamed Athmane [Univ. of Guelma, Guelma (Algeria); Mabrouki, Tarek; Rigal, Jean Francois [Univ. of Lyon, Lyon (France)

    2012-12-15

    An experimental investigation was conducted to analyze the effect of cutting parameters (cutting speed, feed rate and depth of cut) and workpiece hardness on surface roughness and cutting force components. The finish hard turning of AISI 52100 steel with coated Al2O3 + TiC mixed ceramic cutting tools was studied. The planning of experiment were based on Taguchi's L27 orthogonal array. The response table and analysis of variance (ANOVA) have allowed to check the validity of linear regression model and to determine the significant parameters affecting the surface roughness and cutting forces. The statistical analysis reveals that the feed rate, workpiece hardness and cutting speed have significant effects in reducing the surface roughness; whereas the depth of cut, workpiece hardness and feed rate are observed to have a statistically significant impact on the cutting force components than the cutting speed. Consequently, empirical models were developed to correlate the cutting parameters and workpiece hardness with surface roughness and cutting forces. The optimum machining conditions to produce the lowest surface roughness with minimal cutting force components under these experimental conditions were searched using desirability function approach for multiple response factors optimization. Finally, confirmation experiments were performed to verify the pertinence of the developed empirical models.

  7. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels

    Science.gov (United States)

    Dral, Pavlo O.; Owens, Alec; Yurchenko, Sergei N.; Thiel, Walter

    2017-06-01

    We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.

  8. Wettability of Molten Aluminum-Silicon Alloys on Graphite and Surface Tension of Those Alloys at 1273 K (1000 °C)

    Science.gov (United States)

    Mao, Weiji; Noji, Takayasu; Teshima, Kenichiro; Shinozaki, Nobuya

    2016-06-01

    The wettability of molten aluminum-silicon alloys with silicon contents of 0, 6, 10, and 20 mass pct on graphite substrates by changing the placing sequence of aluminum and silicon and the surface tension of those alloys were investigated at 1273 K (1000 °C) using the sessile drop method under vacuum. The results showed that the wetting was not affected by changing the placing sequence of the Al-Si alloys on the graphite substrates. The wettability was not improved significantly upon increasing the Si content from 0 to 10 mass pct, whereas a notable decrease of 22 deg in the contact angle was observed when increasing the Si content from 10 to 20 mass pct. This was attributed to the transformation of the interfacial reaction product from Al4C3 into SiC, provided the addition of Si to Al was sufficient. It was verified that the liquid Al can wet the SiC substrate very well in nature, which might explain why the occurrence of SiC would improve the wettability of the Al-20 mass pct Si alloy on the graphite substrate. The results also showed that the surface tension values of the molten Al-Si alloys decreased monotonously with an increase in Si content, being 875, 801, 770, and 744 mN/m for molten Al, Al-6 mass pct Si, Al-10 mass pct Si, and Al-20 mass pct Si alloys, respectively.

  9. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.W.; Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10⁻¹ Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  10. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    Science.gov (United States)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  11. Control of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signals

    Science.gov (United States)

    Griffin, James M.; Diaz, Fernanda; Geerling, Edgar; Clasing, Matias; Ponce, Vicente; Taylor, Chris; Turner, Sam; Michael, Ernest A.; Patricio Mena, F.; Bronfman, Leonardo

    2017-02-01

    By using acoustic emission (AE) it is possible to control deviations and surface quality during micro milling operations. The method of micro milling is used to manufacture a submillimetre waveguide where micro machining is employed to achieve the required superior finish and geometrical tolerances. Submillimetre waveguide technology is used in deep space signal retrieval where highest detection efficiencies are needed and therefore every possible signal loss in the receiver has to be avoided and stringent tolerances achieved. With a sub-standard surface finish the signals travelling along the waveguides dissipate away faster than with perfect surfaces where the residual roughness becomes comparable with the electromagnetic skin depth. Therefore, the higher the radio frequency the more critical this becomes. The method of time-frequency analysis (STFT) is used to transfer raw AE into more meaningful salient signal features (SF). This information was then correlated against the measured geometrical deviations and, the onset of catastrophic tool wear. Such deviations can be offset from different AE signals (different deviations from subsequent tests) and feedback for a final spring cut ensuring the geometrical accuracies are met. Geometrical differences can impact on the required transfer of AE signals (change in cut off frequencies and diminished SNR at the interface) and therefore errors have to be minimised to within 1 μm. Rules based on both Classification and Regression Trees (CART) and Neural Networks (NN) were used to implement a simulation displaying how such a control regime could be used as a real time controller, be it corrective measures (via spring cuts) over several initial machining passes or, with a micron cut introducing a level plain measure for allowing setup corrective measures (similar to a spirit level).

  12. Modification of three dimensional topography of the machined KDP crystal surface using wavelet analysis method

    Science.gov (United States)

    Wang, H. X.; Zong, W. J.; Sun, T.; Liu, Q.

    2010-06-01

    The wavelet analysis method has been extensively employed to analyze the surface structures and evaluate the surface roughness. In this work, however, the wavelet analysis method was introduced to decompose and reconstruct the sampled surface profile signals in the cutting direction that achieved by SPDT (single point diamond turning) operation, and the surface profile signals in tool feeding direction were reconstructed with the approximate harmonic functions directly. And moreover, the orthogonal design method, i.e. the combination design of general rotary method, was resorted to model the variations of the independent frequency and amplitude of different simulated harmonic signals in the cutting and tool feeding directions. As expected resultantly, a novel 3D surface topography modeling solution was established, which aims to predict and modify the finished KDP (potassium dihydrogen phosphate or KH 2PO 4) crystal surfaces. The validation tests were carried out finally under different cutting conditions, and the collected average surface roughness in any case was compared with the corresponding value as predicted. The results indicated the experimental data were well consistent with the predictions, and only an average relative error of 11.4% occurred in predicting the average surface roughness.

  13. Morphology observation for surface orange peel and fracture in tension sample of aluminum-alloy sheet and characterization of nano hardness

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; Mei Huashen; Lu Hongzhou; Yang Hongya; Wu Emei; Zhou Mingbo

    2012-01-01

    The tension property of aluminum-alloy sheet with different microstructures is measured, and the surface and tension fracture morphology of tension sample with and without orange peel are observed by using scanning electron microscope (SEM). Surface roughness and nano hardness of tension sample are measured. The results show that the average elongation of the samples with orange peel is lower than that without orange peel ; especially the r value of per- pendicular to the rolling direction is much lower than that without orange peel. The tension surface of the orange peel samples is very rough; various parameters of surface roughness are higher. Under the observation of SEM, a wider slid- ing band with a micro crack on the surface of orange peel sample can be found. The various parameters of surface rough- ness without orange peel sample are near to zero, the sliding band is narrow and without micro cracks. The dimple width in tensile fracture of orange peel sample is larger than that without orange peel sample, but shear lip is narrower. The nano hardness testing results show that samples with orange peel behave high elastic modulus, high hardness, and high maximum load, but low plastic deformation depth. These mentioned features can completely describe surface and frac- ture morphology of tension samt31es with oranze peel.

  14. Accelerating the search for global minima on potential energy surfaces using machine learning

    Science.gov (United States)

    Carr, S. F.; Garnett, R.; Lo, C. S.

    2016-10-01

    Controlling molecule-surface interactions is key for chemical applications ranging from catalysis to gas sensing. We present a framework for accelerating the search for the global minimum on potential surfaces, corresponding to stable adsorbate-surface structures. We present a technique using Bayesian inference that enables us to predict converged density functional theory potential energies with fewer self-consistent field iterations. We then discuss how this technique fits in with the Bayesian Active Site Calculator, which applies Bayesian optimization to the problem. We demonstrate the performance of our framework using a hematite (Fe2O3) surface and present the adsorption sites found by our global optimization method for various simple hydrocarbons on the rutile TiO2 (110) surface.

  15. Configuration design and accuracy analysis of a novel magneto rheological finishing machine tool for concave surfaces with small radius of curvature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Henan; Chen, Mingjun [Harbin Institute of Technology, Harbin (China); Yu, Bo; Zhen, Fang [China Electronics Technology Group Corporation No.26 Research Institute, Chongqing (China)

    2016-07-15

    Magnetorheological finishing (MRF) is a computer-controlled deterministic polishing technique that is widely used in the production of high-quality optics. In order to overcome the defects of existing MRF processes that are unable to achieve concave surfaces with small radius of curvature, a configuration method of a novel structured MRF machine tool using small ball-end permanent-magnet polishing head is proposed in this paper. The preliminary design focuses on the structural configuration of the machine, which includes the machine body, motion units and accessory equipment, and so on. Structural deformation and fabrication accuracy of the machine are analyzed theoretically, in which the reasonable structure sizes, manufacturing errors and assembly errors of main structural components are given for configuration optimization. Based on the theoretical analysis, a four-axes linkage MRF machine tool is developed. Preliminary experiments of spot polishing are carried out and the results indicate that the proposed MRF process can achieve stable polishing area which meets requirement of deterministic polishing. A typical small-bore complex component is polished on the developed device and fine surface quality is obtained with sphericity of the finished spherical surfaces 1.3 μm and surface roughness Ra less than 0.018 μm.

  16. Ultrasonic image restoration based on support vector machine for surfacing interface testing

    Institute of Scientific and Technical Information of China (English)

    Gao Shuangsheng; Gang Tie; Chi Dazhao

    2007-01-01

    In order to restore the degraded ultrasonic C-scan image for testing surfacing interface, a method based on support vector regression (SVR) network is proposed. By using the image of a simulating defect, the network is trained and a mapping relationship between the degraded and restored image is founded. The degraded C-scan image of Cu-Steel surfacing interface is processed by the trained network and improved image is obtained. The result shows that the method can effectively suppress the noise and deblur the defect edge in the image, and provide technique support for quality and reliability evaluation of the surfacing weld.

  17. Recent Advances on Permanent Magnet Machines

    Institute of Scientific and Technical Information of China (English)

    诸自强

    2012-01-01

    This paper overviews advances on permanent magnet(PM) brushless machines over last 30 years,with particular reference to new and novel machine topologies.These include current states and trends for surface-mounted and interior PM machines,electrically and mechanically adjusted variable flux PM machines including memory machine,hybrid PM machines which uniquely integrate PM technology into induction machines,switched and synchronous reluctance machines and wound field machines,Halbach PM machines,dual-rotor PM machines,and magnetically geared PM machines,etc.The paper highlights their features and applications to various market sectors.

  18. Surface mechanical property and residual stress of peened nickel-aluminum bronze determined by in-situ X-ray diffraction

    Science.gov (United States)

    Wang, Chengxi; Jiang, Chuanhai; Zhao, Yuantao; Chen, Ming; Ji, Vincent

    2017-10-01

    As one of the most important surface strengthening method, shot peening is widely used to improve the fatigue and stress corrosion crack resistance of components by introducing the refined microstructure and compressive residual stress in the surface layer. However, the mechanical properties of this thin layer are different from the base metal and are difficult to be characterized by conventional techniques. In this work, a micro uniaxial tensile tester equipped with in-situ X-ray stress analyzer was employed to make it achievable on a nickel-aluminum bronze with shot peening treatment. According to the equivalent stress-strain relationship based on Von Mises stress criterion, the Young's modulus and yield strength of the peened layer were calculated. The results showed that the Young's modulus was the same as the bulk material, and the yield strength corresponding to the permanent plastic strain of 0.2% was increased by 21% after SP. But the fractographic analysis showed that the fracture feature of the surface layer was likely to transform from the dimple to the cleavage, indicating the improved strength might be attained at the expense of ductility. The monotonic and cyclic loading were also performed via the same combined set-up. In addition, the specific relaxation behavior of compressive residual stress was quantified by linear logarithm relationship between residual stress and cycle numbers. It was found that the compressive residual stress mainly relaxed in the first few cycles, and then reached steady state with further cycles. The relaxation rate and the stable value were chiefly depended on the stress amplitude and number of cycles. The retained residual stress kept in compressive under all given applied stress levels, suggesting that the shot peening could introduce a more stable surface layer of compressive residual stress other than the elevated strength of nickel-aluminum bronze alloy.

  19. Multi-objective parametric optimization of powder mixed electro-discharge machining using response surface methodology and non-dominated sorting genetic algorithm

    Indian Academy of Sciences (India)

    Soumyakant Padhee; Niharranjan Nayak; S K Panda; P R Dhal; S S Mahapatra

    2012-04-01

    Powder mixed electro-discharge machining (EDM) is being widely used in modern metal working industry for producing complex cavities in dies and moulds which are otherwise difficult to create by conventional machining route. It has been experimentally demonstrated that the presence of suspended particle in dielectric fluid significantly increases the surface finish and machining efficiency of EDM process. Concentration of powder (silicon) in the dielectric fluid, pulse on time, duty cycle, and peak current are taken as independent variables on which the machining performance was analysed in terms of material removal rate (MRR) and surface roughness (SR). Experiments have been conducted on an EZNC fuzzy logic Die Sinking EDM machine manufactured by Electronica Machine Tools Ltd. India. A copper electrode having diameter of 25 mm is used to cut EN 31 steel for one hour in each trial. Response surface methodology (RSM) is adopted to study the effect of independent variables on responses and develop predictive models. It is desired to obtain optimal parameter setting that aims at decreasing surface roughness along with larger material removal rate. Since the responses are conflicting in nature, it is difficult to obtain a single combination of cutting parameters satisfying both the objectives in any one solution. Therefore, it is essential to explore the optimization landscape to generate the set of dominant solutions. Non-sorted genetic algorithm (NSGA) has been adopted to optimize the responses such that a set of mutually dominant solutions are found over a wide range of machining parameters.

  20. Study on characteristic parameters influencing laser-induced damage threshold of KH(2)PO(4) crystal surface machined by single point diamond turning.

    Science.gov (United States)

    Chen, Mingjun; Li, Mingquan; Cheng, Jian; Jiang, Wei; Wang, Jian; Xu, Qiao

    2011-12-01

    It has fundamental meaning to find the elements influencing the laser-induced damage threshold (LIDT) of KH(2)PO(4) (KDP) crystal and to provide suitable characterization parameters for these factors in order to improve the LIDT of KDP. Using single-point diamond turning (SPDT) to process the KDP crystal, the machined surface quality has important effects on its LIDT. However, there are still not suitable characteristic parameters of surface quality of KDP to correspond with the LIDT nowadays. In this paper, guided by the Fourier model theory, we study deeply the relationship between the relevant characteristic parameters of surface topography of KDP crystal and the experimental LIDT. Research results indicate that the waviness rather than the roughness is the leading topography element on the KDP surface machined by the SPDT method when the LIDT is considered and the amplitude of micro-waviness has greater influence on the light intensity inside the KDP crystal within the scope of dangerous frequencies between (180 μm)(-1) and (90 μm)(-1); with suitable testing equipment, the characteristic parameters of waviness amplitude, such as the arithmetical mean deviation of three-dimensional profile S(a) or root mean square deviation of three-dimensional contour S(q), are able to be considered as suitable parameters to reflect the optical quality of the machined surface in order to judge approximately the LIDT of the KDP surface and guide the machining course.